Loading...
HomeMy WebLinkAboutFontana West End Venture Vol 1 - Lines A, B, & D 4 ow ...aos.1011■Weewo4 .x4 e STORM DRAIN HYDRAULICS FOR Tfit FONTANA WEST 'END VENTURE VOLUME 1 LINES A, B, & p VC; (INCLUDING LATERALS C, E, G & WEST HERITAGE) PREPARED BY: HALL & FOREMAN, INC. 3170 REM-11U AV. COSTA MESA, CA. 92626 - 3428 (714) 641-8777 FEB 16 1987 „.. FOOTHILL STORM DRAIN HYDRAULICS LINE A ; ******************************** i!** *i! ** *iF*** *•7k9t* * * * * **** * * * *i ** *ititi'.••F*** *it4!•* PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PAC!-4AZ=E (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) '*rg" 4444444444 4 { < < < {444 4{444444 4444{4444(()1)1))) ))))1)))))11))))))))))))))))))) 4C) Copyright 398 Advanced Engineering Software CAES2 Especially prepared fors HALL & FOREMAN, INC. . < < {4((44 < < < < {4 4(44 <( { {1 <4< { {4 < {((((((())))111 1)111)11)1))))))))))))))))))))) * * * * * * * * * *DESCRZPTIQN OF RESULTS************** * * **** **** *** * * * * * * * * * * ***.** ** * HYDRAULICS x * LINE ' A' - WEST VILLAGE *' * JRM, JN 3532, 11/15/86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 13.32 FLOWLZNE ELEVATION = 1185.51 PIPE DIAMETER4INCH) = 60.00 PIPE FLOW(CFS) = 179.58 ASSUMED DOWNSTREAM CONTROL HGL = 1194.000 mas sms===mmm =ssssasss--- ssmumwm= =mm ssssaus ss---- .ssss=ars�.3ass =asaa3asa�'.s NODE 13.3E : HGL < 1194.000) ; EGL= < 1195.299) ; FLQWL ZNE= < 1185.610) < <(4 < < <( < < <(< {444 {44(44((( (4444((4(44 ())111)1 )))))))))))11)))))1))))))))1))) Advanced Engineering Software CAES2 SERIAL Nc. A0482A REV. 2.2 RELEASE DATE: 1 / 17/82 ( < <<( <4444(( {4 444((({4((4(4( {444( {(4(0)))))) )))))))))))))))1)))1))))1 PRESSURE FLOW PROCESS FROM NODE 13.32 TO NODE 42.52 1S CODE = 1 UPSTREAM NODE 42.52 ELEVATION = 1185.90 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 179.58 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 29.87 FEET MANNZNGS N - .01300 SF =40 /K) * *2 = 44 179.58)/1 2604. 422)) * *2 = .0047544 /- HF -L *SF = ( 29.87)* 4 .0047544) - .142 NODE 42.52 z HGL= 4 1194. 142) ; EGL= 4 1195.441) ; FLOWL I NE= 4 1185.900) s===a= PRESSURE FLOW PROCESS FROM NODE 42.52 TO NODE 147.89 IS CODE = 3 UPSTREAM NODE 147.89 ELEVATION - 1186.91 CALCULATE PRESSURE FLOW PIPE -BEND LOSSESSOCEMA): • YAW= tLLJW = 3t1 = 60.00 00 1NCHbS PIPE LENGTH = 105.37 FEET MANNINGS N = .01300 CENTRAL ANGLE •= 67.083 DEGREES PRESSURE FLOW AREA = 19.635 SQUARE FEET FLOW VELOCITY = 9.15 FEET PER SECOND VELOCITY HEAD = 2.299 BEND COEFFICIENT <#'B) = .2158 + HB =KB* (VELOCZ TY HEAD) _ { .216* < 1.299) = .280 PIPE CONVEYANCE FACTOR = 2604.422 FRICTION SLOPE<SF) = .0047544 FRICTION LOSSES = L *SF = < 105.37) *4 .0047544) = .501 NODE 147.89 HGL= < 1 194. 923) ; EGL= < 1 196. 22.=:) ; FLOWL INE= < 1188.910) - - - - = =s assaa= =asaasaa -- -asst as =ssssaa :s - -- assn =asss=az; _-� PRESSURE FLOW PROCESS FROM NODE 147.89 TO NODE 307.67 IS CODE = 3 UPSTREAM NODE 307.67 ELEVATION = 1188.05 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 179.58 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 129.44 FEET MANNIN3S N = .01300 CENTRAL ANGLE = 10.060 DEGREES PRESSURE FLOW AREA = 19.635 SQUARE FEET FLOW VELOCITY = 9.15 FEET PER SECOND VELOCITY HEAD = 1.299 BEND COEFFICIENT(KB) _ .0836 HB =KR* (VELOCITY HEAD) _ { .084)*( 1.299) = .109 PIPE CONVEYANCE FACTOR = 2604.422 FRICTION SLOPE_ {SF) a .0047544 FRICTION LOSSES = L *SF = t 2 19.44) * ( .0047544) = .568 NODE 307.67 : HGL= { 2195.600) ;ESL= ( 1296.899) ; FLOWL I NE= < 1188.050) • saase=a=asasW WWWW WWWsr.aWWW Was= PRESSURE FLOW PROCESS FROM NODE 307.67 TO NODE 312.34 IS CODE = 5 UPSTREAM NODE 312.34 ELEVATION = 1188.12 CALCULATE PRESSURE FLOW JUNCTION LOSSES : NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 174.7 60.00 19.635 8.897 0.000 1.229 2 179.6 60.00 19.635 9. 146 -- 1.299 3 4.9 28.00 1.767 2.762 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = ==Q5 EQUALS BASIN INPUT= == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-02*V2*COS4DELTA1)-03*V3*COS4DELTA3)- Q4*V4*COS 4DELTA4)) / l (A1 +A2) *26.2 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTZON SLOPE _ .00450 DOWNSTREAM FRICTION SLOPE _ .00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00463 JUNCTION LENGTH(FEET) = 7.50 FRICTION LOSS = .035 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .055 MANHOLE LOSSES = .065 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = . 124+ 2.229- 1.299+4 .035)+( 0.000) _ . 100 NODE 312.34 : HGL= ( 1195. 769) ;EGL= { 1196. 998) ;FLOWLINE= { 1188.220) s. arse aao PRESSURE FLOW PROCESS FROM NODE 312.34 TO NODE 574.74 IS CODE = 3 UPSTREAM NODE 574.74 ELEVATION = 1290.97 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 174.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 356.36 FEET MANNINOS N = .01300 LGS`f 1 lStSL MSVl7LG • PRESSURE FLOW AREA = 19.635 SQUARE FEET FLOW VELOCITY = 8.90 FEET PER SECOND VELOCITY HEAD = 1.229 BEND COEFFICIENT /, F(E•1) = .1071 HEM =1 <B* (VELOCITY HEAD) = ( ..l07)* /. 1.229) _ .132 PIPE CONVEYANCE FACTOR = 2604.422 FRICTION SLOPE(SF) = .0044995 p ,,.. FRICTION LOSSES = L *SF = ( 356.36)*( .0044995) = 1.603 NODE 574. 74 : HGL= < 1197. 504) ; EGL= < 1198. 733) ; FLOWL I NE= < 1190.970) rxasassasaaa�s ram saa= 553. smaas= saa= raaamaoarr =sasaasssa = ..assn =a= PRESSURE FLOW PROCESS FROM NODE 602.67 TO NODE 607.34 IS CODE = 5 UPSTREAM NODE 607.34 ELEVATION = 1192.47 CALCULATE PRESSURE FLAW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 2 9. 2 18.00 1. 767 5. 150 0.000 .412 174.7 60.00 19.635 8.897 -- 1.229 3 165.6 54.00 15.904 10.412 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 === =Q5 EQUALS BASIN INPUT =a= LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=4Q2*V2-Q1*V1*CQS4DELTA1)-Q3*V3*COS(DELTA31- Q4 *V4 *COS(DELTA4)) /4(A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE ,= .00750 DOWNSTREAM FRICTION SLOPE = .00450 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00600 JUNCTION LENGTH(FEET) = 9.00 FRICTION LOSS = .054 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .019 MANHOLE LOSSES = .061 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .837+ .412- 1.229+4 .054)+( 0.000) = .115 NODE 607.34 HGL= < 1198. 437) ;EGL= < 1298.8491 ;FLOWLINE= < 119 ma= ss= raaasa.= ar ss asssasassaa= as asa== as= aa: ssassaaarsasaa :•asassaasssrsaas.asssc = == s== PRESSURE FLOW PROCESS FROM NODE 289.47 TO NODE 301.19 IS CODE = 1 UPSTREAM NODE 301.19 ELEVATION = 1191.12 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 165.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 10.66 FEET MANNINGS N = .01300 SF= <Q /K 1 * *.^. a (( 165.601/f 1966. 4891) * *2 = .0070915 HF =L *SF = ( 10.66)414 .0070915) a .076 NODE 301. 19 : HGL= < 1297.241) ; EGL= < 1298. 924) ; FLOWL I NE= ( 1191.110) ss=aaaasaas =aa asa= s==a a..===.aasa:as=aa= a= as aa a--- as--- a=a=====s=======ssa=s= PRESSURE FLOW PROCESS FROM NODE 301.19 TO NODE 335.70 IS CODE = 3 UPSTREAM NODE 335.70 ELEVATION = 1192.38 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(DCEMA): PIPE FLOW = 165.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 34.51 FEET MANNINGS N = .01300 CENTRAL ANGLE •= 43.945 DEGREES Now PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 10.41 FEET PER SECOND VELOCITY HEAD = 1.683 BEND COEFFICIENT(WB) = .1747 HB =TSB* (VELOCITY HEAD) = ( .175)*( 1.683) _ .294 PIPE CONVEYANCE FACTOR •= 1966.489 FRICTION SLOPE(SF) = .0070915 FRICTION LOSSES = L *SF = ( 34.51) *( .0070915) = .245 tYL•S■° 1 S i CSV.1! i_L'SL PRESSURE FLOW PROCESS FROM NODE 335.70 TO NODE 611.67 1S CODE = I UPSTREAM NODE 611.67 ELEVATION = 1193.56 CALCULATE PRESSURE FLOW FRICTION LtSSES <LACFCD) : PIPE FLOW = 165.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 374.5+21 FEET MANNINGS N = .01300 SF= 40/1• <) *#2 ._ (( 165.6e0/< 1966. 4139)) **2 = .0070915 HF =L *SF = ( 274.50)4-4 .0070915) = 1.947 NODE 611.67 HGL= < 1 199.7 6) ;ESL= < 1201. 410) ; FLOWL I NE= < 1193.5d0) amirm= ===sssaras :a =amasaa s awss ssramrmssass srsaarsarmaasarsaa :ssssssraassassasr = a.__... -._ PRESSURE FLOW PROCESS FROM NODE 611.67 TO NODE 616.34 IS CODE = 5 UPSTREAM NODE 616.34 ELEVATION = 1194.48 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 153.5 45.00 11.045 13.898 0.000 2.999 2 165.6 54.00 15.904 10.412 -- 1.683 3 11.4 18.00 1.767 6.445 65.746 - 4 . 7 16.00 1.767 .402 45.000 - 5 12 +. 0 = = =QS EQUALS BASIN INPUTS=$ LACFCD AND QCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY =40 *V - 01 *V1 *C S(DELTA1)-Q3*V3*COS(DELTA3)- G4 *V4 *COS <DELTA4)) ,J < (A1+A2) *16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .0:300 { UPSTREAM FRICTION SLOPE = . 0161 1 � DOWNSTREAM FRICTION SLOPE = .00709 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 01 160 JUNCTION LENGTH <FEET) = 6.50 FRICTION LOSS = .099 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2+- <FR ICTI ON LCzSS) + <ENTRANCE. LOSSES.• JUNCTION LOSSES = -1.0134- 2.999- 1.6634-t .099)4-4 0.000) = . 442 NODE 616.34 : HGL= < 1 198. 812 ; ESL.= < 1201.81 1) ; FLOWL I NE= { ssssaasa=iasasrassss : asssss= sass= srasrsia= zv= srs =as== sr=assaaar= aa= ara= sss.._ - -._.- _.._ _ -._ c... PRESSURE FLOW PROCESS FROM NODE 616.34 TO NODE 1012.67 IS CODE = 1 UPSTREAM NODE 1012.67 ELEVATION = 1203.03 CALCULATE PRESSURE FLOW FRICTION LOSSES <LACFCD): PIPE FLOW = 153.50 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 395.80 FEET MANNING N = .01300 SF= <0/ <) * *2 = < ( 153.50)/< 2966.489)) *e2 = .0060930 HF =L *SF = < 395.80)* < .0060930) = 2.412 NODE 1012.67 . HGL= < 1202. 777) ; EGL= < 1:04.:23) ; F,LQWL I Nz = < PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND ESL LOST PRESSURE HEAD USING SOFFIT CONTROL = 4.75 NODE 1012.67 . H34._= < 1207.530) ; ES .: 120.977) ; FLOWL : \E= ' i ._._Err= s =c sr_- .- _.- _......-- »....._ -. rs. a•_- _- .____rrs ra.-= sa= sar_- .- _-- .- . -- -_._ .-__ _. _.__ __... : �- P 4 O f NODE 1 17 �+'� �'F rc5:s>_�.._ _uv� PROCESS r ..L+. NODE 1212-67 : 7't7 . L� i ..s3 COT.: G;-'S":'RE AY NODE 1017.a3 E- E 7 2 0% = 1203.15 ' E _CSS S: NC. DraL.:•`.i-S' ?;i_- D: `I:-". L_.`: AREA sv O_ZOI -Y DE- 7A A .. i SO. yi. 1C V4 :3. fir. S.>1'`'+. (Z. ► ii.2 3 2.. �.s=s� u� Eu. iy..._ f'. ._,. _'ti r• .Msx:_ ..r .... ...., { - �:..«. .:. «.... '.`,� -a `' ' ?: ...4::v .. ..i:�;L: ... :.i:4 �•i..i:5:+',U... H.:: ._ t .i."_: iri �rs N.'6�: .._ ;._ yc. it .. • �'ui.. •:: i,i.'.�..' t•5 ,'! - Lt w. y: r '.i•�`r..CS iy;.�i..T - .i t;q F^ L. ice ��irti •_ •L�+ i a%13wNES "J F RIC7I ON 5...02E = .01611 PVERA SED Fiat C T 1 CN SLOPE IN JUNCTION ASSUMED AS .01169 JUNCTION LENGTH 4 =EET) = 9.6+21 FRICTION LOSS = .11a ENTRANCE LOSSES = 0. 000 JUNCTION LOSSES = s7.Y +4-1V1- 0W2+4FRICTION LOSS) +(ENTRANCE LOSSES? JUNCTION LOSSES = 2.8734- 1.234- 2.9994-4 .110)+( et. o001 = 1.:`:ce NODE 1017. 33 4 101;" +6.96 2 ;E.na.. 4 1::10. 336) ;FLQWLZNE- < PRESSURE FLOW PROCESS FRC NCDE 1017.93 f 4� 1447.67 13 COLA = 1 :447,67 �. -- 7-. l�: r ^� " ^? i '.,. = l`0.3..S ::RLL. iii FRICTICA _ . L ,...F . PIPE F -CW = 53.78 C•7S s- > ;s -.... r1.yF, = 4::.f r• :< PIPE LENS a rt = 423.57 FEET mf• N I NSS = SF= (Lair.:) ** .= 53.72).'4 -= - ^F "t• HF =..*Sg -- 4 423. 57; * s ..2072228: = 3.079 NODE 14 4 1212.041):E2-= .i 1•r.;:+7 ..: vvi__:'i... .... w', r'sR 5::i_.., r:-Ow ASa:.r » C :.jS::..; ;`,s r,:.i....:s " r:.a... r^•i;4D .. :s:. }i; :u LSIN S 5: . :..:2\ 2;C:- = 1.-26 NODE 1447.57 : 13. 300) ;EG:.. 4 1014.534) gr= LOW.__? r :.. sa= a=• xsesaa =rxaarxaeser=saxcasrrsxrax.:: Ica.-_.= xrraar.- srr 3r .aa:aexssrxasa�a- x....._..._ -s = .:x- .__:._ =:_ �� sac::.: _. FLOW PROCESS s r'3 ' „3i�: C : ii.:. 1 titer ` . 6 i 131 14 54.3 - P 34 EE:.EVI� T 1 O`�: x 9 CALCU .RT PRr:.SS .J E F. DW M ' E ..CSSES 4LC r"' I P E F .CW =_ 85. ; 3 C D F P FLOW AREA •_' 9 SQUARE F LOW ELOCITY = 8.90 F EET PER SEC E Z TY HEAD = 1 3 4 M = , a 5* (VELQC I TY HEAD) $ .415* 4 1.234) 2 N 14 54.34 s HGL= t 1213. 362) ; EGL= i 4) ; FLDWL I NE 4 °.::, R =f'7� = 7g ffi .=� ifi2lil. ADO= tRiR�lv �. i =��aw:n�.Wt.R� A T Ct War= RESSURE FLOW PROCESS FR OM NODE 14"52.34 1784.06 IS CODE 1784.06 T ON T I DN = C ALCULATE PRESSURE FLDW FRITIQN LOSSES4LACFCD)s PIPE FLOW - 85. 7:577:)/( PIPE DIAMETER =w 42.00 INCHES PIPE LE:G T : = 3337EET MANNINGS N _ .01300 SF=4O /M) i!' : = ( t 1006. 105)) **2 _ .0070692 HF=L*SF = 4 331.72)* 4 .0072692) _ 0.411 NODE 1784.06 : HSL= { 1215. 773•) ;EGL= 1 1217. 008) ;FLCW:.INE= { PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGz. LOST PRESSURE HEAD USING SOFFIT CONTROL - .85 NODE 1784.06 HGL= 4 3 216.6:0) ; EGL= { 1 is 3 7.854) ; FLQWL I NE== < PRESSURE FLOW PROCESS FcOM NODE 1784.Z6 TO NZZE 184E.SS :S 2::' UPSTREAle NODE 1848.89 ELEVATION = 1213.9a CALCULATE PRESSURE FLOW PIPE-SEND LOSSES4OCEMA): PIPE Fr-OW = 85.78 CFS PIPE DIAMETER = 42. INCHES. PIPE LENGTH = 64.83 FEET MANNINGS N = .01300 CENTRAL ANGLE = 82.544 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET ‘Alimpe FLOW VELOCITY = 8.92 FEET PER SECOND VELOCITY HEAD = 1.234 BEND COEFFICIENT4KB) = .2394 HB=1.4B*(t,'ELOCITY HEAD) = ( .239)*f 1.234) = .296 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) = .02z7L62 FRICTION LOSSES = L*SF = ( 64.83)*4 .1,7107269a) - .471 NODE 1848.89 z HGL= 1217.387)EGL= < 1218.621);FLOWLINE= l2l3.9 PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .01 NODE 1848.89 HGL= 4 1217.400>;EGL= 4 1218.635);FLOWLINE= ===================.=== __________ PRESSURE FLOW PROCESS FROM NODE 1848.89 TO NODE 1853.55 IS COLE = 2 UPSTREAM NODE 1853.55 ELEVATION = 1213.95 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA Hs/ 1 85.8 42. 9.621 8.916 0.000 1.234 85.8 42.00 9.621 8.916 1.234 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY ‘4140., 04*V4*COS4DELTA4))14(A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00727 DOWNSTREAM FRICTION SLOPE = .00727 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00727 JUNCTION LENGTH(FEET) = 4.66 FRICTION LOSS = .034 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .062 JUNCTION LOSSES = DY*HV1-HV2+4FRICTION LOSS)+4ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 1.234- 1.2344-4 .034)+4 0.000) = .096 NODE 1853.55 s HOL= 1217.496);EGL= < 1216.730);FLOWLINE= 4 1213.950> PRESSURE FLOW PROCESS FROM NODE 1853.55 TO NODE 2447.67 IS CODE = 3 UPSTREAM NODE 2447.67 ELEVATION = 1219.41 CALCULATE PRESSURE FLOW P1PE-BEND LOSSES<OCEMA): PIPE FLOW = 85.78 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 594.12 FEET MANNINGS N = .01300 00 CENTRAL ANGLE = 38.077 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET Amm, FLEW VELOCITY = 8.92 FEET PER SECOND ftmo" VELOCITY HEAD = 1.234 BEND COEFFICIENT(MB) = .1626 HB=XB*4VELOCITY HEAD) = ( .163)*4 1.e34) - .201 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) = .42 FRICTION LOSSES = L*SF - 4 594.12)*4 .0072692) = 4.319 NODE 2447.67 : HGL= < 1222.015);EGL= 1223.250);FLOWLINE= 12:9.410> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .89 NODE 2447.67 . - L = ( 1222.91 k'+) ;EGL = ( 122:4. 144 ; FLOWL I NE- { : =Y. 41 i2t ) PRESSURE FLOW PROCESS FROM NODE 2447.67 TO NODE 2452.34 I3 CODE = 2 UPSTREAM NODE 2452.34 ELEVATION = 1219.46 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 85.78 CFS PIPE DIAMETER = 42.00 INCHES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 8.92 FEET PER SECOND VELOCITY HEAD = 1.834 HMN = . 0S* (VELDC I TY HEAD) = .05*( 1.234) = .062 NODE 2452.34 : HGL= { 1222. 972) ;EGL•= < 1224. 206) ;FLOWLINE= { 1219. 48a ) x: Waxes= aaxma= saasaa: sra ....a as aa seaaassasxoaassaamr= sexra =s'esatasr=z_raxs_.._ _ _.... _.._._._._ PRESSURE FLOW PROCESS FROM NODE 2452.34 TO NODE 2766.89 IS CODE = 3 UPSTREAM NODE 2766.89 ELEVATION = 1222.35 CALCULATE PRESSURE FLOW PIPE -E{END LOSSES(OCEMA): PIPE FLOW = 85.78 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 314.56 FEET MANNINGS N = .01300 CENTRAL ANGLE = 20.159 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 8.92 FEET PER SECOND VELOCITY HEAD = 1.234 REND COEFFICIENT(KR) = .1183 HB =KB *(VELOCITY HEAD) = { .118) *{ 1.234) = .146 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE<SF) ._ .0072692 FRICTION LOSSES = L *SF = < 3l4..56)* { .0072692) = 2.287 NODE :766.89 : HGL= < 1225. 404) ;E &L= < 12:6. 639) ;FLOWLINE= ( 1222.350 PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .45 NODE 2766.89 : HGL= < 1225.4350) ;EGL= < 1227. 084) ; FLOWL ZNE= < 1222.350\ xaara= sasasaeaasas= as aaamaa+. xaxasaaaasaa: ss.: ss asaaasmaaaa := .weaa=sa = =asea == saaasr.= sr.__. �... _. PRESSURE FLOW PROCESS FROM NODE 2766.89 TO NODE 2957.67 IS CODE = 3 UPSTREAM NODE 2957.67 ELEVATION = 1224.11 CALCULATE PRESSURE FLOW PIPE -SEND LOSSES(OCEMA): PIPE FLOW = 85.78 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 190.92 FEET MANNINBB N = .01300 CENTRAL ANGLE = 15. 31 0 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 8.92 FEET PER SECOND VELOCITY HEAD = 1.234 SEND COEFFICIENT {(R) = .1031 H8=k{8* {VELOCITY HEAD) = ( .103)*( 1.234) a .127 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) _ .0072692 FRICTION LOSSES a L *SF = ( 190.92)*( .0072692) = 1.388 NODE 2957.67 : HGL= { 1227.365) ; EGL.= ( 1228. 599) ; FL OWL 1 NE= ( 1224.110 PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL _ LOST PRESSURE HEAD USING SOFFIT CONTROL = .24 NODE 2957.67 HGL= { 12$7.610);90L = { 1228. 844) ; FLOWL 1 NE= { 1 224.1 10) L smaaaa as�aarxaaaa=x as�a��s aaaamaaas a =aaxa=axa ==esaaaa=aa c: PRESSURE FLOW PROCESS FROM NODE 2957.67 TO NODE 2962.34 IS CODE = 5 UPSTREAM NODE 2962.34 ELEVATION = 1224.17 CALCULATE PRESSURE FLOW JUNCTION LOSSES: $41.J. L. JIB> / fl " sLL L i L:1 r i.l∎rf - +_a..v.∎•+ • s .v - i • ■ : r 1 49. a 36.00 7.069 7.048 0.000 .771 2 85. 42. 9.621 8.916 -- 1.2'34 3 le. 9 18.00 1.767 6.157 45.000 - 4 25.1 1 24.00 3.142 7.983 90.000 _- 5 0.0 == =125 EQUALS ;BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: ✓ DY=(Q2*V2-Q1*V1*COS(DELTA1) (24 *V4*COS(DELTA4)) / ((A1 +A2) *16.1 ) UPSTREAM MANNINGS N •= .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00558 DOWNSTREAM FRICTION SLOPE _ .00727 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00642 JUNCTION LENGTH (FEET) = 7.00 FRICTION LOSS = .045 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HVE +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTIDN LOSSES = 1.363+ .771- 1.234 +4 .045) +( 0.0 = . 945 NODE 2962 : H8L= ( 1229. 018) ; EGL= ( 1229. 790) ; FLOWL I NE= ( 12Z4.170, =Sari saes, a= ass =s= rarer = = = == =s. =ammsaas = = = = = = == =serer....= = == _____ _= === =x= = = == r-- _.__. -_.._ PRESSURE FLOW PROCESS FROM NODE 2962.34 TO NODE 3357.57 :S CODE. = UPSTREAM NODE 3357.67 ELEVATION = 1227.80 CALCULATE PRESSURE FLOW PIPE-BEND LOSSES WCEMA) : PIPE FLOW = 49.8: CFS PIPE DIAMETER = 36.00 INC,-ES PIPE LENGTH = 394.20 FEET MANNINGS N = .01300 CENTRAL ANGLE •= 31.724 DEGREES PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 7.05 FEET PER SECOND ''=- VELOCITY HEAD = .771 BEND COEFFICIENT(KB) = .1484 .=w HB (B* (VELOCITY HEAD) _ ( . 14.8) * ( .771) = .114 PIPE CONVEYANCE FACTOR = 666.986 FRICTION SLOPE (SF •- .752 FRICTION LOSSES = L *SF = ( 394.20) *1 .0055792) = 2 NODE 3357.67 . HGL= ( 1231 . 332) ; EGL= ( 1232. 103) ; FLGWL I NE _ < I i-2 7.800) PRESSURE FLOW PROCESS FROM NODE 3357.67 TO NODE 3362.33 1S CODE = 5 UPSTREAM NODE 336::.33 ELEVATION = 12227.89 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA i-IV 1 34.0 30.00 4.909 6.918 0.000 .7.43 2 49.8 36.00 7.069 7.048 -- .771 3 8.5 18.00 1.767 4.833 45.000 - 4 7.3 18.00 1.767 4.142 45.000 - 5 0.0 = ==05 EQUALS BASIN INPUT= LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY==4Q2*V2-Q1*V1*COS4DELTA1) Q4 *V4 *COS(DELTA4) )/ ((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .006 ,: DOWNSTREAM FR I CT I DN SLOPE _ .00558 ` AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00622 JUNCTION LENGTH(FEET) = 8.00 FRICTION LOSS = .050 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +4FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .340+ .743- .771 + ( .050)+4 0.000) _ .;362 NODE 3362.33 . HGL= 4 1231. 722) ; EGL= 4 1232.465) ; FLOWL I NE _ . 1z27.890) PRESSURE FLOW PROCESS FROM NODE 33641.33 TO NODE 3486.40 IS CODE = 3 UPSTREAM NODE 3486.40 ELEVATION = 1229.23 - - CALCULATE PRESSURE FLOW PIPE-BEND LOSSES4OCEMA): PIPE FLOW = 33.96 CFS PIPE DIAMETER = 30.00 INCHES . r we ' PIPE LENGTH = 119.90 FEET MANNINGS N = .01300 CENTRAL ANGLE •= 9.956 DEGREES PRESSURE FLOW AREA = 4.909 SQUARE FEET FLOW VELOCITY •= 6.92 FEET PER SECOND VELOCITY HEAD = .743 BEND COEFFICIENT4X8) = .0831 HB=KB*4VELOCITY HEAD) = 4 •aa3)*4 .743) = .062 PIPE CONVEYANCE FACTOR = 410.171 FRICTION SLOPE4SF) = .oesazaz FRICTION LOSSES = L*SF = 4 119.90)*4 .0068550) = .822 NODE 3486.40 HGL= ( 1232.605>;EGL= 4 1233.349);FLOWLINE= 4 12E9.232 : SC= 11C=.711t.C. MC= ZW.=.= ========.===.1:===.4. =.121== ===. =r•J . - - -- PRESSURE FLOW PROCESS FROM NODE 3486.40 TO NODE 3664.40 IS CODE = 3 UPSTREAM NODE 3664.40 ELEVATION = 1231.13 CALCULATE PRESSURE FLDW PIPE-BEND LOSSES4OCEMA): PIPE FLOW = 33.96 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 178.20 FEET MANNINOS N = .01300 CENTRAL ANGLE = 26.421 DEGREES PRESSURE FLOW AREA = 4.909 SQUARE FEET FLOW VELOCITY = 6.92 FEET PER SECOND VELOCITY HED = .743 BEND COEFFICIENTWB) = .1355 hB=MB*4VEL_OCITY HEAD) = ( .13514'4 .742) = .101 PIPE CONVEYANCE FAC = 410.171 FRICTION S-0 = FRICTION LOSSES = L *SF = 4 76.20)*4 .0066550) = 1.LEE NODE 3664.40 : HL= 4 1222.928):2C_.= 1234.671);-'=-CwL:\E' ---------------------------------- PRESSURE FLOW PROCESS FROM NoDa 3664.40 TD ND E 3849.97 IS UPSREAM %ODE 3249.97 - 1232.3,Z ---------- - CALCULATE PRESEL:RE FLOW FRICTION LCSSES4LACFCD): PIPE FLOW = 33.96 CFS PIPE DIAMETER = 3Q. 00 ES PIPE LEN37=-5 = 165.57 FEET MANN:N3S N = SF----40/t04* , 4( 23.96)/4 410.1711)*A2 = .ezEsss5o: HF=L*SF = 183.57)*4 .0068550) = 1.272 NODE 3849.97 : k-GL= 4 123z.200) iaa...= 4 123.5.943);FLOWLINE= 4 1E33-22- PRESSURE FLDW ASS,,M USED TO ADJUST HSL AND ES- LOST PRESSURE 1-$EAD USING SOFFIT CONTROL = .60 NODE 3849.97 HGL.= 4 1235.8020:ESL= ( 1236.543);FLOW-INE= 1..17a.az_ PRESSURE rLCW PROCESS FROM NODE 3849.97 TO NODE 3a36.si :s COLE = UPSTREAY NODE 38ee.63 ELEVATION = 1233.74 CA-C.2-ATZ . T_Cw ;::-LEN: L.CESESIOCE'P,: 12 - = 23.96 CFS P17E = 24.ZZ ;:IPE LENZ = 36.86 FEE . 1 - P\%:\OE. N = .Z:222 CE4'RA- ANGLE = 24. 7.42 Nifty- PRESS-AZ - ARr = 4.909 FLOw %.E-CCITV .= 6 7 E:E T SE":22 VF_COI hEP. = .743 SE^,C OCE = -.3-- -Q11=-/$44YELOCI = = .4(737 OONt.EVAn.CE S-CWE4S - -:, '4SE,..1' • -:: 'ESS,. -CAL SC=.T ,- 262C.63 ; _ELL.S2C,;7_:_--C- . _ - -- • - • - PR"r:SSJAE TROCES NCD: T: STi> 672L.62 ELE.WIT1C CLiZ SSE L3 .7-NCTCh. _OSSTS: NO. DISChARSE DIAMETE$ AREA VELOCITY DE-TP 1 14.1 24.02: 3.14E 90.0ZZ .3-5 34.0 30.03 4.909 6.9:6 - 3 0. 0 0. 00 0.000 0.000 0. 000 4 0.0 0.00 0.000 0.000 0.000 5 19.8===05 EOJALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORML1,..AE USED: DY=402*V2-01*V1*COS4DELTA1 04*V4*COS4DELTA4/Y/44A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANN:NGS N = .013ez UPSTREAM FRICTION SLODE = .00391 DOWNSTREAM FR:CTIOnl SLCJE = .00685 AVERAGED FRIE:TION EE :N JUNC ASSUMED AS .00:530 JUNCTION LZNST-.4FEE = .a. 0' FT:DN L.O32 = ..-E ENTRANCE LOSSES JUNCTION LOSSES = DY4HVI-hV2-t-(FR:CTION LOSS)-4-(E\ .. LOSSES = 1.813-t. .315 .743+( .11E)+( .14S' = AosIL NCDE 6736.62 : H3-= ( 1236.2EZ>;ES-= < 123. 634> Saw" PRESSURE FLOW PROCESS ; NODE 0.00 TO NCDE - UPSTREAM NODE 41.14 ELEVATION = 1.L.34.59 ------- -------------- --- -- CALCULA PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE = 14.14 CFS PIPE DiAhlETER = 24.00 INCEE PIPE LENSTH = 41.14 FEET MANNINSS N = .013%22 14.14)/( .:26.2124))**:: = .02139216S HF=L*SF = 4 41.14)*( .0039066) = .161 NODE 41.14 : HGL= 1236.481>;EGL= 4 1236.795);FLOW._INE= 4 1Z24.590i MMMMMM _-_-____ PRESSURE FLOW PROCESS FROM NODE 41.14 TO NODE 44.64 IS CODE = UPSTREAM NODE 44.64 ELEVATION = 1234.59 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES4LACFCDO: PIPE FLOW4CFS> = 14.14 PIPE DIAMETER4INCHY = 24.00 PRESSURE FLOW VELOCITY HEAD = .315 CATCH BASIN ENERGY LOSS • .2*4VELOCITY HEADY = .2*4 .315) 4%7 .062 NODE 44.64 HGL= 4 1238.858>;EGL= 4 1232.858>:FLOWLINE= < 1234.590> ___-_-_-______ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM Ao ow* Now 40.111, • • 44 0111110e 1 FOOTHILL STORM DRAIN HYDRAULICS • • • • • \ ' 4 00eir. • • • • LATERALS LINE A Nloor' • • Xtet g 20feesotait, Rite. �rr►° _- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I SUBJECT BY DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS 1 fEf 1 ARR I 'lRRR LINE A * PROFILE "E" - WEST VILLAGE * REFER TO CONTRACT DRAWINGS �rrw► ., 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACHABE (Reference: LICFD,LACRD,& OCEMA HYDRAULICS CRITERION) * * *** * *ar*** *** ** **** *ir* ir*ariaararirarit* atje•**** arar**** atac• atatar*erar ****** * *** ****•r.•*t*• •v!••r.* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<)))))>) )))) >) >))) > > >)))) >) >)))))) > > >.) 4C) Copyright 298'.=: Advanced Engineering Software CAES3 Especially prepared for: HALL FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<<<))>)>) )))))) > > > > > > > > > > >) >)))) >))))) >) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** * HYDRAULICS * LINE 0 A 1 PROFILE 1 E 1 - WEST VILLAGE * * JRM, 3N 3532, 11/15/86 * ********************************************* * * * * * * * * * * * * * * * * * * * * * *• * * * * * * ** *********************** * * * * * * * * * * *** * *** * *** * * * * * * * * *x ** * * *•x * * * * ** *** * **a *** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 103. 18 FLOWL I NE ELEVATION = 1203.09 PIPE DIAMETER l INCH) = 42.00 PIPE FLOW4CFS) = 69.66 ASSUMED DOWNSTREAM CONTROL HGL = 1:08.960 S�. aiS3iC.: lSS25' SSSSS .?SSST�SSOSSSSTSSSSSSSSSSSSS �f�- t.�i'S�.S.SS3S T. 229��• �. �- .....�.-- �..�..�_..�- ._...� -__. < { { < 4 < 4 < < < < 4 < < < < < < < < < < < < < < < 4 < < < < 4 < < < < <) ) ) > > ) > ) > ) ) > ) ) > > ) ) > ) ) ) ) ) ) ) ) > ) ) ) ) > ) ) > > > Advanced Engineering Software CAES3 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<)>))>)) ))))) >))))))) >))) > > > > >))))) >))> ====aau================== = = = :sa ---s ==sa=====ss= == == == =======m===sa �. PRESSURE FLOW PROCESS FROM NODE 103. 18 TO NODE 104.50 IS CODE = 1 UPSTREAM NODE 104.50 ELEVATION = 12203.10 CALCULATE PRESSURE FLOW FRICTION LOSSESILACFCD): PIPE FLAW - 69.66 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 1.32 FEET MANNINGS N = .01300 SF =11 1M) * *2 s: l ( 89.66)1( 1006. 105)) ** =: .0047938 HF =L *SF = l 1.32) * < .0047938) = .006 NODE 104.50 : HGL= < 1 e08. 966) ; EGL= < 1209. 780> ; FLOWL I NE= < 1203.100> 100> err PRESSURE FLOW PROCESS FROM NODE 104.50 TO NODE 130.46 IS CODE = 3 UPSTREAM NODE 130.46 ELEVATION = 1203.37 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES <DCEMA): PIPE FLOW = 69. 66 CFS PIPE DIAMETER = 42. 00 INCHES PIPE LENGTH = 25.96 FEET MANNINGS N = .01300 CENTRAL ANGLE = 66.099 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 7.24 FEET PER SECOND VELOCITY HEAD = .814 E END COEFFICIENT 4 XD) •= .2142 ,011"' HD=HE *fVELOCITY HEAD) _ { .214) *4 .814) = .274 PIPE CONVEYANCE FACTOR = 1006.105 FRICTION Sr.DPEfSF) = .0047938 FRICTION LASSES = L*SF = f 25.96)* { .0047936) _ .124 NODE 130.46 : HGL= { 9. 265) ; EGL= { 1210. @79) ; FLOWL I NE= < 1203.370i s:s assass saassasssssrmsasssassss == scsr_ s =aasrrssssssassrssrsrssssrsxr_. ._... PRESSURE FLOW PROCESS FROM NODE 130.46 TO NODE 170.45 IS CODE = 1 UPSTREAM NODE 170.45 ELEVATION = 1203.76 CALCULATE PRESSURE FLOW FRICTION LOSSESfLACFCD): PIPE FLOW a 69.66 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 39.99 FEET MANNINGS N = .02300 SFa { Q1 K) *•*2 = f ( 69.66)1( 100+6. 105))•* *2 = .0047936 47938 HF=L*SF = f 39.99)* f .0047938) = .192 NODE 170.45 : HGL= f 1209. 457) ;EGL= { 1210. 271) ;FLOWLINE= { 1203. SZ maasasassaasxsssa=a s assas=eassssssr sr = srssrasrs arias= cs= assn_ - - -._ _ »» -- - ._ - __ __ - ._ ...._ PRESSURE FLOW PROCESS FROM NODE 170.45 TO NODE 193.45 IS COrJE •- 5 UPSTREAM NODE 193.45 ELEVATION -= 1204.16 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA :-V 1 44.6 36.00 7.069 6.305 18.720 c 69.7 42.00 9.621 7.240 __- .61 /0"""- 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 O. 00 0.000 0.000Zti 0.000 -- 5 25.1 = ==•05 EQUALS EASIN INPLUT = == LPJCFC D AND CCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DV =4Q2 *V: -Q1 *V1 *CAS {DELTA1) - Q3 *V3 *Ct S. DELTA3) - C 4 *V4•r.•COS f DELTA4)) 1{ f A 1 +A2) * 16.1 ) UPSTREAM; MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00447 DOWNSTREAM FRICTION SLOPE = .00479 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00463 JUNCTION LENGTH (FEET) = 23.00 FRICTION LOSS = .106 ENTRANCE LOSSES = .163 JUNCTION LOSSES = DY +HV1 -HV2 +4FRICTION LOSS) +4ENTRANCE LASSES) JUNCTION LOSSES = .886+ .627- .824 +4 .106) +4 .163) = .959 NODE 193.45 : HGL= f 1210.62::) ;EGL= f 1211. 2230) ;FLQWLZNE= { 1204..62: sassa:r..m.asss=sasss= .-sas==s= ==== =====srsssa======rraassss == sr= ris= rs-- . .... PRESSURE FLOW PROCESS FROM NODE 193.45 TO NODE 258.65 IS CODE _ :. UPSTREAM NODE 256.65 ELEVATION = 1204.84 CALCULATE PRESSURE FLOW FRICTION L•`tSSES /.LACFDD) : PIPE F-OW = 44.57 CPS PIPE DIAMETER •- 36.021 INC/1::E PIPE LE ".2T:; = 65.20 FEET n'A ":NINSS N = .0130C. S"=w 4 /X) * *Z: ._. 4! 44.57)/4 666. 936)) **► •= .00 X100. HF=L *SF = { 65.20J* i .0044653) = .291 NODE 258.65 . "ts -= f 121 904) ; E8y { 121 .i .521) ; FLC . ...- _ : 1 .=2d:. S: ;Z i asrss. - rrssssassss- sas PRE' 3SUR': FLOW P FRC11 j�.3D:_ 358.65 ^u 1'.3LE 1E CLi._ = USTREA iDE CALCULATE PRFSS,..cE F-CW J=IPE-BEND LOSSESTYP;: PIPE FLOW = 44.57 CFS PIPE DIA2TER = 36.03 :4C-ES PIPE LEN07)- = 56.39 FEET MANNINSS N •= .3-3ZZ CENTRAL ANGLE = 74.346 DEGREES ..0016 PRESSURE FLOW AREA = 7.0E9 SOUARE FEET FLOW VELOCITY = 6.31 FEET PER SECOND VELOCITY x-EAD = .617 SEND CCEFFICIENT(X6) = .2E73 piEm- ( .227)*! .617> = .140 PIPE CONVEYANCE FACTOR = 666.966 FRICTION SLOPE4SF) FRICTION LOSSES = = 4 56.39>*4 .004465:0 = .261 NODE 317.04 : HOL= ( 1211.305);E6L= < 1211.922);FLOWLINE= 4 1E475.43ZN PRESSURE FLOW PROCESS FROM NODE 317.04 TO NODE 385.74 IS CODE = 1 UPSTREAM NODE 385.74 ELEVATION = 1206.11 CALCULATE PRESSURE FLOW FRICTION LOSSES4LACCDI: PIPE FLOW = 44.57 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 68.70 FEET MANNINGS N • .01300 SF=40/M)**2 = (4 44.57)1( 666.986))**2 = .0044653 HF=L*SF = 4 66.70)*4 .004-4653) -= .307 NODE 385.74 : HSL= 4 1211.611);ESL= < 1212.229):FLOWLINE= < ==============================================...,==_______________ PRESSURE FLOW PROCESS FROM NODE 385.74 TO NODE 389.02 IS COZE = 5 UPSTREAM NODE 389.02 ELEVATION = 1206.18 CALCULATE PRESSURE FLOW JUNCTION LOSSES: " NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 28.0 30.00 4.909 5.700 .734 .505 14 4ftlio- = 44.6 36.00 7.069 6.305 .617 3 0.0 0.00 0.000 0.000 22.000 4 0.0 0.00 0.000 0.000 0.000 5 16.6===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(02*V2-014V1*COS(DELTA1)-03*V3*COS4DELTA3) 04*V4*COS4DELTA4))/44A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00465 DOWNSTREAM FRICTION SLOPE = .00447 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00456 JUNCTION LENGTH4FEET) = 3.28 FRICTION LOSS = .015 ENTRANCE LOSSES = .123 JUNCTION LOSSES = DY+HV1-HV2+4FRICTION LOSS)+4ENTRANCE LOSSES) JUNCTION LOSSES = .630+ .505- .617+4 .015)+( .123) = .656 NODE 389.02 : HGL= < 1212.380);EGL= < 1212.885>;FLOWLINE= ( 1206. 180) WWWWWWWWWWWWWWWWWWWW Awsimarw===mmirwormwm= WWWWWWW sumwm====:=.: mar.marm.m========= PRESSURE FLOW PROCESS FROM NODE 369.02 TO NODE 457.98 IS CODE = a UPSTREAM NODE 457.98 ELEVATION = 1206.87 CALCULATE PRESSURE FLOW FRICTION LOSSES4LACFCD): *glow PIPE FLOW = 27.98 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 68.96 FEET MANNINGS N = .01300 SF=40/1-4)**2 = 4( 27.98)/4 410.171))**2 = .0046534 HF=L*SF = 68.96)*4 .0046534) = .321 NODE 457.98 : HGL:= < 1212.701);EGL= 4 1213.206);FLOWLINE= < 1206.670) = PRESSURE FLOW PROCESS FROM NODE 457.98 TO NODE 457.98 Zs CD na . s UPSTREAM NODE 457.98 ELEVATION = 1Z06.87 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LCFCD): PIPE FLOW4CFS) = 27.98 PIPE DIAMETER4INCH) = 30.00 PRESSURE FLOW VELOCITY HEAD = .505 CATCH BASIN ENERGY LOSS = .2*4VELOCITY HEAD) = .24(4 .505) = NODE 457.98 : HaL. ( 1213.307);EGL= 4 1213.307);FLOWLINE= < laes.a7z, ------------------ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ,4: era.' h 2fte,00,4, ate. �rrw CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS I DEC. 19861 3366 LINE A * PROFILE "F" - WEST VILLAGE * REFER TO CONTRACT DRAWINGS 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92628 -3428 • (714) 841 -8777 s ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) * * * * * * * * * ** *+ gat ** prat ** *** * *i *** * *at- ** * * * *** *a tit * * ** *** * *ao-** ** ** *** * * ** *star *a ** ** <<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<(<<<<<<))))))) ))))))))))))))))))))))))))))))) 4C) Copyright 1982 Advanced Engineering Software CAES3 Especially prepared for: HALL dC FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<<<<(<<(<<<<<<<<<<))))))) ))))))))))))))))))))))))))))))) * * * * * * * ** *DESCRIPTION OF RESULTS*************** * * * * * * * * * * * * * * * * * * * * *** *** * ** * HYDRAULICS * * LINE 'A' PROFILE 'F' - WEST VILLAGE a� * JRM, JN 3532, 11/15/86 *' ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** *art* NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWL I NE ELEVATION = 1224.73 PIPE DIAMETER<INCH) = 18.00 PIPE FLOW(CFS) = 10.88 ASSUMED DOWNSTREAM CONTROL HGL = 1229.020 NODE 0.00 : HGL. < 1229. 020) ; EGL= 4 1229.609) ; FLOWL INE= 4 1224.730) <<<<<<<(<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<))))))) ))))))))))))))))))))))))))))))) Advanced Engineering Software CAES3 • SERIAL No. A0482 REV. 2.2 RELEASE DATE: 1 / 17/82 • <<<<<<<<<<<<(<<<(<<<<<<<<<<<<<<1<<<<<<))))))) ))))))))) )))))))))))))))))))))) PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 4.09 IS CODE = 1 UPSTREAM NODE 4.09 ELEVATION = 1227.56 CALCULATE PRESSURE FLOW FRICTION LOSSES<LACFCD): PIPE FLOW = 10.88 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.09 FEET MANNINO8 N = .01300 SF= < Q /K) * *.° as < < 10.88)/4 105. 044)) ** = .0107280 HF =L*SF = 4 4.09) * < .0107280) _ .044 NODE 4.09 : HGL= 4 1229.064) ;ESL= < 1229.652) ; FLOWL I NE= < 12.= 7.560) ottook mass ==a ==m ssaamma PRESSURE FLOW PROCESS FROM NODE 4.09 TO NODE 4.09 IS CODE = 8 UPSTREAM NODE 4.09 ELEVATION a 1227.56 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES<LACFCD): PIPE FLOW(CFS) = lo.aa PiPt. LYIkMi:.1b;M:INL,H) = 0. PRESSURE FLOW VELOCITY HEAD = .589 CATCH BASIN ENERSY LOSS • .2*4VELOCITY HEAD) = •2*( •589) = .118 NODE 4.09 : HGL= < 1229.770);EGL= ( 1229.770)fFLOWLINE= < 12a7.560) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM r AC PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACMAGE (Reference: LACFD,LACRD,41 OCEMA HYDRAULICS CRITERION) * * * * * * * * * *jr**** rat * * * * * * ***** * * * *** ! * * * * * **** * ** * *err! * * * * ** *yo- * * *r. * * * * * * * * * ** 4 4<< 444<<<<< 4<<4{!4< 4{ 444 4<<44<<4{44 1{>>)))))) 3))))))) )))))))))))))) > > >> > > : + 4C) Copyright 1982 Advanced Engineering Software CAES3 Especially prepared fors HALL R FOREMAN, INC. 44444 {4444<4<444444444<4<44< {4444({ 4(4))))))> >) > >)))))) >)))))) >3)))))) * * * * * * * ** *DESCRIPTION OF RESULTS******************************************** * HYDRAULICS * * LINE 1 A 5 PROFILE 1 F 1 - WEST VILLAGE * * JRM, JN 3532, 11/15/86 *' NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLDWLINE ELEVATION = 1224.73 PIPE DIAMETER4INCH) = 24.00 PIPE FL0W4CFS) = 2s.Oa 1� _ ASSUMED DOWNSTREAM CONTROL HGL = 12:-9. Q4 0 / •z. - = == == === ========�========= == =xa =aa -- ssarasrms:ssars= = s- __._ - -.-. << 4<4<4<<4 4l4{ 4< 44 4<4<4444< 44 4< 4<4{4< 4>)>>>>) > >) > > > > > > > > >)> >> > > > >: Advanced Engineering Software CAES3 SERIAL No. A0483R REV. 2.2 RELEASE DATE :12/17/82 i444 444444444444444444444444444444 4444)))))) > > )))))))))))))) > > >> >> >)) > >>> =arsararaaaam USIRI ass= =as=ArAir ea :ssa =--- -- sasasasss = :a.== —== =.rise = :s== ====.mess = _. —_- --- PRESSURE FLOW PROCESS FROM NODE 0.,00 TO NODE 32.84 ZS CODE = 1 UPSTREAM NODE 32.84 ELEVATION = 1225.94 CALCULATE PRESSURE' FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 25.08 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 32.84 FEET MANNINSS N - .01300 SF= (4 ?1M) * *2 = 44 25.08)/( 226.224)) * *2 = .0122908 HF =L *SF = < 32.84) * 4 .0122908) _ .404 NODE 32.84 : HQL= 4 222 9.424) ;EGL= 4 1230. 423) ;FLOWLINE= 4 1 :2s. 54+x'+) === ===== =sass. =sae== ass ========= = :a = =a == == ==sa=_=======s=as=====s===r==__._.__---- PRESSURE FLOW PROCESS FROM NODE 32.84 TO NODE 32.84 IS CODE r 3 UPSTREAM NODE 32.84 ELEVATION = 1225.94 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW4CFS) _ 2 5.08 PIPE DIAMETER 4 INCH) _ 24.00 • CATC•uf EASIN ENERGY LOSS = . 2* < :'ELOCITY HEAD) = .23%4 . 99: ? -- . I Si NODE 32.194 : HGL -= < 1230.611) ; EG' < 123t2'. 61 1 ? ; F t.OWL I h E•= < 1 c, E . 94Z > .rs.asssr s.rsrraaar t-_.atsWn Ttratt -.aa s:.fl s.rr rrssr.sa a=:srsr a ar srss- ..:rr= asamt -_ar eras:aa »cs —ntrm tsaaaca ar END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM * * * * * * *•)!•**• ******* * ** * ** *•rF** * * * * * * * *** * * * * * * * *• lei : - * * * * ** * * * * ** * *4*** ** *** *•r * ♦$ `4rr PRESSURE PIPE —FLOW HYDRAULICS COMPUTER :='t ?OGRP'' ". F'!- iC3:F1Cc_ { F?e ference : LACFD, LACRI), .s OCEMA HYDRAULICS CR I TEr: I0h• ) ** **. **** **Y• ******** **** * * *•* ** **** *rnivoi4po*#P*r { { <<< <<<{<{<{<<<<< <<<< r,{(<{{<(<<<<{<<)>>)))) > > >) > >>))) >)) >) > >))>) > >)) > >))> (C) Cc%pyr g 198E Advanced Engineering Software tAES2 Q t E s p e c i a l l y prepared four: 2 HALL t FOREMAN, INC. N <{<{<<{{{{{{{<{{{{{{{{{{{{{{{{< r,<<<<<<>>>)>)> )))))))) >))))) > > > >) >)))) >)))) >) * * * * * * * ** *DESCRIPTION OF RESiJLTS* ******* ** * **e * *** ** * *i* *•* W* ** ****o;+ * HYDRAULICS * LINE 'A' 255. I LE 'Y" — WEST VILi_PI E * .TF".' N 353i . 1.1/1S./8f ********** y!** y*,!. * * * * * *• ** * *••r. **r ** •* -0*;, * ** * * ** * ***•r * * 4 *♦ *4 i'A* * * **M* ** NOTE: STEADY FLOW H YD. Ai . IC• rlEA : > —_!' SS COd'? TC TI CNS ;;C3ST / COh;SERV4TIb•E FC +St1 J_AE F^:C'pr Ti -.8 GL l::..`':T LP. , , ^ . r., And.. i_ �r�_,.,... V.J. ..vim DESIGN MANL:A,..S. DDw''...'iREr, PI, 2 L i A: NODE = c e2 = Icy.. Ste' PIPE DIA:Y'S..ER4I^:. .) 18.2 PIP: FLOW CrS) = 6.E4 _zsssaaaararssr_.rs.= =: sst_...._._... ss_.._....--.. ssrcaass .- assraaxss.•arsssersassas�s reax— nrssassTStaar.ss NODE 0.02 : hSL= 2 1. 7i 0) ;EGL.= < 12 ;F LOWLI'+E= { h.2Q. 5Qe.) <<<{ r,<<<<<<<<<<<<<<<<<<<<<<<<<<(<<<<<{>>)>)>> )))>> >)))))>>)) >>>))))))>)))>>> Advanced End i neeri ng Software CAES3 SERIAL Not. A048?A REV. 2..s RELEASE DATE :12/17/82 {{<<<{<{{{<{<{<<<< l<<<<{(<{<<{<{<<{(<<))))))) ))))))))))))))) > > > > ))) trrsmssssassre sass s�sarsarsssrasas .asasrarssraaara+•.re+ssaarassa .vzsrrxass PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 5.95 IS CODE = 1 UPSTREAM NODE" 5.95 ELEVA T IL?N = 1231.14 r CY ' CJLATE PRESSURE F'—CW FRICTION LOSSES <LACFCD) : PIPE FLOW a 8.54 .^.FS PIPE DIAME7ER •= 10.00 I:NCHZS ' PIPE LEN.: = H = 5.9• FEE_ MANNI:NES N •= .01300 Si= =<O/i<) ** = _ 44 0.54)/4 10S. 044)) **2 = .0066.096. _ < 5. 95) * < •Q29) •- .039 r 1 T t . < : 7 ) C 1S 7Cr- !� FLOW...i • - 3... 140 �'iJi/:. r. �.� . � ^�t7L -- Si..:+�. / rl .:f> ;L:u�« < .Li�>r.. 1GC:? ; • FLOW A SL "'I` . L ;S: 7 6}��.::.'�'... l .i zi_ ;'-,:t ES— _,.. 0.. hieter g Aveestag., 4946 __ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS I DEC. 1986 3366 LINE A * PROFILE "Y" — WEST VILLAGE oolibk * REFER TO CONTRACT DRAWINGS 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777 CTC- DAS1N ENERGY LOSE = .2*<VELOCITY hEAD) = NODE 32.64 HGL= < 1230.811);EGL= 4 1230.611;PLOWLI\E= < END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM , SOW PRESSURE PIPE-FLOW HYDRALL1CS COMPUTER PROGRA' PAO7.A2.: <Reference: LACFD,LACRD,& OCEmA ro/DRAULICS CR: ****************************************#*********144 (( ( ( ( ( (((((((((((((((((((((((((<((((40))))))))))))))))))))■))))>))■1)1, (C) Copyright 192 Advanced Endaneering Software EAES2 Escecially prepared for: HALL & FOREMAN, INC. ‹‹4‹4‹4‹4<44‹<<“<44‹‹444<4‹4‹<‹4‹4<40)))>>>>)))>))))>):0>i:)>>)t,;)),1:,: **********DESORIpTION OF RESLILTS**************************0 * HYDRAULICS * L_INE 4 A" "Y" WEST VIL—A3E * JR'n, -TN 35.7L, * • NOTE: STEALY FLaw HVD;;AL._IC nEAD--DSS - -E 41m, CONSFRv.ATII.Z tr.C;;,D,..A=O. DESIGN MAN-;A_S. 'Sow LINE E-EVA7IZA = 2:PE FLOw<CFS) = P.CDE � :231.720);EGL= < ariza.eez>;F_owLzNz— < 2. <4‹::<<<4:4::44M<4.:44i:‹4‹:4;4<<:4>>>>3))>>>>>>>>>>>>>>>>>>>3)>>>>>>) Advanced Engineering Software CAESJ SERIAL No. A0482A REV. 2.2 RELEASE DATE:12/17/82 <4<<4<<<<4<<4<<4(<<(<<44<<“4<<(<<<<40))))>)))>)>>>))>)))))))))))))))>>))) === PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 5.95 IS CODE .== I UPSTREAM NODE ff.95 ELEVAT/ON = 1221.14 OcLCULPTE PRESSURE F-C;.; FRICTION LOSSES(LACFCD): PIPE F_CW = 2.54 CFS PIPE DIAMETER = lS.00 l'4CHES Namire PIPE Lr- FE NNINSS N = .01302 = .t S.54)/4 1s44))** Z = .4220662:96 = 5.S5i*: .Z12662SS) = .339 NODE S.S5 ; 4 ;3... 73> < .1232..122/;FLOW-INE= < F-CA - C LS_ : t_LC... . 7 '2 , :OC;.ZS`t ti_. (\.. }...):. 5.93 sC S. :.i_ E. G5 ._... _. .'1-:, ..w ;', CA ; _CL LATE PRES w LRE . ._L vv Ct TC-i -. BA s 1 •J E!1.�. S'i•»•vZE ._(. S rJ { v_ ii_ >_. —.. __ .. Slow =PIP. F..C,n+<C>=S) - u. r 2I,=•'._ PRESSURE FLOW VELOCITY •- . 36,: CATS:.- BASIN ENERGY LOSS = HEAD) = .;_*< .36C) ._ . .. NODE 5.95 . hGL- < 1233.+175) ; EGL= < 33. 075) : FLOwL INS- , END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEMS **** *** ** **** **** *****•►r** * * *•x* sae • **ae•*;ti*** ****•x•at** art• •x•*x••x• • x• x• ae •x;t ;c;t.•;+:e,�.;�.•; <.�,.• PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROORP's" PA CAGE 5 {Reference: LACFD, LACRD, w• OCEMA HYDRAULICS CRI <EK11ON) ********* * * * * * * *•i!•*** **** ** * * **** *•7 ***** ****** * *** *-'It *fi'•**•)t * *•iFih* r r• - {{{{{{{{{{{<{{<{<{{ r, r,<{<<<<<<<< r, r,{<<<<)>) >)))) > ? >) > > > >)> > >: ?). <C) CodyrIcnt 1982 Advanced Encineerinc Software EPEE: Especially cresaared for: HALL & FOREMAN, INC. {{{<{!.<<<<{{<<<:<<<<;<<<<<<<<<< << < < <)) > >)> > > >)):))) > >>.) >> . * * * ** * * ** *DESCRIPTION OF RESULT S** * * * * * * * * * * * * * * * * * * * * ** * ** *** **. *,* * ** * HYDRAULICS * LINE 'A' PROFILE ' Y' - WEST VILLAGE * JRM, 3N 3532, 11/15/a6 * * ** * * * * * ** * * * * * * * * * * * * * * *t. ** * * * * * * * ** iii ".• ** * * * * * * ** ** ** *** * ** * ***s• ** i�* **************************************** * * * * * * * * * * * * * * * * * *** *•dFiki!til it*#•F. ib.i!.4•ityl,et NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON 7frE_ MCC CONSERVATIVE FORMULAE FROM THE CURRENT LACRZ, LACFCD, AND QCEMP DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA; NODE NUMBER a 0.00 FLOWLINE ELEVATION = 1228.50 PIPE DIAMETER {INCH) = 18.00 PIPE FLOW(CFS> = 7.32 ASSUMED DOWNSTREAM CONTROL HGL = 1231.720 a m= =====.4.,==. - ^moors sas: ==a: Qss s =====. :.s = =aa sus. = o ass .._._._. NODE 0.00 : HGL= < 1231. 720) ;EGL= < 1231 . 986) ;FLOWLINE= { 1228.50Z> <{<{{{<<<{{{{{<{{<{{{{{{{{{{{<<<<<<<<<>>>)>> >) > > > >) > > > > > > > >) > > >)) > > >) > > > > >> Advanced Engineering Software CAES3 SERIAL No. A0482A REV. 2.2 RELEASE DATE : 12/ 17/82 'ice„. {t,{{ {{{ {{< { {{<<<{ <{ <{{{<<{{ r,{{{{<(<<<)))>>>> ) > > > > >) > > > > > > > > > > >) > > > > > > > > > > >> ===.=======......======.=======.========= WW ==== =.=.......w.====.= ==sas=s== PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 80.38 IS CODE = 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE PLOW 7.32 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENSTH = 60.38 FEET MANNING'S N = .01300 SF=40/K)**2 = (4 7.32)/4 105.044))**2 = .0048560 HF=L*SF = ( 60.38)*4 .42=o435seo = .293 NODE 60.38 HGL= ( 1232.013);EGL= < 1232.280);FLOWLINE= I 1 PRESSURE FLOW PROCESS FROM NODE 60.38 TO NODE 60.38 Is CCD. ...-- 8 UPSTREAM NODE 60.38 ELEVATION = 1229.91 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES4LACFCD): PIPE FLOW4CFS) = 7.32 PIPE DIAMETER4INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .266 CATCH BASIN ENERGY LOSS = .2*4VELOCITY HEAD) = .2*( .266) = .053 NODE 60.38 : HSL= 1232.333);EGL= < 1232.333>;FLOWLINE= < 1229.910, END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ,....., g 2eptemiak, Riga CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJE l BY OB NO. SHEET OF STORM DRAIN HYDRAULICS I NEC. I DE 19861 3366 I LINE A CATCH BASIN SUMMARY SHEETS 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641 -8777 i ° j .. - 0 0 V ` `kw' N a o ci n %,. a m b c b Q O N c W 4 • 0 0 N 03 J 1 to O N • 0 0 N . V • N , 0 V 0 , ry c`I — =� h O. '#)♦ 0 c N vN O O W C V- N 0Z 0 V r / r C; M m ... c I- %- N . m C p Ik a • 03 N V 0 Q D5 0 IL to 41 N 1 1 \,.. w g d � h i ` W Ce N SAD ' • , 1:':i /7/ 0 •,S • - Er Q i sz /L / 0040' o'O0 /'t21ON /fMS7/N ~ C t Sdowva.YV c.._ 0 0 ss.D ac _ r! �/ ' - . • CC W in J u ' d 0 1i N 4 t N Y' If .v .:1\ ,. Igii . 1 D- 40 Z 1- o > a a M vi ...1 k a a m o J °n '� 0 t.1, c a h v o � � S • M i p+ • v W , • I I- m ` • a a w "•) V0 • N • , m i Z A h T O Z12 C din �t0 = cn. 0 s a N. Z O o C F- -4: h v CO c o t o e % q o a h s, V of J It 79 CC V' V 40 • /:o \%''') I, a Opp, -...........V Utz �� =' L--------.-----."--..--. F- p z oo o doo7 Nal W Z ; - �.7 .�` O N O o � •d, * • � //, C } �' v , v �w►� D •- 4 0 k . ' I ° o n '- v .D a • m o • .1 0 W N c . Q 8 v ^ h . V W J 1- v Q Q N ` 4 o 0 m 6 . V Z `vNA M N o w ■ V • Q C : oNmv j K rj U ` u r- r" Q u C d M V 1y 0 2 r • y • J 03 c o i o Y _ N t t o a` t. u m 4 0 Ili N Q. el 1 4 N 4 )h ft W 0 y ° 3 I . .r z 8 a , W C l` w gr o .. Qb'ob' -'—'� S.4091- Jy'° h, doo7 /Y01 N /NSrAl notro I-• o r W ~ S � ., L , ' s J igi _- • 0 o sav s, T/ � • C W J u • a o U. 6 N • V `C ‘ilwoo° . Eil (0 V • 1 I c O t.n 0 . 0 J P o a N4 d Slew 0/ V) „' a 0 ^p M '4 1 p J .i N N. V V V 0 i C C i-• h p v K J ID n = p �. - V W • V o N : O N co . Z s ,h II0 � v `S _ t. 6 g "' . • 03 a e. e • I 0 o 3 v o " , v' NA u� �F s 3 v. v C N V 0 ait m c o Q a o o n o. Nt. o } g. ®a< 0 N 0 Q \I z _ • ix Q r .mil /L�4 _ U. Z 0 • ai'd',, vPND�.u� id 0 3 � ' = 27 . (5: w 1r W 0 u h �J 0. �/ 2 /' d 0 U. X4<i t C 1, • m v i ..r �t /obi` S�9 ■ ��) N o ,. y', � v # cJ J ` 1V �I 3ZbW fg'577:1822 v v' N 0 / p ,. , :..,- .ter —$ N - II �� (' wov to 90 ` t c IS It W D-40 1 al WO , g 26/000,4, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY I DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS DEC. 1986 I 3366 LINE A CURB OPENING CALCULATION SHEETS a.r 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 C. B. N 24. CURB OPENING ( Interception ) Given: (a) discharge Qom, = q .44 CFS Qzs (b) street slope S-= 0, 40 88 ' /' • (c) . curb type 8„ Curb 4 113 " G ++er- (d) half street width = 2v ft. Solution: • Q/S 14.19 /( 0.008$) Therefore yl 0 , 5'4 l @ = 00 1 • L = 191 10.51 25,8.9 (L for total interception) - TRY: L'h= 13 ' ft. 't' L 13 / r = f A 5 a I a/y = • 331'26%4 1 042 1 G/Q = 0• GG • • ' Q 0, G• X 14. 1q = C (, CFS (Intercepted) Qc= I q .1 4 ,1 c.o. _ 4.03 CFS(Carryover) 4 G•B. /•A° 14° • F . • • - • C.B. • 2 • CURB OPENING ( Interception ) discharge Q 14 8l CFS Q� Given: (a) -�• . street slope D pDBS • (b) P e S (c) curb type g' Gu• h 4 1 5i , 6 , 0 1-4-cr (d) half street width .= 7 _ ft. • Solution: Q / S/ I _ ,-/( , 0 9 3 00 ) et a 25:22.22 Therefore y= O• Q /L L 23.(,4/D.G6 • �- /Z (L for total interception) ,...`` TRY: LP= -ft. 1 1/ 1 - 1 ._.L� -- �__, (Z = °3(• a /y .33/ f .y3 ' • Q s X 2 � ' _ CFS (Intercepted) ___Lil_CFS(Carryovet • • • • • -35- • • I C. i3. 1 G O 2 slow CURD' OPENING (SUMP) Given: , (a) Discharge Q .lam = 12.5 I CFS goo Cr � , r,7 %F-5- • 22 , ¢ 4�• (b) Curb type e' 6„ k, , " Goi-ia- a,uo 'ro•rd‘.t • • • • f Solution: • • Ii (depth at opening) - 7,3 inches • h (height of opening) _ ' q 0 inches . Il /h = i•"?.% / c O et I O.SI 1 • • From Chart: • • • • Q /ft. of opening = 1.Z CFS • L required = 22.4$ / 1.1. r lesm3 ft. • • • US L = 1 2 I ft . • • • -31- • • _ «.«.«. ».awawekwe«.,..... . -.. ,., . .._ awe.. m. �v...•. 4« u.. ,...rw.w.o...- K,w_,..._— ,....: _.,_..... C. B. 1 2.C.o CURB OPENING ( Interception ) Given: (a) discharge (Zi _ la•B/ CFS GI - 8. /Zcps2 - (b) street slope S = O o031 � l � • (c) curb type 6 Coe 66 �1B G�¢'' • • (d) half street width .= 20 ft. Solution: • S f2 = 3, lS I( 40049g) 2 bo 8 Therefore y=l D' 5Z , @ /L a 0,48 • L = /3.15 / 0.48 = 27,40 (L for total interception) ( L, i0 ft. P TRY: _ L t / L = 1 o / 11.4 a /y = . 33 / 0, 5? _ I a v., I I @ • • Q 0 53 X 13; tr = G•97 CFS (Intercepted) s 412EA; Ea ti; • Qc= 1 3 , 'S - b,97 _ /B CFS(Carryover) -t17 G,$• t',O• 3 • f • -35- • • - C.B. A 2G •+" CURB OPENING ( Interception ) o. c, � � i �.FS • Given: (a) discharge Q lop crs Q,��� � . _ i19I • (b) street slope S.= (c) curb type e" c E , en (0,044-a • (d) halt street width = 20 ft. • • Solution: • Q /S 2� /( D,a e�83 ) _ g Therefore y° 0.;02 Q /L , L = ..1)L73,_/ S = 33.4 (L for total interception) • TRY :' T. /L = 33.44 it 0.24 a/y ' . 3 3 / 0 . d• • QP= r _ 04,8 CFS (Intercepted) g 1 CFS(Carryover) 4-0 6 No. 35 • • • r • -35- • • 1 • C. 13. 0 3. "" cU O PENING (SUMP) • - • Given: . • (a) Discharge Q _ = 9, is CFS Q;ooG 139,51 4- Qom` 2 3 ,I L G,S- (b) Curb type • • 1 • Solution: • . • 11 (depth at opening) = 1, Q..Qj inches • • h (height of opening) _ 9 inches . • I • • • 11 /h = 0 .(o 0. ° I 019 'iliw `/ . From Chart: . • Q /ft. of opening = 1,49 CFS • L required = 13 , ► (, / 1.4 d = I b .54 ft. • • . . • U SE L= l 1 lft. . f . • • .. . . ... -31- C. 13. 1 C. Ci11iR' OPENING (SUMP) . • • ! . Given: • (a) Discharge Q ' n o , = 3 CFS 2, 2? • 1 • . • • (b) Curb type • Solution: • . 11 (depth at opening) • = 13. (ov inches • • b (height of opening) _ c1 inches 11 /h= I. 14 / S = I I.SZ ..• • . . • From Chart: . Q /ft. of opening a 3.3 D CFS • L required = 32.21 / 3,,o a 9, $ ft. • • U SE L =1 lb Ift. • r ' . .. -31 -. . C. 13. A 3`1 ` CURD• OPENING (SUMP) ' Given: • (a) Discharge Q ion = 14. 15 cFS ' • (b) Curb type 6" G ur b 8 /8 4G v? r • I Solution: A t 4, lAY, • i zl3 • Z`'' . II (depth at opening) = 9 2 4 inches Grow) L % % •11131 a'( • • h (height of opening) = FO inches . .1 ,, • From Chart: • • Q /ft. of opening a 4,3 CFS • . L required = / /- / 43 = 5,7• ft. • USE L= I 4 I ft. . • • • • .. . • - 31 - • C. B. 0 CURB OPENING ( Interception ) Given: (a) discharge Q ' t4,41 CFS 11' 3 (b) street slope S.= O. 0 14 (c) curb type 6" Curb - 1 " G`fr (d) half street width = 20 ft. Solution: • n o n 1 _ /( O. c ( ) / 2 11 3 = 145, ?e Therefore yel 0 .51 l Q/S Q/L =05') • L ' X1.31 / 53 ' gZ_ (L for total interception) TRY: L 22 ' ft. 22. / _. z : . 11 0- 01 l • a/y = .33/ 0,51 = O.S� • • 9/Q O. 5 5 • �ckT - rrl a f 1 y. Q 0.55 X Il�3i ' , 14 "1 I CFS (Intercepted) -s Qe• I'1, 31L - 1 4 , 1 I ' 2 . G 0 CFS(Carryover) «� G 3 - Z • • • • • -35- • • C.B. # 21 • CURB OPENING ( Interception ) Given: (a) discharge Q jts2. = 22.5-x- CFS • (b) street slope S = b, f 41 (c) . curb type e '' Gt r h 4. t " +\ (d) hall street width .= 2�w to - ft 1 1 1 J • Solution: Q /SVA 22,85 /1_222! “ t = 112,4. ?S Therefore y= O.IeZ Q / L = 0.5$ • L = Z / 0. = 39A0 (L for total interception) TRY: Le _ _ft. it /L = 22 j 5.7.40 I a /y = . 33/ O ! = d, 5' CYQ Q 0.72 X 22.65 = 1 (4.45 CFS (Intercepted) Qc= Z -$S '- •• ` `•4O CFS(Carryover) 110• 2 3 • -35- C. B. # 2.2 *o.' CURB OPENING ( Interception ) Given: (a) discharge Q IQ_ S 19. RL CFS Z3.17- (b) street slope S = 0.0 i 4 I e p • (c) curb type 8`r cuvh - l 8" G • (d) half street width .= Z. O ft. Solution: � = 23.17_ /( O.0141 ) /2 _ iaa,1(, Therefore y4 �. S� 1 Q/s Q /L = 0, (02 • L 23,12. / = 55. i 1 (L for total interception) TRY: Le= Vi • ft. L = =10 (,8 a/y = • 33 /�'� — ° L . • 'fi QP= � X 2 a 2 0 . I (, CFS (Intercepted) (16 caeA-re � Tis,tfil ' Qc= 23, - tOt = 3_ CFS(Carryover) �•'8• Z¢ • -35- • C. B. 1 2� CURB OPENING ( Interception ) discharge Q 3 �- CFS Given: (a) � -�- (b) street slope S 2 d O14 1_. 1/1 (c) . curb type 8" 6,,,h 4 ie 'Go+ ' • • (d) hall street width • Solution: • • Q /S�%�n 41.3'3 /( D \441_1 = 2 3. 5 Therefore y 4.694 Q/L =Q • • L - w '(°( (L for total interception) TRY: L " 2 Cv ' ft. L _ , �/ (r = MI a/y = .33/x, a 9.52 C /C) Dal_ • Qs= �7X 3�3.... = 22,549 CFS (Intercepted) CFS(Carryover) 4i G• B- Ai O• Z 4 • • • -35- • C . B . A �3 • CURB OPENING ( Interception .) • C,Q _ = G- Given: (a) discharge Q �b = 7•�S C FS Qz5 9 2s� z�D FS (b) street slope S•= (c) curb type p, "curb 1 8" 6,0v. (d) half street width .= Solution: Q /Sk= I1. S1 /( 0. oa88 ) Therefore y= O S1 Q /L = • (L for total interception) y TRY: LP __,11- --ft. • T A / L = ,J,1,...-..l 24.13 = k S a /y 0 ` 5 • Q/Q • • 9, z4 CFS (Intercepted) CFS(Carryover) `I'd GS ZS • • • • • -35- • • C. B . A 23 • CURB OPENING ( Interception ) Given: (a) discharge Q j = IZ.24 CFS qv0G • (b) street slope S.= 0. 0 033 '/' ' (c) curb type e c u rb f rB Gu fter • (d) half street width = 2J ft. Solution: • Q/S .... 111,5_1( 0.0(258) t = ►_4,_5S Therefore y= 2. `' Q /L 2, C. • L 1212_ (L for total interception) TRY: LP ft ' _... !L_ ... • I L g 'Z 6 i a/y = .33/ 0_ ;3 • QP =x__.�:_ _ !, 3� CFS (Intercepted) Qc , - 9. aCe . CFS(Carryover) leo • • • -35- „ . • _ # 0101.0k. • • • • • • • . Q 1 0 HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY 4SSC) 1983 HYDROLOGY MANUAL - 4<< 44< 44<<<<<44<4<<<<< 44<<4< 4{ 44{ i(<4()))))}} } }Y } } }33}) }}))}} }}} } } }}} } }> 4C) Copyright 1962 Advanced Engineering Software CAE91 Especially prepared fors • HALL • FOREMAN, INC. 4««<4444444444444<4444444444444444 44) )))))))1)))))) }))))))})))))))) ))))) * *** * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * ** ******* ** * * * * * * * * * ** * CATCH BASIN HYDROLOGY * * LINE • A• - WEST VILLAGE *' • JRM, JN 3832, 12/9/86 *" * * * * ** ** * * ** *** * * * * * * * * ** * * * * * ** * * * * ** * * * ** * * * * * * * * * ** * ***** *** **** * * ** ** ** * • USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT4YEAR) = 10.00 SPECIFIED MINIMUM PIPE 822E42NCH) = 16.80 SPECIFIED PERCENT OF ORADIENTS4DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 --YEAR STORM 60- MINUTE INTENSITY<INCH /HOUR) +r .980 100-YEAR STORM 6e- 01INUTE INTENSITY4INCH /HOUR) ■ 1.470 �w. COMPUTED RAINFALL INTENSITY DATA STORM EVENT = 18.00 1 -HOUR 1NTENSITY4INCH /HOUR) _ .9898 SLOPE OF INTENSITY DURATION CURVE _ .60080 SBC HYDROLOGY MANUAL "C"- VALUES USED 444444444444(444444444 <,4444 (444 444444{})))))) ))}) })))))))))))) Advanced Engineering Software tAES3 SERIAL Na. A0S80A REV. 3.1 RELEASE DATE: 5/01/85 (4 <44(444444 <4 < <(44444 < <4(44444 444. ( >)))) ) ))) )))1))))1)))))) ? )))1))11)))1 * ********************************* * * * * * *** * * * *****M** * * * * ** * ***** *fie * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 18.10 IS CODE = 2 )))) }RATIONAL METHOD INITIAL SUBAREA ANALYSZS444 44 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = M *t4LENGTH* *3) /4ELEVATION CHANGE)3 * *,2 t- INITIAL SUBAREA FLOW - LENGTH = 920.00 .,. UPSTREAM ELEVATION = 2269.90 - DOWNSTREAM ELEVATION = 1 250. 581 ELEVATION DIFFERENCE = 19.30 TC = . 393* C 4 928.80®1** 3) / 4 19.30) 3 * *. 2 = 13.838 10.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 2.474 SOIL CLASSIFICATION IS "A" SINGLE -FA Z L Y 41 /fir ACRE LOT) RUNOFF COEFFICIENT = .7229 SUBAREA Rt NOFF 4CFS) = 11.27 TOTAL AREAIACRES) = 6.30 TOTAL RUNOFFICFS} _ 42.27 ********************************************* * * * * *** * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 28.28 TO NODE 10.00 Z3 CODE = 6 ))))) COMPUTE STREETFLOW TRAVELTIME THRU 8U9AREA4Sl4{ • WINIMI �.l= =ate N�lJl lNNiMalatIS l OMININaiiw�U!ll= ==JlaMIM =s MIUM=./=llis= UPSTREAM ELEVATION = 123 @.68 DOWNSTREAM ELEVATION = 2248.82 STREET LENGTHIFEET) = 650.00 CURB HEIGTHIINCHES) = 6. STREET HALFWIDTHIFEET) = 20.00 STREET CRO88FALLIDECIMAL) _ .0278 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTZME COMPUTED USING MEAN FLOWICFS) = 21.27 STREET FLOWDEPTHIFEET) _ .49 HALFSTREET FLOODWZDTHIFEET) = 23.93 AVERAGE FLOW VELOCITYIFEET /SEC.) = 4.13 PRODUCT OF DEPTHBVELOCITV = 2.83 • STREETFLOW TRAVELTIMEIMIN) = 2.62 TCIMIN) = 15.66 20.88 YEAR RAINFALL INTENSITYIINCH /HOUR) = 2.216 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7882 SUBAREA AREA4ACRES) = 0.00 SUBAREA RUNOFFICFS) = 0.00 SUMMED AREA 4ACRES) = 6.30 TOTAL RUNOFF 4CFB) = 12.27 END OF SUBAREA STREETFLOW HYDRAULICSs DEPTHIFEET) _ .49 HALFSTREET FLOODWZDTH4FEET) = 23.93 FLOW VELOCITYIFEET /SEC.) = 4.23 DEPTH*VELOCITY = 2.03 ********************************************* * * * * * * ** * *** * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 I9 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 arowsrawarawaranwaruararararamsavareaysravarwararorewavorarameararuararawarevarrwreravarawararavararararawardwaraurararrear CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRATZON4MINUTES) = 25.66 RAINFALL INTENSITY I INCH. /HOUR) . = 2.22 TOTAL STREAM AREA (ACRES) = 6.30 TOTAL STREAM RUNOFFICFS) AT CONFLUENCE = 22.27 ********************************************* * * ** * * * * * * * *** * *** * * * * * * * *** * ** FLOW PROCESS FROM NODE 10.30 TO NODE 10.00 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALY3IS44444 AVEMPAIIIIMPINIVIIPOPIONSOWINIPIMININIVINNIIP Il1!=!llMi�w =!!=N!! =lNNIAIINN =aR ==alJ�a! ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT Z8s SINGLE FAMILY 41/4 ACRE) TC = K *t4LENGTH* *3) /4ELEVATZON CHANGE)3 * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1238.88 DOWNSTREAM ELEVATION = . 1240.62 ELEVATION DIFFERENCE = 27.98 TC = .393 *t 4 2000.00* *3) / 4 17.96)3**. 2 = 23.899 18.00 YEAR RAINFALL INTENSITYlINCH /HOUR) = 2.380 • SOIL CLASSIFICATION IS "A" SINGLE - FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7179 SUBAREA RUNOFF4CFS) = 9.23 TOTAL AREA(ACRES) = 5.40 TOTAL RUNOFFICFS) = 9.23 FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 }))))AND COMPUTE VARIOUS CONFLUENCE! STREAM VALUES 44444 ■ ararairiissarararrarmamorammammisuiralianarafrawasavarwarawaraammaiwaramsaaramwarmararawaterataustaus CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATZON4MINUTES) = 13.90 RAINFALL INTENSITY 4INCH. /HOUR) = 8.38 TOTAL STREAM AREA 4ACRES) = 5.48 ,,,, TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 9.23 NIT CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER <CPS) (MIN.) 4INCH /HOUR) 1 12.27 15.66 2.216 2 9.23 13.90 2.380 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO PORNULA48BC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 19.86 19.23 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF4CFS/ = 29.86 TIMEIMZNUTES) = 25.660 TOTAL AREA ( ACRES) = 11.70 FLOW PROCESS FROM NODE 10.20 TO NODE 10.22 28 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZS44444 a saa ssa= aWIRIMU =aa �aa malt WAaawsv ASSUMED INITIAL SUBAREA-UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 41/4 ACRE) TC = M*C 4LENGTH**3) / 4ELEVATION CHANGE) )**. 2 INITIAL SUBAREA FLOW - LENGTH = 820.00 /0" UPSTREAM ELEVATION = 1261.40 DOWNSTREAM ELEVAT 1 ON = 1250.59 ELEVATION DIFFERENCE = 10.82 TC = .393*C( 820.0 * *3)/( 20.82)3e*.2 a. 23.661 20.00 YEAR RAINFALL INTENSITY4INCH /HOUR) _ 2.405 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7292 SUBAREA RUNOFF4CFS) = 8.65 TOTAL AREA4ACRES) = 5.00 TOTAL RUNOFF4CFS) = 8.65 FLOW PROCESS FROM NODE 20.21 TO NODE 10.00 ZS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTZME THRU SUBAREA44444 UPSTREAM ELEVATION = 2280.59 DOWNSTREAM ELEVATION = 2241.08 STREET LENGTH4FEET) = 650.00 CURB HEZGTH4INCHES) = 6. STREET HALFWIDTHIFEET) = 20.00 STREET CROSSFALLIDECIMAL) _ .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 w*TRRVELTZME COMPUTED USING MEAN FLOW4CFS) = 12.54 NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLISLE FLOW OCCURS OUTSIDE OF THE STREET CAL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., ZS NEGLECTED. • STREET FLOWDEPTH4FEET) _ .51 HALFSTREET FLOODWIDTH4FEET) = 14.52 AVERAGE FLOW VELOCZTYIFEET /SEC.) = 3.92 PRODUCT OF DEPTH4VELOCITY = 2.98 STREETFLOW TRAVELTIME4MZN) = 2.77 TC4MIN) = 26.43 10.00 YEAR RAINFALL INTENSITY4INCH /HOUR) = 2.153 SOIL CLASSIFICATION IS "A" SINGLE- PAMILY(l /4 ACRE LOT) RUNOFF COEFFICIENT = .7039 SUBAREA AREA4ACRES) = 3.80 SUBAREA RUNOFF4CFS) = 5.76 SUMMED AREA4ACRES) = 8.80 TOTAL RUNOFF4CFS) = 24.42 END OF SUBAREA STREETFLOW HYDRAULICSs DEPTH4FEET) _ .54 HALFSTREET FLOODWIDTH4FEET) = 15.66 FLOW VELOCITY !FEET /SEC.) = 4.21 DEPTH*VELOCI TY = 2.27 - FLOW PROCESS FROM NODE 20.20 TO NODE 24.00 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZ944444 wiwlNlwlww =NlNaww =lww :Nwwaawe w!ll�r�Nlwaaawe.� =wwl= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 18s SINGLE FAMILY 42/4 ACRE) TC = N* t 4LENNOTH**3) / 4ELEVATZON CHANGE) 2 **. 2 INITIAL SUBAREA FLOW - LENGTH = 2070.00 UPSTREAM ELEVATION = 2284.50 DOWNSTREAM ELEVATION = 2234.49 ELEVATION DIFFERENCE = 28.02 TC = .393* t 4 2 e7e. ee* «3)14 28.01) 3 **. 2 = 14.169 • 20.00 YEAR RAINFALL ZNTEN81TY4INCH /HOUR) = 2.353 SOIL CLASSIFICATION 18 "A" SINGLE- FAM1LY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7263 SUBAREA RUNOFF4CFS) = 9.44 TOTAL AREA4ACRES) 5.60 TOTAL RUNOFF4CFS) = 9.44 FLOW PROCESS FROM NODE 28.20 TO NODE 23.08 ZS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALY91 8 4 4 4 4 4 !lwlwAw =!I! =l�wiRN =!!N =N wwwl=A'!=MwwwNilw N! " ASSUMED INITIAL. SUBAREA UNIFORM DEVELOPMENT 28s SINGLE FAMILY 42/4 ACRE) TC = 14 *t !LENGTH+* *3) / 4ELEVAT ZON CHANGE) 2* *. 2 INITIAL SUBAREA FLOW- LENGTH = 900.00 UPSTREAM ELEVATION = 2243.80 DOWNSTREAM ELEVATION = 2235.00 ELEVATION DIFFERENCE = 8.80 • TC = . 393* t 4 908.000* *3) / 4 8.88) 2 **. 2 = 15.4152 28.00 YEAR RAINFALL INTEN91TY4INCH /HOUR) = 2.269 SOIL CLASSIFICATION ZS "A" SINGLE - FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7114 SUBAREA RUNOFF4CFS) = 7.75 TOTAL AREA4ACRES) = 4.80 TOTAL RUNOFF4CFS) = 7.75 • FLOW PROCESS FROM NODE 20.30 TO NODE 26.00 IS CODE = 2 • )))))RATIONAL METHOD INITIAL SUBAREA ANALY81S44444 wwN lwYSw! + w: wwrw+ w= lanwlwwwllwwlw =lNww :wl / :sNw! ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT Z8s SINGLE FAMILY 42/4 ACRE) TC = M* t !LENGTH* *3) / !ELEVATION CHiANGE) 3.e. 2 • INITIAL SUBAREA FLOW - LENGTH w 750.80 UPSTREAM ELEVATION = 2244.00 DOWNSTREAM ELEVATION = 1231.11 ELEVATION DIFFERENCE = 22.89 ---' TC = .393* t 4 790.00 * *3) / 4 22.89) 2**. 2 = 22.502 20.00 YEAR RAINFALL ZNTENSITY4INCH /HOUR) = 2.337 SOIL CLASSIFICATION I8 "A" SINGLE- FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7268 SUBAREA RUNOFF4CFS) = 6.82 TOTAL AREA4ACRES) = 3.70 TOTAL RUNOFF4CFS) = 6.82 FLOW PROCESS FROM NODE 20.40 TO NODE 23.00 IS CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSI8444 44 ASSUMED 1NZTIAL SUBAREA UNIFO '' DEVELOPMENT 23, SINGLE FAMILY 41/4 ACRE) TC = M *CILENGTH **3) /(ELEVATION CHANGE)3 * *. INITIAL SUBAREA FLOW- LENGTH = 950.00 UPSTREAM ELEVATION = 1239.10 DOWNSTREAM ELEVATION = 1231.11 ELEVATION DIFFERENCE = 7.99 TC = . 393* C 4 950.00* *3) / 4 7.99) 3 **.. = 13.852 10.00 YEAR RAINFALL ZNTENSZTYIZNCH /HOUR) = 2.E`00 SOIL CLA88ZFICATION ZS "A" SINGLE -FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT or .7070 SUBAREA RUNOFF4CFS) = 8.09 TOTAL AREA4ACRES) = 3.20 TOTAL RUNOFF4CFS) = 8.09 FLOW PROCESS FROM NODE 40.30 TO NODE 40.00 ZS CODE = I•' )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZS44444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 25, SINGLE FAMILY 42/4 ACRE) TC = 1-4* C 4LENGTH**3) / 4ELEVATION CHANGE) 3 **. 2 2NZTIAL SUBAREA FLOW- LENGTH = 900.00 UPSTREAM ELEVATION = 1225.00 DOWNSTREAM ELEVATION = 2223.30 (" "" ELEVATION DIFFERENCE = 11.70 TC = . 393*C 4 900. 00* *3) / 4 11.70) 3 *+e. 2 = 14.229 10.00 YEAR RAINFALL ZNTENSZTY42NCH /HOUR) _ 2.348 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7161 SUBAREA RUNOFF 4 CFS) = 4.54 TOTAL AREA4ACRES) = 2.70 TOTAL RUNOFF4CFS) = 4.54 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 I8 CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CGNFLUENCE4444( = sus= wu��raiwwrrw= ssiw= sraww= ww= wr�www= ww��w +wswwwww=we= = ==ww =arws=ww=urs w CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATZON4MZNUTES) = 14.22 RAINFALL INTENSITY 4 INCH. /HOUR) ■ 2.35 TOTAL STREAM AREA (ACRES) = 2.70 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 4.54 ************ ee*+ ew ie***ieu ee+ e+ e+ e+ e**** ***w **+ eeew+► ** *****ir+e+e**** *****ww***w*+ *******it FLOW PROCESS FROM NODE 40.32 TO NODE 40.31 IS CODE ■ 2 ))))) RATZONAL METHOD INITIAL SUBAREA ANA*.YS18 4 4 4 4 4 `.- = =a ..... e ==== a r==al.aw =www= :===w===wwwam=wwarww ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 42/4 ACRE) *woe TC = K* C 4LEN8TH * *3) / 4ELEVATION CHANGE) 3+e *. 2 INITIAL SUBAREA FLOW- LENGTH = 830.00 UPSTREAM ELEVATION = 1232.00 DOWNSTREAM ELEVATION = t21 9.00 ELEVATION DIFFERENCE = 13.00 TC = .393* C 4 830.00* *3) / 4 13.00) 3 **. 2 = 13.262 ✓. - s 't= , -+ a« r- .va...mw:= +er..- »x.�..r.w... ro.sa , ., .• SY "fi \ \M" / "'e. ' n.�u»»a..rm...... u„m,e+ea*va*an�...,.-N. .._ ... _.. "_..... 28.00 YEAR RAINFALL INTENSITY 4INCH /HOUR) _ :=. 4.43 SOIL CLASSIFICATION I8 "A" SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7225 SUBAREA RUNOFFtCFS) = 4.27 TOTAL AREA4ACRES) = 2.36 TOTAL RUNOFF4CFS) = 4.17 .rte FLOW PROCESS FROM NODE 40.31 TO NODE 40.00 I9 CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA{ {444 sl M!!!!!!!!Jf!!!!!!_!!=!!!S=M!!! i!!! !w =!! =7�!!!i/4R!!!!!! =!!!O/IA UPSTREAM ELEVATION = 1229.00 DOWNSTREAM ELEVATION = 1213.30 STREET LENOTH4FEET) = 530.00 CURB HEIGTH4ZNCHES) = 8. STREET HALFWIDTH4FEET) = 28.08 STREET CROSSFALLIDECZMAL) _ .0279 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVELTIME COMPUTED USING MEAN FLOW4CFS) = 4.27 STREET FLOWDEPTH4FEET) _ .41 HALFSTREET FLOODWIDTH4FEET) = 9.75 AVERAGE FLOW VELOCZTY4FEET /SEC.) = 2.78 PRODUCT OF DEPTH6VELOCITY = 1.15 STREETFLOW TRAVELTIME4MZN) = 3.18 TC4MZN) = 26.44 10.00 YEAR RAINFALL I NTENS I TY t l NCH /HOUR) = 2.152 SOIL CLASSIFICATION Z8 "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7039 SUBAREA AREA4ACRES) = 0.00 SUBAREA RUNOFFICFS) = 0.00 SUMMED AREA4ACRE8) = 2.36 TOTAL RUNOFF4CFS) = 4.27 END OF SUBAREA STREETFLOW HYDRAULICS, DEPTH4FEET) _ .41 HALFSTREET FLOODWIDTH4FEET) = 9.75 FLOW VELOCZTY4FEET /SEC.) = 2.78 DEPTH*VELOCZTY = 2.23 *********.***** e**********************.***** ********** **************** ***** * FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 ZS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE, TIME OF CONCENTRATION4MINUTES) = 16.44 RAINFALL INTENSITY CINCH. /HOUR) = 2.15 TOTAL STREAM AREA (ACRES) = 2.36 TOTAL STREAM RUNOFF4CF8) AT CONFLUENCE = 4.17 FLOW PROCESS FROM NODE 40.31 TO NODE 40.00 I8 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSXS44444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 41/4 ACRE) TC = $ *C4LENGTH * *3) /{ELEVATION CHANGE)2**.2 INITIAL SUBAREA FLOW - LENGTH = 330.00 UPSTREAM ELEVATION = 1219.00 DOWNSTREAM ELEVATION = 1213.30 ELEVATION DIFFERENCE = 5.70 TC = .393 *C4 330.00**3)14 3.70)3 * *.2 = 12.218 10.00 YEAR RAINFALL ZNTENSZTY4INCH /HOUR) = 2.572 SOIL CLASSIFICATION I8 "A" S """ , SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7277 SUBAREA RUNOFF4CFS) = 4.19 TOTAL AREA 4 ACRES) = 2.24 TOTAL RUNOFF 4 CFS) = 4.19 ** ** *fie * ** * * *** * * * * * * * * * * * * ** fie********** * * * * * ** * ** *** ** * * * * * * * * * * * * * * ** *fie* *fie* FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 I8 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES41111 = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 AREs , TIME OF CONCENTRATZON4MINUTES) = 22.22 RAINFALL INTENSITY (INCH. /HOUR) = E.37 TOTAL STREAM AREA 4ACRES) = 2.24 TOTAL STREAM RUNOFFICFS) AT CONFLUENCE = 4.29 CONFLUENCE INFORMATION; STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) IMZN.) (INCH /HOUR) 2 4.54 14.22 2.348 2 4.17 16.44 2.252 3 4.19 2 2.ee 2.572 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 22.97 22.84 22.29 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFFICFS) = 22.97 TZMt1MZNUTES) = 14.219 TOTAL AREA4ACRES) = 7.30 A*** M*** 4*** Q***MN*M*** M* A**R*X***M** itMM il**R4M* **MMRAN*MMMII****RM*N****N*MQ* • FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 IS CODE = 2 >)> })RATIONAL METHOD INITIAL SUBAREA ANALYSIS44 .ter a"asw___ _ arra =w wa a maewm - - -- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 1214 ACRE) TC = M*t 4LENOTH**3)1 (ELEVATION CHANGE) 2**. °2' INITIAL SUBAREA FLOW - LENGTH = 2000.00 UPSTREAM ELEVATION = 1236.00 DOWNSTREAM ELEVATION = 2224.E ELEVATION DIFFERENCE = 11.80 TC = .393*C4 2000.00**3)11 22.80)3 **.2 = 25.222 20.00 YEAR RAINFALL ZNTENSZTYIZNCH /HOUR) = 2.263 SOIL CLASSIFICATION 19 "A" SINGLE- FAMZLY4214 ACRE LOT) RUNOFF COEFFICIENT = .7220 SUBAREA RUNOFFSCFS) = 8.37 TOTAL AREA4ACRES) _ 5.20 TOTAL RUNOFF4CFS) = 8.37 ** * ********* e+►****** ********************* *w*aww**** ear******* **aww**********. FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 ZS CODE = 6 ~ )))))COMPUTE STREETFLOW TRAVELTZME THRU SUBAREA44(44 .._,.=..=ate,... UPSTREAM ELEVATION = 1224.20 DOWNSTREAM ELEVATION = 2223.46 STREET LENGTHIFEET) = 800.00 CURB HEZGTHIINCHES) = 6. STREET HALFWZDTHIFEET) = 18.00 STREET CROSSFALLIDECIMAL) _ .0240 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 +►*TRAVELTZME COMPUTED USING MEAN FLOWICFS) = 8.37 .*. STREETFLOW SPLITS OVER STREET - CROWN**+ �- --' FULL DEPTH(FEET) _ .39 FLOODWIDTHIFEET) = 18.00 some FULL HALF- STREET VELOCITYIFEET /SEC.) = 3.20 SPLIT DEPTH4FEET) _ .24 SPLIT FLOODWIDTHIFEET) = 7.27 SPLIT VELOCITY 4FEET /SEC.) = 2.96 STREET FLOWDEPTHIFEET) _ .39 HALFSTREET FLOODWIDTHIFEET) = 28.00 AVERAGE FLOW VELOCITYIFEET /SEC.) = 3.20 PRODUCT OF DEPTH &VELOCITY = 1.20 STREETFLOW TRAVELTZME4MIN) = 4.30 TC (MIN) = 29.42 20.00 YEAR RAINFALL INTENBZTY4ZNCH /HOUR) = 1.947 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .6885 SUBAREA AREA4ACRES) • 0.00 SUBAREA RUNOFF4CFS) = 0.00 SUMMED AREA4ACRES) = 8.20 TOTAL RUNOFF (CFS) = 8.37 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEET) _ .39 HALFSTREET FLOODWIDTH4FEET) = 18.00 FLOW VELOCZTY4FEET /SEC.) • 3.20 DEPTH*VELOC?TY = 2.20 FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 IS CODE = t )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION4MINUTES) = 19.42 RAINFALL INTENSITY 42NCH. /HOUR) • 2.95 TOTAL STREAM AREA (ACRES) = 5.2e TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE • 8.37 ** * * * * * * ** * * ** * * * * * * * * * * * * * * * * * * * * ********* *** ***Nlee***e*****eee*e*e******** FLOW PROCESS FROM NODE 40.00 TO NODE 40.20 Z 8 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8s SINGLE FAMILY (2/4 ACRE) TC = K *C(LENBTH* *3) /4ELEVATION CHANGE)3 * *.2 INITIAL SUBAREA FLOW- LENGTH = 950.00 UPSTREAM ELEVATION = 2223.80 DOWNSTREAM ELEVATION = 1213.46 ELEVATION DIFFERENCE • 20.34 TC = .393* C ( 980.00* *3) / ( 2 0.3413 * *. 2 = 15.055 20.00 YEAR RAINFALL INTENSZTY4INCH /HOUR) • 2.289 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(2lei ACRE LOT) RUNOFF COEFFICIENT • .7224 SUBAREA RUNOFF(CFS) = 4.04 TOTAL AREA(ACRES) • 2.50 TOTAL RUNOFF4CFS) = 4.04 ** i►***********************e******************* **0000*M*****R** ***!* * *** *** *i? * FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 I8 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 4(444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs • TIME OF CONCENTRATZON4MINUTES) = 15.05 RAINFALL INTENSITY (INCH. /HOUR) • 2.2? TOTAL STREAM AREA (ACRES) = 2.50 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE • 4.04 **************************************** e***** * * ** *****iM! * **** * * * * **** * * * * ** ( FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 2S CODE = 0 )))))RATIONAL. METHOD INZTZAL SUBAREA ANALYSZ844444 - - - -N AINNINPLIMINWINNIIININIVERne ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8s SINGLE FAMILY 42 /4 ACRE) TC = K *[(LENGTH* *3) /(ELEVATION CHANGE)2 * *.2 INITIAL SUBAREA FLOW - LENGTH = 850.00 UPSTREAM ELEVATION = 2?e3. *eze DOWNSTREAM ELEVATION = 2213.46 ELEVATION DIFFERENCE = 10.04 TC = .393e4 650. 00**3)1 4 20.04) 3ie*. L M 14.266 10.00 YEA RAINFALL INTENBI TY 4 INCH /HOUR) = 2.353 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY4I /4 ACRE LOT) RUNOFF COEFFICIENT = .7264 SUBAREA RUNOFF4CFS) = 6.74 TOTAL AREA 4ACRES) = 4.00 TOTAL RUNOFF 4CFS) = 6.74 eiN NNe*******************Q* -**** ******** **ieie******************ie***** e4***ieie* FLOW PROCESS FROM NODE 40.20 TO NODE 40.88 28 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE (4444 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM! VALUE844444 wswwwsw: �ww= swwswsswswwwwswwsswsssws: wwwsww: www: �r�rsanwwwswwwws :sswwswssswssws CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 AREs TIME OF CONCENTRATZON4MINUTES) = 24.17 RAINFALL INTENSITY 4INCH. /HOUR) = 2.35 TOTAL STREAM AREA 4ACRES) = 4.00 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 6.74 CONFLUENCE ZNFORMATZONs STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) 4MIN.) 4ZNCH /HOUR) 2 6.37 28.42 1.947 2 4.04 13.05 2.269 3 6.74, 24.1? 2.353 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR 3 STREAMS. �...• VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWSs 17.41 17.132 28.84 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWSs RUNOFF4CFS) = 17.42 TIME 4MZNUTES) = 19.422 TOTAL AREA4ACRE8) = 21.70 • Pie******** e*** eMieit*** eieieieNieie**** ****1e4itifieie *ieielrieiMN ******** ****leieieieiei 0** FLOW PROCESS FROM NODE 30.20 TO NODE 50.00 I8 CODE ■ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYBIS44444 Maur ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 41/4 ACRE) TC = M*C 4LENGTH**3) / 4ELEVATION CHANGE) 3**. 2 INITIAL SUBAREA FLOW- LENGTH ■ 900.00 UPSTREAM ELEVATION = 2eee.0@ DOWNSTREAM ELEVATION = 1210.70 • ELEVATION DIFFERENCE ■ 22.30 TC = .393 +C 4 900.00**31 12.30) 3A*. 2 M 24.328 20.00 YEAR RAINFALL ZNTENSITY4INCH /HOUR) _ 2.338 SOIL CLASSIFICATION IS "A" SINGLE - FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICZENT = .7155 SUBAREA RUNOFF4CFS) = 2.34 41 ,-- TOTAL AREA4ACRE8) ■ 1.40 TOTAL RUNOFF4CFS) ■ 2.34 *** e**** ******* e******************* ee****e NN ******* ***** **** ********** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 18 CODE = 2 )))))DESZONATE INDEPENDENT STREAM FOR CONFLUENCE44444 ass MaaMaMSSSSa�M�ws CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs • - ._ TIME OF CONCENTRATION4MINUTES) = 14.32 RAINFALL INTENSITY 4INCH. /HOUR. = 2.34 TOTAL STREAM AREA (ACRES) = 1.40 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE • 2.34 +r************e*****. eye+t*+ +►***0.***** ***** *w * * *** a +ewle***.******41.*******le*a * ** FLOW PROCESS FROM NODE 50.20 TO NODE 38.21 I8 CODE = 8 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44II4 ASSUMED INITIAL SUBAREA UNIFORM! DEVELOPMENT 2Ss SINGLE FAMILY 41/4 ACRE) TC = K*t 4LENGTH**3} 14ELEVAT2ON CHANGE) 1*.. 8 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = *i 36.00 DOWNSTREAM ELEVAT ION = 1 224.70 ELEVATION DIFFERENCE = 11.30 TC = . 393*( 4 1000.00**3)14 11.30} 3 e.e. 2 = 13.232 20.00 YEAR RAINFALL INTENBZTY42NCH'HOUR) = 2.231 SOIL CLASSIFICATION I9 "A" SINGLE - FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7103 SUBAREA RUNOFF 4 CFS) = 2.72 TOTAL AREA 4 ACRES) = 1.70 TOTAL RUNOFF4CFS) = 2.72 MM4lim** e**40. 440.*****R4MR ****** 40 ..0.*****1eie*********witew** eke**** 4.******N****** FLOW PROCESS FROM NODE 30.21 TO NODE 30.00 ZS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTZME THRU SU»AREA44441 UPSTREAM ELEVATION = l 4.70 DOWNSTREAM ELEVATION = 1210.70 STREET LENGTH4FEET) = 2800.00 CURB HEIGTH4INCHES) = 6. .... STREET HALFWZDTH4FEET) = 20.00 STREET CROSSFALL4DECZMAL} _ .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *eTRAVELTIME COMPUTED USING MEAN FLOW4CFS) = 3.32 STREET FLOWDEPTH4FEET) _ .37 HALFSTREET FLOODWZDTH4FEET) = 9.30 AVERAGE FLOW VELOCITY4FEET /SEC.) = 2.75 PRODUCT OF DEPTH #VELOCITY = 1.01 STREETFLOW TRAVELTIME4MIN) = 7.27 TC4MZN) = 22.32 • 20.00 YEAR RAINFALL INTENSZTY4INCH /HOUR} = 1.762 • SOIL CLASSIFICATION ZS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8147 SUBAREA AREA4ACRES) = 1.10 SUBAREA RUNOFF4CFS) = 1.60 SUMMED AREA4ACRES) = 2.a. TOTAL RUNOFF4CFS) = 4.32 END OF SUBAREA STREETFLOW HYDRAULICS, DEPTH4FEET) _ .38 HALFSTREET FLOODWIDTH4FEET} = 9.86 FLOW VELOCITY4FEET18EC.) = 3.08 DEPTHhVELOCITY = 1.16 FLOW PROCESS FROM NODE 50.00 TO NODE 30.00 28 CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES4(444 A ; CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRATION4MZNUTES) _ 22.°.. �'rr.• RAINFALL INTENSITY 42NCH. /HOUR) = 2.78 TOTAL STREAM AREA (ACRES) = 2.80 TOTAL STREAM RUNOFF(CPS) AT CONFLUENCE = 4.32 CONFLUENCE INFORMATION, - STREAM RUNOFF TIME INTENSITY NUMBER 4CFSY 4MIN. Y 4 INCH /HOUR} • 1 2.34 14.32 2.338 2 4.32 22.52 1.782 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMttLA t SSC Y USED FOR 2 STREAMS. VARIOUS CONFLt.tENCED RUNOFF VALUES ARE AS FOLLOWS s ` s 5.09 6.18 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS s RUNOFF <CFS} = 6.10 TIME 4MINt1TESY = 22.519 TOTAL AREA 4ACRESY = 4.20 END OF RATIONAL_ METHOD ANALYSIS ***=<, - • r AommiL `�rrr AVM, • % kW)" Q 2 5 1, • , HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM RASED ON SAN BERNARDINO COUNTY {SRC) 2983 HYDROLOGY MANUAL {{{{{{{{{{{{{{{{{{{{{{{{{{{{({{{{{{{{{))))))) ))))))))))))))))))))))))))))))) {C) Copyright 2982 Advanced Engineering Software CAES2 Eapacially prepar :d fors HALL it FOREMAN, INC. 444 ))))))))))))))))))))))))))))))) **********DESCRIPTION OF RESULTSe ie* e********* *eee***e*e*e* ********e**e****** * CATCH BASIN HYDROLOGY +e * LINE •A• - WEST VILLAGE +e * JRM, JN 3532, l.°./9/86 +r ..M. MaleN......M ICA Q..... MMMM.. MQ. MAM.... R...... .M .............Pie....RM......N USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT {YEAR) _ 25.00 SPECIFIED MINIMUM PIPE SIZE{INCH) = 28.00 SPECIFIED PERCENT OF GRADZENTSIDECIMAL) TO USE FOR FRICTION SLOPE _ .95 20 -YEA STORM 60- MINUTE INTENSZTY<INCH /HOUR) _ .988 200 -YEAR STORM 60- MINUTE INTENSITY {INCH /HOt1R) = 2.410 COMPUTED RAINFALL INTENSITY DATA, STORM EVENT = 25.00 1-HOUR INTENSITY{INCH /HOUR) = 2.2520 SLOPE OF INTENSITY DURATION CURVE _ .6000 SEtC HYDROLOGY MANUAL "C"- VALUES USED {{{{{{{{{{{{{({{{{{{{{{{{{{{{{{{{{{{{{))))))) ))))))))))))))))))))))))))))))) Advanced Engineering Software CAES2 SERIAL No. A0580A REV. 3.2 RELEASE DATES 5/02/85 4444444(444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 {{4 4 4444444 0)))))) ))))))))))))))))))))))))))))))) ******** e***** ******** 1e4 *****M *************** ******* le le ****le***ie***4eie1e****** FLOW PROCESS FROM NODE 20.10 TO NODE 20.20 I8 CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS{ {{ {{ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 41/4 ACRE) TC = M*C {LENt3TH**3) / {ELEVATION CHANGE) 2**. 2 INITIAL SUBAREA FLOW - LENGTH = 9xe.00 UPSTREAM ELEVATION = 22e39.90 DOWNSTREAM ELEVATION = 1250.60 ELEVATION DIFFERENCE = 19.30 TC = . 393* C t 920.00**3) / 4 29.30) 2**. 2 = 13.035 25.00 YEAR RAINFALL INTENSITY {INCH /HOUR) = 2.879 SOIL CLASSIFICATION I5 "A" SINGLE- FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7408 SUBAREA RUNOFF<CFS) = 13.44 rn -eeti C J . tW' era t _. rnsn, 6i ihHZCr / a^+CO L 4", AI. ****** e********************* e*************** e*** ********************1e*1e****1e FLOW PROCESS FROM NODE 10.10 TO NODE 10.00 IS CODE = 6 "1°‘ )))))COMPUTE STREETFLOW TRAVELTZME THRU SUEIAREAltlll ' UPSTREAM ELEVATION = 1250.60 DOWNSTREAM ELEVATION = 1:?4a. d:? STREET LENGTHSFEETY = 650.00 CURB HE1GTH42NCHEB) = 6. STREET HALFWIDTHIFEET) _ 20.00 STREET CROSSFALLIDECIMAL) _ .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTZME COMPUTED USING MEAN FLOWSCFS) = 13.44 NOTES STREETFLOW EXCEEDS TOP OF CURD. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLZBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT ZS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTHSFEET) _ .52 HALFSTREET FLOODWIDTHIFEET} = 19.09 • AVERAGE FLOW VELOCITY IFEET /SEC.) _ 4.222 • PRODUCT OP DEPTH6 VELOe2 TY = 2.21 STREETFLOW TRAVELTIMEIMIN) = 2.57 TCIMIN) = 15.60 25.00 YEAR RAINFALL INTENBITYSINCH /HOUR) = 2.585 SOIL CLASSIFICATION 29 "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7283 SUBAREA AREASACRES) = 0.00 SUBAREA RUNOFFICFS) = 0.00 SUMMED AREAIACRES) = 6.30 TOTAL RUNOFFICFS} = 13.44 END OF SUBAREA STREETFLOW HYDRAULICSs DEPTH l FEET) _ -se HALFSTREET FLOODW Z DTH l FEET) = 15.09 FLOW VELOCITYIFEET /SEC.) = 4.22 DEPTH*VELOCZTY = 2.22 • iele****1e1e1ele********* **** **** ****-***0****4**MA1Nlll**01.*** 000* e.*** *1**le******* FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 I9 CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE MMMMMMMMMMMMMMMMMM CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: • TIME OF CONCENTRATZONSMINUTES} = 15.60 RAINFALL INTENSITY l iNCH. /HOUR) = 2.58 TOTAL STREAM AREA IACRES} = 6.30 • TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 13.44 **** eww 1e1e1e*1e*1e1e**** 1e1e1e1e1► 1e*sr+ e*seeese*w ie*lel►u t► ielelete*****u**** ielr wlel►*w**leteuie****ee**** FLOW PROCESS FROM NODE 10.30 TO NODE 10.00 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYS2S44444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8: SINGLE FAMILY 41/4 ACRE) TC = K* C 4LEN0TH**3) / IELEVAT2ON CHANCE) 2te.. 2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1238.80 DOWNSTREAM ELEVATION = 1240.82 ELEVATION DIFFERENCE = 17.98 TC = . 393*C S 1000.0041111.3Y/4 17.98) )**. 2 = 13.899 25.00 YEAR RAINFALL INTENSITY l INCH /HOUR) _ 2.770 SOIL CLASSIFICATION IS "A" SZN8LE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7365 SUBAREA RUNOFFiCFSY = 22.02 TOTAL AREA l ACRES) = 5.40 TOTAL RUNOFF l CFS) = 21.02 **A 1e*** 1e 1R**** 1e *******1e1e1e****1e***1e1e**.e *******0M *********** **.* Me**********R. C► rw.� c e'VOCI COMA* AM►riC i C► M.% TA'S i.M11C 4M 40. t O f+ASYG ,.- 4 , )1VY, .w.0.. .a '. �.~. , V )..V - - aa.. Q..L AV V1.la' -- i )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(4444 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES44444 susarrsins= ssassHessnrasssssass= sara�assssJ rs= =aa�sssssassaassawaairs=sssas -- -sass =:arse CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE: aI TIME OF CONCENTRATION4MZNUTES) ■ 23.90 RAINFALL INTENSITY (INCH. /HOUR} ■ ,8'.77 TOTAL STREAM AREA 4ACRES) = 5.40 TOTAL STREAM RUNOFF4CF8) AT CONFLUENCE ■ 22.0.x. CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) 4MZN. ) 4INCH /HCtUR) 2 13.44 15.60 2.585 • 2 21..0e 13.90 2.770 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 23. 72 22.99 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF4CFS} = 23.72 TIME4MINUTES) = 25.602 TOTAL AREA4ACRES) = 21.70 • ********###################### e#######*****## # # # # # # # ## # # # # # # # # # # # # # # # # # # #*u# FLOW PROCESS FROM NODE 20.20 TO NODE 20.22 IS CODE ■ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 JIMIRINFAIMINPIAMINRIMUMMIPMINMINVIIMMINNIONOMIPAIIMISIIIRONANNUINIMILIMLIWARIMMINIIISWIUMMIIIMPARMIWWWINWRIOLINIMORIMPAIIMIZINIIPNHAIMMOVIIMITAIN ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC = M* t 4EENGTH##3} / 4ELEVATION CHANGE} 3 **. 2 INITIAL SUBAREA FLOW - LENGTH = 8ee. ae UPSTREAM ELEVATION = 2262.40 DOWNSTREAM ELEVATION = 1250.59 ELEVATION DIFFERENCE ■ 20.82 TC = .393#[4 62G.O0f#3)/4 20.82)3#e.2 = 23.661 25.00 YEAR RAINFALL INTENSITY 4INCH /HOUR) ■ 2. 799 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT} RUNOFF COEFFICIENT = .7377 SUBAREA RUNOFF 4CFS) = 20.32 TOTAL AREA 4 ACRES) = 5.00 TOTAL RUNOFF 4 CFS } = 2G. 32 K ### ## # # # # # # # ..... FLOW PROCESS FROM NODE 20.22 TO NODE 20.00 ZS CODE = 6 WY) COMPUTE STREETFLOW TRAVELTIME THOU SUBAREA 4 4 4 4 4 ...=r.� =r. 1.._�___ UPSTREAM ELEVATION = 2230.59 DOWNSTREAM ELEVATION = 2242.08 STREET LENGTH4FEET} ■ 650.00 CURS HEIOTH4INCHES) = 6. STREET HALFWZZ)TH4FEET} ■ 20.00 STREET CROSSFALL4DECZMAL) _ .0270 SPECIFIED NtMSER OF HALFSTREETS CARRYING RUNOFF = 2 # #TRAVELTZME COMPUTED USING MEAN FLOW4CFS} = 23.80 NOTES STREETFLOW EXCEEDS TOP OF CURB. 1 THE FOLLOWING STREETFLOW RESULTS ARE SASES ON THE ASSUMPTION THAT NE49L28LE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT ZS, ALL FLOW ALONG THE PARKWAY, ETC., ZS NEGLECTED. STREET FLOWDEPTH4FEET) ■ .52 HALFSTREET FLOODWIDTH4FEET} ■ 25.09 AVERAGE FLOW VELOCITY4FEET /SEC.) ■ 4.34 PRODUCT OF DEPTHAVELOCZTY = 2.27 STREETFLOW TRAVELTZME4MIN) = 2.30 TC4MZN) = 16.16 25.00 YEAR RAINFALL INTENSITY<ZNCH /HOUR) = 2.533 SOIL CLASSIFICATION IS "A" SINGLE-FAMZLY42/4 ACRE LOT) RUNOFF COEFFICIENT = .725? SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 6.98 SUMMED AREA(ACRES) 8.80 TOTAL RUNOFF (CF9) = 17.31 mo END OF SUBAREA STREETFLOW HYDRAULICS: DEPTHtFEETY = .57 HALFSTREET FLOODWIDTH(FEETY = 16.88 FLOW VELOCZTY(FEET /SEC.) = 4.40 DEPTH *VELOCITY = 2.51 w. * * * * *** ***** * * ** * ** * * ******* r . *iexie*e►l►ie ***irre**ir**** ****** * *i►******* * ********* FLOW PROCESS FROM NODE 88.28 TO NODE 84.88 I8 CODE = 2 )) ))) R 7I ONAt. METHOD INITIAL 9U84REA ANAL YS 18 4 4 (4 ( MAW ARINFalhar ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 43 /4 ACRE) TC = M *E4LENGTH * *3) /4ELEVATION CHANGE)2 * *.2 INITIAL SUBAREA FLOW - LENGTH = 1070.00 UPSTREAM ELEVATION = 3.x.54.50 DOWNSTREAM ELEVATION = 2234.49 ELEVATION DIFFERENCE = 20.82 TC = .393* t: ( 2 070.00* *3) / 4 ,£0.01) 3 * *. e = 24.269 25.08 YEAR RAINFALL INTENSITY (INCH /HOttR) = 2.739 SOIL CLASSIFICATION ZS "A" SINGLE- FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7358 SUBAREA RUNOFF = 21.e8 TOTAL AREA(ACRES) = 5.60 TOTAL RUNOFF(CFSY = 12.28 *****.*****,***********,.**********►************* *************** **************** FLOW PROCESS FROM NODE 28.20 TO NODE 23.8. 28 CODE _ 8 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 29s SINGLE FAMILY 43 /4 ACRE) TC = t( *E4LENGTH * *3) /4LLEVATION CHANGE)2 * *.8 INITIAL SUBAREA FLOW- LENGTH = 908.00 UPSTREAM ELEVATION = 1243.80 DOWNSTREAM ELEVATION = (233.00 ELEVATION DIFFERENCE = 8.88 TC = .393* E ( 388 00 * *3) / ( 8.80) 3 * *. 2 = 15.052 25.80 YEAR RAINFALL 2NTEN92TYY4INCH /HOUR) = 8.641 SOIL CLASSIFICATION 2S "A" SINGLE-- FAMILY4I14 ACRE LOT) RUNOFF COEFFICIENT = .7309 SUBAREA RUNOFF(CPS) = 9.87 TOTAL AREA(ACRES) = 4.80 TOTAL RUNOFF(CFS) = 9.27 ** *** *R'R**** *** * ***** * *** * **** .**** ** ****** *** * **** ***** .****e.************ FLOW PROCESS FROM NODE 28.38 TO NODE 26.80 Is CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYS2844(44 a *fie= ie= i= a: w= ae�= ara a.= aea�rar =rww =asuv<t =�r =aw :=ar==wu�= : =+s ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 28s SINGLE FAMILY (3/4 ACRE) TC = t( *E(LENGTH * *3) /( ELEVATION CNANGE)2 * *.8 INITIAL SUBAREA FLOW - LENGTH = 750.00 ` UPSTREAM ELEVATION = t 244.88 DOWNSTREAM ELEVATION = 2233.22 ELEVATION DIFFERENCE = 22.89 TC = . 393* E ( 750. 00 * *3) / ( 12.89) 2 * *. e = 12. 503 85.08 YEAR RAINFALL 2NTENSITY(INCH /HOUR) = 2.952 SOIL CLASBZFZCATZON ZS "A" t..•. .... .. ......� � esaa.ae%r_• rtei &aT SUBAREA RUNOFF 4 CFS) = 2.12 TOTAL AREA4ACRES) = 3.70 TOTAL RUNOFF(CFS) _ $.2a' .... ******************* i►*w a*************** * ** ** ********* **e******* ******* FLOW PROCESS FROM NODE 20.40 TO NODE :5.88 28 CODE _ )))) >RATIONAL METHOD.2NITIAL SUBAREA ANALYSI8444 44 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SIN©LE FAMILY 42/4 ACRE) TC = K*C 4LENGTH**3 4ELEVATION CHANCEY 2**. 2 INITIAL SUBAREA FLOW - LENGTH = 950.00 UPSTREAM ELEVATION = 2239.10 DOWNSTREAM ELEVATION = 1232.11 ELEVATION DIFFERENCE = 7.99 TC = . 393* C 4 950.00**3Y / 4 7. 99Y ? **. 2 = 15.832 25.00 YEAR RAINFALL 1NTENSITY4INCH /HOUR) = 2.568 SOIL CLASSIFICATION IS "A" SINGLE- , FAMILY 41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7272 SUBAREA RUNOFF4CFS) = 9.68 TOTAL AREA4ACRES) = 5.20 TOTAL RUNOFF4CFSY = 9.68 .**** *****... e. 1e1F*11 1►****!! 7►A' lr ******M******** *11***1F******IIi ***41 ***111 ***Ul**** • FLOW PROCESS FROM NODE 40.30 TO NODE 40.00 I8 CODE = 2 ) })))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8s SINGLE FAMILY 42/4 ACRE) TC = K*C 4LENBTH**3Y/ 4ELEVATION CHANGE)2*e. 2 INITIAL SUBAREA FLOW- LENGTH = 300.00 UPSTREAM ELEVATION = 2225.00 DOWNSTREAM ELEVATION = 3223.30 ELEVATION DIFFERENCE - 21.70 TC = . 3931e C 4 900. 00**3) / 4 2 2.70) 2 **. 2 = 14.219 2°5.00 YEAR RAINFALL 1NTENSITY(INCH /HOURY = 2.733 SOIL CLASSIFICATION IS "A" SINGLE- PAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7349 SUBAREA RUNOFF4CFS) = 5.42 TOTAL AREA 4ACRE8) = 2.70 TOTAL RUNOFF 4CF8) = 5.42 3 *... **** ******** e4►*********** ************* *****0....*. eA.i►ieM1e1e***OMil7e0 ..* FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE444(4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs 72P4E OF CONCENTRATION4MINUTES) = 24.22 RAINFALL INTENSITY 42NCH. /HOUR) = 2.73 TOTAL STREAM AREA 4ACRES) = 2.70 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE = 5.42 1► 1e******** 1e**** 1ew 1e1e *********%**1ew1e1e1e1e1e1e1 *** 1e1ea 1e1e1e ****u1e***1e***1ev*****1e****** FLOW PROCESS FROM NODE 40.32 TO NODE 40.31 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 a aa=a= =a== =.saa: ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 42/4 ACRE) TC = K*C 4LENGTH**3) / 4ELEVATION CHANt3EY 2*e. 2 INITIAL SUBAREA FLOW - LENGTH = 830.00 , �csaTaa�+ a► s: Lx,T I^M _ 1 A"AA Ad DOWNSTREAM ELEVATION a. 1219.0e ELEVATION DIFFERENCE = 13.00 TC = .393*C4 $30.00**3)/4 13.00Y3**.e = 13.26:? 25.00 YEAR RAINFALL i NTENS1 TY S I NCH /HOURY = 2.25e SOIL CLASSIFICATION ZS `•A" SINGLE- FAMILYS1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7396 SUBAREA RUNOFF SCFS) = 4.97 TOTAL AREAIACRESY = 2.36 TOTAL RUNOFFSCFS) = 4.97 e * ****erie*ee****uie**** rime♦ eiew i► *ie***ieieeee►**** ie**+ eir**** ***** *a******** ************ FLOW PROCESS FROM NODE 40.31 TO NODE 40.00 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTZME THRU SUBAREASSSSS UPSTREAM ELEVATION = 1219.00 DOWNSTREAM ELEVATION = 1213.30 STREET LENGTHSFEET) = 530.00 CURB HEISTH(ZNCHES) = B. STREET HALFWZDTHSFEETY = 12.00 STREET CROSSFALL(DECIMAL) _ .0279 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 e*TRA•VELTIME COMPUTED USING MEAN FLOW(CFS) = 4.97 STREET rLOWDEPTHSFEET) _ .43 HALFSTREET FLOODWIDTHSFEET) • 10.25 AVERAGE FLOW VELOCITY SFEET /SEC.) = 3.03 PRODUCT OF DEPTHi4VELOCZTY = 1.30 STREETFLOW TRAVELTZMESMZN) _ 2.91 TCSMZNY = 16.17 25.00 YEAR RAINFALL INTENSITYSINCH /HOUR) = 2.530 SOIL. CLASSIFICATION ZS "A" SINGLE- FAMILYSI /4 ACRE LOTY RUNOFF COEFFICIENT = .7257 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF SCFS) = 0.00 SUMMED AREASACRES) = 2.36 TOTAL RUNOFF SCFS) = 4.97 END OF SUBAREA STREETFLOW HYDRAULZCSs DEPTH(FEET) _ .43 HALFSTREET FLOODWIDTHSFEET) = 10.25 FLOW VELOC2 TY SFEET /SEC.) = 3.03 DEPTH*VELOCI TY = 1.30 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCESSSSS waasussamatarasimwastastarawarreutstansammatararasawasearreararwartawalaramer _ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONSMZNUTES) = 16.17 RAZNFAL.L INTENSITY t INCH. /HOUR) = 2.53 TOTAL STREAM AREA (ACRES) = 2.36 TOTAL STREAM RtJNOFF4CFS) AT CONFLUENCE = 4.97 . e, e«, e. e, e. e, e, r. r, e, e, e, e, e. e. e, e, e, e«, e, e, e, r, e, e«., e«.. e, e. e«, e, e, e.. e, e«. e, e«, a .e .e.e.e.e.e,e,e «,e .e,e,e,e,e,e ,e,e.e,e FLOW PROCESS FROM NODE 40.31 TO NODE 40.00 ZS CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYS1S4(444 araaas.ts= = =ate =a....._ ::..:=..= as .,.samOaraI.=araar:aIR..a.== =a:a. ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC = M* C SLENLTH**3) / SELEVATZON CHRNaE) 3 **. 2 INITIAL SUBAREA FLOW - LENGTH = 550.00 UPSTREAM ELEVATION = 1219.00 ewr..(�,, DOWNSTREAM ELEVATION = 1213.30 '`rere ELEVATION DIFFERENCE = 5.70 TC = . 393* C ( 350.00**3) / S 5.70) 3 **. 2 = 12.218 25.00 YEAR RAINFALL ZNTENSZTYSINCH /HOUR) = 2.993 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY S 1 /4 ACRE LOT) RUNOFF COEFFICIENT or .7449 SUBAREA RUNOFF 4CF9) = 4.99 T. -.rR. r�eu- nz.ti:+etr=‘ Ti:Tf.t GetU..t^e /^r.C: •.. a. do *********e****** l**************************** **************************w**** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 ZS CODE = 2 ,r"+. )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<4< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES4 < < << CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION (MINUTES} = 12.22 RAINFALL INTENSITY 4INCH. /HOUR) = 2.99 TOTAL STREAM AREA 4ACi E8} = 2.24 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 4.99 • CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFS} 4MIN.) 4INCH /HOUR) 1 5.4e 14.e2 2.733 2 4.97 16.17 2.53e 3 4.99 3 2.22 2.993 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • FORMULA4SBC) USED FOR 3 STREAMS. . VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 14.36 24.22 23.42 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF4CFS} = 24.36 TIME4MZNUTES} = 24.229 TOTAL AREA4ACRES) = 7.30 4!114** ************* **1ti►lhilil***** * **** ****illFi ***11.*** ***** 1r1F**R*.....Milli!R1!i!**it FLOW PROCESS FROM NODE 40.10 TO NODE 40.10 ZS CODE = 2 ))))) RAT I ANAL METHOD INITIAL SUBAREA ANAL YS Z S 4 < < < 4 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = H*E4LENOTH**3) /(ELEVATION CHANGE}2**,2 INITIAL SUBAREA FLOW -LENOTH = 2000.00 UPSTREAM ELEVATION = 2236.00 DOWNSTREAM ELEVATION = 1224.20 ELEVATION DIFFERENCE = 11.80 TC = . 393+4 E 4 2000. 00**3) / 4 11.60) I *u. 2 = 15.122 25.00 YEAR RAINFALL INTENSITY4INCH /HOUR) = 2.634 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY42 /4 ACRE LOT} RUNOFF COEFFICIENT = .7306 SUBAREA RUNOFF4CFS) = 20.02 TOTAL AREA4ACRES) = S. 20 TOTAL RUNOFF 4 CFS) = 10.01 FLOW PROCESS FROM NODE 40.10 TO NODE 40.20 28 CODE = 6 )) }})COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <44 44 arallrabaRIMMOBUINIIIINIVIINAINININ UPSTREAM ELEVATION = 1224.20 DOWNSTREAM ELEVATION = 2223.46 STREET LENGTH4FEET) = 600.020 CURB HEIC3TH(INCHES) = 6. STREET HALFWIDTH<FEET) = 18.00 STREET CROSSFALL (DECIMAL) _ .0240 SPECIFI NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTZME COMPUTED USING MEAN FLOW4CFS) = 10.01 ***STREETFLOW SPLITS OVER STREET - CROWN*** FULL DEPTH4FEET) _ .39 FLOODWZDTH4FEET) = 28.00 FULL HALF- STREET VELOCITY4FEET /SEC.) = 3.20 SPLIT DEPTH4FEET} _ .31 SPLIT FLOODWIDTH4FEET) = 12.33 or.. s-r .►e:. riAnssv /C•C1 fOC+'+ '. - .�. 4 A - . ..•• V a s Y ) i . ! a_i > • rJi L. J STREET FLOWDEPTH<FEET) _ .39 HALFSTREET FLOODW I DTH l FEET) = 18.00 AVERAGE FLOW VELOCZTY<FEET /SEC.) = 3.10 PRODUCT OF DEPTHSVELOCITY = 1.20 STREETFLOW TRAVELTZME4NIN) = 4.30 TCINtlN) = 19.42 tea, 25.00 YEAR RAINFALL I NTENS I TY l I NCH/ HOURY = :'..'_'67 SOIL CLASSIFICATION Z8 "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT a .722."-: SUBAREA AREA<ACRES) = 0.00 SUBAREA RUNOFFICFSY = 0.00 SUMMED AREA l ACRES Y = 5.20 TOTAL RUNOFF l CFSY a 10.01 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH<FEET) _ .39 HALFSTREET FLOODWIDTH4FEETY = 26.00 FLOW VELOCITY<FEET /SEC.) = 3.10 DEPTH*VELOCITY = 2.20 R* ******* ** ** *******1***i** * 4****** 1**1*i*7****1M*i!i*i*1***** ***iN***itiN *1*1*i*i*i*1HHli*1*i!i*i**i* FLOW PROCESS FROM NODE 40.20 TO NODE 40. 0 Z 3 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ays amass= :arassa�aa = =aaae- = -aa -- =iwia - -- agar -- --ter - - - =s CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE; TIME OF CONCENTRATION<MZNUTESY = 19.42 RAINFALL INTENSITY 4ZNCH. /HOURY = 2.2? TOTAL STREAM AREA 4ACRES) = 3.20 • TOTAL STREAM RUNOFF<CFSY AT CONFLUENCE = 10.02 + eae *****+e*ir*a+e.r****** ** *** eye+ eu *+ r+ e+ r+ r, e, e+ e*, e+r ie,a***ie** **+rx+e**** * ***** ******+ *** FLOW PROCESS FROM NODE 40.00 TO NODE 40.20 ZS CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 ' - aear aaaaraaa---- a= +�.sraraseasaasaaaaraeaaaarasar seams=- .mssesa =aa.:JCILWA -- aurssss ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS; SINGLE FAMILY 41/4 ACRE) TC = K* C 4LENGTH**3Y / 4ELEVATZON CHANGE) 2 e *. 2 INITIAL SUBAREA FLOW -- LENGTH = 950.00 UPSTREAM ELEVATION = 12:3.80 DOWNSTREAM ELEVATION ,- 1213.46 ELEVATION DIFFERENCE = 10.34 TC = . 393+* C l 95'.00+*+* 3) / l 20.34) 3 * *. 2 = 15.055 25.00 YEAR RAINFALL ZNTENSI7Y4INCH /HOUR) _ 2.641 SOIL CLASSIFICATION IS "A" SZNBLE- FAMILY42 /4 ACRE LOTY RUNOFF COEFFICIENT = .7309 SUBAREA RUN OFF l CFS) _ 4.'?3 TOTAL AREA<ACRESY = 2.30 TOTAL RUNOFF<CFS) = 4.83 1*** ** *AANA* *** *♦*** *M*i**1*1*1*i*** *1** ****** ** **e* *i*N* ** *1*M**i*i** **i*9*1*1** *i*7*Qi*i*1*i*i*i* FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 IS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 JIMI I M ISSI I IIIMWDAWHINIMMAMWIMJIIHOAVAlwasassmommaraareawarameararaearaimmawa stivaisWasawassaaranssamearamarstaorassitarasairaersamr CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIQNIMINUTES) = 13.05 RAINFALL INTENSITY 4INCH. /HOUR) _ 2.64 TOTAL STREAM AREA 4ACRESY = 2.50 TOTAL STREAM RUNOFF<CFS) AT CONFLUENCE = 4.83 ei** ** ** *MRK*1*1*M1*i*Ni*K1** ***** **MQ1*** *i*1 **R* *i*Mi** *1** *1*i*1**i**M1*1*i**1*i** *1*1*i*** FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 IS CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZS<<<<< asasaaasarat saaa aaassaaar = aaasaawae +a�raasaa=area=aaaaaa traiwa arar aaaasramaaa DEVELOPMENT 29: SINGLE FAMILY 42/4 ACRE} TC = K*C 4LENGTH**3} / 4ELEVATIQN CHANGE} 3 * *.:a INITIAL SUBAREA FLOW - LENGTH = 850.00 UPSTREAM ELEVATION = 2 i.'~.3. 5122, DOWNSTREAM ELEVATION - 2 2 3. lib gym. ELEVATION DIFFERENCE = 10.04 TC = .393*(4 858.80ie*3 }/4 28.04 )3**.? = 24.266 es. Dear YEAR RAINFALL ZNTENSI TY 4 ZNCHIHOUR} = e.739 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY41 /4 ACRE LOT} RUNOFF COEFFICIENT = .735? SUBAREA RUNOFF 4CFS} = 8.85 TOTAL AREA 4ACRES} = 4.00 TOTAL RUNOFF 4CF8} = 8.05 ************ ******** *********************e******aie ieIe ************t***** *ie**** FLOW PROCESS FROM NODE 40.e0 TO NODE 40.4 I3 CODE = 2 } } }} }DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 }} }} }AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 LIRE: TIME OF CONCENTRATION4MINUTES} = 14.27 RAINFALL INTENSITY (INCH. /HOUR} _ e.74 TOTAL STREAM AREA (ACRES} = 4.00 TOTAL STREAM RUNOFF4CFS} AT CONFLUENCE = 8.05 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFS} 4M/N.Y 4ZNCH /HOUR} 2 20.02 29.4e e.:367 4.83 15.05 E. 641 3 8.05 14.17 e. 733 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC} USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: ..'0.82 i0. 35 19.89 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFFSCFS} = i0.r 1 TIME4MZNUTES} = 29.42 TOTAL AREA(ACRES) = 11.70 K*****uu yeaw ee****** a****a reiea yea*********.**a*ir****a*ai►*** **a****K************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.00 ZS CODE _ }} }}}RATIONAL METHOD INITIAL SUBAREA ANALYSZStt444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE} TC = M. E 4 LENGTH.**3 } / t ELE VAT I ON CHANGE } 3 **. e INITIAL SUBAREA FLOW - LENGTH = 900.00 UPSTREAM ELEVATION = 2222.00 DOWNSTREAM ELEVATION = 1t10.7@ ELEVATION DIFFERENCE = 22.30 TC = .3934114 900.00+e+e3} / ( 2 2.30} 3**. e = 24.318 V3.00 YEAR RAINFALL ZNTENSITV INCH /HOUR} _ 2.7Ei SOIL CLASSIFICATION IS "A" ,r<"'"* SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7344 . SUBAREA RUNOFF 4CF8} _ 2.80 TOTAL AREA4ACRESY = 1.40 TOTAL RUNOFF 4CFS} = 2.80 ************************** ie************** e*** ********+e********************* * FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 ZS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE' {lll s= ssaeaar== sra. a=+ e =sess+v=.saan=aaaaar=aa�nnaram- naeaar= eras: saamaysrsmaa=m --- -.rsraea�z CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENT RF'iT I ON I M Z MUTE S) = 24. 3:? RAINFALL INTENSITY (INCH. /HOUR) = e.78 ,ate", TOTAL STREAM AREA {ACRES) = 1.40 TOTAL STREAM RUNOFFtCFS) AT CONFLUENCE _ :3.80 .***+e+r*ae***sex*.** ********** *u**** ie+e+t****+e****+:+e+t***u********ir+ **************r. FLOW PROCESS FROM NODE 50. E0 TO NODE 50.82 Z S CODE _ 8 >) >> )RATIONAL METHOD INITIAL SUBAREA ANALYSISI(lll JIMWAWIIIAMINNIIIIMONIMParassattasangurasara&wranariawaitaaassathwastamerammesuirarvametaitasaraimearszeswa ASSUMED INITIAL SUBAREA UN I FORM DEVELOPMENT IS: SINGLE FAMILY 41 /4 ACRE) TC = M *C ILENGTH**3 }/'ELEVATION CHANSE) 3**. e INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1236.00 DOWNSTREAM ELEVATION = 284.76 ELEVATION DIFFERENCE = 11.30 TC = .393*E4 1000.00%03) /4 21.30)3 **.E = 15.E S,S 85.00 YEAR RAINFALL INTENSITY lINCH /HOUR) _ 8.680 SOIL CLASSIFICATION ZS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7300 SUBAREA RUNOFF lCF'$Y _ s. es TOTAL AREA I ACRES } = 1.70 TOTAL RUNOFF 4 CFS) = s. es ****Q* **** *****************Q************* ** ***e*************************** * FLOW PROCESS FROM NODE 50..22 TO NODE 50.00 IS CODE a 6 ,.._ )))) }COMPUTE STREETFLOW TRAVELTIME THRU SUBAREASIIII ".' a = =.M al =B == - =awe=ifr -- wawasarvam f= rswarassaar UPSTREAM ELEVATION = 1224.76 DOWNSTREAM ELEVATION = 1810.70 STREET LENGTH {FEET) = 2800.06 CURB HEIGTHIZNCHES) = 6. STREET HALFWIDTH{FEET) = E0.00 STREET CROSSFALLIDECZMAL} _ .0876 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *+'TRAVELTIME COMPUTED USING MEAN FLOW lCFS) = 4. ee STREET FLOWDEPTH {FEET) _ .38 HALFSTREET FLOODWZDTH{FEET} = 9.823 AVERAGE FLOW VELOCITYtFEET /SEC.) = 8.54 PRODUCT OF DEPTHBVELOCITY = 3.13 STREETFLOW TRiVELTIME 'MIN) = 6.86 TC 'MIN) _ ee.es 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR} = 8.206 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8801 SUBAREA AREA{ACRES) = 1.30 SUBAREA RUNOFFICFS) = 1.69 SUMMED AREA{ACRES) = 8.60 TOTAL RUNOFF 'CFS) = 5. 15 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH{FEET) _ .41 HALFSTREET FLOODWIDTH {FEET) = 12.04 FLOW VELOCITY 'FEET /SEC.) = 2.93 DEPTH*VELOCITY = 1.21 .******* * *gee►++*** eyed ** ►**** ******** **+rwie***** *** ***** wee *****xir*+eee***....***** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 1 t : >)))) DESIt3NATE INDEPENDENT STREAM FOR CONFLUENCE { { { { { }))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESIIIII araramoratmetuararamwarmaftwaiwealtararamsaminsammaraualamaisinsWommessimatalealwasausearwasawar CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 8 AREs TIME OF CONCENTRATION(MINUTES) _ 28.0:5 RAINFALL INTENSITY 'INCH. /HOUR} = 8.16 TOTAL STREAM AREA 'ACRES) = 2.60 4`f1TPN OT MG` PS.� t .i N. ae"aCt ! r t PST "+P'N"aC`a Q 4 at -. CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER tCFS} 4MIN. Y 4 ZNCH/HOUR} e. B6 14.3e a. lea : ;_ 5. 2 5 ii. e5 e. 2 eict RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SFC} USED FOR i STREAMS. VARIOUS CDNFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 6.14 7.32 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF 4CFS} = 7.32 TIME 4MINUTES} _ e .052 TOTAL AREA4ACI ES) a 4. °0 ' aaw= .as =�saa.. Baas ..a�arasesas--- a�e�. =s..v�s -- -arias END OF RATIONAL METHOD ANALYSIS 00011111/4 • • • • Q 100 HYDROLOGY 1111 MANNAMINNINIMIMINGIMOMMINIAMENUMINUMNIMINMIVJOLVINVIBMIAMWSIVWFAVArilitMLNIUMMINUMMIJN&IlliiiMINILWILINAIRWINIIMISMIUMINNUf assssssIMMUIT ss RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY 4SBC) 1983 HYDROLOGY MANUAL ate. saea< e: aeaeaa= ssasssaaerssassa= aas-- arssssss= aamea srsssms=sas=sssss=sssssssswssa.�sa=s ', (< 444 4<(<44< 4<( 4(( 4(4( 4( 44(4< 4(((4< 4(()))))) >)))))))))))) >) >)) >))» )))))>) >) (C) Copyright 2988' Advanced Engineering Software ZAES2 Especially prepared Fars HALL 6 FOREMAN, INC. 4 444 44{4<( 44((( (4 4444{44<(((( 44 444(((<)) ))))))))))))))) >)))))))))))))4” )))) **********DESCRIPTION OF RESULTS************* ***************************** ** * CATCH BASIN HYDROLOGY R * LINE 'A' - WEST VILLAGE R * JRM, JN 3538, le/8/86 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATIONS USER SPECIFIED STORM EVENT4YEAR) = 280.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 28.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10-YEAR STORM 60- MINUTE ZNTENSITY(ZNCH ,'HOUR) _ .980 480 --YEAR STORM 60- MINUTE INTENSITY4INCH /HOUR) = 2.470 COMPUTED RAINFALL INTENSITY DATAs STORM EVENT = 200.00 1-HOUR I NTENS 2 TY 4 2 NCH /HOUR) = 2.4700 SLOPE OF INTENSITY DURATION CURVE _ .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED 44444 44((44444(44( 444 444((( 4(44(4(4 44<))))))) ))))))))))))))))))))))))))))) >) Advanced Engine :ring Software CAES3 SERIAL Na. R8588R REV. 3.1 RELEASE DATE: 5/01/85 444 4444444(4444444(4444 44(4(44444 4444())))))) ))))))))))))))))))) >))))))))))) RR RRR**** RRa* RR* RRRR* RRRRRRRR*RR*RRR*R**•** ****R*RRR *RRR*RRRRRRRR*RR RR RR**R R FLOW PROCESS FROM NODE 20.20 TO NODE 20.20 IS CODE = 2 )))))RATIONAL. METHOD INITIAL SUBAREA ANAL YS Z S 4 4 4 4 4 a�ava =aaa - - -as ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 42 /4 ACRE) TC = M*C 4LENGTH*R3) / (ELEVATION CHANGE) 2RR. 8 INITIAL SUBAREA FLOW - LENGTH = 588.00 UPSTREAM ELEVATION = t,t69.90 4 " DOWNSTREAM ELEVATION = 2e50.60 ELEVATION DIFFERENCE = 19.38 TC = . 393* C 4 9S0. 00** 3 / 4 2 9.30) 3 *R. 8 = 13.035 200.00 YEAR RAINFALL INTENSITY(ZNCH /HOUR) = 3.674 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7644 SUBAREA RtNrOFF (CF8) _ 17.69 •AT• nna -�.+ . rar+ne -n — c - � z rn —rrt. .TM M • N*Q***.** *****0** e* e*** 1ee****N**************** ********************1e ** **R**** FLOW PROCESS FROM NODE 18.10 TO NODE 10.00 2S CODE • 6 00111* )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAIISIS ! UPSTREAM ELEVATION • !858.60 DOWNSTREAM ELEVATION = 1040.00 STREET LENGTH(FEET) = 650.00 CURB HEZGTH(INCHES) = 6. STREET HALFWZDTH<FEET) = 20.00 STREET CROSSFALL <DECIMAL) _ .0070 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = t e*TRAVELTZME COMPUTED USING MEAN FLOWSCFS) • 17.69 NOTEs STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NE6t.ZSLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. • THAT I8, ALL FLOW ALONG THE PARKWAY, ETC., ZS NEGLECTED. . STREET FLOWDEPTH(FEET) _ .57 HALFSTREET FLOODWZDTH <FEET) = 16.a AVERAGE FLOW VELOCITY (FEET /SEC.) _ . 4.50 PRODUCT OF DEPTHQVELOCITY = 0.57 STREETFLOW TRAVELTZME(MIN) = 0.41 TC 4M2N) = 15.44 100.00 YEAR RAINFALL INTENSITYSZNCH /HOUR) = 3.319 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY 41 /4 ACRE LOT) RUNOFF COEFFICIENT • .7550 SUBAREA AREA<ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 SUMMED AREAlACRES) = 6.30 TOTAL RUNOFFlCFS) = 17.69 END OF SUBAREA STREETFLOW HYDRAUL2CSs DEPTH <FEET) _ .57 HALFSTREET FLOODWZDTHSFEET) = 16.80 FLOW VELOCITY <FEET /SEC.) = 4.50 DEPTH*VELOC2TY = 8.57 ' **** **4.41.*****w**+e***** sere**** *ie*******w+► gre** emem*** *+ ew ***** *******i►**41.w****** "" - FLOW PROCESS FROM NODE 10.00 TO NODE 18.88 IS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(S<ll CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 FARE; TIME OF CONCENTRATZON<MINUTES) = 15.44 RAINFALL ZNTENSITY <INCH. /HOUR) = 3.30 TOTAL STREAM AREA <ACRES) = 6.30 TOIL STREAM RUNOFF <CFS) AT CONFLUENCE = 27.65 w*mmmmmm*www*uw**w ie**us *e.*********************mmeemme e*r*e•w*e****•********* • FLOW PROCESS FROM NODE 18.38 TO NODE 10.00 IS CODE = 8 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSI9(4444 =NN!!N!!! !/.1 = =•R = = = =. . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 41/4 ACRE) TC = K *C(LENGTH**3) /4ELEVATION CHANGE)2e*.8 INITIAL SUBAREA FLOW - LENGTH • 1000.00 UPSTREAM ELEVATION = 1050.80 DOWNSTREAM ELEVATION = 1840.8* ELEVATION DIFFERENCE = 17.96 TC = . 393* C < l 000.004 *3) / S 17.98) ? **. e • 13.899 180.00 YEAR RAINFALL INTENSZTY(INCH /HOUR) = 3.535 SOIL CLASSIFICATION ZS "A" Nmmy SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7610 SUBAREA RUNOFF<CFS) = 14.53 TOTAL AREA(ACRES) = 5.40 TOTAL RUNOFFSCFS) = 14.53 4ew***** *w ******** *ie*+ e+ e***u ******* ie***w*ee**********wie*i ***4******ie+r+e+e**** ***** C1 riw OYri1/"`COO t011M toms. 4m fief 1 S% i WW%C 4A MA Y O ^^1.0 - 4 . .. v.. r •. - , •1 • • ..va, r. a v. �•a• • v •l%. b.. .S a wa• 4.60 16,604 -- a )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<lll< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs _ TIME OF CONCENTRATIONlMINUTES) = 13.50 RAINFALL INTENSITY <INCH. /HOUR) = 3.54 TOTAL STREAM AREA (ACRES) = 5.40 TOTAL STREAM RUNOFF<CFS) AT CONFLUENCE = 24.53 CONFLUENCE INFORMAT20Ns STREAM RUNOFF TIME INTENSITY NUMBER <CFS) <MIN. (INCH /HOUR) 1 17.69 25.44 3.329 2 14.53 13.90 3.535 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SOC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS s 31.33 30.45 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: • RUNNOFF<CFS) = 32.33 TZMEIMZNUTES) = 15.441 TOTAL AREA<ACRES) _ • 22.70 awawawwwwwwwwwwwwawa awwwawwwwawwwaawwaawwwwwww *w wwwwawwwwwwwwawwawaw*wilMiF*** FLOW PROCESS FROM NODE 10.00 TO NODE 20.22 IS CODE _ .? • )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <44 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY 42/4 ACRE) _ r TC = M*E <LENGTH*w3) / < ELEVATION CHANGE) 2*w. 0 INITIAL SUBAREA FLOW - LENGTH = 820.00 UPSTREAM ELEVATION = 2262.40 DOWNSTREAM ELEVATION = 2250.59 ELEVATION DIFFERENCE = 20.82 re' _ . 393* C l .00**3) / 4 2&813...2 = 13.661 100.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 3.572 SOIL CLASSIFICATION I8 "A" SINGLE - FAMILY <2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7600 SUBAREA RUNOFFICFS) = 23.62 TOTAL AREA (ACRES) = 5.00 TOTAL RUNOFF <CFS) = 13.61 air+reee***w+►wmreee *** **** ** **w+►****wsew+►****a * ********* ****u **** *.**w*+e***war FLOW PROCESS FROM NODE 20.21 TO NODE 10.00 I8 CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA < <<<< UPSTREAM ELEVATION = 2250.59 DOWNSTREAM ELEVATION = 2242.08 STREET LENOTH<FEET) = 650.00 CURB HEZOTH<ZNCHES) = 6. STREET HALFWIDTH (FEET) = 20.00 STREET CROSSFALL (DECIMAL) _ .0270 SPECIFIED NUMBER OF HALFSTREETB CARRYING RUNOFF = 1 w.TRAVELTIME COMPUTED USING MEAN FLOW<CFS) = 28.24 • NOTEs STREETFLOW EXCEEDS TOP OF CURS. ( THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT I8, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH<FEET) _ .59 HALFSTREET FLOODWIDTH<FEET) = 27.40 AVERAGE FLOW VELOCITY (FEET /SEC.) = 4.35 PRODUCT OF DEPTHAVELOCITY = 2.55 STREETFLOW TRAVELTZMESMIN) = 2.49 TC4MIN) = 16.15 200.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 3.230 SOIL CLASSIFICATION IS "A" SINGLE FAMXLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7526 SUBAREA AREA (ACRES) = 3.80 SUBAREA RUNOFF 1CFS) = 9.24 SUMMED AREAIACRES) = 8.80 TOTAL RUNOFFICFS) = 22.85 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTHIFEET) _ .62 HALFSTREET FLOODW2DTH4FEET} = 28.55 FLOW VELOCITYIFEET /SEC.) = 4.80 DEPTHeVELOC2TY = 2.96 wwwwww wwwwwwwwww wwwwwwwwww wwwwwwwwwwwwwwwww wwwww wwwwwwwwwwwwwwwwwwwwwwwwwwww FLOW PROCESS FROM NODE 20.10 YO NODE 24.00 2S CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS11111 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 2Ss SINGLE FAMILY l2 /4 ACRE) TC = Kw E 1LENGYHww3) / (ELEVATION CHANt3E) 2**.2 INITIAL SUEeAREA FLOW - LENGTH = 1070.00 UPSTREAM ELEVATION = 2254.80 DOWNSTREAM ELEVATION = 2234.49 ELEVATION DIFFERENCE = 20.02 TC = .393 *C 1 2070.00ww3} / l 28e. 02) Z+►w. 2 = 24.269 Q 100.00 YEAR RAINFALL INTENSI TY (INCH /HOUR) = 3.495 SOIL CLASSIFICATION ZS "A" SINGLE FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7600 SUBAREA RUNOFF lCFB} = 14.87 TOTAL AREAlACRES) = S.60 TOTAL RUNOFF(CFS) = 24.87 w wwwwwwww**wwwwww ww wwwwwwwwwwwwwwww wwwwwwwwwww*wwww wwwwwwwwwwww w*wwww*www** w „... FLOW PROCESS FROM NODE 20.20 TO NODE 23.00 29 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALY8IS11111 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 12/4 ACRE} TC = A*E1LENGTHww3) /4ELEVATION CHANGE)I*w.2 INITIAL SUBAREA FLOW - LENGTH = 900.00 UPSTREAM ELEVATION = 2243.80 DOWNSTREAM ELEVATION = 2239.0 ELEVATION DIFFERENCE = 8.60 TC = . 393w C ( 980.00ww3) / 1 8.80) 2 ww. 2 ! 15.05e 200.00 YEAR RAINFALL 1 NTENOI TY l INCH /HOUR) = 3.370 SOIL CLASSIFICATION I8 "A" SINGLE- FAP$1LY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7567 SUBAREA RUNOFF l CF8) = 22.04 TOTAL AREA(ACRES) = 4.80 TOTAL RUNOFFICFE) = 12.24 • wwwww ww+► wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwww FLOW PROCESS FROM NODE 20.30 TO NODE 26.00 2S CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(!!!4 lwilr=umwm ==!!w= steel ..ww w! =la wma= l/= =arl =rel...aw!!=ll m!!!!_!__mur ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 12/4 ACRE) TC = 14*E1LENGTHww3) /4ELEVATION CHANGE)3ww.2 ,e'e INITIAL SUBAREA FLOW - LENGTH = 750.00 UPSTREAM ELEVATION = 1244.00 DOWNSTREAM ELEVATION = 2232.22 ELEVATION DIFFERENCE = 12.89 TC = .393 *C 1 750.00ww3} / 1 22.89) 2**. # = 22.902 200.00 YEAR RAINFALL INTENSITY4INCH /HOUR?) = 3.767 SOIL CLASSIFICATION ZS "A" .. r..'.r r .w.... -•i • n.w we. "'nova fit a►alar!' ett. ! 1A4G ►LT ■ `VGGar SUBAREA RUNOFF4CFS) w 10.68 TOTAL AREA4ACRES1 = 3.70 TOTAL RUNOFF4CFS) = 10.68 left****** **** *** ***** **********ie♦ ** ** *ee** **ie ****ir**yex*erir****** **ee********** 4 00*. FLOW PROCESS FROM NODE 2 TO NODE 25.00 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALY5IS44444 warwww�w == : =w+r= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 42 /4 ACRE) TC = K *C(LEN0THww3) /4ELEVATION CHANGE)I*w.e INITIAL SUBAREA FLOW - LENGTH = 950.00 UPSTREAM ELEVATION = 2839.10 DOWNSTREAM ELEVATION • 1831.22 ELEVATION DIFFERENCE = 7.99 TC = . 393* t ( 950.00ww3) / 4 7.99} ? **. 2 = 25.852 100.00 YEAR RAINFALL INTENSITY ( INCH /HOUR) = 3. 267 SOIL CLASSIFICATION I8 "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7537 SUBAREA RUNOFF4CFS) • 12.81 TOTAL AREA4ACRES) = 5.20 TOTAL RUNOFF4CFS) = 22.82 ww wwwwwwwww wwwwwwwwwwwwwwww i►** *** *r►*** *irwwu * + e ******+e**ww*w*xwi►****** FLOW PROCESS FROM NODE 40.30 TO NODE 40..0 IS CODE = E )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( wsww :w+•wwwarar = == sw =• ='� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 41/4 ACRE) TC = M*C4LENGTHww3) /(ELEVATION CHANGE)Iww.B INITIAL SUBAREA FLOW - LENGTH = 900.00 UPSTREAM ELEVATION = 2225.00 DOWNSTREAM ELEVATION = 2813.30 ELEVATION DIFFERENCE = 12.70 TC • . 393* t 4 900.00ww3) / 4 12. 7*} I ww. B • 14.219 200.00 YEAR RAINFALL INTENSITY(2NCH /HOUR) = 3.487 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7598 SUBAREA RUNOFF4CFS} w 7.15 TOTAL AREA4ACRES) = 2.70 TOTAL RUNOFF4CFS) = 7.25 wwwwuww+ lisp eof Lee w+►****u se** w*** * *** ****** * *ww*** *u * ***+►***** ** *x *+►wwwx*w** *,ea r FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( s= �ww• �, s• ws=•,. w,=, �ww =s••wsa�ww =sswwwsswss =�ew1r wsw�►+�+ww =swwssrrss CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATZON4MZNUTEB) • 24.28 RAINFALL INTENSITY 4 I NCH. /HOUR) = 3.49 TOTAL STREAM AREA (ACRES) = 2.70 TOTAL STREAM RtNOFF4CFS) AT CONFLUENCE = 7.25 wwww+ew wwww*left+ewwwwwwwww***** *wwww*wwwww*wwww www*wwwwwwwww*wwwwwww*ww*waewwww* FLOW PROCESS FROM NODE 40.3E TO NODE 40.31 IS CODE = E )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS444(4 .......................... �sw• '�_ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 42/4 ACRE) TC = Kw C 4LENGTHww3) / 4ELEVAT ION CHANGEY2e*-2 INITIAL SUBAREA FLOW -LENGTH = 830.00 nowro=am o'csmyrInw s 4.C.'40. AAA DOWNSTREAM ELEVATION = 22!9.00 ELEVATION DIFFERENCE = 13.00 TC = . 393w C ( $30, 0Qtww3) / 4 13.00) 1 *w. 2 = 13.662 SOIL 200.00 YEAR RAINFALL 2NTENS2TY41NCH /HOUR) = 3.636 SOIL CLASSIFICATION 18 "A" 0 +w SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7635 SUBAREA RUNOFF4CFS) = 6.55 TOTAL AREA4ACRES) = 2.36 TOTAL RUNOFF (CFSY = 6.55 ► wwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww FLOW PROCESS FROM NODE 40.31 TO NODE 40.00 IS CODE = 6 )))) }COMPUTE STREETFLOW TRAVELTZME THRU SUBAREA(4 4(4 UPSTREAM ELEVATION = 2219.00 DOWNSTREAM ELEVATION = 1223.30 STREET LENGTH(FEET} = 530.00 CURB HE18TH(ZNCHEB} = 8. STREET HALFWIDTH4FEET) = 16.00 STREET CROSSFALL4DECIMAL) _ .0279 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 w*TRAVELTIME COMPUTED USING MEAN FLOW4CFS) = 6.55 STREET FLOWDEPTH4FEET) _ .4? HALFSTREET FLOODWXDTH4FEET) = 22.75 AVERAGE FLOW VELOCZTY4FEET,'SEC.} = 3.22 PRODUCT OF DEPTHBVELOCITY =. 1.47 STREETFLOW TRAVELTZME (MIN) = 2.83 TC 4MIN) = 16.09 200.00 YEAR RAINFALL INTENSITY 4 INCH /HOUR) = 3.238 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7329 SUBAREA AREA4ACRES) _ 0.00 SUBAREA RUNOFF(CFS) = 0.00 SUMMED AREA4ACRES) = 2.36 TOTAL RUNOFF 4CFS) = 6.55 END OF SUBAREA STREETFLOW HYDRAULICS: ( DEPTH4FEET) _ .47 HALFSTREET FLOODWIDTH4FEET) = 22.75 FLOW VELOCZTY(FEET /SEC.) = 3.22 DEPTH*VELOCITY = 2.47 wwwwwwwwww wwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwww**** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 I3 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATZON4MZNUTES) = 16.09 RAINFALL INTENSITY 4INCH. /HOUR) = 3.24 TOTAL STREAM AREA (ACRES) = 2.36 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE or 6.55 Awwwwwwwww ww wwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwww wwwwwwwwwwwwwwwwwwwwwwwwwww+a* FLOW PROCESS FROM NODE 40.32 TO NODE 40.00 18 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYS1S4444( SINIONNISIONHOU ASSUME) INITIAL SUBAREA UNIFORM DEVELOPMENT 'Ss SINGLE FAMILY 42/4 ACRE) TC = M.C4LENATHww3) /(ELEVATION CHANGE)2ww.2 INITIAL SUBAREA FLOW - LENGTH = 550.00 UPSTREAM ELEVATION = 1229.00 ,, DOWNSTREAM ELEVATION = 222 3.30 ELEVATION DIFFERENCE = 5.70 TC = .393 *E4 550.0e**3)/4 3.7012ww.2 = 22.238 100.00 YEAR RAINFALL ZNTENSITY4INCH /HOUR) = 3.6220 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7677 SUBAREA RUNOFF4CFS) = 6.57 worts) ismca I atom 1 ._ t. •ATi_S7 ni ►tiinrn I rre 1. - �� _ __ _ -- - . • - ...- .. w..r• • • ewe -.. -- FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 ZS CODE = 2 ) > > >)DEBZGNATE INDEPENDENT STREAM FOR CONFLUENCE( < < << emb,. ) })))AND COMPUTE VARIOUS CDNFLUENCED STREAM VALUES<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) •= 2:3'. E:? RAINFALL INTENSITY (INCH. }HOUR) = 3.8: TOTAL STREAM AREA (ACRES} = 8.:'4 TOTAL STREAM RUNOFF<CFS) AT CONFLUENCE = 6.57 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER <CFS} <MIN.) (INCH /HOUR} 2 7.23 24.88 3.487 6.55 16.09 3.e38 3 6.57 2 8. ee 3.820 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA <SSC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 18.94 28.76 2 7.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF<CFS} = 28.94 TIME<MZNUTES) = 24.E'2 TOTAL AREA(ACRES) = 7.30 ******** *********************IP** e************ ******************************* , a"' °r FLOW PROCESS FROM NODE 40. 10 TO NODE 40. 10 ZS CODE = e a . -• _._._ })) })RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( < <( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) • TC = M*C4LENGTHu*3} /4ELEVATION CHANGE }3**.8 INITIAL SUBAREA FLOW -- LENGTH = 1000.00 • UPSTREAM ELEVATION = 1836.00 DOWNSTREAM ELEVATION = 2 884. x°•0 ELEVATION D 2 FFE RENO = 11.80 • TC = .393*C4 2000.00••3)/4 22.80)20*.@ = 15.1e1 100.00 YEAR RAINFALL ZNTENSITY<INCH /HOUR) = 3.361 SOIL CLASSIFICATION 28 "A" SINGLE- FAMZLY41 /4 ACRE LOT) RUNOFF COEFFICIENT - .7564 SUBAREA RUNOFF 4CFS) = 13.2 TOTAL AREA (ACRES } = 5.80 TOTAL RUNOFF (CFS } = 13.22 ****•.*****Mil******** ***** l*it4,•* .4e0,0MM***• * ******RNLI* * **** ***4.11.* l**.******, FLOW PROCESS FROM NODE 40.10 TO NODE 40.80 IS CODE = 6 • }.})}.}COMPUTE STREETFLOW TRAVELTIME THRU SUPAREA(((44 UPSTREAM ELEVATION = 2$84.80 DOWNSTREAM ELEVATION = 2813.46 • STREET LENGTH4FEET) = 600.00 CURB HEISTH<INCHES) = 6. ; i w,, STREET HALFW I DTH (FEET } = 18.00 STREET CROSSFALL (DECIMAL.) _ .0240 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MMTRAVELTIME COMPUTED USING MEAN FLOW(CFS} = 13.88 * * *STREETFLOW SPLITS OVER STREET - CROWN* ** FULL DEPTH<FEET} _ .39 FLOODWIDTH<FEET} = 18.00 FULL HALF - STREET VELOCITY4FEET /SEC.) = 3.20 SPLIT DEPTH(FEET} _ .37 SPLIT FLOODWZDTH(FEET} = 2b.4a CIO! TY sCr r,, szv, c - rja1rr' ..r o a'T STREET FLOWDEPTHIFEET} _ .39 HALFSTREET FLOODWIDTH(FEET} 2$.00 AVERAGE FLOW VELOCITY(FEET /SEC.} = 3.10 PRODUCT OF DEPTH &VELOCITY = 1.e0 STREETFLOW TRAVELTIMEIMIN) = 4.30 TC(M1N} •= 29.4I f 200.00 YEAR RAINFALL 2NTENSITV4INCH /HOUR) _ e.89e _ SOIL CLASSIFICATION Z8 "'A" SINGLE - FAMILY (t /4 ACRE LOT) RUNOFF COEFFICIENT = .7+423 SUBAREA AREAIACREES) = 0.00 SUBAREA RUNOFF(CFS) = e.ee SUMMED AREA(ACRES) _ 5.e0 TOTAL RUNOFF4CF8) = 23.22 END OF SUBAREA STREETFLOW HYDRAULICS, DEPTH(FEET) _ .39 HALFSTREET FLOODWIDTHIFEET) = 2$.00 FLOW VELOCZTY4FEET /SEC.) = 3.20 DEPTH*VELOCZTY = 2.E0 M1lQ7l�lR1eK1eMM'N ilMi! RMMiN! i! �! 1l1e1eRNM M�NeM 1!1!1l�F 1l i��NM11 1l MMQ�l N1l �FK�IR�IMAMA 1 1F�F1t4? FLOW PROCESS FROM NODE 40.2* TO NODE 40.20 2S CODE = 2 )) }))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRAT2ON4M2NUTES) = 29.4e RAINFALL INTENSITY 4ZNCH. /HOUR) = 2.09 TOTAL STREAM AREA (ACRES) = 3.20 TOTAL STREAM RUNOFFICFS) AT CONFLUENCE = 23.22 FLOW PROCESS FROM NODE 40. se TO NODE 40. E0 I8 CODE = 2 )) ) })RATZONAL METHOD INITIAL SUBAREA ANALYSIS44444 =lAliRlIAAA =AA =I=l=l=l=i/�= Aim! =A!A!=i!!llA.AI.RA ===iR • ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 1St SINGLE FAMILY (1/4 ACRE) TC = K*C 4LENGTH**3) / 4ELEVATZON CHANGE) 3**. 2 INITIAL SUBAREA FLOW-LENGTH = 950.00 UPSTREAM ELEVATION = 2223.80 DOWNSTREAM ELEVATION = 2223.46 ELEVATION DIFFERENCE = 20.34 TC = .393*C4 930.00* *3) /( 20.34)3+ee.2 = 15.055 Q 100.00 YEAR RAINFALL INTENSZTY4INCH /HOUR) = 3.370 SO IL CLASSIFICATION I8 "A" SINGLE - Fitt ?LY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT ! .7567 SUBAREA RUNOFF4CFB) = 6.37 TOTAL AREAIACRES) = 2.50 ' TOTAL RUNOFFICFS) = 6.37 ******** ** ** eM********* **** **-** *** *Maaawi ****w*********M*********.. 11e.** FLOW PROCESS FROM NODE 40.20 TO NODE 40. e0 2 S CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 444(( CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRATION(MINUTES) = 29.03 RAINFALL INTENSITY 4ZNCH. /HOUR} = 3.37 TOTAL STREAM AREA 4ACREB) = 2.50 „ AL TOTAL STREAM RUNOFFICFS) AT CONFLUENCE = 6.37 fir✓ ******* *******M**lei!* fie******* **iNl*********'R4e********** ******** *******il**** FLOW PROCESS FROM NODE 40.20 TO NODE 41020 2B CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 milimmummarnam r ao► »wan 11417T76; of izstsss=^ i »u 7 wna«w r1.JVVr 1`Y a.va ! .r, .n...'r,a..n v.va• 4.1Yi DEVELOPMENT ISs SINGLE FAMILY 4214 ACRE) TC = tl *k 4LEN 3Ttt**3)1 4ELEVATZON CHANGE) 3**. 2 INITIAL SUBAREA FLOW- LENGTH = 850.00 UPSTREAM ELEVATION = 3223.50 DOWNSTREAM ELEVATION = 1213.46 " ELEVATION DIFFERENCE = 10.04 TC = .393*£4 850.0 * *3)11 20.04)3* *.2 = 24.266 200.00 YEAR RAINFALL ZNTENSITY4ZNCH /HOUR) = 3.495 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY 4 214 ACRE LOT) RUNOFF COEFFICIENT = .7600 SUBAREA RUNDFFSCFS) = 20.63 TOTAL AREA4ACRES) = 4.00 TOTAL RUNOFF CFS) - 10.63 ********************************************* **** *** * * *************** ******* FLOW PROCESS FROM NODE 40.20 TO NODE 40.20 ZS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 AREs TIME OF CONCENTRATION4MZNUTES) = 14.17 RAINFALL INTENSITY 41NCH. /HOUR) - 3.30 TOTAL STREAM AREA 4ACRES) = 4.00 TOTAL STREAM RUNDFF4CFS) AT CONFLUENCE _ 20.63 CONFLUENCE INFORMATION; STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) 414ZN.Y 4ZNCH /HOUR) 13. 19.42 e.892 2 6.37 15.05 3.370 3 10.63 14.17 3.495 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 27.48 26.87 26.27 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF 4CF8) = 27.48 TIME 4MINUTESY = 29.42a TOTAL AREA4ACRES) = 12.70 • FLOW PROCESS FROM NODE 50.10 TO NODE 50.00 I8 CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALY8XB 4 44 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 4214 ACRE) TC - K *£4LENGTH**3) /4ELEVATZON CHANOE)3 * *.0 INITIAL SUBAREA FLOW - LENGTH = 900.00 UPSTREAM ELEVATION = 3222.00 DOWNSTREAM ELEVATION = 1210.70 ELEVATION DIFFERENCE - 11.30 TC = .393 *£ 4 900.00* *3)14 2 2.30) 3 **. 2 = 14.326 100.00 YEAR RAINFALL ZNTENSITY4ZNCH /HOUR) = 3.473 SOIL CLASSIFICATION IS "A" _- SINGLE- FAMILY4 114 ACRE LOT) RUNOFF COEFFICIENT - .7394 4 41100v SUBAREA RUNOFF 4CFSY = 3.69 TOTAL AREA4ACRES) - 1.40 TOTAL RUNOFF4CFS) - 3.69 **** *** * ****** * * * * * * * * ** * * * * * * * * * ** sae******** * * * * * * * * * * * * * * * * * * * ** * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 2 })))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 AREs TIME OF CONCENTRATZON<MINUTESY = 24.3e RAINFALL INTENSITY 4INCH. /HOUR) = 3.47 TOTAL STREAM AREA <ACRES) = 1.40 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 3.69 **AAA**************************************** **********w************** FLOW PROCESS FROM NODE 50.G0 TO NODE 50. E2 29 CODE = e )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 alaUMNPAILIMUMMIWIAINANW ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 41/4 ACRE) TC = M *C4LENSTH* *3) /4ELEVATZON CHANGE)3 *11..? INITIAL SUBAREA FLOW - LENGTH = 2000.00 UPSTREAM ELEVATION = 1236.8@e DOWNSTREAM ELEVATION = 1224.70 ELEVATION DIFFERENCE = 22.30 TC = . 393* C 4 2000.00**3) / 4 2 2.30) 3 A*. i J 25.252 200.00 YEAR RAINFALL INTENSITY42NCH /HOUR) = 3.344 SOIL CLLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7339 SUBAREA RUNOFF4CFS) = 4.30 TOTAL AREA4ACRES} = 1.70 TOTAL RUNOFF4CFS} _ 4.30 AAA arse******•**•** e*********** e************ e*** *****e**e****e**e**********Feu* FLOW PROCESS FROM NODE 50.22 TO NODE 50.00 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA44444 UPSTREAM ELEVATION = 1224.70 DOWNSTREAM ELEVATION = 2220.70 STREET LENGTH4FEET) = 20.00 CURB HE18TH41NCHESY = 6. STREET HALFWIDTH <FEET} = 20.00 STREET CROSSFALL4DEC IMALY _ .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOw4CFSY = 5.54 STREET FLOWDEP'FH <FEET) _ .42 HALFSTREET FLOODWZDTH4FEETY = 11.04 AVERAGE FLOW VELOCITY4FEET /SEC.) = 3.15 PRODUCT OF DEPTHAVELOCZTY = 1.32 • • STREETFLOW TRAVELTIME 4MIN) = 6.34 TC4MIN) = 21.59 100.00 YEAR RAINFALL INTENSITY 4 INCH /HOUR) = 2.714 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8268 SUBAREA AREA4ACRES) = 1.10 SUBAREA RUNOFF4CFS) = 2.47 SUMMED AREA4ACRES) = 2.00 TOTAL RUNOFF4CFS) = 6.77 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEET) Jr .45 HALFSTREET FLOQDWZDTH4FEET) = 12.20 FLOW VELOCITY <FEET /SEC.) = 3.29 DEPTH *VELOCITY = 2.42 AAA* AAA****** * ***A * *AAIe** ** ** * * * * ** *A* ***** AAA ** * ******* *AAA *A* ** ** ***A*** ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 2 )))))DESZGNNATE INDEPENDENT STREAM FOR CONFLUENCE 4(444 e `°" )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES(4444 JIMNIAIMINNSINWOMMINANKIIINIMAINIMINNINIUNIVOIMILINIMINPAILIMIMMIUMNINNIMMWMWRIUMMONNIMIMMINUOIMININMVAINNUMNIRMOUIPJOIAWINIUNIMINWJWININtag CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRATION4MINUTES) _ 21.59 RAINFALL INTENSITY 41NCH. /HOUR) = 2.72 TOTAL STREAM AREA (ACRES) = 2.20 Trma34 oTA►00,m Au oars1CL^ /inCo ti £ T P+fI C! ) ►CkarD_ ,.. A 77 . • w • • •••■ • • el.,r•.'• •• ✓• •■•• • y v. ✓• r• • vim•.•• v ✓i•wr. v. . ) _ CONFLUENCE I NFORMAT I ON : STREAM RUNOFF TIME INTENSITY NUMBER 4CFBY 4MIN. Y 4INCH /HOUR} 1 3.69 14.3e 3.473 6. 77 23 . °.s9 2.714 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA 4 SRC} USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 8.18 9.68 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNGFF4CFS1 9.68 TIME4MZNUTES) 21.893 TOTAL AREA 4ACRESY .. 4.20 END OF RATIONAL METHOD ANAL YS Z S :oa **mire' 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 41."' PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE Shaw (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <(<(<<<<<<<<<<<<<(<<<<<(<<<<<<<<(<<<<<>>)>>>) >)>>>>>>>>>> >>>>>>>>>>> >>>>>>>> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. <(<(<(<<<<<<<(<<<<<(<((<<<<<<<<<<<<<<<>)>>>)> > > > > > >) > > > > >) >) > >) > >)) > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN, LINE B HYDRAULICS * * AHMED SHEIKH, J. N. 3366. 1/7/87 * * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. i7 DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: Nio' " " NODE NUMBER = 407.00 FLOWL I NE ELEVATION = 1187.97 PIPE DIAMETER(INCH) = 78.00 PIPE FLOW(CFS) = 402.80 ASSUMED DOWNSTREAM CONTROL HGL = 1197.000 <<<<(<<<(<<(<<<<<<<<<<<<<<<<<<<<<<(<<<>>>)>>> >) > > > > > > > > > > > > >) > > > > > > > > >)) > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<)>>>>>> ) > >) >) >) > > > >)) > > > > >) > >)) > > > > > >> _ = PRESSURE FLOW PROCESS FROM NODE 407.32 TO NODE 420.97 IS CODE = 1 UPSTREAM NODE 420.97 ELEVATION = 1188.66 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 13.65 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 402.80)/( 5242.769)) * *2 = .0059028 HF =L *SF = ( 13.65)*( .0059028) = .081 w NODE 420.97 : HGL= < 1197.081 > ; EGL= < 1199. 369) ; FLOWL I NE= < 1188.660) ___ PRESSURE FLOW PROCESS FROM NODE 420.97 TO NODE 468.15 IS CODE = 3 UPSTREAM NODE 468.15 ELEVATION = 1189.59 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 46.96 FEET MANNINGS N = .01300 CENTRAL ANGLE = 60.000 DEGREES PRESSURE FLOW AREA = 33.183 SQUARE FEET /,�.. FLOW VELOCITY = 12.14 FEET PER SECOND irr VELOCITY HEAD = 2.288 BEND COEFFICIENT(KB) = .2041 HB =KB *(VELOCITY HEAD) = ( .204) *( 2.288) = .467 PIPE CONVEYANCE FACTOR = 5242.769 FRICTION SLOPE(SF) = .0059028 FRICTION LOSSES = L *SF = ( 46.96) *( .0059028) = .277 NODE 468.15 : HGL= < 1197. 825) ;EGL= < 1200. 113) ; FLOWL I NE= < 1189. 590> PRESSURE FLOW PROCESS FROM NODE 470.48 TO NODE 470.48 IS CODE = 2 UPSTREAM NODE 470.48 ELEVATION = 1189.59 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PRESSURE FLOW AREA = 33.183 SQUARE FEET FLOW VELOCITY = 12.14 FEET PER SECOND VELOCITY HEAD = 2.288 HMN = . 05* (VELOCITY HEAD) = .05*( 2.288) = .114 NODE 470.48 : HGL= < 1197.939) ;EGL= < 1200. 227) ; FLOWL I NE= < 1189. 590> _ == PRESSURE FLOW PROCESS FROM NODE 472.82 TO NODE 896.80 IS CODE = 1 UPSTREAM NODE 896.80 ELEVATION = 1193.88 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 423.98 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 402.80)/( 5242.769)) * *2 = .0059028 HF =L *SF = ( 423.98)*( .0059028) = 2.503 NODE 896.80 : HGL= ( 1200. 442) ;EGL= < 1202.730) ; FLOWL I NE= < 1193.880) PRESSURE FLOW PROCESS FROM NODE 896.80 TO NODE 916.82 IS CODE = 3 UPSTREAM NODE 916.82 ELEVATION = 1194.08 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 20.02 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.000 DEGREES PRESSURE FLOW AREA = 33.183 SQUARE FEET FLOW VELOCITY = 12.14 FEET PER SECOND VELOCITY HEAD = 2.288 BEND COEFFICIENT(KB) = .0745 HB =KB *(VELOCITY HEAD) = ( .075) *( 2.288) = .171 PIPE CONVEYANCE FACTOR = 5242.769 FRICTION SLOPE(SF) = .0059028 FRICTION LOSSES = L *SF = ( 20.02) *( .0059028) = .118 NODE 916.82 : HGL= < 1200. 731 > ;EGL= < 1203.019) ; FLOWL I NE= ( 1194. 080> PRESSURE FLOW PROCESS FROM NODE 916.82 TO NODE 990.74 IS CODE = 1 UPSTREAM NODE 990.74 ELEVATION = 1194.82 ,, CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 73.92 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 402.80)/( 5242.769)) * *2 = .0059028 HF =L *SF = ( 73.92)*( .0059028) = .436 NODE 990.74 : HGL= < 1201. 167) ;EGL= < 1203. 455> ; FLOWL I NE= < 1194.820) vYw PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .15 NODE 990.74 : HGL= ( 1501. 320) ;EGL= ( 1203. 608) ; FLOWL I NE= ( 1194. 820) PRESSURE FLOW PROCESS FROM NODE 990.74 TO NODE 1010.76 IS CODE = 3 UPSTREAM NODE 1010.76 ELEVATION = 1195.02 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 20.02 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.000 DEGREES PRESSURE FLOW AREA = 33.183 SQUARE FEET FLOW VELOCITY = 12.14 FEET PER SECOND VELOCITY HEAD = 2.288 BEND COEFFICIENT(KB) = .0745 HB =KB *(VELOCITY HEAD) = ( .075) *( 2.288) = .171 PIPE CONVEYANCE FACTOR = 5242.769 FRICTION SLOPE(SF) = .0059028 FRICTION LOSSES = L *SF = ( 20.02) *( .0059028) = .118 NODE 1010.76 : HGL= ( 1201.609) ;EGL= ( 1203. 897) ;FLOWLINE= ( 1195. 020) PRESSURE FLOW PROCESS FROM NODE 1010.76 TO NODE 1011.67 IS CODE = 1 UPSTREAM NODE 1011.67 ELEVATION = 1195.02 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 402.80 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = .91 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 402.80)/( 5242.769)) * *2 = .0059028 HF =L *SF = ( .91) *( .0059028) = .005 NODE 1011.67 : HGL= ( 1201. 614) ;EGL= ( 1203.902) ;FLOWLINE= ( 1195.020) _ PRESSURE FLOW PROCESS FROM NODE 1014.00 TO NODE 1014.00 IS CODE = 5 UPSTREAM NODE 1014.00 ELEVATION = 1195.02 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 338.6 72.00 28.274 11.975 0.000 2.227 2 402.8 78.00 33.183 12.139 -- 2.288 3 25.0 36.00 7.069 3.537 90.000 - 4 39.2 36.00 7.069 5.546 90.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DV=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00639 DOWNSTREAM FRICTION SLOPE = .00590 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00615 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .029 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .843+ 2.227- 2.288+( .029)+( 0.000) = .811 N,,, NODE 1014.00 : HGL= ( 1202.486) ;EGL= ( 1204.713) ; FLOWL I NE= < 1195. 020> _ PRESSURE FLOW PROCESS FROM NODE 1016.34 TO NODE 1031.00 IS CODE = 1 UPSTREAM NODE 1031.00 ELEVATION = 1195.73 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 338.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 14.66 FEET MANNINGS N = .01300 SF= (Q/ K) * *2 = ( ( 338.60)/( 4235. 095)) * *2 = .0063922 HF =L *SF = ( 14.66)*( .0063922) = .094 �.•. NODE 1031.00 : HGL= ( 1202. 580) ;EGL= ( 1204. 807) ; FLOWL I NE= < 1195. 730> PRESSURE FLOW PROCESS FROM NODE 1031.00 TO NODE 1034.25 IS CODE = 5 UPSTREAM NODE 1034.25 ELEVATION = 1195.73 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 338.6 72.00 28.274 11.975 0.000 2.227 2 338.6 72.00 28.274 11.975 -- 2.227 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00639 DOWNSTREAM FRICTION SLOPE = .00639 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00639 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .021 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = ftp-' JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ 2.227- 2.227+( .021)+( 0.000) = .133 NODE 1034.25 : HGL= ( 1202. 713) ;EGL= ( 1204. 940) ; FLOWL I NE= < 1195. 730> _ _____ ________________ _______________ _ - - -- PRESSURE FLOW PROCESS FROM NODE 1034.25 TO NODE 1554.39 IS CODE = 1 UPSTREAM NODE 1554.39 ELEVATION = 1203.16 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 338.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 545.25 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 338.60)/( 4235.095)) * *2 = .0063922 HF =L *SF = ( 545.25)*( .0063922) = 3.485 NODE 1554.39 : HGL= < 1206. 198) ;EGL= < 1208.425) ; FLOWL I NE= ( 1203. 160> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.96 NODE 1554.39 : HGL= ( 1209. 160) ;EGL= < 1211.387) ; FLOWL I NE= < 1203.160) PRESSURE FLOW PROCESS FROM NODE 1554.39 TO NODE 1579.50 IS CODE = 3 UPSTREAM NODE 1579.50 ELEVATION = 1203.52 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 338.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 25.11 FEET MANNINGS N = .01300 CENTRAL ANGLE = 32.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 11.98 FEET PER SECOND VELOCITY HEAD = 2.227 BEND COEFFICIENT(KB) = .1491 Wp= un*rum nrTTV ucnnt r , Iaixr O_.71 - ^.o r. . w. ew.. w,...y. .m + .=,a,....,. «......... _. .. _. -.. .... .. 1� .�• . . r.�v1... 1 1 1...riJa I \ . s 'T d i .. 1 1�. a� l.� 1 i -- ..�...r� PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0063922 FRICTION LOSSES = L *SF = ( 25.11) *( .0063922) = .161 NODE 1579.50 : HGL= ( 1209. 652) ;EGL= < 1211. 879) ; FLOWL I NE= < 1203.520) PRESSURE FLOW PROCESS FROM NODE 1581.83 TO NODE 1581.83 IS CODE = 5 UPSTREAM NODE 1581.83 ELEVATION = 1203.52 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 293.6 72.00 28.274 10.384 0.000 1.674 2 338.6 72.00 28.274 11.975 -- 2.227 3 45.0 36.00 7.069 6.366 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = = = LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N.= .01300 DOWNSTREAM MANNINGS N =. .01300 UPSTREAM FRICTION SLOPE = .00481 DOWNSTREAM FRICTION SLOPE = .00639 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00560 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .026 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .883+ 1.674- 2.227+( .026)+( 0.000) = .356 NODE 1581.83 : HGL= < 1210. 561 > ;EGL= < 1212. 236) ; FLOWL I NE= ( 1203. 520) ‘w... PRESSURE FLOW PROCESS FROM NODE 1584.17 TO NODE 1627.53 IS CODE = 3 UPSTREAM NODE 1627.53 ELEVATION = 1204.15 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 293.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 43.36 FEET MANNINGS N = .01300 CENTRAL ANGLE = 55.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 10.38 FEET PER SECOND VELOCITY HEAD = 1.674 BEND COEFFICIENT(KB) = .1954 HB =KB *(VELOCITY HEAD) = ( .195) *( 1.674) = .327 PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0048060 FRICTION LOSSES = L *SF = ( 43.36) *( .0048060) = .208 NODE 1627.53 : HGL= ( 1211. 097) ;EGL= < 1212. 771 > ; FLOWL I NE= < 1204. 150> _ PRESSURE FLOW PROCESS FROM NODE 1630.20 TO NODE 1897.67 IS CODE = 3 UPSTREAM NODE 1897.67 ELEVATION = 1205.53 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 293.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 267.47 FEET MANNINGS N = .01300 CENTRAL ANGLE = 17.000 DEGREES - PRESSURE FLOW AREA = 28.274 SQUARE FEET ',.. FLOW VELOCITY = 10.38 FEET PER SECOND VELOCITY HEAD = 1.674 BEND COEFFICIENT(KB) = .1087 HB =KB *(VELOCITY HEAD) = ( .109) *( 1.674) = .182 PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0048060 FRICTION LOSSES = L *SF = ( 267.47) *( .0048060) = 1.285 NODE 1897.67 : HGL= ( 1212.564) ;EGL= ( 1214. 239) ; FLOWL I NE= < 1205. 530> PRESSURE FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 2 UPSTREAM NODE 19.00 ELEVATION = 1205.53 ,�.•, CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 293.60 CFS PIPE DIAMETER = 72.00 INCHES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 10.38 FEET PER SECOND VELOCITY HEAD = 1.674 HMN = . 05* (VELOCITY HEAD) = .05*( 1.674) = .084 NODE 19.00 : HGL= < 1212. 648> ;EGL= < 1214. 322> ; FLOWL I NE= < 1205.530> PRESSURE FLOW PROCESS FROM NODE 1902.34 TO NODE 2350.34 IS CODE = 3 UPSTREAM NODE 2350.34 ELEVATION = 1207.90 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 293.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 448.00 FEET MANNINGS N = .01300 CENTRAL ANGLE = 29.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 10.38 FEET PER SECOND VELOCITY HEAD = 1.674 BEND COEFFICIENT(KB) _ .1419 HB =KB *(VELOCITY HEAD) = ( .142) *( 1.674) = .238 PIPE CONVEYANCE FACTOR = 4235.095 , FRICTION SLOPE(SF) = .0048060 FRICTION LOSSES = L *SF = ( 448.00) * .0048060) = 2.153 NODE 2350.34 : HGL= < 1215. 039> ;EGL= < 1216. 713> ; FLOWL I NE= ( 1207.900> ''�: PRESSURE FLOW PROCESS FROM NODE 2350.34 TO NODE 2389.67 IS CODE = 3 UPSTREAM NODE 2389.67 ELEVATION = 1208.10 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 293.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 39.33 FEET MANNINGS N = .01300 CENTRAL ANGLE = 2.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 10.38 FEET PER SECOND VELOCITY HEAD = 1.674 BEND COEFFICIENT(KB) = .0373 HB =KB *(VELOCITY HEAD) = ( .037) *( 1.674) = .062 PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0048060 FRICTION LOSSES = L *SF = ( 39.33) *( .0048060) = .189 NODE 2389.67 : HGL= ( 1215. 290> ;EGL= < 1216. 965> ; FLOWL I NE= < 1208.100> PRESSURE FLOW PROCESS FROM NODE 2392.00 TO NODE 2392.00 IS CODE = 5 UPSTREAM NODE 2392.00 ELEVATION = 1208.10 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 279.4 60.00 19.635 14.230 0.000 3.144 2 293.6 72.00 28.274 10.384 -- 1.674 3 14.2 18.00 1.767 8.036 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - � 5 0.0 = = =Q5 EQUALS BASIN INPUT = == Niimoy LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- (24 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 niummTPPom MANNTNR N = M1 .7.MM UPSTREAM FRICTION SLOPE = .01151 DOWNSTREAM FRICTION SLOPE = .00481 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00816 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = - 1.202+ 3.144- 1.674+( .038)+( 0.000) = .306 NODE 2392.00 : HGL= ( 1214. 126) ;EGL= < 1217. 271 > ; FLOWL I NE= ( 1208. 100) PRESSURE FLOW PROCESS FROM NODE 2394.34 TO NODE 2837.67 IS CODE = 3 UPSTREAM NODE 2837.67 ELEVATION = 1215.72 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 279.40 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 443.33 FEET MANNINGS N = .01300 CENTRAL ANGLE = 28.000 DEGREES PRESSURE FLOW AREA = 19.635 SQUARE FEET FLOW VELOCITY = 14.23 FEET PER SECOND VELOCITY HEAD = 3.144 BEND COEFFICIENT(KB) = .1394 HB =KB *(VELOCITY HEAD) = ( .139) *( 3.144) = .438 PIPE CONVEYANCE FACTOR = 2604.422 FRICTION SLOPE(SF) = .0115088 FRICTION LOSSES = L *SF = ( 443.33) *( .0115088) = 5.102 NODE 2837.67 : HGL= ( 1219. 667) ;EGL= < 1222. 811 > ; FLOWL I NE= < 1215. 720> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.05 NODE 2837.67 : HGL= ( 1220. 720) ;EGL= ( 1223.864) ; FLOWL I NE= ( 1215. 720) PRESSURE FLOW PROCESS FROM NODE 2840.00 TO NODE 2840.00 IS CODE = 5 ,. UPSTREAM NODE 2840.00 ELEVATION = 1215.72 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 248.6 54.00 15.904 15.631 0.000 3.794 2 279.4 60.00 19.635 14.230 -- 3.144 3 14.8 21.00 2.405 6.153 80.000 - 4 16.0 21.00 2.405 6.652 80.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01598 DOWNSTREAM FRICTION SLOPE = .01151 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01375 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .064 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .097+ 3.794- 3.144+( .064)+( 0.000) = .811 NODE 2840.00 : HGL= < 1220. 881 > ;EGL= ( 1224. 675) ; FLOWL I NE= < 1215. 720> *Awe PRESSURE FLOW PROCESS FROM NODE 2842.34 TO NODE 3051.44 IS CODE = 3 UPSTREAM NODE 3051.44 ELEVATION = 1219.92 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 248.60 CFS PIPE DIAMETER = 54.00 INCHES PTPF I FN(TH = ?171'x_ 1 Vi FFFT MANNTNt;G N = _M1 "2,0117i v CENTRAL ANGLE = 13.000 DEGREES y +~ PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 15.63 FEET PER SECOND VELOCITY HEAD = 3.794 BEND COEFFICIENT(KB) = .0950 HB =KB *(VELOCITY HEAD) = ( .095) *( 3.794) = .360 PIPE CONVEYANCE FACTOR = 1966.489 FRICTION SLOPE(SF) = .0159816 i FRICTION LOSSES = L *SF = ( 209.10) *( .0159816) = 3.342 Sri, NODE 3051.44 : HGL= ( 1224. 584) ;EGL= < 1228. 378> ; FLOWL I NE= < 1219. 920> PRESSURE FLOW PROCESS FROM NODE 3051.44 TO NODE 3217.67 IS CODE = 3 UPSTREAM NODE 3217.67 ELEVATION = 1223.21 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 248.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 166.23 FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.000 DEGREES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 15.63 FEET PER SECOND VELOCITY HEAD = 3.794 BEND COEFFICIENT(KB) = .0697 HB =KB *(VELOCITY HEAD) = ( .070) *( 3.794) = .265 PIPE CONVEYANCE FACTOR = 1966.489 FRICTION SLOPE(SF) = .0159816 FRICTION LOSSES = L *SF = ( 166.23) *( .0159816) = 2.657 NODE 3217.67 : HGL= < 1227. 505) ;EGL= < 1231. 299> ; FLOWL I NE= < 1223.210> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .21 NODE 3217.67 : HGL= < 1227. 710> ;EGL= < 1231. 504> ; FLOWL I NE= < 1223.210> PRESSURE FLOW PROCESS FROM NODE 3220.00 TO NODE 3220.00 IS CODE = 2 ' UPSTREAM NODE 3220.00 ELEVATION = 1223.21 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 248.60 CFS PIPE DIAMETER = 54.00 INCHES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 15.63 FEET PER SECOND VELOCITY HEAD = 3.794 HMN = . 05* ( VELOC I TY HEAD) = .05*( 3.794) = . 190 NODE 3220.00 : HGL= < 1227.900) ;EGL= < 1231. 694) ; FLOWLI NE= < 1223.210) PRESSURE FLOW PROCESS FROM NODE 3222.34 TO NODE 3482.39 IS CODE = 3 UPSTREAM NODE 3482.39 ELEVATION = 1226.91 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 248.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 260.05 FEET MANNINGS N = .01300 CENTRAL ANGLE = 10.000 DEGREES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 15.63 FEET PER SECOND VELOCITY HEAD = 3.794 BEND COEFFICIENT(KB) = .0833 HB =KB *(VELOCITY HEAD) = ( .083) *( 3.794) = .316 PIPE CONVEYANCE FACTOR = 1966.489 FRICTION SLOPE(SF) = .0159816 FRICTION LOSSES = L *SF = ( 260.05)*( .0159816) = 4.156 - -% NODE 3482.39 : HGL= < 1232.372) ;EGL= < 1236. 166> ; FLOWL I NE= < 1226.910> PRESSURE FLOW PROCESS FROM NODE 3482.39 TO NODE 3611.04 IS CODE = 3 UPSTREAM NODE 3611.04 ELEVATION = 1228.71 f of 1"I p o DPP=1 IPP ct f11.1 n T oc- cicn+n 1 ncecc r nrcMt . v fr�v vu.• $ �. $ • \�v %$J1 Sa.. 1 L%_IV r J f L LL, YL L$JsJ .I LrI \ LJ 1,.i L1•IPI I . _. PIPE FLOW = 248.60 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 128.65 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.000 DEGREES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 15.63 FEET PER SECOND ,,,.. VELOCITY HEAD = 3.794 BEND COEFFICIENT(KB) = .0745 HB =KB *(VELOCITY HEAD) = ( .075) *( 3.794) = .283 PIPE CONVEYANCE FACTOR = 1966.489 FRICTION SLOPE(SF) = .0159816 FRICTION LOSSES = L *SF = ( 128.65)*( .0159816) = 2.056 NODE 3611.04 : HGL= < 1234.711 > ;EGL= < 1238. 505) ; FLOWL I NE= < 1228.710) PRESSURE FLOW PROCESS FROM NODE 3613.37 TO NODE 3613.37 IS CODE = 5 UPSTREAM NODE 3613.37 ELEVATION = 1228.71 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 218.4 51.00 14.186 15.395 0.000 3.680 2 248.6 54.00 15.904 15.631 -- 3.794 3 16.6 18.00 1.767 9.394 45.000 - 4 13.6 18.00 1.767 7.696 90.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- (24 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01673 DOWNSTREAM FRICTION SLOPE = .01598 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01636 4w JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .076 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .853+ 3.680- 3.794+( .076)+( 0.000) = .816 NODE 3613.37 : HGL= < 1235. 640) ;EGL= < 1239. 321 > ; FLOWL I NE= < 1228. 710> _= PRESSURE FLOW PROCESS FROM NODE 3615.71 TO NODE 4181.47 IS CODE = 3 UPSTREAM NODE 4181.47 ELEVATION = 1239.08 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 218.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 565.76 FEET MANNINGS N = .01300 CENTRAL ANGLE = 36.000 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 15.40 FEET PER SECOND VELOCITY HEAD = 3.680 BEND COEFFICIENT(KB) = .1581 HB =KB *(VELOCITY HEAD) = ( .158) *( 3.680) = .582 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0167307 FRICTION LOSSES = L *SF = ( 565.76) *( .0167307) = 9.466 NODE 4181.47 : HGL= < 1245.688) ;EGL= < 1249.368) ; FLOWL I NE= < 1239.080> 01 PRESSURE FLOW PROCESS FROM NODE 4181.47 TO NODE 4197.67 IS CODE = 3 NIftse UPSTREAM NODE 4197.67 ELEVATION = 1239.38 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 218.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 16.20 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.000 DEGREES OPPPQ It7C Pi m 0=0 = 14 IAA cftl loop GPPT .. .vv.... �. v•• . u.w.. a r. auv vv.v .... . ...r . FLOW VELOCITY = 15.40 FEET PER SECOND VELOCITY HEAD = 3.680 BEND COEFFICIENT(KB) _ .0264 HB =KB *(VELOCITY HEAD) = ( .026) *( 3.680) = .097 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0167307 FRICTION LOSSES = L *SF = ( 16.20) *( .0167307) = .271 �.. NODE 4197.67 : HGL= < 1246. 056> ;EGL= ( 1249. 736> ; FLOWL I NE= < 1239.380> PRESSURE FLOW PROCESS FROM NODE 4200.00 TO NODE 4200.00 IS CODE = 2 UPSTREAM NODE 4200.00 ELEVATION = 1239.38 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 218.40 CFS PIPE DIAMETER = 51.00 INCHES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 15.40 FEET PER SECOND VELOCITY HEAD = 3.680 HMN = . 05* (VELOCITY HEAD) = .05*( 3. 680) = . 184 NODE 4200.00 : HGL= ( 1246. 240) ;EGL= < 1249. 920> ; FLOWL I NE= < 1239.380> _ PRESSURE FLOW PROCESS FROM NODE 4202.34 TO NODE 4531.09 IS CODE = 3 UPSTREAM NODE 4531.09 ELEVATION = 1241.83 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 218.40 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 328.75 FEET MANNINGS N = .01300 CENTRAL ANGLE = 8.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 7.72 FEET PER SECOND VELOCITY HEAD = .926 BEND COEFFICIENT(KB) = .0745 " HB =KB *(VELOCITY HEAD) = ( .075) *( .926) = .069 \.• PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0026594 FRICTION LOSSES = L *SF = ( 328.75) *( .0026594) = .874 NODE 4531.09 : HGL= < 1249. 937) ;EGL= ( 1250. 864> ; FLOWL I NE= ( 1241.830> == PRESSURE FLOW PROCESS FROM NODE 4531.09 TO NODE 4583.67 IS CODE = 3 UPSTREAM NODE 4583.67 ELEVATION = 1242.21 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 218.40 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 52.58 FEET MANNINGS N = .01300 CENTRAL ANGLE = 67.000 DEGREES PRESSURE FLOW AREA = 28.274 SQUARE FEET FLOW VELOCITY = 7.72 FEET PER SECOND VELOCITY HEAD = .926 BEND COEFFICIENT(KB) = .2157 HB =KB *(VELOCITY HEAD) = ( .216) *( .926) = .200 PIPE CONVEYANCE FACTOR = 4235.095 FRICTION SLOPE(SF) = .0026594 FRICTION LOSSES = L *SF = ( 52.58) *( .0026594) = .140 NODE 4583.67 : HGL= < 1250.277) ;EGL= ( 1251.203) ; FLOWL I NE= ( 1242.210) __ = == PRESSURE FLOW PROCESS FROM NODE 4586.00 TO NODE 4586.00 IS CODE = 5 UPSTREAM NODE 4586.00 ELEVATION = 1242.21 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 209.8 69.00 25.967 8.079 0.000 1.014 2 218.4 72.00 28.274 7.724 -- .926 3 8.6 18.00 1.767 4.867 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - y 171. 171 = = =f F111 IQI q nog T nl T ■DI IT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) �,... UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00308 DOWNSTREAM FRICTION SLOPE = .00266 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00287 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .013 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .044 MANHOLE LOSSES = .046 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.043+ 1.014- .926+( .013)+( 0.000) = .060 NODE 4586.00 : HGL= < 1250.249) ;EGL= < 1251. 263) ; FLOWL I NE= < 1242. 210> PRESSURE FLOW PROCESS FROM NODE 4588.34 TO NODE 4598.43 IS CODE = 3 UPSTREAM NODE 4598.43 ELEVATION = 1242.34 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 209.80 CFS PIPE DIAMETER = 69.00 INCHES PIPE LENGTH = 10.09 FEET MANNINGS N = .01300 CENTRAL ANGLE = 15.000 DEGREES PRESSURE FLOW AREA = 25.967 SQUARE FEET FLOW VELOCITY = 8.08 FEET PER SECOND VELOCITY HEAD = 1.014 BEND COEFFICIENT (F(B) = . 1021 HB =KB *(VELOCITY HEAD) = ( .102) *( 1.014) = .103 PIPE CONVEYANCE FACTOR = 3780.707 FRICTION SLOPE(SF) = .0030794 ' • FRICTION LOSSES = L *SF = ( 10.09)*( .0030794) = .031 NODE 4598.43 : HGL= < 1250.384) ;EGL= < 1251.397) ; FLOWL I NE= < 1242.340> PRESSURE FLOW PROCESS FROM NODE 4598.43 TO NODE 5000.00 IS CODE = 3 UPSTREAM NODE 5000.00 ELEVATION = 1246.25 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 209,80 CFS PIPE DIAMETER = 69.00 INCHES PIPE LENGTH = 411.66 FEET MANNINGS N = .01300 CENTRAL ANGLE = 13.000 DEGREES PRESSURE FLOW AREA = 25.967 SQUARE FEET FLOW VELOCITY = 8.08 FEET PER SECOND VELOCITY HEAD = 1.014 BEND COEFFICIENT(KB) = .0950 HB =KB *(VELOCITY HEAD) = ( .095) *( 1.014) = .096 PIPE CONVEYANCE FACTOR = 3780.707 FRICTION SLOPE(SF) = .0030794 FRICTION LOSSES = L *SF = ( 411.66) *( .0030794) = 1.268 NODE 5000.00 : HGL= < 1251. 748) ;EGL= < 1252.761) ; FLOWL I NE= < 1246.250) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .25 NODE 5000.00 : HGL= < 1252.000) ;EGL= < 1253.014) ;FLOWLINE= < 1246.250) ___ _ _______ ____ PRESSURE FLOW PROCESS FROM NODE 5000.00 TO NODE 5093.31 IS CODE = 3 Iry UPSTREAM NODE 5093.31 ELEVATION = 1246.89 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 200.00 CFS PIPE DIAMETER = 69.00 INCHES PIPE LENGTH = 83.22 FEET MANNINGS N = .01300 CENTRAL ANGLE = 2.000 DEGREES PRFSRI IRF FI lW AREA = 29. qA7 gMHORF FFFT FLOW VELOCITY = 7.70 FEET PER SECOND VELOCITY HEAD = .921 BEND COEFFICIENT(KB) = .0373 HB =KB *(VELOCITY HEAD) = ( .037) *( .921) = .034 PIPE CONVEYANCE FACTOR = 3780.707 FRICTION SLOPE(SF) = .0027984 FRICTION LOSSES = L *SF = ( 83.22) *( .0027984) = .233 NODE 5093.31 : HGL= < 1252. 360> ;EGL= < 1253. 281 > ; FLOWL I NE= ( 1246.890> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .28 NODE 5093.31 : HGL= < 1252. 640> ;EGL= < 1253. 561 > ; FLOWL I NE= < 1246.890> PRESSURE FLOW PROCESS FROM NODE 5093.31 TO NODE 5161.00 IS CODE = 1 UPSTREAM NODE 5161.00 ELEVATION = 1247.52 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 209.80 CFS PIPE DIAMETER = 69.00 INCHES PIPE LENGTH = 67.69 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = ( ( 209.80)/( 3780. 707)) * *2 = .0030794 HF =L *SF = ( 67.69)*( .0030794) = .208 NODE 5161.00 : HGL= < 1252.756) ;EGL= < 1253. 770> ; FLOWL I NE= < 1247.520> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .51 NODE 5161.00 : HGL= < 1253.270) ;EGL= < 1254. 284> ; FLOWL I NE= < 1247. 520) _ =_= = ___ =____= _ PRESSURE FLOW PROCESS FROM NODE 5163.00 TO NODE 5163.00 IS CODE = 5 UPSTREAM NODE 5163.00 ELEVATION = 1247.52 ' CALCULATE PRESSURE FLOW JUNCTION LOSSES: '44.00 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 105.0 48.00 12.566 8.356 0.000 1.084 2 209.8 69.00 25.967 8.079 -- 1.014 3 104.8 48.00 12.566 8.340 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = = = LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00534 DOWNSTREAM FRICTION SLOPE = .00308 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00421 JUNCTION LENGTH(FEET) = 9.00 FRICTION LOSS = .038 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .322+ 1.084- 1.014+( .038)+( 0.000) = .430 NODE 5163.00 : HGL= < 1253.630) ;EGL= < 1254. 714> ; FLOWL I NE= < 1247.520> ____ _ =___= == _ =____= PRESSURE FLOW PROCESS FROM NODE 5170.00 TO NODE 5267.67 IS CODE = 1 UPSTREAM NODE 5267.67 ELEVATION = 1248.24 �Ilr CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 105.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 97.67 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 105.00)/( 1436.431)) * *2 = .0053433 HF =L *SF = ( 97.67) *( .0053433) = .522 ninnp 59c.7 G7 • 1 = ! 1 21R& 1 • =MI / 1 ERR :\ • CI rum T hMC- I 1 .1. Q :7.)&1711 11v.r VV.r .I . v• . I ivy \ J.1+b.I'1s s.4I., �LVL' \ 14.b.1v■ Lr/V/ 'I L14WL11'IL�' \ iLT'.7. L't VI - PRESSURE FLOW PROCESS FROM NODE 5270.00 TO NODE 5270.00 IS CODE = 5 UPSTREAM NODE 5270.00 ELEVATION = 1248.24 CALCULATE PRESSURE FLOW JUNCTION LOSSES: 4411 "'"1 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 97.4 48.00 12.566 7.751 0.000 .933 2 105.0 48.00 12.566 8.356 -- 1.084 3 7.6 18.00 1.767 4.301 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00460 DOWNSTREAM FRICTION SLOPE = .00534 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00497 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .023 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .245+ .933- 1.084+( .023)+( 0.000) = .117 NODE 5270.00 : HGL= < 1254. 420> ;EGL= < 1255. 353> ; FLOWL I NE= ( 1248. 240) PRESSURE FLOW PROCESS FROM NODE 5272.34 TO NODE 5320.00 IS CODE = 1 " ` UPSTREAM NODE 5320.00 ELEVATION = 1248.56 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 97.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 47.66 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 97.40)/( 1436.431)) * *2 = .0045978 HF =L *SF = ( 47.66)*( .0045978) = .219 NODE 5320.00 : HGL= < 1254.640> ;EGL= < 1255.572> ; FLOWL I NE= < 1248.560> ___ PRESSURE FLOW PROCESS FROM NODE 5320.00 TO NODE 5332.34 IS CODE = 1 UPSTREAM NODE 5332.34 ELEVATION = 1248.63 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 85.70 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 12.34 FEET MANNINGS N = .01300 SF= (Q /K > * *2 = (( 85.70)/( 1436.431)) * *2 = .0035595 HF =L *SF = ( 12.34)*( .0035595) = .044 NODE 5332.34 : HGL= < 1254. 894> ;EGL= < 1255. 616> ; FLOWL I NE= < 1248.630> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM • ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m r. PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE ( (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<<<<(<((<<(((<<<<<<<(<<<<<<<<(<<((<<<>>>>>>> >>>>>>>>>>>>>>>>>>>> >>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. ((<<(<<<<(<<<(<<(<<(<<<(<(<(<(<(<(<<<(>>>>>>> > > > > > > >> > > > > > > > > > > > > > > > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN, LINE B, LATERAL'C ", HYDRAULICS * * AHMED SHEIKH, J. N. 3366, 1/7/87 * * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE )CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ' , DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: �, NODE NUMBER = 6.86 FLOWL I NE ELEVATION = 1205.00 PIPE DIAMETER(INCH) = 42.00 PIPE FLOW(CFS) = 80.23 ASSUMED DOWNSTREAM CONTROL HGL = 1210.600 ((<<<<<<<<<<<(<(<<(<<<<<<<<<<((<(<(<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 (<<(<<<(<<(<<<<(<<(<<<(<<<(<<<<<<<<<<<>>>>>>> > > > > > > > > > > > > > > > > > > >) > > > > > > > > > >> ____ PRESSURE FLOW PROCESS FROM NODE 6.86 TO NODE 3.00 IS CODE = 1 UPSTREAM NODE 3.00 ELEVATION = 1206.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 80.23 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 9.87 FEET MANNINGS N = .01300 SF =((l/K) * *2 = (( 80.23)/( 1006.105)) * *2 = .0063590 o=w HF =L *SF = ( 9.87)*( .0063590) = .063 NODE 3.00 : HGL= < 1210.663> ; EGL= < 1211.743) ; FLOWL I NE= < 1206.000> Noir • _ =___= PRESSURE FLOW PROCESS FROM NODE 5.13 TO NODE 5.13 IS CODE = 5 UPSTREAM NODE 5.13 ELEVATION = 1206.26 i'roaxYMV wrvvip ......... - "'M .wwy. vr. Fmw.. wawa+ n:. wn.. we. v. apx .»+rwwewKw+utnwwaw.ss..- ....._ w+ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 77.4 42.00 9.621 8.045 0.000 1.005 2 80.2 42.00 9.621 /7 8.339 - 1.080 3 0.0 0.00 0.000 0.000 0.000 - ,nw• 4 0.0 0.00 0.000 0.000 0.000 - ( 5 2.8 = = =Q5 EQUALS BASIN INPUT = == torape LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00592 DOWNSTREAM FRICTION SLOPE = .00636 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00614 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .020 ENTRANCE LOSSES = .216 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = . 150+ 1.005- 1.080+ ( .020)+C . 216) = .311 NODE 5.13 : HGL= < 1211.049> ;EGL= < 1212.054> ; FLOWL I NE= < 1206. 260> PRESSURE FLOW PROCESS FROM NODE 6.26 TO NODE 47.39 IS CODE = 1 UPSTREAM NODE 47.39 ELEVATION = 1206.67 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 77.40 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 41.13 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 77.40)/( 1006.105)) * *2 = .0059183 HF =L *SF = ( 41.13)*( .0059183) = .243 NODE 47.39 : HGL= < 1211. 292> ;EGL= < 1212.297> ; FLOWL I NE= < 1206. 670> PRESSURE FLOW PROCESS FROM NODE 47.39 TO NODE 50.64 I5 CODE = 5 UPSTREAM NODE 50.64 ELEVATION = 1206.72 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 63.5 42.00 9.621 6.600 0.000 .676 2 77.4 42.00 9.621 8.045 -- 1.005 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 13.9 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00398 DOWNSTREAM FRICTION SLOPE = .00592 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00495 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .016 ENTRANCE LOSSES = .201 ,,,," JUNCTION LOSSES = DY +HV1- HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .657+ .676- 1.005+( .016)+( .201) = .546 NODE 50.64 : HGL= < 1212. 167> ;EGL= < 1212.843> ; FLOWL I NE= < 1206. 720> OPMQQ1 IPP FI nu c Pnr GQC conM nInnc ma cc, -rn ninnc 1c -7= TO rnnc - . .r.�vvvr� . - .. . .• . VI 'r ,4.4✓6. .JV. U'T 1 V 1YiJ✓L. 1..U14.114 i.J L+1.J✓L "' 1 UPSTREAM NODE 263.75 ELEVATION = 1209.96 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 63.50 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 213.11 FEET MANNINGS N = .01300 SF= (Q/ K) * *2 = ( ( 63.50)/( 1006. 105)) * *2 = .0039835 ,,.t HF =L *SF = ( 213.11)*( .0039835) = .849 NODE 263.75 : HGL= < 1213. 016> ;EGL= < 1213. 692> ; FLOWL I NE= < 1209.960> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .44 NODE 263.75 : HGL= < 1213. 460> ;EGL= < 1214. 136> ; FLOWL I NE= < 1209. 960> _____ PRESSURE FLOW PROCESS FROM NODE 263.75 TO NODE 267.00 IS CODE = 5 UPSTREAM NODE 267.00 ELEVATION = 1209.98 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 42.0 42.00 9.621 4.365 34.500 .296 2 63.5 42.00 9.621 6.600 -- .676 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 21.5 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 ""' ; UPSTREAM FRICTION SLOPE = .00174 `"4101w DOWNSTREAM FRICTION SLOPE = .00398 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00286 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .010 ENTRANCE LOSSES = .135 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .865+ .296- .676+( .010)+( .135) = .629 NODE 267.00 : HGL= < 1214. 470> ;EGL= < 1214. 766> ; FLOWL I NE= < 1209. 980> PRESSURE FLOW PROCESS FROM NODE 267.00 TO NODE 286.29 IS CODE = 1 UPSTREAM NODE 286.29 ELEVATION = 1210.10 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 36.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 19.29 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 36.10)/( 1006.105)) * *2 = .0012874 HF =L *SF = ( 19.29)*( .0012874) = .025 NODE 286.29 : HGL= < 1214.572> ;EGL= < 1214.791 > ; FLOWL I NE= < 1210. 100> _ == _ PRESSURE FLOW PROCESS FROM NODE 286.29 TO NODE 335.11 IS CODE = 3 UPSTREAM NODE 335.11 ELEVATION = 1210.41 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): ..o PIPE FLOW = 36.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 48.82 FEET MANNINGS N = .01300 CENTRAL ANGLE = 32.000 DEGREES PRESSURE FLOW AREA = 9.621 SQUARE FEET FLOW VELOCITY = 3.75 FEET PER SECOND VELOCITY HEAD = .219 BEND COEFFICIENT(KB) = .1491 HR =KR* (VFl lrTTV HFA111 = ( 14g1 =1.1 = M7-2. PIPE CONVEYANCE FACTOR = 1006.105 FRICTION SLOPE(SF) = .0012874 FRICTION LOSSES = L *SF = ( 48.82) *( .0012874) = .063 NODE 335.11 : HGL= < 1214. 667> ;EGL= < 1214. 886> ; FLOWL I NE= < 1210. 410> PRESSURE FLOW PROCESS FROM NODE 335.11 TO NODE 339.11 IS CODE = 5 I UPSTREAM NODE 339.11 ELEVATION = 1211.91 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 23.8 24.00 3.142 7.576 0.000 .891 2 36.1 42.00 9.621 3.752 -- .219 3 8.0 24.00 3.142 2.546 90.000 - 4 4.3 18.00 1.767 2.433 90.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01107 DOWNSTREAM FRICTION SLOPE = .00129 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00618 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .029 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = -.218+ .891- .219+( .029)+( 0.000) = .483 NODE 339.11 : HGL= < 1214.478> ;EGL= ( 1215.369> ; FLOWLINE= ( 1211. 910) PRESSURE FLOW PROCESS FROM NODE 339.11 TO NODE 559.73 IS CODE = 1 UPSTREAM NODE 559.73 ELEVATION = 1216.56 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 23.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 220.62 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 23.80)/( 226.224)) * *2 = .0110682 HF =L *SF = ( 220.62)*( .0110682) = 2.442 NODE 559.73 : HGL= < 1216. 920> ;EGL= ( 1217.811 ) ; FLOWL I NE= ( 1216.560) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.64 NODE 559.73 : HGL= ( 1218. 560) ;EGL= ( 1219. 451) ; FLOWLINE= < 1216. 560> PRESSURE FLOW PROCESS FROM NODE 559.73 TO NODE 559.73 IS CODE = 5 UPSTREAM NODE 559.73 ELEVATION = 1216.56 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 0.0 24.00 3.142 0.000 0.000 0.000 2 23.8 24.00 3.142 7.576 -- .891 3 0.0 0.00 0.000 0.000 0.000 - ._. 4 0.0 0.00 0.000 0.000 0.000 - 5 23.8= = =05 EQUALS BASIN INPUT = == Niftw LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTA1)-03*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) I IPRT RFAM MANN T NG'S N = _ 01 M _ — _ _— .. '—---- — DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = 0.00000 DOWNSTREAM FRICTION SLOPE = .01107 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00553 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .018 ENTRANCE LOSSES = . 17�� »mmw/ JUNCTION LOSSES = DY+HV1—HV2+(FRIC7ION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.782+ 0.000— .891+( .018)+( .178) = 1.088 NODE 559.73 : HGL= < 1220.539>;EGL= < 1220.539>;FLOWLINE= < 1216.560> = END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM Now Norow *'*•*********•*•ie..•*t *ii ******i ea**• re*•********************* *,r *i•**it•K•******** *********r. PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACXAGE dRefer ence: Lr4 Ftr, L!-rCF 1Y, �&. OCEMA HYDRAULICS CRITERION) *xr.sr *•r.•rr* *•r.r.x *rx **•* *•* x irr. r.• r.• r. ie• r.x *r.*••ter. *•r.****•r.* *** **** xr.r.•r.xxxxr.* te••rrr.•r.r. ** ** *r• f, 4 4 4 4 f, F f, { f, f 4 i f, < f ; S .; f, y 4 { r; r 4 .; { { ..; { f, .; } } } ? } w `• ,` .`r .`r ) j ) } : ) } } ) ? ,' , > } 7 ` , 'r) • `r ; , , ,''r 4C( Copyr�ia>ySL. 2`_+86 Advanced Enaineer'ina Software ware is-rES? Especially pre dared for: r: HALL ..r FOREMAN, I Ni_ . {•. . f,{ti{•.C4 .{ f,iiti .{ : 4.;C .; } } };t.t) })) } } } } } }`• }.` • 'r • `t • 'r. .. }; • 'r .`r.' }: . . . r. r. r. •r. *•r. rr* DESZ_:R IPT I ON OF RE 8} tLTs*•i!r. •rixx•r.• *yrr. *rrx•kxr. •r****•******** *** *. ti>•r.**r. x•'r ** *• FOOTHILL STORM DRAIN HYDRAULICS +� r. LATERAL 3 E 4 - LINE ' i� g to 3366, 16/17/86, !<EN WILLIS *xxr.•r.•o.** * *.** ****•4lr.r.r. r.r.1* * r.**** ****** ******r.r.** *******Y.*r.* r.r. r*.***i''Tf`**** -e .***************** fete***+ *********** ie*******-*** ***********r.****************** ' - -- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS SASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LRCRD, LACFCD, AND 0CEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUM$ER •a 996.99 ?=LOWL1NE ELEVATION = a646.36 PIPE DIAMETE'R{I CHY = 45.00 &'t PIPE FLOW.CFSY = 206.30 ASSUMED DOWNSTREAM CONTROL HC L = 2 53. 6t 42t ... s:- .sa•.— .sz.- .ss. -�ra� «r.�.a�•.xrrnr...xxz•.:sx �r ».assx�.a�sarsa.rays sm.�•.rava_= .rss.� saa.»r.ss.xsi.s�.— .xas__._.._. _ -.� _......_.__ »_... .; .; ; f, .; f, .; f, .; { .; f, f, 4 .; .; .; { .; f f, .; f, I, f, 4 .; f J f, 4 f, { .; f, ;7 3 .7 7 : , ' 1 } a 7 ,7 1 ]' ? ,7 Advanced Ena.ir. ter -inss Software EAE93 SERIAL N«. }atc 4a 3A REV. RELEASE TE: 2 =.'/ 3 i i < r f, f, 4 { f { { f, .; f f r; .; f, 4 .; { f, r f, f .; f, f, f 4 .; { 4 ✓, .; { f < 7 T l 7 ,7 l T 3 7 ? 7' 7 i 7 7 ? " ? i ) .7 ) .7 7 . ,7 . . . . . . • } r... s.' zs.. -... .... _. z•.a =.r_.a =.a• s xs x x a• r.:r x x x z air..m cx aar sas sarm a a a x aas a m a s a r a�.a. «.am..a as a a s.-•.a a r:.s s.__�. —.._ __ PRESSURE FLOW PROCESS FROM NODE 9996.99 TO NODE 1065.17 I S CODE ._ UPSTREAM NODE 1065.17 ELEV T I ON •-• 1649.53 .' CALCUL tTE PRESSURE FLOW PIPE-SEND LOSSES {f'sCEMA} . PIPE FLOW -• CFS PIPE DIAMETER = 4 . eo INCHES PIPE LENGTH = 3. 6St FEET t ANNI fit£ +8 N •- .01300 CENTRAL ANGLE -- 60.000 DEGREES PRESSURE FLOW AREA - 11.045 SQUARE FEET FLOW VELOCITY - 9.66 FEET PER SECOND VELOCITY HEAD = 1. SEND CC:.ty_FF C=:'rt:.N “4.E0 '- - E'et.t41 1-Z-=C6*4VELOC.ITY = .ae .1.43E0 = PIPE CONVEYANCE FACTOR = 1;2•09.335 FRICTION SLOPE4SFY = .0077S'63 FRICTION LOSSES = L*SF = Er3.68*4 .ee??e6zEty = NODE 1065.17 : HGL= 4 10:54.617)':ECIL= 1a56.056:?;FLOWLINE= 4 3349.:53o as. r 47: =are =,:r.-er..r.r=rr ==.77,77.= =- P ES SURE FLOW PROCESS FROM NODE 1065.17 TO NODE leae.la 19 CODE = 3 ftirw UPSTREAM NODE lesta.le ELEVATION = i5• 3. CALCULATE PRESSURE PLOW PIPE-BEND LOSSES4OCEMAY: PIPE FLOW = 106.30 CFS PIPE DIAMETER .= •5.00 INCHES PIPE LENGTH = ee6.9s FEET MANNINGS N = .elaee CENTRAL ANGLE = le.eee DEGREES PRESSURE FLOW AREA = 11.045 SURE PEET FLOW VELOCITY = 9.6e FEET PER SECOND VELOCITY HEAD = 1.438 &END COEFFICIENT4X8Y Hrs=8*4VELOCITY HEADY = 4 .091Y*4 1.438Y PIPE CONVEYANCE FACTOR = le09.335 FRICTION SLOPE4SFY = .007763 FRICTION LOSSES = L*SF = % E'06.95Y*4 .0077aF = 1.599 NODE 39E'. 3.? : HeL- 4 le56.3.46::EOL= 4 17. 76:. 4 laa.3sc, PRESSURE FLOW PROCESS FROM NODE 3 a9e.3 e TO NODE 1337.67 IS CODE = UPSTREAM NODE 1337.67 ELEVATION = 35 97 CALCULATE PRESSURE FLOW PIPE-3E ND LOSSES:OCEMA).: PIPE FLOW = 106.30 CFS PIPE DIAMETER = 45.00 INCHES PIPE LENGTH = 45.55 FEET MANNINGS N = • CENTRAL ANGLE = 1.eee DEGREES PRESSURE FLOW AREA = 11.045 SQUARE FEET ' FLOW VELOCITY = 9.6e FEET PER SECOND VELOCITY HEAD = 1.438 BEND COEFFICIENT = .0064 H8=M8e4VELOCITY HEADY = 4 •ee6i*4 1.438) PIPE CONVEYANCE FACTOR = lee9.3ss FRICTION SLOPE4SF). = .0077263 FRICTION LOSSES = L*SF = 4 45.55Y*4 .00770:63). = .350: NODE 1337.67 .1 H3L= 356 7% 4 le56.176).TFLOWLINE= 4 lase.97o> PRESSURE FLOW PROCESS FROM NODE 1340.00 TO NODE laite.ee IS CODE = 5 UPSTREAM NODE 1340.00 ELEVATION 'r 3 e5a. 97 CALCULATE-2' PRESSuRE PLOW JUNCT.TOOt LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HS, 3 96•3 e. tee 9. 6ai e. ? eeet 106.3 45.00 , 11.. i..T.45 1..436 3 a. 0 18. ee . 767 4. SE'? 60.00t2r 0.0 0.00 41,-000 0. r2r00 0.000 -- S e.e===os EQUALS GASIN INPUT=== LACFCD AND 7CEM4 PRESSURE FLOW jUNCTION FORMULAE USED: DY=40e*Va-01*V1*COS4DELTA1)-Q3**COS4DELTA3Y- 04*V4*COS4DELT4.4YY/44A1-t-AeY*16.1Y UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00955 DOWNSTREAM FRICTION SLOPE = .00773 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .eea64 JUNCTION LENGTH4FEET = '4.67 FRICTION LOSS = ENTRANCE LOSSES = e.eeta JUNCTION LOSSES = PY+Hill-Va'*.4FRICTION LOSSY÷4ENTRANCE LOSSES JUNCTION LOSSES = .e371- 1.436-e.4 e.eeta = NODE 1340.00 : HGL= 4 1256.615):EGL= 4 10.'58.436:0:FLCWLINE= 4 1.0:5.9.70 =RESSURE =I_OW PROCESS FROM NODE 134 TO NOLY6 1697.67 ZS CODE = UPSTREAM NODE 1897.67 ELEVATION = 2E58.77 Awm., CALCULATE PRESSURE FLOW PIPE-SEND LOSSES4OCEMAY: PIPE Et_aw - 96.30 CFS 4-'IPE DIAMETER = -PE.00 INCHES 'Imissw‘ PIPE LENGTH • = 355.33 FEET MANNINGS = .elztee CENTRAL ANGLE = a.ctee DEGREES PRESSURE FLOW AREA = 9.8E1 SOUARE FEET FLOW VELOCITY = lo.aa FEET PER SECOND VELOCITY HEAD = 2.6al SEND COEFFICIENT4KSY = .e6145 HS=t1.B*4VELOCITY HEADY = 4 •075Y*4 1.6ely = PIPE CONVEYANCE FACTOR = 1008.105 FRICTION SLOPE4SP- = .0095 FRICTION LOSSES • L*SF = 4 S55.33Y*4 .0095 = 3.39E' NODE 2897.87 : HGL= < E80:EGL= < 2E81.9.49.:FLOWLINE= PRESSURE FLOW PROCESS FROM NODE 17.ee TO NODE 1 7.ect CODE = UPS NODE 17.00 ELEVATION •= 1E56.77 CALCULATE PRESSURE FLOW MANHOLE LOSSES4LACFCDY: PIPE FLOW = CFS PIPE DIAMETER = dfE.00 INCHES PRESSURE FLOW AREA = 9.6E1 SQUARE FEET FLOW VELOCI7Y = le.aa. FEET PER SECOND VELOCITY HEAD = 1.6E1 = .054VELOCIrV HEADY = .05*4 i.salf - . NODE 17.00 HGL= 1E80.409;E3L= 4 1E6E.0307:FLOWLINE= 16. 77:; PRESSURE FLOW PROCESS FROM NODE 170E.34, TO NODE acTo4. IS CODE •= 2 UPSTREAM NODE aee.4. ELEVATION = 2259.8.4 CALCULATE PRESSURE FLOW PIPE-SEND LOSSES4OCEMAY: PIPE FLOW • = 98.3e CFS PIPE DIAMETER = -4E:.00 INCHES PIPE LENGTH = 3. IS FEET MANNINGS N = .01300 CENTRAL ANGLE = 7.000 DEGREES PRESSURE FLOW AREA = 9.8E1 SOUAFE FEET FLOW VELOCITY = FEET PER SECOND VELOCITV HEAD = 1.8E1 SEND COEFFICIENTW.SY = .o697 HS=t.:&*4VELOCITY HEADY = 4 .070Y*4 1.6ElY = .113 PIPE CONVEYANCE FACTOR = 1008.105 FRICTION SLOPE4SFY = .eos FR/CTION LOSSES = L*SF = 30e.15Y*4 .0095-460Y = a.a64 NODE aeed,. Het.= ‹ 1E83.408?;EGL= < 1E85.0E7r;FLOWL/NE= ta.E9.Se40: PRESSURE FLOW PROCESS FROM NODE aee4.409 TO NODE kl7.67 UPSTREAM NODE E017.67 ELEVATION = 1E59.97 CALCULATE PRESSURE FLOW FRICTION LOSSES4LACPCDY: PIPE FLOW = 98.3e CFS PIPE DIAMETER = 4E-00 INCHES PIPE LENGTH = 13.18 FEET MANNINGS N = .01300 SF=40 = 44 98.3e/4 teee.1e5)y**.z = ,e095460 'IF=L*SF = 4 13. 1&* .0095480Y = .1E6 NODE E017.87 H'GL= • 10:83.5.3EP:E8L= < 1E85.253::.=LOWLINE= daft. - *law PRESSURE FLOW PROCESS FROM NODE ae.1:e TO NODE :S CODE = UPSTREAM NODE ao.ao ELEVATION = 1E59.97 CAt.CtiLP7E PRESSURE FLOW JUNCTION LOSSES: D:AMETER s:!.<iziSA DELTA 36. 769 11. 770 0.000 1;51 98-3 4E..4a0 15.1 E•••:p. 04•E 4.806 45.000 4 o.ee e.e0o tzt.oela e.ocao 5 0.0===05 EOUALS EeASIN INPUT=== "ow LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: *riore, DY=40e*V-01*V1*COS4DELTA1Y-03*V3*COS4DELTA3Y 04*V4*COS4DELTA4:0'/44A1I-Aa*36.1:( UPSTREAM MANNINGS N .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .01556 DOWNSTREAM FRICTION SLOPE • .00955 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .eler55 JUNCTION LENGTH4FEET) = 4.87 FRICTION LOSS = .059 RANCE LOSSES = 0.00e2e -TUNCTION LOSSES 1 —HVE'-e-4FRICT 1 QN LOSS Y -e-4ENTRANCE JUNCTION LOSSES = —.098 151 .059Y -e- &Wee :( . NCIDE eo.eia HGL= 4 1E63.493>;EGL= 4 1e65.645);FLOWLINE= 4 1E59.970:? • PRESSURE FLOW PROCESS FROM NODE eetae.34 TO NODE E:078.58 IS CODE = 2 UPSTREAM NODE e076.58 ELEVATION = la80.74 CALCULATE PRESSURE FLOW FRICTION L0SSES4LACFCD): PIPE FLOW = aai.eo CFS PIPE DIAMETER = 38.00 INCHES PIPE LENGTH = s.4.a3 FEET MANNINGS N -- .elakee 83.e0Y/4 688.988)Y**e HF=L*SF = 4 54.0:3Y*4 .0155601Y NODE E*076.58 Ht3L 4 2e64.337>i'EGL= 4 1E66.488);FLOWLINE= 4 1E:60.740:e 'Wow. END CF PRESSURE FLOW HYDRAULICS PIPE SYSTEM • 4 00mw., *twee 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (�. (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<<<<<<<<<<<(<<<<<<<(<<((<<<(<<<<<<(<<>>>>>>> )>)>>)>>>)>>>>)>)>>>) >>)>>> >>>> (C) Copyright 198E Advanced Engineering Software DAES] Especially prepared for: HALL & FOREMAN, INC. <<<<((((<(<<((<<<<<(<(<((((<<<<<<<<<<<>>>>>>> > > > > > > > >)) > > >) >) > > > >) > >)) > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN HYDRAULICS,LINE B,LATERAL G * * AHMED SHEIKH, J. N. 3366, 1/8/87 * * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 3.08 FLOWLINE ELEVATION = 1197.00 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 44.70 ASSUMED DOWNSTREAM CONTROL HGL = 1202.500 _ _____ <<<<<<<<<<<<<((<<((<<<<(<(((((((<<<((<))>>>>> > > >)) >)) > > > > > > > > > > >) >) > >)) >)) >) Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<<<<<((((<<<<<<<<<<<(<(<((<<(<<<<<<<<>>)>>>> )) > > > > > >)) > > > >) >) > > > > > > >) > > > >)> == == _--- -___ == =____= PRESSURE FLOW PROCESS FROM NODE 3.08 TO NODE 130.83 IS CODE = 3 UPSTREAM NODE 130.83 ELEVATION = 1198.99 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 44.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 127.75 FEET MANNINGS N = .01300 CENTRAL ANGLE = 2.000 DEGREES 4.1"' PRESSURE FLOW AREA = 7.069 SQUARE FEET ft• FLOW VELOCITY = 6.32 FEET PER SECOND VELOCITY HEAD = .621 BEND COEFFICIENT(KB) = .0373 HB =KB *(VELOCITY HEAD) = ( .037) *( .621) = .023 PIPE CONVEYANCE FACTOR = 666.986 FRICTION SLOPE(SF) = .0044914 FRICTION LOSSES = L *SF = ( 127.75) *( .0044914) = .574 NODE 130.83 : HGL= < 1203. 097> ; EGL= ( 1203. 718) ; FLOWL I NE= ( 1198. 990) PRESSURE FLOW PROCESS FROM NODE 133.16 TO NODE 133.16 IS CODE = 5 UPSTREAM NODE 133.16 ELEVATION = 1198.99 #""` CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 35.7 30.00 4.909 7.273 0.000 .821 2 44.7 36.00 7.069 6.324 -- .621 3 9.0 21.00 2.405 3.742 60.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00758 DOWNSTREAM FRICTION SLOPE = .00449 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00603 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .028 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .032+ .821- .621+( .028)+( 0.000) = .261 NODE 133.16 : HGL= < 1203. 157> ;EGL= < 1203.979> ; FLOWL I NE= < 1198. 990> PRESSURE FLOW PROCESS FROM NODE 135.50 TO NODE 749.37 IS CODE = 3 UPSTREAM NODE 749.37 ELEVATION = 1205.14 - CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 35.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 613.87 FEET MANNINGS N = .01300 CENTRAL ANGLE = 12.000 DEGREES PRESSURE FLOW AREA = 4.909 SQUARE FEET FLOW VELOCITY = 7.27 FEET PER SECOND VELOCITY HEAD = .821 BEND COEFFICIENT(KB) = .0913 HB=KB *(VELOCITY HEAD) = ( .091) *( .821) = .075 PIPE CONVEYANCE FACTOR = 410.171 FRICTION SLOPE(SF) = .0075754 FRICTION LOSSES = L *SF = ( 613.87) *( .0075754) = 4.650 NODE 749.37 : HGL= < 1207. 883) ;EGL= < 1208. 704> ; FLOWL I NE= < 1205. 140) == _ PRESSURE FLOW PROCESS FROM NODE 751.70 TO NODE 751.70 IS CODE = 5 UPSTREAM NODE 751.70 ELEVATION = 1205.14 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 29.6 27.00 3.976 7.445 0.000 .861 2 35.7 30.00 4.909 7.273 -- .821 3 6.1 18.00 1.767 3.452 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00913 DOWNSTREAM FRICTION SLOPE = .00758 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00836 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .039 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .171+ .861- .821 +( .039) +( 0.000) = .249 NODE 751.70 : HGL= < 1208. 0927 ;EGL= < 1208. 9537 ; FLOWL I NE= < 1205. 140> %ow."i PRESSURE FLOW PROCESS FROM NODE 754.04 TO NODE 954.62 IS CODE = 3 UPSTREAM NODE 954.6E ELEVATION = 1206.59 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 29.60 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 200.58 FEET MANNINGS N = .01300 CENTRAL ANGLE = 4.000 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 7.44 FEET PER SECOND VELOCITY HEAD = .861 BEND COEFFICIENT(KB) = .0527 HB =KB *(VELOCITY HEAD) = ( .053) *( .861) = .045 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0091347 FRICTION LOSSES = L *SF = ( 200.58) *( .0091347) = 1.832 NODE 954.62 : HGL= < 1209. 9707 ;EGL= < 1210. 8307 ; FLOWL I NE= < 1206.590> PRESSURE FLOW PROCESS FROM NODE 954.62 TO NODE 995.07 IS CODE = 3 UPSTREAM NODE 995.07 ELEVATION = 1206.83 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 29.60 CFS PIPE DIAMETER = 27.00 INCHES ,,... PIPE LENGTH = 40.45 FEET MANNINGS N = .01300 CENTRAL ANGLE = 1.000 DEGREES °" PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 7.44 FEET PER SECOND VELOCITY HEAD = .861 BEND COEFFICIENT(KB) = .0264 HB =KB *(VELOCITY HEAD) = ( .026) *( .861) = .023 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0091347 FRICTION LOSSES = L *SF = ( 40.45) *( .0091347) = .369 NODE 995.07 : HGL= < 1210. 3627 ;EGL= < 1211.2227 ; FLOWL I NE= < 1206. 830> PRESSURE FLOW PROCESS FROM NODE 995.07 TO NODE 1050.72 IS CODE = 3 UPSTREAM NODE 1050.72 ELEVATION = 1207.17 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 29.60 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 55.65 FEET MANNINGS N = .01300 CENTRAL ANGLE = 36.000 DEGREES PRESSURE FLOW AREA = 3.976 SQUARE FEET FLOW VELOCITY = 7.44 FEET PER SECOND VELOCITY HEAD = .861 BEND COEFFICIENT(KB) = .1581 HB =KB *(VELOCITY HEAD) = ( .158) *( .861) = .136 PIPE CONVEYANCE FACTOR = 309.703 FRICTION SLOPE(SF) = .0091347 FRICTION LOSSES = L *SF = ( 55.65) *( .0091347) = .508 NODE 1050.72 : HGL= < 1211.0067 ;EGL= < 1211. 8677 ; FLOWL I NE= < 1207. 1707 PRESSURE FLOW PROCESS FROM NODE 1050.72 TO NODE 1054.72 IS CODE = 5 UPSTREAM NODE 1054.72 ELEVATION = 1207.17 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 26.3 07.00 3.976 6.615 0.000 .679 2 29.6 27.00 3.976 7.445 -- .861 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 3.3 = = =Q5 EQUALS BASIN INPUT = == Aoskuk LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00721 DOWNSTREAM FRICTION SLOPE = .00913 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00817 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .027 ENTRANCE LOSSES = .172 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .362+ .679- .861 +( .027) +( .172) = .381 NODE 1054.72 : HGL= < 1211.568) ;EGL= < 1212.247) ; FLOWL I NE= < 1207.170> PRESSURE FLOW PROCESS FROM NODE 1054.00 TO NODE 1203.48 IS CODE = 1 UPSTREAM NODE 1203.48 ELEVATION = 1208.84 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 26.30 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 149.48 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 26.30)/( 309.703)) * *2 = .0072114 HF =L *SF = ( 149.48)*( .0072114) = 1.078 NODE 1203.48 : HGL= < 1212.646) ;EGL= < 1213.325) ; FLOWL I NE= < 1208.840> _ PRESSURE FLOW PROCESS FROM NODE 1203.48 TO NODE 1206.48 IS CODE = 5 UPSTREAM NODE 1206.48 ELEVATION = 1208.94 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 13.7 27.00 3.976 3.446 0.000 .184 2 26.3 27.00 3.976 6.615 -- .679 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 12.6 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00196 DOWNSTREAM FRICTION SLOPE = .00721 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00458 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .015 ENTRANCE LOSSES = .136 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .990+ .184- .679+( .015)+( .136) = .646 0 "'"` NODE 1206.48 : HGL= < 1213. 787) ;EGL= ( 1213.971 > ; FLOWL I NE= < 1208.940> PRESSURE FLOW PROCESS FROM NODE 1206.48 TO NODE 1264.38 IS CODE = 1 UPSTREAM NODE 1264.38 ELEVATION = 1209.52 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 13.70 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 57.90 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 13.70)/( 309.703))**2 = .0019568 HF=L*SF = ( 57.90)*( .0019568) = .113 NODE 1264.38 : HGL= < 1213.9069>;EGL= < 1214.085>;FLOWLINE= < 1209.520> Aos"b. * PRESSURE FLOW PROCESS FROM NODE 1264.38 TO NODE 1264.38 IS CODE = 8 UPSTREAM NODE 1264.38 ELEVATION = 1209.52 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSGES(LACFCD): PIPE FLOW(CFS) = 13.70 PIPE DIAMETER(INCH) = 27.00 PRESSURE FLOW VELOCITY HEAD = .184 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .184) = .037 NODE 1264.38 : HGL= < 1214.122>;EGL= < 1214.122>;FLOWLINE= < 1209.520} END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM Aer g 20feemetit, CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY I DATE JOB NO. SHEET STORM DRAIN HYDRAULICS I DEC. 1986 I 3366 LINE B CATCH BASIN SUMMARY SHEETS 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 ...rePot*Mt , Pa‘ft' ?I g 2oiee#,,,44t, Rite. • CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUSIE CT CA74 agini5 OYU-A'tes 1 51 t - ewc4I DA 7a-/74t , 1J 3 6 6 I sHEET / °F 3 Lpti6 C.8. Q Pi..00.). 6? INLET &IO/ paw ,o7 SRAINA6E REMARKS 'OD . c /to S T a l ocj -r q ARE-A 011F ig/9 fo,S7 4 icePs -9- - /o.79 4.1 7 lazo.6s 3.64 Ip 134 2- .4 C? ; lq.71 /1 C.eo ( 9 4.1 4.C., 4 II.E tel.4 q.qq /3.or 9.1ti 3.0/ f4 10.9-1 Aci-1 as— / td,t /o. //0 1 146 / 6 / 6/ 4 9 Flew Ay r. / 4L- 14.60 .1— N.73 5 cg. 12.13 -fre.yy' e D 21-37 2 137 3.243 ti c;_ 0 tiAtitzko. , 1.1,,3 cilt.en- sa,v 7 1 ' 3 Z2., • 1.3 °WI I if. . 0). I . 0 7 / • 17.6z r Lew EY 4 iq ()-0.iew s- .23.4! = //.64 lo. r <4 4,14_0 1 & -f(3 a .6 5-7-2tdal.o7 z %,ftwo, « 16' /02.g' 1.5-111 16.0 pa-4, /1.•27 I ; • . 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641-8777 . -. .. s-r—r •; r. . -. a . , . . . . . . . ■ Uil I j 1 77/4eteg 2oieestax,' ate. .,*, ,..,,,,,, , CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I sU�,� &AT f�*suJ MYt vue4 1 S#IKJ J D a - 1 7- i 1 3 1 SHEET � LINE C Q � s y Q / O F #4/1-E7 #4/1-E7 � i � A AID . N D Q ar 1" W'CFT) (e i) (AC/L tir 0041 / G /7 23..8' — 3(.3r .8 2;5 6.39 1 �d It ' i f 7: 314 , - 7 .'J R r G 9 4 ' / b y — .3.g-0 . G (et 4. it K q- ii.r -- 3 .0 G. 20 13rr2 - 1s,t 7 -`r -, 7.2o - G ii.ic - 2.2r o T By C. Ito -(' Iy.J.2- - (q•4_- �1.7o .1.3r ' 9 /20- -1 'l Oleo _ 1.26 21. if i 3 /24_/ a,/7 - ,.60 /2 1.3if#1.6 — l• / fr6 =3,43 Pavony 8 /qo 2 .e/ 0 3.711 e 3,z' o. yr l • fra T. 44 2 C�1 I" -3s /o•tfo — 13.64 G 1 .S-• /v G 1.34, /o.3 S /3.b 4 /3.6. S' o G z -37 a. v 3 "70 tf I/. S / -r G 'r -3( 1/. - Cat q 9.6 . (f• G si 11.1( / v - /s. ' ( 670 G w "7.6q /pip , r I/.o 3;3 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92628 -3428 • (714) 841 -8777 .. .„ K NA+.k %m.ezamf w»�wwwx•.r +.« "..u.,..».eu.+w4•hw nwaw,r. 4...., in hla," g 20460044, ate. ,........ , CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BV DATE JOB NO. ET OF CA-leit QAS/,Js N Yr)ek t 4. S e44- e44- J /� /7— d� 1 3 3 (0 6 I SHE3 3 Lime G•B, Q ir Peer.l Q /Nr.— VA" tnw 8Y �e es A1p AID. ,2 S'- a r 00 Id - r.) ier- Q o (mss � (lMT) =16f1' R i'-3 Z.DZ 2. L(0 it , ir 4 1 (k Z -32- `-T,a' — / 7 26.7,( 7 (• s 9 3, 4 7 .4l •i r /1 32. g 7.3 /.2 e s" .) ly ...... ,, `'... Iqs -t q0 / . o 2 r a 1:75 -— 5 - . 3 _ 4 S GRATED E 47 7.11 W--- c . Li y �6 _ 3 . ,— Cexki.13a4i 4 t Cor+akTVfe .. J J: 17 4 ,,. qr -- /S -77 4 5 . S 6setre - rife CA L Zoe ' eer-D 12 43 I 0.Y1 / r �,� Ty gg Z4/ /Z- 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626.3428 • (714) 641 -8777 L v.. > a ,„...„9 0 p M y d :- liniie r �' 0 $: m ' 00 J q i V - O , .."4 ., c. w o T Q u 0 c` J v • 2 O J W F- -- L L Q Q N U o a • t 3, Li ' li V r$ 1: • � 1 NV tk 6 . 'a • F . j cL to L7 , O o 1 1 oinu�v3 ^ c't U - tV? . in c / h c 1- B N 0 to c O L Q .y) V 0 O ty r r O //) J - • ;) ,T�M3�Ng i (M) to il ,) } /��/N �GCGo � v' W N - -� — "i a V - ' ��' , i > aM a �" i 8 = !d d i O Q o / • a W Z O N 6. # 0 ` Cr W OJ u o :6-46" p d 0 Ia. p c 44 Z ►� V ,e tit Z 1 2 V I > a ( 1q ) no I ,n o. a } 1 - a i o J u 0 N c . • W c o a u J = o . u W . - _ J H Q N �; Q U 0 m N .. 0 c p • z 41 ` : 41 C o EI ".,q ct O o u tS O u -4 v u' " v TO J C F „ 0 03 c o i., O • � � •G 0 4 U E� cy L v 4� D 1 ) 411 0 ti ` t Z N ' l� W 4 , O Q N ©1 W W a3 F- W Q • IX O U. u 4 v c —, d007 /vac 9Ni/ Yslot , i _ \ \ V ° o I `' M 4.,..... rj a a ` ° J riN i ti 0 N c Q V v Z • 0 J = CI • V W J F , m U D N h `V m H e • V Z n s V V) ' iiii c " u -+4 e) ^ l ;0 _ u V J O c 1 • C 45 • N D m C °O O r t 0 Q `;• O 1 a C ■ LI - e N : 7 .__________:_________ ____ Uv W v � �� O 4 o 4 O Q 3 W I Q r 7 02 =:r N • 1- • w Z O N - _ io _� . _ // o n elg iy /r1S y/X f. Cr W OJ v � '� i • Q. O U. C C O :0 si 1 4 g 1 I L > a C T p Ni:- 1 ("N") (-‘ Now.. h c4 ` 2 N a, C r 1 1 . ' > L, o • J 0 .1 ) M ry y u W c O J� � , ■ • ? _ o w - -,J m 4 Q Q N c� .- c l U 0 t N . U Z '�: ' V h t h V @1 h Oj : ► a O _ 0 c N Ni 0 v . „ 0 CO C O ' • o • `� S t O O Q .� .t 0 V ? E . N . 1, hNv V _ ,y) \ C a a c it t2 Q r —_ _ ` _ - _. _ i ll � _ /N F- W . - - /' — 00T s �/ Q QLN /t13 Al p Z c o v�a� ! I c? 3 2 " °°s I • ir W O u • cfl CI. 0 U. r 0 �j F. : so r9oc4 1 0 .v ! w l c o i -4.) a k d s r .D a _ z w h - c o is \is A '4 eq .., i �9 c;. o 0 U W - a Q _ N m N , U • i s-- N 0 i'i p C d. : V1h- • o o o V r- Z i O t 1 . U U 2 r M .o c a `....9. ...9• J,. M' t�� • .y 0 - aO • 2 d 0 • . j 'o • 1 y O h r 0 a Ni 'h . ^ li • U O ® 4 4 4 My C N 1\x, W Q N � 0 g 4 ' V ■ =� 7.:5 n • - IL Q r 70:77z:, _ # 1-. 0 1s evniY 41 0 3 W = y°' .fir* L =1 v . \ 1 . _ O N O o p 1^ . • d O u \I og N " � I ; l k .. el i .......„m. -- .....- O O tu _ it O ' C W ` o Q V ? 1/` • J Z ✓ W U O N r • N ` V G '1-- o �- 'C j C7 I W 4 u . t N.. - . C 3 c y O '" V-IN � �M4 (1.\:, O. uV o f s ✓ . O U1 C M . v; O „ a 101 , O •. o o O t O a n 0 O V ,. E. C ku • L) N 8 • j. W 2 • e ,J.i,- O 4 o T e. 1 3 W h ° .. g ;• C 1-, s. a U Z se Q. O U. v C : Al ' . 4...i ! 0 0' N ( Ii c • . . . . - fill e I - • - - 1 D - 4 0 .0 q 15 > 4) 0 J 0 '*�„ d y . v) 4,, 0 'b r 1 ,i .■ o N c W Q V Y 0 U W W Ni J 1— 4/i `N' Q 4 N 4 -.c _ U 0 y s C7 6 I` s� . • Z 4(; 4i � l l N u l '4- V '' . r v 5 .0 1 I 1 ., ri N 0 � - 0 Y ,A T- .S 3 4? H C - o ..:7-s. 0 3 ••a = H N 0 i b 4, w 0 O o D e l 9- 6 7 ' , 1 4- -.L; A 4- c4 IS N m W C � 0 U itj ,U a ! , `1 W v t 14 t O Q 0 i '1 41 ° ) a W 0 U ` 1,1,.. ) ir f- o _ � a v o o. vi W 2 N • $1 0 M C a 0 � � �, � • �rl ,� ' li 1 c'� ,r ! 1 • �• it ;err• <1 • 1 • o it a h i 1 _ - . I / ` n �Oy� O � 1/4) , f ,,, :. _40....., - ci 0 s*. , i5 — . Q a m' c J c u N ' O N c 4 O 0 M J ■ • M Z '' O W 4 4 N 1 ■% o o min" 3 u o y Z n •- V ` 0 - ■ 4' b O Y .� p a y • i= U ry � 1 a U n • Ti it1 5 ' 0 N Ti 0 0 m L v C v . u o L, u °' N C Q • ri W U \J Z ' I O g • O 4 _ o W N N \ Q • f �� 0 7. O N O o al , i S a • d C 1i c , O Ss �'�'��. o C W G O ' 40 1� W In �r . • i _ . _ __ - i Page G -36 a ° . o :...9 cn w . `' . _a i M a ! a i � ry `o - ` r` LD -. -1 IA . O W • J U m c, �- I W `O N I I u o N .�9 - J" ' ti I 3 • to N Z H I N t-! - a>, . I c O , �' O m t• 14 4 3 0 c(17 vi V u. V 0 c tom. N 1 ad 0 i •C 1- N p r.m c o 7 O m i v C Q Oo p f N O I s I I I — So•5r b J. ci 1 4: 5.: uji Q a bh 9I= • 'v- 'ar: F.�B.',t -�'7 ; / •s. iii W Cr a e o' ` .... . 4/v1 7 1 yN17 W 2 a ZO'l- °�"! I a 3 •4 I W u M I 3 > V C 4. . G 9 ti c i. ' ?• . J ,fir Z I ! O - . {. Page G -36 $" c.' `` *41 411110 0 ' ( 2i ;..:1 Ci I I m c N a M I a c 4. • .. ~ a o J m M = = O v W '- _ C..) ° min . , • v a :_ I. • N N ° 4 I A a o v , ..,..,k J k3 1 �t� o ` Ni ci `�--; o 01 O s .v m 0 _ a Vi-- a = aa` N cn } a ,c_, I • . t a ■ a I = 2 a. / v Q a W = 1 1 CC U. Q m v 2 ° w 3 m it I W O u I . a. a U.. 9 m ao 1 i c #011111.1%j %me A� h N i ! 0 - 4C ..."*. . - . ,,, >•-.........,4,4emra- / , _ , 4,,,,...,...,,,,m--,,,....-,,, , , , , „ .._ —.,. ,,,..,„,, L-,.. ■ I I 1 • ' ■ 1 I 1 „......,. , . _ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I DATE A ' I CCM &UN 44/4L.Kris t•-•.if -5/7 re NO. SHEET 3344 / 01 • . • 1, • _ • 1 , e, • .. 1 • 4 • . • a •-• 0) . ' i . • ICI 61 5 • riecr bor; (7 — ---- V I/ . Y litisr zse i 7. ' ' • . , , •• ; • - '5' .:(..:... ,....05...._. --..„....... 5/0E177 D PO //7 . . . a7 -..- . .7 e . d . 4 :.,,...._ .......... (7., ----........... ....--f•-.., . • --......._ . _....._ „......,1. -" : " .... 7 .1 ),. . , 1 - . ,„..... , ,..._. .%.. . s 111 • • . ■ h a s ' AS a Pki a 0 . . 1 . . AID WI ir-k, iv riairT siiv477oNS /r . . i 414Y iSe Asouceo ag — ( 6 . ( 044.#77ED. y. Q/4 -5 3 Fps • . . .. 7:c. a6r04 li.c/ . 1 ,4464,.. /61,6 3 . r :.,,c4 - ( ie. , • , ,:_...4.._, . ., x• , , , .....; . . , 4Y4a.44LE /1 - 4.-Y = (cA4A.8), 3 .6 4 ” Reob. ,i,:-..-.2.‘,./ ' I ' RCP! 2-t-f ti 1P OP 3 cp." rs4 /1' sTY Acr. i . t uSE Y &/P ! ' . . ! ! , . 40 0, • I ' . 91 111100 0 ' I I • ' . 3188-1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 • i (' . . #,... E.... , Xie g ,?olieeouzit, aft. . UMW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I • . EWA 6 ch. 17... r.... 4 7 re NO. 334 6. 1 SHEET OF C 47 C 171 4 345Yiti 41,14LYS/S 2- I `f . . - --- - 4/ e .--;• • ,'. i • et' / ' I' ;; - ( y - 1 . ---- 7 ... / 4111.57 .516 >/.2 2 1 - ---r------ - '/6 : Pet.7/i C/0/ V i ' • i e---j,r'---7 ---..„___„..... s•-•„ „, 0/ '0//7 .. •I , . . . .. ! --- , ' cl • .. .' d • s•-...._. i ..- "... "`N -....„„ fs. \ ‘411100 - . / . ,...... _ %I 1107E:- 0..5 a 47 IVEIER.I.ED. -1- 1/Dif/AfiW /4' 7'C/1T 3/7r./.4770A/S /7- MAY iSE ksouceD 042 04141/77E0. y. Q/4 an , c- FPS . ..s,a.... rk;),/,... ( ----7- Lsi ..) 211 za/LAzut A r . ill 4-- - (Cf4A.)= 3. 2;2, r. REQ:D, Ace .513 Cie NG 0 = 1 GI's g = RCP • ZI zi= oP 7/1" V2 Cor 4 CS-4 /.2 ci - 3_ •7 fir. USE 5— si 1/ 1 .06 , ... • *44•10.- - 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 Ifh he° g• 26ieeoseou, gee. • 111111111M CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT WV/ 4545/4 4//4L WS I BY at I DATE 108 NO. 0 / - 3 . 3 4, 6. SHEET 3 , • •... A . . • . 0‘) . C 0 67 01 -ci - # AE .>/..2 J • 7 • • I - 5 or m 4-- os'is 45% P/&0, 1/oifiziete, /4t Yivir sorm770A/s ir 1t14 Y 4 tSE REoticel, oi2 4114.1/77E0. y cy 7 FPS C8 • T.C. (2.3f 146.4.1235-.‘q ( 4121/2.41131E Al Al " (CA REO:D. 1114.171 at Q a2'f37 cAs ga 224 .R0 IF OF 2 - L t Ctr" rS4 /.2 1/2 /.2g,i otar 4.622-Fr. „ use 5 .1C ,OEP T , 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 I '• 1 , • • , , , .,....., N IIMIIIIIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I . i ! . SUBJECT I DATE I JOB NO. SHEET Or car# 4645/4 AWL Kris 1 EW . „ ......4 . ,..e 1— r - 7 33 4C1 4 11+ . • ,. , ; ..• • • 7 ..: . i, • 4-, - , . i C F • --- -- - II # (. 5 • Free Imic -(1- : -- . # 'MUST BE f . r./ : V • —.. — - --.... • — - • - ---- - -- --- -- ----- - - — — - • le • ' • . k '• 2 - - , . .. • /7 6. fOr peCA //ol P• ■,' , --...........,„.. ---- ----------- ....;. . • . : . . . . 5 7 - —._ .5/orm Drain 1 I • • ( ---- ---.__ -- ..---i---.., • ........... ,. . 1. . 0 . • z. 1 #07E:- 0.5; C PI,E,(E4.440. 1 f • YOK/Elf-k; Itil IM7/7" 3/7t14770A/S /7 • 1 4,1,4y LE AsoliceD 04 004//77ED. y . 0/ 4 . d .• 1.s Fp! • . . . . Tg 1 L: Y .7(-(2,- . /.1 V O • - r rC . 12-39,IY A.63 .2 ■ . - 71J i .C21 (‘?//)'/... ( -- 7 - /,. ) , Az.,„,„ _Jr . , L.)..L- 1 4,41/1.04,SLE N A , 9 • t REO.',O. /1-, /. YhreiVA4 Q .. Ka, (ITC y . I , 1 . # . 1 .Ncp Li ?ii(IF OF 1-1 Crr r /.2 112 /294 o 1 ar 4 1 - ,_1 ( 4 ! Fr. ! . i ' S 1// I . aSE Y OEP17/ , * !' i , . . . 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 ..., ,, iln , ....„..„, ,, 1.11.111.. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING i ! ' SUBJECT CCM 13454V ..14/4LY.ta BY A 1 ,.„, ja 1 DATE (.... ir,t7 1 JOS 140. 3346 1 SHEET r 0, it • • 1 , • _ _ ._—_-- — . ___. ■ 1 . . I CF I/ 4111.57 LE >/.2 1/ 1 • 1 SIZ 0 .5 , 1)4. -(1- -:-, -- v / 0 i 1 -2 7- . 1 ___.; --. Hei for pecA /701 V V ■ "-.................. 5'1orrn Dram -,.- • • • ii 7 77 d • ::-----,_.— . -........ .......2; ...."------:._ 7 7'... 4 -- - • ........__... . ,,„...... - ci, k3 , • •• No7E:- 0.S AB /3" P#.6.0, I . 1.01(ltit-4 /4 fti/T Smanays /r _ . . , 1 41.4Y tSE 'CD A? 0414//77ED. p. 0/4 . 7. / 2 )7 FPS yy e 7r /.1. 0. IZ2S-34 .'" . 2.2.5 NW-. 12.2.4. fro Sp. --,, (1)V14-= (—r .41/.4/LAZLE /1 4 .54 — (c, 4 ic..8) = 3, o 6 z REO.D. # /• 5 tie Nd G N, 7./2. • 4 1 cps g a 22. 2- I , l' RCP! 35 LP oP 2 - 1 1 Cpr 7 ri3-4 /1 V2 /.2 14 1 , i USE 6 ' II // Y 1)EPTV , H , ( ... cr H ,; , , 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4875 • (714) 641-8777 , I / I ' ' I : ' . , . ' 1 1 • i I 1 • . IS .•, 3(zerg,749/aesitetiot,. ate.,i , . ' MIMI" CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING . 1 ■ : i 1 . i r SUIDECT BY 01,..c , . cQ DATE OD NO. SHEE Of CAOriq 454S/4/ dgefLY.thr (....g....i 3 6 PI • • s , 1 ; , • .... , I . • , . __ . . .. . _ • i . 1 . c r . . .. ( (7 5 • Fr ee 1)(217 -0 - -•'; • -- 1// . . H litar Se >.2 2 J ' S / Z r,1 : 1 . v2 ' ';j• ... ..19 . • .. - ----- /lif a rccr pecA re/oir _______ ...=...., - .5 OPC/i7 '4 I ....._ , _ ........2 4--_. • . ...„.___. 1 ;. . •=_, p .m..", - . c•;.; - , • . '......- ' . . z • - \....:, . .. ..i • NOTE:- 04 4.S" P.eliEto.40, I ' yogze,e, /4'• ftlir „Imam/vs /r . • - • • . i MAW 4SE Rsoaceo 04 0441/77"5.0. y. cy .. S% 2 8 FRS • . . . . , • CB 0 . . Y2-4 .0 Y . 7 . 1 5 f A (). S-2 L'. • .... • - , it • 1& f q . 2. // 2 • . !1.ii.2- Mai... Mu. V 4 3 I a.. ( 9 4.) 1 z . ., ,• i • 9 , . , 410/ZAZLE I/ A ' f - - (cc 4 F.6) = .2. gel . , t 4E0b. itio7r2. de Q _ . ,v4 2 1 GI's I( a i . . . -5 , ,- 03 zP o F 21 # c, 91 r1394 / .2 1/2 /. 2 g,i d = _Y 1 -7 • , , i • i use 6. 4 ' II // , . . . . 1 , Ci ..., .. . I . \ . 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92826-4875 • (714) 841-8777 ( ii I . E l f g 2ate,009,,g,, aft. 1111.1111111. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 1 9 c4 DATI s re P4O ce 104E5 OF M 4 7r# .845'//V 4144iL Kra • - - A T <3 C 01J-ST ZE > t1 '7' rccv pcoA ,/ Iv _ • 1 7_7•7 m of 04 i r I 1107 O. 5 /S PRE/Eel-EA 1/Olf/Zifk; /Ar #r 3/7u47740A/s 0 ?tidy 4E RED •2 akafffrE0. y cy FPS • c8 P/or 7:c. l'?-1/0 k. 1,46.4.11'1Cli■ (4?1/)14. ,4* I (CA = L". t i,fes air A■G - cAs g RCP 77-3 OF Ir' ct rS4 /.2 112 /.1 . 94 = uSE 5 . lir "i/ Nome 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92826-4675 • (714) 641-8777 ...i, Ifi ? .,/ ear g, 0?0,aemetiti , ate. . , . ‘44,1„,...- , CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ; i SUBJECT BY DATE MB NO MEET Of 7 4 545/4 / e//4 Kra 1 d 4 k(71 3 6 /'t • • J • c, CF Il t'1 . • • / . Z_ ..__. ,` /i ( for pe cy/V_f low y V 7 `� .5form Drain -_ ---...,„ ..,.......} --------...., --1----, • mo.`s is, i , L 1'1 �� +„ //CIE.."' 0. s ,S is PQEFEQd2E0, 1 izivetirie, iv rear smiane ws /r - M4Y BE Q6o(/CEp OQ Q4f41 /77 Q. y Q/4 " 7 a S Fps C8 0 i . 7 . C . IU , . cg 4x °• k/C - 99 ,y W.. Iv it. 6 ,;(4, ( ) (� � , �..�..... o r . 4 m A s t e N = q• 3 ' . 0 - ( C f 4 PS) = Q • $ 4 r . E 1 H_ /.07 401/4 0 /d2•tl CI'S K= fos NCI! ' IF of /r " cf- ii F84 /2 v2 / .19,4 d= _ F r. I USE 4 V .DEP77/, j ; p. ; 3186 -1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 I ' , hl g: 4 4 , : . CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ' SUBIECT C117 4 545V/V AdAlota Kra I BY A . c rke. : 44 I OAT 8....... i‘ 7 roslo. 6 I SHEET O l F ,,, r . • ,_ • 1 , , • • 1. . ; .,• . • . • • ._._ tin -.. 4 • . .6 ••• A ) • c r. • --- --- ii # v . I/ 110.37 .BE >/.2 r.1 ... 1: . i /7! C7. l'or peo/T 7e/olv V_ . 1 • - s ---------- 5 : 10cm - 12 - 7 - 0/ 7 /7 ..------÷;- 4 ,i.:... ,... o . ... c ..... . ! - . • • • i • -•:•:•-- . . A . ----., ........1 -...__ • . ".................... ‘t " . •■,. lilt': . . .00.1.... 1 , • c, ) ‘ ii , , . -. • 1$1 • • 0 0..5 NO7E:- 1 t ,45 a . PIMIEti240. 1 , . /vamps, ftif 7VI/T 3/7E4177ONS /r . .. . . ■ kg y ze itzoacep olg oic14'/T7ED. y„, 0/A ... 1.34 FPS . . . . ce G . 11/1/ h-7 .11 10.2, -.... °. i T.C. lart•co . .s ( 4 . , .• . • , , • dif4/LABLE li Ai 3 - 3 a. 4 FA) = j - 51' 3 2: REO.D. le= 0. cw,v4 ( 9 m 7. el sl c,,s g a ".57-4-.. 2.— • 1 : .0gc.P..? /f 7 IP OP 2 - 4- f # Cr 1 rs4 /.2 I/2 /.2 . 0g d 3.66 fir. ! , ; 1 , , II // ! , USE ' T J/ dOei •Ii: , _ . - \. ..../ C 1 . . 3188-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628-4675 • (714) 641-8777 . / ; i IR hi ( e 1 e g 2 49 ,,, emeati R , : i ' 111.1111111. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ' i • I SUeJECT I BY 1 DATE re NO. SHEET / O Of / � C47r# 844/,V 4NQL YJ /S �- . �(� I /- �- k 7 3 3 G L , t, r F • c? . � i �.' c" c`'; � ; Y - (; _ f --�. --- II 11 'MOST BE >/.2 1 319 • ,1 • 5 7 /L ��. // felr /.'g 7/r / /'w V r . _� Q s _ S /oi•m Oroth - -.....„_ ..,......(/' r; I : . b.. \ ...... . :1 Nom..- as f6 15 pacsu4EO. 1 HONZI I Air rrc#r s/7E/4770vS it a. 3 • Ys"� F ps 414 r aEDt'C D OR ofrMirr�D. v- %a 0 • Y . a% 4 9 = Q22-3 rc. 121cs•6� 1 Nc L. /ac S St.- (i) ( ) , .r.�.�. .,,., . . .414 /LAZLE i t = . 1 4 . / -'7 } 4EO o. H- . 2 6 / Q = l fps K s' 1 Roo! /1.16 tF of (i' " c,�' •i F8-f /1 V .2 y4 d � = 3L+ � fr. ,:, USE s-,6 0 Y , � DEPTI,/, {' . • I; • • 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628.4675 • (714) 641.8777 i / ___ ......., ... ,...__ ,......._ ,.... WINNIIP CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SHUT OF KM " E C T C47 4 345 1 /4/ NiALYS/S I A • Ck‘Lie-P I DATE / .... e... a 7 11011iii i 6 4 /( Pf • . _ - --- 11 if il Aix,. se >/.2 /:qe 7 S-7(Z __I. : ___ _ .._ _____ ____ _ _ I / 2 I": I ' _,•• _ ___ _ 1 , --. q C.:7 . r t:t7A i ' i t (' / I' 1 •'' • I /-:,5..- --- _ ...... .5;of Di _ d - ----__ I -- -■j ; — , ..-- --. , --.._ r: " i r I . it ts.) '1/441Trov" / z... 107 E .'- O. .5 I FS .4s IVECE4 2 4 0 . I/ Off& Yek, /41" 7 ' / Cli 7 - $/7Z/4 77ONS ir udy i gE RED/CIO ok 04141/77E0. y. 0/4 AS 02 s FPS C8 , 1 T.C. 1c)-5 11. 61 . /aC4.4 1 Cr.i _2 SP. -x ( ha 4M/GA.6LE l AI /‘ 91 — (cA 4 Fs) = 0 . Lir ?... Re tiy= .139 cle A/4 0 A, K.I0 cps g. 22. 6 ,... RCP 4 A' L F 0 F 2-Lf V21 O / 1 Cre li r2 3 4 1 1 f = _ 4. `f / usE 4.e \I 1/ /1 Y .DE P 7 V , ‘ I 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 II•A Aer g; , g o / 1de. ,; ,, • IMINIII CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING i 1 ' 1 , • .., SUMECT I BY A . s ket : o I D ATE. ir 7 I JOB t40. 3 c 6 1 SHEET or . , r417C17/ 1345Y/V Afg4LYV.S ‘ •• . • • , • ;''t- • • i o . Cr (.7 5• Ft l'or, "'el - -:.'; .--- — lir - # liltS7 ZIE > /.2 V.1 • , .5 Z V : • .;) _. .2 .....\ c." . --...„......... 4 ..5Iorm Drain • • • '=i • % '.. d ". 4 ' - ■ "-- .. 0 , --- ---... . ---........ ----...... ..---F-.....„ . --....... • -,.. . • . . -....,... t • I c: • " s " " ( ....... • 1 t 0 s , 1 L ,,. . .... • ..,. .•.. 4 O. S a NY/EV.4E40. . 1 • ' , • lialf/lifif, At 7V1ir .5/7Z41770A/S /r - .- • , 1 ttl.4Y 4SE Reoaceo 042 04141/77Z0. y. Q/4 .• 7 - 3 S' FPS . . • . . . a . C8 • V 0 . .g . - a *1-- ' .° p-- l • - re. /AS ii3 • he.), za ( 1 2, 1 i 1 0.37 r Mai.. I 2-CY ( s ...w 741- --7- ili ,...) . e...2..........f . ., .. t , • -, . , .410/LASLE A " 3 'Y 3 — (CA ii P13) = / -1 • " REO.b. /1 arN4 0 - /32- .o cps ga . ' I ' / # Cre / r,8 4 / .2 1/2 /1 . 9 of - 4 E ° I • fir 1 . . USE 4 0 1 • • , , . , • , • • . l , , ',italic I i ' ,,. 3186•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 . ,. i . / ` ti f !ow- Iji h ' 0 ate. ; , • • CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , Ural DATE" _...r..._ 0 � �� � (9 � � T or suSUBJECT 6QS /N ,4//4 VJ7S I BY -(� I , 1 li i ' • n • .. • . o' j - � i • • cF ll 1 • 4 ' -- ______ S /Orm DrO /n s ..... P. 1 • , ` • 1 O. AS a PQfU,,62.4D, f , • YOKrMk; /N 7V/1T s/ruen0NS /r 3-21S FPs .� ■ AMY aE Q�nu o 04' 0461077E0. Y /4 A" . . . . • C8 ___D____ P4 0.j(. 7.2 �a9' 6, ig 2 H rc. l` 0g ' � 1 NaL /203. Sta.' (9�)'''G• / ) r -* 7 dv�1/LA81E N s , t Y 4lir ( II FB) a 4. 3 Li' .QEO .b, f/ 0 ew /No a � c s K -2h e. 2 - f G - /1G -`7q' 0 I IF OF 2-4-1 1 CA' li I234 /2 112 /194 d 3.....t o7 1 /CT. I i USE ' ' 1C � Y / / DEPI7i. !1 i . i Sr.r 1,: 3186•L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626.4675 • (714) 841 -8777 / i .... _ ..11 ,,,..... h i f ?aire d eoitem o ate . ; t ' '‘ - • mom CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT I BY A . C4A4Lice DATE [/ - j -r--- hf- 7 I JOB NO. 3 ., 6 6 I SHEE 1 4 Of WV/ IletsYN olgetz Kw . , .. . . 1. . . ; -.. . i . A .. 1 4 • . • 6 ••• tl . . i . I C F • i .. • ..---- ----- II (7.5.,4refel:f2r V 7 ;; — ii 'MUST efie >12 is • vl ,5 - ... • i v•2 ' d. , , .. ...s _.!......_..... // „. o ., yi ,7 4. 9. , r peolf "'p ■. • -" .5 Oroin • ' :.. .: .... ' ---.....- . ' ' ' 2 i ''...' el: """"■-_____ 0, ,. . 4.-...... . . , ...............y I 1 r. : . ( " I I Zi . ' $.• 1 . L T '‘a.....• . • •; /107E:- 0.4 1.3 kr Pki,rEtato. 1 , r • #0 We ji ftV #0117 IT . .. . . i WY tSE ASOtiCeD 0.2 awaff-zzo. pi Q/4 - 3 . 1 f9 Fps • . . ca P4,. 0.1a1 7,1 %is 6 . 2 - 2 4 I. ' rc. 12-12 .31 1 a271 Mal. 7,0. / ,iz.- . ., :. i , , _,..,_ . • , . : 4r4/LA5LE AI A 5. -(c 3.) 1• t" REO0. 1 k= G - 4 cPs Ka /VC-- . RCP! 1( IF OP ! . 1 , i . . - H ' ' I I • 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92826-4875 • (714) 841-8777 . i / ?keg 20feesteut, I`e. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS I I DEC. 1986 3366 LINE B CURB OPENING CALCULATION SHEETS • ' e 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 C . I3 . 4 /.7. /X7.).e,5 ) 9vc.- 14-41-c/ • CUi:II OPENU ' G (SUMP) Given: (a) Discharge Q 1 - = / / CFS (b) Curb type "=' "D" 4" Rolled 6" Rolled • Solution: r^""""' H (depth at opening) = /3- • inches h (height of opening) = • /O inches . . H /h = /2 / lo =, • /1 I -. • From Chart: • Q /it. of opening = 2.9.E CFS L required = ? / / . gS = • 2• ft. • • JSE L= I - 14' - Ift. illi hitee ' V'Gem ue, az ' SIM 1111011111 A 010J0 CORM MOM CA 111114011 CML4MMIl4MM0 • LANSPMMMMIN • IMIO11U1IUIOM 1! L 0.i 5 •:3 t om. C. 13 . - c.e W4y CU1111 (SUMP) Given: (a) Discharge Q,24. = /1- C. CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled c 1' &La Solution: • (depth at opening) = inches h (height of opening) = • /0 inches . II =• / • /.2- _ • From Chart: • . Q/ft. of opening = J. 9) CFS L required = 4 . 2 - 7 ft. • U SE L = 1 I ft. %Imo- 3110 NONNI AMIN CORM K CA wasola UMW eral.masestsmos • LoolnAmoso • umesummose J 4 C /WE e • c B . E. ktosii-ipvcro,v 400 CURB OPENING ( Interception ) Given: (a) discharge Q23- CFS (b) street slope S = 0. 0/6.7 11f • (c) curb type "A-2" nrr r/ (;(,,t ,, P - (d) half street width = ft. Solution: Q / s 1 /2 = 24.4 /( , 91 )/2= 'Pc Thcrefore y=1 0 4+ I Q /L o 41,1 . . L = 24- / Gd = 3 (L for total interception) TRY: _ I, ft. • 24 / °?. 1 =I 0.431 a/y . .33/ = J o r.z.1 Q/Q = o. Q. 0 •S1 X = c 2-o CFS (Intercepted) • Qe - ( .2_0 = 4' CFS(Carryover) %low' hietig,70/0"4.4.9#4 3170 NI04#1.1. AVM, COSTA MESA CA SMINIAIONI WWII" ava trommtanase • woo ammo • we sumoves . . . C B . 4fr iy - A-oor' 4) -1.) • CURB OPENING ( Interception ) Given: (a) discharge Q. 2r = /6 CFS (b) street slope S = J' , o . 0/67 111 • (c) curb type "A-2" "D" r edo ; 46, , /l s [ „ i . /e- (d) half street width = -2o ft. • Solution: l Risr /z= IL G /( . /2. )tai= :.r -%e Th,,reforc y-, 0 /L= °;7 L _ /G•• / 0 .4'7 = 2 . /7. (L for total interception) TRY: _ L ,o ' ft. • L/ L, ?o / 24.12-• = I (2 91 a/y = .33/ o.37 = I .o.= e'1 (31Q - 6 )•f'` • Q,,= o • n. X IC' _ l`r••i CFS (Intercepted) Q IC. 4. / 4.3 = 2. CFS(Carryovcr) - cs_lel Now, A tei memo a te" � $ lt10 AV M* OORA MEM CA esemsas cnnesee Ismws • 4110 /4MIMM • tolesuAlOmM _ L /NF. g % C. 13 . 4P /3. j' L . 4D / cousr, wov , CITI;f OPENING (SUMP) . Given: (a) Discharge Q .?, = z r • -I, t 'Ii (b) Curb type "A-2" "D" 4" Rolled 6" Rolled t 7 lac, ' RG, « 4- GerAC 1-11 .(1- 41'le ; _ Solution: Ii (depth at opening) = /L • inches I.r !_ h (height of opening) = /D inches . II /h - Iv / 10 =1 /•.- 1 , From Chart: Q /ft. of opening = .2. ' ' C I ( CFS L required = .4 : / ? • ci •C _ q • I • ft. • JSD L= j • /0 I ft. . hie g Atesove, az „ ..... • .17. Pedal. NAIRN COSTA Lew a «tl.«.. avIL IIMweemsee • we mimosa • UII.IM Armes z. C I3 . ' /d ti/ I. ,e�,/ cam, 01. Ct11�I� OPENING (SUMP) . Given: (a) Discharge Q _ 1/• o fo1'( ' =023 3 1 4 1 , g. / 2 (b) Curb type "A -2" "D" 4" Rolled 6" Rolled • (ft( 1, Pet c. �, AJ � 0 4, ( • )u- Solution: • 1i (depth at opening) _ /2 inches h (height of opening) = • / O inches • • 1-1/h = /1 / /D 4 1_ From Chart: • • Q /ft. of opening = 1• q CFS L required = X3•3 / c c / _ 7. ft. • • • U SE L= ( ft. . OOS?A reed► CA 111/111104011 WIMP el.IMewe.msN • L* M.MI wes • wummwe ene 5 \ y C . I3 . /S Yo1E4077/ T7o4 CUI1•1 OPENING (SUMP) Given: • (a) Discharge Q � _ F' I CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • ( ? u � 4 " , r'47-' Solution: • H (depth at opening) = /0 • inches h (height of opening) = inches . H/h = /o / g =1 1 .;-( 1 • From Chart: • Q /ft. of opening = a . of CFS ,• L required = 8. F / :off G� - • ft. • • U SE J..= 1 I it. • • %OW' Ate a Afe aft° 1170 1 AVIMUS COSTA MEN CA ««..N.• WINO a t1 UMeMIII NS . LIIM/PLAMMiMU • LAIMQIMOMTIM• - -- o neolk. 0 .. . :-. C. 13. 8 „R . . g • . C U 11 13 0 1 1 I N G ( I Ji t c r c c p t i o n. ) . 1 Given: (zi) discharr,e Q 2, -,-, / 2- il CFS ',. (b) street slope S = ?/6 7' g . (c) curb type "A-2" t11),, ......,, ,../..:, r , -- (d) half street width = -..- ft. .,... i - olution: /,'..., Q/S' 12 1( .0 ) = • Va-- , , 1 .. r .- - ,. - 0 • , ---j ; i ) , • • e...., :. . 1 ...... ___ Q /L • • . . . c 3_, -I-Si / 0.(-f = (L., fin total intei r..:ept d I' P.':ir : _ L„ = a_ 0 • ft. • i r Li . L. ' /-0 / )io ' {_°-7 I • . t• 4 31:„ I i . r . . 0 i = ic2 cc./ x_o_ . //-2, C1 (Interceptr.:0.) ,, - //- r . # /. 1 . -.. 1 t', 0 P N i■ t. • ,P 44 0mme 3'70 NE n AVENUE (X)ETA I. V. CA IMEN)442111 Iltek.' 'L *I CIVIL ENO U4 [ERIN a • • LAND no. N NINO • • I. AND IC/Well Mgt . 8 C. I3. 4F /20 -% /4,, L.. Qo:..r Ct1T�r�' OPENING (SUMP) Given: (a) Discharge Q /oo =0R •k f-[4 4g4•1•1( FS 3$93 • (b) Curb / type "A -2" "D" 4" Rolled 6" Rolled • Solution: I1 (depth at opening) _ /2 -•V.• inches h (height of opening) _ • / inches • H /h = /2.14 /0 =1 /.2 Y • From Chart: •' Q /ft. of opening = 3 .3 CFS • L required = 3 / 3 .3 = • /1, ft. • JSE Imo= /2 I it. 341 II 70 RbMLL A** 000M Y!M G MOMS.!! OIOM.IMMMBIMM• • LAMn4MMIM! • MMO•MAr07Ill- 9 L /,c/F . E • C. I3. # 9 J. Ce5. c vT, CtIT� OPENING (SUMP) Given: (a) Discharge Q =S = 31• J CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled . �d c �<<. _1.1m. Solution: • • (depth at opening) = /2- inches h (height of opening) = inches . x /h = 'l / /o =I 11 f _• - • • From Chart: Q /ft. of opening = CFS L required - 3 /. / 1 .9� _ 0 � / • ft.. U SE L= 1 /1 • ( ft. Az ie St701l010Ll MAMA OOOTA MIA G MYAiW MEM CIOItNosouneN • MIN RAMNM • MMNNMTWIS -I ti LJA.1 E. • \ **ape( • C. 13 . 195. J c u n OPENING (SUMP) . . Given: (a) Discharge Q /ertr = /3.02 e .73 iv.4' CFS c2/-7c,r-s • c14 (b) Curb type "A-2" "D" 4" Rolled 6" Rolled " 14 ' ; ' • • Solution: H (depth at opening) = /2- inches . _ h (height of opening) = /0 inches . ilih =. I / O = 1 1 From Chart: Q/ft. of opening = CFS I, required = it.. • U SE L= 1 • ( d 1 ft. • hi ere S az 1170 IlEOMU. AVMS COMA OM CA VOOKONS MEM CIVIL •NOINIOMOO • 1.41101 • IANDSOMOVINO _.- C. 13. 11 17 Z1.81 C13 few /.3t ClII; OP ) KING (SUMP) Given: (a) Discharge Q a j = 3 . k3 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • g "' c .F. . Gus. ell e • Solution: j1 (depth at opening) _ /2./4 • inches h (height of opening) = /0 inches . 42,'` 1 to 4 ( • • • From Chart: • Q /ft. of opening. = 3.0 CFS L required = 3. g3 1 ? • o = 7. 9v. ft. • • USE L= [ • • r • . it. • QM- gas. 7.s.‹ t t rl� by • ,,.,, ... C .13. 1 £c /1.64,-04. 02-0 d u►ls LAIERAL, ) %lialse ' ■ C. 13. 4 if - w. 4' 4iQ CUES' OPENING (SUMP) • • Given: (a) Discharge Q too 7. 9 -60 CFS (b) " Curb type "A-2" 4" Rolled 6" Rolled g. ‘c • Solution: • 11 (depth at opening) = • inches h (height of opening) = • /0 inches . 1-1 /h = r;- / 1 =1 ./. 2, I From Chart: • • . Q/ft. of opening = CFS L required = 6 / 2 .q = 3 . 2-- ft.. -.• • S E • • • . %okay' Atemas..., 1170 1 AMAMI COMM IM110. CA 11/1111041411111 WNW ammonium* • LAND PLAIININS • IANIMAINIVINO . , CA Te LA . - L_ - :7-- *tor e( ' • . C. 13 . 40 /9 - igliie ST • (.6) . CUES' OPENING (SUMP) . • • Given: - . (a) Discharge Q /00 / CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled . 4; 1'4 / 4 ,i,c .., /?-..._. i i .. , 4- 4, , .,r , • • . • Solution: • . li (depth at opening) = /1- • , inches - - • h (height of opening) = . /° inches . .. . . . . 1-1/h =. /7•• / /0 •=1 /. I -.. . .....- . • • . From Chart: . . . .: Q/ft. of opening = CFS - ... ...? L required = i. / / . a ?./..r = ,---- • .,, ft.. • ..... -. • ,. - , . kga... h g Pfteagag, AZ 3170 1110011.1 mom corm affill cm seesoosas 11111111111•11 en% asseseinuse • woo mow* • imsesummses ‚ 4 ''.N/ C . I3 . .:# 2 p 4/44/4 S Gym CtTT;II OPENING (SUMP) . Given: (a) Discharge Q /00 = It ‘Z CFS (b) Curb type ".A-2" "D" 4" Rolled 6" Rolled • • � • .6 • Solution: • jT (depth at opening) inches h (height of opening) = (D inches • /h: r0 =1 /•2 j_ • From Chart: . Q /ft. of opening = 2• CFS • ft. • • L required = /8 �2 / of �1 _ U SE r.= 1 • (f t. . 1111 ' J�4G�C. �3tC 7,70 N[CI•LL AVINUI COSTA MM CA sionarS MEM CMLwMIN0 me • LANIRANNINS • LMIewIN7r'NNe /r 1* *Irwe f • • C . 13. AL - o ;7 400/ &'.& C 11 f1 (SUMP) • - • • Given: (a) Discharge Q Leb ref Li 2 -- CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • e F • • • Solution: • • H (depth at opening) = /2.0 • inches ‘400.0- • h (height of opening) = inches . " • /h = 1 )-' 4 / /o =1 /• 2- • • From Chart: • • QM. of opening = CFS .• L required = / . 3. 6. z G. • ft. • • iJ S E L= I ft. . •, • • '41w 9170 0MILL *WNW COSTA IMIIK CA11011111141111 • C. B. 4 /lo- . PYA CURB OPENING ( Intcrccption ) c -, Given: (a) . discharge Q imo = 3 .7 CFS (b) street slope S = o, o/// 11 (c) curb type "A -2" "D" " � r F Gu fF� • (d) half street width = .3/ ft. • • Solution: • Q/ S / ' z = j•-IN /( o /// ) 5•( Th, y =1 o 7 1 Q /L = . �� • L = • / o j7= /p, / (L for total interception) - TRY: _ L- • ft. Q' / /O.( =1 I a/y = .33/ ° '3 7 = o. t' 9/Q = D • Q X 0.W = 3 -2-5 CFS (Intercepted) Qr_= - 3 �Cl = D• CFS(Carryover) -- • � r; Axe ;;�a' emove. ate 1 f 317011100ALL AVM! 00/n* tank CL f!M!O•N awk meN1NIOMNO • woe MAMN,M • LNN/MMIMN Adak Nitme( • ,- ) et C. 13 . C u r• o (SUMP) . . • Gi\ren: (6.q 0, ,(Ay-•-,CFS / 7 (a) Discharge .R.° /40 ) 11 (b) . Curb type /1-2 H "D" 4" Rolled C" Rolled F, .4 • • • 44%01. • Solution: • • (depth at opening) /2. inches s (height of opening) = •0 inchc:; . • /2_ / /o / • • • From Chart: • . Q/ft. of opening = c2 • c ir - CFS I, required = f t. • • . . . • USE = •(, • ft. • • • C. 13. i1 / - 30 CUEr, Oi'1 N1NG (SUTIP) • Given: (a) Discharge Qa _ O CIF (b) Curb type "A -2 ". "D" 4" Rolled 6" Rolled g 6 F 4 nic64,e G f • Solution: • li (depth at opening) = r /2 • u�chcs - u h (height of opening) = (D iilchc . = • 2 /0 _ /. 2- From Chart: Q/ft. of opening = CF S L required - o� o� 1� ,�,�5 - d ft. • • O tto • USE rte-= • ft. Nftion" ( ' C. 13 . i/ -._ c o r , r OPEN1NG (SUMP) • . . Given: I (a) Discharge Q -S = /5-'°-s CFS ___ . _ (b) C II urb type A - .-2" "D" 4" Rolled G" Rolled • 6I(3 — F• 4 4c..." . . "---( . „..... . Solution: • 11 (depth at opening) = /0 inches • • - h (height of opening) = c(• inches • . . . . I 6 __:L /• a5 , . . . . . . . . • ., . From Chart: - • . • . . • Q/ft. 0 f o • pening = , c) , *c g CFS • _ . . I, r e q u i r e d = /5. 0 5 - / D_S" = ,/ • f l . • , _........,.._____ . . . . . t ,, _ • 00 • . s‘mmie • • USE E f t T., = L • 7 . . . , - . 7 . . . _ . ... . • r c ' C. 13 . 3 - ..azdes CIT111:1 OPENING (SUMP) . . • Given: (a) Discharge Q j 6T • 2■ CFS (b) Curb type ".A-2" "D" 4" Rolled 6" Rolled C. F. 4!1 aLf;f'E'r; • •,. Solution: • 11 (depth at opening) = /0 • inches h (height of opening) = inches . • H/h / r .1 From Chart: . . Q/ft. of opening = CFS L required = 6. 2, . .2 = ft. • U S E L = I 4 ft. ?Ate g Lfl MO SIMLA AVM* COSTA MIS% CA SISSIMMIS UMW MMISSIMMIS • TANDATAMINNS • LAMMSWIMMISS • • . L. /ALE • C, . • • C . I3 . 4F t - - lke,7 45 ®KwY. CtT T1s• OPENING (SUMP) . Given: - • (a) Discharge Q goo = 3 -7 . CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled C. F. 4.. . eoc....e pAit 44/› • Solution: • 11 (depth at opening) _ 0- inches • h (height of opening) _ - /D inches . .. .. • From Chart: • Q /ft. of opening = - . . 2. 9,s' CFS ., . L required = 3.7 / . 2 . 9 5 -- . _ • /. 2s ft. • . USE L= I . 4L ' 1 ft. • • ® .170 AMU AVENUE COSTA 1/N CAS MOM CIVILINMNKIE e • uncommon*, • LAIDe vone / ALe 4 fl ‘44 ,11111 C. 13 . 41- — Ti io ,.77a) cunfl OPENJNG (SUMP) . . Given: • (a) Discharge Q /00 = 10. /0 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled 6 if C F. q'fi r tA)..eze r r4y).-• • • Solution: • • - • H (depth at opening) = /0 • inches fv • - h (height of opening) inches . 1-1/h = i° / • From Chart: • • Q/ft. of opening = CFS • L required = /0.0 / ; 0' 2 - = 4.6 • ft. • U SE L = • - I ft. • -• kftso.- ?keg Ate40620.• 1110 Meal MINIX CO11*VCA MEM CIVIL arammnens • we memos • um ammo 3 • • • Q 1 O HYDROLOGY • ow iikaege L Q 25 • HYDROLOGY MEW kfamare RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM �, BASED ON SAN BERNARDINO COUNTY 4 SEC) 1983 HYDROLOGY MANUAL i =A,..ii JRAiiiJ.isiJR =iJRAAJrii. =.� Aie::.lAAJRAAiJ! i 44 4444444444444444444 4444 { {44 444444444))))))))!))}))))))))) y))))))))))) >}) >, 4C) Copyright lsee Advanced Engineering Software CAES3 Especially prepared fors HALL & FOREMAN, i NC. 444 4444444444 444444 44444 444 44 444444 444))}>))) )))>))))))>))))>))> >) > >)))) >) >> **.*******DESCRIPTION OF RESULTS************ gee •u*****e.*****ae******** ******* * CATCH BASIN HYDROLOGY,LINE B ie * AHMED SHE Z 4H, .T. N. 3366, 2 E/ 2 0 /fs6 r. **** to• le M* M******* to****N***Mtoale•fie*******M**R* toe* a* a* **********Re•R**R****to*a**•*** USER SPECIFIECD HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT4YEAR) = e5.00 SPECIFIED MINIMUM PIPE SIZE4INCH) = 28.00 SPECIFIED PERCENT OF GRADIENTS4DECZMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 60- MINUTE INTENSITY 4 I NCH /HOUR) _ .980 100 -YEAR STORM 60- MINUTE ZNTENSZTY4INCH /HOUR} = 1.470 COMPUTED RAINFALL INTENSITY DATA; STORM EVENT = e5.00 1 -HOUR 1NTENSZTY4INCH /HOUR) = 1.15.90 SLOPE OF INTENSITY DURATION CURVE _ .6000 SEC HYDROLOGY MANUAL "C "- VALUES USED 4444 444444444444 44444 44 44 44444 4444 444())))))) )))))))))) >)))))))))))))))))))) Advanced Engineering Software CAES2 SERIAL No. A0580A REV. 3.1 RELEASE DATE; 5/02/85 444444444444444444 4444444 4444444444444)))))))))))))) 3)))))))>))))>))))> }1))) FLOW PROCESS FROM NODE i a . �a0 TO NODE lee 30 2 8 CODE = e C.8 IV. )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZS44444 iii. #.= i.I AJO .tAiiYiiiiiiiJIa'iAiiiAZIMINI RiiA.liiiiiiJO! =AAAA=A .aA ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS; SINGLE FAMILY 41/4 ACRE) TC _ M*C 4LENGTH**3) / 4ELEVATION CHANGE) 2**.:? INITIAL SUBAREA FLOW- LENGTH = 950.00 UPSTREAM ELEVATION - 2304. "" DOWNSTREAM ELEVATION = 2893. SQL ELEVATION DIFFERENCE = 11.e0 TC •- .393*C4 950.00**3)/4 22.e0 }3*a.e i 14.816 ?5.00 YEAR RAINFALL INTENSITY4INCH /HOUR) _ :?.666 SOIL CLASSIFICATION ZS "A`• SINGLE- FAMILY 4 2 /.4 ACRE LOT) RUNOFF COEFFICIENT •_ . 7'3eo > w a »a. rf >f a.. r-. a -w$., .a.1 -- a . ... a a..i Yff.. fi4wvf_ f' • A.f 3! _r 0 . KNex FLOW PROCESS FROM NODE 28:.20 TO NODE 2 &.00 I8 CODE _ :? 'ewrr )))) > RAT I OVAL METHOD INITIAL SUBAREA ANAL Y 9 Z 9 4 { < < { • �flss.E =ssi =s���AA.=i.AASSA�'�� IIJ1 =asA.f�itAASilssssssJts.= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 42/.4 ACRE) TC = M*C4LENGTH * *3 }/4ELEVATION CHANt3E}2 * *.8 INITIAL SUBAREA FLOW- LENGTH A 900.00 UPSTREAM ELEVATION = 2 99. 70 DOWNSTREAM ELEVATION = 2.''.9t.00 ELEVATION DIFFERENCE = 8.70 TC •_ . '393* 14 900.00**3) / 4 &703**. _ 15.087 85.00 YEAR RAINFALL INTENSITY4INCH /HOUR} A 8.638 SOIL CLASSIFICATION I9 "A" SINGLE- FAMZLY4214 ACRE LOT) RUNOFF COEFFICIENT = .7308 SUBAREA RUNOFF 4CF9) = 6.75 TOTAL AREA<ACRES) = 3.50 TOTAL RUNOFF(CF3} = 6.75 FLOW PROCESS FROM NODE 1&00 TO NODE 2 r3:?. 00 78 CODE = 2 )))))DESZ8NATE INDEPENDENT STREAM FOR CONFLUENCE<<(<< A.=AASAifAAASAASiWMU MASNIMIiI.=ialRMAI l tAss.= =AS.=iAAAS INMI ssA CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTE9) = 25.09 RAINFALL INTENSITY 4INCH. /HOUR) •_ e.64 TOTAL STREAM AREA 4ACRE9) A 3.50 TOTAL STREAM RUNOFF4CF9} AT CONFLUENCE = 6.75 FLOW PROCESS FROM NODE 2 8:?. 40 TO NODE t 8:?. Diet 78 CODE _ )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < << AAAAi=. SWAAS iAAAAAAAAASAa AAAallisssAA .i =A.fiflA.AYIR =ssl.ssMIIII.fSMINIM AAAJI.=aiAINM AAs ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY <1/4 ACRE) TC = !4* C <LENt3TH **3} / < ELEVATION CHANGE} 2 * *.:? INITIAL SUBAREA FLOW- LENGTH = 600.00 UPSTREAM ELEVATION = 230e.50 DOWNSTREAM ELEVATION = t:?'92. olei2! ELEVATION DIFFERENCE = 11.50 TC ._ . 393* C < 600. 00 * *3} / 4 2 2.50} 2 *N. e = 11.187 1 5.00 YEAR RAINFALL INTENSITY < INCH /HOUR} = 3.156 SOIL CLASSIFICATION IS "A" SINGLE - FAMILY <2 /4 ACRE LOT} RUNOFF COEFFICIENT = .7503 .SUBAREA RUNOFF 4CF9) = 7.58 TOTAL AREA <ACRES) = 3.:'`0 TOTAL RUNOFF<CF9} = 7.58 FLOW PROCESS FROM NODE 2 8:?. 00 TO NODE 2 8:3. 00 78 CODE = t C . $ � (7 }))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << '4400rfr )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < 4 < < 4 1T .ETA CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :: AREs TIME OF CONCENTRATION<MINUTES) = 21.29 RAINFALL INTENSITY <7NCH. /HOUR} •= 3. 26 1 - n Tar P'rFZ.FaM 4SisC -^ '/.}r PCt: } ? -•>A CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY . NUMBER 4CFS) SMZN.) 4INCH /HOUR) 1 6.75 15.09 638 wr a 7.56 11.19 3.156 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC1 USED FOR a STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 23.08 2.58 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUN0FF4CFS) = 13.88 TIMESMINUTESI = 15.087 TOTAL AREA4ACRES) = 6.70 it ...... *R♦ ere**** ****•e*ilR♦eae♦e lllf...***** 1iF**..ie.... 11 11ih..iliRilllitililil...**..*.. 1l1t*** FLOW PROCESS FROM NODE 183.20 TO NODE 283.00 Z8 CODE _ :? >)))) RATIONAL. METHOD INITIAL SUBAREA ANALYS18(4444 =a=ara►aa�.ea .ssraa+vses+as--- .v-ra=a= rssr_rs ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = MI 4LENOTH**3) / SELEVATZON CHANGE) 2*re. i INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION = 1e98.50 DOWNSTREAM ELEVATION •= 1 84.50 ELEVATION DIFFERENCE = 14.00 TC = .359*[ 4 700. 0Orere3) / 4 24.00e*.. = 20.794 .3 5.00 YEAR RAINFALL ZNTENSZ TY ( INCH /HOUR) = 3. ae4 SOIL CLASSIFICATION IS "A" Niiese CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7827 SUBAREA RUNOFF S CFS 1 = 11.59 TOTAL AREA4ACRES) = 4.60 TOTAL AUNOFF4CPS) = 21.59 iek rerere rea rererererererere reu re rererNe re reaaR rereuuu re re rere**** rererere 4rerererere****rerereuare rererereu Kre rearere... rerr FLOW PROCESS FROM NODE 2 33.00 TO NODE l30.00 Z 3 CODE = 6 )))))CQMPUTE BTREETFLOW TRAVELTZME THRU SUBAREA44444 =ar= =arr aMIwrw - aivIM=.nsrr==aINIPARAV= =a==aM= near= ==�ea+ae== =AINIWWar==r= ==aras UPSTREAM ELEVATION = 1x84.50 DOWNSTREAM ELEVATION = leee.00 STREET LENGTH4FEET1 = 500.00 CURB HEIGTH4INCHES) = 8. STREET HALFWZDTH4FEET) •_ :?4.00 STREET CROSSFALL 4DECIMAL) _ . ee93 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW4CFS) •= le. al STREET FLQWDEPTH4FEET) _ .64 HALFSTREET FLOODWIDTH4FEET) = 26.95 AVERAGE 'FLOW VELOCITY 4FEET /SEC.) _ :3. 79 PRODUCT OF DEPTHtVELOCITY = 2.77 STREETFLOW TFcAVELTIME4MIN1 = a.99 TC4MZN) = 23.78 :35. 00 YEAR RAINFALL ZNTENSZTY 4INCH /HOUR? = e.784 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7370 SUBAREA AREA4ACRES) _ .60 SUBAREA RtNOFF(CFS) = 2.83 SUMMED AREA4ACRES) = 5.:4'0 TOTAL RUNOFF4CFS) = ti.63 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTHSFEETI = .65 HALFSTREET FLOODWIDTHdFEET1 = 27.30 FLOW VELOCI;FY 4FEET /SEC.) = a. 3:= DEPTHeVELOCITY = 1.8e re** *recur. **e******xx************* *** **********. r. *****e***************** r. r. r. r. r. Ft. Cw PWWESS F= POM NC PE t S0. <r 0 TO WW147 1-n0.00 TS r7T-0"Yr •= 1 r + ! + Li•..•.. 1+.Y►'...... J...J Y..s .mss Yal._.... J...ar.1 Y •...• .. v... » J_P4% . 1 '• A =RR=.A a.A • .A=a:r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATZON4MINUTES} = 23.78 RAINFALL INTENSITY {INCH. /HOUR) _ 2.78 TOTAL STREAM AREA {ACRES) = 5. 0 TOTAL STREAM RUNOFF4CF9) AT CONFLUENCE •= 2.83 *******e**r. ************************************ •*** ******* ***** *********** **r. FLOW PROCESS FROM NODE 282.30 TO NODE 180.00 IS CODE _ a )))))RATIONAL METHOD INITIAL SUBAREA ANALYSI8{ {444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT Z3: SINGLE FAMILY 4214 ACRE} TC .- tl*C 4LENGTH**3) 1 {ELEVATION CHANGE)]**.,_ INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 2:85.50 DOWNSTREAM ELEVATION = 2282.00 ELEVATION DIFFERENCE = 3.50 TC = .393*t4 2000.00**3 }14 3.50 }3**.2 = 29.281 25.00 YEAR RAINFALL INTENSITY4INCH /HOUR) = 2.277 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY4214 ACRE LOT) RUNOFF COEFFICIENT = .7228 SUBAREA RUNOFF 4CFS) = 8.10 TOTAL AREA 4 AC RES) = 5.00 TOTAL RUNOFF 4 CF S) = 8.10 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 19 CODE = 2 c,.& . Ir8 )))})DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE4444? )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUE844444 MMAIWO aaa aaaa �a =w aran- aaam%A a= =.iia =a imltasstrav MIMI MAIN i'JIiW.R =dMAYaa= CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :? ARE: TIME OF CONCENTRATION4MINUTE9) = 29.28 RAINFALL INTENSITY 4INCH./HOUR) _ 2.28 TOTAL STREAM AREA {ACRES) = 5.00 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 8.20 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFSY {MIN.) 4INCH/HOUR) 1 12.83 23.78 2.784 a 8.20 19.28 8.27? RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR i STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 28.62 28.59 COMPUTED CONFLUENCE ESTIMATE'S ARE AS FOLLOWS: RUNOFF 4CFS) = 28.62 TIME 4MINUTE9} = 13.784 TOTAL AREA4ACRES) = 20.20 A******************************************** ******************************* FLOW PROCESS FROM NODE 181.00 TO NODE 280.00 IS CODE _ :3 ' >r›)>RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 iaaaaRaaaaaaia•R a .......... ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 29: SINGLE FAMILY 41/4 ACRE) TP ._. K..r // =MATW4.4.7L / /=•/ F{!6TtPlh/ r LF�1h ►1 "P z+►► :� DOWNSTREAM ELEVATION = 2:?8►°.. eZ+e ELEVATION DIFFERENCE = 38.00 TC •_ •393* C 4 2 2 0e. e4* e 3 Y 1 4 2 8. 42ee) 2* i. - 14.714 25.00 YEAR RAINFALL INTEN81TY4INCH /HOUR) = 2.677 SOIL CLASSIFICATION I9 "A`• SINGLE- FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT •w .7325 SUBAREA RUNOFF (CFSY = 9.82 TOTAL AREA SACRES) = 5.00 TOTAL RUNOFF SCFS) = 9.82 **** Ne iNe le ie itee********* ee****K ee it******** ie**** ie il*+l********** **lNlee*ac•t*+enieeeeeiNe**** FLOW PROCESS FROM NODE 180.00 TO NODE 2 80. eltQe 13 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < <“ =arataaaa.=aa =asa .saaar+ras=aaaaasaaaasaaa - -- .a�•e CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MZNUTEBY a 24.72 RAINFALL INTENSITY S INCH. /HOUR) = 2.68 TOTAL STREAM AREA <ACRESY = 5.00 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE = 9.82 ee*eeeeRieee*e *** eel ************* ***ee+eee*ee****....ie......re ie......* .♦ew+eilre+e.+euiey ...** FLOW PROCESS FROM NODE 181.10 TO NODE 284. eZee2e 28 CODE _ 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYS28 {4444 .vaaaa.= aaaafl araa=aaa.=IKAWM aaa= =afl.==«aass.=a=r=== =s_z ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 4214 ACRE) TC = W*C 4LENe9THee+e3Y 1 {ELEVATION CHANGE) 1**. 2 "' INITIAL SUBAREA FLOW - LENGTH •= 400.00 UPSTREAM ELEVATION •= 1300.00 DOWNSTREAM ELEVATION = 2 92 . +c e ELEVATION DIFFERENCE = 9.00 TC = . 393* C 4 4e2e0. 00**3Y 1 4 9. IMO 2+e+e.::: = 9.222 a5.ee YEAR RAINFALL INTENSITY4INCH /HOUR) = 3.546 SOIL CLASSIFICATION Z9 "A" SZN6LE- FAMILY 4 214 ACRE LOT) RUNOFF COEFFICIENT = .7613 SUBAREA RUNOFF 4 CF S) = 1.62 TOTAL AREA4ACRESY = .60 TOTAL RUNOFF <CFS) = 2.62 ie iele 4.•..**ieReeie7ee *** it *ee+ eee7 tie lele* ***Rleieie...*ie****1eeellRee* eeit1e1e.. ..ilie.**R•ie9lieieieie***Y.*** FLOW PROCESS FROM NODE 184.00 TO NODE 180.00 I S CODE •= 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUDAREA4 < <4< aaaa+n =assaaaasaaaa=aaa MNIOaaaaasaaaasarJ AWNaa.= =saaaaasa ==aa UPSTREAM ELEVATION = 2292. e2ee2e DOWNSTREAM ELEVATION = 2882. €e0 STREET LEN8TH4FEET) = 970.00 CURD HEIGTH4ZNCHES) = 8. STREET HALFWIDTH<FEET) = 24. eEeQe STREET CROSSFALL 4EPECZMALY = . 0e93 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * TRAVELTIME COMPUTED USING MEAN FLOW <CFSY = 2.75 STREET FLOWDEPTH4FEETY = .37 HALFSTREET FLOC: +DW I DTH 4FEET) = 8. 8e:? AVERAGE FLOW VELOCITY4FEET /SEC.: = 2.47 PRODUCT OF DEPTHSVELOCZ TY •_ .93 STREETFLOW TRAVELTIMESMZNY = 6.54 TC4MINY •= 15.75 ' 25.00 YEAR RAINFALL ZNTENSITY<ZNCH /HOUR) = 2.570 SOIL CLASSIFICATION IS "A" 3ZNGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7276 SUBAREA AREA 4ACRESY = 1.20 SUBAREA RUNOFF 4CFS) _ :=. a4 SUMMED AREA 4 ACRES Y = 1.80 TOTAL RttNt=ri- F 4 e_•FS Y = 3.86 rhin. f?F" co we sPr.:z c :'•r►. "T rt, L-pyrrc.. ► r• s i-+a - *******************************x****x**xx*x uw***** ** * * *********w ******, *r. ** FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 19 CODE = 1 CA/g1 = loge )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44 444 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES44444 arssa+sarsaasasav - -� saaaasssaaasar: aaramsaa .•RSSaaas=arsaamsasraaam CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :? ARE: TIME OF CONCENTRATION4MINUTESY = 15.75 RAINFALL INTENSITY (INCH. /HOUR) = 0.57 TOTAL STREAM AREA (ACRES) = 2.80 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE = 3.86 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) 4MIN. Y 4INCH /HOURY 2 9.82 24.71 .=..677 i 3.86 15.75 e. 57e RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4S8CY USED FOR e STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 23.4a 23..e8 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF4CFS) = 23.40: TIME4MINUTES) = 14.714 TOTAL AREA 4ACRESY = 6.80 wit,t«•ie****aewit+t*** pert+ e*a *it*itit*it ****u********it**ie+ t****• wit****+t*****a•itu«• **** FLOW PROCESS FROM NODE 191.00 TO NODE 2 90.00 I s CODE _ a C.8, Y Y Y Y Y RATIONAL. METHOD INITIAL SUBAREA ANALYS2 8 4 4 4 4 4 MaralratIlealearaIRMINNOWIMIMILIWAIWZBAIV �..aaaUaNN = =a ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACREY TC = M* C 4LENGTHee3Y / 4ELEVATION CHANGEY 3e*. INITIAL SUBAREA FLOW -- LENGTH = 2200.00 UPSTREAM ELEVATION = 1I 78.70 DOWNSTREAM ELEVATION •= 2:371.70 ELEVATION DIFFERENCE = 7.00 TC •_ .333eC4 2200.00**3)/4 7.etoy3+ex.E •.. 27.773 51.00 YEAR RAINFALL INTEN8ITY4INCM /HOUR) _ :3.392 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = . 72134 SUBAREA RUNOFF4CFS) = 4.98 TOTAL AREA4ACRESY = 2.90 TOTAL RUNOFF4CFSY = 4.98 ie ieR lt*• t**** 1l itR ltitit*itit**** itit**** itltRit*itltiti eieitillt*it***Mlei *** wieitititltlti ..*.itl ...*..*** FLOW PROCESS FROM NODE 29a.00 TO NODE 195.00 ZS CODE _ :3 C. f3, # p9y YYY)YRATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 =s==tars=.=.= Ammssmessr ._ .= m•amsesss =sarza= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC = M+e f 4 LEN©Tt- a e3Y / 4 ELEVAT I ON CF-tANe3E Y 3 **. c? Nue INITIAL SUBAREA FLOW- - LENGTH = 700.00 UPSTREAM ELEVATION = 2:374. 00 DOWNSTREAM ELEVATION = 2:363.00 ELEVATION DIFFERENCE = 11.00 TC = . 393* E 4 700. 00**3) / 4 1 2. 00Y 3 **..F •= 1 . 3dtct ;_.5,00 YEAR RAINFALL. FNTEN9IT 2NCH /HO“R> = ,'r. 970 tspw_t r►WT3LY41/+r Ht.hrt LL1s.r rrs NUrr s t_strr1L.strvs = .? SUBAREA RUNOFF ( CFS) = 9.94 TOTAL AREA4ACRES) = 4.50 TOTAL RUNOFF4CF9) = 9.94 FLOW PROCESS FROM NODE 193.00 TO NODE 195.50 Z 9 CODE •_ )))>Y RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 4 4 4 4 agar =.earas=aasnna ---na =.=. maarams -is:a=. =araesna.�mmasflananae� ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY 42/4 ACRE) TC = 14* C 4LENGTH**3) / 4ELEVATIQN CHANGE) ? **. a INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 2:?7d.70 DOWNSTREAM ELEVAT ION = 2 66. 2 0 ELEVATION DIFFERENCE = 2a.6e2r TC = .393*C4 1ec� .00**3)/4 2::.60)a**.c:: = 14.s e4 :35.00 YEAR RAINFALL ZNTENSITY4INCH /HOUR) _ ;?.655 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY 4 1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7315 SUBAREA RUNOFF (CFS) •= 1a. 43 TOTAL AREA4ACRES) = 6.40 TOTAL RUNOFF 4CFS) = Ia./fa **** a***a*• re* r* ita** it************************** xx* *xx *****a***ux*a****** ***it*•r. FLOW PROCESS FROM NODE 195.50 TO NODE t95.00 Z S CODE = 6 )))))COMPUTE 9TREETFLQW TRAVELTZME THRU SU&AREA44444 aaa=aear=.=sraraW=as mass= aaa= ar=== asaa aasararas = .sr =M2A sasara UPSTREAM ELEVATION = 1La66.10 DOWNSTREAM ELEVATION •= 2 63.00 STREET LENGTH(FEET) = 400.00 CURB HEISTH4INCHE9) _ 8. *Impoe STREET HALFWIDTH4FEET) = a0.00 STREET CROSSFALL 4DECZMAL) _ .0a70 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF •= 2 **TRAVELTZME COMPUTED USING MEAN FLOW4CFS) = 2?.43 STREET FLOWDEPTH4FEET) _ .59 HALFSTREET FLOODWZDTH4FEET) = 16.34 AVERAGE FLOW VELOCITY 4FEET /SEC.) •= 3.a9 PRODUCT OF DEPTHS VELQCI TY = 1.9a STREETFLQW TRAVELTIME 4MZN) _ e.03 TC 4MZN) = 16.95 GS. oZte7! YEAR RAINFALL INTENSITY 4INCH /HOUR) _ a.459 SOIL CLASSSIFICATION I9 "A" 9iNGLE- FAMILY 4 1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7ael SUEAREA AREA4ACRES) = 0.00 SUEIcAREA RUNOFF4CF9) •= 0.00 SUMMED AREA4ACRES) = 6.40 TOTAL RUNOFF4CFS) = 2.? 43 END OP SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEET) _ .59 HALFSTREET FLOODWIDTHSFEET) = 16.34 FLOW VELOCITY4FEET /SEC.) - 3. as DEPTH*VELQCITY = 1.9:: 4 ******************************** * ****** *************** *******r. ***x*r. *•******•r. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 I9 CODE •= 1 )))))DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE4444< .=a= a= ===a•Q.ararararar.3= ._ ===.s ersrssrarae sras=rarssesrsr CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: y TIME OF CONCENTRATION4MINUTES) = 16.95 RAINFALL INTENSITY 4INCH. /HOUR) _ e.46 TOTAL STREAM AREA (ACRES) = 6.40 TOTAL STREAM RUNOFF 4CF9) AT CONFLUENCE = 1::. 43 r. •rrx r. t.•r. uxr****.****,.1.u•r. *•rssr. *x•r!****. r. r. -r. r. ****. •ir*eri.*.. l►rxr. ;r. x rr*1. -r =1 Rb1 C: c. rM p ww,C' 4G+ + $ r'.S - r r INW.Vr= 4 CA ..• +rn T .a : •C'rl r4 r_ ._ a =sass a ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 }ACRE) - TC = t4*C <LENGT **3) / < ELEVATION Ct- 1ANGE) 3 **.:_ INITIAL SUDAREA FLOW - LENGTH = 700.00 UPSTREAM ELEVATION = 1672.00 DOWNSTREAM ELEVATION = 1::63.181 ELEV(: T ION DIFFERENCE = 8.00 TC = .393*C4 7810.00**3)/4 8.00))e*.i = 23.294 X5.00 YEAR RAINFALL INTENSITY<INCH }HOUR) _ x.858 SOIL CLASSIFICATION IS "A" SINI3LE- FAMILY < 2 . /4 ACRE LOT) RUNOFF COEFFICIENT = .7400 0 9URAREA RUNOFF<CPS) = 8.46 TOTAL AREA<ACRES) = 4.00 TOTAL RUNOFF <CF3) = 8.46 *******e******** **** it e•e ********** *1****•+***** a*****ex*w* *x***** ***.***** **ar r. r FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 2 CC q )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE4144 )))))AND COMPUTE VARIOUS CONFLUENCED STREAM V*'?LUES < < < << axr S mar irs =s mr= m amamar stearsatrmuszea ==.a =asTesaaL-aa asses• Vaa as=sa=ma=saara=.saazaSaas =. === CONFLUENCE VALUES USED FOR INDEPENDENT STREAM a ARE: TIME OF CONCENTRATION {MINUTES) •= 23.29 RAINFALL INTENSITY {INCH./HOUR) _ a.ee TOTAL STREAM AREA {ACRES) = 4.00 TOTAL STREAM RUNOFF {CFS) AT CONFLUENCE •a 8.46 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER <CFS) {MIN.) <INCH /HOUR) err # 2:?.43 16.95 ::.454 :? 8.46 13.19 t .858 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA <S&C) USED FOR a STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 19.71 18.13 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF {CFS) = 19.71 TIME (MINUTES) = 16.95,E: TOTAL AREA {ACRES) = 10.40 ** *i* K••1*....i*i*i*... **i** *i*i**i**....i ...* *i*•1** *f*1!1*... i*i** **i*i*i*.......... i*i*i*i*i***1*i*i*i** FLOW PROCESS FROM NODE 294.10 TO NODE 194.10 IS CODE _ )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <44 <4 = , aa a. =, aasut .a a = =as =a�raaa ASSUMED INITIAL SUS AREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = t<*C <LENGTH**3) / {ELEVATION CttANGE) 2**. E INITIAL SUBAREA FLOW - LENGTH •a 730.00 UPSTREAM ELEVATION = 18:3. 00 L►OWNSTRtAM ELEVATION ** 1:72.00 ELEVATION DIFFERENCE = 11.00 ..- TC = . 359+* C < 730. 00**3) / < 21.00) 3* *. ;: = 11.6t6 s35. 00 YEAR RAINFALL INTENSITY < INCN /HOUR) = 3.085 SOIL CLASSIFICATION I9 "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7786 SUBAREA RUNOFF <CF3) = 5.77 TOTAL AREA<ACRES) _ .=.. 40 TOTAL RUNOFF {CFS) = 5.77 P L SSW )•'f (Ut t Y t• r. cJP1 rvts I 1 � .N . 3 10 f U MULYG 1 '03. tart ! L t. UG = 0Y00000MPUTE TRAPEZOIDAL-CHANNEL FLOW4 CS4 ) ' )YYTRAVELTIME THRU SURAREA44444 @ , y � y , .maaA iAaamasat erAaA.: srxa•. rssas_ ras:. rsaass.= ssras. _rserazsssarssnra.rsoassaasss_r UPSTREAM NODE ELEVATION = le71 . r20O Now DOWNSTREAM NODE ELEVATION = 1:=58. S& CHANNEL LENGTH THRU 3UEeARER 4 FEET) = 800.00 CHANNEL EASE 4FEETY A ao. 0t@ -2- FACTOR = 2.000 WINNINGS FACTOR = .015 MAXIMUM DEPTH4FEETY = .5020 CHANNEL FLOW THRU SUBAREA4CFSY = 5.77 FLOW VELOCITY4FEET /B£CY •_ e.al FLOW DEPTH4FEETY = .12 TRAVEL TIME4MIN. Y •= 5.11 TC4MIN. Y = 16.73 ********ie****•+ * ***it** ***....ire►. relax•***.• k..• fe****ir...•rriex•rr..** * ** ***** ter. x*r. yr. xi. FLOW PROCESS FROM NODE 195.80 TO NODE 195.80 IS CODE •r 3 YYYYODESIGNATE INDEPENDENT STREAM FOR CONFLUENCE444.‹ = = =.R YiC T =S. iT ar.� Ssts T C.sT CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTEBO •= 16.73 RAINFALL INTENSITY 41NCH. /HOURY = a.48 TOTAL STREAM AREA 4ACRES0 = i3.44a TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE = 5.17 x>x te*x ee*****teuteteiexirte.x•x•xyet►. ie+ e• +ete.***+ex•x*x•tetmee *ie*r. te****xsx•x** r. t.. r.. r. xxr. r. r. r. r. r. ** r. FLOW PROCESS FROM NODE 194.00 TO NODE 195.80 ZS CODE •_ >)» Y RA3' I ONAL METHOD INITIAL SUEtAREA ANALYSIS 4 4 4 4 4 :arm A ar 7•arss ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC •_ Kier 4LENBTHe*3Y s` (ELEVATION CHANt3EY 3x•*.:: INITIAL SUBAREA FLOW- LENGTH = 850.00 UPSTREAM ELEVATION = 1 C ?•4.0c�020 DOWNSTREAM ELEVATION = 1:758.5 ELEVATION DIFFERENCE = 15.50 TC = . 359* C 4 85020. 88* *30 / 4 1 5.500 3 **.:7 = 11.883 a5.88 YEAR RAINFALL INTENSITY 4 I NCH /HOURY = 3.02044 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7777 SUBAREA RUNOFF 4 CF3 ) = 8.58 TOTAL AREA4ACRESY = 3.60 TOTAL RUNOFF 4CFSY = 8.5g? ***e** .............. *** . tea.. **Ie*ieteiex••n•********e************************ . r.r.r. FLOW PROCESS FROM NODE 195.80 TO NODE 195.80 IS CODE •= 1 C . $. ' T b YYYYYDESIgNATE INDEPENDENT STREAM FOR CONFLUENCE444.‹ 0000)AND, COMPUTE VARIOUS CONFLUENCED STREAM VALUES{‹{{{ AAAitiIAAAi�AAAA.= AAA= AAi'/. tr.= AairiAAie Ai7fA. 1�AiiJQA .�Ai=2eAA.frBt =A:sir =sla3•s T=L`.raSii �S' S CONFLUENCE VALUES USED FOR INDEPENDENT STREAM E ARE TIME OF CONCENTRATION4MINUTESY = 11.86 RAINFALL INTENSITY {INCH. /HOURY = 3.04 TOTAL STREAM AREA {ACRES} A 3.60 TOTAL STREAM RUNOFF 4CFS0 AT CONFLUENCE = 8.5e CONFLUENCE INFORMATION: STREAM REAM RUNOFF TIME INTENSITY NUMBER 4CFSY 'MIN. ' 4INCHIHOURY 1 5.77 16.73 :_.479 ... � :. .4 :4.4 7 ..3!• E . . .•...•.. i•a.. ... a».fa_10 f 1 rf>Va! 14011.- 1.'I L.%.i1V1�1.:.3V ib_$V • r$3.>.L FORMULA4SFC) USED FOR a STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 21.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF 4CFS) = 2:?. 72 TIME 4MlNt_tTEB) •= 16.730 °+Irloe TOTAL ARE44ACRESY = 6.00 waeit*** * ******* ..... **ft*+ tie+ t******* ******ae*ie•r....*•reuit...... u ie•ieir.ie+e..•K•.aeieae•* ***. FLOW PROCESS FROM NODE 194.30 TO NODE l 94.:.0 IS CODE •_ :: )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 saw sins saar.=aass . =aaaaaaaaasaa a aa r aaa======= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = ti*C 4LENGTH**3) / 4ELEVATION CHANGE) I**, :_ INITIAL SUBAREA FLOW- LENGTH = $420.00 UPSTREAM ELEVATION = lase. 00 DOWNSTREAM ELEVATION a 1373.00 ELEVATION DIFFERENCE = 9.00 TC = . 359ie (4 BOO. 00**3) / 4 9�e* . ;_ _ :?5.00 YEAR RAINFALL 1NTENSSI TY 4 !NCH /HOUR) _ a.924 SOIL CLASSIFICATION IS "At" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7745 SUBAREA RUNOFF4CFSY a 4.74 TOTAL AREA 4 ACRES) = 3.10 TOTAL RL *NOFF 4 CFS Y '= 4.74 .... R• .............*** it' Itie****• tt......******..... ..*..a..Ru.N.Ru*•rex*ieie***•r. *a*** FLOW PROCESS FROM NODE 194.30 TO NODE l36.00 13 CODE = 6 C.. p 4 19 6 Nimble )))))COMPUTE STREETFLOW TRAVELTIME THRU SURAREA44444 asaasrr aasr: saaaaasaasr aaaaaasassaasrama :ss ....aaaaaaaasa sa... aasaar .... . UPSTREAM ELEVATION = 1373.00 DOWNSTREAM ELEVATION = 2358.00 STREET LENGTH4FEET) = 900.00 CURB HEIGTH4INCHES) = 8. STREET HALFWIDTH4FEET) = s .00 STREET CROSSFALL(OEC1MAL) •_ .03.43 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW 4CFS). = 6.43 STREET FLOWDEPTH4FEET) = .43 HALFSTREET FLOODWIDTH4FEET) = 22.61 AVERAGE FLOW VELOCITY 4FEET /SEC.) a 3.54 PRODUCT OF DEPTHB VELOC I TY = 2.53 STREETFLOW TA,AVELTIME4MIW = 4.34 TC4MIN) = 27.01 45. 0G YEAR RAINFALL 11NTENSI TY 4 INCH /HOUR) _ ?.454 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7603 SUBAREA AREA4ACRES) = 1.80 SUBAREA RUNOFF 4CFS) = 3. 36 SUMMED AREA 4 ACRES) = 3.90 TOTAL RUNOFF 4 CFS) = 8.t0 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 23.55 FLOW VELOCITY4FEET/SEC. = 3.87 DEPTH*VELOCITY = 2.76 **** ier.' u**** ar*ieit*****x ee*ie *ittt•iettieit*•ta*'ft****. uae*ieieieie*****. ****•+t********. tr. r. *** itr. r. r. •r. FLOW PROCESS FROM NODE 198.10 TO NODE 298. 2 0 13 CODE a ))))) RATIONAL METHOD INITIAL SUBAREA ANALYSIS E r ,` / f s=. :raas r sa raa= **..m*** .... r a arm.vr.ra sms ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC •= K*E 4LENGTH** 3) / !ELEVATION CHANGE) a* *. I N1 T I AL SUBAREA FLOW- LENGTH '= 700.00 TC - . 359* C 4 700. €t0* +3) 1 4 4 . o0c�Y 3 +eX. 2 - 13.867 a5.00 00 YEAR RAINFALL INTENSITY 4 I NCH /HOURY = 2.774 SOIL CLASSIFICATION IS "A" rM�'• CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT a .7706 SUBAREA RUNOFF S CF 8) •- 4.92 Now TOTAL AREA4ACRESS) = 2. 3o TOTAL RUNOF3= SCF9} _ 4.9a iew•****r eeriew•arw•w•rir..x• *** pan• *•sir+c*xic****• •rr*** * *ti[•+ x*****x•*x•re...**************** FLOW PROCESS FROM NODE 298.10 TO NODE 198.00 19 CODE •a 5 )))))COMPUTE TRAPEZOIDAL- CHANNEL FLOW44444 )))))TRAVELTIME THRU SUBAREA44444 asasrs=sasas�� aaaassaaa .s=amsmaaaaesaaanaa=asaa.�= _ UPSTREAM NODE ELEVATION = 2 ii68. 00 DOWNSTREAM NODE ELEVATION = 1257.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL 5 9E4FEETY = 20.00 "2" FACTOR •= 2.000 MANNING{ FACTOR •= .025 MAXIMUM DEPTH /.FEET) = .50 CHANNEL FLOW THRU SUBAREA4CFS} = 4.9i FLOW VELOCITiY 4FEET./SEC) = 2. i = i : : FLOW OEPTHSFEET) _ . 2 2 TRAVEL TIME4MIN. Y = 6.00 TC4MIN. Y = 29.66 **wrier ......... wwwwwwwwwwwww*********** ........r. r. •R.****** ... r..*************r FLOW PROCESS FROM NODE 198.00 TO NODE 198.00 I S CODE •- 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44{ 44 . flaan rrarar.=aaera :asm sray.=saa CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: „or, TIME OF CONCENTRATION4MINUTES) = 29.86 w, RAINFALL INTENSITY 4INCH.1HOUR) = a.a4 TOTAL STREAM AREA 4ACRES) = 2.30 TOTAL STREAM RUNOFF 4 CF9 Y AT CONFLUENCE •■_ 4.9a *x***eeieiew••e **eeie**•iewir***rKarie•e ** yew• w• w• w• re• w• w•• rc***** ieie**w•w ee.roew •..**r.a.w•irw***xr.***x +w•w+ FLOW PROCESS FROM NODE 298.30 TO NODE 198.50 I S CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44 444 • +r .0 .asasa ................. ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8: CONDOMINIUM TC = !4*t4LENGTH**3Y14ELEVATION CHAN6EY3**.2 INITIAL SUBAREA FLOW- LENGTH = 850. 00 UPSTREAM ELEVATION = 2268.00 DOWNSTREAM ELEVATION = 2256.50 ELEVATION DIFFERENCE = 11.50 TC = . 359*C 4 s 850. 020e*3) 1 4 2 2 . SOY I**. 2 .= 12.624 25.00 YEAR RAINFALL INTENSITY4INCH /HOURY a 2.937 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7750 SUBAREA RUNOFF 4eFS) = 6.83 TOTAL AREA4ACRESY = 3.00 TOTAL RUNOFF 4CF9Y a 6.83 400w \_,********************* **********r***** e** ********w****u**************-7****** FLOW PROCESS FROM NODE 198.50 TO NODE 198.50 19 CODE = 2 40. 11 )))))DESIGQtATE INDEPENDENT STREAM FOR CONFLUENCE 44444 )))))AND COMPUTE VARIOUS CONFLUENCED 8 VALUES44444 vsa =sasarsasra�amaaas= Are m=asaa.�s amsasra= saaaa= a a asma= asas aaamrrsmivaa aaaa a +as= .n=s « - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :? ARE: r!►!c !1C l r}hK r=niT - .41 4=. {a TOTAL STREAM AREA :ACRES) = 3.00 TOTAL STREAM RUNOFF 4CF9} AT CONFLUENCE • 6.83 83 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY 40.k. NUMBER 4CF8} (MIN.} 4INCH /HOOUR} , 4. 92 19. 86 2. 236 6.83 12.61 8.937 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4S8C} USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 10.22 9.95 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNQFF 4CFS} = 20. 22 TIME 4MZNUTES} = 19.863 TOTAL AREA4ACRES} = 5.30 ••K*x•arr+r•rrr *************nrr*****r.x*• *******u*+r**...iri .....u' •ien***** *a*****xx*it FLOW PROCESS FROM NODE 80.10 TO NODE 80.00 19 CODE = 2 G } } } } } RAT 1 ONAL METHOD INITIAL SUBAREA .NIL Y S 19 4 S S S S way - •�- aaassaa aaaaaaavamm .sama.aaaaaasraaaaaamsaasa. :.warm ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (214 ACRE} TC = t4+r C 4LENSTH**3) 1 4ELEVAT1ON CHANQE} 2 **. 2 INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION = 1268.60 DOWNSTREAM ELEVATION •= 2254.00 ELEVATION DIFFERENCE = 24.60 TC = . 333* C 4 700. 00e*3} 1 4 24.601' 3 **.:_ .= 11.699 25.00 YEAR RAINFALL I NTEN8I TY 4 I NCti /HOUR} = 3.072 ``'+" SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT} RUNOFF COEFFICIENT = .7476 9tlEAREA Rt1NOFF 4CFg} = 12.63 TOTAL AREA4ACRE9} = 5.50 TOTAL RUNOFF4CFS) •= 22.63 **...* r....* ....... • n•+ raex ar+ t+ r.... ir****it****+r+r*****•u•u+r+r. e . .ir afrir*+r*****•n•a+rie+r•rorr..** FLOW PROCESS FROM NODE 90.10 TO NODE 90.00 ZS CODE _ >)) } } RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 4 4 4 S aaaaaaaawammalllalila nl ifWflfl as milaaA.Aa=.= aaia.=.mi'. il TS 'TT= 'Tr= ST 7T TV ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 4114 ACRE} TC = (* C 4LENt3T#**3} 1 4ELEVAT 1431+1 CHANGE} 2 *e. 2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 2262.40 DOWNSTREAM ELEVATION •= 2242.90 ELEVATION DIFFERENCE = 29.50 TC •_ .393*C4 2000.00**3}14 19.50}3*e.2 = 23.676 25.00 YEAR RAINFALL INTEN9I TY 4 INCH /HOUR} •= 2.798 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY 4 214 ACRE LOT} RUNOFF COEFFICIENT = .7376 SUBAREA RUNOFF 4 CFSS } •= 14.03 TOTAL AREA4ACRE8} = 6.80 TOTAL RUNOFF4CFS} = 14.03 ti itM. it1l lrti rir ll itit**irir lr *ir/r iriC•N'N•ilNiliritlliriRirit•ir M•il M.***K•iFir*Rit**i *** its@ iF*ili r*lritiril*ltilirir** N•i ... iR•i FLOW PROCESS FROM NODE 90.10 TO NODE 90.00 19 CODE ++* 6 C . 8 � Z } } }} }COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAS4S4S $ f"VMM s :.scr. wu.• . : f1GG s - tst <;.�.� t•s t. •; L' t- S f ISS_ : -' . 4 <;_ , ti< SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF •= 1 *.TRAVELTIME COMPUTED USING MEAN FLOW(CF-S) - 13.33 STREET FLOWDEL' TH FEET y .54 s HALF9TREE"? FLOODWIDTH(FEET) s 14.66 AVERAGE FLOW VELOCITY ( FEET /SEC. r = 4.96 e411 PRODUCT OF DEPTHaVELOCITY •_ e.69 STREETFLOW TRAVELTIME(MIN) .67 " ;CUMIN) = 14.34 83.00 YEI R RAINFALL INTENSITY (INCH/HOUR) •= 2.719 719 SOIL CLASSIFICATION IS "A•• SINGLE - FAMILY (1 4 ACRE LOT) RUNOFF COEFFICIENT rz .7343 SUBAREA AREA ( ACRES) •: 1.30 SUBAREA RUNOFF ( CFS) _ SUMMED AREA(ACRES) = 8. 10 TOTAL RUNOFF(CFS) •= 26.63 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) _ .36 HALFSTREET FLOODWIDTH (FEET) •r # S. FLAW VELOCITY ( FEET r SEC.) = 5.03 DEPTH *VF_LOC I T Y .trs .s _ . __:rrrasrwraT.r rras;sr sr.+ ialaafar. aaF'+, aaF. ��+ I4a. �aararasrs :sssaa:�.srar.rs.s.��.c•s. =c._ FLOW PROCESS FROM NODE 90.20 TO NODE 90.00 IS CODE = 2 Cir )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( LA/E a Gs Ar// • = == = =sr= errs_ = = = » = = = == =s== =» =sew = - r = »,�_- .�_..�---• -.__ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1 /4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)3 * *.2 INITIAL SUBAREA FLOW- LENGTH = .800.00 UPSTREAM ELEVATION w 1254.00 DOWNSTREAM ELEVATIDN = 1243.80 ELEVATION DIFFERENCE = 10.20 TC = .393* C ( 800.00 * *3) / ( 10.20) 3 * *. 2 = 13.617 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) w 2.805 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7379 SUBAREA RUNOFF(CFS) = 20.70 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 20.70 • *** * * *+ ** * * *x•* * * ** * * ** * ** ** * * * * *• ** ** * * * * ***** *•r** ** * **** *' *•r** *• a!••r. **** * ** FLOW PROCESS FROM NODE 90.20 TO NODE 90.00 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA( <l(< = =a == saw= as -- ----- m==== =a=-- ---- -- =smart---------- ---- == - =s- =---- __.- ...-- .__._.» UPSTREAM ELEVATION = 1243.90 DOWNSTREAM ELEVATION = 1243.00 STREET LENGTH (FEET) = 60.00 CURD HE I GTH (INCHES) = 8. STREET HALFW I DTH I FEET) = .'_0.00 STREET CROSSFALL (DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = * *TRAVELTIME COMPUTED USING MEAN FLOWICFS> w 22.53 STREET FLOWDEPTH(FEET) _ .52 HALFSTREET FLGODWIDTH (FEET) = 14.09 AVERAGE SLOW VELOCITY(FEET/SEC.) = 3.94 PRODUCT OF DEPTH &VELOCITY = 2.07 STREETFLOW TRAVELTIME(MIN) = .25 TC(MIN) = 13.87 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.774 SOIL CLASSIFICATION IS "A" SING:.E- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7366 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 3.68 -0 """ - SUMMED AREA (ACRES) = 11.80 TOTAL RUNOFF(CFS) = 24.37 L' . !S, /I err► END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = .54 HALFSTREET FLOCIDW I DTH (FEET) = 14.66 FLOW VELOCITY(FEET /SEC.) = 3.96 DEPTH *VELOCITY = 2.14 ****** ****• * * * ** ** * ** * * * * * *** ** * * * **x *** **** ***• ***** * *** * ** * * * ** * * * * ** * * * * ** * FLOW PROCESS FROM NODE 100.10 TO NODE 100.00 I S CODE = 2 Q , . > > > > > RATIONAL • METHOD INITIAL SUBAREA AN 4 4 4 4 ! LINE ' �GB4 4' ..____. _.:. or ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = K *E4LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION s 1247.00 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = c ^ 2.00 TC = . 393* E ( 1000.00 * *3) / ( 22.00) 3 * *. 2 = 13.350 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR = 2.838 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7392 SUBAREA RUNOFF(CFS) = 20.S8 TOTAL AREA4ACRES) = 10.00 TOTAL RUNOFF (CF E) = 0. 96 FLOW PROCESS FROM NODE 100.20 TO NODE 100.00 I S CODE = 2 Q )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 < < < < L ANE B , CB I3 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/ ACRE) TC = K *t4LENGTH * *3) /(ELEVATION CHANGE))**.2 INITIAL SUBAREA FLOW- LENGTH = 800.00 UPSTREAM ELEVATION = 1243.40 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = 18.40 TC = .393 *E ( 800. 00* *3) / ( 18.40) 3 * *. 2 = 12.102 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.011 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7455 SUBAREA RUNOFF(CFS) = 22.44 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 22.44 FLOW PROCESS FROM NODE 11G. 10 TO NODE 110. 0 75 CODE _ :3 G g st 1 S } ) y)) RAT Z ONAL METHOD 2 N 1 7 I AL SUBAREA ANAL Y S 2 3 < 4 < < < AILMNIMIIIIIMMMV.JI/WriNealhf . :MMnaaseMM=MMMflf. fly. _ _ _MMMM_��_.....ANUI.M W_��== =MPS!. ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 19: SINGLE FAMILY 41/4 ACRE) TC = K* t <LENGTHP.3) / 4ELEVATION CHANGE) 7 **. INITIAL SUBAREA FLOW - LENGTH •= 400.00 UPSTREAM ELEVATION = 1 :: 6. 70 DOWNSTREAM ELEVATION = la.e0.00 ELEVATION DIFFERENCE = 6.70 TC •_ . 393+ t 4 400. 00**3> / 4 6.70) ? **. e = 9.772 25.00 YEAR RAINFALL 1 NTENS Z TY 4 I NCH /H0t 14} = 3.423 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT* .7582 °'""'" SUBAREA RUNOFF(CFS) - 6.75 N TOTAL AREA4ACRES) _ ..60 TOTAL RUNOFF<CFS) = 6.75 MM > >>> )RATIONAL METHOD INITIAL SUBAREA ANALYSI9441<4 .srarr nrnar . fla =1! .n.r.Y�.is.wn.n. .nrfl. nn.rn.rarfT.TIa Ct.rflf T� i ASSUMED INITIAL SUDAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) Sftre TC 1.4* < LENGTH**3) / 4ELEVATION CHAN&E) 3+*+*..-": INITIAL SUBAREA FLOW-LENGTH 1000.00 UPSTREAM ELEVATION •i* 1:?36.00 DOWNSTREAM ELEVATION l at t1. 50 ELEVATION DIFFERENCE 27.50 TC a . 333* C < t 000. 00•x3) / 4 17. 50> ? **. .,* 13.975 5.00 YEAR RAINFALL INTENSITY<INCH /HOUR) _ a.762 SOIL CLASSIFICATION 1S "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT •r .7361 SUEeAREA s' UNOFF 4 CFS) a► t ::?. 81 TOTAL AREA4ACRES) a 6.30 TOTAL RUNOFF4CFS) t .:s1 w wwwwwwwwwwwwwwww itwwwwwFSFa«•scaf-sw.w.v. ac wwwwliFliv.m w.w *.w *If FLOW PROCESS FROM NOD€ *20. 40 TO NODE 120.012 I S CODE = 2 C. /3. )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(4 < << .l �aJll �il Jll a :i aa/faMl = =.IliYflil�7 :ala� fr.T.a ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC • !(* C (LENGTH *+*3) / (ELEVATION ANGE) 3 * *..? INITIAL SUBAREA FLOW- LENGTH = 780.00 UPSTREAM ELEVATION = twit.60 DOWNSTREAM ELEVATION R 2225.20 ELEVATION DIFFERENCE = 6.40 TC = . 393+* C I 720. ee.*3> / 4 6.40) 3 * *. ;: = 14.038 :5.00 YEAR RAINFALL I NTENS 1 T Y 4 Z NCH /HOUR) •r 2.755 SOIL CLASSIFICATION IS "A SINGLE FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7358 SUBAREA RUNOFF 4 CFS) = 1.22 TOTAL AREA (ACR& S) _ .60 TOTAL RUNOFF (CPS) = 1.22 RMMf* * *x! *RR *xxxxl*xlxxxx xx *xx....Rxxxx.....xxxxxxxxxxxx xxxx xxi*xxx xxxxxl*x M. xx 1*•1* FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 13 CODE = f >)> ) DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 4 ( 4 < 4 i. ai�!! it�al iti!!! ial aiu�!! i!! Jt!ll aiis!ll aaaaai alsaJ=llaaala!!!aa=!latlalaa lraar CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENT RAT 1 ON 4 M I NUTE.i) • 14.03 RAINFALL INTENSITY (INCH. /HOUR) = 2.75 TOTAL STREAM AREA (ACRES) _ .60 TOTAL STREAM RUNOFF (CFS> AT CONFLUENCE - 1.2a * *. * * * * *xxx ** * * *xxxxx * *x * * *! * * ** ** xxxxx * *x * * * * * *xxxxxxxxxxxxxxxx* x I.•N•xx x xx T.1** FLOW PROCESS F4OM NODE 120.30 TO NODE 220.00 Is CODE _ :? G A 10 / ? . 0 �1 ) > ))) RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 4 4 ( < TC = K *t(LENGTH*w3) /(ELEVATION CHAN0E)3* *.e INITIAL 9UPAR€A FLOW- LENGTH = 600.00 UPSTREAM ELEVATION = 2 2t 7.612► DOWNSTREAM ELEVATION •: t e 15.2. ELEVATION DIFFERENCE = 2.40 `err TC • . 393* C ( 600. 00.*3> / 4 8.40) 3 * *. 2 = 15.304 25.00 YEAR RAINFALL INTENSITY(INCH /HOUF?) = 2.625 SOIL CLASSIFICATION IS "A" SINGLE- PAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7897 SUBAREA RUNOFF (CFO) _ .95 TOTAL AREA (ACRES) _ .50 TOTAL RUNOi F ( CF S) _ .95 7 2.1/ GFS {o C R 0. n •I FROM NODE /40. ' To 416ae (3 z • o CdaE Z e. A. ° ILO() ))) >) RAT I OVAL METHOD INITIAL SUBAREA ALYSIS { { < d i .asses =.aaasraaraassassaear:r . sssesa .er_r..as.sr.aaxs— sa.a= taraar sases.s...� sa_z= = ._r..v_ _.- ASSUMED INITIAL SUBAREA UNIFORM (:: DEVELOPMENT IS: SINGLE FAMILY !t/4 ACRE) TC = K+fI :LENGTH* *3Y,4ELEVATION t_.HAN( EY3**. INITIAL SUBAREA FLOW— LENGTH : 1500.00 UPSTREAM ELEVATION =* 2227.00 DOWNSTREAM ELEVATION == t E•08. e'+G ELEVATION DIFFERENCE = 9.00 TC •_ . 393* C ( 2 5krt0. +c10e *3) / < 9.00)3**„ ;;: .r 20. 359 5.00 YEAR RAFNFALL INTENSIT'Y<INCHJHOUR) _ •03 SOIL CLASSIFICATION IS "A" SINGLE — FAMILY 42 /4f ACRE LOT) RUNOFF COEFFICIENT = .7073 SUBAREA RUNDFF4CFS) a 2.81 TOTAL AREA' ACRES) = 2.80 TOTAL RUNOFF 4 CFS Y = ::. B 2 • s ‘*Yr.' P , e0CErz i : t:3 TO Ni L = :i69.00 Is CL'C C. 5. 4 (6.9 ..RATIONAL ME'4OD INITIAL ._LC-AREA --.•_ _.:�= .scaasars s. x sr..aa. :s.arase.•- xr..sssamaear s._ r.•_ r. ayeasxax:. s�xarmxraa _ras:.a.- n_aaamaeas.. >s = am.srra_ .a._.- _•to_- .aa_ ::r._ ASSUMED INITIAL SttaARE A UNIFORM DEVELOPMEN 18: s;:NaL`_T stM2L's` .t..'•, 1-xCRE Norr - C = M# C <LEW TH**3 ( : 4ELZ 'Al ION CHoNee f l -e . 2 ::htITIAL •{3E< F.ow- LENGTH -= a50.00 UPSTREAM ELEVATION = 1263.10 DOWNSTREAM ELEVATION •= 1272.50 ELEVATION DIFFERENCE = 10.60 .393.L4 850.00*r.3)/< 1@.60 •= 14.013 `s<EAR RAINFALL INTENS1T` +'4Ihh_.N../HOUR = 2.757 CL ASSI ICA? :On; IS ..A, _ >``tG Ah,i_.v.3! Lit:^':.`_ LO i C0X :"r• Ic.'iEN 1 ' •_ FLOW PROCESS FROM NODE 169.00 TO NODE 269.00 I S CODE = :{ 1,))}DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < < < .crrarxrs.stttsras + sa + rsassa.a'as i* aaa . 3.:za. =isaaaaaaaseaa+sa aa.. as .rs.amema.ar.m= .aaa.a.a.r...a.- CONFLUENCE VALUES USED FOR INDEPENDENT STREW./ 3 ARE: TIMES OP CONCENTRATION<MINUTES) .a 14.02 RAINFALL INTEN9TTV < INCH. /HC'L R3 =a 2.76 TOTAL STREAM AREA <FtCREBY •a 10.00 TOTAL STREAM RLN OFD' <CFS) AT CONFLUENCE •_ 20.29 + eieicie• e***** a• teie*ieK•te****+eieieureiere+e* serere*ier.• arat•+ eiert •ve+e•rt•♦ewu•tete+tar*wreae• to +e+tit•****aeieie•teie+er.•r**, FLOW PROCESS FROM NODE 270.a0 TO NODE 169.00 13 CODE = c: )))) r tRA T I Ot tAL METHOD I N T T I HL SUBAREA ANAL Y 61 S < < < < < m:arararaairamwmsms - .a saa.a : =aasss aaasr asaaaamass: w. sr asaaarnr rar_ams eraasrs tea» >ma ssrs._ ASSUMED INITIAL SUEtMREA UNIFORM `' DEVELOPMENT ZS: SINGLE FAMILY ‘t,4 ACRE) ' TC. •r= t+ t i_ENC`_ s•s**3. tELEVATlt ' NGE *�> C. SUBAREA F ..Ctw-'-a-Et.G T ti =- .000. 0C UPSTREAM ELEVATION = 1295.00 DOWNSTREAM REAM ELEVATION = 1272.50 ELEVATION DIFFERENCE _' 22.0 t_ _ +._'+! E: 1 000. 00*+c3) r` ._._ .:5 t k i•.._ -s 13.Z90 VE!i F:A!NFA__. IN? Eht:3l `r <fOtt.` C +t _ SOIL_ CLASSIFICATION IS "A" SINGLE-FTMILY42/4 ACRE LOT) RUNOFF COEFFICIENT = .7395 SUBAREA KUNOFF <CF9) •= . 21.05 TOTAL AREh 4ACRES) = 10.00 TOTAL RUNOFF (CFS) _ 21.05 *0********************* ......... * ..... ****4.* FLOW PROCESS FROM NODE 169.00 TO NODE 169.00 IS CODE = 2 >;') DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < { < .•r r AND COMPUTE VARIOUS CONFLUENCED STREAM +1'F�LLtES < < < < •: .rw mam.assn.aarasaaeassw• =msrm==n arfln wrnmm :rawer sr =aa .. _. .arrmmmm.a ae as.xr arm. :aa.r CONFLUENCE VALUES USED FOR INDEPENDENT S'rREArrt .''_ AYE: TIME OF CONCENTRATION<MINLTES) = 13.,:9 RAINFALL INTENSITY { I NCH..`!-!OL F <r 2.55 10 - PL 9>REArr; AREA 4ACRE`.a = 12.00 <OTAL S? "Rti'A+t R'UNu -'L: ' CF S) t T Ci:s'qFLt tE1 CE •-• 2..1.0Z; CONFLUENCE . 1 NFOiiMP'r I ON : 'Nome S "F1tIAM f %L +NOFc" TZME INTENSITY' htL +theEF: 4CFS) 4M1N. 3 <INS.:!-ltHOUR) 20. 21 14.01 1 i:. 757 21.05 13.29 2.5 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FMULA4FtErC USED FOR 2 STREAMS. VARIOUS CONFLUENCE0 RUNOFF VALUES ARE RS FOLLOWS: 40.60 40.9 F.OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: Nom* R = , 441'.68 TIMEMINUTESY m 14.013 rUTAL AREA4ACRES m ao.ota 0 TOTAL = 4 a eZ 7 C.b. • LOW PROCESS FROM Noz e 17e.3o TO NO 170.00 IS CODE m C.B.° 170 UTltL ft*E7HOD INITIAL ::UPAREA RNALvSIS4:1 ASSUMED INITIAL SUGARED UNIFORM DEVELOPMENT IS: SINGLE FAMILY /e4 ACRE) 7C m M*CLENGTH**3)/4ELEVATION NITIAL SUSAREA F-OW-LENGTH m 1000.00 ELEI.ATTON m 1Z:76.00 DOWNSTREAM ELEVATION m la72.o0 ELEVATION DIFFERENCE - 4.00 TC m .393m1:: 1000.00**3)." 4.00)1**.a 16.773 a5.tatt YEAR RAINFALL INTENSITY4INCH/HOUR) m a.313 SOIL CLASSIFICATION IS SINGLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT m .7140 SUE, kONOFF4CFS) . 1. reTAL AREA4ACRES) or 1.10 TOTAL RUNOPr=!CPS) m *************************. ..... * .......... pLow PROCESS FROM NODE 170.40 TO NODE 170.00 iS CODE - --------- - /))RATIONAL METHOD INITIAL SUGAREA ANALYSIS/"/r . ASSUMED INITIAL SUPAREA UNIFORM DEVELOPMENI IS: SINGLE ' Wcsi 4P1 %i7 K*C‘L:ENert.4*',3 tt.W.1414uN = ELEVATION DIFFERENCE - le.00 TC • m .393*C4 900.00**3)/4 la..etoya*..a • 14.147 YEAR RAINFALL INTENSITY4INCH/HOuR m SOIL CLASSIFICAT/ON IS "A" SINGLE-FAMILY41/4 AcRe LOT) RUNOFF COEt • m .7353 SUGAREA RUNOFF4CFSY m TOTAL AREA4ACRE8 Y 2.ao TOTAL RONOFF.CFS) or rattt -1 ts. t 7o f • 2. cfs FLOW PROCESS FROM NODE 173.10 TO NODE 37e.40 IS CODE a RATIONAL meTt-oo INITIAL SUGAREA ANALYSI9 4;/<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE" FAMILY 41'4 ACkE TC m X*C4LEN43TM**3Y/4ELEVATION CHANGE/1**.E' INITIAL SUBAREA F..0W—LENGTH m 950.00 t.1-'STREAM ELEVATION m 1Z76.00 DOWNSTREAM ELEVATION •v 1265.50 ELEVATION DIFFERENCE m 7.50 m •393ef4 950.00**3/( 7.5020*.2 • = 16.054 E5.00 siEPR RA/'LL INTENSITY‘INCH/OUR) •= CLASSIFICATION IS "A" SINOLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = SUBAREA RUNOFF!CFS • 9.0'4 roTAL AREA4ACRES) = 4.90 TOTAL RUNOFF4CFS) m 9.04 4.10**4&40 44.4.1*********44,4*-**********-#1..P. FLCW PROCESS FROM NODE 172.1,) TO NODE 172..40 IS CODE _ ;.›.RATIONAL METHOD INITIAL SUBAREA ANALYSIS4444? ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY !: ACRE) 7C -. 1 CMANGE/2**.Z: INITIAL SUBAREA Fh.OW—LENGTM m 1000.00 UPErRLAM ELEVATION m 1293.42ro DOWNSTREAM ELEVATION = 1269. 1 EL-EVA DIFFERENCE m 1.4.30 = .393*f. 1000.00**3 14.502=q*.2 m ,F:5.00 YEAR RAINFALL INTENSITV4INCH/P-OUR) m 2. ?2 SL'IL CLASSIFICATION IS "A" S:NOLE—FAMILY!1/4 ACRE LOT) RUNCY- CDEr=FICLENT m .7335 SLJAREA RUNOFF C.FS) 10.50 TOTfL AREA4ACRESY = 5.30 COT,41_ RUNOFFCF.SY :0.50 *ftriv =-CW Ps;'OCE-.71- FROM NODE 17a. 7.3. 4C.'t . = C T llL 'ET-1t INITIAL ';.9AREA ANALvetIS Now.. ASSUMED'INITIAL SUBARL 2N:P, DEVELOI" IS: COMMERC.AP TO = M*C4LENGTM**ar/4ELEVATION SqlT:AL SUBAREA FLOW-LENGTH = 1(000.0“ UPSTREAM ELEVATION •= 1E131.94 bOWISTIEAM SLEVATZ%)N = 1Z7.1c.:716 E_LEYATTON DIF = S.36 'C •S02k*fl 1000.00**ZOe: 6.38. LvE..501 2:5.00 YEP P RAINFALL INTENSITV1INCOUR = SOIL CLASSEFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COFPFICIENT • .8,26e ts%1BA0EA F.:unica-Fcrfro = 10.:7 rOTAL AREA4ACRES •.40 7 OrAL RLNOFF4CFS/ = 0.77 0 014 ave rfeb.," , K44.4.. 171. 30 t 7 I = ))))>COMPUTE STREETFLOW TRAVELTIME THRU SUS(REA44444 .fl flafl WWW4WWWWWWWWWWW UPSTREAM ELEVATION • = 1. DOWNSTREAM ELEVATION = laea.00 StREET LENGTH!FEET = 750.00 CURB - 4ETGTH:INCHES = 6. SCREET HALFWIDTH4FEET) = as.oe STREET CROSSFALL4DECIMA-r = SPECIFIED NUMBER OF HALFSTREETS CARRY:NG RUNOFF . 1 **TRAVELTIME COMPUTED USING roC4ot FLOW(CFS; = 00,, STREET FLOWDEPTH(FEETY .57 HALPSTREET FLOODWZDTH4FEET) •= 17.36 '41010e AVERAGE FLOW VELOCITY!FEET/SEC. ) = 3.11 PRODUCT OF DEPTH6VELOCITY = 1.77 SFisEETFLOW TRAVELTIME4MTNY = 4. TCMINY = TEAR RAINFALL INTENSTTY4INCH/HOURY = ca. 496 CLASSIFICATION IS SINGLE-FAMILY4114 ACRE LOT). RUNOFF COE=P .7.141 SUeAREA AREA4ACRES •= • SUkrAfv-A HUNOFFEFE0 = SUMMED AREA(ACRESY = 5.60 TOTAL RVNOFF(CFS) = .Z.94 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEE'r = .59 HALFSTREST FLOODWID = 10..Z AL04 VELDt4TriFEET = di.14 = FLOW PROCESS FROM NODE 17a.ao TO NODE 17a.eo IS CODE = 1.RATIONAL METHOD iNITIAL SUBAREA ANALYSISeee ASSUMED INI SUeAREA UNIFORM DEVELOPMENT IS: COMMERCIHL - X*CiLFN3TH**20/tELEVATION C- SJBAREA FLOW-LENGTH = e4eo.kw JS3TM ELEVAT:ON • = ELEVA7TON = .a8a.eo !. fifFFERENCE 16.:50 TC = •303*E: 800.00**3)/4 *Ow.' IIAINFALL .1N1ENSITY:INCH.')U - 50.:L_ CLASSIFICATION CleAMERCIAL DEV=ELOPmENT RONOF: i7.0t:Fg .8319 SUBAREA RUNOFF4CFS( = 15. 3e TOTAL AREA/ACRES = 3 .30 IOTA: 4 .UNOFF4CF5? = leLno FLOW PROCESS FROM NODE 17a.30 TO NODE 171.00 IS CODE 6 1')COMPUTE STREETFLOW TRAVELTTME THRU SUBAREA<11 ,x--mzsarr .... . OPSTREAM ELEVATION .-. 1.?aa.00 DOWNSTREAM ELEVATTON 1: LENO1H!FEET -= :000.00 CURb rIET6T = .0, ,z biNtftt HALFSTREET FLOODWIDTH(FEET) la.la AVERAGE FLOW YELOCITY=EET/SEC. 4.16 g'RODUCT OF LrEP7Ht-VELOC1TY STReEEIFLOW TRAVELT1ME4MIN) 4.00 rt_‘M/N 12.55 YFAR RAINFALL INTENSICY!iNCHeHOURY SOIL CLASSIFICATION IS COMMERCIAL DEVELOPMENT RUNOFF COEFFLCEENT = .sa76 SUBAREA AREA4ACRES) = 1.60 SUBAREA RUNOEFICFS) 3.73 SUMMED AREAIACRES) 6.90 TOTAL RUNOFF(CFS) t9.03 END OF SUBAREA STREETFLOW HYDRotULICS: DEPTH(FEET ..mo .60 HALESTREE:T FLOODWIDTH4FEETv Torig_FLOW TO . . ELOW-VaLOCITY DEPT-*VELOCITY - 31.q7 er-s FLOW PROCESS FRO NODE 29a.a12 TO NODE 29.0 IS CODE .= :e?RATIONAL METHOD INITIAL SLE'AREA ANALYSIC.:41 ASSUMED INITIAL SUBAREA UNIFORM DEYEL.O=rMENT IS: CONDOMINIUM = CILENO CHANOFY. EN ! 5UB/ F-t.:44-LENSTH = 1000.00 L,-91REF'M ELEVATION DOWNSEAM FLEVA7ION = la67.z:o ELEVATION DIEFERENCF = 6.80 TC = .359*C: 1000.00**3f.'i •= 15.-447 VZAR RhINFALL INTCN3IV4INCH/HOURr = 50E- CLASS(FICATION IS CONDOMINIUM DEVELOPmENT RUNOFF COFFFICIENT = .7653 SUSAREA RUNOFFCFSY = 6.5? TOTAL AREA4ACRE3Y = 3.30 TOTAL 4UNreFPCF90 = • 0**.** FLOW PROCESS FROM NODE 198..7:0 TO NODE 198.00 IS t:ODE = 6 , )COMPUTE STREETFLOW TRAVEL7IME THRU SUBARFA444 Lq:-.STRLAM CLEVArfON 267. 0 WNSTi'Effm E_ZvATION = t.J:57.7it0 LfAlrin- - J00.00 fURE:t. -6 3. t-it! ". STtlt.E1 F-LOWl.remPlef(FEEt HMLFSTREET FLOODWIDTH4FEETY 13.95 AVERAGE FLOW VELOCITYIFEET/SEC. .3.a4 PRODUCT OF DEPTHOWELOCITV 1.58 S(REETF:LOW TRAVELT1ME(MTNv 4.63 *r_"riN, 25.00 YEAR RAINFALL INTENSITY .= SOIL CLASSIFICATION 18 "A" 4411100' CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .7509 SUBAREA AREA4ACRESY a'.00 SUBAArEA RUNOFF4C'.TS 8UMMED AREA44CRE9) 5.30 TOTAL RUNOFF4CFS3 END OF SUBAREA STRZETFLOW HYDRAULICS: Tojed Rota DE .51 HALFSTREET FLOODW1DTH!FEET 24,89 C /114 sq.qo FLOW VELOCITYFEET.*SEC. 3.4n PEPI 1.7.6 --- FLOW PROCESS FROM NODE 197.10 TO NODE 197.00 IS CODE = 0.2r ae#7 ) ) ) ) RATIONAL METHOD I N I T I A L SUBAREA ANALYSIS < < < 4/Ats 4 " Ala .rup 4, 1 E 4 %ftly ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = 1(*C<LENGTH**3)/(ELEVATION CHANGE)3**.2 • INITIAL SUBAREA FLOW—LENGTH = 700.00 UPSTREAM ELEVATION = 1268.00 DOWNSTREAM ELEVATION = 1261.50 ELEVATION DIFFERENCE = 6.50 TC = .393*E( 700.00**3)/( 6.50)34 = 13.754 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.788 SOIL CLASSIFICATION IS "A" SINGLE—FAMILY(I/4 ACRE LOT) RUNOFF COEFFICIENT = .7372 SUBAREA RUNDFF(CFS) = 7.19 TOTAL AREA(ACRES) = 3.50 TOTAL RUNOFF4CFS) = 7.19 Ag.44 ol"""■_ lowese FLOW PROCESS FROM NODE 60.30 TO NODE 60. 00 IS CODE _ _ C. 17 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < << << aaw�aaaaa IMAIIMIVAILIONISNIAMINIKINIMMIssatirrWIN n ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) " TC = M* C <LENGTH∎03) / (ELEVATION CHANGE) 3 **..=: INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 2232.00 DOWNSTREAM ELEVATION •= 2 e 3. 50 ELEVATION DIFFERENCE ■ 8.30 TC = .393.4C4 210. 00*.3) / l 8.50) 3 **. 2 = 16.246 :?3.00 YEAR RAINFALL INTENS2 TY < INCH,HOtJR) = 2. Sie SOIL CLASSIFICATION IS "A" SINGLE- FAMILY<2 /4 ACRE LOT) RUNOFF COEFFICIENT ■ .7;?96 SUBAREA RUNOFF S CF 9) = 1.84 TOTAL AREA IACRES) ■ 2.00 TOTAL R1 JNOFF <CFS) = 1.64 44*********************************************** ***** 11lRililili lll***Mi!•h1F***ilir * FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 I8 CODE ■ 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< a�asa=adsv=sasarsaass sainaawwarawaavta ,wa=saawsaa==aaa saaaassa�ra.= .a_..r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM a AREs TIME OF CONCENTRATZON<MINUTES) = 26.15 RAINFALL INTENSITY <INCH. /HOUR) t a.53 TOTAL STREAM AREA IACRE3) ■ 1.00 TOTAL STREAM RUNOFF (CFS) AT CONFLUENCE ■ 1.84 e****************************************************** ............ ***** **** . FLOW PROCESS FROM NODE 60.00 TO NODE 66.00 IS CODE ■ idow - - -- )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < <(< ssa wssss�ivsaws :aawsaaaa.>taaasass as mameman aaaana.arne.=.x.:x ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 19s SINGLE FAMILY 41/4 ACRE) TC = M4 t I LEN0TH**3) / l ELEVAT ION CHANGE) 3... 0 INITIAL SUBAREA FLOW- LENGTH = 550.06 .UPSTREAM ELEVATION = 1008.80 •DOWNSTREAM ELEVATION = 2223.50 :ELEVATION DIFFERENCE = 4.50 TC ■ .393 330. 00e*3) / < 4. 30) ]=+r. 2 = 22.809 03.00 YEAR RAINFALL 1NTENBITY (INCH /HOUR) ■ 2.910 SOIL CLASSIFICATION 2S "A" SINGLE - FAMILY (1 /ti ACRE LOT) RUNOFF COEFFICIENT = .7419 704.(4 2 .7 0 4°s flUbAAEA RUNOFF /CPS) _ .66 TOTAL AREAIACRES) ■ .40 TOTAL RUNOFF4CF8) ■ .86 `�rrr+ -- 1ClrRlC lCl. �� .T .R..l ....l«.R7C'F r •R• .7: 1r T 7C TT / T.' FLOW PROCE'AS FROM NODE 70.10 TO NODE 70.00 I S CODE = C • a. * 1k' ))))) RAT I ONE ?L METHOD INITIAL SUEtAREA AN L YB I S { ? ? =:aea.aaea.aara. :aaas.+.es rar . a.a..ais�art.amaesa.•saaae.ir =� .�.armvr :..r_._..v.s. :s . -._ - .._..._ _ _. ._ TC ■ K *C4LEN0THw03) /4ELEVATION CHANGE12ww.2 INITIAL SU AREA FLOW - LENGTH • 1000.00 I UPSTREAM ELEVATION = 1230.10 DOWNSTREAM ELEVATION = 1218.00 ELEVATION DIFFERENCE = 22.20 TC = .393.C4 1000.00*w3) / ( 2 ::. 2 @> ] rr. 2 = 15.045 e5.00 YEAR RAINFALL INTENBITY(INCH /HOUR) = 2.64 SOIL CLASSIFICATION IS "A" SZN@LE- FAMZLY(2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7320 9UOAREA RUNOFF (CF9) = 7.34 TOTAL AREA(ACRES) = 3.80 TOTAL RUNOFF (CFS) = 7.34 wMQ www wwww wwwwwwww.►a ww wwwwwa rwrr wrr ww.rrr ww•r ww* wwwwrrwrw.rwwwrr.rrrra.e.e.t.e* *** FLOW PROCESS FROM NODE. 70.00 TO NODE 70.00 IS CODE = 2 ))))).DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CO NCENTRATION<MINUTES) = 15.05 RAINFALL INTENSITY (INCH. /HOUR) = 2.64 TOTAL STREAM AREA (ACRES) = 3.80 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 7.34 wwwww wwR wwww wwwwwwwww.► ww* ww ww wwwwrr wwww wrrr ww awrwwwwwwwwwwrw.r.er.rwwx.e.e. *.r...w FLOW PROCESS FROM NODE 70.20 TO NODE 70.00 I8 CODE = e C. it lei M )))))RATIONAL METHOD INITIAL SUBAREA ANALYSZ8 <(44< r��aiwwawaaaa ==aa=aaasae=arassaasasem.zr _._ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 1St SIN0LE FAMILY (2/4 ACRE) TC = 14.C(LENOTHww3) /(ELEVATION CHANGE)3*0.2 INITIAL 9UDAREA FLOW- LENGTH = 600.00 'UPSTREAM ELEVATION = 2227.60 ■DOWNSTREAM ELEVATION = 1218.50 ELEVATION DIFFERENCE = 9.20 TC = .393*C ( 800.00*41.3)/ ( 9. 20)?rr.;. = 23.932 25.00 YEAR RAINFALL ZNTENSZTY(INCH /HOUR) = 2.767 SOIL CLASSIFICATION ZS "A" 9ZNGLE- FAMZLY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7363 SUBAREA RUNOFF (CFS) = 6.11 TOTAL AREA(ACRES) a 3.00 TOTAL RUNOFF(CPS) = 6.22 FLOW PROCESS FROM NODE 70.30 TO NODE 75.00 IS CODE . • ))))>RATIONAL METHOD INITIAL SUBAREA ANALYSI94<«4 maxims :mu milmarawaramgarasarraw arammaaar amsamarmalisme ASSUMED INITIAL SUBAREA uNiFORm DEVELOPMENT IS: SINGLE FAMILY .1r4 ACRE) TC • K*C4LENGTH**3)/4ELEVATION CHANGE)7**. INITIAL SUBAREA FLOW—LENGTH Ar 1/.00.00 UPSTREAM ELEVATION Arm 12'30.00 DOWNSTREAM ELEVATION 1 al8.00 ELEVATION DIFFERENCE = 1 a.00 TC — .393*C( ,2100.00**3)/( . 15,957 2.00 YEAR RAINFALL INTENSITY4ZNCH/HOURY = a.550 SOIL CLASSIFICATION IS "A" SINSLE—FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT ar .7887 SUDAREA RUNOFF(CFSk • 10.33 TOTAL AREA4ACRE8) = .5.60 TOTAL RUNOFF4CFSY 10.38 - FLOW PROCESS FROM NODE 761.40 TO NODE 75.0023 CODE • a )))))RATZONAL METHOD IN/TIAL SUBAREA ANALYSIS(<( 44 4/00/MMEMINWIN•atal/MINWIMIlliWaralltialWSNIUM ASSUMED INITIAL WEARER UNIFORM DEVELOPMENT ISs SINGLE FAMILY t1/4 ACRE) TC • M*C4LEN0TH**3)/tELEVATION CHANSE)3**.a INITIAL SUBAREA FLOW—LENSTH + 700.00 UPSTREAM ELEVATION + 1027.00 DOWNSTREAM ELEVATION • 1810.0e ELEVATION DIFFERENCE • 9.00 TC • .3930/4 700.00**3)/( 9.00,24pit.0 . 28.607 85.00 YEAR RAINFALL INTENSITY4INCH/4OUR) • 2.099 SOIL CLASSIFICATION IS “A" SINGLE—FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT • .7415 SUSAREA RUNOFF4CFS) • 3.44 TOTAL AREA4ACRES) • 1.60 TOTAL RUNOFF4CFSY = 3.44 rpl I a.? 2- A, ( 2 15 • , m‘ - %we FLOW PROCESS FROM NODE 120.10 TO NODE 120.00 IS CODE _ :' C • R. Zo -o )!)))RATIONAL METHOD INITIAL SUBAREA ANALY81841144 �~ ; a awls___l��� s.�a =asssires rasaral�sstwrss v�+aasar sra�a sr c�z st a:��.a .:::.::::_r.. 'tom ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ISs SINGLE FAMILY 1t/4 ACRE) TC = M*t4LENGTH* *3) /IELEVATION C-u NQE)]* *.2 INITIAL SUBAREA FLOW-LENGTH = 1400.00 UPSTREAM ELEVATION = 2:26.60 DOWNSTREAM ELEVATION = 2Bi3.:-`0 ELEVATION DIFFERENCE = 11.40 TC = .393*Cl 1406.Et N.e3 >/ ( 22.40!? **.2 •• 18.632 es. a@ YEAR RAINFALL INTENSITY! INCH /HOUR) •= i. 3 4 SOIL CLASSIFICATION IS .`A" SINGLE- FAMILY(114 ACRE LOT) RUNOFF COEFFICIENT = .7147 SUBAREA RttNOFF l CFS! AIR 6.48 TOTAL AREA(ACRES) = 3.90 TOTAL RUNOFFICFS) = 6.48 ~1rww411~It+nallR+iwt *a►+Arrt* +r-Vo 4 014014 44 *ill w4r *It a w* *it kwas *it atsR +tirrk+aititit+r,r.+r:V :ir -#•v FLOW PROCESS FROM NODE 120.20 TO NODE 220.00 IS CODE = c? )) >) >RATIONAL.METHOD INITIAL SUBAREA ANALYSZS(I{ll awawww ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 12/4 ACRE) TC = M* C (LENGTH *.3> / (ELEVATION CHANGE! z * *. 8 INITIAL 9UDAREA FLOW - LENGTH = 1750.00 UPSTREAM ELEVATION = 1232.00 DOWNSTREAM ELEVATION = 122$.20 ELEVATION DIFFERENCE = 16.80 TC = .393.C4 1 ?Se.00+r *3) /4 16.60 >3 **.a 19.711 25.00 YEAR RAINFALL INTENSITY CINCH /HOUR) _ e. e47 SC}IL CLASSIFICATION ZS "A'. SINGLE- FAM.LY(1 /4 ACRE LOT) RUNOFF COEFFiCZENT = .7100 BU AEA RUNOFF 1 CFS! = 8.14 TOTAL AREA(ACRES) _ 5.20 TOTAL RUNOFFlCFS) = 8.14 Total. f o GR /2ag /i/ • 62- CFS w w w w.Tw w n FLOW PROCESS FROM NODE 230.20 TO NODE 33 0.20 CODE = )>) ) > RATIONAL METHOD INITIAL SUBAREA ANALYSr9 < < < < < -_ s..... zrssaaaaaaasa.ssamassas zfls as :m za as . . a.m..assasaassas a sr a zsrla zs za ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 19: SINGLE FAMILY 42/4 ACRE) TC -= r<* C (LENtt TH**3) / IELEVATI ON CHANGE) 3 *+r.:? INITIAL SUBAREA FLOW -- LENGTH = 780.00 UPSTREAM ELEVATION = 22.35.50 DOWNSTREAM ELEVATION = 2:26.00 ELEVATION DIFFERENCE = 29.50 TC =_ . 393* C < 780. 00**3) / l 19.50r2**.. •= 11.781 n ee Yf-:PR RAINFALL INTAWOrTY<IN?H = 3.059 1 , C, LASSI)-ILATION I3 "A" I I .. t.: a t rrrtaL_ <2;o4 f4Lt't Wit NUt4L< -d L - r SLtemt =a . ; -i;.' SUBAREA FiUr.4OF=F <CF8) •= 8.00 TOTAL AREA 4ACRES) = 3.50 TOTAL RUNOFF . CFS> = 8.00 w .. w Y. w v x rr x Ye Veit 7.ge^k"k"k"R 0 1~9 R^Ral►^ r•Or ' left.h .101x' e* `trit'it Ir'A•`R Ve'� % FLOW PROCESS FROM NODE 230.20 TO NODE 230.20 IS CODE 1i 2 ) ))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < <<(< a=aa ...1. aaa=sssaa...... aaarsaaaasaaa aza= a. asaara.a asage_as.....a =maa -.. ..... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRAT1ON(MINUTE9) = 22.78 RAINFALL INTENSITY l INCH. /HOUR) = 3.06 TOTAL STREAM AREA 4ACRES) = 3.50 TOTAL STREAM RUNOFFICFS) AT CONFLUENCE .► 8.00 I ***......e***R*** *****M if*ilil******* t*i41P****M it1►All/R*N**iFN*1Fililll ........... ***** FLOW PROCESS FROM NODE 230.20 TO NODE 130.10 r 8 CODE a 2 n..r ) > >) )RATIONAL METHOD INITIAL SUBAREA ANALY8IS44<4 aassra. saesaawasaMaza-- saaa.= aamaaaa= smasaasaaaaazsaasasaaas.WIL=a a.:a. =.asaa I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, SINGLE FAMILY <1/4 ACRE) TC = M *C ILENGTH**3) / < ELEVATION CHANGE) )**.2 INITIAL SUBAREA FLOW - LENGTH - 750.00 UPSTREAM ELEVATION = 2222.00 DOWNSTREAM ELEVATION a 2216.00 ELEVATION DIFFERENCE = 5.00 TC •_ . 393+ C l 750. 0@ «.3) / l 5. 00> 3 e*. 2 - 15.106 25.00 YEAR RAINFALL INTENSITY<INCH /HOUR) _ . 2.635 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7307 SUBAREA RUNOFF l CFS) a 3.08 TOTAL AREA<ACRES) = 2.60 TOTAL RUNOFF<CFS) = 3.08 i FLOW PROCESS FROM NODE 130.10 TO NODE 130.10 I S CODE = 2 C./1.01 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > >)))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< • ......... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AREs TIME OF CONCENTRATIONIMINUTES) = 25.22 Le P RAINFALL INTENSITY < I NCH. /HOUR) = 2.84 TOTAL STREAM AREA 4ACRES) - 2.60 TOTAL STREAM RUNOFFlCFS) AT CONFLUENCE a '3.08 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY Nt}�: i" <L:FS, 4M1 N.) < INCH /HC_tUR) 1 8.00 12.78 3.059 3.08 15.11 a. 635 RAINFALL INTENSITY AND TIME OP CONCENTRATION RATIO FORMULAlSRC) USED FOR :? STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 20.40 9.97 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF ICFS) •= 10.40 TD1E lMI NUTESY •F 21.781 TOTAL AREA<ACRES) = 5.10 ' • V A ♦f ! V i1 .. i. .y, .VM Ni. r. l • .r •• • • .. t M.0 x .. r .r .r . .. .. . . r• f r • .... • .. .r . C R'X FLOW PROCESS FROM NODE 130.30 TO NODE 130.50 ZS CODE = 2 C . f3 . r -3'.( )))) )RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =..ras.�...sssssss. sssssssa=ar==asss as ..... xsa.linasMONIAMIlmlitswwWwww.ms ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = N *C ILENGTH**3) / < ELEVATION CHANGE)) **. a INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION •= 1235.50 DOWNSTREAM ELEVATION = 2215.50 ELEVATION DIFFERENCE _ 20.00 TC •R . 393*C < 2000. 00* e3) / l ta. 00) 3+e+*. •- 13.606 5.00 YEAR RAINFALL INTENSITY<INCH /HOUR) _ 2.806 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7379 • SUBAREA RUNOFF (CF$) = 10.35 TOTAL AREAIACRES) = 5.00 TOTAL RUNOFF<CPS) = 20.35 FLOW PROCESS FROM NODE 135.20 TO NODE 130.00 ZS CODE _ a )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ssss..=ssa IJIMWM sa. assswssa= sss :sasssssssssass r.S.zMs ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = M* E <LENBTH**31 / < ELEVATION CHANGE)) **. 2 INITIAL SUBAREA FLOW- - LENGTH = 650.00 UPSTREAM ELEVATION = 1228.00 DOWNSTREAM ELEVATION = 22.24.80 ELEVATION DIFFERENCE = 3.20 TC •_ . 393*C l 650. 00 *+e3) / l 3. t'0) 3**.2 = 15.159 25.00 YEAR RAINFALL INTENSITYIINCH /HOUR) _ 2.630 SOIL CLASSIFICATION 28 "A" SINGLE- FAMILY<2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7304 SUEtAREA RUNOFF /CFS) = 1.54 TOTAL AREA (ACRES) •_ .80 TOTAL RUNOFF <CFS) - 1.54 x ux*x•***** - r # W R xx t FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 Z 8 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<(<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION /MINUTES) = 15.26 RAINFALL INTENSITY IINCH. t?R) = • • 4__ : KL'c /'fi'Y r: t!;'tt_<t - t- 4L. t " f ... -- 1. * u•* *v. i!ir. *r. uv. ir+r+c:er. r. *ie****. u+ e+ e+ ei rira! it+ eitie 'ern•*iei!ae•r.•**iririe•+e * r. n•ier. .. u•+ **** rar**iau isie•u•+ritie+e• *r.• FLOW PROCESS FROM NODE 130. -40 TO NODE 130. 00 IS CODE _ c. s7 ow )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < < < asa =.esssa a asessa aaan sa staa ss ass s as s >os a ssr--s.= ....wawa=seas_ar... =aa srrassass s=ri s s =a = as=.a. ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I3: SINGLE FAMILY 41/4 ACRE) TC * t (LENGTH**3) / (ELEVATION CHANGE) 3 *e. c: INITIAL SUBAREA FLOW- LENGTH = 600.00 UPSTREAM ELEVATION = 2.18.50 DOWNSTREAM ELEVATION •w 2;=:11e.64R ELEVATION DIFFERENCE = 3.70 TC •_' . 393* t ! $00.00 *e3) / ( 3.70) 3 *w. •"-: a 16.679 ::5.00 YEAR RAINFALL INTENBI TY ( INCH /HOttR) = 2.483 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7$34 SUBAREA RUNOFF(CPS) = 1.26 TOTAL AREA<ACRES) _ .70 TOTAL RUNOFFSCFS) e< 1.26 To kk 2 .' CFS, R�►+rr. +e+►+r�w+r+rr. ie+r +ew+s+r�rxw+� K+ eieHe+ cHe+ r+ r+ r +r+r+�w+rw .rr«•+e.w.*.,..r. +e. +e'•K'ir+r**e**.e****. ic+ru,e,r«•* FLOW PROCESS FROM NODE 131.20 TO NODE 232. E0 1S CODE )))))RATIONAL METHOD INITIAL SUBAREA ANALYSISSl<C< :.roams. am n.sss .saaaaa w.wa=aa as+a.masarsaaassassssss_rs asss. -= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 1S: SINGLE FAMILY (1/4 ACRE) TC -= (et (LENGTH**3) / (ELEVATION CHANe3E) 3 **.:: INITIAL SUBAREA FLOW - LENGTH = 550,00 UPSTREAM ELEVATION = 1217.10 ''e•w► DOWNSTREAM ELEVATION = 2.::2:5.0 ELEVATION DIFFERENCE = e.10 TC .e .393*t4 S50.00+ew3)/( 10)3**.'-: = 24.919 ::5.00 YEAR RAINFALL INTENSITY < INCH /HOUR) _ e. 655 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7326 SUBAREA RUNOFF (CF9) = 4.66 TOTAL AREA (ACRES) _ 2.40 TOTAL RtlNOFF (CF3) = 4.66 . wompeilell**********Ape.** 11!***its ................uw.+e .e .... FLOW PROCESS FROM NODE 13?.10 TO NODE 232.30 IS CODE ae C.B. 57 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< << aassseawssa= a= ars=a=flaw===a=aa==asw=a=as`aaa assssasassflfl=. flaae=.ss.r+.-ss z=--+ssas a.�. _ __ _ -. t ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = K* C (LENGTH*e3) / <ELE+.'ATION CHANGE) 3 * *.::: INITIAL SUBAREA FLOW - LENGTH = 5.0.00 UPSTREAM ELEVATION = 1227.20 DOWNSTREAM ELEVATION = 1209.50 ELEVATION DIFFERENCE - 7.60 TC = . 393* C < 5 0. 00**3) / ( 7.60) 3 **. = 11.153 25.00 YEAR RAINFALL INTENSITY (INCH /HQt_ ►R) = 3.26:: SOIL CLASSIFICATION I9 "A" Pal" - SINGLE- FAMILY (1 /4 ACRE LOT) RUNOFF COEFFICIENT •_ .7505 SUBAREA RUNOFF (CFS) = 11.15 TOTAL AREA<ACRES) = 4.70 TOTAL RUNOFF CFS) = 11.15 FLOW PROCESS FROM NODE 13a.a TO NODE 13:1.4e rs CODE = 6 C $. *1 >>>>>ADDITION OF SUSAREA TO MAINLINE PEAN. FLOWM YEAR RAINFALL INTENSITV!INCH/HOURY = 3.11 Now, SOIL CLASSIFICATION ZS "A" SINGLE—FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7469 SUBAREA AREAO4CRES) . SUEtAREA PUNOFF.CFSY 7.89 TOTAL AREA4ACRES) 6.00 TOTAL RUNOFF4CFS) = 16.84 TC4MIN) • = 11.48 Iktilere as. areswarriv.ugarmeaurairaerarsemr.wramsrararasseseasrAremmusa=amwemsrramassmsymnar.s.war=ros.wx.r=rxwAsexar.w.svar.rms- — — RA T ONAL METHOD HYDROLOGY COMPUTER PROGRAM EASE D ON SAN eERNARDINO COUNTY 4S&CY e 19a3 HYDROLOGY MANUAL 411 1ftere ............................=.....=..==.=....=.==- 4<<4<<4<4444<4<f<44<<<<<<<<<444444<4<4>)>>))))))>))))))>))>)>>> (CY Cooyriaht 198e Advanced Enaineerina Software CAES3 Especially prepared for: HALL & FOREMAN, INC. 4 4 4 4 4 4 4 4 4 4 • • 4 4 • • < 4) ) ) ) ) ) > ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) **********OESCR1PT/ON OF RESuLTS****************************************it*** * CATCH BASIN HYDROLOGY,LINE * 0 100 * AHMED SHE1XH,J.N.3366,1e/10/86 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT4YEARY = 100.00 SPECIFIED MINIMUM P/PE SIZE4INCHY SPECIFIED PERCENT OF GRADIENTS4DECIMALY TO USE roR FRICTION SLOPE 10-YEAR STORM 60-MINUTE INTENSITY4INCH/HOUR) \wow, 100-YEAR STORM 60-MINUTE INTENSITYUNCH/HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY/.INCH/HOURY = 1.4700 SLOPE OF INTENSITY DURATION CURVE • .6000 See HYDROLOGY MANUAL "C"-VALUES USED Advanced Enainmerina Software EAES3 SERIAL N. A0560A REV. 3.1 RELEASE DATE: 5/01/a5 FLOW PROCESS FROM NODE lae.eo TO NODE ise.3o IS CODE = e C.8. ))))>RATIONAL METHOD INITIAL SUBAREA ANALYSIS4( 414 alinlwairsmilLese.linaLimainniale.serarawassimslarafrarallarr.zrasouvistrairalincaltararalmelearsirawaRaminme=Ar.w.warairw.frxwmaa=a ASSUMED INITIAL SUBAREA UN/FORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = M*C4LENGTH**3)/4ELEVATION CHANSEY1**.e 0"k INITIAL SUBAREA FLOW-LENGTH • 950.00 ,1^ UPSTREAM ELEVATION = 1304.70 DOWNSTREAM ELEVATION = lesa.se ELEVATION DIFFERENCE TC = •3934C( 950.00**3Y/4 14.a16 100.00 YEAR RAINFALL INTENSITY4INCk/HOUR) • 3.40a SOIL CLASSIFICATION IS "A" t ork L E - F Am ! . k (FT z•=t r T n-7 **wit•*....raiew•+e+riei .. ..reae.....+e.re****uic*•r. «••x+e..... *.. a re w x �ew+s+� atxarie irar Kx K +e ie n �e x•ar+rie FLOW PROCESS FROM NODE 2tZc.2+2l NODE 186.00 IS CODE = ` ___ ._....._.___ -__._. �rin► )))))RATIONAL METHOD INITIAL SU EAREA g NAL Y S I S 4 ( 4 4 4 ss saaa. Maassaas= s >.a.asmrasa.rasma.= ssmsxsumx :s.ss.aa == sara.a::r ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE). TC = M* C (LENQTH**3) / (ELEVATION CHANL3E) 3**.:?' INITIAL SUBAREA FLOW - LENGTH •_= 900. 00 UPSTREAM ELEVATION = 2E99.7e DOWNSTREAM ELEVATION = 2::92.00 ELEVATION DIFFERENCE = 8.70 TC = . 393e C 4 9040 0i *e3) .r 4 8. i ec'3) 3 rere. ;_ = 15.067 200.00 YEAR RAINFALL INTENSITY4INCt-4 /HOUR) •= 3.366 SOIL CLASSIFICATION 13 "A" SINGLE- FAMILY ( 2 /4 ACRE LOT) RUNOFF COEFFICIENT = . 7566 SUBAREA RUNOFF4CFSY = 8.92 TOTAL AREA4ACRES) = 3.50 TOTAL RUNOFF4CFSY = 8.92 * re* re** rere* rek rerea*** reRre a* rerexrere.. rer erere**rerere**rere*re******re* isreR tie*...rerer►.•.*are*re* *it*re** FLOW PROCESS FROM NODE 28:?.00 TO NODE 28 .e0 IS CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE e d ( r i sasassssssavasssssraessauaar . =smsaraaraamrssarss ass :s.w.awaeaaaasar= ...mrs. - rcc CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTESY = 25.05 RAINFALL INTENSITY (INCH. /HOUR) =a• 3.37 r" "' ( TOTAL STREAM AREA (ACRES) = 3.50 '%1 41.0. 2 TOTAL STREAM RUNOFF 4CFS) AT CONFLUENCE = 8.92 ***r. term****a*********** ***term*re***term*re**********. re *re re*** ter mrere*re*****re*****retermv ** FLOW PROCESS FROM NODE 28.4� TO NODE 28.=:.00 13 CODE _ a ))) ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 smmassaaasssssaraessaarssasses arsssssassssss assssssrrsearrar=mams messes. sss xss.- sar._....._..._._..c:._._ e..- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE') TC = K* C (LENGTH**3) / 4ELEVATION CHANGE) 3 **.:3 INITIAL SUR►AREA FLOW -- LENGTH •- 600.00 UPSTREAM ELEVATION = 1306.50 DOWNSTREAM ELEVATION •= l::91.00 ELEVATION DIFFERENCE = 22.50 TC •_ . 393re C 4 b1e't$;. i • s' 4 2 2. 50) s rere. a a 11.167 200.00 YEAR RAINFALL INTENSITY4INCM /HOUR) •= 4.4N a7 SOIL CLASS1FICgATION IS "A" SINGLE- FAMILY 41 /r4 ACRE LOT) RUNOFF COEFFICIENT •_ .7719 SUSARE#•A RUNOFF 4CFS) = 9.g5 TOTAL AREA 4 ACRES) = 3. 0 TOTAL RUNOFF 4 C':F S Y ar 9.95 uper. r. r. *. term* reua rete •rearere**rerereuurerererer. **rater**. x rerererererererererere **..termterm rarererererer. ***•* r:. . FLOW PROCESS FROM NODE 26.. 00 TO NODE 2 8 . ota Is CODE •= 2 C • B I C ' > >)) >DESIt3NATE INDEPENDENT STREAM FOR CONFLUENCE44444 ") ) > > i•iND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ; 4 : •: sr=ssar mar=ass=s araarassasm=sssas er mr•r.= .:::= .- :_. -:_: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE. TIME OF CONCENTRATION(MINUTES) •= 11.19 RAINFALL INTENSITY 4 I 2 -I. /HOURY •_ .y. ut 3 Treir0 PRE 4PC :R% ='11 ''r, CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CF9) fMIN. Y f I NCH /HOUR ‘46ary 1 8. 93 3 5. 09 3. 366 . 95 11. 19 4.4.*:7 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA49&CY USED FOR a STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 27.ee 16.56 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF fCFSY = 17.:_.'-: TIME {MINU i E ) = 15.067 TOTAL AREA4ACRES) = 6.70 ** ******r.**i0•**u*** *** *****************************************************it FLOW PROCESS FROM NODE 183.10 TO NODE 183.00 I S CODE •= c: ) Y))) RATIONAL METHOD INITIAL SUBAREA ANALYSIS f f f •i f sz3r.= asaseass sassrsssssseaas3 •ss=s =aaslssasssssss asassss z. as :.aosmcara.- as.sas..s.= .:.zca _- . -- -- _: a c__..:s =_ ASSUMED :INITIAL SUBAREA UNIFORM DEVELOPMENT 1S: CONDOMINIUM TC = < *t 4LENGTH**3) / 4ELEVAT1ON CHi Nt3EY) **.:_ INITIAL SUBAREA FLOW - LENGTH •= 700.00 UPSTREAM ELEVATION = 1::98.50 DOWNSTREAM ELEVAT 1 ESN = 2 ; .8 4. 50 ELEVATION DIFFERENCE '= 14.00 TC w .359* (f 700. 00.ee3) / f t 4. 0oY .1 *.m. .= 10.794 100.00 YEAR RAINFALL INTENSITY4INCH,'HOURY a 4.114 SOIL CLASSIFICATION IS .ommoe' CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7q65 SUBAREA RUNOFF f CFS Y •= 15.07 TOTAL AREA4ACRESY = •4.60 TOTAL RUNOFF 4CF3) = ***.k i!♦<7!i **..... FiIQ*it*itiFilit•1!H!****M it itikillt•1l1F1liFfFiF***i!i! itihir• rt• MitiFi!• Ki!**ili4.tiFitili!•k***it••K** FLOW PROCESS FROM NODE 183.00 TO NODE 380. etet I3 CODE •= 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SURAREAfrdfr . =ararmsar.n . . arms.= /Mr . n=. Saar=. n. ara= sas=.ers= .ar.=smnrsss.=.amrs._. _.- _._'-_-'. UPSTREAM ELEVATION = 1u84.50 DOWNRTREAm ELEVATION = 128E..00 STREET LENGTH4FEETY •= 5002t.00 CURB HE1GTH4 INCHES) = B. STREET HALFWIDTH4FEETY •n e4.ee STREET CROSSFALL fDELIMAL) = . m'r.=•9.=< SPECIFIED NUMBER OF HALFSTREETS CARRY/N6 RUNOFF •= 1 **T RAVELTIME COMPUTED USINO'3 MEAN FLOW <CFB) = 15.89 NOTE: STREETFLOW EY.CEEDS TC_)P OF CUREt. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEOL I EtLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. NNEL. THAT IS, ALL FLOW ALONG THE PARlfWAY, ETC., IS NESLECTED. STREET FLOWDEPTH {FEETY •_ .69 HALFSTREET FLOODWIDTH4FEETY = 18.67 AVERAGE FLOW VELOCITYfFEET /SEC. Y = 5.01 PRODUCT OF DEPtHtVELOCITY = ..07 STREETFLOW T RAVEL t IME.MINY = e.77 sCtMINY •= 15.56 100.00 YEAR RAINFALL INTENSITY4INCH /HOURRY = 3.588 SOIL CLASSIFICATION IS "A" SINGLE - FAMILY 41:4 ACRE LOT) RUNOFF COEFFICIENT •_ .763 SUBAREA ARE A f ACRES Y =* .60 SUBAREA RUNOFF f CFS Y = 1.64 SUMMED AREA 1 ACRESY = 5.Z0 TOTAL RUNOFF4CFSY = 26.7e END OF SUBAREA STREETFLOW HYDRAULICS: DEr. TH4FEETY = .71 -U LFSTREET FLOODWXDTHCFEET i = 19.36 C1 r.s4 xC_': *91.* ..... **** ***** wee *ie**is....ieie•Brie•mir•R.* •+ ri►• k*x• rz• n• ieirir.. ....er****ie••ee******** * **** FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 15 CODE = 2 Y >Y DE9I8NATE INDEPENDENT STREAM FOR CONFLUENCE{ r nr sr:+rrr=fwwww. is:irsaa aarirr.Mrarra r rsrr =tort CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTE9Y = 23.55 RAINFALL INTENSITY { I NCH. / NOU4Y = 3. 59 TOTAL STREAM AREA {ACRES) = 5.:0c•! TOTAL STREAM RUNOFF {CFS> AT CONFLUENCE = 26.72 +r ***x** * ** *ee*x*x ir.......................................................... FLOW PROCESS FROM NODE 181.30 TO NODE 180.00 I3 CODE _ > >) > >RATIONKtL METHOD INITIAL 9UDAREA ANALYSI9: 44 sraa=aaa :.a•aaa=auraa= : narara rraa as aaaaarraaaarraerrflr asriarsrai. srtrar=sarsasaaarwww= . srrr.va_ ASSUMED INITIAL SUEtREA UNIFORM DEVELOPMENT I8: SINGLE FAMILY 42 /4 ACRE) TC = k C {LENGTH**3Y/ {ELEVAs ION CHAN8EY3**.: • INITIAL SUBAREA FLOW - LENGTH •= 2000.00 UPSTREAM ELEVATION .•r 2285.50 DOWNSTREAM ELEVATION = 12 9 . ee ELEVATION DIFFERENCE = 3.50 TC = . 393+ C { 200 . 00**3Y / { 3.50)]**.. = 29. 82 200.00 YEA c RAINFALL 2 NTEN322 sY{INCN /HCU ;Y •_ 2.905 SOIL CLASSIFICATION I3 "A" SIN0LE- FAMILY 42 /4 ACRE LOT) RUNOFF COEFFICIENT •_ .7417 SUBAREA RUNOFF { CF3 Y a 10.77 TOTAL AREA 4ACRE9Y = 5.00 TOTAL RUNOFF {CFSY •= 20.77 r. ****** *.+rxfr.ieie+r.r. .ie. it .**x*ic•****xxx*•xit•iex +e *ie•****x rrx•►•** rr. x *•x•* r. r. r. •r-r. r *r. x +r. * FLOW PROCESS FROM NODE 160.00 TO NODE 280.00 IS CODE = 2 C. $ #I r )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE { { { {{ > > > > > AND COMPUTE VARIOUS CONFLUENCED STREAM 'fl LUE3 { { { { { amerces= ssar =aramsrasavaaeaara e .rice cram =ss WWWW: araaamrsW:msaay.•+cWW=iaaWsW W = CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE: TIME OF CONCENTRATION 4MINUTE3Y = 29.26 RAINFALL INTENSITY { INCH. /MOUR> •_ 2.90 TOTAL STREAM AREA {ACRES) •= 5.00 TOTAL STREAM RUNOFF {CFSY AT CONFLUENCE = 20.77 CONFLUENCE I NF•C'RMAT ION: STREAM RUNOFF TIME INTENSITY NUMBER 4CF3> {M Y {I NCH, HOUR Y 2 16. 73 13. 55 3. 588 20.77 29. c.8 2.902+5 RAt I NFALL INTENSITY , ND TIME OF CONCENTRATION RATIO FORMULA { 3E+CY USED FOR i STREAMS. VARIOUS CONFLUEENCED RUNOFF VALUES ARE AS FOLLOWS: 24.29 24.32 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: A'• RUNOFF 4CF3Y •= 24.32 TIME 4M1NUTESY •= 29.282 TOTAL AREA 4A =rCRE3> = 20.20 .........u•u .. ........+e....ieae...........*•*•ie+t*•+e+e*•*•.....nu *•*•.. r.* •*•*•*•*• *•*•ttie*•ie•n•*• **•r. FLOW PROCESS FROM NODE 181.00 TO NONE 180.00 I 3 CODE r ' C4?. � •) i •11+W., /`.l i...T. G }i i) 7 Y.l T 'i ,. ... 4i'.;'.r:l:' e-. e ,.. . l ti• T i t I r10. 1., =SJ S 04 d f d rf _ JL L"TP1stii 7•i iff`f 1 r tSp f'f DEVELOPMENT I9: SINGLE FAMILY 4t14 ACRE) TC = M*C SLENGTH**3Y, SELEVATION CHAN6EY 3 *x.:? INITIAL SUBAREA FLOW-LENGTH •=T 1100.00 UPSTREAM ELEVATION = 1300.00 DOWNSTREAM ELEVATION •= t 8:. +ca ELEVATION DIFFERENCE = 38.00 TC = .393=C. 12e.@3)/. 2$. ¢''itc�Y 3+F *. 8 = 14.7 100.00 YEAR RAINFALL INTENSITYSINCH = 3.426 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY S 214 ACRE LOTY RUNOFF COEFFICIENT _ .7579 SUBAREA RUNOFF S CFS Y = 12.95 TOTAL AREASACRES) = 5.00 TOTAL RUNOFFSCFSY •= 1A2..95 M• it*itil *Srifil**+ir+r+eK•X••K•+e...* .+r.. ure+r+rrrit•+c*+e* **u•• K• *+ hu** Alle**4 1+ e*re+ P+ r **41***4*1r**•n•* 9e•;e 4 FLOW PROCESS PROM NODE 2 8tc�. TO NODE 2. et) i 3 CODE =T 2 )) ) Y Y DESIGNATE INDEPENDENT STREAM FOR CONFLUENCES • S S 4 A'WM, MOWAIMVilliff a s.SS.=fl ash=.ililaszeT razeni.=? r r T. =.l•. =.WA= A.0 7' 7e. =A. =VCS . .�CS_T_ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONSMINUTESY = 14.71 RAINFALL INTENSITY S INCH. 1f-tOURY = 3.48 TOTAL STREAM AREA SACRESY a 5.00 TOTAL STREAM RUNOFFSCFSY AT CONFLUENCE •= 2::.95 ****, *****.... it uua..****ieir,**a*•r,a***•ft N*a*it*********x *r, xaxx *x***,e **r.+tr.. i►1!••r. *•r.•,!* K FLOW PROCESS FROM NODE 121.10 TO NODE 184.00 19 CODE = B Y))YYRATIONAL METHOD INITIAL SUBAREA ANALYSIS +.SSSS - .=salsa=as aaasaaal asase sans =a=asaaa.=arags=assa=.s =ai_ . ...r= . zss=sss-a =s ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINs3LE FAMILY 41,4 ACRE} TC = M*C SLENGTt-**3Y 1 SELEVATION Ct-tAN3EY .)**. B INITIAL SUBAREA FLOW - LENGTH _ 400.00 UPSTREAM ELEVATION = 1300. 00 DOWNSTREAM ELEVATION = 2:?92. 00 ELEVATION DIFFERENCE = 9.00 TC = •39* C S 400. 00**3Y 1 ( 9.00Y 2 **.::: = 9.818 100.00 YEAR RAINFALL INTENSI TY S INCH /HOUR} = 4.5:_5 SOIL CLASSIFICATION I9 "A" SINGLE - FAMILY S 214 ACRE LOT) RUNOFF COEFFICIENT = . ?8055 SUBAREA RUNOFF . CF9 Y •= a.la TOTAL AREASACRESY = .60 TOTAL RUNOFPSCFSY = . 2 *•r.+taint•ar,xit•uieu•* **irf ***art**.• r.• au.ie•+ea•* • *..• t.a• atie.. mrt***• a• a *it*****r.1ruitit*r,ie*r.•r.vv* FLOW PROCESS FROM NODE 184.00 TO NODE 180.00 ZS CODE = 6 Y Y Y Y Y COMPUTE STREETFLOW TRAVELT2ME THRU SURE A S S r, S S asraraas ar.= sasme =essasaslrll=aarsss=ss. =ss =.mss. =assT.saaaaa � - -- =ams iaam=srs3• �.saaxassss�•as.: rsas. -.c UPSTREAM ELEVATION •= 1891.00 DOWNSTREAM ELEVATION = 2 Bw. oit STREET LENGTH4FEETY •= 970.00 CURS NEI13TH4 INCHE9Y = 8. STREET HALFWIDTH4FEETY = a4.oe STREET CROSSFALL = .+2iasa SPECIFIED NUMBER OF HALF9TREETS CARRYING RUNOFF •= 2 *r.TRAVELTIME COMPUTED USING MEAN FLOW4CF9Y = 3.64 STREET FLOWDEPTMSFEETY = .40 HALFSTREET FLOODWIDTHSFEETY = 9.05 AVERAGE FLOW VELOC I TY S FE E T / SEC. Y •= a.66 PRO:AUCT OF DEPTH6VF_LOC1TY = 2.08 STREETFLOW TRAVELTIMESMINY = 6.06 TCSMINY = t5.:::9 200.00 YEAR RAINFALL INTENSITY S iNC.H /Past ?RY = . 338 r v.r•.. ...-a .....ra .. ....._-. a. r_. Jl.3i•Hf'as.r9 2'. JI...as'3 .vs J. ra. V.`r SUMMED AREAS ACRES) = 1.80 TOT AL RUNOFF S CF8 } = 5.15 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH<FEET) •_ .45 NALFS T REST FLOODWIDTHSFEET) •_ FLOW VELOCITY'F=EET /SEC.) _ '. 9 . DEPTH*VELOCI T'r .= 1.30 xu ie+► e• ie*+►+►+ e*+r*****tttr*ee+ e*u♦ e*ie.w....*xtr•fr*ie*** ********* ices•► ieu• •xarirxJx•ir*ieie••►•xr.****r. er.-xr. FLOW PROCESS FROM NODE tae. �Z+t2t TO NODE #.9SC *,. �o I3 CODE = # C , R. )))))DESIGNATE INDEPENDENT STREAM FOR CONFLtlENCES < { St )))))AND COMPUTE VARIOUS CONFLUENCED STREAM Vs LUES S < S S +. arassasmarINFIMA &WAINS assaraArs+w =sa.IMseMIL= air. =ra111ATMMaaa .�aa. :srr�.v�.sz.asasatair= aamarsr smaa« CONFLUENCE VALISES USED FOR INDEPENDENT STREAM a ARE: TIME OF CON4 ENTRAF IONSMINUTES) •= 35.:=9 RAINFALL INTENSITY SINCH. /HOUR) = 3.34 TOTAL STREAM AREA 4ACRE9) •= 1.80 TOTAL STREAM RUNOFF SCFS) AT CONFLUENCE = 5.15 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CF8) SMIN.) 4 INCF-F /HOUR) 1 1ar:'.95 34.73 3.436 5.15 15.Z9 3. 336 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMt.FLA <SBC) USED FOR a STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 27.9e 37.ae COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFFSCFS) _ 17.90 TIMESMINUTES) = 34.714 ° 'rwr 'TOTAL AREA = 6.80 M9l9R 9l1l1l9liF1NF............ 1t7t iR•1l91Mt1b9l1F1l1l9!'1! 1l1t 9t 9l1li! ♦l il+P 9t 1! •1! •1l it 1l ll.... * ** * * K• 1l91.9F .... * 91••1!..9/•* * FLOW PROCESS FROM NODE 191.00 TO NODE 190.00 13 CODE _ :? G p $1e7/0 >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < < < =aaaarMara - - ••aa Y. saaa.= aaamasaramasaA =aremr.areasear. MAI =.=.ZS- s:s Aft . =se ste LW IA AI 5=5 5 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 4t /4 ACRE). TC = M*C SLENGTH**3) /'ELEVATION CHANGE) 3* *.:-' INITIAL SUBAREA FLOW- LENGTH •= 3100.00 UPSTREAM ELEVATION = 2.78.7+? DOWNSTREAM ELEVATION -= t >--:7 t . le ELEVATION DIFFERENCE == 7.00 TC ar= . 3939 C < t #t . eGe*3) / < 7 . 0@t) 31e9a. .a. 17.773 200.00 YEAR RAINFALL INTENSITYSINCH /HOUR) •= 3.050 SOIL CLASSIFICATION IS "A` SINGLE- FAMILY t 3 /4 ACRE LOT) RUNOFF COEFFICIENT •A .7469 SUBAREA RJNQFF SCF9) = 6.63 TOTAL AREASACRES) _ a.90 TOTAL RUNOFF SC.FS) •- 6.61 9!****♦ t1l itll**.. 7l M1l1l 117l 9l 11 91. 91. 16il M• K' 1S 91 91 9t9F91 9!• K• 1! 9l 11 9t•• 1@ 1l 91 9k9P91 91. 1h1t• 9k9l1lik9l9t9F91 9! 1l 91 M91 91919h91 91 11 91 91 9t919t•19►91M FLOW PROCESS FROM NODE 3 9:?. iota TO NODE 195.00 18 CODE = a v r pri >>>>Y RATIONAL METHOD INITIAL SUBAREA ANAL YS 18 < < < < < ALAI araa.=arlarlaaa=a/ Mama 1555151452.114551.1111 514111550115155ANt55.1111AT =Sa.==. -11545.7•5 . 1: a= 201TT .5.5454.55.a 1 a9arfa.=lm 5A ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8: SINGLE FAMILY 41/4 ACRE TC = F{*C SLENGTN**3) /'ELEVATION CHANGE} )' . L INITIAL SUBAREA FLOW -- LENGTH •= &'lc .00 + F[:aQTf?F l }ht F•t F'vaT T nw = ** iNet GLL� W!•S S t 1Je• ii 1 r f GMCS. ka.V40 TC •_ . 393+* 4 700. 00*e3) / < t 2.00) J *ie. ; = 1.5:.380 200.00 YEAR RAINFALL INTEN9ITY(INCH /HOUR) t 3.789 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENTS = .7670 SUBAREA RUNOFF 4 CFS a 13.08 TOTAL AREA 4 A: RE9) = 4.50 TOTAL RUNOFF 4 CF8) = 13.08 �e i1• ie ..* R.R**** ..... **** ******************************a isis***+e********* FLOW PROCESS FROM NODE 193.00 TO NODE 195.50 19 CODE >r :: >>>)> RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 4 ( 4 4 a.Male mara saaaaaaaa masaar arearaaa--- saa.wesn ea m maaas maraaawan rser saw twas m zaar a amen xz.=war s man Cale sr =. x ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACREr TC = M*C 4LENGTH**3) / 4ELEVATION CHANGE) 3**. INITIAL SUBAREA FLOW -- LENGTH •= 2000.00 UPSTREAM ELEVATION a 278.70 DOWNSTREAM ELEVATION - 1266.10 ELEVATION DIFFERENCE = 2a. 6o TC •_ . 393+e t: 00. 00**3) / 4 l602**.. •= 3�r. 9;.�r 200.00 YEAR RAINFALL INTENSITY4INCH /HOUR) _ 3.386 SOIL CLASSIFICATION I3 "A" SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .757,1"1' SUBAREA RUNOFF 4 CF9) = 26.4a TOTAL AREA4ACRES) = 6.40 TOTAL Rt- +NOFF 4CF•3) = •!•ieRiR lt•1!ilieRie**** .lPr:•..**** ieie********ieieitieilieieieieieie e itieieiFie• RiRR ie• itie• Ail ililieieie**iliei!•iele*** FLOW PROCESS FROM NODE 1 95. 50 TO NODE 195. 00 19 CODE = 6 " >7>)) COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA 4 4 4 4 amaaarraaaaaasasaaaaaaaa. aaasas.•e msraaasetaaaaaeaaaeaasa +aaa.•ra. :.a �saa�•axsaa�arra�as. -<r.= UPSTREAM ELEVATION •= 2:66. 20 DOWNSTREAM ELEVATION = 2::63.00 STREET LENC TH4FEET) a 400.00 CURB HEIGTH4INCHE9) = 8. STREET HALFWIDTH4FEET) a e0.00 STREET CROSSFALL 4DECIMAL) _ . 0:7k0 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF •= 2 **TRAVELTIME COMPUTED USING MEAN FLOW4CFS) = 26.4Z STREET F'LOWDEPTH 4 FEET) _ .65 HALFSTREET FLOODWIDTH4FEET) •w 18.59 AVERAGE FLOW VELOCITY 4FEET /SEC.) a 3.39 PRODUCT OF D EPTHO VELOC I TY = STREETFLOW TRAVELrIME = 4.97 TC%M1N) = 46.89 200.00 YEAR RAINFALL INTEN9lTY4INCH /HOUR) = 3.245 SOIL CLASSIFICATION IS "A" :SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7500 SUBAREA AREA 4 ACRES) • 0.00 SUBAREA RUNOFF 4 CF S = 0.00 SUMMED AREA4ACRES) a 6.40 TOTAL RUNOFF 4CFS) = 26.4e END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .65 HALFSTREET FLOODWIDTH4FEET) = 28.59 FLOW VELOCITY4FEET /SEC.) = 3.39 DEPTH*VELOCITY = a.29 ***..r ie.*u• reti e**w *x ie• mfeu• u******* *ae*♦ e• ee• re*ie**x •*x•****+re•xx* r. r. •ter. r. .r. r. *r.+•****** * i►.•xr. r. r. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 19 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 .! :A'A' .. lZ :ermarar nrsa•ares asr.as•.s*� es F. ?.:S F:.sST. C'-' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTE9) = 26.89 RAINFALL INTENSITY 4!NCH. /HOUR) a 3.25 TOTAL STREAM AREA 4 ACRE S) = 6.40 ************* x***********x**xx**x*x**x*x* xx*xx****xxxx************* ** *** ** FLOW PROCESS FROM NODE 193.10 TO NODE 195.00 13 CODE sa > > > >> RATIONAL METHOD INITIAL SUBARE AL'r S I S 4 4 4 4 4 $ as aaararaw•. aaaairs .ar:.ra :axasaar ar er�axxrtr.:ra=srsra=smsram=es ar=.a rr. =.m• `fir ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 41/4 ACRE) TC s* (*C 4LEN6TH**3)/ 4ELEVATION CHANGE)3**. : INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION •= 1E72.00 DOWNSTREAM ELEVATION - 2:?t33. ee ELEVATION DIFFERENCE _ 8.00 TC a .39311.f4 700.00**3 }/4 8.00 3* *..3 = 13.194 100.00 YEAR RAINFALL I NTENS Z TY 4 I NCH/ HOUR) •A 3.647 SOIL CLASSIFICATION ZS "Au SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT •= .7636 SUBAREA RUNOFF4CFS} = 21.14 TOTAL AREA4ACRE5) •_ 4. 00 TOTAL RUNOFF 4CFS) = 11.14 x*************** 1.******** ****x*************xx*xx**xxexr. 9.*x*xxxxrxx*xr.9.9.1.1. xxr. FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 1 G. D• f�lr/9 ))) >)DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44441 P }} }}}AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES44444 as .�saasaeaawaara=asaaaa =anafl n:=aar . sr arma+.res.u.usr as :ama--- aa:sssaasaa.�aaaa� CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :? ARE: TIME OF CONCENTRAsION4MINUTES) a 13.19 RAINFALL INTENSITY 4INCH. /HOUR) = 3.65 �., TOTAL STREAM AREA %ACRES) .a 4.00 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = 21.24 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CFS) %MIN.) 4I NCH/ HOUR) 1 16.46 16.69 3.145 22.24 23.19 3.647 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA 4 BLOC) USED FOR i STREAMS. VARZOUS CONFLUENCED RUNOFF VALUER ARE AS FOLLOWS: es.ee e3.97 COMPUTED CONFLUENCE ESTIMATES ARE AS FELLOWS: RUNOFF 4CFS) _ . ^.6. ei TIME 4MINUTES) = 16.691 TOTAL AREA4ACRES) a 10.40 it**** 1c1. 1.1.Knxxuw x*x1.•.+ e•. x1. K1.+ . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1M. 1. 1.«• 1. 1. 1. 1. 1.****1. 1. 1.1.1.1.1.1.1.1.xx1.1.x1tx1.x1. FLOW PROCESS FROM NODE 194.10 TO NODE 194.10 /S CODE = :? > > > > >RATZONAL METHOD INITIAL SUBAREA ANALYSZS41444 aa+raasaaaaaaaasaaa--- saaaas aiaaaaa.0a.11aaalaa ITAIRaaaAMMOWar.'.ta VAIr . AWAWan.na.n.A.i'i== ASSUMED INITIAL 'SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC a t4+•C 4LENGTH**3) / 4ELEVATZON CHAN8E) 3*e. c': 04 """, INITIAL SUBAREA FLOW - LENGTH a 730.00 some UPSTREAM ELEVATION = 2 ee . 80 DOWNSTREAM ELEVATION •= 1 E.7 t . 84ct ELEVATION DIFFERENCE = 11.00 TC a . 359eC 4 730. 00**3> / 4 •= 11.616 100.00 YEAR RAINFALL ZNTENSI TY 4 INCH /HOUR) = 3.93:' SOIL CLASSIFICATION I3 "A" ; _'.:..r.e :6Y T ►t S l !.d lr "-r__.2 �._ I- . ct. ....5. .te r . ... _ ._ _ _ «• *it ••14-*****tie**atie•r. tie FLOW PROCESS FROM NODE 194.10 TO NODE 195.80 19 CODE _ 5 >>>>> COMPUTE TRAPEZOIDAL - CHANNEL FLOW < < < < < )))Y }TRAVELT1ME THRU 9tJ AREA<<<<< aadlisaARiAI=ll =ils ��ZOrda Mt i! = 1.s raLIERf.ISmXIIMMA MAC=. m. •O.•8TdT.TIV.i4.'MAi!M.99dC.717.= % M= sr= .ra T.- ... =1St =asp . sr UPSTREAM NODE ELEVATION = 2E72.00 DOWNSTREAM NODE ELEVATION = 2 5& 5€ CHANNEL LENGTH THRU 9URAREA <FEETY = 800. eta CHANNEL DA9E t FEET) _ E40.00 "Z" FACTOR = a.000 MANNINY39 FACTOR •a .015 MAXIMUM DEPTH <FEET) = .50 CHANNEL FLOW THRU SUBAREA4CFEY = 7.5€4 FLOW VELOCITY<FEET /SECY = 3.39 FLOW LEPTH <FEET) _ .22 TRAVEL t 2ME<MIN. Y = 3.93 TC %MIN. } = 25.55 *********** **** * * * ****** ****************** ******x** ***r. ******* **.** ***xr. r. r* FLOW PROCESS FROM NODE 195.80 TO NODE 195.80 I S CODE = 2 })))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION<MINUTESY = 25.55 RAINFALL INTENSITY <iNCH. &HOUR} = 3. 32 TOTAL STREAM AREA <ACRES) _ E.40 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE = 7.50 .4101".- *** **irwietia*irietieie*********** bra► ee**x•R*************il******** 1!i!•Kirx*'/ ****x*x*** tie r. ** Afte FLOW PROCESS FROM NODE 194.00 TO NODE 295.80 IS CODE w })))RATIONAL METHOD INITIAL SUBAREA ANALY9IS<4<< a =. . afS.as a ASSUMED INITIAL. SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC •a t{* t <LENGTH**3) / < ELEVAT ION CHANGE) 3 **. : INITIAL SUBAREA FLOW-LENGTH = 850.00 UPSTREAM ELEVATION = 2 74. 00 DOWNBTf?EAM ELEVATION = 2:?58.5ec� ELEVATION DIFFERENCE = 15.50 TC •a . 359* t ( 850. 00rr3Y / < 2 5.50) 3 **. ; = 11.883 200.00 YEAR RAINFALL INTENSITY<INCH&HOUR} = 3.884 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFF I C s ENT • = .7933 9URAREA RUNOFF<CFSY = 22.09 'TOTAL AREA <ACRES) = 3.60 TOTAL RUNOFF <CFS) = 11.09 **** e*ti r*ie**ieie ,x*ae**yrye*it***** e►** xi *** ** *** mxieir************ **ter.. **** re *rr. w r. r•w FLOW PROCESS FROM NODE 195.80 TO NODE 195.90 19 CODE = 2 (� $ f })) })DE82ONATE INDEPENDENT STREAM FOR CONFLUENCE<4444 >>>>> AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES < < < < < aa=:a+ar. Ali ===.fl a rfl. llasaTdtil.=sY=aTca.�A.aAn aa+r saw.r..lsas =.:t.�san.rr_a ae r. �.:T.r CONFLUENCE VALUES USED FOR INDEPENDENT STREAM E ARE: TIME OF CONCENTRAT2ON4MINUTESY = 22.88 Nome RAINFALL INTENSITY <INGH. /HOUR} = 3.88 TOTAL STREAM AREA 4ACRE9Y = 3.60 TOTAL STREAM RUNOFF<CFS) AT CONFLUENCE = 22.09 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY 2 7.581 15.55 3.306 :3 22.819 22.88 3.884 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA S SEC Y USED FOR :? STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 26.94 26.83 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFFSCFS} = 26.94 TIMESMZNUTES) = 25.546 TOTAL AREASACRESY = 6.00 le**** tl it tlQ le Mtl***** t!• QtlNRI INe tPtl iR1 l*Nitllll*iliF*ilifi!•MiFili ...iFilil9liFililiF***M•i ! i!#1liliFitit•illt...**** FLOW PROCESS FROM NODE 294.80 TO NODE 294.0 ZS CODE _ Y)Y))RATIONAL METHOD INITIAL SUBAREA ANALYSZ944444 NO INAIWAVIIMMJIILIELINIMILMIllatAillrea.1111M f IV=s=s Willi ar aaa.=. avaarsrsraar.90 Tr III asazama ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = M*C SLENGTH**3Y 1 (ELEVATION CHAN8E} Ste*.: INITIAL SUBAREA FLOW - LENGTH = 800.00 UPSTREAM ELEVATION = 2888.00 DOWNSTREAM ELEVATION •a► 2273.00 ELEVATION DIFFERENCE = 9.00 TC = .359«C4 800.00**3)14 9.00Y3**.E s 2E:.77•ts 200.00 YEAR RAINFALL Z NTENS I TY S Z NCH/HQURY = 3.719 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7908 SUBAREA RUNOFF CFS) = 6.28 TOTAL AREASACRESY = 2. 20 TOTAL RUNOFF SCFSY = 6. 28 *** leteletl******...... it 11 its !•Ril**4l****M*i!.... iFil*iFA* ih.... il i *** FLOW PROCESS FROM NODE 294.8e TO NODE 296.00 ZS CODE = 6 . P. ) }}})COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA44444 s=ss.�a=UMNI=sss=LMIIW . as sn= sOS. ssJVSara ssaaslssas ill 'SWAMI war WC VI sasaa==. lit f�aaa UPSTREAM ELEVATION = 2873.00 DOWNSTREAM ELEVATION = 2258.00 STREET LENGTH %FEET} = 900.00 CUR& HEIGTH4INCt-4ESY = 8. STREET ¢tALFWZDTHSFEET} = 32.00 STREET CROSSFALL (DEC IMAL) _ .0243 SPECIFIED NUMBER OF HALFSTREETS CARRYZN9 RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOWtCFSY = 8.41 STREET FLOWDEPTHSFEETY m .ail HALFSTREET FLOOZYWZDTHSFEETY = 23.02 AVERAGE FLOW VELOC I TY S FEET I SEC. Y •a 3.76 PRODUCT OF DEP THBVELOC2 TY •= 2.75 STREETFLOW TRAVELTZME %MIN} = 3.99 TC4M2N} +* 16.77 200.00 YEAR RAINFALL ZNTENSITYSZNCH /HOUR} = 3.259 SAIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7803 SUBAREA AREA%ACRES) = 2.60 SUBAREA RUNOFF%CFS} = 4.44 SUMMED AREA4ACRESY = 3.90 TOTAL RUNOFF SCFSY = 20.62 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTHSFEET} _ .49 HALFSTREET FLOODWIDTHSFEETY = 23.95 FLOW VELOCITYSFEET /SEC.) = 4.27 DEPTH *VELOCITY = a.0.4 Nolow ***u*x****e******************************* ***********le**u*************f. r. r. ** *. FLOW PROCESS FROM NODE 198.10 TO NODE 196.10 I S CODE •_ YYYYYRATIONAL METHOD INITIAL SUBAREA .NALY92944%4 vma•.=.=ar:a=arar'r narsr ur ==.raam.=mmn aiflflaasm=arrrr.fl -.r. t •a nsrL SLtNt73nie*.3tJ t&Lt.Wtt 3uN Cmf4NOt)1**.;,. INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION = 2:378. 00 DOWNSTREAM ELEVATION = f x:68. 8o ELEVATION DIFFERENCE a 4.00 TC = . 339* C 4 700. tc 0**3) / 4 4.00Y3** .:? = 13.867 1.0.00 YEAR RAINFALL INTENSITY4INCH /HOUR) •= 3.540 SOIL CLASSIFICATION I9 "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT •_ .7678 SUBAREA RUNOFF4CFS) = 6.41 TOTAL AREA4ACRES) = e.38 TOTAL RUNOFF4CFS) = 6.41 **** ***********************•**** w********* **************** ******* ******** ** FLOW PROCESS FROM NODE 198.10 TO NODE 198.00 IS CODE = 5 )>) >) COMPUTE TRAPEZOIDAL- CHANNEL FLOW44444 )) > >)TRAVELTIME THRU 3UBAREA44444 aaraasaaaa honwaaraaraaa -- - -- ae:aaraaaaamr =sas irmas :=aasararaassvaaarava rsir.uars. =a=as. -.== UPSTREAM NODE ELEVATION = 1 68.00 DOWNSTREAM NODE ELEVATION = 1:.57.50 CHANNEL LENGTH THRU SUBAREA4FEET) = 800.00 CHANNEL BASE 4 FEE T Y = ee. ee "2 " FACTOR = ::. a e0 MANNINGS FACTOR = .015 MAX IMUM DEPTH 4FEET) _ .50 CHANNEL FLOW THRU SUBAREA4CF9> = 6.41 FLOW VELOCITY4FEET/SEC) _ e.98 FLOW DEPTH4FEET} _ .13 TRAVEL TIME 4MIN.) = 4.60 TC (MIN.) = 18.46 * *wee **** e**** * *•rust•**ir**** eye• Kieie• Kx**** ir* *ieiru****x *ie* ***u•xir*ie*•ie••rrxx *is****. ****r. r. •r. FLOW PROCESS FROM NODE 198.00 TO NODE 298.0e 19 CODE a # )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 - - - - °- ___ .n. :ra•sr=ara narsa•aar �•saa.r- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME Or= CONCENTRATION4MINUTES) = 38.46 RAINFALL INTENSITY ( INCH. /HOUR} _ e. ea TOTAL STREAM AREA 4ACRES} _ .?.30 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE a 6.43 stse...e.s!s!iestsrr.sr. xx*xx• resr*srse• r.• r•****x sese• ren• iesr* seir*****u sr xxsrer**** *sesrx*****sr****sr* r.* FLEW PROCESS FROM NODE 198.30 TO NODE ±98. 50 IS CODE = .= )) > }) RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 . =.arsss:saasaa•szas .rrarrra sarra•raa==-asa rm•as ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I8: CONDOMINIUM TC •= (*t 4LENGTH**3) /4ELEVATION CHANGE))**. INITIAL SUGARE? FLOW- LENGTH •" 850.00 UPSTREAM ELEVATION •= 3::68. eQe DOWNSTREAM ELEVATION = 1Z56.50 ELEVATION DIFFERENCE = 33.58 TC = . 359* t 4 850. 00**3) / 4 3 3.50} 2 **. e - f ::. 63 4 300.00 YEAR RAINFALL INTENSITY 4 I NCH /HOUR} = SOIL CLASSIFICATION I3 "A`• CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .793B .odms"` 9UGAREA RUNOFF4CFS) = 8.89 TOTAL AREA4ACRES) •= 3.00 TOTAL RUNOFF4CFS) = 8.89 r. r. sr*s!sr****sr *srr. s!rst*****. srxsrr. srsrxit•srst•srse* •x•sr•rrs!s!srs•srsrr. r.**...•r. r. srr. * r. r. so-s•. st•r. ***.*****e** FLOW PROCESS FROM NODE 198.50 TO NODE 198.50 IS CODE = 3 C . 8, °Z1/ .smars+aa.v --- asa+ mrssaesrsa.. amcs: aavar.r 3s:= saae. ras._ r. w:. xr. c_ r - Ga.rmasa.ass.��_s�::�.r.. =_ r.�•.aa.sa.a ss CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE: TIME OF CONCENTRATION%MINUTESY = 2::.62 RAINFALL INTENSITY !INCH. /HOUR) Rr 3.75 /al"k TOTAL STREAM AREA %ACRES) = 3.00 TOTAL STREAM RUNOFF <CFS} AT CONFLUENCE = 8.89 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER 4CF9} %MIN.) %INCH /HOUR} 2 6.42 28.46 .9d2 8.89 2 0. 62 3.747 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR . STREAMS. VARIOUS CONFLUENCE2 RUNOFF VALUES ARE AS FOLLOWS: 23.49 23. 8 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF<CFS) = 23.49 TIME4MINUTE3} = 28.464 TOTAL AREA %ACRES•) = 5.30 ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.r PLOW PROCESS FROM NODE 80.10 TO NODE 80.00 IS CODE = a G R lo }'.}))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44 ann INIM aeW RAlssaraassAS. INNWaafllR fl fl flfas=. aaaas6SZO.asaslsalaassas7.as- aa.s+a ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY 42/4 ACRE} r ,.R. .. TC - t< *E !LENGTH* *3} / <ELEVA TION CHAN ©E} 2**. 0 INITIAL SUBAREA FLOW- LENGTH = 700.00 UPSTREAM ELEVATION = 2:68. 60 DOWNSTREAM ELEVATION •= 2054.00 ELEVATION DIFFERENCE = 24.60 TC = . 393*E % 700. 00**3} / % 24.50) 3 * *. E .a 11.699 200.00 YEAR RAINFALL INTENSZTY<ZNCH /HOUR} R 3.900 SOIL CLASSIFICATION IS "A" :SINGLE- FAMILY42 /4 ACRE LOT} RUNOFF COEFFICIENT = .7698 SUBAREA RUNOFF %CFS) a= 26.60 TOTAL s REA <ACRE5Y = 5.50 TOTAL RUNOFF 4CFS) = 26.60 * * * *. * **r. *•****•x*•r..ex.r.r.e.e.e.e.i * err** *.r.r****.e.....e. **** ** ** * .... *..e...**.r+e.eiri.+.+rir** FLOW PROCESS FROM NODE 90.10 TO NODE 90. 00 I 8 CODE _ ;iii }RATIONAL METHOD INITIAL SUBAREA ANALYSTS! <<<< .aearar =a -sasar narn a<.'. taws n.aa.•arm se a a a aarax%ar a sa a aarnTa sa a sms.a3.>vea sarssmaassamsssr as r ss _.:sr_. ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/•4 ACRE} TC = }< *E4LENGTH * *3Y /4ELEV.T1 N CHANGE }3 * *. INITIAL SUBAREA FLOW-LENGTH = 2000.00 UPSTREAM ELEVATION = 2062.40 DOWNSTREAM ELEVATION = 1041.90 ELEVATION DIFFERENCE •= 29.50 TC _ .393 *E.4 2000.00 * *3) /4 29.50)3 *•r.: =: •= 33.676 100.00 YEAR RAINFALL INTENSITY %INCH /HOUR) = 3.570 SOIL CLASSIFICATION Z3 `•alp" dirt" SINGLE - FAMILY 42 /4 ACRE LOT) RUNOFF COEFFICIENT : .7629 SUBAREA RUNOFF 4CFS) = 26.49 TOTAL AREA(ACRES) r: 6.80 TOTAL RUNOFF %CFS) _ 18. 49 *• w.****************** r.***************** r.*** * * * * * * * ** * * * * * * * * * *.r * * * *• * * *** r. :-.. e. -�,... -•r r. .. .. : :.r .-i.� ... -r- ... a -..-.. ..n T ._ _.__� _ ( . rl a saann as n .rasa- --aaarseammaar.•s.�eaaaa.�mc nn.Tss.•me=als.aaflfl. saws -=. =.c ar.U._ UPSTREAM ELEVATION •= 1Z41.90 DOWNSTREAM ELEVATION .. 1Z38.00 STREET LENGTH(FEET) ._ 200. e0 CURB HEIGTH(INCHES) = 6. ° esw STREET HALFWI TH (FEET} = y0.'i0 STREET C ROS9Ft ;LL ! DEC:!M, L) _ SPECIFIED NUMEER OF HALF9TREETS CARRYING RUNOFF •= 1 Y * *TRAVELTIME COMPUTED USING MEAN PLOW(CPS) _ avt.al STREET FLOWDEPTH (FEET } _ .60 HALFSTREET t=LOODWIDTH(FEET) •= 16.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.01 PRODUCT Os= DEPTH&YELOC I TY •= 3.01 STREETFLOW TRAVELTIME(MIN) _ .67 TC(MIN) •= 14.34 100.00 YEAR RAINFALL INTENSITY (INCH /HOUR} _ 3.469 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY4± /4 ACRE LOT} RUNOFF COEFFICIENT = .7594 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) > 3. 4.1 SUMMED AREA(ACRES} = 8.10 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .sa HALFSTREET FLs ODWIDTH(FEET) = 17.47 FLOW VELOCITY(FEET /SE . - 5. ••}}act DEPTH *VELOCITY = 3.24 FLOW PROCESS FROM NODE 90.20 TO NODE 90.00 IS CODE = 2 Gyp ))))) RATIONAL METHOD INITIAL SUBAREA A (LYS Z S (< < (( L. /NE 8 � GB 1 er : = .. asasrera asss se sssaseas= �ssrssssasaarra- srrasm=sa�fasessassma.�._�as ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)3 * *.2 INITIAL SUBAREA FLOW- LENGTH = 800.00 UPSTREAM ELEVATION = 1254.00 .••. , DOWNSTREAM ELEVATION = 1243.80 '%1400.- ELEVATION DIFFERENCE = 10.20 TC = .393* L ( 800. 00+ * *3) / ( 10. 2 0) 3 * *. 2 = 13.617 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.579 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7621 SUBAREA RUNOFF(CFS) = 27.28 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 27.28 FLOW PROCESS FROM NODE 90.20 TO NODE 90.00 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA((((( =um= =ssss a =se s sa saa= =sm+ss=assaa aaaa ass: as=s -s a as=s = = UPSTREAM ELEVATION = 1243.60 DOWNSTREAM ELEVATION = 1243.00 STREET LENGTH (FEET) = 60.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 20.00 STREET CROSSFALL(DECIMAL) = .0270 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 29.70 STREET FLOWDEPTH(FEET) _ .57 HALFSTREET FLOODWIDTH(FEET) = 15.78 AVERAGE FLOW VELDCITY(FEET /SEC.) = 4. PRODUCT OF DEPTH &VELOCITY = 2.39 STREETFLOW TRAVELTIME(MIN) = .24 TC(MIN) = 13.86 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.542 "SOIL CLASSIFICATION IS "A" No SINGLE FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7612 SUBAREA AREA (ACRES) _= 1.80 SUBAREA RUNOFF (CPS) = 4.85 SUMMED AREA(ACRES) = 11.80 TOTAL RUNOFF(CFS) = 32.13 B. // END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = .59 HALFSTREET FLOODWIDTH (FEET) = 16.34 FLOW VELOCITY (FEET /SEC.) = 4.25 DEPTH *VELOCITY = 2.49 FLOW PROCESS FROM NODE 100.10 TO NODE 100.00 IS CODE = 2 Qh )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((l hill! ° c ,van=. :. w 1M M.. MUNIW====_ ASSUMED INITIAL SUBAREA UNIFORM `" DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)3 * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1247.00 DOWNSTREAM.ELEVATION = 1225.00 ELEVATION DIFFERENCE = 22.00 TC = .393* t ( 1000.00 * *3) / l 22.00) ] * *. 2 = 13.350 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.622 SOIL CLASSIFICATION 19 "A" SINGLE - FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7632 SUBAREA RUNOFF(CFS) = 27.64 TOTAL AREAIACRES) = 10.00 TOTAL RUNOFF(CFS) = 27.64 • +1 * **** * ** * * *+ * ****** • * * * * *+ * *+ * * * * * * ** * * * ** * * *+ * *+ *** * * ** * * * * **** *+t **** ** * ** FLOW PROCESS FROM NODE 100.20 TO NODE 100.00 IS CODE = 2 064. )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( LAVA' r e, CS sib a . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC a' K *t (LENQTH * *3) / (ELEVATION CHANGE) 3 * *. 2 INITIAL SUBAREA FLOW - LENGTH = 800.00 UPSTREAM ELEVATION = 1243.40 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = 18.40 \..,.. TC = .39341t( 800.004'4c-3)i( 18.40) ] * *. 2 = 12.102 100.00 YEAR RAINFALL INTENSITYIINCH /HOUR) = 3.842 SOIL CLASSIFICATION IS "A" SINGLE- FAMILYI1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7681 SUBAREA RUNOFF(CFS) _ 89.51 • TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 29.51 FLOW PROCESS FROM NODE • 1 10. 10 TO NODE 1 10.:0 IS CO Ds, = 2 C,8: )))))RATIONAL METHOD INITIAL 8U&AREA ANAL Y 8 Z S < < < ( < ss aW= =AT INOMUMMILI1111110.11MO 1111111111 MR w =w =.tea al ~Ili =/few .tr ASSUMED INITIAL SUeAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C4LENGTH * *31 /4ELEVATZON CHANGE). * *.2 INITIAL SUEtAREA FLOW- LENGTH = 400.00 UPSTREAM ELEVATION = 1 L6. 7th DOWNSTREAM ELEVATION = laee.ete ELEVATION DIFFERENCE = 6.70 TC = .393* C < 400. 00* *3) / < 6.703w*. 2• = 9.772 100.00 YEAR RAINFALL INTENBITY<INCH /HOUR) = 4.367 SOIL CLASSIFICATION 18 "A" SINGLE- FAMILY (1 /4 ACRE LOT) RtJNOrF COEFP ICZENT = . 7780 SUBAREA RUNOFF(CFS) = 8.83 TOTAL AREA<AtKRES) = 2.60 TOTAL RUNOFF <CFS1 = 6.83 MM )))) RATIONAL METHOD INITIAL SUB AREA ANALYSIS 4 4 4 < < .�.YAA =lA.flA!la.T R . .\' CJRf•! A.= itTMl aiiAr !!.Y'I'A.O.134.11•R.lTi'.ttS SST 1'.:eTiTTSS.•=.xt. ASSUMED INITIAL SU A EA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC _ M* C <LEN43TH**3) / <EL.EVATION NGE) 2 **. ? INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELF_VAT 1 QN •= 2 35. ec�e2e DOWNSTREAM ELEVATION A 2216.5e ELEVATION DIFFERENCE = 17.50 TC •_ .393*C4 2000.00**3)/4 27.5eh)3**.:: • 33.975 200.00 YEAR RAINFALL I NTENS I T V 4 I NCH /HOUR) = 3.524 SOIL CLASSIFICATION IS "s" SINGLE- FAM1LY4I /4 ACRE LOT) RUNOFF COEFFICIENT •_ .7607 SUBAREA RUNOFF <CFS) a 16.89 TOTAL AREA4ACRES) = 6.30 TOTAL RUNOFF4CFS) •= 26.39 Rat. !CSR .. FLOW PROCESS FROM NODE 120.40 TO NODE 120.0e I S CODE a a C. • 1“ # / 24 ))))) RATIONAL METHOD INITIAL SUBAREA ANALYSIS < < < 4 4 JraNJIBMIUMMIP9IIMIMMWSWINIMWIMIFINJMUJOUNNIMINLIIr c laaaaaa WM. ASSUMED INITIAL SUBAREA UNIFORM 'DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC a X *C 4LENGTH **3) / 4ELEVATroN CHANGE) 2**.: INITIAL SUBAREA FLOW- LENGTH = 720.00 UPSTREAM ELEVATION = 1222.6e DOWNSTREAM ELEVATION •- 1215.20 ELEVATION DIFFERENCE a 6.40 TC a .393* C ( 72.0. 00* *3) / 4 6.40, 2 e*. ;. •l 14.033:: 200. e e YEAR RAINFALL INTENSITY 4 INCH /HOUR) = 3.515 SOIL CLASSIFICATION IS "A " SIN43LE- FAMILY<2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7605 SUBAREA RUNOFF(CFS) a 1.60 TOTAL AREA4ACRE3) _ .60 TOTAL RUNOFF (CFS) ! 2.60 • PLOW PROCESS FROM NODE 120.00 TO NODE 220.00 I S CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOi CON LLtENCE 4 < < < < laaaaaaaaaaaaaaaaa =laaaaa aaaaaaaasaaaaalaaaaaaaaaaa.! A.l. .. : CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION4MINUTE9) a 14.03 RAINFALL INTENSITY 4INCH. /HOUR) = 3.5: TOTAL STREAM AREA ‘ACRES) a .60 T4 e T At STAPAne F?ttett eFF a CF3) AT - 0NFLUENCE = 2.60 Rww RS.. .ew FLOW PROCESS FROM NODE 2 2aeat. 30 TO NODE 120.00 I S CODE a :: C'.. 6. / 20 -/ ))))) RATIONAL METHOD I N I 1 I AL SUBAREA ANALYSIS < < < < 4 saaaa a � l aal aaANRrraaasaaas waaaaaaaaiaaaasaaaaaaaaawaasaaaaauSaaaaa .saaaaaasaaaW . :a ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC ! M *C4LENGTH••3)/ (ELEVATION CHAN0E)3.•.2 INITIAL_ SUBAREA FLOW- LENGTH a 600.00 UPSTREAM ELEVATION a 1217.6e DOWNSTREAM Et_EVA7IQN a 1215.6'0 ELEVATION DIFFERENCE - 2.4* ',+"*" TC a . 393• C 4 6*0. *e••3) / 4 2.40) 3 ••. 2 a 15.304 200.00 YEAR RAINFALL I NTEN9I TY 4 I NCH /HOUR) a 3.33? SOIL CLASSIFICATION 19 "A" SINGLE - FAMILY <2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7557 SUBAREA RUNOFF 4CFS) a 1.26 TOTAL AREA 4 ACRES) _ .50 TOTAL RL NOFF 4 CF 9) = 2. 2r; 7;14= 2 . k6fF1S To e-Vg /20-1 FRoM Ne.PE lw0•Ya ro NoDE /32 .00 %J CODE = )))))RATIONAL METHOD INITIIL SUBAREA ANALYSIS4444< Mars saemama--- aw =ssmasaars.•as.sasaasres�r= s — a_a:_rs.v z•� __a�.:r.: c.c: _..�._ - - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I3: SINGLE FAMILY 41/4 ACRE) TC *C 4LEN#3T **3) / 4ELEVATION CHANGE) 2**.:; INITIAL SUBAREA FLOW- - LENGTH = 1500.00 UPSTREAM ELEVATION •_ 1Z•17.00 DOWNSTREAM ELEVATION = 1E08.00 ELEVATION DIFFERENCE = 9.00 TC •_ . 393* C 4 1 30Pt. 000 ** 3) { 9. 4't+Zt) a**. ._ tct. 359 10Q'.00 YEAR RAINFALL INTENSITY4INCH /HOUR) _ ;'. 42 : SOIL CLASSIFICATION I3 "A" SINGLE— FAMILY 41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7361 SUBAREA RUNOFF4CFS) = 3.74 TOTAL AREA 4 ACRES) = 1.60 TOTAL RUNOFF 4 CFS) = 3.74 ` �rWr 7 -..----- - FLOW PROCESS FROM NoDE 17e.lo 70 NODE ltsst.ee IS CODE a OBil RATIONAL METHOD INITIAL SUBAREA ANALYSIS“<“ tW ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY :1/4 ACREY TC M*C4LENGTH**3)14ELEVATION CHANSEYl**.a INITIAL SUBAREA FLOW-LENGTH 850.00 UPSTREAM ELEVATION las:3.10 DOWNSTREAM ELEVATION ... ELEVATION DIFFERENCE ,.. 10.60 1 1.7. •.A% .393*r ase. 00* / 1 . 60) 1 *iv - 14.013 • SUBAREA RUNOFF(CFS) es.76 TOTAL AREA4AC4ESY 10.00 TOTAL RUNOFF(CFS} . . . FLOW PROCESS FROM NODE 169.00 TO NODE 169.00 ZS CODE )))))DESZEINATE INDEPENDENT STREAM FOR CONFLUENCE( xivammAire. WMAIW=b=iMOIPJWMMWMWJW/WWWJMMMWMAWJWMWAPVMMVMMMXARAMAWJMX'Mamtxrse=.=UMAW= CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTESY •A 14.01 RAINFALL INTENSITY 'INCH./HOUR) 3.se • TOTAL STREAM AREA (ACRES) • 10.00 TOTAL STREAM RUNOFF4CFSY AT CONFLUENCE ... E:6.76 **************************************************************************** FLOW PROCESS FROM NODE 17e.ee TO NODE 169.00 IS CODE A.. >Y>Y>RATIONAL METHOD INITIAL Ft.:BAREA ANALYSTS.! ASSUMED In:1A DEVELOPMENT IS: SINGLE FAfrILY ACRE TC M*C4LENGTH**3)/!ELEVATION IN:TIAL SUBAREA FLOW-LENGTH asaite.;n UPSTREAM ELEVATION DOWNSTREAM ELEVATION ELEVATION DIFFERENCE L%Ff.50 TC •393*C 1000.00**3Y/ ea_01**. = .13-este 200.00 YEAR RAINFALL INTENS:TY4INCH/t..OUR) 3.63J: SOIL CLASSIFICATION IS "A" SIN9LE-FAMILY41/4 ACRE LOT ;NiNOFr COE".'"F:C:ENT .7634 SUSAREA RUNOFFCFSY TOTAL AREA4AC•ES) 1Qt.00 **** * * ... ********** .. . ** . *************et*****************...A.r” FLOW PROCESS FROM NODE 269.0e TO NODE 169.C CO D7 )))))DESIONATE INDEPENDENT f.4 FOR CON:FLUENC“ )))))AND COMPUTE VARIOUS CONFLuENCEL coNFL.I.JENcs VALLE'S . .41 - )EEN T z 1 - IME CtF C CINCENTRATI i _ FiA NFALL INTENSI'T's' 1 SI At HOL k — 3. TOTAL STREAM AREA ACRES) TOTAL STREAM nl...NOFCF: AT CONF'..32SNCE - CONil iNFORMA STREAM RUNOFF 'TIME NUMSER 4CFS) . . . 06.76 . 43' , 07.70 13.09 3.630 RAINFALL INTENSX AND TIME c2 CeNCEN RATIC FORMULA:S&C) USED F.:OR e STREAmS. VARIOUS CONFLUENCED RU-OFF VALUES ARE AS FOLLOWS: 53.61 53.10 COMPUTED C4e1FLUENCE ESTIm(TES PRE AS . RUNOFF%CFS) = TIMEO 14-013 TOTAL 1 REA04CF:ES 44-e: •4. I CPS' To CA It iCci *************************************4******e* FLOW PROCESS FROm NODE 170—s0 70 NO:3E .170.4:0 IS CCD2 = C. a. 14 17 0 - • )))))RATIONAL METHOD INITIAL SLBAREA AmPLYSIS: ASSUMED INI SUSAREA UNIFORM DE," VS, Cq.eti",:: z•■., ; NOL.E. :;o"•.Z t..‘s" T C = M.*ELENGTh**3)/ELEVA71C INITIAL SUBAREA FLOW—LENGTH = 1000.00 UPSTREAM ELEVATION .rr le76.eo DOWNSTREAM ELEVATION ELEVATION DIFFERENCE gr. TC arr '.393*c4 logto•ito**3)/; 4.00)**.2 = 16.773 100.00 YEAR RAINFALL INTENSITY4INCH/OoR) a.s5a SOIL CLASSIFICATION IS "A" SINGLE ACRE LOT) RLNOFF = .7432 SUVAREA RUNOFFCFS) = TOTAL AREAACRES) = — OTAL = **** . * ............ *********************k**********************w ***** ****** * *** * .. *****1!******************************************oer FLOW PROCESS FROm NODE "C) NODP 17.00 IS COL.iE — a ))))RATIONAL METHOD INITIAL f.:e4fLo I) :q • e:1L ; INITIAL SUBAREA FLOW—LENGTH a= 900.0 UPSTREAM ELEVATION ■r l'a84.00 DOWNSTREAM ELEVATION le7a.00 ELEVATrON DIFFERENCE TC •393* S00.00.**3>/ 14.147 loe.ee YEAR RAINFALL INTENSITVINC = SOIL CLASSIFICATION IS "A" SINOLE—FAMILY41/4 ACRE LOT) RUNOFc' COEFFICIENT ,= .7601 SUEsAREA RUNDEFICFS) = 3-19 TOTAL AREA4ACRES) = - '0TAL RL! = 3.:9 TO 44 h e. 2 /7o 6 c CPS • reTAL STREAM RUNOFF4CFSY AT CONt- 5tt.t,i; Aftgoor 0,...Awwg,+oe. FLOW PROCESS FPOP" NOIJE .S COLc: • eoiRATIONAL METH(iD INITIAL SLDA ASSUMED INT7tAL SUREA UNIFORM DEVELOPMENT IS: SINGLE FAMIL's ACRE:( rC = M*C4LENGT4*" INTTEAL SUSAREA F-UW-LEN6T-i = 050.00 UPSTREAM ELEVATION •= 1a76.00 DOWNSTREAM SLEVATEON = ELEVATION DIFFERENCE TC = .393* 950.00*P3 = 1S.05 100.00 YEAR RAINFcr L = SOIL CLASSIFICATION IS "A" SINSLE-FAMILY41/4 ACRE LOT) ;" COE=F.C1FNT = .753e SUBAREA RUNOFF4CFSr = TC. 'AL 44PEAtRCcItti - ( f • -% • ** ******WW* ******* . * . 0.1***W.******01(***Mit********,..00,0A ,7 LOW PROCESS FROM NODE 17Z.1-..' - 0 NODE :S CO:JE = z. 6 0 e.:RATIONAL METHOD INITIo-fL SL'BHNEM 0-4NRLYSISff • ASSUMED INI'TAL stLETt4Ef4 UNIc DFVELOr•MENT ES: S:NSLE FAMILY Nsw.re Tfr**:IrelEl_EVACHeN s:_teAgEp - - wSrF.t - P*0! ELEVATION •= IzEt2.4:o Da4NsTREAro E ELEVATION DIFFERENCE = Tr = •393*E: 1000.010**3?.*: 14.S10 100.00 YEAR RAINFALL INTENSIT • = CLASS:=ICATWN IS "4" SINGLE-FAMIY41/4 Ht.:RE _ -::Ti FL;- .75437 SUBAREA RUNDFF4CFSv = 13.65 TOTAL AREA4ACES) 5.10 _z.a5 Noiso ro*"..*************************“,le*w****iq.0*****4.**0-*.,<*e•-e-oeww,e - PROCESS FROM NODE 'vutr-.- L72.40 .S = . .1 - - ,0*"' • > &PO I Closit:4,.. ptE L I AL E. 4 :1 A 51' ,/ E < Now' ASSUMED INITIAL SUE-tARtio:. DEVELOPMENT ES; CO30•MERCIAL — ENETIAL SUSAREA F - 1000.00 L3- ELEVATION = DOWNSTREAM ELE::VATION = ELEVATION DIFFERENCE = TC - .303*.t. 1000.00**3e; 7-7'..c.Jtort lete.ito eEpii RAINFALL • SPIL CLASSP- TS "A" Orettof ET ,c;C: kt. DE YE L. O:.■ r /.1+ • (t tst—IE-: A f-: N. OF 2 . 7 , P .11***** . ... *11.11-1111,1 ...... II 14 It 4-0 0 it 1. 0 0 FLOW PROCESS FROM NODE 173.30 TO NODE 171.00 IS CODE = e>COMPUTE STREE YHRU Uw.STREAM ELEVATION = 1a73.56 DOWN:zTEAM ELEVATION = STREET LENGT#-UFEET ) 750.00 CU rlEc HEIGTA4INCHESk = s. STREEr HALFWZDTH4FEETI' • = as.00 STREET CROSSFALL!DECZMA = SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF • = 1 . p*TRAVELTIME COMPUTED USING MEAN :- = STREET :' = HALFSTREET FLOODWIDTH:FCETy • AVERAGE FLOW VELOCITYFEETSEC.> - 3.16 PRODUCT OF DEPTHAVELOCT = . %41812110, STREETFLOW TRAVELT1MEIMIN) = 3.93 TC:miNY 16.41..s 100.00 YEAR = • SOIL CLASSIFICATION IS "A" SINGLE W.:RE LOT) RL:".0E- COF :v .7.516 SUBAREA ARE44ACRC5). = SJBAR = o2.es AN;E;44C:,1_ ": • - P. t. r • t: . Cc' EUBARc DE1-.T014FEE = HALFSTRE:T FLOOLfW.IFEF 4- FLOW VELOCITY4FEET,'SEC.y = 3.3 DEPTNI OW PROCESS FROm NODE Nair-. 17.E:.00 IS COE,IF - ME INITIAL GLIt-c4REA rS ASSU'' 1EAL DEVELOPbTEN IS: " t-r,fENSTH144taece!z:LEVATICt INI'IAL SUBAREA g. U7REAM £LEnTlth = aa9e.so DOWNSTREAM ELEI. = ELEVATION DIFFERENCT •= - C •303*:. Ae0.4nt**3i 100.00 YEAR RAINFALL INTENSE = SOIL CLASSIF IS "A" Nftow CC•e!MERCIAL ilrFVELOPNT RUNOFF ::.L(BAREA RUN.CLPSt = TtY AREA/Ai = 5.30 '" — , - - • _ C Cenif- •ti T E T AEE 7 . EtW rvIr . 't; ^: """ . SPECIFIED NUMBER UF HALFSTREE'rS C RUNOFF = 440., **TRAVELTIME COMPUTED UST MEAN FLowicrs, ttodior • • STREET FLOWDEPTH:FEET = .6a HALF FLOODWEDT)4:c6Ft> AVERAGE FLOW VELOCITsi:REE = PRODUCT OF DEPT H&VEL(iCTY = STREETFLOW TRAVELTIME4MIN) = 3.64 7C:MIN) = t00.00 YEAR RAINFALL INTENSI7YENCHeHOuR = S01... CLASSIFICATION IS "A" f-ummERCIAL DEVELOPmENT RUNOFF COEFFIC:ENi SUBAREA ARE14 44CRES = 1.60 t(UPARemA 'up-- 7 1C.F1:,) •= Af.86 SUMMED AREA:ACRES} = 6.90 IOTAL i: = . END OF SUBAREA STREETFLOW HVD1..f-IULICS: DEPTH:FEETY • = .6 HALPSTREE'r e-- L00.1 - 1W:Dr-4:1"FE'? = FLOW VELOCITY:FEE/SEC.Y = .q.74 = 0.4"•4 Am- Flaw ro 414 fr FLOW PROCESS FROM NODE i98.c 0 NODE 196..1;:+ • • • TIONML MET46D INITIAL SUDAREA ANALYSIS:f - ASSi2mED SUBAREa UNIPORm DEVE-Dc:•mSN'" IS: CONDOP-.'.Em TC t CHANGE;I!**.Z: INITIAL SUBAREA F-OW—LENGTH = :oeo.eo UPSTREAM ELEVATION = le74.eo DriWNSTREAM EL/TI ON = 1: ELEVAION DIFFERENCE = 6.S0 *kw TC = .359*C: 1000.00*•3)./t 6.80*-1..d• = t5.4-.47 leo.oe YEAR RAINFALL INTENSV:INCH/t = Z.3.8 SOIL CLASSIFICATION 15 "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFUaENT = SUBAREA RUNOFF4CFS = TOTAL AREA:ACRES) = 3.30 TalAL F.ftiNf:"FP:t.:Ff1.( = 8.5t. ************ * * * * * * ** *A*4*****************************41****Wf*****MMMO, LOW PROCEVS FROM NODE 198-Z:0 TO NODE 198.00 .5 COmPuTE ST,4Et. TS r1- SUSAA":Er _ - , SPECIFIED NUMBER OF HALFSTRCETS CARRYING titmorr .p 1 **TRAVELTIME COMPUTED USING MEAN FLOW4CFSY = 10.79 STREET FLOWDEPTHWEETY = HALFSTREET FLOODWIDTH4FEET) = :5.36 AVERAGE FLOW VELOCITY4FEET.'SEC. = PRODUCT OF DEPTHEIVELOCITr = 1.85 STREETFLOW TRAVELTIMEimINY = • 4"52.:1 a= 19.68 100.00 YEAR RAINFALL INTENSI'Y4INCH/HOUR/ = J.:•.869 SOIL CLASSIF/CATION IS "A" CUNDOMsNkUM DEVELOPMENT RUNOFF (_OEFFICIEN = .7733 SUBAREA AREA:ACRES) = a.oe SUBAREA RUNOFF:C.-FLO = 4. 4 4 SUMMED ARE4 44CRES = 5.30 TOTAL RUNOPF4CFS) = 13.0Z• vow END OF SUBAREA STR F EETLOW HYDRAULICS: DEPTH:FEET) • .56 HALFSTREET FLOODWID •= FLOW VELOCITY4FEET/E<EC.) • LI - .7(310t. r‘tol id C. /3.0 C aawMasas.. :ss RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SESC) 1983 HYDROLOGY MANUAL awsawssssss - - - -- sszrsasrsawassss =assamssriesasa— aaa=--- asmaas 4444 444 {444 4444444444444 444444444441443>>>>> > > > > > > > > > > >>> >> >> > >> > > > > > > > > > >y} 4C> Copyrlgft 298: Advanced Engineering Software CAE93 Eaarcfa22y rsreoarad Par: HALL FOREMAN, INC. 44444444444444444444444444444444444444 > >> >>>> » > > > > >> » » » ))) » > >> » > >> > > >> USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL I Nt= ORMAT 2 0N: USER SPECIFIED STORM ,EVENT 4YEAR> = 100.00 SPECIFIED MINIMUM PIPE SIZE42NCH> = SPECIFIED PERCENT OP GRADIENTg 4DECIMALx TC USE POR r=RICTION SLOPE _ .95 10-YEAR STORM 60- MINUTE IN TfENsITY4INCH..'HQuR> _ .980 100-YEAR STORM 60- MlNUTE INTENSITY 4 lNCH/HOUR2 = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 2 -HOtUR I N 3`ENS I TY 4 I Nt; H:'HOUR> •= 1.41/00 SLOPE OF INTENSITY DURATION CURVE •_ .6000 SSC HYDROLOGY MANUAL "C "- VALUES USED ! 444 4444444444 44444444444444 > > > >> >> >> > > >>>>) >)> >>)> » >>> > > > > > > > > > .•r Advanced Engineering S«etware CAES3 SERIAL No. AOS79A REV. 3.1 RELEASE DATE: 8/02/85 444444444444 444444444444 44444444444144 > > > > > > >> >> > >> > >> > >» > > >>> > > > > > > >> e*********e***** ** roee•xex ►+r*ieir*****•xeexe•+ **** rr. *irx*e i► rer.iree ********er. r�r. FLOW PROCESS FROM NODE 197. 10 TO NODE 197.00 IS CODE _ :? .. 8. ( 7 )) > > > RAT I ANAL METHOD INITIAL SUBAREA AN4 L Y S 19 4 4 4 4 4 J >r .a= .T=foalWWWW=aW.aif mmmm=a!A' =armmmmmmmmmmW :�aT.Rit':=iliral.a! !3'aT.si.a.iT.t.•iT ASSUMED INITIAL SUE++AREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC = t4*C4LEN43TH**3 > /4ELEVATIQN CHANGE)3 **.e INITIAL SUBAREA FLOW - LENGTH = 700.00 UPSTREAM ELEVATION = 2:=68. 4 DOWNSTREAM ELEVATION •= 2e62.5a ELEVATION DIFFERENCE = 6.50 TC = . 393+►E 4 780. 43e*3> / 4 6. 50: I **. E = 13.754 200.00 YEAR RAINFALL INTENSITY (INCH /HOuR> = 3.558 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7626 __ SUBAREA RUNOFF4CFS> = 9.48 TOTAL AREA 4ACRES> = 3.50 TOTAL RUNOFF (CFS> = 9.48 FLOW PROCESS FROM N O D E 197.10 TO NODE 197.00 I S CODE _ :? MET' rt) .T r0'-?T4e3_ Fo.Tef-+REA ...F <=4 • +� F . FLOW PROCESS FROM NODE 60.30 TO !NODE 60.00 Z S CODE • C.4 ( )))))RATIONAL METHOD INITIAL SUBAREA AWALYSZ9(444( ASSUMED INITIAL SUBAREA UNIFORM 'Nolmow DEVELOPMENT I3: SINGLE FAMILY 41/4 ACRE) TC ■ M*CILENGTtt003) /(ELEVATION CHANGE)2**.2. INITIAL SUBAREA FLOW— LENGTH ■ 1000.00 UPSTAEAN ELEVATION • 1232.09 DOWNSTREAM ELEVAT 1 ON • 1 223.30 ELEVATION DIFFERENCE ■ 8.30 TC • .393.t4 1000..0**3) /4 0.3e)]ww.2 • 16.146 100.00 YEAR RAINFALL ZNTENBITY41NCH /HOUR) ■ 3.232 SOIL CLASSIFICATION 18 "A" SINSL.E- FAMZLY42 14 ACRE LOT) RUNOFF COEFFICIENT ■ .7327 SUBAREA ALJNOFF l CFS) • ' 2.43 TOTAL AREAIACRES) • 2.00 TOTAL RtNNOFF4CFS) ■ 2.43 -- ItK • *R R M Q 1FR1rR1F FLOW PROCESS FROM NODE 60.20 TO NODE 60.9* IS CODE • 2 • - - --- )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 war ar. ASSUMED INITIAL SUBAREA UN I FORM DEVELOPMENT 18, SINGLE FAMILY (1/4 ACRE) TC • McC4LENATHo.3) /4ELEVATZON CHANOE)]*..2 INITIAL SUSAfIEA FLOW - LENGTH • 550.00 UPSTREAM ELEVATION • 1228.4,0 • DOWNSTREAM ELEVATION • 1223.50 ELEVATION DIFFERENCE • 4.30 TC • .393.C4 330.9*ww3> / l 4. 3!> 3**. 2 - 2 2. imp9 182.00 YEAR RAINFALL INTENSITY l INC /HOUR) • 3.713 SOIL CLASSIFICATION IS "A" IINALE FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT ■ .7633 SUBAREA RU NOFF ( CF3) ■ 1.14 TOTAL_ AREA IACRER) ■ .40 TOTAL MJNOFF 4CFS) ■ 1.14 C,'`/?, 3. 57 Q %0) T www ww wwwww FLOW PROCESS FROM NODE 70.10 TO NODE 70.00 ZS CODE • 2 C. 11 . dk r )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIBI(lll - -_' rIMwaNI+NIBRs =aMws+ s = =tee+Ewa.w+ +wssaIIrss. : sasaaasaasaaa.M.sra +ss =ssswaaaMIJO.7= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: 9l? FAMILY !1/4 ACRE) YPSTAEAN ELEVATION + 123.410 4 1 ( 4 1 40WNSTREAM ELEVATION • 1211.00 4 . EI.EYATYON DIFFERENCE • 12.10 TC • .393.0 l 1000.00+•4,3) / ( 12.161)2...e + 25.11,45 100.00 YEAR RAINFALL INTEN82TY41NCH /HOUR) • 3.371 SOIL CLASSIFICATION IS "A" 'DWOLE- FANZLY /!/4 ACRE LOT) RUNOFF COEFFICIENT • .7567 SUSMAEA AtNdOFF ICES) • 9.69 TOTAL AREAIACRES) • 3.0* TOTAL RUNOFFlCFB) • 9.69 FLOW PROCESS FRON NODE 70. w''0 TO NODE 70.00 IS CODE • 2 C . B. P 9 )))))RATIONAL METHOD INITIAL SUBAREA ANALYBZSIl((I • . as = ASSUMED 7NZT2AL SUSAAUA UNIFORM DEVELOPMENT 28, SINGLE FAMILY 41/4 ACRE) TC • M* C 4LEN0TH.*3) / lELEVAT1ON CHANGE)) * +. 2 INITIAL SUBAREA FLOW - t.ENBTH • 800.00 UPSTIIEAN ELEVATION • 2227.60 DOWNSTREAM ELEVATION • 1216.30 ELEVATION DIFFERENCE • 9.10 TC • .393.0 1 4600.00+43).04 9.10)34+-8 • 13.931 100.00 YEAR RAINFALL INTENS2TY4INCH /HOUR) • 3.530 BOIL CLASSIFICATION IS "A" SINGLE- FAMILY(2 /4 ACRE LOT) RUNOFF COEFFICIENT • .7609 SUBAREA RUNOFF(CFB) • 8.06 TOTAL AREA IACREB) • 3.00 TOTAL RUNOFF ICFS) • 6.06 FLOW PROCESS FROM NODE 70.30 TO NODE 75. SIR 28 CODE - 2 e . $ , )))))RATIONAL METHOD INITIAL SUBAREA ANAL Y8I 8 11 t h( _. - aaINNIM'+rWAw - +'. aN�a O Uat.twasaa =s=sa=ss=ars.=asrr_-r ASSUMED INITIAL SUBAREA UNIFORM 'DEVELOPMENT I8: SINGLE FAMILY (1/4 ACRE) TC • M *C ILENBTH+.*3) / (ELEVATION CHANGE) 2 **. 2 INITIAL SUBAREA FLOW- LENGTH = 1100.00 UPSTREAM ELEVATION = 1230.00 DOWNSTREAM ELEVATION • 2226.00 ELEVATION DIFFERENCE • 12.00 TC • . 393+• C l 2 100.00« w 3) / l 12.49491)2...2 - 15.957 100.00 YEAR RAINFALL INTENSZTY(INCH /HOUR) • 3.254 SOIL CLRBSZFIcATION I8 "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT • .7534 SUBAREA RUNOFF(CFS) • 13.73 TOTAL AREA(ACRES) • 5.60 TOTAL RUNOFF(CFB) • 13.73 AMU4l**. *•********************************'* ** ** ***** *M * ****MAMA!*MR*.*.*** * FLOW PROCESS FROM NODE 70.40 TO NODE 73.00 IS CODE - )))))RATZONAt. METHOD INITIAL SUBAREA ANALYSIS((( << IIIINIMINRIMWMINWEWMIIIIIIIIIIIIMMINIMMINIVINIUUMMIMNINAJNOMNINWIIIIIII AT.= ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I3. SINGLE FAMILY (1 /4 ACRE) TC ■ M* C 4LEN0TH+.3) / (ELEVATION CHANGE) 2 *w. e INITIAL BUSAREA FLOW - LENGTH ■ 700.00 UPSTREAM ELEVATION ■ 2£2.00 DOWNSTREAM ELEVATION ■ 10141.00 ELEVATION DIFFERENCE ■ 9.00 TC ■ .3930C4 100.90..3)/( 9. 00) 2 **. e a 22.007 200.00 YEAR RAINFALL ZNTENSITY(INCH /HOUR) ■ 3.699 SOIL CLASSIFICATION IS °A" SINGLE- FAMZLY(2 /4 ACRD LOT) RUNOFF COEFFICIENT ■ .7630 9UORREA RUNOFF 4 CF9) ■ 4.53 TOTAL AREA(ACRES) ■ 2.60 TOTAL RUNOFF(CFS) ■ 4.33 TOTAL To C.B. $1 20 • IS( 26 e* * ** ** -*4p*k *** +r.. ..** FLOW PROCESS FROM NODE 10..20 TO MODE l'0.00 I S CODE •A a.6 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS{ <((< aw.•saaara aiwa.wav .Maria: :raaaaa..s .s.xsaa<m.r.x.r.a.•: x r:_.._. e. =. -. - __ :: ASSUMED INITIAL BUFAREA UNIFORM DEVELOPMENT IS. SINGLE FAMILY /.2.. ACRE) TC = (*C (LEN0TH**3) / (ELEVATION CHANGE)) **. INITIAL SUBAREA FLOW- LENGTH - 1400.00 UPSTREAM ELEVATION = lee6.60 DOWNSTREAM ELEVATION ■ 2::35. c'1c�' ELEVATION DIFFERENCE •e 22.40 TC a .393+eC( 2400.00* *3) /( 22.40)2+x*.:: •R 28.632 100.00 YEAR RAINFALL INTENSITY (INCH /t4OUR) = e.965 SOIL CLASSIFICATION 29 "A" SINGLE- FAMILY(2 /4 ACRE LOT) RUNOFF COEFFICIENT = .7.39 SU AREA ktJNOFF (CFS) . 8.60 . TOTAL AREA(ACRES) ■ 3.90 TOTAL RUNOFF 4CFS) - 8.60 FLOW PROCESS FROM NODE l.0. ct 7O NODE laa.00 :9 CODE = )))))RATIONAL METHOD INITIAL SUBAREA APALYSIS<<44< aa arlarsa. �asaauMaaaaa araaaaa aay..a asa- rra.a. =..eaara •u.xsaasa.as.mss.... -... -.a =r::.: _ =:: n.: ::: :: :: .a..> • ASSUMER INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY (1/4 ACRE) TC .- F(.0 4LENGTH**3) / ( ELEVATION CHANCE) ]+x+`. INITIAL SUBAREA FLOW- LENGTH = 2750.00 UPSTREAM ELEVATION a► 2.'}.30.00 DOWNSTREAM ELEVATION •• 2^_2:3.: =0 ELEVATION DIFFERENCE •- 16.80 TC = .393* C( 1 750. 00**3) / ( 16.80)2=4-.2 2 9. 7: 2 200.00 YEAR RAINFALL INTENSZ TY (INCfr /HOUR) = e.as7 9QIL CLASSIFICATION I9 "A" SINGLE FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7403 SUBAREA RUNOFF4CFS) w 20.82 TOTAL AREA(ACRES) ■ 5.10 TOTAL RLIl 0FF(CFS) - 10.82 7o74 Zo C 20 -4 =19! fl 1. •ir• ... ****** ******** **** W * * V• * ****i..• rr N R*} * **** M r M•..'.►Y•**i.*W ♦* 4 4 A 4 4 4 n t , r 4 4 FLOW PROCESS FROM NODE 130.10 TO NODE 130.10 I S CODE •_ . ))))]RATIONAL METHOD INITIAL SUBAREA ANALYSIS'4(44 ar.a. a=aearae=art== ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = Mr. C'LENGTH443) (ELEVATION CHANGE) 244.:: INITIAL SUBAREA FLOW -- LENGTH = 780.00 UPSTREAM ELEVATION a 2235.50 DOWNSTREAM ELEVATION = 2216.00 ELEVATION DIFFERENCE = 19.58 TC •_ .3934t( 788. 00+!43) / ( 2 9.58) 2 44. 2 •= 11.781 200.00 YEAR RAINFALL INTENSITY ( INCH /HOUR) = 3. 904 SOIL CLASSIFICATION I9 "A" SINGLE- FAMILY41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7694 9U8AREA RLtNQFF (CF9) •a 20. 52 FLOW PROCESS FROM NODE 230.10 TO NODE 130.20 ZS CODE = 1 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(4(44 =.aaw=ae.=arw. AILMTIV = ==a+= === M.71a CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) •= 12.78 RAINFALL INTENSITY ( INCH. /HOUR) = 3.90 TOTAL STREAM AREA (ACRES) = 3.50 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.52 404444* *4i*RR *•* **• *R! *M4M *RAMMM **** *** * ** ** **** ** ***** ** **i*** **4 *1 ...R......4 * FLOW PROCESS FROM NODE 130.20 TO NODE 130.10 Z S CODE = 2 ))))]RATIONAL METHOD INITIAL SUBAREA ANALYSIS{'((( Nitft ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY (2/4 ACRE) TC •= 1.(4C( LENGTHe43) /4ELEVATZON CHANGE)244.2 INITIAL SUBAREA FLOW- LENGTH •- 750.00 UPSTREAM ELEVATION = 22.2.00 DOWNSTREAM ELEVATION = 2:16.80 ELEVATION DIFFERENCE = 5.00 TC •a .3934E4 750. 00443) / 4 5.88) 2 44. ;: = 25.208 200.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.363 SOIL CLASSIFICATION ZS "A" SINGLE - FAMILY41/4 ACRE LOT) RUNOFF COEFFICZENT = .7565 SUBAREA RUNOFF (CFS) = 4.07 TOTAL AREA(ACRES) = 2.60 TOTAL RUNOFF(CFS) •= 4.07 FLOW PROCESS FROM NODE 130.10 TO NODE 230. 10 IS CODE = 1 C. $ z- 3S ))]])DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((' ]))])AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES('( (4 •_ aara ==ee. = =aeaesraras =ar. =.a CONFLUENCE VALUES USED FOR INDEPENDENT STREAM ti: ARE: TIME OF CONCENTRATION(MINUTES) = 15.12 RAINFALL INTENSITY (INCH. /HOUR) = 3.36 TOTAL STREAM AREA (ACRES) = 2.60 TOTAL STREAM RUNOFF (CFS) AT CONFLUENCE •_ .w CONFLUENCE ZNFORMATIQN: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 2 2 0.51 22.78 3.904 '..07 15.12 3.363 „ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO (- FORMULA49BC) USED FOR 2 STREAMS. Numpe VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 23.69 13.23 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF4CFS) = 13.69 TIME 4MINUTES) •= 11.781 TOTAL AREA 4 ACRES) •= 5.10 �IC�C��.i Fc 1C 1R141C w 'C'I.R'4'��'1.w'wR'w'w'1tw"Rw Rw'w'R i w'w'w'w'RwRw'iww nnnwRw'w'R wiwww'ww R'w •• 1-3(4 FLOW PROCESS FROM NODE 130.30 TO NODE 130.50 13 CODE = a C•4. ))) METHOD INITIAL SUBAREA ANALYSIS {444{ ............... ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 1S: SINGLE FAMILY 4t /4 ACRE) TC = 1.4*C4LENGTH * *3) /4ELEVATION CHANGE)) * *. INITIAL SUBAREA FLOW - LENGTH = 2000.00 UPSTREAM ELEVATION = 1235.50 DOWNStREAM ELEVATION = 1215.5e ELEVATION DIFFERENCE _ 20.00 TC = .393* C 4 1000. 00 * *3) / 4 ?0.00) 2 **. •= 13.606 100.00 YEAR RAINFALL INTENSITY4ZNCH /HOUR) = 3.581 SOIL CLASSIFICATION 1S "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7622 SUBAREA RUNOFF4CFS) = 13.65 TOTAL RREA4ACRES) = 5.00 TOTAL RUNOFF4CFS) = 23.65 FLOW PROCESS FROM NODE 135.E TO NODE 130.00 ZS CODE _ )))))RATIONAL METHOD ZNITZAL SUBAREA ANALYSIS44444 .s:eas�+saae yea= = =a�ra�.s =a=ww = = =a=aeraar :ass =a .as ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE) TC = tii£4LENGTH * *3) /4ELEVATZON CHANGE)) * *. INITIAL SUBAREA FLOW - LENGTH •= 650.00 UPSTREAM! ELEVATION = 1228.00 £CtWN9TREAM ELEVATION 121.4.80 ELEVATION DIFFERENCE = 3.20 TC = .393* f 4 650. 00 * *3) / 4 3. ►:0) 2 * *. 2 15.159 100.00 YEAR RAINFALL INTENSITY4INCH /HOUR) = 3.356 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7563 SUBAREA RUNOFF4CFS) _ 2. 03 TOTAL AREA4ACRES) •_ .80 TOTAL RUNOFF4CFS) = a.ea * * * * * *M. ***************************** * * * * * * * * * * * * * ** * * * * ** * * ** * * * * ** * * *** **** FLOW PROCESS FROM NODE 130.00 TO NODE 230.00 Z9 CODE = 2 )))))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM ARE: TIME OF CQNCENTRATION4MINUTE9) = 15.16 RAINFALL INTENSITY 42NCH. /HOUR) = 3.36 TOTAL STREAM AREA 4ACRES) .80 TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE FLOW PROCESS FROM NODE 130.40 TO NODE 130.00 I S CODE _ ») > > RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4 4 4 4 4 yam * *m o w ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT I9: SINGLE FAMILY 41/4 ACRE) TC = M *C 4LENGTH **•3) / 4ELEVATION CHANGE) 2* *. 2 INITIAL SUBAREA FLOW-LENGTH •= 800.00 UPSTREAM ELEVATION = 2218.50 DOWNSTREAM ELEVATION = 1224.80 ELEVATION DIFFERENCE •= 3.70 TC •_ . 393• C 4 80421. 00**3) / 4 3.740 3 *.. 2 = 26.679 100.00 YEAR RAINFALL INTENSITY4INCH /HOUR) = 3.169 SOIL CLASSIFICATION IS "A" SINGLE- FAMZLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7508 SUBAREA RUNOFF 4CF9) +, 1.67 TOTAL AREA'ACRES) _ .70 TOTAL RUNOFF4CFS) •= 1.67 T6t 3.7e C. FS 40 C- 8 . 1 ��.rt�+r�r��r� -�r .r,�►�•,r.rr.r�.r�r. FLOW PROCESS FROM NODE 131. 20 TONODE 232.20 ZS CODE = 2 C.3. I -3( )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 . =.as+e=+ra�. =arata��aaess� a�aaaaaaaaasaaaaasaaaaaaaa . =aaam ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC •= M* C 4LENSTH**3) / 4ELEVATION CHANGE) 3 *e. 2 INITIAL SUBAREA FLOW- LENGTH = 550.00 UPSTREAM ELEVATION = 1217.20 DOWNSTREAM ELEVATION - 1215.00 ELEVATION DIFFERENCE = 2.20 .• TC a .393* C 4 530. 4!c 0 **3) / 4 2 0) 2 **. 2 . 14.919 200.00 YEAR RAINFALL INTEN9ITY4INCH /HOUR) = 3.388 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY41 /4 ACRE LOT> RUNOFF COEFFICIENT = .7572 SUBAREA RUUNOFF 4 CF S) = 6.16 TOTAL AREA4ACRES) _ 2.40 TOTAL RUNOFF4CFS) •= 6.26 FLOW PROCESS FROM NODE 132.10 TO NODE 132.30 I S CODE = C.10 )))) }RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 astass. :aarasaa= asseaaams sr.= arsaa.- eassa.:eaaaes.s.s.a'.x.=.m.r. . -.m._ .a . -.- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 41/4 ACRE) TC = M *C 4LENGTH**3) / 4ELEVATION CHANL E) 2* *. 2 INITIAL SUBAREA FLOW-- LENGTH a 520.00 UPSTREAM ELEVATION = 2227.20 DOWNSTREAM ELEVATION 1209.30 ELEVATION DIFFERENCE = 7.60 TC •_ . 393* ( 4 520. 00* *3) / 4 7.60) 3 **. 2 .= 11.153 200.00 YEAR RAINFALL INTENSITY42NCH /HOUR) = 4.034 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7720 SUBAREA RUNOFF4CFS = 14.64 TOTAL AREA {ACRES) = 4.70 TOTAL RUNOFF4CFS) = 14.64 WW WWWWWWWW ww w sa vs vt 1‘ ,r - en - wwn WW W n n FLOW PROCESS FROM NODE 13e.ao TO NODE 13E'.40 IS CODE = 8 C • tt. 5 >>>>>ADDITION OF SUaAREA TO MAINLINE PEAK FLOW.f.f4“ 100.00 YEAR RAINFALL INTENSITY4INCH/HOUR) = SOIL CLASSIFICATION IS "A" SINGLE-FAMILY1/4 ACRE LOT) RUNOFF COEFFICIENT = .7708 SUS AREACACRES) = 3.30 SUaAREA RUNOFFULFSi = 10.10 TOTAL. AREA ACRES 8.00 TOTAL RUNOFF 4CFS) TC4MINY = 22.45 .---.-, /gm' pow, • RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) 1983 HYDROLOGY tirmwe -((<<<(((<<<((<(<<<<<<((<<<(((<<(<(<<(<)))>)>) ))) >))) > >) >) >)))) >))) >) >) >) >))) (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared fors HALL & FOREMAN, INC. (( <(( (<((((((((((<(((((<<(((((<(<<<(()))))>) > > >))))))) >) >))) >) > >) >)) > > >)) >> ***** *****DESCRIPTION OF RESULTS************* * **** * * * * * *** * *** * * *** * * * * * * * ** * FOOTHILL DRAIN HYDROLOGY, WEST HERITAGE (LATERAL H) * 9 25 NODE 140.6 TO NODE 140 * * AHMED SHEIKH,J.N.3366,12/22/86 * ***** *** *** *********** * *** * ►*********** *** *** * *** **1** * * * *** * * * * * * * * * ** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS {DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) _ .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1520 SLOPE OF INTENSITY DURATION CURVE _ .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <((<((<((((((((<<<(((((<(<<(<<((<<((<<>>))>))) ) >.) > > > > > > > > > > > >) > > > > > > > >) > > > >> Advanced Engineering Software EAES) SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 <(<<(<((((((((<<<(<(<<<<((<<(<<<<<<<<<>>>)>>) > >))) > > > >)) >)))))) >) > > > >) > >) >)> ***I****************************** *** **** * ****** * * *** * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.61 TO NODE 140.60 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS(( <(( atimaramatioMISMINIWIMINIMINIM=1=1WSIMIMMIMISINI===='WelnialtUratIM=11 == =___ = == = == == ====cx == = == ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 980.00 \ UPSTREAM ELEVATION = 1221.00 DOWNSTREAM ELEVATION = 1208:62 ELEVATION DIFFERENCE = 12.38 TC = .393*(( 980.00**3) / ( 12.38) ] * *. 2 = 14.796 25.00 YEAR RAINFALL INTENSITY (INCH /HOUR) = 2.668 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7321 SUBAREA RUNOFF(CFS) = 2.34 . TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 2.34 * *** * ** * ** ****************** * * * * * * * **** * *** * **** * **** *** * ** tat * * * * * * * * * * * * *• FLOW PROCESS FROM NODE 140.60 TO NODE 140.60 IS CODE = 1 > > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( <(< tss: sasssassssssassssssasss =ssssa== ==m=s=am===sMss = == =seas == = = =asa == =s == == CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.80 RAINFALL INTENSITY (INCH. /HOUR) = 2.67 TOTAL STREAM AREA (ACRES) = 1.20 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.34 *** ** *** **►************************ * * * ****** * * * *** * ** * * *** * * * * * * ** FLOW PROCESS FROM NODE 140.50 TO NODE 140.50 IS CODE = 2 > > >> )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( sssss sss sssassssssssssss: sasssssssssas= sea s== ========= ==ssassssaasss===== =ss ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC a K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 650.00 UPSTREAM ELEVATION = 1218.00 DOWNSTREAM ELEVATION = 1209.50 ELEVATION DIFFERENCE = 8.50 TC = .393*(( 650.00**3) / ( 8.50) ] * *. 2 = 12.469 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.957 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT a .7436 SUBAREA RUNOFF(CFS) = 6.60 • TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 6.60 *it* * * ***** ******4HHH * ************ *** **** * *** * **** * * * * * * * * * *** *** FLOW PROCESS FROM NODE 140.50 TO NODE 140.60 IS CODE = 3 )))) )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <<((< )))> )USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ((((( sssssaassssssss s = =mss DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 6.1 UPSTREAM NODE ELEVATION = 1209.50 DOWNSTREAM NODE ELEVATION = 1208.62 " FLOWLENOTH(FEET) = 90.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 6.60 TRAVEL TIME (MIN.) _ .25 TC (MIN.) = 12.71 ************************** at****************** **** * * * * * * *** ** * * * * * * * * * * *** * ** FLOW PROCESS FROM NODE 140.60 TO NODE 140.60 IS CODE = 1 )>)> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((( )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( asssssssssssssssssssssssssassss ============== =========== CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF' CONCENTRATION (MINUTES) = 12.71 RAINFALL INTENSITY (INCH. /HOUR) = 2.92 ,, "- TOTAL STREAM AREA (ACRES) = 3.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 6.60 CONFLUENCE INFORMATIONS STREAM RUNOFF TIME INTENSITY NUMBER .(CFS) (MIN.). /HOUR) 1 2.34 14.80 2.668 2 6.60 12.71 2.923 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 8.37 8.61 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 8.61 TIME(MINUTES) = 12.714 TOTAL AREA(ACRES) = 4.20 ********************************************* * * * **** * **** **** * *** * * * * * * * * * ** FLOW PROCESS FROM NODE 140.60 TO NODE 150.10 IS CODE = 6 )))) )COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA((((< ============================================================================ UPSTREAM ELEVATION = 1208.62 DOWNSTREAM ELEVATION = 1207.50 STREET LENGTH(FEET) = 400.00 CURB HEIGTH( ;NCHES) = 8. STREET HALFWIDTH(FEET) = 24.00 STREET CROSSFALL(DECIMAL) = .0290 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ** TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.98 STREET FLOWDEPTH(FEET) _ .63 HALFSTREET FLOODWIDTH(FEET) = 16.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.11 PRODUCT OF DEPTHBVELOCITY = 1.32 STREETFLOW TRAVELTIME(MIN) = 3.16 TC(MIN) = 15.87 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.558 SOIL CLASSIFICATION I8 "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7271 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) = .74 ,A^- SUMMED AREA(ACRES) = 4.60 TOTAL RUNOFF(CFS) = 9.36 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .65 HALFSTREET FLOODWIDTH(FEET) = 17.47 FLOW VELOCITY(FEET /SEC.) = 2.04 DEPTH *VELOCITY = 1.32 *****************************►*************** * * * * * * * * * * * *** * * * * ** * * * * * * * * * ** FLOW PROCESS FROM NODE 150.10 TO NODE 150.10 IS CODE = 1 ))) ))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <(((< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.87 RAINFALL INTENSITY (INCH./HOUR) = 2.56 TOTAL STREAM AREA (ACRES) = 4.60 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 9.36 ********************************************* ** * *** * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.40 TO NODE 140.40 IS CODE = 2 ))) ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *E(LENGTH * *3) /(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW- LENGTH = 500.00 .. -- UPSTREAM ELEVATION = 1212.70 DOWNSTREAM ELEVATION = 1209.16 ' ELEVATION DIFFERENCE = 3.54 TC = .393* C ( 500.00* *3) / ( 3.54) 3 * *. 2 = 12.692 25.00 YEAR RAINFALL INTEN$ITY(INCH /HOUR) = 2.926 SOIL CLASSIFICATION,IS "A" SINGLE- FAMILY(1 /4 ACRE LU F) RUNOFF COEFFICIENT = .7425 SUBAREA RUNOFF(CFS) = 4.13 TOTAL AREA(ACRES) = 1.90 TOTAL RUNOFF(CFS) = 4.13 * * * * * * * * * * * * * * * * * * * * *• **** •* * • * •• * * * *** * * *• • ** east• * * ***** • *•*•i ** • •• * * ** • FLOW PROCESS FROM NODE 140.40 TO NODE 150.10 IS CODE = 3 ) >)>> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( > > > >> USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)(( <(< smilmoramommulmminuir======================================= ==sas====s====== =a==== ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 6.9 UPSTREAM NODE ELEVATION = 1 209.16 DOWNSTREAM NODE ELEVATION = 1207.50 FLOWLENGTI4 (FEET) = 90.00 MANN I NGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 4.13 TRAVEL TIME(MIN.) _ .22 TC(MIN.) = 12.91 *** ** * ******** * *** AIM************.************** ******* * * * * * *** * * * * * * *** ** * * *** FLOW PROCESS FROM NODE 150.10 TO NODE 150.10 IS CODE = 1 )) )> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE((((< )) )))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((( (( =ssssaa =assssas=s CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.91 RAINFALL INTENSITY (INCH. /HOUR) = 2.90 TOTAL STREAM AREA (ACRES) = 1.90 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.13 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 9.36 15.87 2.558 2 4.13 12.91 2.896 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMUL.A(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 13.00 11.74 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) - 13.00 TIME(MINUTES) = 15.872 TOTAL AREA(ACRES) = 6.50 *************** *************** ►********** * * * * * * * * * * * * * *•* * ** FLOW PROCESS FROM NODE 150.10 TO NODE 150.20 IS CODE = 6 )))))COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA((((< . arsss ssaisss=s= = = ==a=====asssssssss= === =aa = === UPSTREAM ELEVATION = .1207.50 DOWNSTREAM ELEVATION = 1205.40 STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 24.00 STREET CROSSFALL(DECIMAL) _ .0290 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 13.26 STREET FLOWDEPTH(FEET) _ .63 HALFSTREET FLOODWIDTH(FEET) = 16.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12 PRODUCT OF DEPTH&VELOCITY = 1.95 STREETFLOW TRAVELTIME(MIN) = 1.76 TC(MIN) = 17.64 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.402 SOIL. CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7190 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .52 SUMMED AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 13.52 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .63 HALFSTREET FLOODWIDTH(FEET) = 16.78 FLOW VELOCITY(FEET /SEC.) = 3.18 DEPTH *VELOCITY = 1.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 150.20 TO NODE 150.20 IS CODE = 1 )))) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <( < <( ssssasassssssssssass ss== as= s=sss s :ssssssa=sss == = == = =s =s ===s == == CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 17.64 RAINFALL INTENSITY (INCH. /HOUR) = 2.40 TOTAL STREAM AREA (ACRES) = 6.80 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 13.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.30 TO NODE 140.30 IS CODE = 2 )))) )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((( << sssssass sass= sss=== ssa= sss as=s ss============= = = == == = == == =ss = = ===____________ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *C(LENGTH**3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH = 450.00 UPSTREAM ELEVATION = 1211.30 DOWNSTREAM ELEVATION = 1208.12 /0" ELEVATION DIFFERENCE : 3.18 Nifsrow TC = . 393* C ( 450. 00* *3) / ( 3. 18)) * *. 2 = 12. 173 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.000 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7452 SUBAREA RUNOFF(CFS) = 2.68 TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 2.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.30 TO NODE 150.20 IS CODE = 3 )) )))COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <( <<< )))) >USINO COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)(( <(< ssss sssss sssss sssss::ssoas==:aesss= ==s=:s sear sssss== ========= == =m=s == == = = = == ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.6 UPSTREAM NODE ELEVATION = 1208.12 DOWNSTREAM NODE ELEVATION = 1205.40 FLOWLENGTH(FEET) = 80.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.68 TRAVEL TIME(MIN.) _ .18 TC(MIN.) = 12.35 **** ** ****************** 1r * *** * * * * * * * ** * * * * * * * * * *** * * * * ** FLOW PROCESS FROM NODE 150.20 TO NODE 150.20 IS CODE = 1 )))) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < <( )))> )AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES( «(( ssssssssssss sssss• sass se==a == == ===== a=s=s=== = =______ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: _ TIME OF CONCENTRATION(MINUTES) = 12.35 RAINFALL INTENSITY (INCH. /HOUR) = 2.97 TOTAL STREAM AREA (ACRES) = 1.20 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.68 ,,�.. CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY 'foamy NUMBER (CFS) (MIN.) (INCH /HOUR) 1 13.52 17.64 2.402 2 2.68 12.35 2.974 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 15.69 12.15 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 15.69 TIME(MINUTES) = 17.636 TOTAL AREA(ACRES) = 8.00 I► ► * ** r **** *** NAHHH► **** ►************ ** * *** * * * * * * * * * *** * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 150.20 TO NODE 141.00 IS CODE = 6 >> > > >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA((( << UPSTREAM ELEVATION = 1205.40 DOWNSTREAM ELEVATION = 1204.70 STREET LENBTH(FEET) = 270.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 24.00 STREET CROSSFALL(DECIMAL) = .0290 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 16.09 NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .77 HALFSTREET FLOODWIDTH(FEET) = 21.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.32 PRODUCT OF DEPTH&VELOCITY = 1.78 STREETFLOW TRAVELTIME(MIN) = 1.94 TC(MIN) = 19.58 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.256 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7106 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = .80 SUMMED AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) = 16.49 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .77 HALFSTREET FLOODWIDTH(FEET) = 21.59 FLOW VELOCITY(FEET /SEC.) = 2.38 DEPTH *VELOCITY = 1.82 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 )>>) )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( < << mrs_ s=ae== Maas= = : =_______________ ___ =__= CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 19.58 RAINFALL INTENSITY (INCH. /HOUR) = 2.26 TOTAL STREAM AREA (ACRES) = 8.50 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 16.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * *** * * * ** FLOW PROCESS FROM NODE 140.20 TO NODE 140.90 IS CODE = 2 ))),)r<HTIuNAL METHOD INITIAL SUBAREA ANALYSIS( < <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1221.00 Nkiwite DOWNSTREAM ELEVATION = 1209.00 ELEVATION DIFFERENCE = 12.00 TC = . 393* C ( 1000.00* *3) / ( 12.00) ] * *. 2 = 15.070 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.639 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7308 SUBAREA RUNOFF(CFS) = 15.05 TOTAL AREA(ACRES) = 7.80 TOTAL RUNOFF(CFS) = 15.05 ***************** **** * * * * * * * *** * * * * * * * * * * * * * **** **tit * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.90 TO NODE 141.00 IS CODE = 3 )))) )COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA( <( <( ) >)) >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) <<<<< ============== == = =_ = = == = = = = =- = =_ = = = = = = = = =___ =_= DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 14.2 UPSTREAM NODE ELEVATION = 1209.00 DOWNSTREAM NODE ELEVATION = 1204.70 FLOWLENSTH(FEET) = 80.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 15.05 TRAVEL TIME (MIN.) - .09 TC (MIN.) = 15.16 ►***►**************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 )))) >DESISNATE INDEPENDENT STREAM FOR CONFLUENCE(( <(< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 15.16 RAINFALL INTENSITY (INCH. /HOUR) = 2.63 TOTAL STREAM AREA (ACRES) = 7.80 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 15.05 ********************************************* * * *** * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.70 TO NODE 141.00 IS CODE = 2 ))) ))RATIONAL METHOD INITIAL SUBAREA ANALYSIS <(( << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 450.00 UPSTREAM ELEVATION = 1208.00 DOWNSTREAM ELEVATION = 1204.70 ELEVATION DIFFERENCE = 3.30 TC = .393* C ( 450.00 * *3) / ( 3.30)) * *. 2 = 12.083 25.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.013 SOIL CLASSIFICATION IS "A" , �, SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7456 SUBAREA RUNOFF(CFS) = 2.02 *tie TOTAL AREA (ACRES) _ .90 TOTAL RUNOFF(CFS) = 2.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1 ))>> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <(( (< )))))AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( ___ :__________ = = = = =as = = = = =________ == _ ,001..- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 12.08 RAINFALL INTENSITY (INCH. /HOUR) = 3.01 TOTAL STREAM AREA (ACRES) = .90 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.02 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 16.49 19.58 2.256 2 15.05 15.16 2.629 3 2.02 12.08 3.013 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 30.91 29.58 24.19 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 30.91 TIME(MINUTES) = 19.576 TOTAL AREA(ACRES) = 17.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 141.00 TO NODE 140.00 IS CODE = 3 ))>)> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA((((( ))MUSING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)((((( s =====_________________ - _== = =_ =_ = = = = =_ = = = = = = = = = = = == = = = = = == _ Nowe DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 4.5 UPSTREAM NODE ELEVATION = 1204.70 DOWNSTREAM NODE ELEVATION = 1204.50 FLOWLENGTH(FEET) = 120.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 30.91 TRAVEL TIME(MIN.) _ .44 TC(MIN.) = 20.02 ********************************************* ** * * * * * * * * * * * ** * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 1 ) > >> )DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE(( <(< )>)> )AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES((((( ____________===== a= n=====___ _______________________________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 20.02 RAINFALL INTENSITY (INCH. /HOUR) = 2.23 TOTAL STREAM AREA (ACRES) = 17.20 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 30.91 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 - -N 30.91 20.02 2.226 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 1 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 30.91 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 30.91 TIME(MINUTES) =. 20.020 TOTAL AREA(ACRES) = 17.20 = ===== = = =a == = = = = =_________ = = = = =o= _____ END OF RATIONAL METHOD ANALYSIS Niftwe V 1 ********************************************* ** * * * * * * * * ** * * * * * * * * * * * * ** * * * ** ` ? PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) **********************************-********** * * * * * * * * * * ** * * * * * *- * * * * * * * * * * ** <<<<((<(<<(((<<<<<<(<<((<<<<<<((<<<<(<>)>>>>> > > > > >> > > > > > > > > >) > > > >> >) > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. <<<<<<<(<<<<(<(<(<(<<<(<<((<(<(<<<(<<<))>))>> > >)>) > > > > > > > > > > > > > )))) > >> > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN, CATCH BASIN HYDRAULICS,WEST HERITAGE LATERAL * * Q 25 C.B. #I -29 * * AHMED SHE I KH, J. N. 3366, 12/23/ 86 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ( DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 3.08 FLOWLINE ELEVATION = 1197.00 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 31.74 ASSUMED DOWNSTREAM CONTROL HGL = 1202.490 <(<<<<<<((((<<<(<<<<<<<<<<<<<(<<(<<<(()>>>>>> > > > > > >) > >) > > > > > > > >)) > >> > > > > > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 (<(<(((<<<(<((<<<<<(<(<<(<<<(<<<<<<(<()>>)>>> > > > > > > > > > > > > > > > > > > > > > > > >) >) > > >> PRESSURE FLOW PROCESS FROM NODE 3.08 TO NODE 93.67 IS CODE = 1 UPSTREAM NODE 93.67 ELEVATION = 1197.36 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 31.74 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 94.41 FEET MANN I NGS N = .01300 SF =(Q /K) * *2 = (( 31.74)/( 666.986)) * *2 = .0022645 HF =L *SF = ( 94.41)*( .0022645) = .214 NODE 93.67 : HGL= < 1202. 704> ; EGL= < 1203. 017> ; FLOWL I NE= ( 1197.360) PRESSURE FLOW PROCESS FROM NODE 93.67 TO NODE 98.34 I S CODE = 5 UPSTREAM NODE 98.34 ELEVATION :._ 1197.41 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 15.8 24.00 3.142 5.039 14.000 .394 2 31.7 36 N0 7 069 4 49� .313 "Sib' . . . . _- . 3 14.0 18.00 1.767 7.922 58.000 - 100. 4 1.9 18.00 1.767 1.086 30.000 - 5 0.0===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-03*V3*COS(DELTA3)- Q4*V4*COS(DELTA4)>/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00490 DOWNSTREAM FRICTION SLOPE = .00226 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00358 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .017 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .028+ .394- .313+( .017)+( 0.000) = .126 NODE 98.34 : HGL= ( 1202.748>;EGL= < 1203.142>;FLOWLINE= < 1197.410> PRESSURE FLOW PROCESS FROM NODE 98.34 TO NODE 173.76 IS CODE = 1 UPSTREAM NODE 173.76 ELEVATION = 1199.20 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 17.32 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 75.42 FEET MANNINGS N = .01300 SF=(0/10**2 = (( 17.32)/( 226.224))**2 = .0058616 HF=L*SF = ( 75.42)*( .0058616) = .442 NODE 173.76 : HGL= ( 1203.113>;EGL= < 1203.584};FLOWLINE= < 1199.200> = = PRESSURE FLOW PROCESS FROM NODE 173.76 TO NODE 173.76 IS CODE = 8 UPSTREAM NODE 173.76 ELEVATION = 1199.20 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 17.32 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .472 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .472) = .094 NODE 173.76 : HGL= < 1203.679};EGL= < 1203.679>;FLOWLINE= < 1199.200> = END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �_' ****jF3P it *9t*iHEdFdF# 3l dE ltiEdFiEiEd 3( iF# It i[ iFifiE *9F9Fit*-fF*** ihi *** **iE* 3EiF 1F iE It iFiFiEiF* Il 1 ** *** * ** ** ** °, PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * ** * * * * * * * * * * * * * * ** * * * * * * * * * * ** (<((l((<(<<<(<(<<<<((<<(<<((<<(<<((((()>)>>>) > >> > > > > > > > > > > > > > > > > > > >)) > > > > >)> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. ((<l((((l<(((((<((((((((((<(<((((((((())>>>>> >)>) > > > > > > > >) > > > > > >)) > > >))>>) >> * * * * * * * ** *DESCRIPTION OF RESULTS******************************************** * FOOTHILL DRAIN ,CATCH BASIN HYDRAULICS,WEST HERITAGE LATERAL * Q 25 C.B. # I -30 * * AHMED SHIKH, J. N. 3366. 12/23/86 * *****************************************-*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. y DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 86.95 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 2.02 ASSUMED DOWNSTREAM CONTROL HGL = 1202.704 (<(((<((((<(<<<<((<(((<<((<<<<(<(((((()>>>>>> > > > > > >) > >) > > > > > > > > > >) > > > >) >) > >> Advanced Engineering Software EAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE: 12/ 17/82 (<(<((((((((<(<(((((((((<<<((<((((((<<>)))>)> ))))))) >) > >)) >))))))))) >)))) > >) PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 86.95 IS CODE = 1 UPSTREAM NODE 86.95 ELEVATION = 1200.97 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 2.02 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 86.95 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 2.02)/( 105.044)) * *2 = .0003698 HF=L*SF = ( 86.95)*( .0003698) - .032 NODE 86.95 : HGL= < 1202. 736> ; EGL= < 1202. 756> ; FLOWL I NE= < 1200.970> ++r✓ PRESSURE FLOW PROCESS FROM NODE 86.95 TO NODE 86.95 IS CODE = 8 UPSTREAM NODE 86.95 ELEVATION = 1200.97 CALCULATE PRESSURE FLOW CATCH BASIN ENT-(ANCE LOSSES(LACFCB): PIPE FLOW(CFS) = 2.02 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .020 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .020> = .004 0.00'=^ NODE 86.95 : HGL= ( 1202.760>;EGL= < 1202.760>;FLOWLINE= ( 1200.970) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ■tew=e ******************************************-** * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** .►, PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * ** * * * * * * * * * * * * * * * * * * * * * * * * * * ** (<<<<(<<<((<((((<<(<(<<<(((<(<<((<(((()>>>>>> > > > >> > > > > > > > > > > > > > > >> > > > > >> > > >> (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL_ & FOREMAN, INC. (<<<<(((<(((<<<(<<<<<<(((<(((<(((((<(()>>>>>> > > > > > > > > > > > > > > >> > > > > > > > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN,CATCH BASIN HYDRAULICS,WEST HERITAGE LATERAL * * Q 25 C.B. #I -32 * * AHMED SHEIKH, J. N. 3366, 12/23/86 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 70.12 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 15.05 ASSUMED DOWNSTREAM CONTROL HGL = 1202.704 <<((<<(<(((<<((((((( l<<((<((((<<(((<(<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > >> > > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <((<<((<(<(((<(<((<((<(<(<<((<<<<(((<(>>>>>>>> > > > > > > > >> > > > > > > > > > > > > > > >'> > > > >> PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 70.12 IS CODE = 1 UPSTREAM NODE 70.12 ELEVATION = 1203.30 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 15.05 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 70.12 FEET MANNINGS N = .01300 SF=(Q /K) * *2 = (( 15.05)/( 105.044)) * *2 = .0205274 `�_..., HF =L *SF = ( 70.12)*( .0205274) = 1.439 NODE 70.12 : HGL= ( 1204. 143) ;EGL= < 1:=05.::70) ; FLOWLINE= ( 1203.300; PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .66 NODE 70.12 : HGL= < 1204.800) ; EiGL_= < 1205.326> ; FLOWL I NE= < 1203.300; PRESSURE FLOW PROCESS FROM NODE 70.12 TO NODE 70.12 IS CODE = 8 UPSTREAM NODE 70.12 ELEVATION = 1203.30 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): * ***or PIPE FLOW(CFS) = 15.05 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 1.126 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.126) = .225 NODE 70.12 : HGL= < 1206.151>;EGL= < 1206.151};FLOWLINE= ( 1203.300> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ( / oft. — . 4 , ********************************************* * * * * * * *** * * * * * *** * * * * * * * * * * * * ** `""' PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * *** * * * * * *** * *** * * * * **** (<<<(<<(<<((<<<(<(<(<<((<(<<(<<(<(<<(())>>)>) >)))))) >))))))))))))) >))))) >)>) (C) Copyright 1982 Advanced Engineering Software CAES3 Especially prepared for: HALL & FOREMAN, INC. ((( < <( < <(( ( <<<<( < << < < < <( <(( <( <<<(<>)>>>)> > > > > >) > >) >) > > > > >) > > > > >)) > >) >))> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN ,LINE D ,STORM DRAIN HYDRAULICS * * Q 25 STA. 0 +12.56 TO STA.19 +65.00 * * AHMED SHEIKH. J. N. 3366, 12/26/86 * ********************************************* * * * * * * * *** * * * * * * *** * * * * * * * * * * ** ********************************************* * * * * * * * * *** * * * * * * * * * * * * * * * * **** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA /0"-- DESIGN MANUALS. 'Skive DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 12.56 FLOWLINE ELEVATION =. 1199.66 PIPE DIAMETER(INCH) = 54.00 PIPE FLOW(CFS) = 197.20 ASSUMED DOWNSTREAM CONTROL HGL = 1205.800 <(<<<<<<<(((<<(<<(<(<<(<<(<((<(<<<<(<<>>))>)) ))))) > >)) >)))) > > >) >)))))) > >)))) Advanced Engineering Software CAES? SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<<<<(((<<(<<<(<<(<(<<<<(((<(((<<<(((<>)>)>>> ) > > > > >) > >)) > > >) > > >) > >)) > >)) > > >) PRESSURE FLOW PROCESS FROM NODE 12.56 TO NODE 30.36 IS CODE = 1 UPSTREAM NODE 30.36 ELEVATION = 1199.87 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 197.20 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 17.80 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 197.20)/( 1966.489)) * *2 = .0100561 HF =L *SF = ( 17.80)*( .0100561) = .179 NODE 30.36 : HGL= ( 1205. 979) ; EGL= ( 1208. 366) ; FLOWLINE= ( 1199.870) _ == ======= = = == =____ = = =_= = =__ = = =____ = = = === _ -____ PRESSURE FLOW PROCESS FROM NODE 30.36 TO NODE 124.61 IS CODE = 3 UPSTREAM NODE 124.61 ELEVATION = 1200.96 x r.,. «...�..,.w� r ., .. _., ,- - .,.,,..,e»<«..>....,, .. „ -_. ......� ..+ .»o-,�«w. CALCULATE PRESSURE FLOW PIPE-- END ILOSSES(OCEMA): PIPE FLOW = 197.20 CFS ': 1 P I RE DIAMETER = 54.00 INCHES PIPE LENGTH = 94.25 FEET IIMANNINGS N = .01300 "Pm. PRESSURE ANGLE = 60.000 DEGREES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 12.40 FEET PER SECOND VELOCITY HEAD = 2.387 BEND COEFFICIENT(KB) = .2041 HB =KB *(VELOCITY HEAD) _ ( .204) 0 2.387) = .487 PIPE CONVEYANCE FACTOR = 1966.489 FRICTION SLOPE(SF) = .0100561 FRICTION LOSSES = L *SF = ( 94.25) *( .0100561) _ .948 NODE 124.61 : HGL= < 1207.414) ;EGL= < 1209. 801 > ; FLOWL I NE= < 1200.960) PRESSURE FLOW PROCESS FROM NODE 124.61 TO NODE 197.67 IS CODE = 1 UPSTREAM NODE 197.67 ELEVATION = 1201.80 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 197.20 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 73.06 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 197.20)/( 1966.489)) * *2 = .0100561 HF =L *SF = ( 73.06) *( .0100561) = .735 NODE 197.67 : HGL= < 1208. 149) ;EGL= ( 1210.536) ; FLOWL I NE= < 1201. 800> _ ___________===== n=====_______________ ___________________ = = = = == = = ===_ PRESSURE FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 2 UPSTREAM NODE 200.00 ELEVATION = 1201.86 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 197.20 CFS PIPE DIAMETER = 54.00 INCHES PRESSURE FLOW AREA = 15.904 SQUARE FEET FLOW VELOCITY = 12.40 FEET PER SECOND VELOCITY HEAD = 2.387 HMN = . 05* (VELOCITY HEAD) = .05*( 2.387) = .119 NODE 200.00 : HGL= < 1208.268) ;EGL= < 1210.655> ; FLOWL I NE= < 1201.860) PRESSURE FLOW PROCESS FROM NODE 202.34 TO NODE 680.50 IS CODE = 1 UPSTREAM NODE 680.50 ELEVATION = 1207.98 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 197.20 CFS PIPE DIAMETER - 54.00 INCHES PIPE LENGTH = 478.16 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 197.20)/( 1966.489)) * *2 = .0100561 HF =L *SF = ( 478.16) *( .0100561) = 4.808 NODE 680.50 : HGL= ( 1213.077) ;EGL= < 1215. 464> ; FLOWL I NE= ( 1207.980> ===============_======__==================== == = = == = = = -- == = = = = = = = = = = = = = = =___= PRESSURE FLOW PROCESS FROM NODE 684.00 TO NODE 684.00 IS CODE = 5 UPSTREAM NODE 684.00 ELEVATION = 1208.23 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 145.4 51.00 14.186 10.249 0.000 1.631 2 197.2 54.00 15.904 12.399 -- 2.387 3 51.8 36.00 7.069 7.328 30.000 - 4 0.0 0.00 0.000 0.000 0.000 - �rw' 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW', JUNCTION FORMULAE USED: DY=(02*V2-Q1*V1*COS(DELTA1)-O3*V34COS(DELTA3) 04 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .0742 DOWNSTREAM FRICTION SLOPE _ .01006 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00874 ° JUNCTION LENGTH(FEET) = 7.00 FRICTION LOSS = .061 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.292+ 1.631- 2.387 +( .061) +( 0.000) = .597 NODE 684.00 : HGL= ( 1214.430) ;EGL= ( 1216.061) ; FLOWL I NE= ( 1208.230) === ==================================-======= = = = = = = = =__ =_ = = = = =s ==== = = = = =a=== PRESSURE FLOW PROCESS FROM NODE 687.50 TO NODE 784.47 IS CODE = 3 UPSTREAM NODE 784.47 ELEVATION = 1209.22 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 145.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 96.97 FEET MANNINGS N = .01300 CENTRAL ANGLE = 46.000 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 10.25 FEET PER SECOND VELOCITY HEAD = 1.631 BEND COEFFICIENT(KB) = .1787 HB =KB *(VELOCITY HEAD) _ ( .179) *( 1.631) _ .292 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0074155 FRICTION LOSSES = L *SF = ( 96.97) *( .0074155) = .719 NODE 784.47 : HGL= ( 1215. 441) ;EGL= ( 1217. 072) ; FLOWL I NE= ( 1209.220) _ ____ == = = === == ===== = = = === == = = = == ass = = = = =______= = =a= = = = =s= ==sex === === = = = = = ==== PRESSURE FLOW PROCESS FROM NODE 784.47 TO NODE 925.91 IS CODE = 1 UPSTREAM NODE 925.91 ELEVATION = 1210.66 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 145.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 141.44 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 145.40)/( 1688.477)) * *2 = .0074155 HF =L *SF = ( 141.44) *( .0074155) = 1.049 NODE 925.91 : HGL= ( 1216.490);EGL= ( 1218.121) ;FLOWLINE= ( 1210.660) _ ss_== = = = =s ==a = = == = == = = = = =___ = = = = =s == sass = == = = = = =____________ = = ===s PRESSURE FLOW PROCESS FROM NODE 925.91 TO NODE 998.35 IS CODE = 3 UPSTREAM NODE 998.35 ELEVATION = 1211.40 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 145.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 72.44 FEET MANNINGS N = .01300 CENTRAL ANGLE = 46.000 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 10.25 FEET PER SECOND VELOCITY HEAD = 1.631 BEND COEFFICIENT(KB) = .1787 HB =KB *(VELOCITY HEAD) _ ( .179) *( 1.631) = .292 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0074155 FRICTION LOSSES = L *SF = ( 72.44) *( .0074155) = .537 NODE 998.35 : HGL= ( 1217. 318) ;EGL= ( 1218. 950) ; FLOWL I NE= ( 1211. 400) PRESSURE FLOW PROCESS FROM NODE 998.35 TO NODE 1017.67 IS CODE = 1 UPSTREAM NODE 1017.67 ELEVATION = 1211.60 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 145.40 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 19.32 FEET MANNINGS N = .01300 qr- (n /V) ** = (f 1 �� 4J' ' ( 1 rgP.. /, - -\ ) * *2 og1741 HF =L *SF = ( 19.32)*( .0074155) = .143 NODE 1017.67 : HGL= ( 1217. 462 ) ; E'GL= ( 1219.093) ; FLOWL I NE= ( 1211. 600) _ = = === ms == = ==me==== =_ _ _ = = = ==a = ==me als======== == == == === = == ==s = =======es= = ==== =mess PRESSURE FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.00 IS CODE = 5 UPSTREAM NODE 1020.00 ELEVATION = 1212.10 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 131.5 51.00 14.1186 9.270 0.000 1.334 2 145.4 51.00 14.186 10.249 -- 1.631 3 6.5 18.00 1.767 3.678 45.000 - 4 6.4 18.00 1.767 3.622 45.000 - 5 1.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00607 DOWNSTREAM FRICTION SLOPE _ .00742 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00674 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .031 ENTRANCE LOSSES = .326 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .521+ 1.334- 1.631 +( .031) +( .326) = .582 NODE 1020.00 : HGL= ( 1218. 340) ;EGL= ( 1219.675> ; FLOWL I NE= ( 1212. 100) Irv' ==== m====== ss=== ms===== m=s=====_===== s== === =s== = == =s=sss = = == sss===s = = == =mass PRESSURE FLOW PROCESS FROM NODE 1022.34 TO NODE 1456.11 IS CODE = 3 UPSTREAM NODE 1456.11 ELEVATION = 1218.61 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW m 131.50 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 433.77 FEET MANNINGS N = .01300 CENTRAL ANGLE = 17.000 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 9.27 FEET PER SECOND VELOCITY HEAD = 1.334 BEND COEFFICIENT(KB) _ .1087 HB =KB *(VELOCITY HEAD) _ ( .109) *( 1.334) _ .145 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) _ .0060654 FRICTION LOSSES = L *SF = ( 433.77) *( .0060654) = 2.631 NODE 1456.11 : HGL= ( 1221. 116) ;EGL= ( 1222.451) ;FLOWLINE= ( 1218.610) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.74 NODE 1456.11 : HGL= ( 1222.860) ;EGL= ( 1224. 194) ; FLOWL I NE= ( 1218.610) __======= s= a====ss======== a==== = = = == m= = == = === = = = = ===lss = == ======_= = ===s= PRESSURE FLOW PROCESS FROM NODE 1458.44 TO NODE 1458.44 IS CODE = 2 UPSTREAM NODE 1458.44 ELEVATION = 1218.68 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 131.50 CFS PIPE DIAMETER = 51.00 INCHES PRESSURE FLOW AREA = 14.186 SQUARE FEET Naive FLOW VELOCITY = 9.27 FEET PER SECOND VELOCITY HEAD = 1.334 HMN = . 05* (VELOCITY HEAD) = .05*( 1.334) = .067 NODE 1458.44 : HGL= < 1222.92/> ;EGL= ( 1224. 261 ) ; FLOWL I NE= ( 1218. 680) ri rI ; 11.J h'=Q! m iTT nM 1 ! ^"'_f "en 7r Tt fir L -1 r r rfl! LOST PRESSURE HEAD USING SOFFIT CONTROL = .00 NODE 1458.44 : HGL= ( 1222. 930) ;EGL= ( 1224.264) ; FLOWL I NE= ( 1218.680) f = = === = = = = = = = == == = = = = = == ==l = = = =a ============ = = = = = = = = = = = = == === = = == = = == = =s-a= r PRESSURE FLOW PROCESS FROM NOD 1460.78 TO NODE 1794.34 IS CODE = 3 UPSTREAM NODE 1794.34 ELETITION = 1222.95 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 131.50 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 333.56 FEET MANNINGS N = .01300 CENTRAL ANGLE = 13.000 DEGREES! PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 9.27 FEET PER SECOND VELOCITY HEAD = 1.334 BEND COEFFICIENT(KB) = .0950 HB =KB *(VELOCITY HEAD) _ ( .095) *( 1.334) = .127 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) = .0060654 FRICTION LOSSES = L *SF = ( 333.56) *( .0060654) = 2.023 NODE 1794.34 : HGL= ( 1225. 080) ;EGL= ( 1226. 414> ; FLOWL I NE= < 1222.950> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.12 NODE 1794.34 : HGL= ( 1227.200) ;EGL= ( 1228. 534) ; FLOWL I NE= ( 1222. 950) =as = = = = = = = = ==sm== = = =__,__ ______===_ _ = = = = == = === = = = = =_ = = = = = = = = = = ==== PRESSURE FLOW PROCESS FROM NODE 1794.34 TO NODE 1818.76 IS CODE = 3 UPSTREAM NODE 1818.76 ELEVATION = 1223.26 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 131.50 CFS PIPE DIAMETER = 51.00 INCHES PIPE LENGTH = 24.42 FEET MANNINGS N = .01300 CENTRAL ANGLE * 16.000 DEGREES PRESSURE FLOW AREA = 14.186 SQUARE FEET FLOW VELOCITY = 9.27 FEET PER SECOND VELOCITY HEAD = 1.334 BEND COEFFICIENT(KB) = .1054 HB =KB *(VELOCITY HEAD) - ( .105) *( 1.334) _ .141 PIPE CONVEYANCE FACTOR = 1688.477 FRICTION SLOPE(SF) _ .0060654 FRICTION LOSSES = L *SF = ( 24.42) *( .0060654) = .148 NODE 1818.76 : HGL= ( 1227.489) ;EGL= ( 1228.823) ; FLOWL I NE= ( 1223.260) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .02 NODE 1818.76 : HGL= ( 1227. 510> ;EGL= < 1228. 844> ; FLOWL I NE= < 1223.260> PRESSURE FLOW PROCESS FROM NODE 1821.09 TO NODE 1821.09 IS CODE = 5 UPSTREAM NODE 1821.09 ELEVATION = 1223.51 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 105.0 48.00 12.566 8.356 0.000 1.084 2 131.5 51.00 14.186 9.270 -- 1.334 3 26.5 24.00 3.142 8.435 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == ..' LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) ®rrr Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 1 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00534 nr"INgTPFPM cr, rrTTf ,. ci nr'r.. - 11;1r - -117 AVERAGED FRICTION SLOPE IN JUN TION ASSUMED AS .00570 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .027 ENTRANCE LOSSES = 0.000 �-• JUNCTION LOSSES = DY +HV1 -HV2 +( RICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .426+ 1.08 - 1.334+( .027)+( 0.000) = .203 NODE 1821.09 : HGL= ( 1227.96 ) ;EGL= ( 1229.047) ; FLOWLI NE= ( 1223.510) _ ______________________ = = = = == = == ==_____=____ _________________________ =__=== PRESSURE FLOW PROCESS FROM NOD 1823.43 TO NODE 1904.43 IS CODE = 3 UPSTREAM NODE 1904.43 ELE TION = 1224.16 CALCULATE PRESSURE FLOW PIPE -B ND LOSSES(OCEMA): PIPE FLOW = 105.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 81.00 FEET MANNINGS N = .01300 CENTRAL ANGLE = 52.000 DEGREES PRESSURE FLOW AREA = 12.566 SQUARE FEET FLOW VELOCITY = 8.36 FEET PER SECOND VELOCITY HEAD = 1.084 BEND COEFFICIENT(KB) = .1900 HB =KB *(VELOCITY HEAD) = ( .190) *( 1.084) = .206 PIPE CONVEYANCE FACTOR = 1436.431 FRICTION SLOPE(SF) = .0053433 FRICTION LOSSES = L *SF = ( 81.00) *( .0053433) = .433 NODE 1904.43 : HGL= ( 1228.602); EGL= ( 1229.686); FLOWL I NE= ( 1224. 160) PRESSURE FLOW PROCESS FROM NODE 1906.76 TO NODE 1906.76 IS CODE = 5 UPSTREAM NODE 1906.76 ELEVATION = 1224.23 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 85.0 48.00 12.566 6.764 0.000 .710 2 105.0 48.00 12.566 8.356 -- 1.084 3 20.0 18.00 1.767 11.318 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (Q2 *V2- Q1 *V1 *COS(DELTA1) -Q3 *V3 *COS(DELTA3)- Q4 *V4*COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE _ .00350 DOWNSTREAM FRICTION SLOPE _ .00534 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00442 JUNCTION LENGTH(FEET) = 4.67 FRICTION LOSS = .021 ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.022 MANHOLE LOSSES = .054 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .352+ .710- 1.084+( .021)+( 0.000) _ .075 NODE 1906.76 : HGL= ( 1229.050) ;EGL= < 1229.761 > ; FLOWL I NE= ( 1224. 230) =- _============__==_=====--================_ = === = =___ = = == = = = = = = = = == == = = = =a= PRESSURE FLOW PROCESS FROM NODE 1909.10 TO NODE 1926.77 IS CODE = 3 UPSTREAM NODE 1926.77 ELEVATION = 1224.26 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): *tar PIPE FLOW = 85.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 17.67 FEET MANNINGS N = .01300 CENTRAL ANGLE = 11.000 DEGREES PRESSURE FLOW AREA = 12.566 S UARE FEET FLOW VELOCITY = 6.76 FEET PE SECOND �r-1 nrTTY HFel1? - ?1171 r pwl r f prrT ' T � h 1 T { it t _ . 0A74 HB =KB *(VELOCITY HEAD) = ( .087) *( .710) = .062 PIPE CONVEYANCE FACTOR = 143 .431 FRICTION SLOPE(SF) = .0035016 FRICTION LOSSES = L *SF = ( 17.67)*( .0035016) = .062 NODE 1926.77 : HGL= < 1229. 1740 ;EGL= < 1229.885) ; FLOWL I NE= ( 1224.260) 1 _= u=========__ __ = =___ = = =__== =_ = =__== _= = = = = =_= ___________ PRESSURE FLOW PROCESS FROM NODE 1926.77 TO NODE 1965.00 IS CODE = 3 UPSTREAM NODE 1965.00 ELEyATION = 1224.30 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 85.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 38.23 FEET MANNINGS N = .01300 CENTRAL ANGLE _ .540 DEGREES PRESSURE FLOW AREA = 12.566 SQUARE FEET FLOW VELOCITY = 6.76 FEET PER SECOND VELOCITY HEAD = .710 BEND COEFFICIENT(KB) = .0194 HB =KB *(VELOCITY HEAD) = ( .019) *( .710) = .014 PIPE CONVEYANCE FACTOR = 1436.431 FRICTION SLOPE(SF) = .0035016 FRICTION LOSSES = L *SF = ( 38.23) *( .0035016) = .134 NODE 1965.00 : HGL= ( 1229.322);EGL= ( 1230.032);FLOWLINE= ( 1224.300) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 1 , ******************************** N************ * * * * * * * * * * * * * * * * *** * * * * * * * * **** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACR1,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * ** * * * * * * * * * * * * * * * * ** <(<((((<<(<(<(((((<(<<<(((((<<<< Q<((<<>>>>>> > > > >) > > > > > >>> > > > > > > > > > > > > > > > > >)> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<<<<<<<(<<(<<<(<(<((<<<(((<((<<(<<(<>>>>>>> > > > > > >) > >))) > > > > >) >) > > > > > > > > >)) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN,LINE D,LATERAL "P" HYDRAULICS * * Q 25 * * AHMED SHEIKH, J. N. 3366, 12/27/86 * ********************************************* * * * * * * * *** * * * * * * *** * * * * * * * * **** * ******************************************** ** * *** * *** * * * * * * * * * * * * * * * * ***** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1213.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 12.57 ASSUMED DOWNSTREAM CONTROL HGL = 1218.340 <<<<<<(((((((<((((((<<<((((((<<(((<(<(>>)>>>> > > > > > > > > > > > > > > > > > > > > > > > >) > > >) >) Advanced Engineering Software [PIES] SERIAL No. A0483A REV. 2.2 RELEASE DATE :12/17/82 ((<<<<<<<<<(<(<(<(<(<<((((<(<<<<<<<(<<>))>>)> >) > >) > > > > > > > > > > > > > > > > > > >) >)) >)> PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE .53.00 IS CODE = 1 UPSTREAM NODE 53.00 ELEVATION = 1216.01 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 12.57 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 53.02 FEET MANNINGS N = .01300 SF =(Q /K) * *2 = (( 12.57)/( 226.224)) * *2 = .0030874 �.••. `�_., . HF =L *SF = ( 53.02)*( . 0030874) = . 164 NODE 53.00 : HGL= ( 1218.504) ; EGL= ( 1218. 752> ; FLOWL I NE= ( 1216. 010) ================================t__= =__ :___________ _ ___ PRESSURE FLOW PROCESS FROM NOD 53.00 TO NODE 53.00 IS CODE = 8 UPSTREAM NODE 53.00 ELE9AT I ON = 1216.51 •'1 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 12.57 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .249 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .249) = .050 NODE 53.00 : HOE.= ( 1218.802);EGL= < 1218.802);FLDWLINE= ( 1216.510) ' ==========================================================—= =is= END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<<<<(<(<<<<(<<<<<<((<(<((<<<<<<<<<<<<>>>>>)> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<<<<<<(<(<<<(<<<<<<(<<<(<<((<<(<<<(<>>>>>>> >>>>>>)> >>>>>>>>>>> >> > >)>>> >>>> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN,LINE D,LATERAL "P" HYDRAULICS * * Q 25 * * AHMED SHEIKH, J. N. 3366, 1/6/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1213.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 12.57 ASSUMED DOWNSTREAM CONTROL HGL = 1218.340 <<<<<<(<<<<(<((<<(<<((<<(<<(<<(((<<(<(>>>>>>> > > > > > > > > >) > > > > > > > > > > > > > > >) > > > >> Advanced Engineering Software CAES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<<<<<<<<<<<(<<<<<<(<<(<<(((<(<<<<(<(<>>>>>>> > > > > > > > >) > > > > > > > > > > > > > > > > > > > > >> =___= PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 53.00 IS CODE = 1 UPSTREAM NODE 53.00 • ELEVATION = 1216.01 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 12.57 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 55.43 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 12.57)/( 226.224)) * *2 = .0030874 HF =L *SF = ( 55.43)*( . 0030874) = . 171 NODE 53.00 : HGL= < 1218. 511> ;EGL= < 1218. 760> ;FLOWLINE= < 1216.010> _ PRESSURE FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 8 1 Ir1CTOCAM Mflflc ti? mm ci corer TfM - 1 11 C LLL,M. ^"." _ ^L■^".�^ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 12.57 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .249 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .249) = .050 �=^ NODE 53.00 : HGL= ( 1218. 809) ;EGL= ( 1218. 809) ;FLOWLINE= < 1216.510> ��� . END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM *ow,` 1 * **** ********************************************************************* 3 . - PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE "40=� (Referen LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) **************************************************************************** {<<(<(<<<<(<<(<<<<<((<<<<<<<<<(<(<<<<<>>>>>>>>>}>>>>>)>>>>>}>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<(<<<(<<<<<<<<<(<<<<(<(<(<(<<<<<(<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>)> **********DESCRIPTION OF RESULTS*******************************************+ * FOOTHILL DRAIN HYDRAULICS,LINE D,PROFILE "Q" * Q 25 * AHMED SHEIKH,J.N.3366,1/23/87 * **************************************************************************** * NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMP DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1213.u2 'Now- PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 12.0E ASSUMED DOWNSTREAM CONTROL HGL = 1218.340 - <<<(<<(<<<<<(<<(<<<((<<<<<<<<<(<<<<<<<>>>>>>>>>>>>>>>>>>}>>}>>>>>>>>>>>} Advanced Engineering Software [AES.1 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<<<<(<<<<<<<<<<<<<<<<<<(<<(<<<<<>>}>>>>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>> ~ PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 22.00 IS CODE = 1 UPSTREAM NODE 22.00 ELEVATION = 1215.05 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 12.06 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 25.14 FEET MANNINGS N = .01300 SF=(0/K)**2 = (( 12.06)/( 226.224))**2 = .0028420 HF=L*SF = ( 25.14)*( .0028420) = .071 NODE 22.00 : HGL= < 1216.411>;EGL= < 1218.640>;FLOWLINE= < 1215'050> PRESSURE FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 5 UPSTREAM NODE 22.00 ELEVATION = 1215.30 cm, CA-CULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETE7i AREA VELOCITY DELTA HV 1 1Q.5 24.00 3.142 3.339 35.00Q .173 12.1 24.00 3.142 3.839 -- '229 '=~ 3 0.0 0.00 0.000 0.000 0. - 4 0.0 0.00 0.000 0.000 0.000 - ~440.0 5 1.6===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED DY=(02*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00215 DOWNSTREAM FRICTION SLOPE = .00284 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00250 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .008 ENTRANCE LOSSES = .046 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .174+ .173- .229+( .008)+( .046) = .172 NODE 22.00 : HGL= ( 1218.640>;EGL= ( 1218.813>;FLOWLINE= < 1215.3: PRESSURE FLOW PROCESS FROM NODE 25.00 TO NODE 92.0 IS Cc= = UPSTREA'Y NODE 92.00 ELEVATION = 1215.63 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 10.49 CFS PIPE DIAMETER = 24.00 INC-ES PIPE LENGTH = 69.95 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 10.49)/( 226 224)>**2 = .0021502 . . . HF=L*SF = < 69.S5>*( .0021502) = .150 N ^ O�� 92 00 : 1-GL= < 1218.79C>;ESL= < 1218.963>;FLOWLINE= < 1215.E3Z' *mow __ PRRSSLRE F-OW PROCESS FROM NODE 92.00 TO NODE 92.00 :S = , JrS - REAM NCDE 92.00 ELEVATION = 1215.63 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFC'u): PIPE FLOW(CFS) = 10.49 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .173 CATCH BAS:N ENERGY LOSS = .2*(VELGCITY HEAD) = .2*( .173) = .Q25 NODE 92.00 : HGL= < 1218'998>;EGL= < 1218.998>;FLOWLINE= ( 125.23 _______ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ***************************************************************************+ PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) **************************************************************************** <<<<(<<<<<{<<<<(<<<<<<<<<<<<<<<<<<<<<(>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<<<<<<<<<(<<<<<(<<<<(<<<<((<(<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>}>}>>>}>>>> • **********DESCRIPTION OF RESULTS******************************************* * FOOTHILL DRAIN HYDRAULICS,LINE D,PROFILE "R" * Q 25 * AHMED SHEIKH,J.N.3366,1/23/87 **************************************************************************** *************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ( DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: ~~ NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1225.50 Nitwo PIPE DIAMETER (INCH) = 27.00 PIPE FLOW(CFS) = 30.55 ASSUMED DOWNSTREAM CONTROL HGL = 1227.960 <<(<<(<<<<<<<<(<<<((<<<<<<<(<<<<(<<<<<>>>>>>>>>}>>>>>>>>>>>>>>>>}>>>>>>>>>>> Advanced Engineerino Software [PIES] SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<<<<<<<<<<<<<<<(<<<<<<<<(<<<<<<0>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 101.00 IS CODE = 1 UPSTREAM NODE 101.00 ELEVATION = 1227.04 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): • PIPE FLOW = 30.55 CFS PIPE DIAMETER = 27.00 INCHES PIPE LENGTH = 131.19 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 30.55)/( 309.703))**2 = .0097304 HF=L*SF = ( 131.19)*( .0097304) = 1.277 NODE 101.00 : HBL= < 1229.236>;EGL= < 1230.153>;FLOWLINE= ( 1227.040> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .05 NODE 101.00 : HGL= < 1229.290>;EGL= < 1230.207>;FLOWLINE= < 1227.040> PRESSURE FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 8 UPSTREAM NODE 101.00 ELEVATION = 1227.54 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 17.77 PIPE DIAMETER(INCH) = 27'0Q PRESSURE FLOW VELOCITY HEAD = .310 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .310) = .062 NODE 101.00 : HGL= < 1230.269);EGL= < 1230.269>;FLOWLINE= < 1227.540> PRESSURE FLOW PROCESS FROM NODE 101.00 TO NODE 438.00 IS CODE = 1 UPSTREAM NODE 438.00 ELEVATION = 1230.40 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 11.98 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 315.29 FEET MANNINGS N = .01300 SF=(0/K)**2 = (( 11.98)/( 226.224))**2 = .0028044 HF=L*SF = ( 315.29)*( .0028044) = .884 NODE 438.00 : HGL= < 1230.927>;EGL= < 1231.153>;FLOWLINE= < 1230.400> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.47 NODE 438.00 : HGL= < 1232.400>;EGL= < 1232.626>;FLOWLINE= < 1230.400) PRESSURE FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = 2 UPSTREAM NODE 438.00 ELEVATION = 1230.40 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 11.98 PIPE DIAMETER(INCH) = 24.00 --' PRESSURE FLOW VELOCITY HEAD = .226 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = 2*( 22G) = 04S + �"~ . . . . NODE 438.00 : HGL= ( 1232.671>;EGL= < 1232.671>;FLOWLINE= < 12a7.400> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM w0". Now, ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** (<<<<(<<<<<<(<<<<<<<<<<<<<<(<((<<((<<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> (C) Copyright 1982 Advanced Engineering Software CREST Especially prepared for: HALL & FOREMAN, INC. <(<<<<<(<<<<<<<((<<<(<<(((<<(<<<<<<((<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL DRAIN,LINE D, PROFILE "S" HYDRAULICS * * Q 25 * * AHMED SHEIKH, J. N. 3366, 1/6/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 4 4100-- l DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1225.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 21.26 ASSUMED DOWNSTREAM CONTROL HGL = 1229.050 <(<<<<<<<<<<(<<<<<((<<<<<<<<<<<<(<<(<(>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12 /17/82 <<<<<<<<<<(<<<<<<<<(<<<<<(<<<<<<<(<(<<>>>>>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >> = =_= == ________________ PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 8.00 IS CODE = 1 UPSTREAM NODE 8.00 ELEVATION = 1226.48 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 21.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 9.14 FEET MANNINGS N = .01300 ,0 SF= (Q /K) * *2 = ( ( 21.26)/( 226.224)) * *2 = .0088318 HF =L *SF = ( 9.14)*( .0088318) = .081 NODE 8.00 : HGL= < 1229. 131 > ; EGL= < 1229. 842> ; FLOWL I NE= ( 1226.480> PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 8 1 IDATAPOM Mnnc A MM MCUOTTrIM = 1 "ar3C. 1. ur v i •..nr •un� u. tiw .-�a. r n s v • -- a ..�u. ru CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 21.26 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .711 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .711) = .142 , NODE 8.00 : HGL= ( 1229. 984) ; EGL= < 1229. 984> ; FLOWL I NE= < 1226. 480> N '""' ( END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ' � *** * * ********************************************************** *********-k++ PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) **************************************************************************°* <<<(<<<(<(<<<<<<<<<(<<<<<<<(<<(<<(((<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for: HALL & FOREMAN, INC. <<<(<<<<<<<<<<<<<<<<(<<{<<<<<<(<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>/>>>: **********DESCRIPTION OF RESULTS*******************************************+ * FOOTHILL DRAIN HYDROLOGY,LINE E,PROFILE T * * CATCH BASIN HYDRAULICS * AHMED SHEIKH,J.N.3366,1/25/87 **************************************************************************** ***************************************************************************° NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ( DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 1253.50 ~�' PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 7.19 ASSUMED DOWNSTREAM CONTROL HGL = 1256.800 NODE 1.00 : HGL= < 1256.800>;EGL= < 1257.057>;FLOWLINE= < 1253.500> <(<<<(<({<<<(<<<<<<<<<(<<<<<<<<<<<(<<0>>>>>>>>>>}>>>>>>>>>>>>>>>>>>> Advanced Engineering Software MEG] SERIAL No. A0482A REV. 2.2 RELEASE DATE:12/17/82 <<<(<(<(<<<<<(<<(<<(<((<<<<<<<<((<(<(<>}>>>>>>>>>>>>>>}>>>>>>>>>>>>>>>>>>>>> = ==== PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 60.00 IS CODE = 1 UPSTREAM NODE 60.00 ELEVATION = 1256.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 60.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 7.19l/( 105.044))**2 = .0046851 HF=L*SF = ( 60.00)*( .0046851) = .281 NODE 60.00 : HGL= < 1257. 081> ;EGL= ( 1257.338> ;FLOWLINE= < 1256.000> ~***0- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .42 NODE 60.00 : HGL= ( 1257.500>;EGL= ( 1257.757>;FLOWLINE= ( 1256.000/ PRESSURE FLOW PROCESS FROM NODE 66.00 TO NODE 68.00 IS CODE = 6 UPSTREAM NODE 68.00 ELEVATION = 1256.04 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): `*46=~ PIPE FLOW(CFS) = 7.19 PIPE DIAMETER(INCH) = 18.N0 PRESSURE FLOW VELOCITY HEAD = .257 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( .257) = .051 NODE 68.00 : HGL= < 1257.809>;EGL= ( 1257.809>;FLOWLINE= ( 1256.040) END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM �,0, Xee, g .70feemait, ate. ,„„... CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF STORM DRAIN HYDRAULICS I DEC. 1986 I 3366 LINE D CATCH BASIN SUMMARY SHEETS 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 -0-. O > 4) 1 ,0,....., 0 _-_-j �/ ci a 2 ) j li vi ot 0 c k W c 0 4 U o J e • n _ U W U 0 • N ^ 4 � q 1 4 ti 1 ' In o n V V v� ��h c 4 ti e. V O O µ-` \ I ��-, G Jr h '1 ta .y 'xi N o . V m C o (I M W 0 Q ^ i ■ r C _ .z . a . ( 4 v �c S 'V o. fi R 0 4 .° rze,,Yr \ —_—_,... 4 , pr ., . 4:7 S i V \ - ' • -CP 'o 'S ravywr W a 02 - \ a d007 /Y70-2/Y/ �_ O N 0 c / ' IX W J u r . 04 .-_, 0 F - Ili O. D u c NI i-- ,saw. M ) i— el - ■ Av Page G -36 ,,. ,,,• H 1 • o 4 r N I • a m J W � i . V ' V W f _ J F' s w a�� `9 60 I 4 44 v o � �� 3 3 N V kii S w 4.,m. • ` s $* r4 1 ~ 1 r I 0 0 *a 0 a ..... I N I N O .1� M' N q C • To Q . I Q v) sCo VII . _ t L ' �- a N N Th • W eef 2 a a = � `�ofr W 0' ` M ,F ► S Li. • • W "� e, E 1 �` 3 S �' `` . or`'^ metro a ! s a. CI u. I 6 k , .0 `‘ t ir- z 0 v i D - • Pag• G -36 �i , ate I a (a i 'A ° NI M . Ci) / { a } t I !-: k, , l f O N a N W � F 9 = 4 'J ! • J 1• -,. ' z � I { ° • 3 3 �4 It 1 u • _ .9 r,., Y L ,- as ,- • ta. 3 - 6 ► I o $ I a. u = M Cr- 3 T ij . it C.3 0 , 4.4 3 " 6 ,r.,- 4.4.‘ T err N ` o O +. to d • a i T ? I I M v I 3 `` 1 I . u -= ,` I s a * 2 • Wa» ! 4 • W w �C / � ` � b � as 1��. L 4. G I.L. 1 •. i �)67 ' / -� ° `� b 0....... r ` . 40. & ri: ° - i I t 0 - 4C 1 _ . i 0 > 4.-,, 0........ J ....... ___... '......, • ci C/3 a it - 03 o j t ; a 0 a) c 1, U. 4 0 a -.I • • M X t..) LAJ . o w -J 1-- ■ d:t 4 • N 4 ... 0 Cli • CI) . " "4 al 6 . d : a i ...- ., ... 4t ...) (1) 62 0 I na o um. ••• 1 sh...e4 o ( ....: 13 t..) 41 a 07 +11 evi c n t•4 t = u; U • ..... 46). ■ 0 C., ‘ilwave 0 MO111■•• II . ■St . ...., ... v) . ...... O - • • o 6 . a ,„ .1., = O t4; O ... , u In <1 , . >.- O < . z .... W to 0 # I m 2 a 0 42 . o _7 _._ la cc v) Iv. • * . C62, i '• • u" 4 .. : W 0 Cr ) 00 -I u - a. 0 U. :a ---- Q 'O/ '42 c , . e z _ , .„... \ Ntow,- el .,, 0 0 =- s • gn Na/117 1:7A G'? , , . 00-- Wear 2ftem44, ate. UMW CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. STORM DRAIN HYDRAULICS I IDEC. 1986 I 3366 SHEET OF LINE Q CURB OPENING CALCULATION SHEETS No wow 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 • ' C. 13. 11 CIII11 OPENING (SUMP) • G:ven: 11-raek eAlraY-4 To Ciet9fANJ C=•---1i (a) Discharge Qz,4-1.: = 244.39 CFS = (b) Curb type "A-2" "D" 4" Rolled 6" Rolled C,.F r 4"Gativ • Oas- (Dernm'-' 3°' cps • • • • Solution: • II (depth at opening) = /1. L inches - • h (height of opening) = 1.0. inches . _ . lo = 1•/ • . • • From Chart: • • . . Q/ft. of opening = • CFS L required = ft - = USE = q. ft. C . 13 . 11 CUP, n' OPF:N1NG (SUMP) . . Given: (a) Discharge Q.:-T-AJT. 3Z CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled F ( e " , "Guriv 7)efre.-7- Q/ = 46./3 C?FC. solution: • 11 (depth at opening) = )2- inches h (height of opening) = /0 inches . (2-- / / - . . - • . From Chart: • . . Q/ft. of opening = 3 .0 CFS L required = . ft. • ' • USE L= [ • q • ft. • Fttrt br) = 3 2- 1-f— (9 3) 40 1116.. . C 13 . 11 - Q /3.73 s-- co o-o-_ CITP.E OPENING (SUMP) . . Given: 21,40.4-cof.04-t- .1-13 ertri-TY"- (a) Discharge Q rArr. = (4 0 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • C.F. ", &ult.'s/ Ze , /3.73 • c , s Solution: • • H (depth at opening) 11.4 • inches h (height of opening) = )0. inches. . Elh /I• / I.f _ • • From Chart: • • Q/ft. of opening = CFS • L required Z7 • G.? = • 7/ Lf. ft.. • U S E L = • . 1 t. • • • Oi C. 13 . 11 1 2- • CI.11III OPENING (SUMP) . . Given: (a) Discharge Q //■-) = ??2' )14. CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled C- F - • "; " 6tvtt•ei e.,11)^441"-- • Solution: • H (depth at opening) = i2-- inches h (height of opening) = . 0 inches . . . • Elh 12 1 (0 =1 I • • _ • • • From Chart: Q/ft. of opening = 3. 6 CFS L required = / • ft. • • USE L= 1 . 9. • ft. • co bi r- 3 1./ — x- e"Pi k " AINNENNEMNIENNINNIINN■ // * • LA/G49411 koC, Lo (64.S77) CUP'S OPENING (SUMP) . • ' Given: (a) Discbarge Q 2r = 4 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled . • ec..c * 6ti77 • Li. " Solution: • 11 (depth at opening) = 4/. • inches h (height of opening) = ./o inches . • • -* • From Chart: . . Q/11. of opening = • 2.6- CFS ,.• L required = 2.4. / ft. • USE L= I ,emaie ac . . ilk hire WO NOMA AVENUE 0011NA AIM CA INWININN crommematowns • tossaussoms • unesummuse 1,1". 00w, ' C 13. 11 — Nc_oL,,,s L ( r _ iesT /. CI1En OPENING (SUMP) 1/. q am L..'erl'" Given: 2 - (a) Discharge Qinrr = 029 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • C.F. ge e4" Der, Solution: • (depth at opening) = • inches h (height of opening) = • /0 inches . I-7/h =. / • /0 =1 /*'? I • • • From Chart: • Q/ft. of opening = CFS • T, required = eq E 7 / 2 . • ft. • USE T, • • q • ft. • Ala_ ` err 0 e C . I3 . 4p- 4 - twcoc a Loa' ,42) 64/AS ) CUI • OP];NJ? G (SUMP) Given: (a) Discharge Q of = /d• 3 CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled d 410 1dpRES4-7O'/ . . • Solution: • II (depth at opening) = t0.{' inches h (height of opening) _ • /O inches . � /h =• 1D. % =1 1. C . _._ . From Chart: Q /ft. of opening = Z.• (o CFS , , L required = / 3 / = '5./ • ft. U S E T.— I ft. Nolow S Potedotas., att. �9 C. I3. 11 3 C Lin I;' OPENING (SUMP) G 3 1 3 /61-c) 17 "' Given: (a) Discharge Q /my. _ , CFS (b) Curb type "A -2" "D" 4" Rolled 6" Rolled Solution: • 11 (depth at opening) _ / `f inches h (height of opening) = /0 inches. . ih = I / I =1 • Chart: • Q /ft. of opening = 3 bC CFS • L required = 7 1(7 1 2. Dc . • ft. • USE La= [ 5- • ft. ' �� — fitir= // 1 . „it.. 11 •Ji hiete goieei4i,440t,Rge. ,...., _- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBl P� ATE JOB NO SHEET Of +TCif VA/ HYDRAULICS 4OLIC$ BY A •s k D t�ic/ I is -a 7 -�b '3( G I 1. / C. e. Q 4,2 f Q /ao 6c$.147/4 6c$.147/4 o ar, xl k'fE� A10 • No . a w�, I„ 1P�.ca/td W (Ft) (CFI) Petri) , ' f 4 s K 3C 04, ro.d 7 � .2t 3 6,/3 ' � os t ' 46• OP I %m .g. BY .l y q f • 9 �q<s2.w� 1, 3 o. Ns t$ _ N , i � K- 2 D)oau4 l5 X20447 eF Roo ray W .� r ni Z . y 32 �4 -2f� tee ). k- X3. — . 2y.� o Ie.15- q Na p2.i, =,y•1'{; 7, 3 4.14-40 (//u tot 31.42-2.4/ S7ooy. Flow By K _ 1 2q.i, 2y.f( 3j•302- i, oht'O. ► f91y” IZ -3 9.96Cn 96 oni u �•eor, s S 2 k-3 /3.3 - 13.3 I7• CfiS k S = i la•-r 4',+ �. �. k�+ =6.1' _ k -y G 2 /•26 2/.2h, /.2( Zn2.- r 23.6 6 + /0 IN/ ef3 6.(01 To 4 �4 • frail NCL 4L.gb - 43 • CFI , t KS 17.77 ( !1.77 23.20 6 ► ?.71 , S 93 �' ` EiT.v /ewf k s I , 5 ∎4 la -1 / Er 'D.69 /G. I/ l / SyL 4 � ,, lo > �. { I Now 1 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 82828.3428 • (714) 841.8777 • • as. 2' Z6. C . J3 . it L-- 4 (-0ln• z7. Y z C 1rn t-:• OP ENING (SUM1 . Given: (a) Discharge QaS = CFS (b) Curb type "A-2" "D" 4" Rolled 6" Rolled ',tome Solution: J J �� (depth at opening) _ _ /0 inches h (height of opening) = 10 . inch e .. - . 2 From Chart: • Q /ft. of opening =. °' / CFS •• L required = c 1 = I _ __._. ft. • `... USE — j ft. = 23.4 CPS • rte C. 13. 11 r .---- 5- d2c-17.77crl q �PO ;. Z3 .2v e ClI1�I►' Ol'1 \ (SUMP) Given: (a) Discharge Q2 5 --- = 1 4 ./i CFS • (b) Curb type "A-2" "D" 4" Rolled 6" Rolled " C.F. . 4 " t - pG r',,,,.. • `"' Solution: • . ' 11 (depth at opening) = ` 1 Z • inches h (height of opening) = /0 inches . .. 1-:/h - Z / d -. /• Z From Chart: • Q /ft. of opening = .2 ' .s" CFS L required - 1 - / Q .6. 02 ft. 'f r • . . • _ L u s E I,= it . .. 025 = /02.57 Cps Q toc = /(c • // Cif C. B. 0 K — G c , PA - AID A1/6. CURB OPENING ( Interception ) Given: (a) discharge (.),„1, _ — /a . S'7 CFS (b) street slope S = • 0/S4 •_ _ ____'f' (c) curb type "A -2" "D" 9 " C. F (d) half street width = 3 2_ ft. Solution: • Q /S ' O/31, ) 2- LerD _ 6`1. Th•,refo: c= :r'=r Sil. L _ 1a'S7 / o.S3 s -23.7 (L for total interception) TRY: L= /5 ft. - , IL lr =to.7( 1 a/y = .33 /0.5 16" 1 S = D' Q p, r- X la's /0.69 CFS (Intercepted) - Q � at.S /b. O CFS(Carr C.B. 1_3 • • Aia` D" • C. 13 . - 4f Z7 - gfgfac PZIAJ y • CUP. r, • OPENING (SUMP) • • Given: • • (a) Discharge Q = CFS • (b) Curb type "A-2" "D" 4" Rolled 6" Rolled • • • . . Solution: • • ?O • (depth at opening) = inches h (height of opening) = • to inches . • - . H/h 1> / • 1° =1 I • • • • From Chart: Q/ft. of opening = • CFS - - • ' •• .• L required = • 3-- = 4. • ft. • • U SE = I • I ft. • • „ - 111 weire 317011E011U AVMS 0011111111111111.111 23 1 E-7 .L.•,- ,„,.... .:"^ 4-5' ,......! --- • C. 13 . I a i 0 -- 'fel Loss c,..r. CIII1 r.: OPENING (SUMP) 1 . Given: 1 : (a) Discharge Q i „, c , = ti. / CFS . . (b) Curb type "A-2" "D" 4" Rolled 6" Rolled - .'(.. EI ' Ai' 4(.0-7-rE4. , • . . I Solution: . . , , H (depth at Opening) = - to • inches ‘41,.... ! . h (height of opening) = f inches . • • ,c / : , 1 =1 /. )-5 1 • . --- • . . ; . From Chart: . .: . . Q/ft. of opening = 3 . 2- CFS .. ! L required = A/ 1 2,2- . ' 2. .;5" • ft. - , . ' 0 S E 1 - 4 1 . . Wale; ?Weediatie, af :., 3170 1110141U. AVIINUE CO RA MU. CA steneas amiriammons • weaLuouto • LANDAMIVIIVINO 4 \ 411•01111111111111•1111ft , 'I Y L/A/E. D --_—...— de m- - Ft/1142E C: C • 13 . # 4f - 4/eat‘a Ai& . . CUE s 'OPI.•:N1NG (SUMP) . . _ . 4 . Given; - . . • , (a) Discharge Q -25 = 10 -1 CFS . . . • (b) Curb type "A-2" illy, 4" Rolled 6" Rolled . • ' Pc 4 , hp cv7ae_. 4 Dgiagsa re '•'-/ • . . . . Solution: • • „...... H (depth at opening) = /•• ' inches 41411111". ' , . . • • .. .. . - h (height of opening) = . /0 inches . . .. . . . ....: t 7-1/11 r- / 2- / . (0 =1 • 1.2 1 .... . . . . . .. . . . From Chart: . . • • • . .: . . Q/ft. of opening = .3. o CFS • • . .. .. : L required = /0 • 9 / . 3 = .3. C. • ft. • . • LSE L = I • 1 /' ' I ft.' /),.. CF c .;.:_.. •-• . • .. . ... n - in $170 11101111.1. Mama COSTA MIS% CA& NM= erautosemionse • Lommuitame • wesumvsum i 24 hiaeg 2oieemout, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT CA re /y e A 3 .../ I BJC S I 0 L //,J /d b 13532 ISHE ET OF G.QATc /NGET coLG OOGAT/ C.8 . CAL T2A/vs 7y/°E G/ &2 re T"yo6 -12 EFFECT/J /E '9AW09 = -7.41370 (444o14.JS F Ge.erTE CLOcrtGIAtJJ%) EFPEer /vE PE.e /HETEE = £ 25 qas = /o. V9 CPS /d. �9� - ,2. o 0'/A = "'VI�2. = V 3 Q�p = .s�5 O.7 N: Q. l0 .lo OPE.2AT /O / T� • • 74/IN.S /T /o fE C re,a , - q,0 r /3.4 / c FS - .Z. 59 /3.6 / , 25 Gr/ _ /3. G // ? X137 = 5.58 qP 0. 9.Z • • T,QANS/ T /D.✓ %re a TOE • Nolow TyoE G/ G .e.97-6- rr/ 4r C/ai re.9/v.• E FFE C T/ V A�'E A = 2 X 7 5 , (W h Oe0J' FoR G.C'AT6 Ct066�d J EFiBC ry vE /7E2 /ME re = .� 2 4)45 = /498 CAS - Q //.98/.5'25 - 2. Q/9 : //. 98/.. 5 90 /,° N = a 84 ' t/ = • •• 7...eAA/S/T /0-1/ a 7 o.°E'.r/9 /0^/ /NOEF /N/ Qioo /'S.77 CAS Q /A 15.774.V37 = 10.47 Q/ = /S • 7 /� . 25 = 3. 0 H = / 3� ' // • • T.2/9N S /T /pN Sa To,e O .°E.e 477 b^/ /A/OEF,wire 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641 -8777 • ': ' •il III �I` 7 - A & ' gil 2oleeileag gte Pi 1!: . I I ; . i!. • • , . 'I i - CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , SUBJECT av DATF. riKri-_?... 18""T O A .C/161k If mq,��Py irc�TlyD 4t� . � =5�•�f . • 'ice ' . tI N a •M03TBE >/2 / ,5 / IT /fi �cr /'� °v/� / %!?.1r• �;- 0 �io dry, — , 3 , .storfrn o�o;/1 - .2 l Sa• I li 1. _ LI _ LZ _\ II„ ( . [ t,, ri ,, . I I I . ; T/I � Ni S S. SD Cirl n WA � C•NT• /1/A7 %1 . V = o • 6 I • • � i c ) . , .... 0 ...am , NFL. ic---C`2- 4 a_, ( GMI 4 ( •1 .L... I 41/.4/LQ8[E / " 7 - 7 • a : RE N /D 79 cWNG Q ,. /o. l CC'S a • I IH /1CP 3 n IF OF I l " . ' 1 1 • tLei. A "_ la Y I L 1 - Ea- sq.c-f- ip2f 1.3] +D f = /a• . , , .000.- Lz = ' I I, 1, •.1 / ;. r 3188.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 82828-4875 • ►714) 841.87 » I ; / . ill II I i i l• ' 1 . Aer g,20/0,0i,(44/t l I I ; _., i 0„...., ,(9g6, „......., -- - • LAND BUAVEYINQ 1 CIVIL ENOINEEPINO • LAND PLANNING , av oArr ( 1;13IFT7-10. w • - \ :-;. ,77 407`, ' ''-: I i I ' • A . , .+ . y ',6Yaw SSE > J. Sit • H. G. for /'e 7A /vil, V. 11 Floe ;'o di, , _ -Storm Oroin r 1 ∎ 6 j I - y -- --,`` II L• ''tp \ \..... :: i • .1 I' 1 y. 1 "/bL{ FPS ST .5 S Toain DRAiofkT Iyz7 y - . I ! l / s 0 , a�-. /1 v )9- 0, 3 ' f j rla• o dVA/LABLE II " , 3.2 , 3 , 2 '-' QED .D. H= D, 3q dt'NG Q . Ja . 1 GI'S K. 12,4. 2- • ' • I I I ' RCP` 30 if OF ■ 1 `J, : 2y" I 1 • J� - Z L 1 : (5 - ``C(.3) +o.5 - =q•2 " . • � � . L 2_ = 4. o ' I i i 3188.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92828.4875 • V14)041-8/7/ I , / � • . 4 I i! • s` � I ' I ! .55. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYIN4 , e v op oe ao. limit or. ,„... :,-ie,.",,q,273.6 . A n� � ,NUSr BE >I,2 2 j 9 i S,/Z • / / . 6 l e e r , c,A i %nip \' ■I �IoI �o (to "" - ,sioi tn Droin _ ,' I. 61 Sgrall Y � - 2 p VI Lz _�� _ I II • L. 1 .1- .I 1• ' i l V . %ti ,. q/ - Fe! I .. 20 -f gv _7Ur? n1 r r l_ 1 . v/ s /23 3 a V-17-1 Y r -ke._r_e_ ...:_11 - el/ .273 4 1 . I !ti 11.6.c. ��� 3 I I A1/4/CABLE N " qr 3 t REO,D, #.1.53 X 114 Q - 63 cps Ks 66 I II, 'No! 5 LP of 3 si ., ELev. VA - / .273.0 , r , 1 ""J L_ 3�� i� ``" L - 1 273. (- l.2 (00.76,) 4-0. / 3 .33 ' 1. Z z i• I 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4876 • (714) 841.8777 I ; ' / aw,r•,.w,.,....„.., _ ,.. , _... .... :...« «,.. .o.< ....,- �,e m.,t,,;H... - ate,...<,.......,..... ...., -. .,... M:. .M....»..,. -»: r...,.. k...._ ., .. .. « .,....�.». .,:. j ' II I IiIj 11 (;1 ,, ..:. . . . Xe , I i �I I fGveeiletlit ,„.,....., I CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , 1 ev DAIF. roe NO.. , 911([t O O. svelECt mAegi /iii -r //YD, e . A . CP6/kg l -a. s : -- ' 6 • ti -/2/8 /--o - '. II • •• ' " a I/ •.NUST 6E >Z2 2 j , ,. ,1 S 1 /fir for ('Cv/ /Volt' V II Rio ay, — .. _ - _ s /ot'n- Oro,n...- — sr 6,i Mielentiltal .; h . V i ------jr/ -..--s--......._ --■ • I I 1 .."...."■,.....-----;---*-------- ri,.. ti, 'j ti 1 • . .I I 1 P, Q�4 _ 33 7. FP! ! 1 SIA . .6.4cf -.1,66,--ctra;S4keti-16/29- . II' g 6 - .3 (41.2 V:yr- boo .. • . : iiE. Ev. "As l�1 g.S CJ 1 5l. r 1 5 I I mac.. law .,-/ .5 ( ( 4V4I /LABLE N a #• l '' kEO�. Sys l'03 QYN4 Q >• 51, C( cis Ks • (� 1 1 H 5 IF of D,; 9 ', � 3 2- 3 6" i i • y( L - 3 '• i e 3188 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92628 -4875 • (714) 641.81» 1 : / iI i II I. • I ii . , (9ite.,, • � is I. ,611r,eiii,(Ig t : g , + 1 CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING , J BY OAiF. roe NO T-1--T- O► • ' suerccr xw)Aei v'/ / /IL NYD . CALa . 1 A . C!'61k f / I /- a. r- q. -'- 4 • E lQ ti. ti = 1230.a i�3 i I (7'.'• \` . \ ^ c '?,,* , 1. c • . + • +i N ' M(JT BE >/, /sy•+S7/L . J I ' . . I r /fi l /.7c cM / /ore V 1 i -747 ,Sre;r'; D;oirf I k 7 1.), , L. ' ` - �' I: ; � . . biti .+. • s I.. O/ 7P, 1q4--71) C r , C G ( a ^ , n t ' ; i . 1- 1 7 / 027 Y 0.71 . . 0` Sim , 1 Lei• _ / , ! S 1 1� .S mac, /.22'. 3 Z S/c -. (% ; ( • L L ..�.. 4YA /LABLE f/ Al D.9I 6 . 6 11 t 4E0 b. fk =Q NNG Q ,. $S c /. s Ks 1436. • I f 1 • I 1 /U LP OF Z W " I' (au . A— /33 i • L 1 4 • 3 q L /--1 :i i • .7), = 5.5 �� � �. .z = g- etGFX . 1 / 3186.1 AIRWAY AVENUE • COSTA MESA, CALIFORNIA 82826 -4676 • (714) 641.8777 1 ! ( r 1 ;, .* 2.:, '11 • " • 4 '::..; 4 . 4 1 • 1 ',.. „.., ..._. ........,:...,.:,. ,....... • 717qt.„, CIVIL ENGINEERING • LAND r'LANNING ' ' !,fD SURVEYIViG .. . SUDSECT AALY/S 1BY DATE I JOB NO 3 6 [SHUT OF C.117r# 1.64574/ VS A .Skz<_kr -- - - .-- 7- ...: • • _ . . . fi. ,4 --- - — II " ii 'MOST M >/.2 /, 7 .57/ Z C .' . ; . . ,'-.> "e I.' Z.' r.' ...:.- '''i I - -: - • , 7' 4. ....'• 0 V ....... q t:i ir/ /1t.:(2A l,/(1y 1, I ,.• --.... .. /or', Di 0/72 I - --- ........_ . . " c.) • .. - . 0 - -.,_ _ I . ri • • ----------.?...,....... :I I. 1 A -. -.-- --------.- I ■._ I ' .., ,• ...; .. . . . y. c2/4 a. i i.lqc s FPS C.8 ___Q;;C___ csyyrrni.tr.i Pfylv■ek.1 r)/ ''-' J4-eleA140-( r . 2_73 '42 Ay-- , 12ce S , , /ay 1746.4. IL- (l = el I.. ( • 71 4, . 7. .` -. 1 4K4/hA5LE ir 14 C.-4b- (C /I irA 2t1 / .1s 6? a /?.!' G f-s k --. ?...:7-& • 2- . ... RCP 1 47 iF oF ..2 it ar ,i rs 4 11 v2 ,. (.7.1 d -T: 3.-Ree- icr, ICE y .OEP T 7 7 • ■.,......,,.. „........ A 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 .... 2ftest4A, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBIECT BY DATE JOB NO. SHEET OF 'rEn'? sel ITV T C4L & . -S tl�t / -a 2 - C7 33 6 G IN Lt r STA - SO-f eU _ SToEM D A /Ai ENT. /4 4rovf L. - Coo q Tod (6L'74';) = s4 - WE',e 651 04-r164 3.o P /l 34- �y /ticf 7 ( J 1 I g e ) f .-, w.e,_ () _ I • S) _ ti.? 2_ p . petta Fes' .: o = 3 • 3 (3 . s 3) / _ l o. C , , a ws -- ;Ls sq. y / Ti - / i , ?) ► c('' L i �CSq. y -K7.11 to• 12.6 1-2"--4/ !'- E 7 e D STA • S3 f 4 -- 6 aA fM S.HT IY /2.7 .25= 4. � GeoD 59 . o �o , SC,, (c c Ev, 4), T2 /A)L r Pt'ue. (.�,) - 24 J: i ✓L Lac.@ ; 404";1 vv,A`14. (2570 U •? S (7- D = /.7l Z k_ 3 (P) H I r = 3(q• ?/2-) / = /y•I3 (a 64 r - C:(9 r. 1v 1 . N EL. = S �, : Z +, �,� = 2 `� L , 4 yq.3� + o. s= Q. 2 z = • 4 v 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 ?la" ?Ole6009,4t, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING ar „ m re RARY Cot IBA DATE r4 reN°. SHEET OF C 3364 I 2- $TA - 2b ff s -D — 5 TORM2/2,11A) S'MT. / 3 /077 G 63.0 C-FS 4Roon.ID 7 3 6 p (tvcci. A ) wEre_ E-owl-T/01J 4 - 3 - rity , 6c,” = s• s , 63a1 „xi y /7- i 4t tip el t've 0.7c M-sat / 2 (/z. ( '/..I ) = 6 c(.4 cr-s ( ae.04us as ' ) 3 C. / 3.33 L - 2.- • 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 .0.0,7* •.rrnen r 111 hiale 26/00f,44, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING BY DATE JOB NO. ISNEET OF GT iet""r17, - A. Afj-e4 e deC I A .1"-e-;-/fi /_ cP-C- SM. rj S7 12 jt4 7 &+MJ S PT; /(o/27 6yv v--d (i A ) ig.5 /.s 2 P /-1 Wa1j.e4 e 0 (7t- P,) f M _Lff Cie v. _-- 4 Di - 7'1 Li et.sci> = 3 / 2-- / 2 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641-8777 _ ___ ' filli Aer s 2ftemax, 9 *:. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUB -T . 1 BV 4 ci,..e...af2 'DAT/E._ G 4_ .I JOB N.IC � 6. (� I SHE OF STA , rqr- -t 70 ,, a / -1-) C r7 z 6--rvu 4 ri 7: 3 1 . q 3 .Cl-(/ - 3.23 ! °7 4� 3 P H /z W e-a .tf, w,o51.4 1 r rv,�c ( 75/) :. O -? 7\ , t 2,96, -r r , --± i 7 ::, , . 5 . S q er,,_ r ,,,,, j) 0 K 4 z 1. 6 -. C ' p ..5 A , (7 s - - ) . v / Af.e f A cf-i'Jt .:-.-. 0 (era ) -(7..J -7- s-'1-1(17-00,30k-i) 7-- 12-Y-? c f --s A - X30.23 D, = S s , %'z 4 g ' L l {9.0-22 _2'f .3u�t..s -6 L = 2 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641 -8777 hiae 2oleestout, ate. __ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING I CVIr(J a , 114Q,f. O"Ltit 1B4 d'ke,:,e4 IDATE/ 24-4"S 3 4 4 is"Eg OF C T 2 l /27 (E4N( 64_00L-el 5Cv . - 1'1 el-?V• • A ' _ /4.3 / (.e) 3 P /r Wttle-ot &;•ttev4 (751 A c.6q .00) r = 2 /- z x 16 36 " = 27 L I6 .3 b..;.g2= S C . fs /. 70 S z i //.- 0.= 6 16 cps ,�.- v /2 / 3 .3 -7" /Z Se„ (fee}. q = ti/z. 3 t�= /-v _ 3 f' H 3 � 2 - fclr D, = Iq" (/.s') CfM--j'16- W e. t? /)- e 7))=7), c3 - . a IaG L A 12. 3 , D (� , � - 1 L :12.13.1 - i 2oY qt0.5.,- S - . L2- s 1 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626-3428 • (714) 641 -8777 h 2oiee#0,40_, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING POP-kg /Ni_ r CM . rt4c - 1 0211- I 1� N3 3 G G I �" OF ST4 . /t 33. l6 C 2 A 6)-_, 10.10 elrIc. A ,) 124.7. S 3P H 3 /Z .tffe—t4 tdette.4 6-e-; 0.7f D, L t.// 2-- "r 214 .' r, - = 2 LI C I �FiL Gt�n -- l' vv. 04-c- -, i A ' fcr (0 C- S ay/ of ✓ (for 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92826-3428 • (714) 641 -8777 hloe 20feestax, ate. k kaup , MM. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING - Lf7 erkte-s . 1 /I - QUA:kg I DtAT-E- c(7. 1 JOB NO. 3 6 I SHEET OF S r4. Z -I e i To rein 2) ft44Er rLJ a_2 / LAE oui+.7104) 3. 1 / „ liaLET P,11.4 ( D ( ) (Aettr_4(. 4 - ey 3 ( 3 ) / O. 6 C- (ado • 4, , 4 /7. 447. r_ .03' "nravv4- ft of cs2y4' „-1.`tfr • 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626-3428 • (714) 641•8777 I 1.11 J. h/ete 20tee00,4t, aft. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT reme DreoP //JL07 G/sIGL I BV J. ,Q M I DATE / / z 7 I JOB NO3S-3Z I SHEET / OF 4 • S T A . Z # / . BS -SNr 4' /27 Q= 4.9 4A :6- GR. EL. = /202 t EL. 'A _ /2O/ Q 4.1 I. G3 .1 h alt vsE 25% 41099 /f) .'. use f= o is = 2.118 = = 2./78 _ v4 . Z>r z n- ORi 1G6 EQ. Q = 3737 /Q H // c>z 4.9 _ 0.9/ .1F. A= s37 N /2 351e/ Y 0.y/ &sE ZS% G /*II /;)g , : USE A= - = 1, Z 2'5F p. 7S 'Saw- / R- /4) - /•22) /2- � p.G2' use v, =24" EL, ,4 = ao/ t D, = 24" L,= /20/ - 1190.Z f 0.1 = /1.3 D = 18" L = 1-16 L @ STA 248‘. 85 = //95 EL. A - Nb L /201 -111S:77 = S.23 /AI L E r Go•v L. 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (71 641 -8777 r ?ke g 26/e6000,4t, 946 _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT 7 %#7 Cr //VL6 r ‘44 BY JtM I DATE j/ 2 7/ 97 I JOB NO.37 331 I SHEET Z OF 4 /6(ILEr 6 drA, G t G8, 2/ ShrT 4 /Z7 Q = 9./ CRS. G.Q. EL. _ /Z0 4 .t Et. 'iA " = /Z03 e WEIR EQ � = 3 ���� /Z = 3.03 0$E 2sy. c /o31; ^ U56 P= = 4.04' 2 .."Z zfi = _ 0.6 Oe /P /ca ea Gt. 70 sJ: b 3E 25% L /o39,�'a, O S E A= /• 70 - ?. ZC. 4P: O.7S L41 1/ ( t ) iz_ a EL, 'A " . 1703! D, = 3G " C, = /203 - //n.& t 0.3 • /0.9' L2 = /8 " Z. 2' 144z, # 25.Z/ = //98.43 gL "A" - 1-141 = /203 - 1198. = $S7 /NL Er jo ./77 O NiAnoe 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92628 -3428 • (714) 641 -8777 hl� h g. 26/0,0‘44t,. ate. err. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT TL LaeDf' /t/L.6T G/?GG I BY J ( /t./ I DATE //z / y7 I JOB N0. jriz r SHEET 3 OF i1 Lbw �A " I T /Ad[.ET Q sr" G + 12. S3 /Vey OF Z /ME ‘; J//T S /27 //. 4 4 G.2. EL. = 1Z ol. 5 =� EL. i9 " _ /Z03. we/le EQ . Z.07 U S� 25" l /4 IO5 • ^t USE. P= S = 2.7G 1 • �. — 217 = fi—` = D. 4¢ OR/ FIG E £Q A sa7Hi- - 11 = 1.73 1F 37 — ( ` Z5 % G/0291.7� . USE A = / 73 ` = Z.3/ SF, vs E — ir E L. .A " = /203 t = 27" L,= 12o3 1l9S.S f 0.S = 8.b' 0 = /3 4= /.o 1-14.L, SrA. G +/3.70 = 1198 EL 'i4" - 1/44. = /203- / / &f = 4. /1 ', mite T GO.t./T OL 3170 REDHILL AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT TCM / D/eO P /d/G G/KG . I BY J R./0. /v/. DATE i/z 7 /3 7 I JOB NO. 557-2. I SHEET 4 OF 4 /il/E "A " /A/L ET & ,f7 /O.0 6 f /2, 5 el'' of zbc./A- ',SNT 5 7z7 Q = 0.7 c. S. G.€ 54. = 1204.5 _ /2'0.3t WZIR ea. P- 3 = '�,. = a 13 USE 1 S% 410 ,5 � i n 115E P= 7 = o. 17 O /7 _ _ p,03 211 271 - O.C/i/ G E EQ. G2 0 . 7 ,f3y11 c O. / / S,F L r 5.37(!5j' L GSE Z 5% L!o • • USC 1 1 = / = O, 145, �7 '� o ,7S C / fi J L. "A = 12031 D _ If3" L _ 1203 - 1115.5 -O.5 . 8.0 D = 16" L_ 1 � / & 6/74 G //8. = // "8.8/ - N6 L = /703 -/193.8/ = 4./9 IJ�tI ET 1.-0i1./72o L. 4 01011ft] 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 • • • • Q10 HYDROLOGY ..• '•••••••••■••••. • •■••••••••,, • • '41111600': • • • • • • "Wk. • • • • • Q25 I . HYDROLOGY m. r.:sc.= r= .srasas.xrsss. —= aassess. -= a�•. s.• amm. a..-+. s_: xaa. s. sas. s. asmsmasmasaa .s•.ccra= mmsssasaoasa_ ras.araa RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM i BASED ON SAN L ERNARDINO COUNTY 45ECY 1983 HYDROLOGY MANUAL . a:. :rasasaa.ea:srs�•aaa�•arsaa•r; ss.:. a:. sssaas: aresaara. sm. aaaaara maaaazssamarm •asaaaysaaraasaaseasmma f. ; < <44 < << < << < << << <.; • • ; I, f, f, f, y +f, f, f, a< f, f { { i ))))))) ))))) ' }?i ' :'1 }i l )))))) > >>> <C) Cc c yr•i gis t 29s::: Advanced Engineering Software 04E93 E s p e c i a l l y nreceared for: HALL $r FOREMAN. INC. ;.;r, {{.;{ r,{{ r, r<< < <4 { {{{ { { < <44< {{ {.'.; {.• {,`r))k )))))) ))k)))).'r)))))))))) ?))i' )); *ie**ie***** ESORIPTICtN OF RESLtLTS**** ie**e******• a*********** *************K***ce r. CATCH BASIN HVDROLO Y. L I NE D * x r. AHMED St:tE I Mt•t, 3. N. 3366, 2 12 :='186 r.******** *r.****.....***.******i ********** r.**** ****a**********x***.....****a♦e USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT <YEAR) a ; 5. e SPECIFIED MINIMUM PIPE SI2E4INCH) = 28.00 / SPECIFIED PERCENT OF GRADDIENTSif)ECIMAL) TO USE FOR FRICTION SLOPE _ .53 20 —YEAR STORM 60— MINUTE INTENSITY4INCt•t &HOUR) ■* .980 100—YEAR STORM 60— MINUTE I NTENS I TY l I NCH /HOURY •= 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT •a E5.00 2 —HOUR 1 NTENSITY !, I NCN /HOUR) •+* 2 . 2 5::0 SLOPE OF INTENSITY DURATION CURVE = .6000 SEC HYDROLOGY MANUAL "C "— VALUES USED {q { { <{ { {r{ {{ { { {qq{ << < <4< (({{{({{ rd{{/,{))) y))) )))))))))))))))))))))))))))))i) Advanced Engineering Software CAES3 SERIAL Nc'. 140560A REV. 3.1 RELEASE DATE: 5/01/85 4 <4<< { q{(q qq{{{{ q{{{{{{q<{<{ q{{{{{{{ q{ y}))))) ))))))))))))))))))))))ki)))))i) *ie*K•**. Y. ie*.. Rieie ie ie* ie ***ie*ie* ...... *****ie**ie**ie. AFAR.... ie.. iei eie *****ieie**ieie**ieie#•K•ie* FLOW PROCESS FROM NODE 401.30 TO NODE 401.30 IS CODE _ :? )) })) RATION AL METHOD INITIAL SUBAREA ANALYSIS d 4 f r { s:.as z,esa+ra.=r aataaatttm'saaexes3ease srassamazaasrare.aaapmaaam.a zamaavassa .smasaaaaasrararassxass ra.:smsma ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 43/4 ACRE) TC == M*E 4LENGTH**3) : < ELEVATION CHAN3E) 3 **. c p o*" INITIAL SU AREA FLOW- - LENGTH = 850.00 Now, UPSTREAM ELEVATION •= 3.'a-' 60 DOWNSTREAM ELEVATION •= 3aSE3. eto ELEVATION DIFFERENCE •= 14.60 TC .r . 393*C : E 50.00**3).. ! 14.60)3**.:=: _' 13.144 Z7.5.00 YEAR RAINFALL INTENSI Y : INts_t a.ass SOIL CLASSIFICATION f5 "C" LOT? u = .74oa SUBAREA RONOFF4CFSY = 13.5? TOTAL AREA4ACRES) = 6.40 TOTAL RUNOFF4CFSY = 13.5? Shr FLOW PROCESS FROM NODE 401.30 TO NODE 401.40 IS CODE = 6 ›YYY>COMPUTE STREETFLOW TRAVELTIME THFU SUBAREA4444 UPSTREAM ELEVATION = lese.00 DOWNSTREAM ELEVATION = 1C:46.00 STREET LENG1H4FEETY = 650.00 CUR a HEIGTH4INCHESY = B. STREET HALFWZDTHWEETY = ao.00 STREET CROSSFALL4DECIMALY SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF • 2 **TRAVELTIME COMPUTED USING MEAN FLOW4CFSY •= 13.37 STREET FLOWDEPTH4FEETY = .54 HALFSTREET FLOODWZDTH4FEETY • = 14.66 AVERAGE FLOW VELOCITY4FEET.'SEC.Y PRODUCT OF DEPTH6VELOCITY = 3.36 STREETFLOW TRAVELTIME4MINY = ,. ?MIN 5.00 YEAR RAINFALL INTENSITY4/NCH/HOURY SOIL CLASSIFICATION fS "A" SIN9LE-FAMILY41/4 ACRE LOT} RUNOFF COEFFICIENT SUBAREA AREA%ACRES ) = 0 .i40 SUBAREA RUNOFF4CFSP = 0.00 SUMMED AREA4ACRESY = 6.40 TOTAL RUNOFF4CFSY • 1 3. 5? END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEETY = .54 HALFSTREET FLOODWIDTH4FEETY = 14.66 FLOW VELOCITY4FEET/SEC.Y = 4.41 tYEPT = 3.36 **************************************************************************** FLOW PROCESS FROM NODE •402.40 TO NODE 401.40 18 CODE = 2 Y›)›} DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE44444 ..... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTES) RAINFALL INTENSITY 4INCH./HOURY TOTAL STREAM AREA 4ACRESY = 6.40 TOTAL STREAM RUNOFF4CF9Y AT CONFLUENCE = 13.5? FLOW PROCESS FROM NODE .402.ao TO NODE 402.-ao IS CODE = W>YRATIONAL METHOD INITIAL SUBAREA ANALYSIS. SSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT ZS: SINGLE FAMILY 41:4 ACREY IC = k*rLENGTH**SY'4ELEVATION CHAN43EY1*=.3 INITIAL SUSAREA FLOW-LENGTH = ase.00 UPSTREAM ELEVATION = la66.00 DOWNSTREAM ELEVATION = 12-4a.00 ELEVATION DIFFERENCE = 30.00 IC . 393* C 4 850. te.‘0* / 4 ao. oo,2**. a = 1,2.343 35.00 YEAR RAINFALL INTENSITY4INCWHOUY = a.s75 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY41/4 ACRE LOT RUNOFF-:: COE' = .7443 SUBAREA RUNOFF 40F9) = 11.96 Nokomis TOTAL AREA4ACRES = 5. 40 TiaTAL ;0_1NifFF4CFEI 11.96 =I_OW PROCESS FROM NOLIE •401...F:0 70 NODE 401.40 IR COE = 6 = - Tr= ==.77=7==.1= VT == r.r=,===ar=r4=-rwAraraw.nr rrmr =s4s7 xr.rza 27. - 7 REAM ELEVATION = las.q.oe DOWNSTREAM ELEVATION = 1,:148.00 STREET LENGTH4FEETY •= 300.00 CUR& HEIRTH4INCHES) = 8. STREET HALFWIDTH4FESTY = 00 STREET CROSSFALL.DECIMALY = SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4110,10e **TRAVELT/ME COMPUTED USING MEAN FLOW4CFSY •= 11.6 STREET FLOWDEPTH4FEET HALFSTREET FLOODWIDTH.FEETY .= la.sa RVERASE FLOW VELOCITY.FEET/SEC-V • = 4.5a PRODUCT or DEPTH6VELOCITY = STREETFLOW TRAVELTIME4MIN? = 1.11 rC4MTNY = 13.45 5.00 YEAR RAINFALL INTENSITY4ENCHJHURv = SOIL CLASSIFICATTON IS "A" SINGLE-FAMILY41/4 ACRE LOT Y RUNOFF COEFFICIENT = . SUBAREA AREA4ACRESY = et.00 SUBAREA rUNOFF4CF:LO = 0.00 SUMMED AREA4ACRESY = 5.40 7 OTAL ArUNOFFCFSY = 11.96 END UP SUBAREA STREETFLOW HYDRAULICS: DEP1H4FEETY = .51 HALFSTREET FLOODWIDTH4FEETY = 13.53 FLOW VELOCITY4FEETISEC.) = 9. f5 DEPTH*VELOCITY = a.3e FLOW PROCESS FROM NODE 401.40 T NODE 401.40 ZS CODE = YY:YDESIGNATE INDEPENDENT STREAM FOR CONFLUENCE“‹4‹ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM a' ARE: TiME OF CONCENTRATIONMINUTESY = 13.45 , tAIINFALL INTENSITY 4INCH./HOURY = a.83 TOTAL STREAM AREA :ACRES) = 5.40 TOTAL STREAM RUFF 4CFS) AT CONFLUENCE = 11.96 Nmium FLOW PROCESS FROM NODE 401.10 TO NODE 401.40 ZS CODE = a IM>RATIONAL METHOD INITIAL SUBAREA ANALYSIS“‹<< ASSUMED INITIAL SU&AREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 414 ACREY TC = M*ESLENGTH**3)/4ELEVATION CHAN3Es3**.e 'NIT/AL SUBAREA FLOW-LENGTH = l000. 00 UPSTREAM ELEVATION = la66.50 DOWNSTREAM ELEVATION = 1 a4a.00 ELEVATION DIFFERENCE = 18.50 TC . •393*r4 1000.00**3)14 18.50,1**. Lr'5.00 YEAR RAINFALL TNTENSITY4INCH/HOURr = a.7aket SOIL CLASSIFICATION IS SINGLE-FAM/LY41/4 ACRE LOT: RUNOFF COEFFICIENT = .7369 SU&AREA RUNOFFCFSY TOTAL AREA4ACRESY = 5.50 TOTAL RUNOFF4CFSY = **************************************************************************** FLOW PROCESS FROM NODE 401.40 TO NODE 401.40 IS CODE = 1 :.:DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEM“ YI.YAND COMPUTE VARIOUS CONFLUENCED STREAmt VALUES4 *Imre CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 (.. TIME OF CONCENTRATIONMINUTESY = 13. &? RAINFALL INTENSITY iC-. .'UR) = a.76 TOTAL STREAM AREA 4ACRES/ = 5.50 - 0 - TmL STREAM RONOg'rr:C'I COni= CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER :CPS) :MIN.) :INCH/HOUR) ,411.00. 1 • 5 7 15. Gee 2. 565 11. 96 13.45 2. 826 3 11.27 13.62 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA4SBC) USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE OS FOLLOWS: 34.99 34.6 35. 06 COMfzfrUTED CONFLUENCE ESTIMATES rE i FOLL.41S: RUNOFF :CPS) = 35. 06 TIME:MINUTES) TOTAL AREA:(4CRES) = 17.30 K : 35.04 cp2 FLOW PROCESS FROM NODE 409.10 TO NODE 4o9.ao zs CODE = )))RATTONAL METHOD INITIAL SUBAREA ANALYSIS:4:4: ASSUMED ZNITIAL SUBAREA UNIFORM 6EVELOPMEN7 IS: SINGLE FAMILY :1/4 ACRE) IC = M*C4LENGTH**3)/4ELEVATION CH 3E)-)*. INITIAL SUBAREA FLOW-LENGTH • 1000.00 UPSTREAM ELEVATION = 258. 00 DOWNSTREAM ELEVATION = 1246.00 ELEVATION DIFFERENCE = le.00 TC = .393*C: 1000.00**3)/: 10. tzto) a lI*..c = 15.630 a5.(ao YEAR RAINFALL INTENSITY:INCH/HOUR) = a..5aa SOIL CLASSIFICATION IS "A" SiNGLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT SUBAREA RUNOFF:CFS) = 13.7a TOTAL AREA4ACRES) - •7.30 'TOTAL RUNOFF4CFS) = 13.73 C.s.*K _ma FLOW PROCESS FROM NODE 408.00 TO NODE 406.20 IS CODE = )))))RATIONAL METHOD INITIAL SLBPREA ANALYSIS:4:4: ASSUMED INITIAL SUBAREA UNIFORm DEVELOPMENT IS; SINGLE FAMILY :1/4 ACRE) TC = 1 CHANGE)) INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 165. eo DOWNSTREAM ELEVATION = 1245.60 ELEVATION DIFFERENCE = 19.20 TC •393.* C 1000. 00**3) / z 9. 2t20 • 13.71a atLeta YEAR RAINFALL INTENSITY:INCH/HOUR) = a. 79e SOIL CLASSIFICATION IS SINGLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7374 SUBAREA RUNOFF:CFS) = 13.36 TOTAL AREA4ACRESY = 6.50 - FOAL RL = • 0-01.****4e1F:leititititititit*********tie*****! Mieitit4t-10:14-It -**ititit*Ititit*itit ***it*** 0 FLOW PROCESS FROM NODE 4es.ao TO NODE 4142?-00 IS CODE = a ',mow _ )))))COMPUTE STREETFLOW TRAVELTI+tE THRU SUBAREA.f:::: UPSTREAM ELEVATION = DCWNSTEAM ELEVATION = 1;F:41.82 STREET LENGTHI.FEET: = 500. 00 CUR1-c: = 8. STREET HALFWIDTH4FET = • - **TRAVELTIME L:OMPUTED &JSI mEfIN FLWCF3p 36 STREET FLOWDEPTH4FEETY • .60 HALFSTREET FLOODWIDTHWEETY = i6.91 AVERAGE FLOW vELOCITYFEET/SEC. PRODUCT OF 1 EPTH8VELOCITY = 1.99 SIREETFLOW TRAVELTIME4mINY = 251 16.e3 25.00 YEAR RAINFALL INTENT Y4INCH/Ui SOIL CLASSIFICATION 15 "A" SINGLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .7254 SUBARE CRES) • 0.00 SUBAREA RUNOFFCFS) = 0.00 SUMMED AREA4ACRES) = 6.50 TOTAL RUNOFF4CFSy = 13.36 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH4FEET = .60 HALFSTREET FLOODWIDTH4FEETY = 16.91 FLOW VELO( ITY:FEET/SEC.) = 3.32 DEPTH*VELOCITY = 1.99 FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS C01 = 1 W)DESISNATE INDEPENDENT STREAm FOR CONFLUENCE CONFLUENCE VALUES USED FOR INDEPENDENT 51 1 ARE: TIME OP CONCENTRATION‘MINUTES) RAINFALL INTENSITY C/NCH./HOUR TOTAL STREAM AREA 4ACRESY = 6.50 TOTAL STREAM RUNOFFCFSY AT CONFLUENCE = 13. 3E; FLOW PROCESS FROM NODE 406.10 TO NODE 410.00 IS CODE = 2 Now,- si)WRATIONAL METHOD INITIAL SUBAREA ANALYSIS4:4 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SiNGLE FAMILY 41/4 ACRE) TO k*C4LENSTH**3Y/%ELEVATION CHANGE2**.2 INITIAL SUBAREA FLOW-LENGTH = 650.00 UPSTREAM ELEVATION = las0.00 DOWNSTREAM ELEVATION = le41.6o ELEVATION DIFFERENCE = 8.40 TC = .393*E4 650•00**3)14 6.40)2**.2 = 14.661 a5.eter YEAR RAINFALL INTENSITYCINCH/HOUR) = a.661 SOIL CLASSIFICATION IS "A" 9INSLE-FAMILY41/4 ACRE LOT) RUNOFF COE=F:CI6:NT .g327 SUBAREA RUNOFF4CFS) = 11.39 TOTAL AREAACRESY = 5.60 TOTAL RUNOCF:OA=E0 11.39 FLOW PROCESS FROM NODE .910.00 TO NODE 410.00 IS CODE = ))>DESISNATE INDEPENDENT STREAM FOR CONFLUENCE >::AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<4.f“ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM e ARE: TIME OF CONCENTRATION:MINUTES = 14.68 RAINFALL INTENSITY 4INCH./HOURY = 2.66 # 001 TOTAL STREAM AREA 'ACES) = 5.60 *ore TOTAL STREAM RUNOFF4CFS) AT CONFLUENCE = x1.39 CONFLUENCE INFORmATION: STREAM RUNOFF TIME INTENSITY NUMBER %C.FE0 :miN.Y INCH/HOUR) M1 M.A 11.39 t4.66 ,FL•.6 RA I NF ALL 1W EN:SIT Y AN.Cr TIME OF C ONCE N T T l Opt f:AT FORMULA4SEtC} USED FOR STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AE( FOLLOWS: Ntow 24.11 e3.so COMPUTED CONFLUENCE ESTIMATES (FE AS FOLLOWS: RUN0FF<CF3 2411 TIMEMINUTES = 16.23o . . TOTAL AREA%ACRESY = la.30 FLOW PROCESS FROM NODE 4e9.ee TO NODE 41o.ee 18 CODE = >:?:RATIONAL METHeD INITIAL SURE A ANALYSIS‹44“ ASSUMED INITIAL SUPAREh UNIFORM DEVELOPMENT IS: SINGLE FAMILY ;a4 ACRE) TC = M*E4LENGTH**3i/4ELEVATION CHANGEY1**.2 INITIAL SUEcAREA FLOW-LENGTH = 1t30.00 UPSTREAM ELEVATION = 1254.00 DOWNSTREAM ELEVATION = le41.eo ELEVATION DIFFERENCE TC • .393*C4 •130.00**31., •6.111 as.ee YEAR RAINFALL INTENSITY' INC/HOUR = e.s3e SOIL CLASSIFICATION IS "A" 9INGLE-FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT = .760 SUVAREA RUNOFF4CFS) = 13.25 TOTAL AREA4ACRES) = 7.eo TOTAL RUNOFF4CFS) = 13.25 **************************************************************************** 4 4moc FLOW PROCESS FROM NODE 418.10 TO NeoE 41a.1et 19 CODE )RATIONAL METHOD INITIAL SU&AREA ANALYSIS4<‘4‹ ASSUMED INITIAL SUGAREA UNIFORto DEVELOPMENT IS: CONDOMINIUM TC = M*C4LENGTH**3)/4ELEVATION CHANGE)2**.2 INITIAL SUEIAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1263.eta DOWNSTREAM ELEVATION = 124.4.00 ELEVATION DIFFERENCE = TC • •359*C4 1000.00**3Y/I 19**.2 • = tx.:2.577 es.ee YEAR RAINFALL DiTENSITY l*t>t/H0UFL 2.9.42 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7752 SUaAREA RUNOFFICFS = TOTAL AREAU4CRES) • 4.70 TOrAL RUNOFFCFSk = 14).70: ******************** * *** ** ***************,.********************************* FLOW PROCESS FROM NODE 418.10 TO NOLPE 42e.ect iS CODE - 6 )COMPUTE STREETFLOW TRAVELTIME THRU SU&ARE1 . ‹<4 UPSTREAM ELEVATION = 1244.00 •DOWNSTREAM ELEVATION = .232.. 42 STREET LENGTHIFEET = 800.00 CURt. HEIGTH%INCHES) = 8. STREET HALFWIDTH4FEET) = 3. �2 STREET CROSSFALLDECIMAL • = SPECIFIED NUMVER OF HALFSTREETF CARRYIN6 RUNOFF = 1 •40110 **TRAVELTIME COMPUTED USING MEAN FLOWICFS = 10.72 STREET FLOWDEPTH%FEETY = .51 HALFSTREET FLOODWIDTH:FEET = 14. 42 AVERAGE FLOW YELOCITT!FEE7e3EC.) 3.66 C'ROirUCT OF OEIL.r1-6VE.0C I-V ` _ .'F , „S�! 't :. _ .. ._ .. co-.. K.� `i i::.'ti. +2i+t! YEAR RAINFALL XNTF NS1 T Y INC3'- HOUR) -- 8.543 SOIL CLASSIFICATION IS "A" SINOLE -F, MILY 1/4 ACRE LOT) RUNOFF COEFFICIENT = .7263 SUBAREA i-iF%f:Aff4t;f +.ESY = 0.00 SUBAREA f%LiN)F :C Si •r 0.00 SUMMED RRER <FSC_RES) -- 4.70 TOTAL RUNOFF «.FS) ••« t0. 7c_ END OF SUBAREA S T REETF LOW HYDRAULICS: s rEPTH :FEET) = .51 t-ti-iLf= 8•'s REET FLt:}Oslbk:t't•}T <f" EE s } = 14. 4.: FLOW vELOC1 TY < f=EE T /9EC. > = 3.66 tlEf • S }•!•K•5i Et..f_t {.:.0 `t'Y = 2.96 *r. xr. * *xr. **xxxr. r. xxxx*xx*xx*xxx*xxr. **xxxr. *x*xxx**x ***xxxr. r. xxxxxxxxxx*xr. x **xxr. * FLOW PROCESS FROM NODE 4a0.00 -i %r NODE .4a0.00 IS CODE = 3 >) ) £DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < .r..a.ssssss.rasa•r a_raazr n.w = •asassf•.n ra¢rr_n,r= sr.rst r.,. r s.= -.a rrsrs -=sa rr a-a vrs.n . r_r r. r..- ct_- _:.r.._ -:ma.a CONFLUENCE VALUES USED FOR INDEPENDENT 4L ENT ::3"i REAM 1 ARE: TIME OF C0htCErtTRRTI«tat4MIMUTES) = 26.0.' RAINFALL INTENSITY <: NCH.. 't-t{_eUR) -_ ;;•'s TOTAL STREAM AREA LACRE9} •r 4.70 TOTAL STREAM RUNOFF <CF AT CONFLUENCE = 10.7E ********14********** * ** x*x*xxxxxxxxx*x**xxx*xx•*xxxxr. ****xxxr. r. r. r. xxxr. xr. xxter. xx* FLOW PROCESS FROM NODE 428. + * p c t TO NODE 4a0.00 2 s CODE 11 11) f} rTION L. METHOD INITIAL SUBAREA G '4i LYSIS < < . c rzrrs rr a:.r.rarssssesssrsscrrraa. arsararrarses. va .rra' WW47 -traasaa•axrrraesss s:aay.r.arsaa.T sssrr. ASSUMED INITIAL SU1 RE ( UNIFORM DEVELOPMENT IS: CONDOMINIUM T C = 1-4* C <LEt•tt3Tt-t **3) . <ELEVAT IOt't CHs NGE' 2 **. ; f °11° INITIAL SUBAREA FLOW- LENGTH = 800.00 UPSTREAM ELEVATION -■= 1854.00 00 DOWNSTREAM ELEVATION +'- 2:33:::. 40 ELEVATION DIFFERENCE = • :_2. ho TC = . 359e C < 8ic30. 0ktr. x31 / < 2l.607**.? = 2 4 }. 7 3 a5.00 00 YEAR RAINFALL INTEN9I'r `s` < 1 NCH/ -t )t_!R} = 3.E37 SOIL CLASSIFICATION IS "R" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT •s .76E0 SUBAREA RUNOFF <CFS) = 13.4E TOTAL ARE(. CRES) = 5. 30 'TOTAL Rt_tN0FF <CF9) = 1:5.4a xr. r. ***xxxr. xxr. xxxxxxx *r. xxxxxxxxr. ***xxxr. xxxr *r. xxr. xxx**xxxr. xxr. xr. *xxxr. xxrxxxr. x r. FLOW PROCESS FROM NODE 420.00 TO NODE 420.00 2 9 CODS •= 2 .r ,r .r ,r .r f E5IGN TE INDEPENDENT STREAM FOCr C ONFLLtENCE < : < . < )))))AND COMPUTE VARIOUS CONFLUENCED 5T REAM V, LUES < < < r < .aarrcaas aaasr armyaaavam a=. armyarsr _am assesar : aarma.'a: =4- .xsaamszores•3sa ..x.._a=_-= .=sa_z === CONFLUENCE VALUES USED FOR INDEPENDENT STREAM a ARE: TIME OF C ONCENTRRTIs: N: MI NtJTE3) = 20.7a RAINFALL INTENSITY <INCt-t. /t-tOUR} _ 3.24 T"O"TAL STREAM AREA 4ACRE3) = 5.30 TOTAL STREAM RUNG F <CFS) AT CONFLUENCE = 13.4 CONFLUENCE. INFORMATION: STREAM RUNOFF TIME INTENSITY t` UMBER {t_:F•S) :'Rl tit. ) : :t t` :C:H. HOu$ 1 20.72 16. 04 >_. 543 3 a= 23.4a 2 0. 7a 3. 23 7 RAINFALL INTENSITY AND TIME Or CONCENTRATION RATIO FORMUL. 9BC) USED FOR a STREi mS. vt. RIOUS COWFLUENCE..t RUNOFF +l<-rLUE5 ARE i ::i s F't_ : __-.`'__.' _~_~°=� -~_y .. ~^~ ~~~__ - ~ _ _~w. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA(SBC) USED FOR 2 STREAMS. . VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: ^�~ 21.26 20.58 ~ COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 21.26 TIME(MINUTES) = 16.035 TOTAL AREA(ACRES) = 10.00 ***************++******************************************************. FLOW PROCESS FROM NODE 419.10 TO NODE 419.10 IS CODE = >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<(< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION C9AN8E):**.2 INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1258.00 DOWNSTREAM ELEVATION = 1229.10 ELEVATION DIFFERENCE = 28.90 TC = .2K‘*[( = 12.�41 2t.00 YtHH RAlmFHL,_ = SOIL CLASSIFICATION IS "A" SINGLE-FAMILY(1/4 ACRE LOT RUNOFF COEFFICIENT = .7428 SUBAREA RUNOFF(CFS) = 11.98 TOTAL AREA(ACRES) = 5.50 TOTAL RUNOFF(CFS) = 11.9] �*****w*********************+�********************************************+. / 419.20 IS CODE = 2 FLOW PROCESS FROM NODE 41� 10 TO NODE 419 ^ ^ 5%>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIB((<(< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 1500.00 UPSTREAM ELEVATION = 1258.00 DOWNSTREAM ELEVATION = 1227.54 ELEVATION DIFFERENCE = 30.46 TC = .359*[( 1500.00**3)/( 30.46)3**.2 = 14.596 25.00 YEAR RAINFALL INTENSITY(INCH/HOLR) = 2.690 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICLENT = .7682 SUBAREA RUNOFF(CFS) = 17.77 TOTAL AREA(ACRES) = 8.60 TOTAL RUNOFF(CFS) = 17.7 ********************************4********************** ***A **7--x- - � FLOW PROCESS FROM NODE 396.10 TO NODE 396.20 IS CODE = 2 ----- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMEN1 IS: SINGLE FAMILY (1/4 ACRE) \ TC = K*[(LENGTH**3)/ (ELEVATION CHANGE73**.2 INITIAL SUBAREA FLOW-LENGTH = 1100.00 UPSTREAM ELEVATION = 1241.60 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = 16.60 TC = .393*[( 1100.00**3)/( 16.60)]**.2 = 14'9 25'�Q YEAR - ` /(, ' vC1-/-D f) = COMPUTED CONFLUENCE ESIMATES AFE AS FOLLOWS: RUNOFF4CFS •= n.a6 TiME4MINUTES = 16.035 C • a .* TOTAL AREA1ACRESY • 10.00 4,1. ******* . v . ****** . R****.w.v************* - ************************.m m* * **** FLOW PROCESS FROM NODE 419.10 TO NODE 419.10 LS CODE = a- RATIONAL METHOD INITIAL SUBAREA ANAY9IS<“4‹ ASSUMED INITIAL SUBAREA UNTFORM DEVELOPMENT IS: SINGLE FAMILY %.,?. 5 TC = XrC4LENGTH**3/4ELEVATION CHANGEr2**.J.: f•ITIAL SUBAREA FLOW-LENGTH = 1004t.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = ta'a9.10 ELEVAT/ON DIFFERENCE = aa.sto 7C = .500*(i 1000.00iP*3)e! c YEAR RAINFALL /NTENSITY4INCH/HOUR = sF:.537 SOIL CLASSIFICATION IS "A" SINGLE-FAMILY4a.5-ACRE LOT Y RUNOFF COEFFICIENT = .6Z:88 SUBAREA RUNOFF4CF9 Y = G.75 TorAL AREAsACRES) = 5.M0 TOTAL RUNOFF4CFS = 8.75 C . 1. 4C FLOW PROCESS FROM NODE 417.10 TO NODE 419.E-0 18 CODE = ee):RATIONAL METHOD INITIAL SUBAREA ANALYSIS44‹<.: ASSUMED INITIAL SUBAREA UNIFORM ( DEVELOPMENT IS: CONDOMINIUM ' IC X*E4LENGTH**3Y/4ELEVATION CHANGEY.1**.Z: INITIAL SUSAREA FLOW-LENGTH . t s.. UPTRAM ELEVATION = izsa.ee DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE TC = .359* 1500.00**3Y: 30.460:1*-10.a •= 14.598 as.oet YEAR RAINFALL INTENSITY1INCH/HOURY = Z.690 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPPTENT RUNOFF COEFFICIENT = .788Z- SUBAREA RUNOFFCFSY = 17.77 TOTAL AREA4ACRESY = 8.80 TOTAL RUNOFF4CFSY = 17.77 C K-5 . ... . FLOW PROCESS FROM NODE 398.10 TO NODE 398..2'0 IS CODE = /eeRATIONAL METHOD IN/TIAL SUBAREA ANALYS1S‹44‹< ASSUMED INITIAL SUBAREA UNIFORP DEVELOPMENT 1E: SINGLE FAO-1LT !14 ACREY TC = 44*C4LENGTH**3//:ELEVATION CHAN3E}2..i: INITIAL SUBAREA FLOW--LE?- = 1100.00 UPSTREAM ELEVATION = ts.::41.80 DOWNSTREAM ELEVATION •= ELEVATION DIFFERENCE = 18.6k! 7 C = .393*C% 1100.00**3! 18.602 = 14.954 a5.42te YEAR RA/NFALL INTENS/TYINCH/HOUt = '4%ftre SOfL CLASSIFICA7TON fti "A" SINGLE-F1MILY!1/.4 ACRE LOT. RUNOFF CUEFF:CIENT SUBAREA RUNOFF:CFS = 10.86 lk TOTAL ARER4ACRESY = 5.80 TOTAL RUNO = 10.86 = ~ ^.r` `. J. ' TOTAL AREA(ACRES) = 5.60 TOTAL RUNOFF(CFS) = 10.86 ************************************************************************ 'Slikarr FLOW PROCESS FROM NODE 429.00 TO NODE 429.10 IS CODE = 2 <2 11: (43 >}>>>RATIONAL- METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY (1/4 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)3**.2 INITIAL SUBAREA FLOW-LENGTH = 600.00 UPSTREAM ELEVATION = 1232.00 DOWNSTREAM ELEVATION = 1218.60 ELEVATION DIFFERENCE = 13.40 TC = .393*[( 600.00**3)/( 13.40)]**.2 = 10.850 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.214 SOIL CLASSIFICATION IS "A'^ SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7522 SUBAREA RUNOFF(CFS) = 6.29 TOTAL AREA(ACRES) = 2.60 TOTAL RUNOFF(CFS) = 6.29 **************************************************************************** FLOW PROCESS FROM NODE 430.00 TO NODE 430.00 IS CODE = 2 >>>}>RATIONAL METHOD INITlAL SUBAREA ANALYSIS<<<(< = = - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*C(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 1225.00 DOWNSTREAM ELEVATION = 1218.30 ELEVATION DIFFERENCE = 6.70 TC = .303*[( 400.00**3)/( 6.70)]**.2 = 7.544 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.997 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8343 SUBAREA RUNOFF(CFS) = 1.33 TOTAL AREA(ACRES) = .40 TOTAL RUNOFF(CFS) = 1.33 **************************************************************************** FLOW PROCESS FROM NODE 428.00 TO NODE 428.10 IS CODE = 2 )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 800.00 UPSTREAM ELEVATION = 1235.50 DOWNSTREAM ELEVATION = 1220.40 ELEVATION DIFFERENCE = 15.10 TC = .303*[( 800.00**3)/( 15.10)]**.2 = 9.720 \`- 25.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.434 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8317 SUBAREA RUNOFF(CFS) = 12.57 TOTAL AREA(ACRES) = 4.40 TOTAL RUNOFF(CFS) = 12.57 FLOW PROCESS FROM NODE 4a9.00 TO NODE 4a9.10 IS CODE = )))))RATIONAL METHOD INITIAL SuBAREA ANALYS/S444‹: ASSUMED INITIAL SUSAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 4a.23-ACREY TC = M*C4LENOTH**3)/4ELEVATION CHANGE))**.S INITIAL SUBAREA FLOW-LENGTH = 600.00 UPSTREAM ELEVATION = 1838.tao DOWNSTREAM ELEVATION • ELEVATION DIFFERENCE = 13.40 Te = .500*r 600 fikeit it 3 % 13. i.#20.1**. • .13.818 v )0 85.oet YEAR RAINFALL INTENSITY4INCH/HOUR) = SOIL CLASSIFICATION 18 SINGLE-FAMILY 4e.5-ACRE LOT) RUNOFF COEFFICIENT = .6464 SUBAREA RUNOFF:CFS) • 4.67- TOTAL AREA4ACRES) .. a.60 TOTAL RUNOFF4CF8) = 4.67 a S. 4 3 Mil■••11 FLOW PROCESS FROM NODE 430.00 TO NODE 430.00 IS CODE = ))))> RATIONAL METHOD INITIAL SUBAREA ANALYSIS 4f444 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMME A:C.1 AL C X*E4LENGTH**3)/ 4ELE%.ATION CHANGE)3**.:ii• INITIAL SUB:AREA A'LOW-LE.NOTH 400. 012t UPSTREAM ELEVAT = 1 eau5. 00 DOWNSTREAM EL EVAT 1 ON • 1 a•18. 30 ELEVATION rr iFFERENCE 6. 70 TC = .303*E: 400.00**3)/4 6.70)2**,E. . 7.544 85.00 YEAR RAINFALL INTEN8ITY4INCH/HOUR) • 3.997 SOIL CLASSIFICATION IS COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8343 SUBAREA RUNOFF:CFS) = 1.33 TOTAL AREA4ACRES) • .40 TOTAL RUNOFF4CFS) = 1.33 ik FLOW PROCESS FROM NODE 488.00 TO Noue 488.20 18 CODE = >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSI8 44444 ASSUMED INITIAL SUBAREA UN/FORM DEVELOPMENT IS: COMMERCIAL TC = M*C4LEN6TH**3)/4ELEVATION CHANGE)3**.e /NITIAL SUSAREA FLOW-LENGTH = 800.00 UPSTREAM ELEVATION = 2835.50 DOWNSTREAM ELEVATION = leae..4o ELEVATION DIFFERENCE TC • .303*E: 800.00**3)/: 15.10)2**.a = 9.780 85.00 YEAR RAINFALL INTEN8ITY4INCH/HOUR) = 3.434 SOIL CLASSIFICATION IS "A" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8317 SUBAREA RUNOFF:CFS) = le. 57 TOTAL AREA4ACRES) = 4.40 TOTAL RUNOFF4CF8) = 12.5? C . It *12 fr. **************************************************************************** FLOW PROCESS FROM NODE .:45.00 TO NODE 395.00 IS CODE = )))))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 AssumED 1 NIT1L F.R.LtEtAREP UNIFORM 1L t4LN6THrir.2re4ELEVATIuht Ct-PANOE?“-_ INITEAL SUBAREA FLOW-LENGTH UP:.STREAM ELEVATION • 1Z EfOWNSTREAM ELEVATION ELEVATTON DIFFERENCE 9.00 TC .393*C4 600.o0**3ve! = 13.962 Z YEAR RAINFALL INTENSITr4INCH/HOUN, a.76a BOIL CLASSIFICATION IS "A" SIN3LE-FAMILY41/4 ACRE LOT? RtpliOFF COEFFICIENT SUBAREA RUNOFF!CFS) 6. TOTAL AREA4ACRES) ==. 3.00 70fAL RUNOFF4CA 6.10 END OF RATIONAL MeTHOD ANALYSIS ‘4A0100' n • • • wr • Q 100 HYDROLOGY 0 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM &ABED ON SAN GERNARDINO COUNTY 4SGC} 1963 HYDROLOGY MANUAL 44444444444444444<44<44444444444444444 4CY Cdayright 196G Advanced Engineering Sdftware CAES1 Es.decially predared fdr: HALL & FOREMAN. INC. 1 41 1 1 1 1 1 1 1 1 1 1 4 1 111441 14 4 4 1 414 1 4 4 4 4 1 < 4 >>>>>>>>>>}.}.}.}}>>>>>>>>>>>>>>>>>>>>>>> ****** * * * *DESCRIPTION OF * CATCH GASIN HYDROLOGY,LINE * 0 100 * AHMED SHEZMH,S.N.3366,1a/le/G6 ******* .. * .. *** .... *** ........ ************* ....... ** . * ....... *************** USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT4YEARY = 100.00 SPECIFIED MINIMUM PIPE SIZE4INC.H} = 16.00 SPECIFIED PERCENT OF GRADIENT9 4DECIMALY TO USE FOR FRICTION SLOPE • .S5 10-YEAR STORM 60-MIN(jTE INTENSITY:INCH/HOUR} 100-YEAR STORM 60-MINUTE INTENSITY:INCH/HOUR} = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY4INCH/HOUR} - 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 S&C HYDROLOGY MANUAL "C"-VALUES USED 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 « 4 4 « 4 « 4 < < 4 4 4 < 4 4 4) .1. ) ) ) ) ) > ) ) ) ) ) ) ) )))) ›), ) ))) ) )) ) ) ) ) Aavonceid Enalneffrina Software CAES3 SERIAL Nd. A0580A REV. 3.1 RELEASE DATE: 5/01/65 *************************************** FLOW PROCESS FROM NODE 401.30 TO NODE 401.30 IS CODE = >>>>>RATIONAL METHOD INITIAL SUGAREA ANALYSIS ASSUMED INITIAL SUGAREA UNIFORM DEVELOPMENT ISI SINGLE FAMILY 41/4 ACRE) "kliftior Te. MieCLENGTHe-m.3)/<ELEVATION CHANGE)2**.iF: INITIAL SUEcAREA FLOW—LENGTH -= 8S0.00 UPSTREAM ELEVATION ar le7e.so DOWNSTREAM ELEVATION la5a.00 :ELEVATZCN DiFFERENCE #41.60 . ._.. .,.,......... .,.._-..-,..t........-.- e•..-,... w,............ ..,,rr-- .,,.Kw.....- _...w•... -.m ...,.. _.«.- ..._...,w:.o ,...P.....�.m.....w, «.+- .«...a ..... .. .... ......,«,..u<- .,,....,......, ...... _._.. ,._.,, ..,« .- . ,._... >- ...... ....,.....,..,F. , «... «_,... _ .. . r r ' 1 e• ,. Aar y�y . q�t:y 9!' 7,. •-. r - • -. t 00. t4 0 'rEA htf-I t NF LL I NTENS • r S It'tf:H./HOURY •= 3.656 SOIL CLASSIFICATION I8 "A" SINGLE- FApttLY42 /4 ACRE LOT) RUNOFF COEFFICIENT = .7640 :itiBAREA Rt N FFSCFSY •= 17.8? ,..». TOTAL AREf;4t•tCRES) = 6.40 TOTAL RLkNC)FP <CFS) •= 27.8? �4aw •' * r.u*•ur.xr.x r.n u•xr. iar. x• rr• kxxxx r. ........ **+:•****irie*+tw+er **** Karie+c+e+e*******..* .... ****** FLOW PROCESS FROM NODE 402.30 TO NODE 402.40 IS COLE = 6 i) COMPUTE. STREETFLOW T RAVELT I1 E THRU SUBAREA < < < < < rn.=a.4rar.4> vssAaaaasamaaaamaaszsa= aa. am. 4. aar.. a. za. 4aaaartas marAaas� .e+sasaarsam.aaam_ :_asv.sc z.4. =e.4 UPSTREAM ELEVATION = 2.58.00 DOWNSTREAM ELEVATION •= 1a48.00 STREET LEN8TH S FEET Y •= 650.00 CURB HE / STH S I NCHES) = 8. STREET HALFWIDTHSFF_ET} _ as0.00 STREET 2ROSSFALL4DECIt4rrLY = .ta ;'e SPECIFIED NUMBER OF H#-tLFSTREETS CARRYING RUNOFF = 1 **TRAVE L sT I ME COMPUTED tj5I t.t8 MEAN FLOW S C:F S) •= 17.87 STREET FLOW.0EF•TH {FEET) •= .60 !- ALFSTREET FLQ00WUTH4FEET) = 26.91 AVERAGE FLOW VELOCITY SF�EET..`SEC.) •4 4.43 PRODUCT OP DEPTHaVELOCITY = a.86 STREETFLOW TRAVEL 7 IME 4t42N1. = x. TC<MINY m 15.59 100.00-YEAR RAINFALL Iht'FENSITYS &H0ttR} .4 3.300 SO; >_ CLASSIFICATION IS "A" SINGLE - FAMILY S 2 f4 ACRE LOT} RUNOFF COEFFICIENT = .7547 SUBAREA AREASACRESY m 0.00 SUBAREA RUNOFF4CFSy = 0.00 SUMMED AREAS ACRES) = 6.40 TOTAL RUNOFF S CF9 Y = 17.87 END OF SUBAREA STREETFL0W HYDRAULICS: DEPTHSFEET} •_ .60 H LFSTREET FLOODWlt0TH <FEETY = 26.92 FLOW VELOCITY <FEET.eSEC. Y = 4.43 DEPTH*VELOCITY •_ :_.66 xxxr. xxxxxxxxxr. r. r. xr. xxxr. xr. xx+exxxr. r. xr. * xxxxxxxxxiexxxxxxxxxxxxxxxxxxr. * xxxxxx xr. •xxx FLOW PROCESS FROM NODE 402.40 TO !NODE 402.40 IS CODE •4 1 'r))) Y DESIONATE INDEPENDENT STREAM FOR CONFLUENCE < < < < < A. 4�•. A• 3 4. 4A. 4aT :!!'aA.48*S.SliTAi!T =3'.3YA iTA.TasAA ?='= A.4m.Tif1• a.4 iAaAaA.42'D'.4Ra.4aaila.4. =.4 T.T IIOTA CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENT RAT I ON S N I NLtTES Y •= 15.59 RAINFALL INTENSITY 4It.4CH../HOURY •4 33.30 TOTAL STREAM AREA SACRES) = 6.40 TOTAL STREAM RUNOFFSCFSY AT CONFLUENCE = 27.87 r. xx r. x r. r. r. xr. xxr. xxxxirx rrxxr. xxxxxxxxxxxxxr. xxxxr. r. xr. xr. xxxr. ... *xxxxxxxxr. xr. •irr. xx* xr. xxx FLOW PROCESS FROM NODE 402..0 TO NODE 402.20 28 CODE a )) > > Y RATIONAL METHOD INITIAL SUBREA ANALYSIS<S4<4 vrA.rraa= AaaarsaarA erAa xa aAaa amerAa a.4sa.4 �rrra rr a.4 asrs n•asrr.a.aaeaaaaa rr raraa ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42/4 ACRE TC •= t {xC SLEN8TH**3k/ <ELEVRTION CHAN©EY 3**.:_ INITIAL SUBAREA FLOW - LENGTH •4 850.00 UPSTREAM ELEVATION •= 1E68.00 00 DOWNSTREAM ELEVATION = 2::48 00 ELEVAT I ON DIFFERENCE _ ae.046 TC ._ .393* [ 4 850. 00xx3} / S 0.00} 3 xx. a : 0000 YEAR RAINFALL I NTENS I TY S I NCH/ HOUR} •= 3.796 SOIL CLASSIFICATION IS "A" SINGLE- FAMILYS1/4 ACRE LOTY RUNOFF COEFFICIENT •4 .767a SUBAREA RUNOFF <CF8) = 15.73 TOTAL AREASACRE9Y .= 5.40 TOTAL RUNOFFSCFSY •= 25.73 ,:..... A ,.- ..:• «.,• yxx x;ex�•.., o •. *V . ** y.�r.a:rr.k�►r r.x e;.r.rxr. FLOW PROCESS FROM NODE - .02.:=o TO NODE 401.40 IS CODE •= 6 ))) • y ) COMPOTE STREETFLOW TF VE!_ IME THRU SUBAREA : 4 4 4 r• • r.Th sie s.-.= asraxxrraaaraiesa=.aaraea =aaen. aaacse.s rana. =.s: Yxsnxrnar.n •s ersesr.=xaa:raaavaa. :Sala s¢s :.s Tas UPSTREAM ELEVATION •' 1L:54.00 DOWNSTREAM ELEVATION == 2:.=4.s.0o STREET LENtsT!•t4FEET) = 300.00 CURB HEIGTH4lNCt -tESY = G. STREET HALFWIDTN4FEETY •A a0.4etta STREET CROSSFALL 4frECIMAL) a .0B70 SPECIFIED NUMEtER OF HALFSTREE TS CARRYl'NS RUNOFF = 1 *eTRAVELT:EME COMPUTED USING MEAN FLOW4CFSY = 15.73 STREET FLOWDEEP T M 4 FEET) = .56 HALFSs•TREET FLOODWI£tTH(FEETY •= t:7.:='i: AVERAGE FLOW VELOCITY4FEEr,'SEC.) = 4.76 PRODUCT OF DEPTH6VELOCITY •= :::.64 STREETFLOW TRAVEELTIME4MIN r = 2.05 TC4MINY = 33.39 1043.00 'r RAINFALL LL INTENSITY 4 I NC„t•t/HCtUR) .= 3.615 SOIL C::LASSIt ICATION ZS "A" S I Nc•aLE-F AM LY 4 t .t•4 f-'CRE LOT) RUNOFF COEFFICIENT •_ .7630 SUBAREA AREA4ACRE9Y = 0.00 SUBAREAS RUNOFF 4CFSY = 0.00 SUMMED ARE#-Y 4 ACRES) - 5.40 TOTAL RtJNe FF 4 CFS Y = 15.73 ENtD. OF SUBAREA STREE T PLOW HYDRAULICS: 1 EPTH4FEETY •_ .56 HALFSTREST FLOODWI£YTH(FEET'Y = t5. LB FLOW VELOCITY4FEET/SEC.) = 4. 76 DEPTHe'.ELOCITY •_ :?.64 . ... *..****.....*********.**K* ** ************r....*.. ...* *****•rt***•r.******.* .. FLOW PROCESS FROM NODE 401.40 TO N O N E 401.40 I S CODE = 2 Y) )))DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE 44444 .m:a axes a.s saaaa xz- sasaaaaaaaaassevssaassaffisramaa- rasasaasarss�assssss .=sas.�:.aasas_ra sa to CONFLUENCE VALUES USED FOR INDEPENDENT STREAM :3 ARE: TIME OF CONCENTRAT I ON 4 M I MUTES Y = 13.3 RAINFALL INTENSITY (INCH. JHOURY == 3.61 TOTAL STREAM AREA (ACRES) a 5.4E TOTAL STREAM RUNOFF 4CFS) AT CONFLUENCE •'= 15.73 ......... ... ... . ... .xvexve•********ve*u veu+e+eveuver.+ eve.+ evea a •ve....veve......*..........** FLOW PROCESS FROM NODE 401.10 TO NODE 401.40 XS CODE YY)))RATIONAL METHOD INITIAL SUBAREA ANALYSIS44444 ar e:.ersaaassaaemra•a ■flflsaases ssssaasaaawsraa=assam =. aaasaa em ma.=aaasssasasra� - a flnnzrarm ar Mr" =I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41.4 ACRE TC = ti*C4LENDTt•t..3Y /4ELEYATION C!'tANGE INITIAL SUBAREA FLOW-LENGTH •=r 1000.00 UPSTREAM ELEVATION = 1B66.50 DOWNSTREAM ELEVATION = t. 00 ELEVATION DIFFERENCE _= 23.50 TC: ._ .393.[ 4 1000.00..3Y.f 4 18.50)J * *.' 13..9:_0 104000 YEAR RAINFALL INTENSIT`r4INCH/HOURY = 3.547 SOIL. CLASSIFICATION I9 "A" SINt3LE- FAMILY42/4 ACRE LOT) RUNOFF COEFFICIENtT _ .7613 SUBAREA RUNOFF 4CFSY •= 24.85 TOTAL AREA 4ACRESY x 5.50 TOTAL RUNOFF4CFS) = 24.95 .• r.•.... ve*.. ve... 4• ... .. r. .................. ...... * * * * **..................* r...*. ' FLOW PROCESS FROM NODE 402.40 TO NODE 401.40 I9 CODE = 2 .W Y) DESIC3NPTE INDEPENDENT STREAM FOR CONPLUENCE14111 Y Y) Y AND COMPUTE VARIOUS CONFLUENCED STREAM . "ALUES 4 4 4 4 4 s= vsrax~:: sa .as=raavaa.rar.= vast asm•� srnr =er.- .aaarxlrvxv=a•.amx=r.=arr srarasr r. rrarrarsrsra rs+•ar= srrr.i CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARC: : Ot CONCENTRATION 4 M I NU s E E r = 2 3. r3 T O A L S t RE► wleA 4 Grt:RE: Y •r 5.50 TOTAL STREAM F'U tQFF 4 CFSY AT CONFLUENCE •= 14.85 CONFLUENCE TNFORMUT't Cht: 00"- f3TF %EhM RUNOFF TIME INTENSITY NUMBER 4CFS) 4MTN. Y 4 ThtCt-t: t•iCttRY 17.x7 15.59 3.3eo 15.73 13.39 3.615 3 14.85 13.49Z: 3.547 F}s- t:1NFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMLtLf k 4 SBC i USED FOR 3 STREAMS. VARIOUS CONFLUENCE& RUNOFF VALUES ARE AS FOLLOWS: 46. e s 45.46 46.13 COMPUTE& CONFLUENCE EST /MATES ARE AS FOLLOWS: RUNOFF4CFSY •_ • 46.23 TlME4MihtuTESY = l3..5:?ac 'FCtTtitL ftF Efa t-tCRES fi = 17.30 C • 8 . K ** ** r. * * * *r. eer. * * * * * * *r. * * * * * * * * * * * * * *re•• lees+ ea+ riea+ r+. ae.ax eet eaeu ••n•uiew+eu.x+rreaiea+ea+e•r. ar+ereau FLOW PROCESS FROM htOt"}E 409.10 TO NODE 4e ae 13 CODE _ :? Y ± ; } RAFT OhtAL Mt THOv INITIAL SLttBAREA AhtAL YS I S 4 4 4 4 4 � vsaarmrsaraa �ssrsmaarmsaamaa . :iram.nrsrass ream. mssmammsasmamsaeumsms ..amar rsssrmassar ASSUMED 1 N1 T 1 L SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 411 ACRD Tt_. = tor. £ 4LEN6Tli*.* 3i : 4ELEVAT2Cht INITIAL SUBAREA FLOW -- LENGTH •= 1000.00 at0 UPSTREAM ELEVATION = 3 5,3. ee DOWNSTREAM M ELE%. TION = 1Z'48.00 ELEVATION DIFFERENCE = 1t3. ee TC •= .393* £ 4 2 e:h0C . 00* *3Y / 4 1 td. 00) 3 r. *. ; a 15.630 %).or `° 100.00 YEAR RAINFALL T NTEhtS T T Y 4 T htC:H /HOUR) = SOIL CLASSIFICATION IS "A" SINGLE-FAMTL•Y 4 t 14 ACRE LOT) RUNOFF Cc'EFFTCTEN1 _ .7545 SUBAREA RUNOFF 4CFS) = 18.15 TOTAL AREA4ACRES) _• 7.30 TOTAL RUNOFF4CF3} r 18.15 C Q K-/ FLOW PROCESS FROM NODE 408.00 TC NODE 4t2tt3. ►- 29 CODE •_ )) Y Y) RRT 2 ChtAL METHCtr INITIAL SUBARE, ANAL Y S i 9 4 4 4 4 4 • m' .azs*u•.a'+a.sarrrars+•smraerr Amara: nnassaaaa sarsesurmsasrarar+..s.xas as ss sa aaaeaa a.+ sma .=s.n•.smsaessa_ra. - salsas ASSUMED TNTTTttL SUBAREA UNIFORM DEVELOPMENT IS: SThtGLE FAMILY 42/4 ACRE) TC = F *3) Ct-4arNt +EY3 * *.a. INITIAL SUBAREA FLOW -- LENGTH = 1000.00 Lii -' ELEVATION 1Z65.00 DOWNSTREAM ELEVATION •= 2:•,•35. 9t ELEVATION DIFFERENCE = 19. atet TC • -- . 393* t 4 1000. OC�t421 * *3) 1 4 1 9. i::0Y 3 * *. ;_ m 13.718 1 ete. ee YEAR RAINFALL T h1TENS I T Y 4 T NCF-f, t-*OU : Y = 3.563 SOIL CLASSIFICATION I8 "A" SINGLE- FAMILY 41 /4 ACRE LOT) RUNOFF COEFFICIENT = .7617 SUBAREA F2tJNOFF 4CF8Y = 17.64 TOTAL AREA4RCRE9) 6.50 TOTAL RUNOFF4CF8Y •s* 27.64 err *-1 .. * ... * .. *** * tie....+eeer. ee *+eie•te*•Ki *** **.r... clue**eeiexet rerettre*...r. ice... FLOW PROCESS FROM NODE 40 6. a e TO NODE 410.00 I8 C O D E = 6 . : •r i 5 C OMPU t E STREETFLCtw TRAVEL t T HE THRt t 4UBAREA 4 44 1 4 4 r:rr. -. yr .= .�•ssrs.a:arsssa.�•.rssar:� =rr. ass. r.=ss= .s.assa tssssrs.- ssrsr._r.= .a. -.ss s.�= aae_. = s_--- .s- r- .c- _..- _._. -_._ i tREET L >._NGTJi4FEET'r ._. 500.04 CuRc J- ETc3TJi4INCHESr = O. STREET H, LFWIDTt- t4FEETr s• 30, Qe t STREET CROBBFALL 4iZ-ECIMAL} _ . iaa7e SPECIFIED NUMBER OF HALT S T BEET S CARRYING RUNOFF •= 2 r-r.TRAVELTIME COMDUrEiS. USING MEAN FLOW(CF6r = 27.64 STREET FLCtW#'rEPTH!FEET r = .65 HALFSTREET FLOODWIDTt-J4FEt T) = 28.59 AVERAGE FLOW VELOCITY'FEET /SEC. r •_, 3.6� PRODUCT OP D PT 4 VELOC 3 f r = a.35 STREETFLOW TRAVELTIME'MINr = a. a9 Tc=;(MIN} = 26.02 300.00 YEAR RAINFALL INTEl+4SITY4. NCH /HOUi` r •- 3.3:"8 Safi. CLASSIFICATION I8 "A" SINGLE- FAMILY 4 2 /4 ACRE LOT) RUNOFF COEFFICIENT = .753a SUBAREA EA 4 ACRES r = 0.00 SUBAREA RUNOFF 4 CFS r = 0.00 SUMMED AREA4ACREB} = 6.50 TOTAL RUNOFF(CFB:r = 37.64 END OF SUBAREA STREE TFLc W HYDRr.ULT CS: i]EPTJ•t4FEET) = .65 HALF9TREET FLOODWltTH4FEETr a 28.59 • FLOW VELOCTTY!FEET /SEC. r •= 3.64 DEPT! *VELOCITY .= e.35 r. xxr. * * xxxr. ***** * *x** *xxxr. *xxr **xxxr. *r. ************** *xxr. xxxr. *******xxxr. ****** FLOW PROCESS FROM NO. &E 430.00 TO NODE '.20.00 I8 CODE •= 2 >rr >,DESI&NATE INDEPENDENT STREAM FOR CONFLUENCE 44444 . :i•.STSSTTR.=TtTT= iS....R . ifARSS.SAi =f.TWAR CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION4MINUTE3} = 26.02 RAINFALL INTENSITY (INCH./HOUR} = 3..-':5 TOTAL STREAM AREA (ACRES) = 6. 50 TOTAL STREAM REAM RUNOFF 4 CF3 } AT CONFLUENCE -= 17.64 * *r. r. ****xxxr. *x *r. *x xxrr xxxx**xxxr. xxr. r. xr. xr r- r. xx *x* xxr. .xxxr. xxx. *r. xxr. xxr. xr. xxxr. xxx FLOW PROCESS FROM NODE 408.10 TO NODE 410.00 19 CODE r > > > > RATIONAL METHOD INITIAL SUBAREA ANALY9I S 4 4 4 4 ( .r w.narA =Rilafln. .=AT9P.a taiS.aA9t.sasifatfl•R.=st fl RA .....lA' .s .s a=.1Ti�A aR Y:ii$R ?A ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 42!4 ACRE) TC- •_- t<*C 4LEN8TH* *3 (ELEVATION CHANt3E J * *. E INITIAL SUBAREA FLOW-LENGTH •= 850.00 UPSTREAM ELEVATION •= 2:?50. 00 DOWNSTREAM ELEVATION = 2:x'4 2.60 ELEVATION DIFFERENCE -= 8.40 TC = .393* f 4 850. 00 * *3r / 4 8.40)**. :? = 14.681 100.00 YEA RAINFALL INTENSITY (INCH /!-JOUR} = 3.4E l SOIL CLASSIFICATION I3 "A.• SINGLE- •FAMILY { 2 /4 ACRE LOT) RUNOFF COEFFICIENT •_• .7581 SUBAREA RUNOFF 4CFSr = 15.04 TOTAL AREA4ACRESr •= 5.80 TOTAL RUNOFF(CFS} = 25.04 xr. r. r. r. r. xxx *xxr. xxr. * xxx *x *xxx *x *xxr. xxxr. x **x * *x *xxx. *xxr. *xxr. * xxr- * ** *xxx **xxr- r- xxr. FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE •= 2 rr >r >DESI[NATE INDEPENDENT STREAM FOR CONFLUENCEr4444 r -`r r r r FEND COMPUTE VARIOUS CONFLUENCE() STREAM VALUES 4 4 4 4 ( s._soa =sassssss.ss:asas.exs zrraassae_ rsss r.srr.� A .�+.a'rr- sasss.aaaarssrs.e¢•aa mmass.�= sa.:sTm.r. -.a. -s s_rarr.ars ... C CONFLUENCE VALUES USED FOR INDEPENDENT STREAM . ARE: TIME OF CONCENTRATIEtta4MINUTESr - 24.68 * vmr p RAlNFALL INTENSITY (INCH./HOUR} == 3.4E- TOTAL STREAM AREA (ACRES) = 5.80 TOTAL STREAM RUNOPs- 4 C 3 ) AT CONFLUENCE 25.04 ci%WLLIENCE I NFORMAT T CN: ut... d >=tumftER %CF Y %MIN. Y ; INCH/ F HOUR' l• 2 17.64 2 6. 02 3.::48 15.04 2 4.68 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FQRMULj-t498CY USED FOR 8 STREAMS. VARIOUS CCtNFLUENCE£} RUNOFF VALUES ARE AS FOLLOWS: 32.9a 32. Li COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: Rt_tt=tCtF+= {CFS} = TIME %MINttTEEY = 26.006 TOTAL AREA (ACRES Y •= 18.30 C . B. K- 2.. ..•r.•r.*t...*r.* ** t* t....* t* t* t.. •........x*t*t*tx*ra*tu*e*rx*e* a *t*t*r*t*e*t...*t*tx*tuu*e **t*t*t*t*t*t* ** x*t FLOW PROCESS FROM NODE 409.00 TO NODE 410.00 I S CODE = c,-',•. e ;RATIONAL METHOD INITIAL BUGAREA FkNAL YS I :3 f f { f { � s ^.s. �.xrsa= asasrasr8saaz aa. an aaarafra • .z aararaacaasm.- . =saaaasvzasnsssamarz.Q.oaxsrs szsat.�a_a =s sassaraa ASSUMED INITIAL Su9AREA UNIFORM DEVELOPMENT I9: SINGLE- FAMILY %2 .' ACRE) Tc:. = M.*s t { LENG T H*t*t3Y : f f ELEVAT I ON CHANGE, ? *x .:a INITIAL 9UEAREA FLOW- LENGTH = 2230.00 UPSTREAM ELEVATION = 2+:54. 00 DOWNSTREAM ELEVATION •_+ 2: x42.60 ELEVATION DIFFERENCE = 3::.40 '`t`. •_ .393et. 2230.00**31' 28. a 26.222 100.00 YEAR RAINFALL INTENSITY % INCH!HOt tRY = 3.835 SOIL CLASSIFICATION I9 ..A,. SINGLE- FAMILY { 214 ACRE LOT) RUNOFF" COEFFICIENT = .7588 SUSAREA RUNOFF {CFSY 17.54 TOTAL AREAfACRESY = 7. 0 TOTAL RUNOFF{CFSY = 27.54 `' .$ * ******e*************uit****•k** tie• ierc*ie**** iert• ***** ie *****************.*****re****u FLOW PROCESS FROM NODE 418.10 TO NODE 418.10 19 COD€ .• p) Y RATIONAL METHOD INITIAL SUBAREA Ahti ;LYSI3 { { f { r, .a.=rr.�•m ».auras e rarrms�asaaeaes:. a3aeaa: s: maaaasmsrer.:. ara : »azaaaarmmmraara »sars_ :aaasar_ »saw -raamr ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM TC = t{xt {LEN6TH*rx•3Y ! {ELEVATION CHF NG.EY 2*t*. 3 : INITIAL SUBAREA .FLOW-LENGTH j= 2000.00 UPSTREAM ELEVATION 2a$3. ANa DOWNSTREAM ELEVATION i•44 . a` e ELEVATION DIFFERENCE •= 29.00 TC = .3S9et{ 2000.00**3r/4 29.ac't0y3**.;_; l .577 200.00 YEAR RAINFALL INTENSITY4IPtCH /HOUR1. = 3.754 SOIL CLASSIFICATION I9 "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFILIENT _ .7924 SU&AREA RUNOFF{CF9Y = 23.96 TOTAL AREA {ACRESY = 4.70 TOTAL RUNOFF-{CF) = 13.96 * e• r.* tr.* e* e*e*t*e*t*t*t*t*t*tr.*t*t*r*e* **e•*t*t*e*tit*t*t****rx* **t*t*tu*tuuu* ****t* ** ** **t*e*e*t*e*t*t*tx*t*r*e* **e*t*t*r*t FLOW PROCESS FROM NODE 428.20 TO NODE 4,'-=0.00 IS CODE = 6 : } .r COMPUTE 3TREETFLOW TRAVEL T t ME THRU SU8AReA { { r, { f -_ �w � » »�•. =ssraseasasamm• ».z i•aars =. s- xaszz ss sae�vmsa. vamsaaaz azsrsrarammraavrarasaraa .�m.=sacraao.r= ».xszsxmsa \ = UPSTREAM ELEVATION •_ 2:644.00 DOWNSTREAM ELEVATION = 2::3:6.40 STREET REET LENt3TH %FEET Y 800.00 CURie HE I GTH { I IkCHE9 Y a 8. STREET HALFWIti'TH{FEETY • 39.00 STREET CROSSFs LL IDEC1t4 LY •=a• . 0i.50 SPECIFIED NUM£ <ER OF HALFSTREETS CARRYING RUNOFF a 2 r.•r.TRAVELTIME COMPUTED USING MEAN FLttW{CF9Y = 23.96 STREET FL FEE:TY --> .54 AVERRA6E FLOW VELOCITY %FEET /SEC. > _ 4.8c: PRODUCT OF THS VELOC 1 T Y = . 9 EE'sFLOW TRAVELTU=E {MIN} z 3.16 T"CMIN) = 15.74 oa „, 100.00 YEAR RAINFALL INTENBIT <INCH/HOU}'+,} r 3.681 SOIL_ CLASSIFICATION IS "A" Z3 tits <LE- FAMILY4 t ACRE LOT} RUNOFF COEFFICIENT = .7541 SUBAREA AREASACREEk _ 0.e0 SUBAREA RUNOFF “:FS 0.00 SUMMED AREA < ACRE3) :z 4.70 TOTAL RUNOFF < CF 6 } r• 13.96 END OF SUBAREA STREETFLOW HYDRAULICS: OEt=•TttSFEET} •a .54 HALFSTREET FL€O. +WIDTHSFEE } T 15.63 FLOW VELOCITY /SEC. } •= 4.88 .tEP7'H*VELOCITY •_' •• r.****r.r.r.r.r.•r.r.+rte ***** *** *******r.r.r.**r.* **r.** **r.*•rrr.*x**r.******x**r.* * ***** FLOW PROCESS FROM NODE 4: 3. rt" *tr'.t TO NODE 480.00 t't I S COLrE •= 1 } > • e I }ES <It3 h'T•E INDEPENDENT STREAM FOR CONFLUENCE { S S { { :s.:rsrersrr. »ir. �r•a.aa =rasa errs aar. aaraaasrar.a•.a r err se•.ar = =. -rs_r m.aa•arrarar asr aarrs:arrr raaaa =srarrsrarr as vss.aasa CONFLUENCE VALUES USED FOa INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATIONSMINUTES} = 15.74 RAINFALL INTENSITY /,INCH. /HOUR) = 3.88 TOTAL STREAM AREA <ACRES) = 4.70 TO'T STREAM RUNOFF {CFS} AT CONFLUENCE = 13.96 r.r.xx*•r.•r.•r.* *** **.e!xtirir•u.r.* *** ****** r.r.is+c•itrx•** err.****.• rr.x r. r. iex x •erx•x•irx•..*.r.xxr.r.r.r...** FLOW PROCESS FROM NODE 418.00 TO NODE •'tettzt. star 13 CODE •_ } } } } >RATIONAL METHOD INITIAL SUBAREA ANALYSISS< {r,{ ares:ar.ar asrs ma =sa� raaaa =arasraaa.aar :.aa.axr srasrr aer arar.aa :cr = a. :rrasr aarar rsaaar ;arzas.srra sr rr.asrnfl ASSUMED INITIAL SUBAREA UNIFORM orw DEVELOPMENT IS: CONDOMINIUM TC •_ ! {+et: <LENf3T!•t.e *.3}r SELEVATION CiANt3ErI,r,e. L INITIAL SUBAREA FLOW-LENGTH -= 80 0.00 ec�•It UPSTREAM ELEVATION = 1854.00 DOWNSTREAM ELEVATION = 1a3 .4ea ELEVATION DIFFERENCE = :1.60 TC •_ .359*' 8e3)/. a 1 . 6ec'» ? xr.. A 1 te. 7:5'3 1 e?ro. ec''+e2e YEAR RAINFALL INTENSITY < I NCM/ HOt tR = 4.131 SOIL CLASSIFICATION I8 "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7967 SUBAREA RUNOFF SCPS} 17.44 TOTAL AREA <ACRES) = 5.30 TOTAL RUNOFF <CFS> = 17- • * ***********T.***Ti4***** **********.***.**t.***** **e**e*T**•K•'1.iPiti!'R1►e **¥5 *. T. R**** FLOW PROCESS FROM NC'l)E 4ao.ete TO NODE 4ao. oe 25 CODE •z 1 } >) > DESIGNATE INDEPENDENT ST REAM FOR COt FLUENCE { { { { { } > > > > ANL COMPUTE VARIOUS CONFLUENC.ED sTREAM VALl <ES { < < { { a:s =.r == =. arts =aa. == sera =a as a =a aea nt r..ax ===:.a = .s ssas. w mrm a rasm sasaa a.= = _art ma za CONFLUENCE VALUES USED FOR INDEPENDENT STREAM a ARE: T i tr'E OF c OtrtCE N T RAT I ON { tit I NUT E S) = F:AINFALL. INTENSITY S INCH. /HOUR} r 4. 13 TOTAL STREAM AREA {ACRES) ¢ 5.30 TOTAL STREAM RUNOFF CFS} AT CONFLUENCE == 17.4• ., L CONFLUENCE I NFORWI r I t STREAM RUNOFF TIME INTENSITY NU t£cER {CFS} {INCHrt -LOUR} 1 13.96 t5.74 3.81 17, 1 +c'c, ; is •4.232 t=•ORMULA4SBC.t USED FOR STREAMS. VARIOUS COt•tFLUEhtCELr RUNOFF VALUES ARE AS FOLLOWS: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF 4CFS: TIME 4MINUTES) = 15.739 C . 8 • r K-- TOTAL AREA ! ACRES. = 10.00 r ti war, u• •ie+e • ie**** r. ic+ ei.*******y ***K.it•...********* tope+ e+ t***• K•+ e*** itie **...r.x**is*it•** ****ie*** FLOW PROCESS FROM NODE 419.10 TO NODE 419.1e 18 CODE _ e )))))RATIONAL METHOD INZTZAL SUBAREA PNALYSIS 4 4 4 4 4 .ser..sas-. arras �aaar a as saraa;aama Y.a a_mamas es aa.a .asttr sr.= aa.:s a.s samara ar m aaas sm ara air.. 7.=•=er sa+tass aes=.a sa ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY ! c_.5 -ACRE) st = s* £4LEN3TH* 3:: 4ELEVATIoN CHANf3E)2**..'_ INITIAL SUBAREA FLOW - LENGTH .:a 1000.00 UPSTREAM ELEVATION •= 258. eto DOWNSTREAM ELEVATION = 29. 10 ELEVATION DIFFERENCE _ e8.9e TC = . 5acta2t* £ 4 1 0ac"tt2t. , Ig0**3) / 4 E:8. 90) s **.. -`: = 16.099 100.00 YEAR RAINFALL INTENSITY 4 INCH /HOUR) •. 3.E.37 SOIL CLASSIFICATION IS "A" SINGLE- FAMILY 4B. 5- ACRE LOT) RUNOFF COEFFICIENT •_ .6751 SUBAREA RUNOFF ! CFS) a" l E. a''t>-_ TOTAL / REA4ACRES) = 5.50 TOTAL RUNO#=F4s.FS) : 1a`.+�1 C w•r!•r.r.it•r.**•r.*******it•+ tie+ t** is.... aareu* xr. x* k******** searie **ae*..*...*re**a•4er.**** *•r.r.ie***x FLOW PROCESS FROM NODE 417.10 TO NODE 419.eg 13 CODE a e . ::: ,•RATIONAL METHOD INITIAL SUBAREA AL YS l S 4 4 4 4 4 .Crss» as sJ m 9 rsasraa=amucasrrareasasaaasarA asa mcesmas.sasaama,1,2==.•maasrs Rrsm4 .ass:sscsasrmaaa 44441N ASSUMED} INITIAL SUBAREA UNIFORM DEVELOPMENT IS: CONDOMINIUM re •_ }4r. F 4LENGTM**3) / ELEVATION t::HANLE} 3it•+e.:? INITIAL SUBAREA FLOW - LENGTH =r 1500.00 UPSTREAM ELEVATION = 1.58. ac. DOWNSTREAM ELEVATION = 1::::_7. 54 ELEVATION DIFFERENCE •= 30.46 TC •_ .359* £ 4 1500. tic' 0**3: / . 3.462**. ; ^ •= 14.596 14c'3ac''t.00 YEA RAINFALL INYENSZTY4INCH,'HOUR) = 3.433 SOIL CLASSIFICATION IS "A" CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT a: .7859 SUBAREA RUNOFF 4 CF5) : .-'`.3. a TOTAL AREA4ACRES) = 8.60 TOTAL ttiONO CTS: _ 3.:'° C.13 . 1<-5 • tirr. r .♦er. ...vx....... ... Feu... r. *****areare*r.•arexu•it•*****a**** ♦e•r.rer.***is*****are* FLOW PROCESS SS FROM NODE 396.10 TO NOTE 396. 0 IS CODE s= :: :)RATIONAL METHOD INITIAL ZAL 3L AREA ANALYSIS 4 4 4 4 r,• a:. ts•. mmaamsaaaaaaasaaaea :.:zsaaaaaa.ssstaas. ?. as.^�AaZ.S.:a.:>asam:. scam. i'. asaaassssssasraaa <sax.:- sraSS.sa ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: SINGLE FAMILY 41/4 ACRE) TC = <* C S LENSTH**3:., 4 ELEVAT I ON CHANCE: 3 +►x. . INITIAL SUBAREA FLOW - LENGTH a 1100.00 UPSTREAM ELEVATION = 1e41.6e 1 DOWNSTREAM ELEVATION = 1::::•S.00 ELEVATION DIFFERENCE •= 16.60 ` .C: =• . 3 93* £ ! 1 100. 00**3:./ ! 16.60Y1 **.a .s 14.954 14:3c't.00 YEAR RAINFALL INTENSITY4INCH /HOUR) 3.383 SOIL CLASSIFICATION IS "A" S1NOLE•- t=AMILY(1f4 ACRE LOT) RUNOFF COEFF=ICIENT = 570 3UI F.• REA RUNS ,F F ! CF• $ : - 14.34 • St . 4 FLOW PROCESS FROM NODE 4.E9. TO NODE 4a9. 2e, 18 CODE = ThRATIONAL METHOD INITIAL SUBAREA ANALYSIS44‹<< ASSUMED INTTIAL SUBAREA UNIFORM DEVELOPMEN7 TO: SINGLE f.:AMILY 42.5-ACRE) TC = 1.‹*CLENGTH**3r/4ELEVATION CANE: NITIAL SUBAREA FLOW-LENGTH = 600.00 UPSTREAM ELEVATION = 1e3a.ota DOWNSTREAM ELEVATION • lai8.60 ELEVATION DIFFERENCE = 13.40 TC = .500*E. 600.00**3Y/4 13. 4-0).1==.2 = 13.818 100.00 YEAR RAINFALL INTEN8ITY4INCH1HOUR = 3.548 SOIL CLASSIFICATION 8INGLE-FAMILs'42.5-ACRE LOT} RUNOFF.: COEFFICIENT = .6904 SUBAREA RUNOFF4CFS = 6..757 TOTAL AREA4ACRES) m a.60 TOTAL RUNOFF4CPS • 6.37 C AI. 4 1 3 ****** . * . **************** ..... **•*************************** .. * . ****** . ** . ** FLOW PROCESS FROM NODE 430.00 TO NODE 430.00 28 CODE = a 'el.RATIONAL METHOD INITIAL SUPAREA ANALY818444<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: COMMERCIAL TC = M*CLENGTH* CHAN(3E/2**.2 INITIAL SUBAREA FLOW-LENGTH = 400.00 tPSTREAM ELEVATION = laas.00 DOWNSTREAM ELEVATION = 2 a18.30 Soo.- ELEVATION DIFFERENCE TC .= .303-ter •00.00*=3)/4 = 7.544 200.00 YEAR RAINFALL INTEN8/TY4TNCH/HOUR = 5.101 SOIL CLASSIFICATION IS COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8377 SUBAREA RUNOFF4CF9 k •= 1.71 tk TOTAL AREA4ACRES) m .40 TOTAL RUNOFF4CFS/ = 2.12 C . . K-7 ............... ... .. ......... *********************************** ... ** .. ** FLOW PROCESS PROM NODE 4a8.00 TO NODE 4a8.10 IS CODE = >>.1.RATIONAL METHOD INITIAL SUBAREA ANALYSIS‹<<<.: ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT TS: COMMERCIAL TC • 1 CHANGEr)**.0': •INITIAL SUBAREA FLOW-LENGTH = 600.00 UPSTREAM ELEVATION = 1235.50 DOWNSTREAM ELEVATION • 2220.40 ELEVATION DIFFERENCE TC • = .303=C4 800.00**3)./; 15.101.2**.a • 9.7ao 100.00 YEAR RAINFALL iNTENSIFY4INCH/HOUR? •= 4.381 SOIL CLASSIFICATION IS COMMERCIAL DEVELOPMENT RUNOFF COEF:FICIENT = .8356 3O8AREA RUNOFF4CFS = 16.11 400 rtyrAL AREA4ACRESP = 4.40 TO•A=IL RuNOFF4CPSY = 16. 1 c is • ********************************1******************************************** FLOW PROCESS FROM NODE 395.00 FL NODE 395.00 28 CODE = ASSUMED INTTIAL 8U6AREA UNIFORM DEVELOPMENT TS: SINGLE FAMILY ACREv PC tirt4LENOTH**3r.ELEVATTON CHANSEV2**.a LN111AL SULIAREA FLOW—LENGTH •= 8(0.00 e OPSTREAM ELEVATION • = la36.oe LrOWNSTREAM ELEVATION • = CIO &LETlOpi DIFFERENCE •= 9. taet . C e3 * C 0044-4e3Y S. 00).3 Pt*. 13. 96E* 100.00 YEAR RAINFALL INTENSITY4iNCH/HOUR) = 3.se6 SOIL CLASSIFICATION IS SINGLE—FAMILY41/4 ACRE LOT) RUNOFF COEFFICIENT • = .7608 suEchRea RUNOFF!CFSY 6.05 TOTAL AREA4ACRES) = 3.00 TOTAL RUNOFF4CFSY = e. es o END OF RATIONAL METHOD ANALYSIS C • • • tk 4:- ,, 2a a 2'. P.11 i eta 2 ! °' _ u' o:1 g- III a ZN k a 11 .0W . ii i ti.P.;%,,,t1 4,i1 4 '11: ii.' 4 r c . i 8' • ski e, 2 , I (1 1, _; ar . 4 i °sI1 • !i i 1 ii it i:tll$-1 .1 1 i ` ';•� ;\ _ :$ -� bid � 11 `a� a6��Q;� /• ff I, m1a i1 11 •,a g • k I - =fie • rt :Pj I i r • N s y� _= _ ! :14 .1 ; ill 1% Ei1 • i• 1 , . I R 11 •i- a : is a =1! . aIZI14ia * :r till °2t -1 g j i m t 1 2 el,:-. ;11=21 ;11 « at .1.- 'II: s: ktpl . 1 g ci s 1 . ba o il . :4 a. i c s € fill b i F� a ' Z b � = p . - s t I ii z 11R -- 1 3 1-, /C... ,...i; %Ili .1 , $ ? II 1 -41,1) - ji !e.;.1 <1 i, I , a il t'! 8 j 3 e a t it 1 1_..bi s. r lire • 1 1! \ I I I jAg !lel 1 ...s 4 1 , t l i % bli I I MI +It 1 W3 i w I 2 Z.I. • W W iaa a i f • s It € lt d h a cl lit al _ J bI I • i iL t $e•1 0.. N �}' ` \\ 1••'•1 1 aPal , l .�.� _ 2 I ' ._tk, ea,21 i r �` 1its ear }} T iv i ; .k ...‘ it.ii:. v N t 2 ' err+ ; ►� 3 F i 1 M i s ' 1I W� !! W 1 i s W • ` N !LI la "ial44 gi I r ii .1 s W 8 W 1 :, • n l w • w *ftwo04, ii 11 !I 1.9 b 0 kit I ;4" • _ g-. .? e 3N a Z g, 0 u W i i t4 g m ` e _ W K As $s / i s - fi e s• m 40 W O d ! y s § gash. s P W d o 3 s 0 ia °e - a i m � i Z r. Al - H r - o ■• s e. J • W --11 Y .a • 'Z 1 < W W O .� see ) f S a SJ -b g :N N. 161.-U W O V N N� S dC O 2 I � V R 1 N C 8 - O ug gr5 e2• = ° g , a V Ai 0 u e • s u> • ? S N • W 1 111 'i- ENoa�r -e.•. • = O 1 11 ga $ ii ■'1: o' 1 ! co oJ43 =. = e . r . 8- ss MI 42 Zno0 Z r O 8 i p 11"114 o °- W m p' 12. / 1- Q 2 L e s — s ` e W m : Lei Q j j e 4 ° e a e a• g e a u ? j33e ,v_a!Vial 0 ;: . c3 s y - J y Y Y . O y • a s i C i f a e l e O f i -a O iWFFS W * y e C 3 . W..W W- WiJ O ` 1p 16-- , 1 p O W W O W p W y O $ of 1 Iii g� N ON ON J a K W 15z 0 J O I O OF 1 1 1O 21 i V 2a y u u 00 NO 0 0 0 0 p , K - Z a h 0N M** i 6 e 110- 0m* -0, ..r ON nw- N 1 0 �1 1 Wf 214222R Ms•+ i z W -NMI* NNNNNNNN I N f = =r J - • 1 e C ) C c oe • • < r s W • e • J+ . aZ W F C I d :O R O 00 E O W N •e — Re 1.• • s a Y C W q H 0. _ = a eN =s $ i w w z Q. 1A ••+ • e • 1.. • 0S -d .3 c •e • + • eNa 00 e• • O r. z Q _ i d j Z•••• 00 • - NN N•a II O W Se • N 5 0s ' NH J RO a W 35 =191).:2 er O O Unlit �� 1-3 $� ix 2 1 t E Y ; pi0 0 0 0 0 3 Y Oe,e ut� i s y MINN 0 • : , 0W WW s $NO • to ..0 Os JJNO K a2• 1-4 0002- a :et O Z 443 0 1 •.8sW GO p OO e- 8. a - iO�r 0sro e. WC ▪ i O 0 71; 4 ; HS 5W S= ••a J •• .: Ji tea ;8 Z 0 Q � o`•F + .1553— a1 ...• i e:a'. Id 112 4 ' - d < F < e t!! a iii i $•' 0'. O ' .4 1 2 y t = W I E laiiy aM - o 1 ly ;•e e 0 0 WO J I -OOy' J u NI Y dY i .!3 a J < p • p. < 1 W 4 s w oo titAi O W - lV Fl f 1 11 r l� Z d ; ,�v 0 > 1 i a i • I ,r P. V ,� a :; •�fr• -0.�,. mra•Yrm�..ty �.�p�n, m ml m ro ,,, ( W /} 1 S N � .I�r.m,, <n..a n�n•Iwt 7'0 1 71 VYY. Y••�itOr IrO r — (� • ■ p E I a v, t i C W , ! • fr E § 1 . I ... 0 111 - - - -1, s� W X W v ; , • g ' i I I YI W • m r1 , Hi • j ; 1i, AN J R W ~m W t .4 : • gl I . ' ' i I • . WI N < O Z O C E ji: ., IINu1N o P W $ : V I N _ R i I $i i IL p Y W ON� NI 1 1111101 G 1 ill � I NI NIIN N Si 6 O AR. I QIINNI-� 1 1 i ' N1191 ; o 001 ' IDNI]IINI INNINI 1' p N a 1E801211110110111111111311111111 i M 13011111011111511111111111111 Z1011101011111112101111111111 y a E i ' :1110011111121111118111111 , Li 1E101211110110111131111111111011 I1191N10119N11IIN1111111011 .- W y � z o : !E]II111011191NNi111 1012111010101111100121111 0110 -- 0 i E151I1• 010113113101121111011 ! E � 1 0110111=0 , EH]IIiF , I i ]IIflhIII[I Cr 41 b 01011� f ' IIIl]UhI ilt 1 , C i L . ; §, IN MI i; R ; ill ;,' 111 11111 1 i if ,;:� ;, � $i i' � 11 ill ¢ HNI ' Ili' •, ?I, a. 11 111 9 . .: I � • 10111 W — ; • I 11111E ai 1113NI 1 411111110:012131111111100:111 1-0811T-- , I 21101101? I a, nt.j NA ':- P4VVIAIMMV: . • . N i w t a i 1 i d i I l 1 - _. ,.- .�..- . >„„w— ._.a..- ....+.�.. ., ,W. .w e .- �. .. .. , s .�,..„_ .. w,,..r,.a -» b. » o-. a�w�.- ,..,,....»� «.wm......•.P.,w.., w.K... _......,... ...,.,..a...H.,,,.,...,�,..., -. r. f� 9 ee. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF SEET C i < d U 7 " i „ � S I ,#N w . 1 9. jo -i-6 I .3364 I s • ' /B _ /2' I 7' 8' /o' £ 1 °j ' Gf 0. as.l. _ - - -- • ,/2 • % G •cP Q.1 6' 1 uttF s�' ��• •/ 42E4 = 21G. .' ;,r r• - 4 . 4.1' _ 1 . •'k i • A " / 7 • ,e . ST • x -SEA = a- k ; % /23/3 = , (� Qr3 1.7 IW. 071. 321 = 1777 Va Lve, /I4L.F Sr' 02S . Qfoo HALFF r J- nit x 9q.o2' . S2.2 523. i'9 egazoE adt< ST Qoo des4 - ,. 9d SF . w P - 2S. 4 7 Q 4 ! s. 2 LEYFL SEAT /ON iNTP./ ©Q Jr2EE73 mot S7' S. 0.2% .. A= ./.11 X 37.77 s /2.. /4. C, - Q 1r L/AL X sr 5.23., = 72. 41 C4S Qioo sasLG NOL'12.• /r1 O veer / "= 2 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641-8777 41,1 Ali■ r '-'. . in hie g 2oieeotiait, Rite. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE I JOB NO. SHEET OF sTQEE T c4PA U7y I XcM . - 3-3 I 4. J 1 ■ .213 2 � o , 20� 2.2 8' /1 12 8 O. 54 Oroo Djv I / Q2r . . HdLF � ' * °4 2 Rsr' . 0. /Z .4 I 42, 1 4e54= P7 • /.:4 ! -J=c , =., / 1k.? . - - " a 3i WP 0 .47 1 ' . �-� � .. R • Nos.- • At -" 42.? ST ,r = a, = /41-4 k . #12 i • e c rs . ors S= 0.00.# .... S //i a . / /// . f// x .2 ,'p. 9 = 2, G.- S•o.Q /20..; S' it .1o95 5. P7r99.07x . V2 /= 1' fo (k' ' . /lsx X4'I , j - - s = - i. ..s i!.2 = . 0,x.3 . o ,24‘,.',e j ' -Jit.2 S 0•!1/.0 .', S i sU. /23 /NOFPF/V,JFA/GE 1�/,4 Y , //�3 y z�� 9 4= sy�. -� RALFS : Q foo CONST /TUT /OA/ 14/,4Y • 4Q = /9.5/ " . ' 4.47 ETIW4ND4 CQF.Fk L /VE . a. =,4s7 aY2 = . 594 sr k - SEC= '9.5/y 9 , sya =/i.'f .//1/ k 'f k1 Jr - 1.27. 54' cfS • /r7rx /AV - / - 7/ cir Js7we3 x / /!l f .. Rs 90 G,cs . • . //P'3 X //mil J _ /3 S. PO C FS \. • / 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 r...w. , e ...,.w.. _ .. :..:...,.f ,: .e , _ — m a..,.�... ..,.M -..... r�srvn.. w. „„.,.„A,,. ,.n:,.,.„ - ...R...�,�......w., .o..M,« w<.n. .... ..— .�...» ..,..,. rr f IS weg 2ftestoat, ate. MIIIIIIr CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. STe &r c4R4 /rOr I ,r w , I p- i. 4 I .33“ SHEET OF So I F 7' i8 - -- __ /8' 7' - 1 1 1 1 Vie 0 Q 1:' BEEF C F i .2% 2% 8 D 0 , . /a ____ IIQt e Sr,2t�7 1 ea^ LEVEL secrloij 4QE4 = 6.18 SF Q Z S !!/P .is: 47 .WF sr¢EFr cacS e = • �4s 4024 • 3.87 SF /..ii Woo • M. 9 �= a fl n. ors X R 3 Q •+f(.3 's's7'( k' .71 3 ° .1 9•.1S K I/4LP ©2.r 8 .8x99.02x.,5 1 = 47 .93 k A <l4Lr1rQ,. • S - o. Oo14 . ' . S2 = . 047,2- X ,269 2.r s is Z� G=S - l4L,' Sr Os5 . . oC7P1. X 118.33 = 15. O GP; - ,4Lc Sr, Q/00 1 S� scaGE ```° N0a/2.. / /o VEQr 1 2 ' 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641.8777 . 0,...., ,..........7, fa. ?keg 2fteotoot, ate. 11111.1.11. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF 47: a?. le/ IV (iTataamati) ! ,Ii' -I- 1 * .22 .2o a o ' 13 ' ! a lp...4-------------- -__ _ Er ' 1.2 ' 1.2 ' _______s - ______.... ... . - i Q/0 1 ep.2s .9 ——.......--_,:_7 • i....4 — I ----.‘‘."— — ," ._ _.....---- _.....- .. 2 '..: . dReda ' sal: 1 ,470e. .1.40 a 122 a 4LI 1 wp a- ia. 47 ' A a g 2 /3 a . 1: - f • /. sr X - SEC779,/ = a- X X e 2 /3 = le 1 , wt N4,..... t‘. 9 )( 9f, 07) . # ?-r = 1-1 (le) • c101d o •. .5 . 1113 X 14i ,7 0 , . , T r . 4c,cs W4Lf ST, ; Q , 0 i ER WANDA CksEEI DQIVE Q100 • , L,,,: AREA is 19.F.7 . . 42, G7 . if.v k 9, 4 . rq x 4/Rs = /3.5 el C4-s . - . , gu,g ..S.77 , 0/op 120 X. ' • S14 SCALE ... --.._.. 4 1 ii " 10 YEer / 112 2 1 \ 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641-8777 0, ate. _. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT .: TeS sc r Cd v"C', f, I BY , (A) . I DATE el/icy/I; I JOB NO. ..ts / I SHEET OF 142 >l $ I 2G ,i .2G dd.' , rl' 31- P /z 2G' 1 2Gi /a' j I AO 401 / 1 o / (,,"c,= 4` _ 1' � j *CPI - i Ofo I ©.. ,r S 2 .0 0 1 2.x • Q /0 )Q2r 4/00 = 4414 DI '� Q ,Q1d = X1.72 1/4414.0- WI •• R. /7 Q .2 5-i AV" = G. p- Q I • .2 ;03 Q10` CL. x /.Y-4 k , 403 = /C 4 - • 3r/ - 4.0 /S Q •'iO3 •..7/X e .403 = /q..,03 ,o1/2 -- �f9� Ss 0,o /44 I t . J . . /1P/ y 1 .02 a .2S. I4cic S o.0o31 . l . CI = • 0/6f Y ,y4.o3 - ' 17. V7' - j cahscf A/ r . Qloo .- 22.72 X 99.07 49J _ / /20. S = • / / X Hay . y3 — /i r9 GK'S ..s"'..‘ = .09/J:' k / /Z .73 .. !'02 ctS. , . N ,e rz. / X 10 r er /`-- 2 ' / 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641-8777 , a h le g 26ite,00.40t, ate. _- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE re NO. I SHEET OF sre eT C4PQC/T/Er' I ,ElEA/ w. I /o/rrg3G 13 4 60 1-- r /? / " /8/ ` d i 7 1...... /c4 0/00 .Q1; 0.07 o.20 2% 4•4 Gtc AAP sr Qar i. 2.7‘. : Q/oo = C . 3(, '_ WP I.= /S. /7 ' WP - JO. 47 . 1 ;1: • /II Q - .. R is .321 • 43 S = O.00Jo .'. S 4. _ ,0894 SAP 0.0064 S %. . fi r ' AU.; ST. k a x x .'32/ = 2.)4 Y 99- 07x = tP777 0 Qroo ` • X = J:. sG X f 9.01 X .3S7 = .13.2.o/ (K) a r i7.771( , 0 8 ! _ J• es 0 too 2 z.o/ k . 01943 ..10 .7r crS 17.77)( .0114s 8. oQ cs , .132.o/ X .09/ f- ..1/.2c Gc.J' NA/$7 iialy 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 • ematJ CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT •SrdFi°T c4Pa47y 1 BY aEN w l DATE . t 10B NO. j3 t SHEET OF So ti 7 I ld /8 ' 7 8' /0' j /0' 8 4 'CA 0.2Si010o d / 0,14 0,/4r Q 42 i =1.9�' ,..: ;. ., d o d,4E.1_1 20 / Q o= f Oir d yY - a : t Kin = s. F� - P 4472 ..." !?goo Q a '1°7 , _ 0.2.41q- 1 = o..2.2 1 �.r R 3 3 = .125 Q36 .430 • 273 •.CGS' a x / _ 4F4. V 2 !1 -174 c 57 E.T • FULL simtfT. ..Q,s,CIz/.JG S( 99.o7X223 .d3.GJ Qss= 113. cP2c /, 640( 99.07,Y • 430 = G '• Q /WI/ /C q,eo = J•25 x ff. .. - //7. s2 TILT SECT /ON INTSR /04 Si 4 T3 /oYFaa /ooY.E4i2 c gs o . 0 / 4 0 S / 1 = . /I/ Y //3 SS = 13•I3CFS .a3J X 16/.1/ - /1 C4 S= 0.0/31 $4 •//26 5C113.5'5= /2.7 Co ./124 /L /.1/ -sr /8•45"' JC4LE YE 47 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641 -8777 . t r. • .. - .... - - • !• A,d w . n.....- ray- .+Pmald�. v +. -.. .,,...._ ...... a........ ,..... a hie g 20/00.014, Rite. _- CIVIL ENGINEERING • . LAND PLANNING • LAND SURVEYING JECT BY DATE JOB NO. SHEET OF S � -ST ffg CAR4C /73/ Ausr) . I lL 111) • I 942/ /t,,v I 33G / io' ?o ,. 2 O ,._ „ ‘7 � QJeo . 2% _ / Q� ° Qly o.aG/ d 2Y B % ! 2 47' 7y p , G.72 • Ake.4 = .s 1 . - AVE2,*S�oP4 _ 7- . 2 0 : 4 7 ' 1/ i or. ,k- Sfq, = '- K . o — >< R -3 k 4 U! ' • I. YV4Shl /N67VN LOOP X0,4D aloO V V4LUF .454 = 10.17 ' 10 .87Y I f• °7 x 0.50/ : X37. IA :A XT: W /P R — 0 .35"4 ,233" o.So/ . ' _ SriL r' h'a02.' / 3 /fl r yyQ7' / g m- . 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 AIM., ira hie g 2oieeotax, 9 tC. „.......„ (-- MEM CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF SrQt =' cdp4c/T/E.!' I 4'E Ni BY /o • -,(.6 33L6 I �_ /r,�' 15' . 3G' /4 , 24' /s' - _. d ' .24 1 i _ /2' /21 J- i n/ 44 G • 7' .(i / ' d.S` 0.38 // o ls Q a'� 2/ . • 2% . 8i/cA a'/ a Q 0 Q �O o �S Qwc 1 -. 4QEA ,.1.f) UE4 = 7S. 3 42E4 = 4. V. 42E4 - 13. Co WO 21 /1/7 . :WP = 5/. J:7 ; WP;_ /.9./7 . WP = ,39414. . , Q • . 2Se 'Q - :44 4 ' Q = ,. 2 Sd • 2 - ....1.4 45 - .4044 /2 = .44i • ; ,¢�, - • 4104 2 n = .. i#ef - .0/s . . Q2s /C = .. F7 x 99.07 x • 4.0 = /y, 9s.. - 1 I- afr QQ' o X = IS. 3o K 99 tC ‘114 = G )q. 07 G 3 • )� . . Q, 06 . le sr 13. Sox 17'°2 ,4,5 -= GSd. 4 . l• 3s AIy‘ 8E24 Y ,4V "Nla M /L L. ER WEAVE •SCdLE r "' f,/0,4/Z.• / a i . VFe7 /'= 2 ' 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641-8777 ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF 3711EET CAPACITY I LIEN W f /1 -.?/- 8G I .434 /ad } - t /2' /2' /2' /2 4 jx4 7 : IS a % 2% ' i 2/ . 41 J 42. Cis Oleo a = 4.9/ a • /9.40 wJ° =1141 gm= 45.9? ,Q . 2$4 4 = ► 42/ .3/3 = ' 464 ,Q O - • S(oA. Oar 4 d. 1/ .4 od s /9G.S2 Q/00 /C= /5.doye 99.07X. SGG /087 8 3 f/EI?/lQGE PQUJ /4 3186-L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626-4675 • (714) 641 -8777 .. Ni ftlee 1 . \ Ea h/e g 26ieeota4t, ate. -- CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE , JOB NO. SHEET OF .; `c r C4Ptu7/tod I Z�) k/ . I /o! q`1 I s = C . gt2P5l. CON0 /770N • • _ N 2L ' / — 2G — /,2' /L / o.6S 0•7P G Q1°° cuQg a 2{ , .. r ,., d"cA f 4.6 1 :,. ∎ /. S X . (ol' .- /v : x . _ : � 4. V= , o �: ,- S� /�s' 4.2S ' 4 ,fr-1 SF w j �,v r. ' -I- = ' k i1- + I.- : ..,'s. + .: • Ai- •- � . 6 . -• SC Qar 4854 + /•d2 , Qloo AIWA a .11.02 Mg = /8.1.Z WP Jr S3.4if 2 a .1St 2 = . JS'2 ,2% _ . 4o3. 43 , s19 • Cis = a- X / 4 Y4o2. = 4. /.t k gq.o ;% . �{os = /9/. 9(. k' Q J0 As a, X - Jr .t/ : ,21.02x gq.c)x . $t7 = /Qo /. L2 e S O. 004r4 • s li At . 0 2003 - • Qtr = /434 .1 Q,.o =' IoQ .88 S• Q.Qf S. s . //3/ ... Qh =1 /.7s i Q/00 • /57.5 ' ,--- Crn �.CCL 1 �' (ith,y/cot,),.),.//0,' 7� sC4 L & ,....- ,4 i2 : /".. /0 /a .2 31864. AIRWAY AVENUE • COSTA MESA CALIFORNIA 92626 -4675 • (714) 641 -8777 • - ?/4es 2fteotak, ate. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF STQSEr c l "4Uri5S I kEV W. I /o -2- I 436,c, s6' ' 8' .24 J a o BS co/0, 47.2.5v/--- -2S 4E051 L /NE • 2 % ok • % `f OZS 725' or ct 8 p d /. /4 ' Qtoo 4/w , 41254 = J' 75 SF 4,2E4 = 2/. wo • 23, / 7 wP = is f o, z-{P 2 = o, 37 o de ' -39'/ 0 1 /C =a X ,Q z %.4 a ss = 57sx 99.07 )e...14 = 224. (r') • Q J'oo s .21.75x 9� o7J� . s/s ' _ /i //.7 (') 624440 AVE 4/11 • "Og"' SCct L E / '& /Z . / 2o' / " =2' 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 a t e . fi r.. , 111111111111111. CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SU8IECT BY DATE 108 NO. OF sr,QEET Ce PdC/7'/ I e5,41 w. I a -2/.86 I 35 G 6 88 / �• O,00 Q2s • AulSr P4V4' .12 Q fiec , 0.26 °``'`1/00' a= /4 ..d3 a. A. S25 WP..21.1+7 ' W�° d� G7 Q • .24P = •3 } 2 /3 . , 47.d Q &d• .39i Q2• k = 5.25X 9q.o7X • if, . 207.0 • oleo i= /Q. 43x g9.07 X ' (,77.(.2 fQ 37 A VENUS 3186 -L AIRWAY AVENUE • COSTA MESA, CALIFORNIA 92626 -4675 • (714) 641 -8777 • IV. CAPACITY OF CURB OPENING INLETS IN A LOW POINT OR SUMP "fir✓ The capacity of a curb opening inlet in a sump or low point varies with the length of the inlet and the depth of water at the entrance. The inlet will operate as"a weir until the water submerges the entrance. When the depth of water is about twice the height of the entrance or more, it will operate as an orifice. Between these two depths it will operate somewhere between the two. • The nomograph (Table L) is based on the following conditions: A. The curb opening inlet (no grate) is located at a low point in the grade. B. All flow coming to the inlet must eventually enter the inlet and will pond until sufficient head is built up so the outflow through the inlet will equal the peak inflow from the gutters. The hydraulic basis of the nomograph is as follows: A. For heads (depths of water) up to the height of the opening. (H /h < 1), the inlet is assumed to act as a weir with the flow passing through critical depth at the entrance and following the formula. Q ■ 3.087 LH / B. For heads equal to or greater than twice the height of opening H/h > 2, the inlet is assumed to act as an orifice following the formula Q/L ■ 5.62 h (H' /h) This is a rearrangement of the standard orifice formula Q • CA(2gH) /2 with C ■ 0.T and H' equal to the head on the middle of the inlet opening (H' ■ H - h /2). C. For heads with H/h between 1 and 2, a transition was used as the oper- ation of the inlet is indefinite. Procedure: Enter the nomograph with any two of the three values H, Q /L, H/h and read the third. Where h • total height of opening in feet L ■ total length of opening in feet H • depth of water at the entrance in feet Q ■ total peak rate of flow to the inlet in CFS Normally Q, H, and h will be known, and the nomograph can be used to determine the length of opening L. The spread of the water on the street will depend r upon the cross slope of the pavement. -29- • ••• • • /0 � . ._ r • -- E 1/ /0 - 9 8 _a /0 • 6 . . • — 2 9 4 - .7 8 3 _ N.•$' `/,5 75 , \ b ' • • 6.5 y �fi'' -. - /.o (t. .9 s 6 ' y ' s .s 8 OA;'' f l•2 z' _ .8 t •6 Jan c --. 7 5 N , t+ O - G V i sitt — . ti • 45 , '$ • 3 r VI. ./ C1 4 k �, p�: % •2 _ - . 40';" •' q .08 C .25 3 .06 -•3 ,:,,k 4 V `a o .04 0 - .25 25 r .oj � � a 'N . I : 2 n • ./5 .0/ - .15 1 4 _________4,4 � .t.- . gfce ' . r_. —. —. —. .h H --1 GaNt rb .5 r, loco/ Deprrssaw fa) ./ /•2 TABLE L -30- Boreoa of P/ t e `cods . Abireyno4 fog toa0r. /;• c1 eutb G.6•is Tr a4 o Pbs» . 0.e7 9oemny We/s a/ /ow ,com's V. CAPACITY OF CURB OPENING INLETS ON A CONTINUOUS GRADE The capcity of a curb opening inlet on a continuous grade varies directly with: A. Depth of water at the inlet entrance B. Length of clear opening The depth of the water at the inlet entrace for a given discharge varies directly with: A. Cross slope of the pavement at the curb B. Amount of warping or depression of the gutter flow line at the inlet • C. Roughness of the flow line D. Longitudinal slope of the gutter The capacity of a curb opening inlet when intercepting 100 percent of the flow in the gutter is given by the formula: Q ■ 0.7 L (a + y) where y ■ depth of flow in approach gutter a ■ depth of depression of F.L. at inlet Sr L - length of clear opening To size an opening the following information must be known: A. Height of the curb opening. B. Depth (a) of flow line depression, if any, at the inlet. C. Design discharge (Q) in the gutter (information as to drainage area, rainfall intensity and runoff coefficients from which a design dis- charge can be estimated). Any carryover from a previous inlet must be included. D. Depth of flow in normal gutter for the particular longitudinal and cross slopes at the inlet in question. This may be determined from the street capacity charts. The capacity of a curb opening inlet is decreased by allowing part of flow to.pass the opening. A maximum of fifteen percent of the flow is recommended passing. , Procedure r A. Enter Table M (a) with depth of flow, y, and gutter depression at the inlet, a, and determine Q/L the interception per foot of inlet opening if the inlet were intercepting 100% of the gutter flow. -32- • B. Determine length of inlet L required to intercept 100% of the gutter flow. L = total gutter flow Q divided by the factor Q /L. C. Compute ratio Lp /L where Lp = actual length of inlet for partial interception. D. Enter Table M (b) with Lp /L and a/y and determine ration Qp /Q, the proportion of the total gutter flow intercepted by the inlet in question. E. Flow intercepted, Qp is the ration Qp /Q times the total gutter flow Q. F. Flow carried over to next inlet is Q - Qp. • -33- . . _. - . ......, , s....**** ,,.,, ,. ,,... ,,, ...........**...-.. .........,...s .,.. - , ,..,.....„.„ . . . • • DEPTH OF FLOW-y-FEET .01 . CZ .03 .04 .05 .06 .06 .10 .2 .3 4 .5 .6 '.0 1010 • --r- 1 . .1. - . I • .-1- -1 \-- r - - 1 - i - - I - -- --- 1 -- --- _ • - - ... 1 I ._ / . • .______i_._ : • ! /-/ , , ,......._ • ---- ka) DISCHARGE PER FOOT OF __I-4- ' I Yi ' 6 -J - _.,.. _I - - ,/ , _ • - ...17:ILLENGTH OF CURB OPENING d•--4-- - I , ///,.. - 3 --1- INLETS WHEN INTERCEPTING -- 1/ -r- • , 1 .4 -- - 1 - 10 0 % OF GUTTER FLOW - - ---- _....___ . i _i ......1 . .._ _. --. mu .2 . I •-■-•-1-•■•••.4-••■••■■•1Th.-.-•-••■ -■•••■• .1 / / / r . .7 • 1 • - • I I . / "1 • I i j 11 C (,4"'„,, / 1 1 I 1 1 • - , 1 _, 1 4 . .,. . 1 --,-- -<-r, , NM ; . . = NMI WHIM 1 1 1 III A . . . i / mum ... 1 , i MU 11111 I LI I __ 1 135 • - r - • • .04 --+- -4- / 1 • UMW gi - -I- 7 1 - All 1111fA .03 . • , - Aom••-e-7' -- --- - 7 -- / . • . • 1 • ; I =NV BIM Nft.s.-• .02 ' / j/ I / I ! I' ' .. . I .. • I - . I • /• /, • A --t-.I . / 74 I o f i I : - 1 7 I . '-' • / • '/ I • . / . A I - I I 1 ' I I • I I 1 I 1- -. .01 r • . . . . • • . • .• . • 1 I I.: I 1 1 1 . • - • • • i • 1 EMI . . -. • - . . 1 1 1 i • ' 7` / 1 a 1 .4 • • . 0 1 ...1: . 2=1_7=_ #1 . .6 • ( b) . 1 / 7 .5 . • PARTIAL INTER7 4 1-11 ' /7 - -- .. • A CEPTION RATIO. - Ii -- FOR INLETS OF: -: _1 r Pi/ _H. 1+_, i i _. . • THAN L • • ;.1 Iv / 4 1 . 1 r j / 0 / 1 1 I . -r . ; i . 1 • ' r . 1 1 _ . .05 .06 .08 .10 .2 .3 A .5 .6 .8 1.0 • •kwor. TABLE ' M . . .... BUREAU OF PUBLIC ROADS : CAPACITY OF CURB OPENING INLETS - I . DIVISION TWO WASH., D. C. -34- . ON CONTINUOUS GRADE . i Page G -37 t o 0 . t O N y O a a m 2 J I; 0 w , c -- c 1 - 4 U v J m M _ U W , 4 4 N U C m Vf U C Z u T 1. 0 f N 0 • s O O 0 c d ` • 0 O cn w 0 U v v • ., -, ti V 0 w v • C I-- • 0 • m C O O 0 C • f.) O Q U z W a M 2 a 0 Q o W Cr N U. 4.9 it 0 Z • y "2 c9 3 Y Cr W 0 o Q. 0 I. c V •r I D- 40 Page D-2 D-2 Required Data and Calculations D -2.1 Street Flow Carrying Capacity Submitted data shall include complete cross sections between property lines of streets at the proposed catch basins and of any streets which control the flow of water to the pertinent locations. Street cross sections shall indicate the following: 1. Dimensions from the street center line to the top of curb and property line. 2. Gutter slope at each catch basin. 3. Elevations for the top of curb, flow line, property line and street crown at each catch basin center line. 4. Curb batter. Please refer to Charts Nos. D -01 to D -08, inclusive, for nomographs giving street capacities for some typical street sections. D -2.2 Catch Basin Size and Type Size and type of catch basin shall be determined by physical requirements and by inlet flow capacities given in Charts Nos. D -10 to D-26, inclusive. Criteria used, if other than those recommended in this section, shall be cited and accompanied by appropriate calculations. D -2.3 Connector Pipe and "V" Depth Calculation D -2.3.1 Single Catch Basins o F o: O.S'Freebooro' :c ° a 9 H. £ for peal( f low . 0 Storm Drain fa: oss _ a: o' o ' • o, Hyd. Man. Page D -3 D-2.3.1 Single Catch Basins continued. Given the available head (H), the required connector pipe size can be determined from culvert equations, such as those given in King & Brater, "Handbook of Hydraulics ", Section Four, fifth edition. Chart No. D -30 can be used for a nomographic solution of a culvert equation for culverts flowing full. The minimum catch -basin "V" depth shall be determined as follows: 2 V C. F. 0 0.5 0 12 2 0 c 5 where V = Depth of the catch basin, or "V" depth, measured in feet from the invert of the connector pipe to the top of the curb. C.F. = Vertical dimension of the curb face at the catch basin opening,in feet. v = Average velocity of flow in the connector pipe, in feet per second, assuming a full pipe section. d = Diameter of connector pipe, in feet. S = Slope of connector pipe. The term 1.2 v /2g includes an entrance loss of .2 of the velocity head. Assuming a curb face at the catch basin opening of 10 inches, which is the value normally used by most agencies, and Cos S = 1, the above equation may be simplified to the following: 2 g /3.3 0 12 z 9 0 d Please refer to Chart No. D -31 for a graphical solution to the above equation for curb faces of 10 inches. Hyd. Man. T Page D -4 . • D-2.3.2 Catch Basins In Series r 17::11.:. - . - 4:::'0. 1 4 • C.F., Q 1 4 . 4, 1 ° ° •1----.- O.S 'iL1irl. Fi � _ • C. F.2 0.3'Fieaboo d a V, c ' :0 —,_4.-:i, _.... L:- ... . ,z2rd a H, a.: V a: - -- A dr 4 A : a �? V2 V2 ? r L Cos Si 10; 29 : Q H.G. for peck J V • 4' c :. :a :.: a ; ;') o . , ."form Oroin ' i d ./. OS ? , • a: - L/ 0 0 h Q L V ;„ • Select a connector pipe size for each catch basin, and deter- mine the related head loss (H1, H by means of a culvert equation, or by Chart No. D -30. The sum of head losses in the series shall not exceed the available head, i.e., • • H 1 + H 2 + . . . . + H n < H . , The minimum catch basin "V" depths shall be determined in the following manner: • 1. The first catch basin "V" depth shall be calculated as for a single catch basin: V, =/ "/. 2 Zg tdi Hyd. Man. Page D -5 D-2.3.2 Catch Basins in Series continued. • 2. The second catch basin "V" depth shall be determined as follows: d I/1 = C. F., "O.5 "A/, t /.2 29 Cos 02- G. Assuming again that C.F. 0.83 and C S = 1, 2 1/2 = /.33 , `11, "12 ? y � d1 -G 3. The freeboard provided for the second catch basin generally shall not be less than 0.5 feet and shall be checked as follows: V 2 °1 -/. 9 -G:F.1 Fat = V - 00.5 .52 If C.F. . 0.83 and Cos S = 1, err ` 2 V F52 1/2 d2 - /.Z Z g - O. 83 • Where especially "tight" conditions prevail, the 0.5 feet freeboard requirement referred to above may be omitted. In such cases the difference between the gutter elevation and the hydraulic grade line elevation of the main line will be accepted as the available head. 4. Connector pipes between catch basins in series shall be checked for adverse slope by the following relationship: 1/2. > V / - G The figure of 0.5 shown above is the standard 6 -inch cross slope of the catch basin floors. • Hyd. Man. 45 M■ ■ ■■■■■ MOM■■ u .M■M■■M ■■■M.OM■■ ■O■.■■■MOMO.O■■ ■.■MOO■ ■ ■MMEMM■ ■■ INIMME■■.■.!.■■■..■■■■ O■■■■■ ■■.■■..■ ■.O■■ ■O■■I:FM ■.■■.■.■■■..■!■■■. ■u■■.■u■■■■■■■.■■.■■■M■■...■■■■ ■...IMMMEM ■■■■■■■IMMOMM■■.■■■■■.■.■■■.. ■MUO■.■ ■■.■■■u ■O■■O■■.■■■■■■O■■ ■.■..■.■■!.■..■■■■■■■■■■■■■■■ ■O■■■■■ ■■■u■■..■■■.■■■...■ ■MUO■ ■!.■.■■...!■■!.!.■■IMEMEM■■■■ ■■ ■■■u■ ■O■■...■■■OM■M■ ■■.■■■ M■E MEME MM■■ u■ M.■ MM■ M.■■ ■ ■MM ■M■■.■M.O■■ ■M.■■O.O ■O■ ■!■!■ P■■! OO■■■.■■...■. OM■■■.■ ■...M.... ■..O■■.■ ■ ■ ■■.■■■■■■■■■ ■■■■■ ■■■■.■.■■...■....■..■■E IRME■. ■■ ■■ ■■■■ ■.!■■....■e 4• ■ ■.O■■M■ ■.■■■■■■■■■ ■. ■ ■O.■■■7.■I ► ■ ■.u■■ ■.■O■■■r ....... .....1..■....■.... ■..�� /I ■Iplum �'/■.O■■■ ■.■..O■. ■■ .■■■ ■O■MO■M■O.O ■O■■MOMM■M ■.O■■■■ 1■ ■.O. ■V, ■MM■■ ■■■MO ■M ■VA■OM ■■■■ ■■ ■O■■■■ ■.O■ ■■M■ ■■M ■M.■■■■ ■/1 1111 ■ ■ ■■■ ■'I ■■■ ■■■■■.■ ■..Pi■■ ■ ■■■■■ ■M■ ■■■.■ ■■O■■..■ ■■ ■M.■■ ■O. ■1I II ►IM ■ ■MOO■.■ ■■i ■O■■ ■■■■■ ■!■!. ■■.■■...■■.. ■■.■■■ ■■■■ mIAM■.■■A■■■.■■ ■O■■O AM ■O.■■ ■■.■ ■!! ■ ■.. ■■ ■ ■ ■ ■! ■ ■IMMOMM ■ ■ ■.■ ■I,■ ■M■■N■O ■.MOO■■ ■■ ■FAIM■ ■MO ■M■■■ ■■..■■ ■ ■ ■ ■.. ■ ■.■■ ■. ■.. ■ ■ ■■I1•1I..I.AU EMMEMM ■ ■■Fi ■■■ ■ ■■■■OU■■ ■■.■■■■.....■..■ ! ■...■ ■ ■ ■■IIlI11. ■./I■■■..■ ■ ■■■ ■rim ■.■ ■ ■ ■uSM.O■ ■ ■M■M■■OO■■■■O■■■■■ ■O■■ ■■OI'�/■ it ■■ /A ■MM ■M■■■■M�i ■. ■ ■ ■. ■ ■ ■ ■ ■ ■ 35.... ■■..■■M■ ■■ ■■.■u■■ ■■■..III / ■ 11 ■ ■11■■■. ■M■■O.IA.O■■OO■M...■ ■O■ ■.■■..IMMOMM■■.■■■.■.■■■.. I1M MOVa ■■M ■■ ■OMMr■O ■ ■O.M■■.■■■ ■M■ ■■.■■......■ ■■O■MOOMOO ■. ■ ■■ III■ 11 ■I/MOMMO!■■uUIMMOO■ ■M ■■M ■O■■■■ ■...■■1 millo ■■■....■.■■.// N11■ pr ■M!■■■■ ■MI ■ ■ ■ ■.■■...■■ ■ ■..■■ ■■ ■■uu.■ ■ ■O.■....■.uOO ■ ■■.,■I/ll■ VI.■.. ■■ ■■I. ■ ■.■ ■.. ■ ■M■■ ■■■MOO■ ■ ■■. ■.! ■■.l..REMMEM■ ■.. ■■Il■ 111■ 11 ,. ■.■ ■ ■.■I,M.... ■. ■ ■ ■.■■.. ■. ■.■ ■■.■...■■.■■...■■■.■■.■■■ I1/ 1■ 11 ■A■ ■■■ ■M ■MMEMM■M■ ■■MM!■.O■■ ■■ ■.. ■... ■ ■ ■. ■ ■.. ■ ■ ■. ■. ■ ■ ■■ 111■'■ IA I■■■■■■RAMOMO■■ ■M■■■ ■■■ ■■MO■■■ ■. ■ ■ ■ ■..■... ■ ■ ■ ■. ■ ■ ■. ■ ■. ICII I■■ %■ ■O■ ■■II■ ■ ■ ■ ■■ ■■■■■ ■■ ■ ■■■ ■■■■ ■...■...■....■■■■■■■.■■m ica■ nimm ■■I■■■■■■■ ■■ ■■■. ■ ■ ■ ■ ■ ■■ ■■■■■■■■■■■■■■■..■■.■■.■ Ilr/ lI■AM■ ■O■.'/■..■O.M. ■O■■■u!. 30 /■■.■■■■..■..■■ O..M.■.■■ 11/■/,.■ ■■■■/. ■u■■OO■■■■ ■..■..s.a■■■..■ ■■■..■■■.■.■■■..■■■■.■.. II■ MAMO MMII.IMOMMOMMOM■ ■.M ■ ■RA ■■M■ ■O■■ ■ ■.■ ■.. ■... ■ ■ ■.. ■ ■.■MMMUI./ X11■ /. ■VI.. ■. ■...... ■..■M/ ■ ■. ■ ■■..■ ■ ■..... ■ ■.. ■ ■. ■ ■ ■ ■ ■OMMI INAI I■■ ■ ■'I ■O■■ ■M■.!■ ■■■■WAMMO■■MOMO.■ ■ ■.. ■.■■M■ ■ ■ ■ ■ ■ ■ ■ ■u.■■ ■1/.11/ ■11.1 ■ I..O■■O■O.■■■MO■I.AM■ ■■.M■OU ■M■ ■.■... ■■.MuM■O.u■ ■■■ ■ ■ ■I I'/'/i.11 ■l ,a.■. ■ ■. ■. ■.■■.nl.■.■.■■■... ■■ ■ u■■■.■■■■■■■■■ O■■■■.■■/ I, 11. umu li■■ ■..■ ■...!■/A■....■.. ■■O ■ ■■■ ■ ■ ■. ■■.. ■ ■N■■■ ■■■ ■■■■■N I11O1WINIM. ■ ■ ■OOMM ■R AMMO■.■■.■ ■■O■ ■■■ mmillimmilMMEmmilmminimmoMMIVIMINFAIIMMEMOMMAIMEMMEMMOMMIMME ■.....■■....■ ■.■u ■ ■O■.' III ■II■'%. I1 ■■ ■■OMEMPIMO. ■■.■■■■ ■■ ■ ■■u•M ■■ ■ ■O■ ■.O.■!■. ■MMM.. ■ ■ ■I m min I■ 11 .. ■...■I,A■■.. ■■.■ ■■ ■ ■ ■.I.00 ■ ■■ N ■■. u■■ OU■.. u■■■M■■ M■■ 11/11•/A1 ■II■■■u■On1■OOO ■■.O■■■ ■■MOO■■■■.■ ■. ■.M■■ ■M■ ■■■ ■■MMEMMI I/. I.' / ■ ■ ■I I .....Pi. ■ ■ ■.. ■ ■.O. ■M.■■.■ ■.. ■ ■■ ■.....■■■.■■...■■..■.'' i■■ R..■■ 11 ■.■ /L ■O■M ■MM■MMMM■MMM■OO■ ■MO■■ CV ■■■ MO■■■ OM■.■..I M■■ UVI 1■/ IM■■ MI1 ■■ /A■ ■.M■■■ ■ ■M■.■ ■.MO■ ■ ■MU■■■ ■■■M O■■■..■. M■■■■■■■ CIIM UO■■■■: 1■ I,A ■MMEMMEO ■OM■.■■ ■.■■ ■O■ p ■■■■■■■■..■■■■■MMEIM Oi/a il■■ O■■I,A ■ ■ ■ ■ ■OOM.O ■M ■■O ■.O■PTSAMM M■■ ' ■■....■...■■.■■■.■■. 1VA; NI■ i■■ M1■O.■uO■■ ■NM..■■ ■■./i 20■•■ ■■ ■■■•■■■■■■■■■ ■I 1I11.11MMIMIOM■ ■M.■■■■ ■O■■O ■InimM ■■ ■■■■M■■ ■■MOO.■■.■.■■■■■■■■►! ■%11.11.11/. M ■M■■u.O ■u ■ ■MOM■■RW■■!M■■■ ■.MM■■ ■.■■ ■■■■■■O■■ ■O■M ■ ■/II ■ 11■ 11■! I.■ ■ ■ ■■uO.■uOM..■Ri.■■■■■ ■.■O■ ■■O■ ■■■■.■■! . ■■.■■UO■OI.I1i1.i1■IIIAI ■M ■■M■ ■MOM■■■■ /i.■ ■O■■ ■MOM ■MM!■■■ ■MOO ■.O■M ■I■MOUM ■. //'/4IIMII ■I :■ liu■ . ■ ■u■■ ■OU■P5M■ ■MU■ ■■ ■u ■ ■ ■■■■■.■ ■...■■M U.■ O.!■. O■■' 111 1. 1► i1■ 11■■ . ■... ■!. /.I. ■ ■ ■... ■ ■..■ ■ ■ ■ ■■ ■ ■■ ■■■■ .O■ ■u.MM ■ ■..O//.'I ■PA ■ ■M■■ M■.i/! ■.O■■ ■MM ■MM■M■.MM■MMM ■■..■■■■ O.■■ M■■■■/ iri■■ IA■ I. II■■ .. ■■■ ► %O ■■M.■ ■.M■■ ■■. ■ ■■■■■ ■.O■ ■ ■.... ■ ■ ■■■M ■■■■■I/ IMO I ■■■Il■Iu ■■. ...■ ■.M..■■ ■■ ■■uu■u.■.■.M■ ■■■■ ■■ ■ ■ ■. ■! ■ ■ ■■M"ll1 ■'I /.. ■ ■II ■IuI 1 ■ ■ ■. ■. ■ ■ ■. ■ ■O ■ ■ ■ ■ ■ ■.. ■! ■ ■ ■■ 15 ■■O■ ■■.■■■■■■■■■ /1I/■ /■■.■II■ IRA ■ ■■■M■ ■ ■O■ ■M■■■.■■ ■u■■■■■.■■■ ■ ■ ■OMMEMM■ ■u ■ ■ ■■/IO/ MOM■ O■Ii : .■■.■ ■.■uOMMOMEM ■M.■.■■■■■ ■..O■ ■MOO ■MOO ■.O■■uu■►1■'I/I.I ■. ■. !A/ l ■ ■■■ ■O ■. ■■■.■ ■! ■ ■M■ ■OI..■■■ ■ ■O■ ■M ■■■ ■ ■■■ ■Mil ■... it uiiM11■■ ■W ■Mil.. ■u ■M...■ ■MOO■■.■ ■MM.■ ■.MOO■.■ ■■ ■ ■■ ■ ■■!M ■!uu ■NIII ■IIuIIMP %■ ■■ II ■■■OMOM■■.■I■■..■U ■ ■ ■ ■. ■M■■ ■O■■ ■■�I iuu11OIIa ■■■ ■II■ ■ ■.■ 1Ny 11', ir :, i kir ■.M■■ ■ ■■. ■ ■ ■■ 1111111111011111MMIIMMEMWARMICIMIMOMMUMOMMEMENIVEMMIRMINEMMINIMMEMEMSMO ■ . ■..■ ■ ■■■■ ■O ■V1.'I.'!AluMil ■. ■.11. ■. ■..■li I M aEII,1O■ ■. ■ ■MM■MOO■■.■■ ■ ■■■■■ ■..MMINIM /'1■II.I.11■il■■ ■ ■II ■O■ ■ ■■ ■OOO ■ ■■.■.MIS■■..IMMEMM ■■ ■ ■ ■ ■ ■M ■■ ..■ ■ ■wmummM■II■11. ■■ ■111 ■■..■■e.Il irmamTrEI:M.00O.OMOO ■.■ 10 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ I III ■' .■■■ II■ I ism .■ 11 ■M■u..■■ ■.■.M...■ ■■ ■0......■■.■ ■■ ■u..■ ■ ■M■■WI1lYiI ■.■ ■11.11■■ ■ ■I I ■M■■■■.■ ■ ■M■■.■■.■MUMO ■..O ■M■.■ ■ M■■■■■ M■.■ ■1/1'i.i1MI ■MII11I ■M■ ■11..■ ■M/; II)1I J■ ■O ■ ■ ■O ■■ ■MMM ■M■■■ ■■ ■■u.■ ■ ■■..■I/r,11Oli ■■ ■■!lull ■I ■■ II ■ ■■MU■■. ■.■M■■■ ■.O■ ■■..■ ■■■u ■u■ ■■..■. ■■■ ■■Id, ■II ■11■I,■!i ■IIOI ■Mil■ ■ ■ ■MMM7T ■'1rr'rIa1r u;T7 mmingrt1 ■■ ■. ■O■ ■O. /OO7d11'1■ILIIIM IMIIO■ ■Mil!■■.. ■. ■ ■ ■O.NOMOO ■ ■■ .■.■ ..u■ .M ■■■M ■.O■. % 1■ I■11■IIU■ I■lIUI ■■11■■■■■UO7Ttrir: �ir'rinit I i A■ ■■ ■...■ ■■U■■ ■O■O.'IO/M.uII.IIuu■■11■1 ■■11■O■O■ ■■■■■MOO...■.■■ ■■■■ ■ ■■ ■ ■■ O O■ O. l/ 11■■ O■ I■ IIO OMMII./!■ IIO O■ ■■■.I■MO.O■■.PVMMM■■O■■IIMOM■ ■ ■O..■ ■M.'/ ,u/ IOM.■■■ 11. ■M■11■11■.ILOO ■. ■!IEIMI.■: :u t.t9!'.Y ir1.iI.1. ■.■ 5 ■■■■■M■■ IAI■ 11■ ii.■■■ 11■/O■li ■lIuuII ■■.. ■ ■■...■ ■u..■ 'IOM ■ ■■■■.■.■ ■■ ■■■■■■■/ A` 1■ 11■ II../. iI■■.■ Ii. il. ul lu ■..M ■u....■■■M.■...O■ ■■■ ■ ■■ M■■ ■■...■ ■/I /1■'IOIIu.M■II■I ■.Boil ■.II ■■■■ ■ ■. ■.■u ■ ■..M■■■=.■■ ■ ■■■ ■!■ ■ ■ ■ ■ ■■■AI. ■ ■ ■I IOM ■ ■I l■ ■ ■■! I ■11 ■Ml i..■■ ■■M■ ■.■ ■ ■.OM ■.M■ ■ ■. ■ ■■O■■■ ■ ■ ■u■III.IIOM ■OI I ■M ■ ■I1■■ ■■ /O11 ■uI1. ■ ■ ■■O■■ ■.■■MOO ■.II■.■■■■■ ■■OOO■ ■ ■.O■■► /uu. ■ ■ ■1Iuu ■■II ■■ ■■ I■ il■■ 11 ■■■ ■■ ■..u.M. ■M ■.O■■■ ■M■■■■ ■M■■■ MOO ■..1.11.1 ■■I1■■ ■.11 ■I ■■ 1.11■ ■I I■ ■O■M.■M ■O■ ■MOO■ ■■MOO!■■■■■ ■O.■ ■■ ■■ ■Iuu 1.i ■ ■I I ■■ ■■11.1 ■■ I■ 11■■ II ■M...■■■■ ■ ■M■uu..■! ■O■■■.■■■■ ■■ ■■■ ■.Iiu■ I.1 M.11ri ■111111 I1 1911■ 111 ■M■■■■■■■■ ■■O.■.■■■■.■■.■■■ ■O■■ D -31 ■.MMP ?i.?V.'AWal■WASil ■f -1144 IVAIMMI11 ■■■■■■ ■. ■O■.■ ■.■■■.MMM■ ■M■ ■MO■■ 0 ■■■■ial ■r i.ri■alar li titlawma iYf11■ III. ■!. ■O ■■■■ ■ ■! ■ ■ ■ ■ ■. ■. ■■ ■ ■ ■■ ■.■ ■■ ,,, 2 3 4 5 6 7 8 "' V -DEPTH (Feet) Los Angeles County Flood Control District CATCH BASIN V -DEPTH LENGTH (FEET) Los Angeles County Flood Control District 0 25 50 75 100 125 150 175 200 000.. DESIGN OF SPUN CONCRETE Page G-35 CONNECTOR PIPES FLOWING FULL ---'" H . ./ 0.6 Q 3 0.7 7 (2= AVFTI / 0.8 1 0.9 .11.2+14— D 1.0 \ \ 7 9 10 \ ,....... , 20 USE D=27" 3.5 4.0 \ 30 \ 35 . 5.0 \ 40 \ 50 -- --• 7.0 60 T . 9.0 80 10.0 90 'VS • 100 - 6 1 Free water surface Catch Area A H Hyd . grade line Basin 1 ..,..... LL 1 Storm Drain ‘4400.- ength 0 25 50 75 100 125 150 175 200 4 , --- • L...,_ D-30 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON SAN BERNARDINO COUNTY (SBC) �,... 1983 HYDROLOGY MANUAL <(((<((((<<(<<<<(<<((((((<<<<((<<(((<<>>>>>>> > > > > > > > > > > > > > >) > > > > >> > > > > > > > > >) (C) Copyright 1982 Advanced Engineering Software CAES] Especially prepared for: HALL & FOREMAN, INC. <<(<(<<<((((((<<<<<<(((<(<(<<<<(<((((())>>>>) > > > > > > >) >)) > > > >) > >) > >) > >)>) > > >> * * * * * * * ** *DESCRIPTION OF RESULTS************* * ** * ** ** * * ** * * * * * * * * * * * * * * * * * ** * WATERSHED NORTH OF BASELINE RD. BETWEEN ETIWANDA & SAN SEVAINE * * * Q 100 * AHMED SHEIKH, J. N. 3366, 1'/29/87 * USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.470 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4700 SLOPE OF INTENSITY DURATION CURVE = .6000 SBC HYDROLOGY MANUAL "C "- VALUES USED <<(<((<<((((((<((((<(((<<((<(((<<<<<(<>))>>)> ) >) > > > > > > > >)) > > > > >) >) > > > > > > > > >> Advanced Engineering Software CAES] SERIAL No. A0580A REV. 3.1 RELEASE DATE: 5/01/85 (<<<(<(<<((<<(<<((<<<((<<<<<<((<(<<<((>>>>>>> > > > > > > > > > > > > > > > >)) > > > >) > >)) > > >) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 1.00 IS CODE = 2 ) >)) )RATIONAL METHOD INITIAL SUBAREA ANALYSIS((((( = = = = = =________________ ___ =n = = == __ ___________ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 1000.00 UPSTREAM ELEVATION = 1302.00 DOWNSTREAM ELEVATION = 1300.00 ELEVATION DIFFERENCE = 2.00 TC = •533*[( 1000. 00 * *3) / ( 2.00) ] * *. 2 = 29.255 Nftw 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.262 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5719 4hIROPFO RIIwnFFfr"FRl TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) 12.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5 �- > > > > >COMPUTE TRAPEZOIDAL- CHANNEL FLOW < < (<< >)> ))TRAVELTIME THRU SUBAREA(( < << UPSTREAM NODE ELEVATION = 1300.00 DOWNSTREAM NODE ELEVATION = 1295.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 650.00 CHANNEL BASE (FEET > = 8.00 "Z" FACTOR = 2.000 MANNINGS FACTOR = .022 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.94 FLOW VELOCITY(FEET /SEC) = 3.21 FLOW DEPTH(FEET) = .45 TRAVEL TIME(MIN.) = 3.38 TC(MIN.) = 32.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 8 )) )ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <( < <( 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.118 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5531 SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 17.57 TOTAL AREA(ACRES) = 25.00 TOTAL RUNOFF(CFS) = 30.51 TC(MIN) = 32.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** { FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5 > > > > >COMPUTE TRAPEZOIDAL- CHANNEL FLOW << <<< > >)> )TRAVELTIME THRU SUBAREA((((( _ UPSTREAM NODE ELEVATION = 1295.00 DOWNSTREAM NODE ELEVATION = 1287.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1200.00 CHANNEL BASE(FEET) = 8.00 "Z" FACTOR = 2.000 MANNINGS FACTOR = .022 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 30.51 FLOW VELOCITY(FEET /SEC) = 4.18 FLOW DEPTH(FEET) = .77 TRAVEL TIME(MIN.) = 4.78 TC(MIN.) = 37.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 8 ) >) »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW((((( == =_ = === = =o= == =_ = === == =coo 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.951 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5277 SUBAREA AREA(ACRES) = 32.00 SUBAREA RUNOFF(CFS) = 32.95 TOTAL AREA(ACRES) = 57.00 TOTAL RUNOFF(CFS) = 63.46 TC(MIN) = 37.42 ** * * ** * * * * * * * * ** * * ** IF *** * *'i( ** * * ** *'1I **** 1F***** * * * * * * * * * * * * * ** ** * * ** ** * * * ** * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 5 > > > > >COMPUTE TRAPEZOIDAL- CHANNEL FLOW( < (<( ) ))))TRAVELTIME THRU SUBAREA((((( ~____. 4-_-__~'~'`�°_^~~ ----_~_'_~~-__~~-���-~_`___~-~ ■ -_--_ ~_`___~ -_^~_°_. -- UPSTREAM NODE ELEVATION = 1287.00 DOWNSTREAM NODE ELEVATION = 1282.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1100.00 CHANNEL BASE(FEET) = 8.00 "Z" FACTOR = 2.000 MANNING8 FACTOR = .022 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 63.46 v�,-/ FLOW VELOCITY(FEET/SEC) = 4.62 FLOW DEPTH(FEET) = 1.30 TRAVEL TIME(MIN.) = 3.97 TC(MIN.) = 41.39 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8 >))>yADDIT%ON OF SUBAREA TO MAINLINE PEAK FLOW(((({ ================ 100.00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.837 SOIL CLASSIFICATION IS "A" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5076 SUBAREA AREA(ACRES) = 37.76 SUBAREA RUNOFF(CFS) = 35.21 TOTAL AREA(ACRES) = 94.76 TOTAL RUNOFF(CFS) = 98.67 TC(MIN) = 41.39 ====== = = = END OF RATIONAL METHOD ANALYSIS ,4 ^00= �~ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>)> >>>>>>) >>>>>>>>)>>))>) >> >>>>>>> (C) Copyright 1982 Advanced Engineering Software CAES7 Especially prepared for: HALL & FOREMAN, INC. <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>)>>) > > > > > > > >)) > > > > > > >) > > >) > > > > > > >)) * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FOOTHILL STORM DRAIN HYDRAULICS * * M.H. #10 TO C.B. # 140 * * AHMED SHEIKH, J. N. 3366, 1 /7/87 * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ( DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: y NODE NUMBER = 1016.34 FLOWLINE ELEVATION = 1031.00 PIPE DIAMETER(INCH) = 72.00 PIPE FLOW(CFS) = 341.89 ASSUMED DOWNSTREAM CONTROL HGL = 1202.486 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>> >>)>>>)>)>>>)))>>)>)>)>>)>> >>>> Advanced Engineering Software CAES7 SERIAL No. A0483A REV. 2.2 RELEASE DATE:12/17/82 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>)>>> > > >) > >) > > > > > > > > > >) >)) > > > >))) >)) _ PRESSURE FLOW PROCESS FROM NODE 1016.34 TO NODE 1031.00 IS CODE = 1 UPSTREAM NODE 1031.00 ELEVATION = 1195.73 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 341.89 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 14.66 FEET MANNINGS N = .01300 SF= (Q /K) * *2 = (( 341.89)/( 4235.095)) * *2 = .0065170 - HF =L *SF = ( 14.66)*( .0065170) = .096 NODE 1031.00 : HGL= < 1202.582);EGL= < 1204.852 >; FLOWLINE = < 1195.730> PRESSURE FLOW PROCESS FROM NODE 1031.00 TO NODE 1034.25 IS CODE = 5 UPSTREAM NODE 1034.25 ELEVATION = 1195.73 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 338.6 72.00 28.274 11.975 0.000 2.227 2 341.9 72.00 28.274 12.092 -- 2.270 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 - (2( 3. 3 = = =Q5 EQUALS BASIN INPUT == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DV=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3) Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00639 DOWNSTREAM FRICTION SLOPE = .00652 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00645 JUNCTION LENGTH(FEET) = 3.33 FRICTION LOSS = .021 ENTRANCE LOSSES = .454 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = .043 MANHOLE LOSSES = .114 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .087+ 2.227- 2.270+( .021)+( .454) = .589 NODE 1034.25 : HGL= ( 1203.214) ; EGL= < 1205. 441 > ; FLOWL I NE= < 1195. 730> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM rt N W V W Z !\ v h ~ q t y 4JC � '� c 3e� Z0 O Ct i0 p. eh R c41 41 (0 kJ ti N k'' N N �� V 4 1 I--CC ZZh 'T h N N 4� O e 3 ZQ �—i� • W N ^ V Q W tJ �4 0� Q i\ �! a p W p 1' V V- V co x- fn g a `L O J o . ' ›- I � Ili '� 0 � C ? � 93 ^ p t Od e , V Z CD ctl 00 cc q k I-. ck, . V i 1 -1\1 L (I i CPs p -,T % 3 v ■ W W r I r \ ( ' \ S. > O ! ♦• vfib v 4�� \ " ? % e ' •r I ` l j l X I :: f 4 � / �/, l !� i A IIi 1 � �' : ' ` S ill:' �;, ' o , k i t ' !. r l iI a i ♦ 1 � �; ,1 I ii , ` i'�iik :i \ O N k - • . , lI , ?;: ' � 'I lit 4I , ,, �� l ►` ) Creek, ii....... , %I. •.„-- / ! t, "4 _ .7,, ,',., it ,•„„; . / '14 , "", at <le \ ." '‘ , k g d . 7 1 " .. 't i'i;' :'6)'* rh1 !r ill "in 1 SS i .` :. .. . S , l \ \ \� / O .I `\ tki c) • • • • • • • • • ' ` . ...... '.� 4.. • � ' Albs ' �',+ - \ \ q : := k = j : ° o , \ \ 111 1, ' "(Tim' N W '' II II I o i t N olsc il tis> - c`' , it • . O d h Oy � \‘' �ti e- , I I cn • • 3/,e, II II T • i ?_ _ I I II - I w : 8 : • • • a i . II �' II I. „Q • II ,I • , is:Iiiv3 • II 1 ' ` ti A: \ .' L ;r I ,