Loading...
HomeMy WebLinkAboutTract 13325-4 Storm Drain Hydraulics T CI1'Y'OF FONTANA Felipe Molinos rli 4 PRINCIPAL ENGINEER 8353 SIERRA AVENUE, FONTANA, CA 92335 (-7141'350-6641 HYDROLOGY AND STORM DRAIN HYDRAULICS T RACT 13325 -4 PREPARED FOR CITATION BUILDERS JUNE 1988 This report is divided into five sections: SECTION TYPE OF ANALYSIS STORM EVENTS WATERSHED AREA (years) (acres) 1 Rational Method, Existing Undeveloped 2, 10, 25, 100 10.12 2 Unit Hydrograph, Existing Undeveloped 2, 10, 25, 100 10.12 3 Rational Method, Developed 2, 10, 25, 100 8.19 L 1.93 4 Unit Hydrograph, Developed 2, 10, 25, 100 8.19 Flow-thru Detention Basin 2, 10, 25, 100 8.19 Unit Hydrograph, Developed 2, 10, 25, 100 1.93 5 Rational Method, Developed 10 15.02 for design of main line storm drain Summaries are located at the beginning of each section. The unit hydrograph analysis in section 2 is required for the existing - condition to compare the existing condition outflows with the developed condition outflows from the temporary detention basin. This comparison is summarized prior to section 4. The total watershed area for the detention basin design is 10.12 acres. Due to hydraulic constraints, the flow from south of Sandhurst Street (1.93 acres) is routed around the detention basin and the flows are added together at the outlet from the detention basin. Because the computer program for unit hydrographs specifies a minimum watershed area of 10 acres, that value was input for the area, and the values of the hydrograph were prorated for 8.19 acres prior to user specifying into the flow -thru detention basin program. The unit hydrograph for the 1.93 acre portion was run using 10 acres, then prorated for 1.93 acres. The detention basin is designed to comply with the City of Fontana Detention Basin Policy and Design Criteria. This temporary detention basin will have approximately 0.27 acre feet of storage with a minimurn of one foot of freeboard above the 100 year water level. In section 5, the main line storm drain is designed for the 10 year storm event based on the rational method. The watershed areefor hydrologic analysis is 15.02 acres. This includes 4.9 acres from the north of tract 13325 -4. When the storm drain network is completed downstream of tract 13325 -4 lateral C must be removed and the remaining five feet of lateral B completed to connect to catch basin #2. Lateral D should then be plugged or removed. Catch basin #1 should be unplugged. The detention basin and its outlet structure must be removed prior to development of the two lots on the south- east corner of Beech and Sandhurst. SECTION 1 RATIONAL METHOD ANALYSIS EXISTING UNDEVELOPED CONDITION SOIL TYPE: A LAND USE: NATURAL COVER "BARREN" TOTAL AREA: 10.12 ACRES SUMMARY STORM EVENT 2 YEAR 10 YEAR 25 YEAR 100 YEAR Q (cfs) 7.19 12.76 15.30 20.34 Tc (Min) 20.81 20.81 20.81 20.81 Tc (Hr) 0.347 0.347 0.347 0.347 069X0316 2 T ii maw. W hs N'ED 11o01J UGTcn ,b agrn � f .. �� �� G u,G -/-f, Cu �� /7676,"4, r �o w7►fiEt, fQym i7r0l/7 . /rfe 1 F fvrut& beveLefea GoNo1noW 5 . M41 �� M411.1 LINE. Tt P WAN 5 .,4I 0 ' 2`, � WI I -., ,:.L. to. 100 , , — flenttt.N tokletslieb ticONDAIZI I. I' ( 4040' 4/45 ± — - !DP ` , '43 1 S 3 3 4II 4 . . �. ,, 77 • I .. Ill a i I i 1 I Ill n = arAthilkE31111=11111.11 , / Z , � 337 330 3 4 ‘3,/€"-. :'I , . - t 4 ‘ .30. ,,,, r ' kng I = € t 5 . - f ) -- 0 alio \, €?1 le ' , , , : �333� =hi .,: Cil 54".:. ,...€ moo air M 3 = - .0 3, ,...� 4 V , ' } , 4 .se ., _s il k' . 0 , 4 ‘ e :) . ' C Z i 22 . . ‘... ,,,,,k., :z. , i , . , . ‘ si • ) ' : (3 r - 3317 ' , ra ti=°. . . , i ?lit ?IV, ‘221? 349 .' ... i ... ' 1 11 1 111Wij_IPPLY1111111W-1:1;T: I ii-kif_1111•1110119111.0 , " , s . 301 jar INIMI Sgt .... , , lir ..., , r-----.1 . , 1 ,_. r,....____ j i . , I t 1 1 -".."." ''.....2' • . 44 .............'" ,01 , 0 ,.. , AONIMR• ' AO* 1 .0 .0 ,, /110111111. ' • - • ,:x , , Nillope Ir F k.iiiMiw pr 0 is -iiiiiimi ri pi tri ../ .20/111,4 F r s u rn 4.1 \B, y': I at•k t F0E_ RR`TI31JAL rrAETHau ANhi -ststS Ekl t'J( CowDIT10e1 1 330 A MS scams STTZE=:r 2.21 MASS 2.40 MRCS 1 3' SAN blhUfcS r ST. 1•93 PA'S 1 TTrht. WPThZSItf.O Mg& 10.12. /OGRES ' RKTIONlkL fET►4ob N IDROLO61 AWNL`151 E . M T I NG U N DEVELOPED Cc*%J 1TtON fi Z \IR 1kMCZ ANLI CN= (D F (v C -3 ti CI CN 4'1.5 IPSO L C -1 Fm =ap F a 1.0 % pERVtUs = l00% F =0.8 C- (� 4 F I F = (1,o)(0.g , f) = 0, =� to GN S= 1000 -10 = 11.05 4n .5 _La= 0,2 S 1 I = (0,2)(11.05)- 2.2 I _ Y (p24-i)2 a P2.4 -la Y= (3,5- 2.2))Z 1 0.o 3 5 (3.5- 2.21 + II. 05)(3.5) Y� I Y ( - 0.0385 = . q� F A _ I _ R 0 , 1 3 R,_ FRnm C -5 r 24 1- . 13 0 614 E 9 RR h1ETHOD H- D R0LOG'/ kNJ L \1S is 1 EXIST► G U Ni)E\c E l _ o p r a ) Com D t flow to ye. 1 C Cyr = (off F fG c-3 1 m = a p F P Fp o,59 -FRom- C - - ° dp � % p�v�vs I Fm = 6,o)(0 6-a) 1000 (o 1 CN 5 = j 000 _(O 4,61 ' col S a - 0,2 S I a = (0,2)(4 = 0.9 1 \- (24 P (p - T P2,4) 1 = (s- 1 ( 60,25- , 6 185 + 4.93)(6 1- `f 45 = 0, 565 Y po( /- k R = 2,r) FIG C -S 1 Pz4 1 I- 2 _ 0, 57 6, 1 1 Ei \TION PcL fl ETH D H I DI20LOC4 A-N.kL` 6 L-XlST t M 6 UNYDCI CoN D�T1oN 1 25 \IR- 6'7 G- 3 F = ap Cf a � , = I , 0 l00% Peevi u S p = o , sq ��m C -, 1 _ (I .0(o = 059 1 S-= 1000 l o cNi 5. loo° _ 10 4. g 3 _ 0.2 S 1 —� (9,21)(4-. o, g85 .tea �2 1 Y Z4 1a ( p - �� + ) (P 1 4) \ f= (.5 - 1 ( ( - o.Q f- 4A3)(6,50) o . 448 . ( 0. 448 = 0.552 1 F _ 1- R g = 2 , `I F/G C P • F I - 2 0 1 1 1 RPTionrAL map - 1- - H DEO LOGY A AL* I - -1c.lSY UIJ(6 VGLUft 0 CU NDIRON I too Ne_ AMLTI AmC I:c cm= 6e7 F -3 1 konc I[ CN = $4, -fLE C -► gym ap Tp arc- 1,0 L oa pFtz\Itcr5 F P = 0.3 Flom. C- 1 S= - (.1\1 I 5-- loon _ Ib = I.$2 $ q- ,, (0 1 =a 0,2 5 S' (0,2)(1.82) _ ,364 1 z \( " (P2-4- - SaJ 1 _ P 1 1 (q_ 3(04+ 1,532 (y) 1 . 1- i II F Qp M r* _ I - R R - T1 C -5 p - 2 4 ,I 1 - ?I 11 _ 0, 21 9 5 1 E E e _ 1 1 TABLE C.2. Fm (in /hr) VALUES I FOR TYPICAL COVER TYPES SOIL GROUP 1 COVER TYPE A P O) O B C D 1 NATURAL: iS 1 Barren (DM) tn0 0 0.41 0.27 0.18 0.14 Row Crops (good) 1.0 0.59 0.41 0.29 0.22 I Grass (fair) 1.0 0.82 0.56 0.40 0.31 Orchards (fair) 1.0 0.88 0.62 0.43 0.34 Woodland (fair) 1.0 0.95 0.69 0.50 0.40 1 URBAN: 1 Residential (1 DU /AC) 0.80 0.78 0.60 0.45 0.37 Residential (2 DU /AC) 0.70 0.68 0.53 0.39 0.32 I� Cpl,Jolo Resid (4 DU /AC) 0.45 0.34 0.28 Resid ntial (10 DU /AC) 0.40 0.39 0.30 0.22 0.18 I Condominium Mobile Home Park 0.35 0.34 0.26 0.20 0.16 0.25 0.24 0.19 0.14 0.12 Apartments 0.20 0.19 0.15 0.11 0.09 1 Commercial /Industrial 0.10 0.10 0.08 0.06 0.05 1 NOTES: I (1) Recommended a values from Figure C -4 (2) AMC II assumed for all Fm values I (3) CN values obtained from Figure C -3 (4) DU /AC= dwelling unit per acre 1 1 C -16 L 1 1 1 TABLE C.1. CURVE NUMBER RELATIONSHIPS n CN for Corresponding C N for AMC Condition I AMC Condition II I III 100 100 100 I 95 90 87 99 78 98 85 70 97 80 63 94 1 75 57 91 70 E)c1 5710 G —' (0 45 47.5 83 8 4,C. CO ) (2) tTIO 0 60 40 79 55 35 75 50 31 70 1 45 40 27 65 23 60 pJELoPC-,D _ 35 3 19 55 52 CDIJD1�no* 30 15 50 25 12 45 20 9 39 15 7 33 I 10 4 26 5 2 17 0 0 0 1 C.6. ESTIMATION OF LOSS RATES 1 In estimating loss rates for design hydrology, a watershed curve number (CN) is determined for each soil -cover complex within the watershed using I Figure C -3. The working range of CN values is between 0 and 98, where a low CN indicates low runoff potential (high infiltration), and a high CN 1 indicates high runoff potential (low infiltration). Selection of a CN takes into account the major factors affecting loss rates on pervious surfaces including 1 the hydrologic soil group, cover type and quality, and antecedent moisture condition (AMC). 1 Also included in the CN selection are the effects of "initial abstraction" (Ia) which represents the combined effects of other effective rainfall losses I including depression storage, vegetation interception, evaporation, and trans - E piration, among other factors. C -10 li 4 l i 1=1 •1•11. 11111" .11. •11N 1 = 1 = 1 a Mi OM 11111111111 =igli M M ME 12 11= E MI V II MO i i, '' I 1•MI•MOO•1••1•1•1•10•111•••••■••••1•1•MMISEEMI=Eincm====== 1 tttttt�.�..r.•r=II I = L RIM•1111.. ■ .ttt��tntttttttt 1 tttttttt� . ttts ttt► = M�-�q ______ �r.r EN& r ..uttw-r 1 1 ttw� ■ �.- ■ttttt- • _ ► ttt��tttttt+� VENOM VIM ■ 0 2 2 2 i I umulummum.....ms=mmenkl.....7=11...........wil Ammo pm awl mom = Imiciiiihmie Ns . mom a. !wow iskl maw gm= •■••■•• MAIM ••=11k• •IIII••• MIME MOM W•11j1I ems ammo =owes sump mom maim Imams rN —pp.�m Yttrttyrpo�r7.r�.et1ur. N 1 t1.M - �w� tt � m ow— tp_ .0 rt►rttmm►sea.mrrmrr mu BERME =TM AI E ,_,,,_ s ,_) ...• l0Z q VWr _- �ttttttt.INitttt`:• BMWEWE - i•• ttttttM1M ...sou =t► ttttm.. .. ..t►w.L...Tiw.n.,� Moo. � r i Elk 1 MIME MEWS ighetillalialnalikikkantilli 1� a EZE o ,��� Z 3 MX inlIZENIMISHINIEI �? 11�� a SMII11,11=1:1011111Mil ' II =113 IIIMINEResimmiltha.noin 111 4) CC I w MI I WIERMER i ICEME.111 0 ...Z ..... - i �► :C. 1 wikaMitti A , =pi iES .mail a• 0.11C..16V CC NEON IMO•11 . mom =mov aanurtgE m oglE=r1 —:sb 4' 1 - IMERt 1 nESENWIlal 0 wei Ecallm,..tazga ., • •■-•4 l',. + MM. , v t-- I Ma i ELIKINE r-2 is, m ili., 4 k __am ,, =.7. p-r-r= A I MOM= 1 at 'o 1 -74, Lti Tr _ j ? � Ili =Mal rr■1 =II .ttrrarttAZ Pil IL.; ' HE 1 i 1 1 II ,. l! 1M Kr 77. tc:7 MI _-..: : - . . : : : . -: !--, -, MEI HElhaalln =,_::;,,,-.:_, 1 _ � D_ I` _ ail • ,rem ....:::.. , I im 0 . :: fin..: 0 O1 to o� vr rn N - 0 0 r 1 - r 24-HOUR STORM RUNOFF, R(INCH) M a- r .' i N N S C S 24 — HOUR STORM SAN BERNARDINO COUNTY RAINFALL— RUNOFF HYDROLOGY MANUAL RELATIONSHIPS C -13 Figure C-5 I Curve (I) Numbers of Hydrologic Soil -Cover Complexes For Pervious as -AMC II Quality of Soll Group Cover Type (3) Cover (2) A B -� D NATURAL COVERS Bien 78 86 91 93 I (Rockland, eroded and graded land) Chaparral, Broadleaf Poor 53 70 80 15 I (Manzonita, ceanothus and scrub oak) Fair 40 63 75 81 Good 31 37 71 78 Chaparral, Narrowleaf Poor 71 82 88 91 (Chamise and redshank) Fair 33 72 81 86 1 t Grass, Annual or Perennial Poor 67 73 86 to 1 I E.l 571 N 6 CON D 1 71 (' Fair 50 69 79 84 Good f 38 , 61 74 80 Meadows or Cienegas Poor 63 77 85 88 (Areas with seasonally high water table, Fair 31 70 80 84 principal vegetation is sod forming grass) Good 30 38 71 78 I Open Brush Poor 62 76 84 88 (Soft wood shrubs - buckwheat, sage, etc.) Fair 46 66 77 83 Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predominate. Fair 36 60 73 79 Canopy density is at least 50 percent.) Good 25 55 70 77 I Woodland, Grass Poor 37 73 82 86 (Coniferous or broadleaf trees with canopy Fair 44 63 77 82 density from 20 to 50 percent) Good 33 38 72 79 URBAN COVERS - I bEALLopeL) CoN\:)■ -11 Residential or Commercial Landscaping r Good 32 56 69 73 (Lawn, shrubs, etc.) 1 Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good 33 38 72 79 I AGRICULTURAL COVERS - I Fallow 77 86 91 94 (Land plowed but not tilled or seeded) I ' SAN BERNARDINO COUNTY CURVE NUMBERS FOR E , HYDROLOGY MANUAL PERVIOUS AREAS Picture C -3 (I of 21 1 I. 0 * UN i 'VE ) - , • P' 1110` Nm din 't'MO G s4- o _ ■L •••• ••• O ■ m...■■ 1m■■ u ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■aa ■ ■ ■ ■q■ ■ ■r�...'4 III (N1 • a ■ ■■■■1■ ■ ■ ■ ■al■ ■al■ ■■■■mail■ ■■1•a■■■■ai■ /i• ■Y'i ■ r • Z ■■■ all■ N■■■■ N■ ■■■■aa■■1■ ■ ■a ■■ ■■ ■ ■ali /a / ■ ■'I ■■ ■ ' I-4 N11•1111uu1 ■ ■11 ■ ■ ■■H ■■=11.111■ ■ ■■Pi■ ■ ■11■'4■ ■/1 • C G m■ m �II �■■ MISN��■■■■ ■ia ■■■■ ■ ■■ ■ ■ ■♦f! /■■ ■ ■ ■I' /■s ■1 11 • z m■a■■■ ■ a ■m■■NEIm `. Z • al aa■1 ■a■■ maim ■a ■ ■■ 1111 ■■a ■■■■ ■ ■Ii■■■■■NN■Via ■■ /■a 24- : 0 ■■u ma il ■•■um■ ■• • ■•■m■ /ilia■■■/,■■■ 0 Z ma ■ ■ •••• •••lg•••••••••al�.•m■•■••■m►.■■7■•■►Aa■■ cf z. ■■ ■■■ Y■■ Ilu ■■ ■ ■ ■ ■ ■ ■■P/ ■ ■�N■t■■/ / ■ ■ ■_ ■ /� ■ ■■ 1 ■■a ■ ■■! ■■■ ■ ■■ 1111 ■ ■ ■! /■ ■■1 ■ ■ ■ ■■I.MM■ ■ ■ ■ ■Vl ■a ■■ . ■ m CO aN■ aa■ al■■■ a■ a ■ ■■a ■ /iNm ■ ■■ ■■ ■ ■I.�� ■ ■■■II■ ■l■ • z aa■■■■ a.■■■ a ■■a ■■■■.a■u■■■■ui.■.....w/■■■■■ f • m 0 �iim ' ° ivaiiv iiiiii 2 4 • "I 1 - w■■■■ENIa■■I■■■aIII■■■ l/■ ■■■u ■••∎••• ■■■ a 0 • 11 o >. tttl■■■■■■■ 1.■■■■■r i■■■■� =■■aam�■■■ria■■■■� ■ ■II, ■■■■■■■ t t, V : IL. a 2 ■m =om J a■■■■■■■■ 1 ■■ rVA ■■■■■■w�l■'.■■■■u■■■rM■■a■■■1 0 W u■■r /a■■ ■ ■■■■1o►i■1■ ■■■■llmiro ■ mil rn •" ■■ m■■ a■■■■ p•/ a ■ ■ ■ ■■1aOa/.a •■a■■a■•NWAs■a ■ ■■■■ II m U ■■■ m■ mr■■■' Amra ■■m ■ ■w■/Ia ■ ■ ■ ■ ■m■■ ■Lma ■m■ ■am■ 1 Z 'O V 1__. ■1■ ■ ■■■■ ..,.■1■ ■ ■NU ■. ■■a1■ ■■ ■..... ■■t■ ■ ■■ s ■B�mi■ /�.0a 1111 ■u■■ ■IIMEm■■■ ■ ■ ■ ■■I.V ■ ■■■.■■■ = V ■ Z 2 (Ng- ■N■■�/.■I■I■■■ 1111I•/1t�■ ■aaa■■1WA■1■1 ■s■ ■■ W U 4 ■ ■ ■ ■ms//■1mrm1�1 1111 ►.■am ■ma■m■amlr.m ■■■■m■ ■■■■ 1 , 4 c a n ■ ti i■ �� m ■■ m sa ■ ■m■ r.m■m a■■■am■'�■ ■■■■ ■m■■■■ m ■■ moral■■ mm • .�■ ■mmml ■m■■■mml,■a11 ■1■ ■■ ■■■■ 3 2 0 0 W • • 1 ■ F imIY■■ mm m>rI■am ■m■ ■m■■ ■ ■ ■' /m■ ■■■■a■■■■■ 0 Q u 1L . ■I.■w1 ■t■■�■ ■I ■O�� ■ ■ ■ ■I.■■■■ ■■■ ■■M ■ ■■ (` X ■I / ■■I� ■a►A■o ■1■■�■ mmml, mmo = = = = =um.= . t ► ■w ■ ■II■INIM■L ■ ■r ■0IMIII■■p ■ ".n■imiiim omm W 1 ■I �■w11■ r, 1■m■m■m■mI ■■o •m n uN■■■■■■I■■■ 5- _ amid ■� ■Y■u1=Iiaw IN■■■■■■■■■■■■■ z ■ ■ ■II ■ ■11■IPI111 IIIIIIRENIIMISIREMAINI I ■uN■■■oYN■ 111 ■ ■ ■N1 111■11•111111■ ■■■a■■■I■■/ ■ •■■I■■■■a /AW I■■a■■■mml■■■'4• I ■■■■■1■■■m■■■ a. ■ ■■aa ■a 11,=11 =IMMUNE/Anil I•1•■ ••••ol.m■ lamml■ ■l.mm■I•I ■ ■ ■...N ■IA■ ■■ ■ ■■ Iml■ 1 111 ■m■ ■■ 1' ■■■■I■■ INI ■■ m■ ■ ■■■■ ■... CZ ■■mr•n m■rl■I.■ u•uN �i1/N�1 1n■■■naM,■■■ IMI■■■■■■■••■>.■m 0 W ■ ■■u■ ■•/ ■N■ 11■ ■I ■1 I lu A 1 ■•■a ■ ■ •••••• 2 ■l■ml■ ■ ■ ■ / / ■■■■ 11 • ■mri ■•■■11111 1 •1111E■m■ ■ms.■ ■■I■■ IM■■ ■ ■ ■••••■••• M ■ ■■■ ■m ■ ■I ■■ ■■ 1Eual1 ■a ■■•■I 1••••••/Il.ENE■ IW ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■■ Z ■11=11 /A1U•■• ■■■r1 ■111■m■I 111111 ■lr.1 ■mu■ 1 ■■ ■11=11= ■■m j a - ■■ao■■' /■■■■■ u■■r um ■■■al I■a■11■■I•■■■■■1■ I ■■■■a■a■m n ■ ■ ■■■I 11111111•1•111• ■■IO ■■0.1■ ■I 1■ ■m1■ ■ ►4■■■a■1■■ 1 M ■■ ■ ■ ••••••••• W ill w , ■■ ■a■Imr.aaal ■1■ 11■' /au •■■1■a ■I 1■aa ■ ■/.I■■a .. 1 a••■••••••■••• 1 _ •••=111E /111111111••• ■r ■■a.■ ■ ■ ■m ■1 1 ■ ■/N.'I ■mmI■m■ ■■ IM■■ ■■ ■a ■■■ ■ ■ ■■ Cr 1 I 11 ■■■iIti 1111111•11. �;'i••■a■•■IlI 1■•i. /,•.=111!• 1 1111■■■ 0 I 0 _ c ■WEIR lla■■■Ii ►.•uua■ua■I 1v�r•■a�ma■as 1 0) 1111■■ to 0 (Jr ■ ■c7,a/■ •m[ti H•••••••■■111Erti'Il••mrmulm 1 C.3 u. ■■a■■ y 4T1- - G - .. ■■�11 ■ ■a■/.d. Um■■■■11■11■1■11/Nz/.■11■■u■11 ■ ■I I N 0 MENU ■■ ■■; Ir /■■■ ■\'I 111■■■■■■■ ■1 11670••••••1111•11111•111111 7 ■•1111■ ■u■■ 1aa■ ■ ■r,■ ■■ ■a■■■ ■amt l■ ►i■ ■■■1amlal■a■ 1/ Z sca WI N i st ■man ■N ■I ■'I■ 11•••11•111111111•1••1 1r.0 ••■ate■ •au■ 1 ' 0 ca WIN C I -_r u1M m ■■mm'AU■ ■m ■mum■ ■u ■ d••••••••01•1111111111 !; 0 0 0 ■■HE 1 '' W ■11■al l■■■1I ■ ■■ ■■■1w ■mNi■I.1 11.11■■■ ■o1■ . 1' W _ mum 0 I, 1 I amour I111 '1ll■ ■■■mal■a ■•il •II1•••••••••••••• 1 ■male 0 2 • a N■I.•1111IA■■■ ■■■■a■■m■r. ■I I■■■■mmmmmmm■■m I' ■ 2 a CO (0 ■■■■■ Tr a u sum u ■r,■■■■ ■■a■■■m■a1,a■I 11■■1■ 1 m a. Emma ■■•111 ■ ■11' /■ ■m■ 11■S ..VB ■1 I ■m■.■C ■■ I.. N = Z 111.••• MOW ■1■ /111■■■ IUma1/•• I ME■I I11•1■1m ■mu■ i ; W a — ■■a■■ Cr, N ■ ■1uaI■ o1m■■ ■1■■1►41m1•■1I■111m1 ■■a■■ 1 ■■I■ ■■ ■■■rl■■. ■1■ 111■■11mI/1■I 1 1111 ■ ■ ■■■■1 ■• ■a■ 1 4 2 J O■■ J ■■ ■11■r ■ a■■■ i■ R 4■l 1■ 1 ■ ■ 11 ■ ■■ v ■mat l■r1N■■■■ uam•/amu■■■1 11■ ■■■■■■■■m■■■ 1 ': F 1111■■■ a/ UN 1■■ II■ ■m■■ =■117.11 am�■m .i musesn umiume I co Q Z .....1 /A 1J — , ,� NMI MI ■1111■■■■ I IVAP 1•••=111111 1••••••1111•1••••••1 1 .. CO J ammo 0 Q ••• ■■r 1■w■ ■■■ Miran im■ •■NI 1■UR■ ■oar■ •■a■ 1, w 0 W 4 lam M .7 ■1■ ■111lm ■ ■m■■ =' 11■■a ■m■1 1■■■ 1111 ■ ■ ■ ■m■ (.., .I CC �•■ r -J • ■a■ •r1 ■a■■■■■ a► .m■1111■ ■■ml l •1■1s■■■n■ I o p 0 ■ ■l ■■ ■1111■ ■■aIi I,I■� Im ■■■i Im■■■Nm1■■■■ 1 z ■a 1 ta- L. � C 111 m1 11•1111111111111/ . / MOM= 1•111•1•1111111=11•••••••••••• 1 MIMI 1111■ Y ■■mmI ■/"I n ■ ■r t■ ■• t 1 ■■■■I■■laa ■ ■ ■■a 11111 •11111•111••••1111••• UN 11 •••1111•1 o■■■• 1 ■ ■■1111■I Ilia ■ ■u ■■ ■ ■ ■■ nu ■■aa■■ ■■■ a- mu 11 l■■■■/ ■■ Nam = 1 ■■■mr ■1 1■■ar■ ■■ma■ ■■ ■■ IaIEm ■•••••■ ■ ••• u- I L f 1 - 11111 RN Il•PA 11111•••11 ' •• ■ IC:■M 0 1 _ Q 0 1 . 0 1 pti CO II) '`. M ' N _ 0 • INFILTRAT RATE FO PERVIOUS AREAS (Fp) Inches /hour 1 FIbC 1 INFILTRATION RATE FOR SAN BERNARDINO COUNTY PERVIOUS AREAS VERSUS HYDROLOGY MANUAL S C S CURVE NUMBERS 1 1 ************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ' (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) ' Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: EXIST . DAT 2 le 5T0 en'1 TIME/DATE OF STUDY: 16:24 6/21/1988 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 I SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 I 100-YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1 -HOUR INTENSITY(INCH /HOUR) = .6355 SLOPE OF INTENSITY DURATION CURVE = .6000 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLO PROCESS FROM NODE 1 TO NODE 2 IS CODE = 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< II NATURAL POOR COVER ' TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 I ELEVATION DIFFERENCE = 10.23 TC = .525 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 20.806 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.200 ' SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA RUNOFF(CFS) = 2.35 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 2.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< I 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.200 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 I SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 1.63 EFFECTIVE AREA(ACRES) = 5.59 AVERAGED Fm(INCH/HR) = .410 TOTAL AREA(ACRES) = 5.59 PEAK FLOW RATE(CFS) = 3.97 TC(MIN) = 20.81 1 * *.*.*.**** * * * * * * * * * * * * * * ***.* FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8 r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.200 "SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 1.85 ' EFFECTIVE AREA(ACRES) = 8.19 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 8.19 PEAK FLOW RATE(CFS) = 5.82 TC(MIN) = 20.81 fi F * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.200 SOIL CLASSIFICATION IS "A" 1 NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 SUBAREA AREA(ACRES) = 1.93 SUBAREA RUNOFF(CFS) = 1.37 EFFECTIVE AREA(ACRES) = 10.12 I AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 10.12 PEAK FLOW RATE(CFS) = 7.19 TC(MIN) = 20.81 F END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 10.12 EFFECTIVE AREA(ACRES) = 10.12 L PEAK FLOW RATE(CFS) = 7.19 END OF RATIONAL METHOD ANALYSIS 1 1 1 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ' (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: EXIST.DAT to ye. S-f01?m TIME /DATE OF STUDY: 16:20 6/21/1988 i = USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _ -- *TIME-OF- CONCENTRATION MODEL*- - g USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 " SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 I 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = .9595 SLOPE OF INTENSITY DURATION CURVE = .6000 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< "NATURAL POOR COVER I TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 I ELEVATION DIFFERENCE = 10.23 TC = .525 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 20.806 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.811 SOIL CLASSIFICATION IS "A" I NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 SUBAREA RUNOFF(CFS) = 4.16 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 4.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< I 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.811 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 2.89 EFFECTIVE AREA(ACRES) = 5.59 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 5.59 PEAK FLOW RATE(CFS) = 7.05 TC(MIN) = 20.81 ti t * * *'* * ***'A'**** * *** ** ** *** ** * * *'A*** ****** '** **** * **** ** *** * *** *** *** ** *'A** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8 r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< II 10 YEAR RAINFALL INTENSITY INCH HOUR = 1.811 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 3.28 EFFECTIVE AREA(ACRES) = 8.19 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 8.19 PEAK FLOW RATE(CFS) = 10.33 TC(MIN) = 20.81 " ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « « < _ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.811 SOIL CLASSIFICATION IS "A" I NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA AREA(ACRES) = 1.93 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 10.12 AVERAGED Fm(INCH /HR) = .410 I TOTAL AREA(ACRES) = 10.12 PEAK FLOW RATE(CFS) = 12.76 TC(MIN) = 20.81 F END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 10.12 EFFECTIVE AREA(ACRES) = 10.12 "PEAK FLOW RATE(CFS) = 12.76 END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 1 j F { 6 ` 11 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE ' (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: EXIST.DAT L� �I2 SToem a1GN7 TIME/DATE OF STUDY: 16:22 6/21/1988 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 I SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 I 100-YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1070 SLOPE OF INTENSITY DURATION CURVE = .6000 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « < "NATURAL POOR COVER I TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 I ELEVATION DIFFERENCE = 10.23 TC = .525 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 20.806 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.090 I SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA RUNOFF(CFS) = 4.99 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 4.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 'FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8 111- >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< I = 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.090 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 I SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 3.46 EFFECTIVE AREA(ACRES) = 5.59 AVERAGED Fm(INCH/HR) = .410 TOTAL AREA(ACRES) = 5.59 PEAK FLOW RATE(CFS) = 8.45 TC(MIN) = 20.81 * * * * * * * * * * * * * ** **************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8 r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 1 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.090 SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 3.93 EFFECTIVE AREA(ACRES) = 8.19 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 8.19 PEAK FLOW RATE(CFS) = 12.38 II TC(MIN) = 20.81 I ** ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< IF 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.090 SOIL CLASSIFICATION IS "A" "NATU POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH/HR) = .4100 RAL SUBAREA AREA(ACRES) = 1.93 SUBAREA RUNOFF(CFS) = 2.92 EFFECTIVE AREA(ACRES) = 10.12 AVERAGED Fm(INCH /HR) = .410 1 TOTAL AREA(ACRES) = 10.12 PEAK FLOW RATE(CFS) = 15.30 TC(MIN) = 20.81 F END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 10.12 EFFECTIVE AREA(ACRES) = 10.12 L PEAK FLOW RATE(CFS) = 15.30 _ END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 f 1 tF olommilmmir 11 ***** ************************************** ******************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE I (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 I Especially prepared for: * BETA TEST SITE EVALUATION ONLY * L I FILE NAME: EXIST.DAT goo ye. 370?--M �r T TIME/DATE OF STUDY: 16:23 6/21/1988 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: II -- *TIME -OF -CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 I SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 I 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = .6000 II ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1 TO NODE 2 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< NATURAL POOR COVER I TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 ELEVATION DIFFERENCE = 10.23 ** .20 = 20.806 TC = .525 *[( 1000.00 ** 3.00)/( 10.23)] s 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.643 SOIL CLASSIFICATION IS "A" I NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA RUNOFF(CFS) = 6.63 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 6.63 * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 8 I » OF SUBAREA TO MAINLINE PEAK FLOW« « < 1 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.643 • SOIL CLASSIFICATION IS "A" I NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) = .4100 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 4.60 I EFFECTIVE AREA(ACRES) = 5.59 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 5.59 ▪ PEAK FLOW RATE(CFS) = 11.23 ▪ TC(MIN) = 20.81 IL ***** *********************************** *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 8 1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « < 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.643 I SOIL CLASSIFICATION IS "A" NATURAL POOR COVER "BARREN"60 SUBAREA ALO RRATERATE, Fm(INCH/HR) =3 .4100 SUBAREA AREA(ACRES) ' EFFECTIVE AREA(ACRES) = 8.19 AVERAGED Fm(INCH /HR) = .410 TOTAL AREA(ACRES) = 8.19 PEAK FLOW RATE(CFS) = 16.46 TC (MIN) = 20.81 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < IF 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.643 SOIL CLASSIFICATION IS "A" I NATURAL POOR COVER "BARREN" SUBAREA LOSS RATE, Fm(INCH /HR) _ .4100 SUBAREA AREA(ACRES) = 1.93 SUBAREA RUNOFF(CFS) = 3.88 EFFECTIVE AREA(ACRES) = 10.12 AVERAGED Fm(INCH/HR) = .410 1 TOTAL AREA(ACRES) = 10.12 PEAK FLOW RATE(CFS) = 20.34 TC(MIN) = 20.81 IF END OF STUDY SUMMARY: TOTAL AREA(ACRES) 10.12 EFFECTIVE AREA(ACRES) = 10.12 "[PEAK FLOW RATE(CFS) = 20.34 END OF RATIONAL METHOD ANALYSIS 1 SECTr41 2 UNIT HYDROGRAPH METHOD EXISTING UNDEVELOPED CONDITION TOTAL AREA: 10.12 ACRES FOR SMALL WATERSHEDS LAG = Tc PER CHAPTER J (SAN BERNARDINO CO. HYDROLOGY MANUAL) 1 SUMMARY STORM EVENT 2 YEAR 10 YEAR 25 YEAR 100 YEAR Q (cfs) 5.13 9.07 11.36 16.06 1 1 I 069X0316 6 1 I 6 TRACT 1 3325 -4 PROJECT: FoNTANA - PHA E - 4- DATE: ( /e, I GITPr11N E0II.DE ENGINEER: - b,. �AKi1B owsK I - 1.. LS r i N G U N I)E C LDPC 1 1. Enter the design storm return frequency (years) 2 2. Enter catchment lag (hours) LAG = T. 0 , 3 ¢ I 3. Enter the catchment area (acres) l 0 , 12 1 4. Enter baseflow (cfs/square mile) 0 5. Enter S -Graph proportions (decimal) 1 Valley: Developed (.0 Foothill Mountain I Valley: Undeveloped Desert 6. Enter maximum loss rate, F (inc h/hour) n , 41 7. Enter low loss fraction, Y (decimal) o . 1(17 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* O. 1 1 Enter watershed area - averaged 30- minute point rain - fall (inches)* 0.44 I Enter watershed area - averaged 1 -hour point rainfall (inches)* O . 65 I Enter watershed area - averaged 3 -hour point rainfall (inches)* /, 25 Enter watershed area - averaged 6 -hour point rainfall 1 (inches)* 1 Enter watershed area - averaged 24 -hour point rainfall 1 (inches)* , 50 9. Enter 24 -hour storm unit interval (minutes) 5 1 *Note: enter values unadjuffed by depth -area factors 1 SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM E - 28 Figure E-7 1 ((qo 13 TACT 1532c) 4 t PROJECT: FONTA( N R PI-1.A St 4 DATE: G/82 I GiTPTIo'i Buli,T• -115 ENGINEER: "p • 7PrK uF,) \51(J z P S711JC, rJki t'A1E —i- 1 1. Enter the design storm return frequency (years) 0 I 2. Enter catchment lag (hours) L PsCD = Tc, 0 . 347 3. Enter the catchment area (acres) 10 1 4. Enter baseflow (cfs/square mile) O 5. Enter S -Graph proportions (decimal) 1 Valley: Developed _12___ Foothill I Mountain Valley: Undeveloped Desert 1 6. Enter maximum loss rate, F (inch/hour) 0 , 41 7. Enter low loss fraction, Y (decimal) O. (oS 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0.2 2 1 Enter watershed area - averaged 30- minute point rain- fall (inches)* 0.63 I Enter watershed area - averaged 1 -hour point rainfall (inches) * 0.9 5 I Enter watershed area - averaged 3 -hour point rainfall (inches)* Ia 80 Enter watershed area - averaged 6 -hour point rainfall 1 (inches)* Z, 5 4 Enter watershed area - averaged 24 -hour point rainfall 1 (inches)* t 2.5 9. Enter 24 -hour storm unit interval (minutes) 5 1 *Note: enter values unadjusted by depth -area factors 1 SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM 1 E - 28 Figure E7 1 I (Ro l3 •TR -A-c. /33 2 5- 4- PROJECT: Ro n(TA- N A P44 k S 4- DATE: to l e i < i TTlok) RI )i L'F S E NGINEER: 'T . - J/k K-U 1300 S e 1 i 51 r kJ 2n14:7 Eto 1 1. Enter the design storm return frequency (years) 2 2. Enter catchment lag (hours) L/ = - r - c _ 0. 3 4 7 I 3. Enter the catchment area (acres) 10 , 12 1 4. Enter baseflow (cfs/square mile) 0 5. Enter S -Graph proportions (decimal) 1 Valley: Developed 0 Foothill Mountain I Valley: Undeveloped Desert 1 6. Enter maximum loss rate, F (inch/hour) r) .4/ 7. Enter low loss fraction, Y (decimal) 0, 552 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0. 24. I Enter watershed area - averaged 30- minute point rain - fall (inches)* 0. - 7 4 I Enter watershed area - averaged 1 -hour point rainfall (inches)* /, 1 I Enter watershed area - averaged 3 -hour point rainfall (inches)* 2, 60 Enter watershed area - averaged 6 -hour point rainfall 1 (inches)* 2, q 8 Enter watershed area - averaged 24 -hour point rainfall 1 (inches)* 6 i 50 9. Enter 24 -hour storm unit interval (minutes) 5 1 *Note: enter values unadjusted by depth -area factors I SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM 1 E - 28 Figure E7 . 1 , i I 6, 6 70 13 !F- r i732S- 4 PROJECT: N7Ar(V A P.+P s C 4 DATE: 6,13 g I GiTA-'T1ON 3UIL1 &2. ENGINEER: 7, T 1k4i r o cu ;,t / AXIS -Ut-(D U■IY�ICt�PEU 1 1. Enter the design storm return frequency (years) 'no I 2. Enter catchment lag (hours) LAS Tc_ n. 347 3. Enter the catchment area (acres) lD, ( 2 1 4. Enter baseflow (cfs/square mile) 0 5. Enter S -Graph proportions (decimal) 1 Valley: Developed /, 0 Foothill I Mountain Valley: Undeveloped Desert 1 6. Enter maximum loss rate, F (inch/hour) 0.4/ 7. Enter low loss fraction, Y (decimal) 6, 2 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0, 32 1 Enter watershed area - averaged 30- minute point rain- fall (inches)* 0 . 9 2 I Enter watershed area - averaged 1 -hour point rainfall (inches)* /1 40 Enter watershed area - averaged 3 -hour point rainfall I (inches) * 2 , (D 0 Enter watershed area - averaged 6 -hour point rainfall 1 (inches)* 3, - 75 Enter watershed area - averaged 24 -hour point rainfall I (inches)* 9, 0 0 9. Enter 24 -hour storm unit interval (minutes) ,5' *Note: enter values unadjusted by depth -area factors 1 SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM E - 28 Figure E7 - I r---.., � _ _ 1 e 1 :+ . J , ;;z I _, � _ 1 _ I I = I _ 1 - I I H A 1 - ( - e _ -4 it 4- " - ""� 1 I 11 ° 1 II IN I I I a IL f — x 1 1 � _� _ 1 �W i_ = 1 Et I 1 1 1 \ 1 1 1 d 1 —} . -� N a co + 1 1 3 1 e r � I 1 -- ____-_7 i I _ Vd -% ices it I . 1 _ 1 I, -- �- - }- - t ,-� I , , - - : , I 1 ! I �� 1 I - %! .N T a I 1 tibk �, - �- . ' 1 1 1 =� l \ ` .1 11 I t f \ I 1 I 1 \ , • j � ., W I ii r ) I .. 1 r I I I I • � , , I I ...0 I ' ,- I r � \ . 1 ) 1 .St IrO �' i� I , <I t 1 , Q ' r S , S I , 1 / Q , . g i . N_ ' ...)„,,, ', , �' `� =_ 1. i 1 w 1 1 1a I_:I • o ct . U 1 I r \ ` ii - ..7_ • y o Y N r i t 1I . i • 1 1 1 r 1 eft c 1 1V I°b . ! `i wi N N.,N‘�. , • 1 g n! r I F a I + I 1 + I ..... I ; 4 'i q` � ,, %%+�'• -' i 1►; L Z D _ 1 Cr 1 41 3 0 ,2,1 ' \ \ 1 , 1; " ''"5 .: I ( 1 A ] 1 I D I / . • , ,,,k I I ri I !I , '• :•.„. IN R.M .„ � , I _ I C3 Z - Lt ,1 • - - ' ,_1_____ ._ 61 - I 1 .� - I �}- "+ _ `,� ' , � _ I J- / h r h it Ij I - - I 1 I "4" I I �w��1 :11k l I • 3 Z I I� I ` ' >. �� , I `J, i J!, r i I y � % �' , W 1 1 a Ig grarkiv Z ci I I I 1 : J I, .., tt reo . - I - 1 , - '' , ...1 Illihms . . . 1 en x .4 4- --- .-- - - I— '4 1.140 i . - 4 1 .P" . " 1 ' .• ' - 114-4041#4111 .f_ : . '7 " I li A ' 's\ f -- I . , 0.` - It ,.... iiii 7 ` -_ ° ' i f► i 1 � r o � r na ' /.� �, „ ril ,„ Iirimillor . I _ 1 r 1 1 ° 1 ( 1-1 Zs_" ier (1 1 �, w. J .ow - r l Q T' 4! ck ; . t 1 I i 1 di: 41 a .111.11Perogrfic_,r,,, :-,1:: r, # 7: ;\ - { I 11 I ' , I •. I , I OC , .194L1 a 1 r 6 \ r'° J t i i Ills (1 I !II `., cr . .i ayisa � „ •l , no .1 i : ' , I I I I I utakir � - - - - - � m le . 1 t I 1 I l lac } I rt • 1 � `� �� I I I I I I I 1 ��� I 1' I �(^�, 1 — I I 1 I ' ; v, II h 1 / 1 1 N I I 1 I r. 3--+ - _f 1 r 1 - 1 -} t - � r ,-- I I _ 4 - -� - - 4 - - i J II g! N � 7 4 ( - —g 1 I" ` ° � ' I = 1 I 1 I I �' Z I / h +_ � �� M to I 1 i � g I k �' I I �' Y M I I , ' � . I / I I s 5 u N •• 4 1 I I �� � I ti 1 ' \ > I : 1 I I .•` I j v„` • ■ I 6 .11„ _ W i R I w t : 1 I ' I . ► is 11 0 fl W + O I 11 1 J I I . T re alituali \tit. & 1 1 Ar i --! i w t l I � s N O _ . , 1 r . • t .,r` \ 1,9 Z w F CO liol I . �\ 1 lif t I ` i 1 I I I I \ I� ac c fil r T 1 T 1 1 ` - , \-, � r 1✓ a w I ^ i ;, I 1 a .. I .'40i i J - i 1 o -:'/"_, V ' 4ii . HI' • ' 4 \ . I ' I W _. 1 . r (I r i b � I 1 t I�I ;3-, 1 :1 I IFd I A I i J IL. 1 , I Ailf..k,„1. ' I Ili F A Of , ,' -I I(' 4 1 4 ' ,, , _ ,L iii. .....,-; ,,, Cr� . � I ...Z IMI , ' ,1 • k I_ I I . „:i' 1 '1 • 71willififfignirliouthivion I I I_ I CI Z I'� t c � I ., Q f 1 , #H 11 _, n I 7% � eil g '` I II I v I� :� '. ' 0 , 11 11, 1 „...m. I I 0 • t1 ‘ Mt • ta i -keAtifsliw.•, IIIik itouNII& Nzw z c cs r. t In t o/t -y g u) = T 1 1 ' - `r r - _1- .. _ t. -, f • { v r � � �� f- , _._ 1 , 1 ,.4_,---1: : 4 - ±ce 7 .. _I 1 h i /A i F 1 i f -- 1 "°4 F - - - r, 1_ o (1 I - ,' 1 I t �. t : . i � 1 1 • , I� 1Y1 iiikti ��� ®� c III- IN 1 i I I W -- r ���� I�,�ili i, Irairir_r I I __ r_ _ __I -- - t - 1 1 1 t • - -. ' 1- Io V I I W�I I I I T' 3 cr L Yli� �. � - I I i . t , . 10 - • ' .__- I . 1 r I �I I I < 1 ff 1 f 1$ ", ;I :111311:.L.-11111E111111 : 1 � -- t I ' E I ' + [ t e a g � '.I =® ��rirN'■� 8i■�m = =;1 I . ,c.r.. ., i., I � I i J I I 1 1 i • i ty i rz i o al „,,,,.„ ; L .• 1 • ,, t o . : ,.... c .>, , . P _.:_ 4 : _ � ■YiY I" i 1!' I �■ � . v� I I- f I 11► � ' !will # -- } i -1 1 , I I - _, . . , I m I I I I I f I� 1 1 I f � I f a r o _ l I� I I ? 1^ I I I I = I I_ i �� = z � � In • / 1 co 1 r I I ,r, - ,-r- - r 1 ' "(1 ka+ - - 1 - T 1 _ _ 1 .....___________________________—• ' ;• h I g s 4104, Cr i s 1 - .'33. ""le) I I Z ' I I ill . i ii 1 I I .. ' : : C 1 I S I' I N 1 1 _ .4 a \ 1..`+_ 1 I l I i 1 1 1 A • I -- 1 I I ' I , •. W U % J 4 1 W 1 .1 i ', I I I ,I I ,- cc,- wvio I ► I , 1 , . I W ii„, o I',, -) '{ {, I r �o J J o� , r I 1 _w /f // I I .7..4. - m > t -- LI I I ► I l i i � )' I. rs•,I 1 1 j 11 5i r1 i oi I I I I I .,� � l I.. I I LT' � -I' I i I . I o R + I t ► , i j ' mil ' w ' , i L •, • , .., . 7 B .• i t 1 .1 ' . l' '' ' ' .. " i t: 1 ' ' \ 'ce° I I I i ` 1 I f ' '. — c N i ' _ ,� 1 I ,, 'It : ' dillriaidli11111A 0 a •,�/ N Nl tl r •f. . ce 3 ,rd \ 1 I 1 ' X 1 I 111 1 , � ,3 ��I I � � . I h I, y �� I , ; d' Iw 1 .. I lir ' /1111 : -.1' H it r f I l ' ''I ll • . - Nill'qf PI-- •-.: . >.., , , I_ ., ,,, ,,, 1 :), -1-:::',.::. _. . 111 IIIFY .'. i i ,2 1.-- ) ; lilt .". ', - id If ', - , * 1 . ''' .., '` A ging ri , 1 x , • r 1 d I I 1 s, ` I I I I J : I` �� V 1 t ►' . V j ' : N :f ► o [ ' t t t ;� 1} I i T ' l 1 • I. "Weal .1 11111111 11111. Mill . 3 4 2 0111E11111M w . cc 1 0 . ,iiii Z >-. - 1 ' ; "-- - \ 1 I p i I i 4 4 .-1 . .. ./ 1.1 • •• ^ • z ! I '.. I I I.- olp, . 4- . to -� - H • \ ,,1 f �p � , 1 , ''4 ' 4111 11114 44 , in - . _ _, 4 i :,_ ,r 1 I 1 : ',» ,j, • '7 _ I r I 1 ' I; .,, ; • l Na I iikrii., ' I I i� l i t s , ,,. I .• I ,_ ° Mill z Wrill . y ii c:..."7 i 1 I ■ : : .4- :-.., Or• 1 1 , .011 ,, Li ' I - .,. V . j 11 I t � - 1 ' Iff, :.7:0- . . ' ''' - ' I '' .. ' III . illIMMIEM31 ''' - : :: ' ; ; ' r! ,r' 1 )z.1 i '41 , ...., le L,,,, - ,, • • , . • i Q , fr Of I . -- . . 4 .j.* -.Willi ten/ � � 2 r 3 1 I I� i I I 1 _ . I m 1 i '' , 0 ) fi I , R i 1 . 1 . Mill - ' I I I I ,, I I I 1I ( I I i I �- __„ •NE, ,F, 1 I I rii, . I I I I 1 f I a.. 6 1 f.. { I , `� •. •-. _.: , I I I I I I I I I 1 I I I l ('� , t�? I L-- Z 1 1 z l iik N I I N co I: I I M,� I� / 1 1 1 t I I 1-.- 1 H I 1 r, - r 1 1 I 1- + + i 1/1 T _- - - - - - -_ - - - - - - -- - - -- - - . - - -. - - - __ -_ .. • 1 , g i t 4 ; m z It °' , w1° ` -z 1�1 1 1 z 1 I e EI I 1 I •0 /I I I" • 7 • oo IN I I I _- _" IT ' i . -4 - - - -- i -' L 1- � I�- r ` 1- - I i ! • • ' - ; N jj • Ix I I I I i I = I h \ I I �� U I 1 _ iS N I f M 1. 1 . - 1- I r 1 . I 'N, I / . X 'Y- I I I - 11 I ' • V >r / 1 . , 1 o _ A ) ; \ I .. , , - . vim • F _ 1 , 1: Ikki 0 r 1 .1 i t t \ i - - t •� „� � , ei , I 1 ..,, 1 .1 { 1 I �� I `I ' i 1 ! s 1 g ` ^. H ta ' / I I 1!`1 i� �� 1 �� Nei ( \• , N r + d •1 I . I \� Vl 4 . t,, -- I . Z I i . 1 `/ - I W .1 1 1 � 1 I, ! v j t d 4 / CI :.___ 1 2 - ` ' ' A /1111gLA .41 c.) id ( m I t 1 1 ','.� W CD N i cc 1_ 1 i l i 1:' i N 9 - 1 . r N , 1 '''”' '--, fi 7 ; F7t \ t . *,,,,:.--; ,),..,‘ ' „,,,, , ', i 4 • I »\ i� j I T T : 1 T' L /111,111 1 / iii r ak i, ' I x z ..• . rc I � , I i .,r I Ii I L1 ! �r _ Mg I ling . - z Q V L blilli WA 1' fit- °', : 1 r _1 '- 1 - . _ - � t i �'' . ° +1 r • I I 1 liii . ,41 t W 1 ' - `� - - -I ' .I 1 j. f J7 J -_ �ii Q la 0 , ' . i 1 ,.., . I, ,-„,. . -..‘ - I1 W cn _1 z co o 1 - gliki . .4 will■ 0 illtamiet------- 1 : ti! _ .:2 ,-.„ I_ 1_, ' : • .__.1 ..i ..! ' P ... ' i. 4 C k 74'..'. .,. ....Al • , iraimimilik: ,iii a = • , _ \.. cr . ' t 444,,- t y - � � ... i ,,_ 1 _,..., I + 1 + ji .. i ' ■ 0_,. MIR 11111 0 1■211iiiillik At ,1 _ _ 3� 1 r 11111111g1111 a,> 2 '3 Alrap.' 40. 1 W . I H 1 I r'' 1 ' 1 tr Illp; ipr, t f , , 4 07 ;$7..ii , _, z , ,_. 4 ■ . .........:.' , I . IIIIHEMINK alri ,7 r , 7; 1 , A k il 1 i - i ' - ; ip i r 4 / / _2 . I .,..i % , . .. i lja i..... 1 ,.. ‘ ,,,, . ,, , . , , ‘• , ,,,, : ,,, re' , 1 itti Aii, : I. : ,',.‘, , r u -te a . ; . I t i r �1 l��� / r 1 1 1 1 1 I 11 . (• 11 1 P n w I 1 ti :s •. 1 l 1 I I _gI. I WI 61 � I , 1 : I 1 _ _ 1 1.1 I ' - I — 7 L -1- I I I I j Z N N I •, I I M I I I f 1 I F- I t- 1 � 1- - I I_ I I : I F-• ., In __ _ { ( \� — - g ' � ~ � m � ' T — Z I �,, ' "t'�� I I ,. �� I i1 1 Z I I I I y /i f I _ + ii s « 1� 1 a� —1 1 � , ,..t. ., — t 1 ~ 1 t 1 1 e r r j �I 7y a _� 1 I � I 1 _ I I *s_.,, 1 `-1 ..� . -1 - - r ^ _Ti , -1k f_� — — -t 1 t I F -1 A _ ` -, -1- a " ° ' �o .� fi l T I A I � 1 ', 1 — y ! i I I, • - 1 IV-4 �1 y I fi 1 I I I I I I f 1 i-.1 1 t Ittilli I. ttl i,', t - . 1 1 11' t}-- I _1 4 1 I l _' - ;' , - 4k 1 -- ' s . 1 -- . , ,1‘44 I T • ' - I 1 '' ' 1 „ /';" j.//• • I II • IN) ��� M _ I _ '. f , - r , -1 I ., • 1 _ 1 Z 1 . - - _ < W 1i 1'4- I 1 1 f t t 1 1- I 1 1 I r ti {, LT f 1 - 1 \ 1 s _ I I 1 1 1 ' I I T 1 1 _t : -- —.,_ i r a T ,,,-1 f dId I I I I o I I 'dk;. si_\ II '° w I` o a ( +1 I • � 4; ', - I \J I 1- -I, ,... 'i 1 - \ , I\ :,-„_[ - _ , ,'-, , 4 ,, 0 I , Cr - I + a W I I I Y it L ' � r � fi 'ri ' P' _ t I \ r / 1 r, 1 I, -- 1 1 I. I Y — 7 f.f.. I I . p, r I - I.' ",. 1 1 , I ii I 1 Cr 1 I t I. I *1 I -1 - f ;• 1 I I [-- f 1 ;; ' 1 \ 1,, - • t q I T,- k , J � ,I - ® 1 7._. � _ _ r 1 '1- 1 I I ` I �� �b i b•' �� .. 1 1 1 Z .., ,._, .• • lktsit o. I Igo1 IY `4 4.1 r� _ r 1 I , p • > 4I t Y i. 11 r c -- - r _ T I ' °. ' ' I _, I 1 I 4o I ` - I ` . I N I I I is 0 I I -I t ` - t t - . 11 71 i 1 - - �° I - _ I ' • l I, (- I (r Q I � ''I 1 1 1 ::.1 1 C, I : I . 1 � lita j' _H I _1_ . Z >- `* 1 j - j 'x. 1 - "s t I 1, . '.. ply' iii , r 1 1 W 1 c a ' U ' - 1 - ,, - ` i -_ � 1 €k xt ; '�W'Q:t_ r■ ill y y 3 T f w I'Y,III Il ,�_- f o" W z - . VT: ...:. .1,...... IIMMillight,,, __ 1 4 >- ' - - 1 1 I - 1 ! ' t - I •I : Ikt -_---tifr Illia 1. _ ,, #__ \ .- ..- - ., to A rum. T � N h 1 q 4 : 1 1 I, ` A f -- I 1 4 1 y 1 k 1 h, 1 _, 1 rt „ n . I ' 4 . 1; 1 - I . 11-- C:Ag v. tillik ... 44 • .• P 1&6 - % 41 1 1 1 1 , r a '� 1 r I � ' - _ ( , ■ I I I tt vV5b7i '- �1�.0 1�Y 7 1 1 r 1 . 1 1 � '_ 1 I , 1. _. ��.� 1 �� (1 4- 4 1- I I / • 1 - � .:, cf . I d✓ I 7 I I I I h. 1 p-, . /• islo 1 14 TJ I I _ I I< • cr / I- _1 A 1 :,.,••• 1, , .4:t 1. 1 . r ,_, ,,,,,,,,,,,,..!.,,,,,11:51: f •:, , • C1 I 1 .. .. yr I vamp- : 0 ,!..‘z„ , - 4 I I I cr di s4I ,,i C b- " -.,-- 11 ,' ,I 1 p...t -1-- ' Ilma k m 1 z : l w p • ' \ I. 1 NIlid , 1 1- 1 I .. 1 I I I 1 I 1 I I I I 1 1 T I i I� f I I 1 I � I 1 }1 , I 1 I I t I I I I �� 1 r ' ,N 1 I 1 • 1 f, r -. 1 1 H . 1 z i I _� N i / I I M I - T - t- 15 - -{ - N 1 ' 1 --+ t ! - - r I- 1 I + l''' . • ai T . ., 7-7+.;- • . ..',..-;4:- 7 ,--z 1 - 1 z ! 1 I 1 I !f I I ul /' I - • P w 'I- i . . _, ir_ 4- -4 ' '"'.''' ‘--.7 , „„,_ 1 .7, - 7 ' j•i - 1 ' / T . I • z 6 ?i 111 IN I -�"� L 1 I r r " s W ' I A t a • Ja . ,i z's- r __,..kr 1 ' I _A . W 1 II w i y o T � ■ 1 ' _L_ I - I 1 ! - - I h. ) . I 1 1 t 1 i§ x r I 1 I I , I I N1i w - 1 - -- 1 _ f Q � t 1 �, t I �� 5 1 " I 1 , �► � f ' -1 ': 1 I I f /' 1 I ' le I { 01.0 b•: 01 I :a1 I ' ,, 1 -' ,l I o p S 1 ri ♦ I • r r 11 r ;._ ....„ ly ,,.,„ 0 .... • 3 +!*! I + iQ i . 4 . . �,� W I IfthY i 1 II I I 1 _ a I 1 -1 �'` 1_ 1 - 1 - k o M I I I I I i 1 ■ .. r I as cn / I 1 p W V s. o "� ' �' 1 r- • -\5 tl • ' - .,I 1 l \ .s. 1 I 'V 0 rf it S r '; . ' tr". rl r I I 13 ■ 1_ N., 1 ,o_ i i --1 q t' ' 1 - N - t 1 1 1 I fi , 1 L '�ii pr.„:, - - r • 1 I + 1 �1 / H ._,, !N : 1 \ el _ lk ifik 1 I ' . ' \ g ' I I . - I fr i t : allir ' ' : f ' Aiiiiiii '., ... '• , V l'aii R I - ; ! - . - . 1 0 I g 4 I 1-,....1" r 4 m ,'- , .1 f _ I ' , 1 IAN A kair =-_, . , I • : Et_ , o ..., -:' ' I i 1 \-- ' - ''.A ' N / ' -1 I - _ I 1 - f - 4 - J t. 1 _ .di I - L 'b 'I 1 I r I ��� I ,' I 2 I j ■ro 1 ' � ` -t • I I' I- ' < �. .. IF 1 � I ' 1.. 1 ' V . 11I�P � m 1 I W 1 r gr 0 Z I '''''4--\ j'''''4--\ t -1 f 1 ►. fk 4 ` r 1 ' ./ • I, -mo r►1 � ; r 1 7 � W p 1 .4 , to . , i re . ti lila il -.-- - Agrilr I . MIIIILta dill. 03 o , i i t ,-, c /I I,_ 1, i to x 73, ,, ' n! y > 9 _ ly i I I 1 ' 4 4 1: m . z i I r ! ? i'lll 1 1rjrn wf ritalirir .- . to ° I I I I irov I 1� , W 1 3 0. ' 1 ! ! T � ,t 4 g N plorlik , , ,...s, , A - lie . OW i i i 43ffejl;91)+ Iry 1I ; .. i if/ ' f I l i, , t a t l I 1 a II . M U li m , , 1 I IMI II IIIV •147 , mmill i 2 ,,, 1 Pel , 1 I Ili . ii I I I I j. i� I "f- i- - - - - . _I 1 + I I I I 1 �� -1. /4 If- 1 I 4 � ' ' ' 1 1 v, ��r I / I I N t t f I 1 ' I - f f- t- ! - 1 '- I I - I- 1- 4 -4- -- + � 1 3.5 3.5 1 3 3 I 2.5 2.5 W 2 1 Z = 2 2 X a W 1 J i l 1.5 1.5 1 Z ,� A Q cr cl ,c -----------"7""-- /........„------ I 3 I +g. / /, a te I I 1 12 °' 1 0.5 </ 0.5 111 30 rn IQ --._.—/ a 1 2 5 10 25 50 100 I RETURN PERIOD IN YEARS NOTE' 1. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND I00 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10 -YEAR 1 ONE HOUR 0.95" AND I00 -YEAR CNE HOUR • 1.60 ", 25 -YEAR ONE HOUR •1.19 ". REFERENCEuNOAA ATLAS 2, VOLUME 3r- CAL.,1973 RAINFALL DEPTH VERSUS 1 • SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 FIGURE D -2 I I ••■• - r. - ■. ■ ■N RIM Well Man ■NNNNN■N,t „1 N..N.....N - N■■ UM, rN- -M. - ■..... Mom= _._e... - 11111.• .1..•.....■ NN•N /I.. ■..... -.. -- / MINIM ■--1 ■ 1111. .NN. ■N ■.. -111.. 1 11/111• NNN11N ■••.•NNNN•■■ IIN1 /111■ ■....NNN•. 1 MUM ■ NNNN.■•,■ ■.•.NNN••■ • 111• INN. 1 MINN ■NNN..■ 1/ 1111 ..I,■.••UI /111.N■..,,11NNNNN••• IN IIIIIIN..... ■INN .1 1111••.. •...NN ■.........11IIIII,...•1111. 111111111.■■•.. IINN••..... IIIIllMMIIIIIINI111MINIII....111 NN•.•...II 1111•■.. I•.. N■■•...•. I .I111111,t.•..I11.11111111H ■.... NNN■•..... III1111IIII..I•IIINIH111■■...uI NN•.•....1 50.0 _ _ =sM. ...: _ _ :! •. ■ =- . --= .... .•. = =.N -N. •flail N - M... r- - ..NI 40.0 ••••=m -- N .. - - - - -- NM Mar ..• .- -Y... I 30.0 11 1.11 M.. •• NNN ■••NN. ■N NN .. 1111 1.11 1111 =1...1 - .... - - 1111 - - - • -- -- -- - • 1. ■. = ■ ■ ■N= 1.•11•.1 11. /111111 111111111 111111111 ...... 11Itt1 ■...•I11N1II1 /t ■.11111111 N 1 .•1111111111 ■ ■ ■.■ 1111.11 __ ■_._.NN ■1.111 /NN■ ■.••I NNN 1 ri .... -_ __ __ :: - -:::s ...z=-:: anima- •.. .... mama IN. - - - - -- _ - _ __mama .. .. _ • -mama - -- .....i::::=___- -mama- -- :: i _ -.N.. N.•• •.-- - -L:.. = - ma r =:! I . . _ ..• .. mama--- anima- " = =mama 20.0 :' ::.0 - = =-- --mama ...... mama- - ...... 11 .1.. . r-. .....• ..•. mama •--� -_-Mani N. ■.•mama 11 - -N -N 111111. ■NNNN■■■■ 11•.1..1111' ■.11•:11111 ■.•p . 1011W • •• ••1.111 IN N . •NN1.■ ■.. /11111. ■NNN. IIIINN NNNN■ .It /111111 ■....,NNN IIII.■ MN MSslim NNNN■ ...1 1111111 •NNN 11111 ■NNN .IUMNN■■ H•• NNIN.N..I MIME ■ NII• NN..•. N•, MI1UNII. M• 1•111UN1 ..■••I,•N..•..•.I ■1111111MMI nN111111NNMN••NN.....M1 1111 ■....■ 1111NN1 .111M.IIIIII1111,1100..11INn MINIM....•INNIIM■...11III 111111. .. 1III1111 1 111.11/MIMMIUMB...II 111• 1•11I11IN ■1311■■ 111. 111111111101 1111 I 1 I 1111111111 ■ 11111 I�■ ■1111I ■•II IIIIIII1111 /I1111111■•111111MM••111I1 111111■■■ IIII1NEEHIEN111111111111111111111111111111111■ 111111■■ N■■E1111111111111111111111111111H ■NINE 1E■■■E111 1 0. 0 1111■■ 111111MI NM111111111111111111111111111MI NNEH111■■ ■■ 1■ 111111111111111111111111111111111 11111EN■E111111 ■•.I =MUM •.N =EN - . N.II _--- ..•■ -- -- ---- .•..---- II..--... .NI.. --.11.■ ..... MOWN NN ISM . - NNN■-- .N 1.11.1 NN •- ..- rmamas M11111 NNN•.• .••11INI.111N ■ NNNN. -.. own MOM OWES .NN 11111111. ■■■••NN -N.. I 111111 ■NNN .... OWN IIIIM ■ MINIMUMS . ■••••NI• .. sawn INN 11■■ N•• = m u m s 4 I 1111.1 ■NNN ..1111 UIII OMEN .,, ■NNN ■I• DI 111111 MNN..NN NNNN ■..N N IIII NN....,, 1111111111M ■..,,.NNNN..■ IU 1... 111111....,, IIN.N.1f.I „1 la MINIM 81111111MMIIIIMIIIMII IIIM M111111.1111 = 1111HH.....IN ■••...••I11 /111111111.. IuI111U111••■■■II•N IMMIIM •• IIIIIBM1U. ■.IIMil11111HHN.IIINN•• U mama__ "===--- s== - = = =F -----===--r:======- = -;- EZS' s . = . _ -- r.::s_ - --a.�Erz -- - := = = _ E _ - =?= ? .::: ::::-----==----: _... .° . °..:_• - - - - N �::: - - = = - -a mama : 5.0 - mama- - : •2 • - - -- -= : :••• ::__ - -- - -mama-- . :=1:. - ��.s:• -1111-_: z -I •n•-- •! �..�.�- pN.- - = ... r mama-• . .nu.Ni.� . ..n.•• ---.� .. a - MMM i I : ::i - - - ..•11 mama- : ■: .•M. - .•.•mama - -N. . .... : 1111"■ .... -..... 4A mama - -ma ma- mama - .« a .. ....� -. ..1•• . .. ..11.= " .anima - _ mama - _ mama--.. J p .. ■mama. N. .M - . r.• ■r..M.I.. -- Nrl ---.. M. .•N.••M......... mama - -•.NI N11N. ■ ■ ■.p NNN ■. ■ ■ ■••N11M11111.• N•. NNN11•■•.Y•N ■...■ 11111 /.INN....11 NN� / �. . ■ . J / .NNNNN.W.• 1111111 /I.MM••N1NII111...•11.NNNN•■ /1 /NI NI1111..H••NN' e 1 4 III NN..... •NN mow .....I ems IINI•.M. main INM NN..... . !mammas EOM 11 ... N...INNi .N 1 IL 3. MIN1 mama-- ■NNNN... .UIII.M..NN1 NN ■..■.. NN.. WI..NI _ ■In _ _......I - - -- - :-.":::- E2 ..........-=========="" =11E.s = =::=E- =. = =c- mama-- - »:c zz -s - == ? __mama - mama i:�z mama- - -- . • ...•u -.mama. .. ■■N -N-. n u. • /- ma _ IX :.1111-- ...•M -rN ... N. ....... .. . n .. N m- N- -..Y.••■ :• • mama .:.. 2 anima - ....anima N-.. N... ....-- ......rr- i .:..._... ... ma .=r - =. _.0 n•-11 ■ - ^ - . 1111- N•nn---- .•N - -. -. N•.•••• N- .•.N- ..•M.--- .Y.•I. N -- -MINIM.• MI.11.. ■ •1111=...- .N•N.•II.IM ■•...111111111 N. •NNNN. 111. 1111 NN ■ ■••1.111 .1 N ■••I -NN NNN. ■ ... NWMB1 . • NIMNNNN� Ua�;: NIMBI NM . N •• NN.•• ■. II1111111• ■NN ..IOM • ■,M..........N..NNN...■ 11 /III..: IIUIIN..I..N NNNN...� •I .1 I Z IIIINN •NNNNNN.HY..IUIII•W.NI IIMIIINN Y..••NNN !MUM ■.NIIIII/NNN...I NN......p 1111. ..I M ,I NN.p..WIIII1111MIM MINI MOWN MEM .IMNN...MI■N,111!:11Mlle IINNNI.•.IMNNN....IIII 1111........NNN...■IU 11111111..... 111111111111.1 ■..illIMMN�...I. UE:111111....111111111111111ME .I1NN ■......1 0. 1111■■1111111111N•• 111■ 111N11IIHIW1111II111H1N ■11111■III•■■11P!I:i1111111111 .1.1111111111■•■ I1111• ■11 N■1I11 1111 ■■ 1111118..■■ 1111111111111IIIHH1111IIIINIIIN1 11111■■ 811111 !AIIIIIIIMt1111111111111111h ■1111• INE111111 11. 11 ■1 1111111■•• 11 111111111111111111111111111w ■111111111IMINE 1MIMIMI11111111 11m11IN■1111N■■1111 1�1 III NI11110.•.•NN- .N.-■.•.NN1..IN■N-•.•N. mum= N N-•wM N II.■ N.. �... mama• N •.INN-- H•• --11M •-.NN.•IIN . 1111111 N.•■ N. ■.N. N ■N ■. /.NINUINN.. .animaN.....N1 ■1111111 N NNN.. ■.M 111/111111.■ ■MIN /mNN..■■ ■N ■.. MU•NNNNN. 1111111 NNN ■1111 •.IN11/NN NNNNN••N..M . 1 . 1 � .• /1 /N ■1 1111MM M. ,1..UUNI INN.■ UUM' alU %l11~Y11...1.IIN11lS�NN�•tuIIII NNNN....,I iiiiisonasi iiiiiwsuu ullisa inm Vmossemomos m INuu Uu11 ■11I1.11 .I ma NMI NN •••1. E----- = == M - - - -- ..... - - "11 =3-- mama _ -=3 __ __ _- _ - = --E3 0.5 ..:: __ • •: '11 =...- :°i•••.••• --s ..•.r---- ..st.•.• -n.. :mss:+ ...... ... ...MISS. -M-- -•••• -�- -.N .N.r: oN.••••-- . .- w O- - :Y:= = - ..•N = - -. -N • ti/.NN••••••. =.1.1•.N M /..Y • 11-•.. ■• -N - - . 0.4 - •.:M. ....••• mama •M .. --.N ..anima - N.. mama--.. 11. 11. ma r - .....mama• N.. .I.•M..11 ... .••N.. .. NM..•• M.. - - N.. • N...••. -- •..... • .N - -- 1N11111 •NNNN •WWI N M MOM WWI N■••••• NaNN11■ 1111•11•B 11M1 1111 .NN..N• W 1111 111111 111 •NNNN■ g 1111 N.. ...N111I1. M. 11.•••11N NN ■. 1•■ 1NI..N •Mm IINN...•11• NNNN.■• I 1_ ■NNN Min Rau ••.NNN N ..p UI •/ N .••I N . 0.3 1111 = . = - ma.ma-.._ = eMallWII...I, Mal NNINN Mae M I NNN..■ N M U Mall 1111111111111• N. .. N N MN1... mama ma Ms:._ ._.11 - �. _i»� :.:zE mama -- ========Z:=1:.======4= : s = 0g== - -- „ NS - :Ft : ::r= .2 =-11 . == s -: mama : Hi! - - _� mama .« N:. Y . .1•�M.• tMZ:::= e= r- sM_ N _ - • : - - - - -_------- • -. .« � � -- =5!...5.....n.M =.Y.- . .M a n- .mama =...H-- �- . mama.. NMN- ..N ■NN•.... � ... � N�•M.. Y mama.•- . =.....•..N• .N.-. ..•N.N-_ .Y.. CF mani N•..- N I. .•-- N- . ..- •.••.NNN.•.- ..• 7: = = mama-• -. N.N• ■•-. ..NNN -N.. •..■ -... 0.2 n l ••-- .C. r.N.N...- ..NNI. - N MN.- N..N.n••N..Y. Nn • -.•N mama.... M NN•- .•..N•INM.. N N- -N.N.M •...•IW MN. - .N NN ..MNN - -- mama ...• E I• I111 • N- NN■ ■.N •• •N • •W /1I11 11 .• r a NNN1.N.••1N• H•I•N1 111 111 NNN.. ...111.. -•••N- 111.■ ■.N ■..1111■ 1•.NY ■.H NN + ■1111111111..• ■. ■NNNN•• ■• 11 1111.. 1 NNN..I..I,IIIIIN•.IM 31111011111111 HUMOM.=MNN. MINIM USN INN MWI NIIINNII N.... ■NNNN•...■ OM ....0 MN •••.HNNN 11111 MOM III .U... ..I /II1111IU....I11lS .... ■1111 ..IN1.I11. ■p •Inn IINI 11111111 1110 .. n C11.■■■ I.IINNNm..1..•IIIIIIIIII....•WN ■... :1, 1NNNO. 111•. 11IHHIII .IIU11111H1■ 111■ I � IU11.%n.In.E� ..l.�1 I ul HI u1 111111WUWduinmiu .. 1111 WYl I • I MUUi.....u. 0.1 10 20 30 40 50 100 200 300 400500 1000 1 STORM DURATION- MINUTES PROJECT LOCATION GUTF J NOTES G 4 244 #I - P - ROIrl Ft Cam° / f' a-2 _ 1 SAN BERNARDINO COUNTY AREA - AVERAGED 1 MASS RAINFALL HYDROLOGY MANUAL PLOTTING SHEET 1 E -29 FIGURE E-8 ' •111 -- ■ -N -11...11 Hl /t•1.. ■NN. 11 11■■■ . /.111111111 •- •NN. -...N• 1111.. 111•1• - -•1111.. --- tu... / ■.NMIIII•.- ■N-. ■• 1 Mania . ■N-. ■N . •.•NN- ■N-..• 1111.. • - ii••.■ ■ ■■■■11ii•. 1•111• 1111111 MI 1Ni..•.••.I 1111.. 11 111111111111111M ■•11111.0••■ 111.. 1- -p.•••.■1 •111•••11.1111111■••■ ■•1111. 111 1111. ■••1111.111111•••11.11111111 ./.NIIIIIIIMO 111111MUM 11111••0••••• 111111 ■1•i•• 1111■■•■■ ii• 1u11111111ii•• I1111t11111 ■ ■ii ■•.• ■ ■ ■ ■ ■•■•.11111111111iii .•1.11111111 ■ ■••.•II 1111 ■ ■••••11 IIII ■ ■...... ■ ■ ■ ■■ ■11.11/ 11111111iii• 111 / 1111111 ■11• ■ ■•N ■ ■ ■ ■ ■ 1111111111. 0.11111111111 ■ ■i i..•1 ■■ ■ ■•••..1 50 :::: -- .•. -- 1111-- -11 = ==- -11-11 ' s •......... ^ . �. -: ■ =Ha 17211111 IIM NM •••,-- •1111••. N - -- •••••• •N -... ■ 111...•/ =•■ ■• •• =NN ___a 40.0 1111. -- -- - ■ -- -- S N �- 11-•11.« 11.•11 -- •am••• ■ NN -11-11. NN. -•1111 ••/111••111 -- ■■•••.•. •• I 1111== N. ■ ..NN. __ 11.. ■NN..•■ 111111• - •Nm..•.•••i 1111 ■•• ■N tl.. ■11111.. 111111••. 1•M..■■■■- 11•.•11. ■1 1111.. - N••• 1111 /tN ■1111••0 •1111 ■.HI11/II•••••1N1111••■ 1 30.0 •111 _ _It...... ■1111111•.11•• L - - -- ..1/11.11••1111.1..111111•■ --= 1 -- - - - -5 .:C: :S �..- - - - - ■ :::::::==........• ::::: .N 11• -- -C>Z F. S. MMM iM Mi -- - - -- - --- - - - -- - = -_ -- - :_• :S: : :. :- . :- _ _ - __: -- - ■- -• •••NN. • .••••N 11.11---- �•••II••.-- -..• /1 1 20.0 . ...---- ....��..•.. ...���- •• •....•.•NNN.••N•• • ■ ■ N - -1111.. ■•1.111•• -- -•• -- -1111. // • M •1111•.. •1111./••. •. - -.N. 111I.• ■1.11 -.• IINN •...••N•NI /11.. ••N• ■NN- N .•.•••••N•N• N... ■••NM= 1111•• •••11• • 1111. WWI 011111 •1111..• •■ ■■ •111.. ■111111..■ 111111 11••..• 1.•••••. ■1111••• ■•11 1111•. 111111 11 .11 ■111111 111111 •11••••• 11111111.•• 11MI MI MIME ■■ 111111•••..1 ■■ 111111111...•.11.111 /11•• MOM 1111 ■•••..••111..111111•..11.1..1 MI•1•1.11./N1111•• ■••111 I 1111■ ■•••111■■■■■••• 111111 111111••• 1111 11111111■■ ■••.1.11 ■■ ■••••.III1111 111 ••••11111111111■ ■•••111■■■■••■ 1 1111■ ■■1 ■111■■■ ■■ ■ii111111111111■■ 1111111111111 1111■ ■■1.1 ■II■ ■ ■■ ■•UIII 11111■■ ■111111 111111 ■ U1■ ■■■■ ■11 ■ ■■1 1111■■■■ 11111111■■■■■■ 111111111111 ■■1 111111111111 ■ ■ ■ ■■111111■■■■■■■U1111H1In1■ 111111111111■■■■ ■1111 ••■■■ ■■111 10. 1111■■■_■ 1111■■■ ■■■■■111111111111111111111111111 ■■■■11111111■■ ■1111 1111 111 111■■ 111111111111111■■ ■1111 ..■■i1■1i1 11.1-- •• / /• ••• Iu111•..••lN•I INN Ir.. - -- N. N11.•.11N /.••t.•/- ...••I Nt1...•.••••NN•M•• ■••N1NII1..••. ■ ■•N ■•NN1I1N1••.•••NH 11H1••w•••NNN -.• 1 MI ••III•.•• ■•1111•••.• 1 1111•••• ■• -I ••1 ■•N•11••N• •••• ■YN11NN••r•N1• -i•• 1 N 1111•.•.•• ■•111111••1111. 1 OOOOOO •11 • 1111..••. 1. ■ /1HMI • N. 11111•`••111 = 1111■■ i ■••II ■ ■ ■ ■ ■•••111IIIII,II1•••.11 1HIIIn■■•.••I.11■ ■■••.• III11111111■ ••N11/11II111■■••••1I■■■■•• •1 1111 ■■ii•• ■ ■ ■■■_■ii•11u1 _1_1nin/ii•II 1111■•ii• 1 /■■■ r ■..•■ 11111111111■• ••I1 /11111111■■■iull■■■ ", . i •.1 .:- = 1 y " = = :: :°- s_or - = == =Las U E_ = = = = == = = = - :sue -LL _ - :r. ?. = s ° - - -- • _ - - - - -- ;: z 5.0 s .. : � • mama - a�: =_ - =- : - - - -- •°sx:: : . mama -- : 1 •••. Mama mama• - ■� •Y -� 1 . • . - •-- - M•.� •• -M ■ •�11 =OEM= ••• •. ••- : 1 = •■ N wI••. ••.... .N.N � ■ 1 1111... 5 •N•1N•N--•i.•• : N- .� J 4. 0 • N -- -• -• 11.. . - -•1111 . N.. -. •• -- r - - 11111••..■ NN. ■I•w ..11 /./.••S l -•••.N •■ •11• •NN•M. -9• •N=memo ..M• 1 II .. •.•• ■ ■11111••11 N•N.YNI 11 1 ..•■■•■ 11_11•• N •M111111 u••• ■ ■IiNi 1111 •..•111 11- = M■•11 • 3 1.•11.111111111•••• 1111•M11•1 N11I 111 110••• 11 W1 117N1 _ ••111111••••01111 Z ::::==_____:==_ --_ .....::=91i=.-:=:=E..======= . =t C=s : =E.L_L ==== _. --- - -_ -•• mama = =a =_-L. _ N aeE 1 .1 ::::=...====___.1=====_ O=E : :: :?:13_3 = = =e- :� •� • = s3? _ - - -.= .. ' Q .•.1-- .•..11= •.Y....N.....•.-NZN.�N■••\• -N •..N w e / . 1 4--- .••.=::-- - •11• N - MI .N.•••.N.N•11 .11.....1 --• ■■ -- �• M 1~ ■e•1...•••NNN •N••••N11.. =./NNr. -.•.N• ■ • - 1111. Cr 2.0 . • ........Yrr■. -•1111 1111• NN• w. -- N.• NNr . .•.••11•.1 1: ..- ...N ■.■.Y -- 1111.. .. t - .. .0 •11.11..•••••=...•• 11111 ■.N••NN N N...Nr.: .NU I .• V♦•1.11 ' NtN • •1111.111 - -•• 1...Z 1111.. 11111 ■111 11111 MM.. ■- 11- •.••'�!/■ ■■ .� 1111•. 111111 MOM 1118.•11 ■pl11p••9• 111111111111N11.1IM11••1111••Y 1111...• ■•1 1111.. 1111• ■N•NNINUUI•W.11..1I1•MNY11•�1111111 Mill ••11111N•INNN•.•11111 11 11111■ ••MI11111■■••••NNUIN.t1 MENU MINI NMI kmmeammusime mien Haulm maim .ININNIp■NM111111 ■ ■•...II MIKE •••• 1111■ ■■••••■■1 ■1111111•••N1MIIIIInNUM ..•11%■■■••i•I111 1111111 ■•••II.11111tnp••••1111 ■ ■ ■•••••1 Q. 1111■■■■ UIII.■■■■i•.I II111111111■■•1• IIU11UN■■■■ II! 8aS11■ ■■i■NU11111111/1INIII11111utf■■ iu1■■■11■//111 1111■■■■ 11111111■■■■■■ u11111u111■■■ 1111111NU1■■ nJ1111111■■■■■ 111111H11 ■■■11I11IIu1■■■ ■11■■■■■/u low 1111 ■ ■ ■■ 1111■■ ■ ■■■■■uuIIIIIiit■■■■IIIIIIuIu., u■ 1111111■■■■■ ulll■ I ■N /1■1■IIm 111 -- •N-- ••••.N.// MHO, RIM ••. 1.tt M.....N ,1 • t11- •.w ++•• - -- N 111•••. N •11111.1•- MN MIMES NON IN t1 11i JI• N•11••S--••..N.W 11. ....N111I\I..••Irr /. -N. ••11..11. I /11•. •11.1.•....11 ....N M- .. •.•••N I -• NN •• NN. •••1111• 111•• 11111 ■11� ■ 11.1.• ■11111••.•WN rn N• 11�N . . .N•• ■•Ni- •••1••■ IIII•.. ....N/ 1111UIMINNUIM �� I � IIIIU .s . • .i % NNI IIIM N M • =1811 111 sii%i1 I II HI 11'sous a nuiN s eiu ui... .. .... OO ' I iiiiN-iii=E- 0.5 :cc =: ---4 _ - - , .N w _?,,., e- _ „- --- LL=:a :s:.. -- s= === _ - __ - - N •1.1.. • MY• ■ Y .N•• N -.•. 3. ••1N 11.1 N.. ••M 111•1•'/ ■- .3•••.• - .•.•r• 1111-...•.1 N N --••.. - =was. .. -- •. /•NN■ ■NN-•• O .4 11.1•. -- ...... • 1•• .N•••N1 . MN . . • / N-- •..N•.. Y.N••-1 - - NOM Y - -. 1 111111111111 • 1111 -11 ••• 11 111111 II N 11 •• •• 11 TT � / M• I I MN . .i • * M 11Ie I � ..•••• • mom 111111111111 NH MIN I --- 1111.- -- _ 1111 MUMS 11 • ••• 11■N.•••1 •■ - 1•1•.11 II = - N •• •••. MN •••=111111••••• OMB 111I IN.•11.1 • N.•N - ■ 11• NI•N•1 II•• .■ - 0.3 IIII••0• •.1111111111.111111N 111Y0 .p•N11/1111/.IIIBrYN11111111.11•. \1.11 11 //11IM.N011p NMI NN _ 111 _ 1111 11.11 11••1 .. E :EE � - -�_: :: : :� :� =LC '.:ZrS- - E Wit..' CS mama = = - :::�:: - :L:S - _w:= C'--- •S = _ _- - -___ _ -- 11 _ - NNN-��»:C __»� �-.M_ =_3__ - -- _ ^ -1111. . , - - . - - N ... N - - •• • -- 11 111•1•/ •N••..EN = =EZ_..5.•N•.•.N- .=.. 111- = == a-•- =1111• Mal ,• N M1111111• ..w.. .�•• - ._11.•...••1•• • ••••I•1••••••• ••••I•1••••••• N' 1 -N_.- � N•.. /N■■N.••N•••- •N•• ..N.N•- . N- �-....■/N•NI•.••.NN./MNa•I � N.. •• -S = 0.2 1 .-..11NNMN• .N.••.... /•YN � ..NNr- N -MN•NN 11•••..11 /NN.• N.. N -• r Nr -a I.. 11. N NN N • N 11/ / /N/ 1 .11 1 NM IN N N NN M• N.N t••• MM •.. .11111 - - N 11 N - N - .. - 11 ••• 11. N •• 11N- N...N . //.1 ••••••••.■ •■ .1111. -N.• NN1..N•.•N• N MINIM ••Mt1H •S. •• NN 11111.• •••. 1..1. . Mill NINE - -- .•tI.NN.NNI•I •. ..••a --- • .1••I MN •.N. ...... --- 1•111•..■ 1111 N■■•.N111111••N••1 UM 110111111��•�• 1ININ••p.N11111■••. ■.�.I111N111MN H/.111/•1 Ma MI 111111•• MI MIMI••••1111•11•. NIIO NN••=4••1•••NN•1M11.0•••••MNUM 111111111. 11I•IN11•••11 1111■■ NN ■■■•.••IIII111I1•NM•I11I1■■1■ ■N ■ N11p■ ••••.II ■••.... 1111■■ 11•.11•. 11p■■ ••.•1III1,uuI1.N ■ ■N 11 ..IIIIII ■ ■••••H ■■■•.•.. 1iiiiiiiiiiliii :1iiiiiiiiullNiiu ■ ■In1iI11� ■• 1 1111 11Mliui1 uuii 0 .1 Wll■■■!■1OW1■1 anus ■ Wl■ WWUUWY■■ YYW■■■ ■■■IWIIUWYWLWIWI 5 10 20 30 40 50 100 200 300 400 500 1000 I STORM DURATION- MINUTES PROJECT LOCATIONNTAN k NOTES 24 Ak- Sj ®R m E°fz /0 Y ( 1 • SAN BERNARDINO COUNTY AREA - AVERAGED MASS RAINFALL HYDROLOGY MANUAL PLOTTING SHEET E -29 FIGURE E-8 U ism NIM .M- N - ■rrrM 1 •.... rnu -N ■rf///N.. /1// ff■■N ■■.-_--_rrrft f ■MINI■ MM. ... =MIN M ■.1MMNININ.N1 ma a= NN -- IIMI ■NNM •I . ■MMM ■MMMNI 1 MINIM MMM. ■ ■ /fMMMM / ■■ /MMM 1 1111•1■ ■MMM ■■ ■MM. ■.NN =/N...■ ■11.1 1111.■ ■MMM ■...111111 ■.MMMM. ■■ 111111 =la ■. IMMM 1 1111 ■■.■ ■ /III..■ ■1. ■■III. 111111111. ■II IIIII11111 ■■ ■■ ■ II UI...■..11I11111111In.1111111U 11111 ■■ 1.1111....111111 I 1111■ ■ ■ ■■ 11111 . ■ ■ ■■ ■.11HII1111111111n1111111 111■■■■ 1111.■■.... H __ 1. 1111IIIIISNI1IIIIIIU111 ■ ■1 ■II M.■ ■■ ■111 ::::__ ---- - - - --- -- _- - - S � _ : .. E . _ - - 50.0 :::•••....... -_ . :: .: = a -.S = =: . _ . -..m. _ - - -N 7 .. ' ---- --rrr rr •1 - M ■ -L MUMS • ■tNM MM M-M - 111111111•1=== MM 11 NI :•M-Nrr 40.0 .... r.: NI ...-. - .. - M - -- •S NAM..M• Mr...-- - -N -.. Nn MNI .--MNI 1rrrN ..._M N.rrN. -NI N1.• -M ■- N - -rNr1 • 1•1 / ■ ■- ff.■ ----_ ■MM NM1f /.I MM ■NIMMNIN ■NNf1 1 . ■MMMM... Na \IIM. ■ ■ ■f 11•1•1•1. ■Nr■ MMM ■ ■ ■■ III ■ ■ ■ ■. MIM ■■■MM.M ■■ NN ■ ■1•1 •1•1•1 ■ ■NN■ 300 11 MM. ■N.. _ .. .MMM : u 111.1.. ■ ■ ■.MINIMUM. ■ _ 1 ... - N ■.f ■f MMMMN ■NNM IN N1YN NI ■rr rf /.M -NINI■ 1111.. ■ ■■ ■ 111 ■ I ■MM.M ■■ ■ M IMI``. ■MM..■ N.N 1111.■ •■MMM.■■ 11.. ■MM. 11`1. ■H..MM..■ ■ ■./ 1111.. ■MM. ■■. NIII ■MMM M11 MN.M NN II. MM MIME MAIM 1111111111111• 11111,1111MIMMIIIIMMIIIIIIIIIIIIIMMI IIIII.M ■■■..■MMM..■1■ 1 11 1 111111111 ■N ■ / 11 / 111111 .. • I IIII../111I11M..■1111IIIIIM1 1111■ 111■ II ■IIIU11111■■■■IIUUI....111IIIUII 111111 ■ ■1HIIIM11111...11I11.M..1.. IlII..■■ 1111■■■■■■■ 1111111IIII1111I 11I11IIIIIII ■■111I11•1111111111IU11I IUII■■1n111111111I 111111 ■■■ ■1 1111 1111■■■■ 1111■■■■ tf■■11111111111111■u111111111111 ■■■■11111■ ■■■■111•1 1 I ffnl■■11111111111n■■■I1111II ■�� 1 0 .0 Ilu ■■■■ 1111.■■■■ 111111IIIIIIIIIIIIIIIIII111111 ^ um luu1111■ ■III ■1■ 1111111111111111111111111111■ ■1111111 ■11• ■111111 MINIM ■=MMM..NN ■.. N. ■111.1 NNM l0■IIMNI:M =I • . •••••••1 11 Soma 11 1111 - rrr ■. :M- .Mwaims 1111 •M ■MM.. ■■ r ■■ / ■ /MM MM. NMI ■ ■ff //M MNI 1/NI ■■ ■ ■■ INN..... ■■ ■ ■ ■ NM -.NIM IN WV 1111.. •MMMMMN N II MU N ■N.r ■ /M M ■ / ..NI■ /IIIN ■NNIINH ■ ■ ■Nf ■M.. • I 1111.■ 11111•11111•1111• • .MMM ■M.� In111■■■■1..I.IMM1■■■■ H.. MM M■ ■ ■■.' W(11 1111.. ■ ■.... MMM. ■ ■N ■..U 1111 . .■N...■M■.■■NNN.,MIMI ■NNn........ .■ M MM■ ■.i. = InI...i iii_i..... SIBI1uII111111IUlI111111IJI U INIMMI M111Uiiiiri11I1I U U1Iiii• i•iii - -N / s. i•-•:1� -- - - - --- - � : : :---- .z : : : : ; :. :.= = _ _; z ••• 1 -- -- .--- •••q•r NN .•• •• .-_ - •N Nr__ INN N • • ••N-- - - - N 1 ..., =M ■ � '..MN .N NIM rf ■ ■ NIe HrN.N.■ •tN rrr tIN _.■ =- • J 4A - •------- N.1. �. nt i = N.. -- r - . .. - - - -_ -- •InM r - - � .YNNN. �� -� -rrr.• .0.Nrrrr-. -MM -- ...1I..1. rrrf.\ -IN- -t ■ ■ ■me M -N ■NI •NlrrrN.Nlt ••••: wow ■-- mamas ammo t /1MMNNNfMM.M ■1 /■■NN..OINIIMII�M NN f■ moms= .N max NOM ■NN/I■ •MI.!.1.�M /MMC. ■■N M .J IY.M ■MM. ■ ■ ■W.NMIIIIIIN.NN MI/NN1N.. ■■ •• •• MMM MIIH It ■ ■ ■ ■ /..•:YNI ■. ■ ■H / ■MM ..■■ Q ■IIMM ■MMM•.■ 6•11•1111111111 NNW ■I■■1IMM w MN ■ ■.N 1 •••••• N.■ ■: Of •• MI MMM..NN 3 A 111. II MNN N.M MN MM ■■■. • ■ M = _ • • _ NN: /.1N moms u..MH ■■NM i.. -- - ____ _- :L ::ii..: -E F ' -o- =-R :� ._..: _:.� N gg N- •__Arno --- .........• ...N-- -- .•- N...... - -r . ■■M - -_ . .� Mn - 1 n.1-- r= -- r -N -MM r.N..N Mil MM A OM Oa MMMMA rrr.v... N 1 r r r. Li. ::--1■ M= -rrrr. Cr 2.O •M_-- -- - o - ' -- -rN . r rr.I. M-.. N -___- =I MI WI. - ..• •. •I - -N --.. IN •• --N • - ON; 22 =Warn. .N.... ■N.M ww .rr.1MM111NrMNr MMM.- NN_• %. ■.N t1MA NNN •t..111MN MM OM N .1- MM -_NU 1111.. ■N N.YH ■N /.NIM ■N 11111 .MN� /fM.MMNI M MM■ Nf/ M OM..... MM N f. .I M 1- MM M 1111 MM M. MN= N■ ■.■.M •=111: MM ■ MMM.9N ■ IMI ■Hail 81••••••=111111=1 111111M .MM ■...M 111.. ■NH..MM�a■ MN MIII.. ■ ■ ■.VMM. ■■ ■.1 I z. 1111.•1 I MN■■ N■ NY.NUIIINWIINNI.IMNM....MI.. ■ ■■ ../.111111 ■.■■.. .. MM M I MII nine N.. MMMM. MMIMININIII■■ M/ NN11/ M1 pgBNi MN .. ■N..NIIM ■ ■NM MIME. NSW O 1111.1.6. M..... . ■111 ■ ■■.., I H ■U ■ ■ / ■■111IuIIIUN ■■1HuIuIIIIII ■■1■1■1>tIM■■ ■1111.1 a. Ills■■ 11■ In■ S.■ 11■ UUUIIIII n11 111 UIN■■ 1• aII1 mm■■UUn11111U11111■n111UIllu■■■ ■111.■■■■1■■III 1111■ ■■■ 1111■ 1111 ■111IIIIII11u111111HIMIIIflUTh ■ UIIURU II111 1IUIIIIIHMIN1 11111IIn11111111t1111■■■■■ 1A 111111. ■1 1111 ■•. 1111 11 /1fl1111111111111111111w:/1 1111111. ■R■ 1111 1111111m 11un111111mu■ 11111111N■■111111 I ■11NINI ■-MM■NI■rM.MNt1 •U ■■Nt�1nlN! ■N.f.fwwN ■ MNINNM r.wN.. we n n:: 111 mm I= N■. M MMNIN NN MIIIIN /.MNI$I5I N Nf f.fiMN NN �NM`fMM NNI:� /.MMMNINNN 1111MM M MMMMNN ■MIN NNf NN ■ININppNNNNM MMI.MMN. ■N/ IMM mows 11 mow= MOM= MMM. . 1111 11111 ■ MYM..N.NM NN wenn: : MM ■ 1111.. ■■ ■.MMMM 111: \N ■..NMIWI..M■ ■..MMM. ■ ■ ■ ■N...NINII ■N� IIINI ■ ■N■. MM ■ ■ ■ ■■ ■ ■I MINN ■■■.. ■MM ■.11 1.Y11nIL IiN■. ■. ■■ ■ ■. ■ ■M■ ■■ ■NNI1 /111•1 ■■ .NMI IM/I ■ ■■...MMM ■ ■ ■ ■ ■■I 111 ■ ■111IIII1.. ■■.II. 1111. 1115111 111H1. U■ NII■ 11■ ■IU.M■ ■■■■111111M1111111■11111.IUIMU■ ■1.IH.M..111.II1 111■ ■1. ■IIH.. ■ ■ ■.1.111IUP111U111..1111 UMI■■11 1111. _ .■■1.1M n .1U11111..II1111111111■IN ■11 ■ ■.■ ■■ AA. - N.•••N:rY N . I::.M.M� S- ■.- N_- rr�o......... = •.N•. r..r =- Ar -=S - •••• - -- No- N. -.N-- -■ N- -rO MINIMS 011111.••- - . =.1 .1 M MM -A- ■M/NININr.fNMMNININM � IM ■ M..M...M..M. 2N N N �MM MN 1.M....0..... NMI MIN MO -= O.4 •••• -- --- --- N.•.... iiSN .- .Mt.1.•-- ...... _rA N.N_AAM - -N O-- -- MB IM -r_- maNI=1•118= moomm ammo mammas= m= ... OW INE111111111r1 NINO Mb= NM 1815 IIII..NGH..MMM I ..■ BENUMB. WI NW INM % a immomm I• ■NMI ■� . MII ■N ■.N NM M.0 IMNI.. ■.. 0.3 IIIIM. NM MN .. MMM ■ ■■■ ■N...NIUM■W./ MMMM /. .U.0 ■. ■ ■ ■ ■...1N IMO NN.N/NNIII NN ■.N M . ■ ■N■■■ •:•::___ii--- -N.w .. - -- =-2.-rS.' == - =CiiA N : -:=: : :l_i - Ofl 4 mom • A : :: :: IN -. rrr- N-- M-- .Ar-.NMNINA M 1.•• 1111N " 1.tnM- Sr....M- MM. ■..N AA.rf M.M M/ mom= fro MMMNINI Nrr. MOMS 1111/ A.NM..M NMO 111 ■ MOO 0. • •N-- .rN M- NM -ANro •INMM1t• AA_MYM e . 0- NN.ANn.NNIn ArN_N -11.tt -_ - -M - AN 1 PM OM MN M .. M NN...MIMIMNINN MMMN■NNM IN - OlOM1 M - Ar-- N NN MM M MMMM■NNNf N■ M.MMNN.N ■N.IN■M ■ ■■N ■/MI/.1MNMNf II. MM. ==N:N �u 1MN■N/N 11111 Z NN H f. MM.MNNNNN 111 MIME MM Nf ■f MM. IIN IIIINI NMMMIN.NH N■■MMMM ■ ■ ■ ■ ■ ■. .11 N IM■■ NN. NNI wM = ■•• ■ ■ ■SIUISNIUM■ N� ■ N.N IIIMN /lN. ■ ■ ■■■ .11 /I.M ■ ■ ■ ■NMMM.M N. ■IU.11■■■.. Y..I 1111.■■■ ■ ■n..■■.1 / ■ ■. inn IUMI■I HMI MI.NN ■MMN.. ■ ■■ ■IIUUMI ■ ■M.fI1N /.MIN ■■■ ■ . ■■ ■■H III 1.... ..I ■.N...1■III /IIIIIIMI11111IIII1 � IIN 1 1UU1 1.IMU1.1 /1■t11IIIIMI ■ ■ ■..1 111II 1111111 ■■ ■..d■ ■U11■111IIUUIU1111111 ■11 IIUUUIM ■■■■NM■■0111111II11U1111umum111 UII ■■ 1 nu me ■ ■1111II I 1111 ■ ■■ 11111. ■\ 11111■1 U1111UIHIuuu■uIuII11■11 ■ ■ ■IIlIU ■l ■ ■ ■■ 111111111111 ■1■ ■■ ■111. ■■■ ■1111 0.1 ■ U■1 Y11VWW11WIUIUIIWlIW11UY O1■YY11W11111UUMNIU l 1111 ■ ■■ ■111 5 10 20 30 40 50 100 200 300 400 500 1000 _ . I. STORM DURATION- MINUTES PROJECT LOCATION 'FONT&NI\ NOTES 24 Ik . STOP r(1 POZ SS I R. to c 4 1 SAN BERNARDINO COUNTY AREA - AVERAGED MASS RAINFALL HYDROLOGY MANUAL PLOTTING SHEET 1 E - 29 FIGURE E -8 MI II ..•1•. ■��_�. .■■M__ ■ . ■.N MM NM •111•. ■ ••_ ∎.. .•••• ■•..•••... ■�_..•....1 a•1�� •��� 1..■ 1.�. . /•...... ■•• /1 1111•111•1 •���■■■■ ••/�� 1 ••■ t11•!••■•■■••1 1111 ■••••.•. UMW. ■ 1••••l ■■.••.. ■ ■ ■ ■■ MM El.. 1 1111 ■••xsun ••■••a.a•111I111111111aaxx 1111111111 Elm axlx•••••■• 11x1/ 1•I1111na..al1.11111111■••...11 ••••...all 1111 ■■•11•x11 ••■••aaaxxlll•I IIIHaa■ x11111111111■■■ a• aaral•■■■ aa• xl1III ■ • ■■ ■..aa•1 I i 50 . 0 -- ----- - - - - - -- -- -- __ =_:- ......- - - - -- - MMM :: :__ =_= ••= - - -- _ • . - - -- - • 40.0 : . : .. . _...••_ -- . ........... ■r_ ..��: 1.11.. ■.... ■•..f. ... ■••..D.. 1 • /.N ••._..■■ Nt•......••1 III ■■ �� 1111.. MINUS . ■I.t■ =.■■lut 30p -- - -- - - := :i: _ _ - -- - • _:cs = ==c= =: -- - -__ - - - -.: •::.• _ _ -- - •:• ::::C = = =::: . ' -_ .....•. H...._ . ; =: - r :: I ' .. 20.0 4.. ..N.._.. _r_.• '. . /• I■......_ ■ ■r_...M.N .I.1 .• ■ =. 11•1• ■N ....... _..•••• ■1.._ 1• M■MY._.•• ■• ■IM=_.. 11 1..1.. •IM• ■... . ME 1.. .•.. ■..■ ■ ■••1.....11■ ■•t 1111••• . MOM .. •M.. ■•••■•••=11•11• ••••••■ 1111•••• . MIME ... MIEN ... u11•.••N••1•...•••..I 1111••... ■ ■• ..•• •O.lu••III.7.11•p11IIM •••••■..■ •.••••• NIIIII 11..•••1181 111111•••••111•..••••••1 1111 ■ •...■ I1 •u■•■ ■.OI u IIIII.aa ■I uiu ll ll l ■■.. n IM•.•• a..II1111111111 •al•1 III11 11111••••1111•1111111111111•11•1111111 I 1111■ ■111111x! ■■ ■■■1111x1111111111111111 x111111111111 ■ ■1111••11IIIMEN 1111/1u111111111a1111 /11111111 ■■1111xax1•M■■11•xM1 111111 ■■ 1111■■■■ U111111111111111111r11111111111■■■■ 1111rt■■■■ III111111111n1IIIr111111111n ■U111111111 ■ ■ ■■ ■1111 10.0 11111111111111■ ■■ 1111111111111111111111 111111111111111II■ 1111! 11111■■ II■■ 11I1111111111111IlIIII1111111111 ■ ■ii1111 ■ ■.11111111/E ■••1._ ■r_. . N ■1.... S .p_.... ••Nr■ .M... ......•.__..N..4 1 11.1._ •ter. ...... amass N .■ ■MM • •..in_ ■■111■.. ........ M•1_.... ■N r_.._�_.■. .1.1.• . 1.1.... .... •••■■ ■•••.M11••. •G..••••••N••.I \N•.• ■ •••N M1111•01•0•11•1•••111 ■\ - 11.1.. •1•.•. .11.MOM .■ N ■../••t• 1111. ■N•.•M.MY■ ■■.•.•Nt. I N••.•t ■•P/. t 1111 •• ■•••. ..�m. ■••■ ■..maul■■ ■E.. ■■ ■I•iIltll - - -- 111111.. ■Em.■•Emus N MIEN ��.■■•■ ... _.... IS •I.. . I W 1111.•x11anal•■■•■■• aa III 1111111aaxxIIIIMIIIH •■SO11�1■••R •.•axI 111aaaa111.111 ESNM.a alil••••.agaal 1111••..i. II••■■■ 1•■ n IIII111111axxllll u lu111 ••aa•axa•■ aaxlllll1111H ■aa111I1n 11111•■.Pal•I•u•••■ ■al 0 5.0 =_ ---- __ - - -- -_ -. .---- sa--- - ... - - -- -1111 s'=c= - - - =c =. ....am :.s: ° - - - - �_.:s ==.7.----- -- __- _ - - -N- 1111. -- - _: :- ::.�� -- . •.• •. -H..• N••._. - 1111.__ •..• 1111-- N. - - - : 1 •. I 1 : . -. - -r N. ■11 Y�.. uS. •N.. =.�N.. _..N 1111... • ■.. ■r_. . j 4.0 ■ .11 ■r__ .M ■•• Mr H••. I.... M w___ .. N••.�L. ■ ■•M. ■M1.. ■__ ...1..•• ■ /M■•_. ..• 11•M•1.. ■NN.....•M. • l I∎.. N...MI...••..■ ••••••=11•1.9 • J tY.. ■ t.�..• ■.■ ■•••••. MIN•/ t.•.. • !a.• m o,. M1 ■1..•. ■•••...MMAI ■ LIZ 111.. ■t•I.. . 111•1•61112•1•1111M• ••• •op�.M.•■ , .. ••••••t ■t. ..••1 3.0 =11.•• 111111 .11 •• ��. -- . 11111...•. ls• /I1I11 •• • ■1• = 1•..11■ IMAM l••N1 ■•..•ls. = .• •..•1 - - -- _ - E:: = _ i : cE _= === == :F s - • _aE3z== ate° =� . . :1114••••••••••••• - .---- - N- :. .w_. ... . 11_11.. _ 1111. Q ac 2.0 ••• .N- ..■..•...-. .HraI N II11•••:11111•1 . -- M. -.. =- Z - .. .. ■ •• -- • .. r _ . WNW. MN...... ■w l.�_..M■ .Ulna N.. ■•NM /........N.. r__..._. ■ a1_...•.INNC..••M■IN.M... M N ■MM.\ .. wows •.N... . U N ...•. ..N••N ••N...•.••1 1111.. 1•.•........ 1.•• ••N11aN.•• U•.MUM N�. ■ N.11..1•••••\.•••..•••••• ' Ninon m.. ■.• .•.9•••�••••••■ •NI.11111111 ■ ■••1.Y�.. ••••■ •■1 Z 1111 •••• ■��...M•H Y•NU111.W. •H 11 1 . 1 M ••.IS••1..=MIME •1111111•12112,111•10••••111 =MI al 1111. 1• I•• M.. IEEI.•.I••.a.N EPEE MNIUMr!!Eq i.. SE�E■•.N. /NIIIUII1.H.l••.MNISEaE• E EMMEN.•..1 O 1111••■...0 mms...■ umI111111... nI1u11u,..... xx1NNN•... axlll• IIIIIIIaxax /11I111/numu.a.uNNM•...x.l 0. 1111■■1111111111im■1111N11 IUI1111111111111111111I: iln■■ 11111xrxm■■■■ 111111n1111111111111111r11111111111 ■ ■■ ■1al■• ■■.11111111 1111■ ■1111I111■■ ■■■.I U111811111HIII !i11N111■111111111■■1■ 111111111111111H1111 11111111111111.•11!1111 ■ •■■ ■11111111 .0 1111■■ 11111111 ■■■■■11111111U11MIII1111Pi1111111W ■■ ll IIII■■■■■ 1111n1111111m11111IU1111Im11■■1111IIII g■■.11111111 I 1 I.1.. • N__•...•.//..■N•■ MY \G ■.... H.NM••ywM.•..•N .w. /■ _... w•. ■N__.....N ■ a.... M..••••..... ■\M' " .I1. \... M.•. /ii •1111 •.•MW �•M. ■ ■.M..aa..•. ■...N__.... BM UM \...._..•/•• 1.... ■•Ills,' . MW1. •••••1..��. ■••••N . EMU 11N•. ••••1..... ■ ■.■ 1111.... •.Nt•.. ■••.•N Bin Wu I llul..■■..■ 1NN.■...• Yl• l• llN\ t•••u.l•IIIIIN/N•.M.•N.. •••....I Ill■ ■••••••N•. 0.! %1N/11N1 •/•.•N••1111MN•..1.1NN.1•• ■.••N llII11IIY... ■ Him /11/1■■••Ell 111 N..• ■••.11 111• ■ ■■xxxauxl ■ ■•■.5 /1 11111111111111• x1111111• Mq■■ 11xNUU• 11. 1111aNm1111111a .ax1IMIIII11■IIIIMIIII u■•.•a.ax1 111•■..axn. ■•■.. _ .a. 111111. 11111111••• 111. 1• NI■•.•• xa xu■•••a11m11111H11..BII1. aaaxu•••••aaaxl __-- - --- -- 1111 a »E = - - - -:•i= -- _== _ == -s - - -- acs . i. s3 .r -- -.. .....-.2 mu- N.... _.• aa::: x1 -- N.. - ... .r__ r..•N•M . •._.■ _ _ -. sty . r- r... - -. • •M1= .■•i•Nr =__•N N. M.N•II ■ ■ :■■■■.__ :... .. N••i• - -rH.. . =N•••• ■=___ 0.4 ■.• ::::= _ ..•N ... DSO OM •••■.•N M ..M_ ■M ■ ■. N. • ■ r__..... � 11'71. �.. M• ENi■ �i ini . Ill•• ■■ rM . = sEasso• \ � �% l II i ii.■■••• i�� I • 1 �i111 ••..•N..�ls. ■. Y••• .l ...•■..�ls.S . ... Ewe �.ls1 aS11. ••N ■..•t......•.■ • • 1111 ■= ••..l• - - - - -- ■.••NW•N•..••111NM._ ■r_•_•_ = = = BIM : :s l••IlllMl•••1•.N •1111I1 ■. •• .1 = = .= _.. •••••_•_■ -= _ - -= = : : _:= :::2:11 - :az:: =2 .-- - : . -- = = : : : =' " : s : := : .....c= : c___ - = = == 1111 ...-.wrr� ... - . ....:i =g7.... •••i -E -E= mil = -rif ••••• N• - r ..r N - -._• ::::::.=:::"'"''' HN.. ■rr_...._H•.•N•.....••• ...., 1.11 NN I:..■.CS r-- 0.2 :�Z : : . MM __ • •.... 1•.mt1 YY ■■■ •• •. �1 MM NONO r � r i . BM2qi . M • +■ N ' / EMS = \, ��i _ i �i�iii. ■■ 1•111•MMISOIMO• MIMS NM NM WO Of I C I � CI�C�S ■ ■N = =: .. I MM CNI. •• S MM.1 ■ ■..•N•NN1N BEM i n as NE Imui��S•II•■ 0 1 111. ....... M..1■....1 3111M11111111111•1111115•1111111111 1 • 111 ...• • IMINI •. ll••IIIIIuEll /1IU1N.•...l .. ■■ 1111••.. 1111•! nN•■• a.. nmllula111111ana1Mp�N ■■••aaMU ■•••.11SMIII 11111aaSSMI111_ M■ ■•.11•x11 1111 ■■1111111n.■■■■111111r11111111111111111 11x11111 1 ■■■1111nxruu•■•111111u111u11I11111111a1 I■IIIII 11 u ■•■11••x1 I 0.1 IIII UUUU ■ ■■MINIM HI II I W ■W I I1W I WI1 11 11 W 1EM IEli 111 i•uiiui 5 10 20 30 40 50 100 200 300 400500 1000 I STORM DURATION- MINUTES PROJECT LOCATION [OM rs FOIJTAKI . I NOTES Imo- (fie* 74 FRO :M - F ws -2 e & -StB& SAN BERNARDINO COUNTY AREA - AVERAGED MASS RAINFALL HYDROLOGY MANUAL PLOTTING SHEET E -29 FIGURE E -8 11 ***************** *************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOOD R O U T I N G A N A L Y S I S U USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 ' Especially prepared for: ' * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHEXIST.DAT UN 2E `K.bM1 Z •I. STDC( CACINT 1 TIME/DATE OF STUDY: 10: 1 6/15/1988 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS « «< Ir (UNIT - HYDROGRAPH ADDED TO STREAM #1) ' *USER ENTERED "LAG" TIME = .347 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 24.029 WATERSHED AREA = 10.120 ACRES BASEFLOW = .000 CFS /SQUARE -MILE = VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) .410 LOW LOSS FRACTION = .960 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .17 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .44 ' SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .65 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.25 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 1.70 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 3.50 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: ' 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 ' 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 1 UNIT HYDROGRAPH DETERMINATION IF INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) r 1 1.426 1.745 i i 2 6.813 6.593 P 3 19.313 15.298 4 35.721 20.082 5 56.442 25.361 I 6 7 73.574 20.967 84.824 13.768 8 91.312 7.942 9 95.284 4.861 I 10 97.438 2.636 11 98.325 1.085 12 98.775 .551 II 13 99.226 .551 14 99.676 .551 15 100.000 .396 1 TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 2.6454 IF TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = .3061 1 1 1 1 1 1 1 1 1 1 1 1 1 i It 2 4 - H O U R S T O R M 111 R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) r TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 r 15.583 .0624 .14 Q V . . . 15.667 .0635 .15 Q V . . . 15.750 .0647 .18 Q V . . . II 15.833 .0664 .25 Q V . 15.917 .0692 .41 .Q V. 16.000 .0742 .73 . Q V. . . II 16.083 .0841 1.44 Q V 16.167 .1018 2.57 Q V 16.250 .1294 4.01 . . Q . 16.333 .1623 4.78 . . Q.V . I 16.417 .1977 ® . Q V 16.500 .2265 '.19 Q V. 16.583 .2462 2.86 . .Q . • V . I 16.667 .2584 1.77 Q V 16.750 .2660 1.11 Q V 16.833 .2706 .66 . Q . . V . 16.917 .2733 .38 .Q . . . V . IL 17.000 .2751 .27 .Q . . V II END OF FLOOD ROUTING ANALYSIS II II II II II II II II II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D ROUTING A N A L Y S I S ' USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: ' * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHEXIST.DAT Utt i0EX DIAJ ID "(t? Spell C\f 1 TIME/DATE OF STUDY: 9:27 6/15/1988 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS« «< 1 = (UNIT - HYDROGRAPH ADDED TO STREAM #1) *USER ENTERED "LAG" TIME = .347 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 24.029 WATERSHED AREA = 10.120 ACRES ' BASEFLOW = .000 CFS /SQUARE -MILE = VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) .410 LOW LOSS FRACTION = .565 1 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .22 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .63 ' SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .95 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.80 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 2.54 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 6.25 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: ' 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 ' 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: = MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS 17.00 1 = UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1 1.426 1.745 P 2 3 6.813 6.593 19.313 15.298 4 35.721 20.082 5 56.442 25.361 111 6 73.574 20.967 7 84.824 13.768 8 91.312 7.942 1 9 95.284 4.861 10 97.438 2.636 11 98.325 1.085 12 98.775 .551 II 13 99.226 .551 14 99.676 .551 15 100.000 .396 1 TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 2.8508 1 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 2.4187 1 1 1 1 1 1 1 1 1 1 1 1 1 7 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 15.583 1.2705 2.25 . Q. .V . 15.667 1.2868 2.36 . Q. .V . 15.750 1.3040 2.50 . Q .V . 15.833 1.3225 2.68 . Q .V . 15.917 1.3428 2.95 . .Q . V . 16.000 1.3663 3.41 . . Q . V . 16.083 1.3962 4.35 . . Q . V . 16.167 1.4363 5.83 . . . Q . 16.250 1.4891 7.67 . . . V Q . 16.333 1.5487 8.65 . . . V • Q . 16.417 1.6111 9.' . . . V . Q . 16.500 1.6650 7.82 . . . V .Q . 16.583 1.7067 6.07 . . . Q V . . 16.667 1.7384 4.60 . . Q . V . . 16.750 1.7635 3.64 . • Q . V. . 16.833 1.7837 2.94 . .Q . V. . 16.917 1.8007 2.46 . Q. . V. . 17.000 1.8158 2.19 . Q . . V . END OF FLOOD ROUTING ANALYSIS *I********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D R O U T I N G A N A L Y S I S ' USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: ' * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHEXIST.DAT UN• 2SEX - DN% 25 YE sroen 1 TIME/DATE OF STUDY: 10:45 6/15/1988 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS« «< (UNIT - HYDROGRAPH ADDED TO STREAM #1) *USER ENTERED "LAG" TIME = .347 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES 1 UNIT INTERVAL PERCENTAGE OF LAG -TIME = 24.029 WATERSHED AREA = 10.120 ACRES ' BASEFLOW = .000 CFS /SQUARE -MILE = VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) .410 LOW LOSS FRACTION = .552 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .26 ' SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .74 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.13 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.00 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 2.98 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 6.50 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: ' 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 ' 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: = MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS 17.00 ' UNIT HYDROGRAPH DETE RMINATION I INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1.426 1.745 2 6.813 6.593 I 3 19.313 15.298 4 35.721 20.082 5 56.442 25.361 I 6 73.574 20.967 7 84.824 13.768 8 91.312 7.942 1 9 95.284 4.861 1 0 97.438 2.636 11 98.325 1.085 12 98.775 .551 I 13 99.226 .551 14 99.676 .551 15 100.000 .396 IL TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 2.8451 I TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 2.6351 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 - H O U R S T O R M 1 R U N O F F H Y D R O G R A P H II HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 II 15.583 1.3264 2.51 . Q . V . 15.667 1.3451 2.72 . Q . V . 15.750 1.3658 3.01 . Q . V 15.833 1.3889 3.35 Q .V 15.917 1.4151 3.80 . Q . .V . 16.000 1.4457 4.45 . Q . .V . 1 16.083 1.4847 5.65 .Q . V 16.167 1.5361 7.47 . Q . V 16.250 1.6028 9.68 . . Q. V . 16.333 1.6776 10.87 . . .Q V . 1 16.417 1.7558 111.361 . . Q V . 16.500 1.8235 9.82 Q. V 16.583 1.8760 7.62 . . Q V . . I 16.667 1.9153 5.72 .Q V. 16.750 1.9457 4.41 Q . V. 16.833 1.9694 3.45 . Q . V. . 16.917 1.9887 2.79 . Q . V . 1 17.000 2.0054 2.43 . Q . V . 1 END OF FLOOD ROUTING ANALYSIS 1 1 II 1 1 1 1 1 1 IF ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOOD R O U T I N G A N A L Y S I S ' USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) ' Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: EXIST . DAT Uti ICb2 EX , DM7 10 ' 5loeY\ E 1C I TIME/DATE OF STUDY: 8: 0 6/14/1988 ▪ ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 ▪ » HYDROGRAPH ANALYSIS « «< IF (UNIT - HYDROGRAPH ADDED TO STREAM #1) ' *USER ENTERED "LAG" TIME = .347 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 24.029 WATERSHED AREA = 10.120 ACRES ' BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .410 LOW LOSS FRACTION = .210 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .32 t SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .92 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.40 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.60 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.75 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.00 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: ' 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 ' RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 1 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 1.426 1.745 y a S .. 2 6.813 6.593 3 19.313 15.298 4 35.721 20.082 5 56.442 25.361 6 73.574 20.967 7 84.824 13.768 8 91.312 7.942 9 95.284 4.861 10 97.438 2.636 11 98.325 1.085 12 98.775 .551 13 99.226 99.676 .551 14 .551 15 100.000 .396 IL TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 1.5660 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 6.0207 1 1 111 II; 1 1 1 IF 2 4 - H O U R S T O R M I R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) i TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 r 15.583 3.3097 5.88 . .Q .V . 15.667 3.3526 6.24 . . Q • V • 15.750 3.3986 6.67 . . Q . V • I 15.833 3.4478 7.14 . Q . V 15.917 3.5008 7.70 Q V 16.000 3.5588 8.42 . . Q . V • I 16.083 3.6257 9.71 . Q. V 16.167 3.7060 11.66 . . QV 16.250 3.8031 14.11 . . . V Q • . 16.333 3.9093 15.42 . V Q . I 16 . 417 4.0199 1 16.061 . V 16.061 Q 16.500 4.1190 14.38 VQ 16.583 4.2011 11.93 . . Q V I 16.667 4.2682 9.74 Q. V 16.750 4.3245 8.17 Q V 16.833 4.3723 6.94 . . Q V. 16.917 4.4139 6.03 . . Q . V. IL 17.000 4.4515 5.47 . Q V. • I END OF FLOOD ROUTING ANALYSIS I I il 1 1 1 1 1 II 1 ; I 1 .. i 1 I 1 1 - N40 I MI N� j H •', 3 ,. • Y ' v� G z7 :Y v.� v 3 4 w Dn.,. m N-I Y. ' •J•V O .DN • uu -, WW '.a . l.• -.0 •j /1..IL i .n • •]4a oaa t - • • tool. W'a _ ''D . I.y .. 1— ° a 1 1 ' 1 tL J v . D v ` J ` = a a Fi T • 1/� a • I NI- • •4• ' LL _ p CJ , • j i a -, IN > Q J j V N •n .1 1 1• V J �� IN 7LL O •� 1 J ; • ' Ilj I Na_' 1 r...• ( � -71 j 4• I ■ _ D VI V u ,- Ida I m d . O s •� IV 'y y NU 1 .'O ' '.. 1'' ... • J a J N 'LO O Z. -ILL pi) . V t I^'1 . 2 a. ,T_r r -I a: a v 1 ! `� n ( N « e. iln In _1 o y I In a 4 I I . I N .O $ N •-4(t, I� N \ i \ ' D 71LL d 1 . • 2 I D J V D 'V • u •n fl _ Q I .r �n Ia Im ]LL N tn ' . l O O 44... .-■ 10 2 • M 1 w. r 0 O / V • 1 N V I 3 W J IJ •-1 N all O • J 4 0 J 1A Z ' 0 LL.- j . - •4- tL -I W i•L Z. • • T • -4 Z. • ... O ■ T .•I r u o . r L O.• L Lb- I.-I • . D X 0 a L OLL W • I• r ._ 0 a s -- 2 I� . . . .. I L LD W L 1 1 ' 2 T 0 J I I . I E W •0 ' - ^ O I J O Z•- W I� 1 .. L a L 0U 0 1 . II. 0 I t.r a -4 j I X0 ; C U 1 . t * 0 0 1 0 • I - z CD a r_ oD y =1 J 1 • .Y 4Y O OY 0� J •1D L 1 N R O O c./ N N a •-1 MI IAn 0 f z 1 '. • x CO r N t • .-. 0 i .. 1.10 a i w oc s e9 G > J I q r 1 W W OLL ' • _ • W 11(:)% z 1.-•L U • �`I •••1 1 j l_ UZ I-• t WU J I 4 •J • • • . •-• , r,.. I I �«. u l W 1•W 0 CO el 0 KW �Z Y IO.0 U f J a0 _.t ' . 1 1 ,SECT 3 I RATIONAL METHOD SUMMARY FUTURE DEVELOPED CONDITION AREA CONTRIBUTING TO DETENTION BASIN A = 8.19 ACRES 1 FOR SMALL AREAS Tc = lag 4 STORM EVENT 2 YEAR 10 YEAR 25 YEAR 100 YEAR II Tc Min 10.29 10.29 10.28 10.28 II Tc Hr 0.171 0.171 0.171 0.171 Fm 0.485 0.485 0.485 0.485 I Low Loss _ Fraction Y .928 .77 .76 .653 I RAINFALL (INCHES) 5 Min .17 .22 .26 .32 30 Min .44 .63 .74 .92 I 1 Hr .65 .95 1.13 1.40 3 Hr 1.25 1.80 2.00 2.60 6 Hr 1.70 2.54 2.98 3.75 1 24 Hr 3.50 6.25 6.50 9.00 1 1 FOR AREA NOT CONTRIBUTING TO DETENTION BASIN (SOUTH OF SANDHURST) A = 1.93 ACRES II STORM EVENT 2 YEAR 10 YEAR 25 YEAR 100 YEAR Tc Min 11.81 11.78 11.77 11.76 I Tc Hr 0.196 0.196 0.196 0.196 1 1 1 li 069X0316 1 6 E.I+IBIT F Rik melt-ioD JsNIkL\ts6 Eo_ D€ E Tl0N 3l slN I l6N 1 / FJTUR>✓ c&JB"L DR GoN D ITl D N I 1 I i 1 € I 1 1 F 1 N I a 5 1 I F 1 ( az 'col SCALE 1 STREET Z I r 1 Z�9 1 Atmss P Q ILI 1 1 • 1 Z.` t t f 1 n sr (j , 1 I t-: i 2 t 1 �' 1 I SAND I,U . r ST. 4 1 M f 11 I I 10 . i Tared,. ME 10.17. PaitS 1 L i { t 1 RATIONAL METHOD ANALYSIS FUTURE CONDITION - DEVELOPED SOIL TYPE: A [ I LAND USE: SINGLE FAMILY RESIDENTIAL 5 - 7 DWELLING UNITS PER ACRE TOTAL AREA: 10.12 ACRES FLOW FROM 8.19 ACRES TO DETENTION BASIN FLOW FROM 1.93 ACRES TO GO AREOUND DETENTION BASIN 069X0316 3 , 1 1 R�1 m . - T1 - top `l weoL o6y twpi -Lyd5 1 rUTUEZ v 1, oPCB CoN1I /7?oN 1 R AMC 111 , A-I'1CL CN = 32 FIG c -3 1 Ainc CN = 52 k c =o,5 Sao v /u5 t6 c--4- 1 F = 6 718 F16 C -L 1 Fm: cip r 3 F _ (6,5 ) (D, 7/ 8) - o, 35? ; USf✓ Fryi PRom RATtoNAI, ANA 1.y5(s of C MPO pm_, 1 5 = /000 _ 0 5 = /00 _ io ` 9, �3 Cni — 52 1 - o 5 To , 1 .te = (o, 2)`9 23) - /, S4- - i 1 Y= (P24 (P-) P24) 1 6,5 Y - , 34.6 _ 6.0 7 2 1 (31s- 124 24-6 + g/ 2.3)0 5) 1 Y 1 - Y 1 1 Y - 1- 0,072 = 042s 8 Low LOSS FelkCr i o t-- i i /_ P - 7, o, 25 F16 C -5 1 1 F -/- 0_ , 5 " ° 3 F 3, 5 .-- , I f F (De. Fi, - 7 FiY1 05E Fr h AS LOSS ( - RTE- SeE NOTE Pe F i ! ; 1 RAfTlOJi L n1MTI-10 0 I-J-y Di y leNiti-Ly 1 'FUTURE D&Jtt o ((AID 1710 N 10 yg- 1 Ainc a( C3- l�C �' CI '-r--32- F16 1 MIL Ttt. GN`52 d p -- (IS go% viu5 FkG c- 4 ; 1 -F - 6 11S FIG C---C,) F 1 0i5 < - o 1 IOVO 5' — 6 - 7 - at - 10 5= 1 S o 1 = 9,23 1 I-, 0,2 1 i - (0,z)(9, Z3) = 1, 3 1 Y = (P2A- - raz ( ' -- T'a -{- S� 67'24 1 Y (Cc" 25 - I. 84C) (x,25— I,84. cj,23)( 6,25) Y 1- Y 1 Y - I 23 = , ,-, ,, 1 F, _ _ li.4 Fic. C-5 i P G.- .--.- 1- 1 - ,-2--go 1 Co ,2 -S FOE- F* > m USe .rvi AS (0 -4; , F use-) up, s FR-otr com ae sv— tzuN R ow moo r :' I g&T1omAL METH WibroLoGY Ai\fAkL PuTUm c..or c oN D rn0N 1 ... AMCIC Amczr CM= 32 , C -3 1 AlYtaZ C N - 52 a = s sol pE?'Jius fir+ - 1I C /V1 a 1 O — 01 1t8 1 FVl (I C ( 1 F = a p F4 z 1 C ' F (0r (0' -- Q 0 S7=-- 1o00 1000 _ i GN - l0 S= 5 � - 1 1,23 ID ' - 0,2 S 3 (042-) = ( = 1.24C Y- (p z 24 - '�a� I ( 1)2 A - — E a -�S P2-4 z N ( -": (Cot5 — j,z4 1 o' 24 6,,s- �,g4� + q,23���,$) 1 1 _ -- -- Y Y 1 SI = I - 0,2 4 7 . 0,7 4, F _ I_ F CZ ' 1,5 t C -5 , t 6,5 I > cm use Fm ks Loss a- F usa) kaks nom ciamcAnee_ Ru N .485 , E , 1 RAT OtAL rn n-FOD � 1f OLO y ANp�`l 6 i aDP61) core ITO N 1.o&-- &MCIc ArnC - C 32- F\6 C -3 1 Aw C 4 — 52 a = o,S 50% PE�v I us F�G C - . g F ?_ 0,118 FtG C -C. F ( = oisci 1 S l00ms ._ °°0 _ 9,z3 III G� ° S V S Z Ta = 4 12 S 1 T (cz(qz3 _ {34(0 1 P T-_ ) 1 (P ) F24 1 Y- g,c� �� 0,34-1 0.0- << s4-(.. -t 61, 2 )(9.0) I 1 s 7-: I- 0.341. 0,(053 1 E I- T 3.05 F 1 G C - 5 1 f 9 1 fig- R 7 Fm u 5 E cm P6 Lo55 R AT 1 7 oseD JP S ern C rnP 2 -: z ui\l Fm = i 48- N aNaovc-- O czo T100 I ACTUAL IMPERVIOUS COVER Recommended Value 1 For Average Conditions-Percent Use (1) Range - Percent itions - Percent (2) II Natural or Agriculture 0 - 0 0 I Public Park 10 - 25 15 1 School 30 - 50 40 Single Family Residential: (3) 1 2.5 acre lots 5 - 15 10 1 acre lots 10 - 25 20 BLS 2 dwellings /acre 20 - 40 30 3 -4 dwellings /acre 30 - 50 40 r 5 -7 dwellings /acre 35 - 55 50 t ' 8 -10 dwellings /acre 50 - 70 60 1 More than 10 dwellings /acre 65 - 90 80 Multiple Family Residential: I Condominiums 45 - 70 65 Apartments 65 - 90 80 1 Mobile Home Park 60 - 85 75 I Commercial, Downtown Business or Industrial 80 - 100 90 1 Notes: I 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 1 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. I Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of 1 lawns and shrubs. A field investigation of a study area shall always be made, € I and a review of aerial photos, where available, may assist in estimating the percentage of impervious cover in developed areas. I 3. For typical equestrian subdivisions increase impervious area 5 percent over the values recommended in the table above. 1 SAN BERNARDINO COUNTY ACTUAL IMPERVIOUS COVER FOR 1 HYDROLOGY MANUAL DEVELOPED AREAS r_ Figure C -4 t ak w MN NV= =` �_� MOM MINIINV■1111M IIIMINI11111111.1=11 =EMI KW= =Iva um gm im ...-ra===.:====.=2-ima r. ===1,====ii _ miessomalmmIssimmaup woommourre ono= mow �..__..f__=,.�Q = gym _ _ =_�:�. Noonsammosisemomemsommeirm.‘MaTia I Imo UM . .:,I MOM= UN= • NM MINIM IIIIIMIN • 1111111•MIL=EF UMW. MEMO ■ r111 1 = 1.."11. 11 MIN1111110 MEM I, -- '.. NEMIMIIM111111 MEN011 MUM' VIIIIIIIIIMIMINIIN NM NMI* IIMIIIM M._ _711_11 _11•1•1111•1111 WINN' Ell OfiR101511111 Ni=trannis till=&••••••■•••••••••mmiymmimmemilsis l ■.lasuim■.w■, ■■� MM.\ A•■■ MawM■■■ ∎m ��=■ 2 M■■ \■■ ■�rf asso ∎=e5= ■.0`s� Or ■ ■■ IE Mfr MINIM _ _� wM��■■►� 111=1111 0 rmErim -' 1���� o in . — z KEE MIL 4 NI E 1116, II Enelligatil , ..... IMMII61.1rENAKIMMEMM 1 L k l I ZE I SIMIffil l x r) .ffillifilEillmimitill EEL : MIN= ..$) EMIERZEIERWILEEKI MEM -J ■.... RIME - . z N1��. - . =_ w : ,.... 11 0 -:._=E 0 CI rnizira 177 •- = --- / 1 ' I EICIM., ' Wm mas miuman,,..._.-11.4=slo - 4i, p i mmar m = kr . w ‘r ct ,,, massw---LiEB ._---:Nallsookvailini, kli . 1 .;,_ IMIMBEIBIEMER 7 :7114 i liebna i Nialli1 N EL 1 . r - -_,.--.- _:-::: i - Ee 1 k r AM • . EMU �E IE ! EBR ! 1 c. _.:. . KTELAI ,::: ,_. ,. ._: .L. a-- IEEE c=2- ==-: - - ,* •- : Ei . I MMIIII■ l MEIMINIZ 7 - :•• . : .:. :. MEE E .....7:: E 1 mil N - mffiffiniE _. :: *NEE Bon imm - :- ........., ....E i r•- t0 09 ct N - 0 24-HOUR STORM RU OFF R INCH S C S 24 - HOUR STORM SAN BERNARDINO COUNTY RAINFALL- RUNOFF HYDROLOGY MANUAL RELATIONSHIPS C -13 Figure C-5 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * 1 FILE NAME: Q10TFUT.DAT RiocrF1t-' 2F 2 'E_ 5Ta2.m sJE TIME /DATE OF STUDY: 6:52 6/17/1988 IL USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - 1 USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 I *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 100 -YEAR STORM 60-MINUTE INTENSITY(INCH /HOUR) = 1.400 I COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1 -HOUR INTENSITY(INCH /HOUR) = .6355 SLOPE OF INTENSITY DURATION CURVE = .6000 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 ELEVATION DIFFERENCE = 10.23 I TC = .389 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 15.416 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.436 SOIL CLASSIFICATION IS "A" 1 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 2.83 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 2.83 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 7.00 IS CODE = 6 1 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 I STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.83 1 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .38 HALFSTREET FLOODWIDTH(FEET) = 6.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.64 PRODUCT OF DEPTH &VELOCITY = .99 STREETFLOW TRAVELTIME(MIN) = .15 TC(MIN) = 15.57 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.428 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 1 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 3.31 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 2.83 1 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOODWIDTH(FEET) = 6.98 FLOW VELOCITY(FEET /SEC.) = 2.64 DEPTH *VELOCITY = .99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < 1 = CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.57 RAINFALL INTENSITY (INCH. /HOUR) = 1.43 EFFECTIVE STREAM AREA(ACRES) = 3.31 TOTAL STREAM AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.83 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 2.83 15.57 1.428 .49 3.31 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 2.83 3.31 1 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.83 TIME(MINUTES) = 15.567 EFFECTIVE AREA(ACRES) = 3.31 TOTAL AREA(ACRES) = 3.31 ; 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 540.00 UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1318.97 ELEVATION DIFFERENCE = 7.03 TC = .389 *[( 540.00 ** 3.00)/( 7.03)] ** .20 = 11.481 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.714 L F ' SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 2.88 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 2.88 IL FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE = 6 » » > COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< I UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.88 I STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.68 PRODUCT OF DEPTH &VELOCITY = .76 STREETFLOW TRAVELTIME(MIN) = .79 TC(MIN) = 12.27 I 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.647 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 2.88 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 FLOW VELOCITY(FEET /SEC.) = 1.68 DEPTH *VELOCITY = .76 11 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 r » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< IF CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.27 RAINFALL INTENSITY (INCH. /HOUR) = 1.65 1 EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.88 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 2.83 15.57 1.428 .49 3.31 2 2.88 12.27 1.647 .49 2.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ¢, CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) I 1 5.17 5.91 2 5.63 5.21 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 5.63 TIME(MINUTES) = 12.275 EFFECTIVE AREA(ACRES) = 5.21 TOTAL AREA(ACRES) = 5.91 11 ******************** ************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 1 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « « < UPSTREAM ELEVATION = 1318.52 DOWNSTREAM ELEVATION = 1318.12 II STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 ':. II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.63 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. 1 THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 13.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.17 I PRODUCT OF DEPTH &VELOCITY = 1.15 STREETFLOW TRAVELTIME(MIN) _ .61 TC(MIN) = 12.89 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.599 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 5.21 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 5.91 PEAK FLOW RATE(CFS) = 5.63 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 13.63 FLOW VELOCITY(FEET /SEC.) = 2.17 DEPTH *VELOCITY = 1.15 { ,gg '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4 TO NODE 8.00 IS CODE = 2 1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< ▪ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE II TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 485.00 II UPSTREAM ELEVATION = 1327.93 ▪ DOWNSTREAM ELEVATION = 1318.66 ELEVATION DIFFERENCE = 9.27 • TC = .389 *[( 485.00 ** 3.00)/( 9.27)] ** .20 = 10.185 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.842 II SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 li SUBAREA RUNOFF(CFS) = 2.80 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 2.80 i milmw 1 ***** ******************************************* **************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 6 1 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1318.66 DOWNSTREAM ELEVATION = 1318.12 11 STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.80 II STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .33 HALFSTREET FLOODWIDTH(FEET) = 5.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.68 II PRODUCT OF DEPTH&VELOCITY = 1.20 STREETFLOW TRAVELTIME(MIN) = .11 TC(MIN) = 10.29 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.830 II SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 II EFFECTIVE AREA (ACRES ) = 2.29 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 2.80 II END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOODWIDTH(FEET) = 5.77 FLOW VELOCITY(FEET/SEC.) = 3.68 DEPTH*VELOCITY = 1.20 II ***************************************** *********************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 11 - >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: 1111 TIME OF CONCENTRATION(MINUTES) = 10.29 RAINFALL INTENSITY (INCH./HOUR) = 1.83 1 EFFECTIVE STREAM AREA(ACRES) = 2.29 TOTAL STREAM AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.80 111 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) I 1 2 2.83 15.57 12.27 1.428 .49 .49 3.31 2.88 1.647 2.60 3 2.80 10.29 1.830 .49 2.29 1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: II STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 I 2 7.13 8.20 8.04 7.50 1 3 8.26 6.66 1 COMPUTED CONFLUENCE ESTIMATES 2ARE AIME FOLLOWS: = 10.294 PEAK FLOW RATE(CFS) = EFFECTIVE AREA(ACRES) = 6.66 II TOTAL AREA(ACRES) = 8.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< II DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE E i TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 II INITIAL SUBAREA FLOW - LENGTH = 539.00 UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 I ELEVATION DIFFERENCE = 7.06 ** .20 = 11.459 TC = .389 *[( 539.00 ** 3.00)/( 7.06)]** YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.716 SOIL CLASSIFICATION IS "A" II RESIDENTIAL - > 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 2.14 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 2.14 I ** ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 II » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« « < II UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 STREET LENGTH(FEET) = 113.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.14 I STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .26 HALFSTREET FLOODWIDTH(FEET) = 3.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.36 II PRODUCT OF DEPTH &VELOCITY = 1.39 STREETFLOW TRAVELTIME(MIN) = .35 TC(MIN) = 11.81 II 2 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.685 SOIL CLASSIFICATION IS "A" RESIDENTIAL - > 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 1.93 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 2.14 I ▪ END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .26 HALFSTREET FLOODWIDTH(FEET) = 3.53 FLOW VELOCITY(FEET /SEC.) = 5.36 DEPTH *VELOCITY = 1.39 } II END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.93 EFFECTIVE AREA(ACRES) = 1.93 ▪ PEAK FLOW RATE(CFS) = 2.14 mr► t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * r FILE NAME: Q10TFUT.DAT 10 ye 5-(oe:fvl DJC-s1 TIME /DATE OF STUDY: 15:13 6/16/1988 IL USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF -CONCENTRATION MODEL* -- € I USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 I *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 COMPUTED RAINFALL INTENSITY DATA: I STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = .9595 SLOPE OF INTENSITY DURATION CURVE = .6000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 ELEVATION DIFFERENCE = 10.23 TC = 389 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 15.416 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.168 " SOIL CLASSIFICATION IS "A" RESIDENTIAL - > 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 5.02 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 5.02 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 7.00 IS CODE = 6 r » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA «< UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 ' STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 I INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.02 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 ' AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.93 PRODUCT OF DEPTH &VELOCITY = 1.33 STREETFLOW TRAVELTIME(MIN) = .14 TC(MIN) = 15.55 I 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.157 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 3.31 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 5.02 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 FLOW VELOCITY(FEET /SEC.) = 2.93 DEPTH *VELOCITY = 1.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 II » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.55 RAINFALL INTENSITY (INCH. /HOUR) = 2.16 I EFFECTIVE STREAM AREA(ACRES) = 3.31 TOTAL STREAM AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.02 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 1 5.02 15.55 2.157 .49 3.31 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 5.02 3.31 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 5.02 TIME(MINUTES) = 15.553 EFFECTIVE AREA(ACRES) = 3.31 TOTAL AREA(ACRES) = 3.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « < II DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 540.00 I UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1318.97 ELEVATION DIFFERENCE = 7.03 TC = .389 *[( 540.00 ** 3.00)/( 7.03)] ** .20 = 11.481 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.588 I SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 4.92 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 4.92 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE = 6 I » » > COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< 1 UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.92 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.76 PRODUCT OF DEPTH &VELOCITY = .95 STREETFLOW TRAVELTIME(MIN) = .76 TC(MIN) = 12.24 1 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.490 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 4.92 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 FLOW VELOCITY(FEET /SEC.) = 1.76 DEPTH *VELOCITY = .95 jl * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.24 ' RAINFALL INTENSITY (INCH. /HOUR) = 2.49 EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.92 II CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE I NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 5.02 15.55 2.157 .49 3.31 2 4.92 12.24 2.490 .49 2.60 1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1r 1 9.12 5.91 2 9.65 5.21 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW RATE(CFS) = 9.65 TIME(MINUTES) = 12.241 EFFECTIVE AREA(ACRES) = 5.21 TOTAL AREA(ACRES) = 5.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 IF » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< I UPSTREAM ELEVATION = 1318.52 DOWNSTREAM ELEVATION = 1318.12 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.65 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .60 HALFSTREET FLOODWIDTH(FEET) = 17.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.57 PRODUCT OF DEPTH &VELOCITY = 1.55 STREETFLOW TRAVELTIME(MIN) = .52 TC(MIN) = 12.76 I 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.429 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 5.21 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 5.91 PEAK FLOW RATE(CFS) = 9.65 11 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .60 HALFSTREET FLOODWIDTH(FEET) = 17.38 FLOW VELOCITY(FEET /SEC.) = 2.57 DEPTH *VELOCITY = 1.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 4 TO NODE 8.00 IS CODE = 2 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 485.00 UPSTREAM ELEVATION = 1327.93 DOWNSTREAM ELEVATION = 1318.66 ELEVATION DIFFERENCE = 9.27 TC = .389 *[( 485.00 ** 3.00)/( 9.27)] ** .20 = 10.185 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.781 1 A k SOIL CLASSIFICATION IS "A" I RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 4.73 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 4.73 I ********************************************************************** ****** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 6 IF >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« I UPSTREAM ELEVATION = 1318.66 DOWNSTREAM ELEVATION = 1318.12 STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.73 II STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 7.39 111 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = 1.56 3.98 STREETFLOW TRAVELTIME(MIN) = .10 TC(MIN) = 10.29 II 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.764 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 II SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.29 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 4.73 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 7.39 FLOW VELOCITY(FEET/SEC.) = 3.98 DEPTH*VELOCITY = 1.56 1 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< F CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 10.29 RAINFALL INTENSITY (INCH./HOUR) = 2.76 111 EFFECTIVE STREAM AREA(ACRES) = 2.29 II TOTAL STREAM AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.73 II CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) II 1 5.02 15.55 2.157 .49 3.31 2 4.92 12.24 2.490 .49 2.60 3 4.73 10.29 2.764 .49 2.29 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. I SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE IF NUMBER Q(CFS) AREA(ACRES) 1 12.59 8.20 2 13.82 7.50 II 3 13.95 6.66 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.95 TIME(MINUTES) = 10.286 EFFECTIVE AREA(ACRES) = 6.66 II TOTAL AREA(ACRES) = 8.20 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < IF DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE I TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 539.00 UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 1 ELEVATION DIFFERENCE = 7.06 TC = .389 *[( 539.00 ** 3.00)/( 7.06)] ** .20 = 11.459 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.591 II SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 3.66 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 3.66 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< II UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 ° STREET LENGTH(FEET) = 113.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 = * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.66 II STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .31 HALFSTREET FLOODWIDTH(FEET) = 4.84 II AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.91 PRODUCT OF DEPTH &VELOCITY = 1.84 STREETFLOW TRAVELTIME(MIN) = .32 TC(MIN) = 11.78 II 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.549 SOIL CLASSIFICATION IS "A" = RESIDENTIAL - > 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) .00 EFFECTIVE AREA(ACRES) = 1.93 AVERAGED Fm(INCH /HR) = .485 II TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 3.66 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOODWIDTH(FEET) = 4.84 FLOW VELOCITY(FEET /SEC.) = 5.91 DEPTH *VELOCITY = 1.84 1 END OF STUDY SUMMARY: 3 TOTAL AREA (ACRES) 1.93 I EFFECTIVE AREA (ACRES ) = 1.93 PEAK FLOW RATE ( CFS ) = 3.66 I END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11************************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * ir FILE NAME: Q10TFUT.DAT RATFiN ZS \ STocm EvE3Nr7 TIME /DATE OF STUDY: 7: 4 6/17/1988 IL USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - 1 USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 I *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 I COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.1070 SLOPE OF INTENSITY DURATION CURVE = .6000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** IL FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » RATIONAL METHOD INITIAL SUBAREA ANALYSIS« 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 ELEVATION DIFFERENCE = 10.23 I TC = .389 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 15.416 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.502 SOIL CLASSIFICATION IS "A" ' RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 6.01 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 6.01 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 7.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « < UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 Y STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.01 I STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 I AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY = 1.51 STREETFLOW TRAVELTIME(MIN) = .12 TC(MIN) = 15.54 I 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.490 SOIL CLASSIFICATION IS "A" RESIDENTIAL - > 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 3.31 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 6.01 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .47 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET /SEC.) = 3.22 DEPTH *VELOCITY = 1.51 I * ********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 • I » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< 1 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 1 TIME OF CONCENTRATION(MINUTES) = 15.54 RAINFALL INTENSITY (INCH. /HOUR) = 2.49 I EFFECTIVE STREAM AREA(ACRES) = 3.31 TOTAL STREAM AREA(ACRES) = 3.31 ' PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.01 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 1 6.01 15.54 2.490 .49 3.31 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE 1 NUMBER Q(CFS) AREA(ACRES) 1 6.01 3.31 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I PEAK FLOW RATE(CFS) = 6.01 TIME(MINUTES) = 15.540 EFFECTIVE AREA(ACRES) = 3.31 TOTAL AREA(ACRES) = 3.31 1 * * * * * * * * * * * * * * * * * * ** ************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 » METHOD INITIAL SUBAREA ANALYSIS « «< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE 3.00 ELEVATION CHANGE TC = K *[(LENGTH ** )/( CHANGE)]** .20 ] INITIAL SUBAREA FLOW - LENGTH = 540.00 I UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1318.97 ELEVATION DIFFERENCE = 7.03 TC = .389 *[( 540.00 ** 3.00)/( 7.03)] ** .20 = 11.481 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.986 SOIL CLASSIFICATION IS "A" 1 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 5.85 = RATE(CFS) _ PEAK FLOW RA ) 5.85 1 TOTAL AREA(ACRES) 2.60 ( FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE = 6 0 » » > COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « « < 1 UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.85 I STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. I THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEET) = 15.12 I AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.94 PRODUCT OF DEPTH &VELOCITY = 1.08 STREETFLOW TRAVELTIME(MIN) = .69 TC(MIN) = 12.17 1 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.883 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 5.85 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEET) = 15.12 FLOW VELOCITY(FEET /SEC.) = 1.94 DEPTH *VELOCITY = 1.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 IF » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< 1 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.17 I RAINFALL INTENSITY (INCH. /HOUR) = 2.88 EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.85 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE IL NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 6.01 15.54 2.490 .49 3.31 2 5.85 12.17 2.883 .49 2.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO , CONFLUENCE FORMULA USED FOR 2 STREAMS. I SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 10.90 5.91 2 11.48 5.19 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW RATE(CFS) = 11.48 TIME(MINUTES) = 12.170 EFFECTIVE AREA(ACRES) = 5.19 TOTAL AREA(ACRES) = 5.91 II **** ************************************************** ********************** I FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 >>>»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<«< I UPSTREAM ELEVATION = 1318.52 DOWNSTREAM ELEVATION = 1318.12 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 11.48 I STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION II THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.88 II AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = 1.69 2.67 STREETFLOW TRAVELTIME(MIN) = .50 TC(MIN) = 12.67 I 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.814 SOIL CLASSIFICATION IS "A" RESIDENTIAL-> 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 111 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 111 EFFECTIVE AREA(ACRES) = 5.19 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 5.91 PEAK FLOW RATE(CFS) = 11.48 II END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .63 HALFSTREET FLOODWIDTH(FEET) = 18.88 FLOW VELOCITY(FEET/SEC.) = 2.67 DEPTH*VELOCITY = 1.69 **************************************************************************** • FLOW PROCESS FROM NODE 4%00 TO NODE 8.00 IS CODE = 2 II >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5-7 DWELLINGS/ACRE TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 485.00 I UPSTREAM ELEVATION = 1327.93 DOWNSTREAM ELEVATION = 1318.66 ELEVATION DIFFERENCE = 9.27 1 TC = .389*[( 485.00** 3.00)/( 9.27)]** .20 = 10.185 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.208 SOIL CLASSIFICATION IS "A" I RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 5.61 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 5.61 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 6 • » »> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA< « < I UPSTREAM ELEVATION = 1318.66 DOWNSTREAM ELEVATION = 1318.12 II STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.61 I STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 7.80 I AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.28 PRODUCT OF DEPTH &VELOCITY = 1.75 STREETFLOW TRAVELTIME(MIN) = .09 TC(MIN) = 10.28 { II 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.191 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 II SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.29 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 5.61 I END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 7.80 FLOW VELOCITY(FEET /SEC.) = 4.28 DEPTH *VELOCITY = 1.75 I * * * * * * * * * * * * * * ** ***************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 I » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< t I CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 10.28 RAINFALL INTENSITY (INCH. /HOUR) = 3.19 1 EFFECTIVE STREAM AREA(ACRES) = 2.29 TOTAL STREAM AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.61 1 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) II 1 6.01 15.54 2.490 .49 3.31 2 5.85 12.17 2.883 .49 2.60 3 5.61 10.28 3.191 .49 2.29 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. il SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE IF NUMBER Q(CFS) AREA(ACRES) 1 15.06 8.20 2 16.45 7.48 II 3 16.55 6.68 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.55 TIME(MINUTES) = 10.279 II EFFECTIVE AREA(ACRES) = 6.68 TOTAL AREA(ACRES) = 8.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2 IF » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE II TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 II INITIAL SUBAREA FLOW- LENGTH = 539.00 UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 II ELEVATION DIFFERENCE = 7.06 TC = .389 *[( 539.00 ** 3.00)/( 7.06)] ** .20 = 11.459 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.989 ' SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 4.35 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 4.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< _ I UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 STREET LENGTH(FEET) = 113.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.35 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .33 HALFSTREET FLOODWIDTH(FEET) = 5.28 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.15 PRODUCT OF DEPTH &VELOCITY = 2.03 STREETFLOW TRAVELTIME(MIN) = .31 TC(MIN) = 11.77 II 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.942 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 II SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 1.93 AVERAGED Fm(INCH /HR) = .485 I TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 4.35 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOODWIDTH(FEET) = 5.28 FLOW VELOCITY(FEET /SEC.) = 6.15 DEPTH *VELOCITY = 2.03 li END OF STUDY SUMMARY: 1.93 TOTAL AREA(ACRES) EFFECTIVE AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 4.35 I END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 1 1 1 1 1 1 1 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * 1 FILE NAME: Q10TFUT.DAT R tOO \1 S'(aef'Y1 e 1 TIME /DATE OF STUDY: 14:29 6/16/1988 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL * -- ' USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 1 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .950 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.400 I COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.4000 SLOPE OF INTENSITY DURATION CURVE = .6000 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 I INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1329.00 DOWNSTREAM ELEVATION = 1318.77 ELEVATION DIFFERENCE = 10.23 I TC = .389 *[( 1000.00 ** 3.00)/( 10.23)] ** .20 = 15.416 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.164 SOIL CLASSIFICATION IS "A" 1 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 7.98 TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 7.98 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 7.00 IS CODE = 6 1 » »>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 I STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.98 I STREETFLOW MODEL RESULTS: s NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION I THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 I AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.33 PRODUCT OF DEPTH &VELOCITY = 1.71 STREETFLOW TRAVELTIME(MIN) = .12 TC(MIN) = 15.54 I 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.149 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 I SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 3.31 AVERAGED Fm(INCH /HR) = .485 I TOTAL AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) = 7.98 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 12.88 FLOW VELOCITY(FEET /SEC.) = 3.33 DEPTH *VELOCITY = 1.71 III ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< ' » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.54 I RAINFALL INTENSITY (INCH. /HOUR) = 3.15 EFFECTIVE STREAM AREA(ACRES) = 3.31 TOTAL STREAM AREA(ACRES) = 3.31 • PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.98 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE I NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 7.98 15.54 3.149 .49 3.31 I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 1 STREAMS. SUMMARY RESULTS: I STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 7.98 3.31 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.98 TIME(MINUTES) = 15.536 EFFECTIVE AREA(ACRES) = 3.31 1 TOTAL AREA(ACRES) = 3.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW - LENGTH = 540.00 UPSTREAM ELEVATION = 1326.00 i DOWNSTREAM ELEVATION = 1318.97 I ELEVATION DIFFERENCE = 7.03 TC = .389 *[( 540.00 ** 3.00)/( 7.03)] ** .20 = 11.481 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.776 ▪ SOIL CLASSIFICATION IS "A" ▪ RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 7.70 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 7.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 7.00 IS CODE = 6 » »> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< IF UPSTREAM ELEVATION = 1318.77 DOWNSTREAM ELEVATION = 1318.52 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 • OUTSIDE STREET CROSSFALL(DECIMAL) = .040 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.70 ' STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 18.13 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.92 PRODUCT OF DEPTH &VELOCITY = 1.19 STREETFLOW TRAVELTIME(MIN) = .70 TC(MIN) = 12.18 I 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.645 SOIL CLASSIFICATION IS "A" ' RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH /HR) = .485 1 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 7.70 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 18.13 FLOW VELOCITY(FEET /SEC.) = 1.92 DEPTH *VELOCITY = 1.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 . FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< IL » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.18 II RAINFALL INTENSITY (INCH. /HOUR) = 3.64 EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.70 III CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 4 I 1 7.98 15.54 3.149 .49 3.31 2 7.70 12.18 3.645 .49 2.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE IF NUMBER Q(CFS) AREA(ACRES) 1 14.47 5.91 2 15.12 5.19 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.12 TIME(MINUTES) = 12.178 EFFECTIVE AREA(ACRES) = 5.19 • TOTAL AREA(ACRES) = 5.91 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 » » »COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « UPSTREAM ELEVATION = 1318.52 DOWNSTREAM ELEVATION = 1318.12 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 • OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 I * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 15.12 * * *STREETFLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .66 FLOODWIDTH(FEET) = 20.00 FULL HALF- STREET VELOCITY(FEET /SEC.) = 2.63 I SPLIT DEPTH(FEET) = .41 SPLIT FLOODWIDTH(FEET) = 7.80 SPLIT VELOCITY(FEET /SEC.) = 2.02 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. ' STREET FLOWDEPTH(FEET) = .66 HALFSTREET FLOODWIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.63 PRODUCT OF DEPTH &VELOCITY = 1.73 II STREETFLOW TRAVELTIME(MIN) = .51 TC(MIN) = 12.68 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.557 I SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 I EFFECTIVE AREA(ACRES) = 5.19 AVERAGED Fm(INCH /HR) = .485 TOTAL AREA(ACRES) = 5.91 PEAK FLOW RATE(CFS) = 15.12 END OF SUBAREA STREETFLOW HYDRAULICS: II DEPTH(FEET) = .66 HALFSTREET FLOODWIDTH(FEET) = 20.00 FLOW VELOCITY(FEET /SEC.) = 2.63 DEPTH *VELOCITY = 1.73 11 **************************************************************************** FLOW PROCESS FROM NODE 4F00 TO NODE 8.00 IS CODE = 2 » » »RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « < a I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE ▪ TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 485.00 II UPSTREAM ELEVATION = 1327.93 III DOWNSTREAM ELEVATION = 1318.66 ELEVATION DIFFERENCE = 9.27 TC = .389 *[( 485.00 ** 3.00)/( 9.27)] ** .20 = 10.185 II 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.057 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 I SUBAREA RUNOFF(CFS) = 7.36 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 7.36 11 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 6 » »> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 1318.66 DOWNSTREAM ELEVATION = 1318.12 STREET LENGTH(FEET) = 24.00 CURB HEIGTH(INCHES) = 6. II STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 I INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) .040 ▪ SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.36 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.30 PRODUCT OF DEPTH &VELOCITY = 1.95 II STREETFLOW TRAVELTIME(MIN) = .09 TC(MIN) = 10.28 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.035 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.29 I AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 7.36 END OF SUBAREA STREETFLOW HYDRAULICS: ' DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 9.88 FLOW VELOCITY(FEET /SEC.) = 4.30 DEPTH *VELOCITY = 1.95 11********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 II » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: II TIME OF CONCENTRATION(MINUTES) = 10.28 RAINFALL INTENSITY (INCH. /HOUR) = 4.04 EFFECTIVE STREAM AREA(ACRES) = 2.29 TOTAL STREAM AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.36 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) II 1 7.98 15.54 3.149 .49 3.31 2 7.70 12.18 3.645 .49 2.60 3 7.36 10.28 4.035 .49 2.29 1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO i CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: II STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 20.00 8.20 2 21.67 7.48 3 21.70 6.67 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: F 1 PEAK FLOW RATE(CFS) = 21.70 TIME(MINUTES) = 10.278 EFFECTIVE AREA(ACRES) = 6.67 TOTAL AREA(ACRES) = 8.20 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2 1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< II DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 539.00 1 UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 ELEVATION DIFFERENCE = 7.06 1 TC = .389 *[( 539.00 ** 3.00)/( 7.06)] ** .20 = 11.459 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.780 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 5.72 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 5.72 11 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 1 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< UPSTREAM ELEVATION = 1324.24 DOWNSTREAM ELEVATION = 1317.18 1 STREET LENGTH(FEET) = 113.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 24.00 1 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.72 STREETFLOW MODEL RESULTS: II STREET FLOWDEPTH(FEET) = .36 HALFSTREET FLOODWIDTH(FEET) = 6.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.31 PRODUCT OF DEPTH &VELOCITY = 2.30 STREETFLOW TRAVELTIME(MIN) = .30 TC(MIN) = 11.76 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.722 SOIL CLASSIFICATION IS "A" III RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 II EFFECTIVE AREA(ACRES) = 1.93 AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 5.72 I/ END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =1 .361 HALFSTREET FLOODWIDTH(FEET) = 6.16 FLOW VELOCITY(FEET/SEC.) = 6.31 DEPTH*VELOCITY = 2.30 II END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.93 EFFECTIVE AREA(ACRES) = 1.93 II PEAK FLOW RATE(CFS) = 5.72 END OF RATIONAL METHOD ANALYSIS } SECTS 4 UNIT HYDROGRAPH ANALYSIS AND FLOW -THRU DETENTION BASIN SUMMARY STORM EVENT 2 YEAR 10 YEAR 25 YEAR 100 YEAR } Existing 5.13 9.07 11.36 16.06 Condition For 10.12 Ac Detention 2.90 5.50 6.50 11.20 Basin Outflow For 8.19 Ac Flow Added 1.31 2.15 2.71 3.58 For 1.93 Ac Total Flow 4.21 7.65 9.21 14.78 Developed Condition % Of Existing Flow 82.10% 84.30% 81.10% 92.00% i II 069X0316 4 I, 1 I (061171 � C-r 12 25 -4- PRO3ECT: oNi?�IJ Pi 4 DATE: /g$ I CITAT1DKS so 0 [ (i? ENGINEER: ' b 7 A, c )6a s 1c 1 IEV of coNU1TloN 1 1. Enter the design storm return frequency (years) Z 2. Enter catchment lag (hours) Lk = - Tc. 0. 111 I 3. Enter the catchment area (acres) - ELA bE'I , c w A, 1 q rwui ilozoow o 1, 93 1 4. Enter baseflow (cfs/square mile) 5. Enter S -Graph proportions (decimal) 1 Valley: Developed i , o Foothill Mountain I Valley: Undeveloped Desert I 6. Enter maximum loss rate, F (inch /hour) n , 4 S5 7. Enter low loss fraction, Y (decimal) c . q 28 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0. 17 I Enter watershed area - averaged 30- minute point rain- fall (inches)* 0.44 I Enter watershed area - averaged 1 -hour point rainfall (inches)* p . Enter watershed area - averaged 3 -hour point rainfall 1 (inches)* (, 2 5 Enter watershed area - averaged 6 -hour point rainfall 1 (ind:es)* 0 Y Enter watershed area - averaged 24 -hour point rainfall 1 (inches)* 5o 9. Enter 24 -hour storm unit interval (minutes) 5 1 *Note: enter values unadjusted by depth -area factors 1 1 SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM . , E E -28 Figure E-7 1 logn1 ITZ t T j LS ' PROJECT: tJ" 1 N Pt s E 4 DATE: (n l 8$ I C i - Rm on_) - 0-A i L bC�ZC ENGINEER: `1. -T � �i t o uw � V i Svc- u PEp cDr\D( 1 1 1. Enter the design storm return frequency (years) ____La____ ' 2. Enter catchment lag (hours) LA-G T h , 1"1 1 1 3. Enter the catchment area (acres) 71 De:T 1 B g, 1 ci I Fw,As r\►_JKID I- 3 4. Enter baseflow (cfs/square mile) o 1 ; 5. Enter S -Graph proportions (decimal) 1 Valley: Developed _bp Foothill Mountain 1 Valley: Undeveloped Desert 6. Enter maximum loss rate, F (inc h/hair) r). 4'S5 1 7. Enter low loss fraction • decimal 0."7 0 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0, 22 I Enter watershed area - averaged 30- minute point rain- fall (inches)* 0 . (0 3 I Enter watershed area - averaged 1 -hour point rainfall (inches)* 0. q5- Enter watershed area - averaged 3 -hour point rainfall 1 (inches)* /, 6 0 Enter watershed area - averaged 6 -hour point rainfall I (inches)* 2.54 - Enter watershed area - averaged 24 -hour point rainfall 1 ()* 6.ZS 9. Enter 24 -hour storm unit interval (minutes) 5 1 *Note: enter values unadjusted by depth -area factors 1 SAN BERNARDINO COUNTY WATERSHED 1 HYDROLOGY MANUAL INFORMATION FORM E- 2 8 Figure E-7 (1)9013 7Th i 133 Z5-4 PROJECT: FO (j I A P N - A S-E 4- DATE: / g 2 CiTM1ON go C?? I ENGINEER: , J F1- g-,L)Ro I A i r 1 DEVELD D CoN1J/ TON I 1. Enter the design storm return frequency (years) 25 2. Enter catchment lag (hours) L A Tc 0 ! 11 / 1 3. Enter the catchment area (acres) 71-ii,ct 'e7` Bt1 Sin) 8, /9 4. Enter baseflow (cfs/square mile) a 1 5. Enter Po S-Graph proportions (decimal) P • Valley: Developed 1 - o Foothill Mountain I Valley: Undeveloped Desert ry 6. Enter maximum loss rate, F (inch/hour) 0 . 4-RS 7. Enter low loss fraction, Y (decimal) L - 3� b I 8. Enter watershed area - averaged 5- minute point rainfall (inches)* 0 . 2 L, I Enter watershed area - averaged 30- minute point rain- fall (Indies)* o. Enter watershed area - averaged 1 -hour point rainfall (inches)* /i 13 Enter watershed area - averaged 3 -hour point rainfall 1 (inches)* 2,0o Enter watershed area - averaged 6 -hour point rainfall I (inches)* 2, R 2 Enter watershed area - averaged 24 -hour point rainfall _ (inches)* G ' 0 I 9. Enter 24 -hour storm unit interval (minutes) C 1 *Note: enter values unadjusted by depth -area factors SAN BERNARDINO COUNTY WATERSHED 5 HYDROLOGY MANUAL INFORMATION FORM E -28 Figure E-7 I 6,q013 77?A(7 / 3325 4 P ROJECT: / Pr P.H A S ¢ DATE: ��8 (.4 1 -7701' S OIL. , er_ S E NGINEER: `Th - A-t,c i J Sk J l)C\IF CONL/ 710 1 1. Enter the design storm return frequency (years) ___L L____0 i 2. Enter catchment lag (hours) Lk: = /- O. / - 7 1 3. Enter the catchment area (acres) 7T-J -T BAs/k) g,1.9 ru tA A-12_0 (10D / , _9 3 I 4. Enter baseflow (cfs/square mile) 5. Enter S -Graph proportions (decimal) 1 Valley: Developed /.O Foothill Mountain I Valley: Undeveloped Desert 6. Enter maximum loss rate, F (inch/hour) 0 , 48S 7. Enter low loss fraction, Y (decimal) 0. 6 53 1 8. Enter watershed area - averaged 5- minute point rainfall (inches)* D. 3 2 Enter watershed area - averaged 30- minute point rain- fall (inches)* 6. a 2 1 I Enter watershed area - averaged 1 -hour point rainfall (inches)* d/ r) Enter watershed area - averaged 3 -hour point rainfall 1 (inches)* 2. /o 0 Enter watershed area - averaged 6 -hour point rainfall 1 (inches)* 3.7 S Enter watershed area - averaged 24 -hour point rainfall (inches)* 9,0 0 9. Enter 24 -hour storm unit interval (minutes) ,s 1 *Note: enter values unadjusted by depth -area factors o SAN BERNARDINO COUNTY WATERSHED HYDROLOGY MANUAL INFORMATION FORM E - 28 Figure E-7 , E V t************************************************************************ FLOOD R O U T I N G A N A L Y S I S ' USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHFUT . DAT U H"FUT 2 . DM S I TIME /DATE OF STUDY: 10:14 6/20/1988 Z. yR STOZM EVENT I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS« «< (UNIT- HYDROGRAPH ADDED TO STREAM #1) ' *USER ENTERED "LAG" TIME = .171 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 48.733 WATERSHED AREA = 10.000 ACRES ' BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .928 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .17 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .44 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .65 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.25 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 1.70 1 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 3.50 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: ' 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 ' 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: ' MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 1 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) IT 1 4.233 5.119 1 I 2 28.261 66.157 29.058 3 45.831 4 88.707 27.271 5 96.617 9.566 I 6 98.619 99.407 2.422 7 .952 8 99.763 .430 I 9 99.941 .215 10 100.000 .072 II TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 2.5663 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = .3502 II 1 1 II I 2 4 - H O U R S T O R M RUNOFF HYDROGRAPH BEkU IOP� -g 1 HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 15.583 .1151 .27 .Q . V . . 15.667 .1170 .29 .Q . V . . £ I 15.750 .1191 .30 .Q . V 15.833 .1214 .33 .Q V 15.917 .1245 .46 .Q . V . . I 16.000 .1316 1.02 . Q . V 16.083 .1501 2.69 Q V 16.167 .1913 5.98 . . .V Q . . 16.250 .2422 7.39 . . . V Q. I 16.333 .2729 4.46 Q .V 16.417 .2855 1.82 Q . V 16.500 .2904 .72 . Q . . . V I 16.583 .2934 .44 .Q V 16.667 .2957 .33 .Q V 16.750 .2976 .27 .Q . . . V 16.833 .2992 .24 Q . . . V 16.917 .3007 .21 Q V 17.000 .3021 .20 Q V 1 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 , IF * ** * * * * * * * * * * * * ** * ** * * * *' ******************* * * * * * * ** * * * * ** * * * ** * *** * ** * * * ** F L O O D R O U T I N G A N A L Y S I S I USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) I Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: 1 * BETA TEST SITE EVALUATION ONLY * NAME: DET . DAT 13 C - T, DNIJ 2 Y e 1 FILE TIME /DATE OF STUDY: 15: 1 6/21/1988 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 10 » » >USER SPECIFIED UNIT- HYDROGRAPH ««< IF (UNIT - HYDROGRAPH ADDED TO STREAM #1) I *USER SPECIFIED DATA: Fog 8 A Ncte5 II THE RUNOFF HYDROGRAPH IS DEFINED BY A SERIES OF DATA PAIRS OF THE FORM (N,Q) WHERE N IS THE 5- MINUTE INTERVAL NUMBER AND Q IS THE FLOWRATE. THE DATA PAIRS DEFINE POINTS ON THE II HYDROGRAPH CURVE WHERE KNOWN VALUES EXIST. VALUES BETWEEN GIVEN DATA PAIRS ARE LINEARLY INTERPOLATED BY THE PROGRAM. TOTAL NUMBER OF DATA PAIRS ENTERED = 16 II DATA PAIR INTERVAL NUMBER FLOW RATE(CFS) TIME(HRS) I 1 1 ( .083) .00 2 187 (15.583) .22 3 188 (15.667) .23 4 189 (15.750) .24 I 5 190 (15.833) .27 6 191 (15.917) .37 7 192 (16.000) .83 I 8 193 (16.083) 2.20 9 194 (16.167) 4.90 10 195 (16.250) 6.05 11 196 (16.333) 3.65 I 12 197 (16.417) 1.49 13 198 (16.500) .59 14 199 (16.583) .36 II 15 200 (16.667) .27 16 201 (16.750) .22 I RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 TOTAL STORM RUNOFF VOLUME( ACRE - FEET ) = .2909 1 IIIE 2 4 -HOUR STORM 1 RUNOFF HYDROGRAPH II HYDROGRAPH IN FIVE-MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 II 15.583 .1417 .22 Q . V. . . 15.667 .1433 .23 Q . V. . . 15.750 .1449 .24 Q . V. . 11 15.833 .1468 .27 .Q . V . . 15.917 .1493 .37 .Q . V . . 16.000 .1551 .83 . Q . .V . . II 16.083 .1702 2.20 . Q . . V . . 16.167 .2039 4.90 . . Q. V . . 16.250 .2456 6.05 . . . Q . V 16.333 .2708 3.65 . . Q . . V II 16.417 .2810 1.49 . Q . . . V . 16.500 .2851 .59 . Q . . . V. 16.583 .2876 .36 .Q . . . V. II 16.667 .2894 .27 .Q . . . V. 16.750 .2909 .22 Q . . . V. 16.833 .2909 .00 Q . . . V. 16.917 .2909 .00 Q . . . V. 1 17.000 .2909 .00 Q . . . V. I * *************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 3 >»»MODEL FLOW-THROUGH DETENTION BASIN ROUTING<«« I 1 ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 I THROUGH A FLOW-THROUGH DETENTION BASIN USING FIVE-MINUTE UNIT INTERVALS: SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: I DEAD STORAGE(AF) = .000 SPECIFIED DEAD STORAGE(AF) FILLED = .000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = .000 II BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION: II INTERVAL DEPTH OUTFLOW STORAGE NUMBER (FT) (CFS) (AF) 1 .00 .00 .000 I 2 3 .20 .40 .21 .90 .016 .032 4 .50 1.35 .041 5 .70 2.55 .057 II 6 7 1.00 1.50 2.90 4.74 .082 .116 8 1.70 5.30 .136 I 9 10 1.80 2.00 5.57 6.04 .146 .170 11 2.20 6.49 .187 12 2.30 6.70 .200 I 13 14 2.36 10.28 10.60 .208 2.50 .220 15 3.00 11.60 .270 1 16 3.50 12.42 .320 17 4.00 13.00 .380 1 INFLOW II (STREAM 1) V effective depth I T - (and volume) V 1 detention < - -> outflow basin A storage I \ basin outlet 1 OUTFLOW (STREAM 1) li I BASIN ROUTING MODEL RESULTS(5 MINUTE INTERVALS): TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF) IF 15.583 .000 .2 .20 .2 .016 15.667 .000 .2 .20 .2 .016 II 15.750 .000 .2 .20 .2 .016 15.833 .000 .3 .21 .2 .017 15.917 .000 .4 .22 .3 .017 16.000 .000 .8 .26 .3 .021 I 16.083 .000 2.2 .39 .6 .032 16.167 .000 4.9 .66 1.6 .054 4 16.250 .000 6.1 .95 2.6 .078 16.333 .000 3.7 1.02 2.9 .083 { I 16.417 .000 1.5 .90 2.9 .074 16.500 .000 .6 .73 2.7 .059 16.583 .000 .4 .57 2.2 .047 I 16.667 16.750 .000 .3 .47 1.5 .038 .000 .2 .40 1.1 .032 16.833 .000 .0 .34 .8 .027 I 16.917 .000 .0 .29 .6 .023 17.000 .000 .0 .25 .4 .020 4 1 END OF FLOOD ROUTING ANALYSIS II II 1 i r.► . 1F ** **************************************** ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOOD R O U T I N G A N A L Y S I S III USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) II Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: L * BETA TEST SITE EVALUATION ONLY * ■ FILE NAME: UHFUT . DAT UttFUT Z ,PN"'3 L W-- 1 TIME/DATE OF STUDY: 8:10 6/23/1988 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » HYDROGRAPH ANALYSIS « « < _ f Low p\vnUN P I (UNIT - HYDROGRAPH ADDED TO STREAM #1) BisS ON tO I\LLeS *USER ENTERED "LAG" TIME = .196 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 42.517 WATERSHED AREA = 10.000 ACRES pV.Oekc R- I k2ES SEE et BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .928 *HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .17 I SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .44 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .65 ! SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.25 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 1.70 1 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 3.50 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: I 5-MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 I 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 ' RUNOFF HYDROGRAPH LISTING LIMITS: II MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 a MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 a i 1 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 3.253 3.935 I 2 3 21.881 22.528 54.449 39.387 4 81.494 32.707 5 93.223 14.185 I 6 97.626 5.324 7 98.776 1.391 8 99.439 .802 9 99.775 .407 I 10 99.944 .204 11 100.000 .068 I TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 2.5663 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = .3502 f I I 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H t HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) •TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 15.583 .1145 .27 .Q . V . . 15.667 .1164 .28 .Q . V . . I 15.750 .1185 .30 .Q V 15.833 .1207 .32 .Q V 15.917 .1236 .43 .Q . V . . II 16.000 .1296 .87 Q . V 16.083 .1450 2.23 Q • V 16.167 .1796 5.03 . . Q 16.250 .2263 f6.78J . . . V Q . II 16.333 .2628 5.30 . .Q v 16.417 .2804 2.55 Q . V 16.500 .2883 1.14 . Q . . . V II 16.583 .2920 .53 . Q V 16.667 .2947 .39 .Q . . . V 16.750 .2968 .31 .Q . . . V 16.833 .2986 .26 .Q . . . V II 16.917 .3002 .23 Q V 17.000 .3016 .21 Q V II END OF FLOOD ROUTING ANALYSIS - 1 2 2.0CATIE* F0c._ I e 1.13�G,/5 = 1 I P\Qb H-`{ QP.DGe.aPk s 2,9 meu 8 A /A/ 1 1.31 F/,00.) ADbet) 421 cis x 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * F L O O D R O U T I N G A N A L Y S I S USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHFUT.DAT UHFUltO,DP,11 1 TIME /DATE OF STUDY: 7:38 6/23/1988 (O yR STOeM EVENT I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS ««< IF (UNIT - HYDROGRAPH ADDED TO STREAM #1) *USER ENTERED "LAG" TIME = .171 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 48.733 WATERSHED AREA = 10.000 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .770 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .22 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .63 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .95 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.80 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 2.54 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 6.25 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = 1.000 t 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 1 UNIT HYDROGRAPH DETERMINATION 1[ " INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 4.233 5.119 2 28.261 29.058 3 66.157 45.831 4 88.707 27.271 5 96.617 9.566 6 98.619 2.422 7 99.407 .952 8 99.763 .430 1 9 99.941 .215 10 100.000 .072 II TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 3.7997 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 1.4079 II 1 1 II 2 4 - H O U R S T O R M R U N O F F IL H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) 'FOI to ACKES II TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 1 15.583 .6826 1.31 . Q . V. . 15.667 .6925 1.43 . Q . V. 15.750 .7040 1.67 . Q . V . 1 15.833 .7185 2.11 Q V 15.917 .7378 2.79 Q V 16.000 .7649 3.95 . Q . . 1 16.083 .8080 6.25 Q V 16.167 .8789 10.30 Q V 16.250 .9606 11.87 . . . Q V . . 16.333 1.0160 8.04 . . Q . V . . I 16.417 1.0453 4.26 . Q . . V. 16.500 1.0613 2.32 . Q . . V . 16.583 1.0724 1.61 . Q . . V 16.667 1.0815 1.31 . Q V I 16.750 1.0894 1.15 . Q V 16.833 1.0966 1.05 . Q . . .V . 16.917 1.1033 .97 .Q . . . . 1 17.000 1.1096 .92 .Q . . .V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 1 E 0, II ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D R O U T I N G A N A L Y S I S I USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 I Especially prepared for: 1 * BETA TEST SITE EVALUATION ONLY * FILE NAME: DET10 . DAT pE.7T lO . brA S' II TIME /DATE OF STUDY: 7:51 6/23/1988 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 10 » » >USER SPECIFIED UNIT - HYDROGRAPH « «< il (UNIT - HYDROGRAPH ADDED TO STREAM #1) F R- S [ c hceFs I *USER SPECIFIED DATA: U THE RUNOFF HYDROGRAPH IS DEFINED BY A SERIES OF DATA PAIRS OF THE FORM (N,Q) WHERE N IS THE 5- MINUTE INTERVAL NUMBER AND Q IS THE FLOWRATE. THE DATA PAIRS DEFINE POINTS ON THE I HYDROGRAPH CURVE WHERE KNOWN VALUES EXIST. VALUES BETWEEN GIVEN DATA PAIRS ARE LINEARLY INTERPOLATED BY THE PROGRAM. TOTAL NUMBER OF DATA PAIRS ENTERED = 17 1 DATA PAIR INTERVAL NUMBER FLOW RATE(CFS) TIME(HRS) I 1 1 ( .083) .00 2 187 (15.583) 1.07 3 188 (15.667) 1.17 4 189 (15.750) 1.37 II 5 190 (15.833) 1.73 6 191 (15.917) 2.29 7 192 (16.000) 3.24 8 193 (16.083) 5.19 I 9 194 (16.167) 8.44 10 195 (16.250) 9.72 11 196 (16.333) 6.58 I 12 197 (16.417) 3.49 13 198 (16.500) 1.90 14 199 (16.583) 1.32 1 15 200 (16.667) 1.07 16 201 (16.750) .94 17 202 (16.833) .86 { 1 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 II MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 1.0286 a N IF 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) ll TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 1r 15.583 .6890 1.07 . Q . . V . 15.667 .6971 1.17 . Q . . V . 15.750 .7065 1.37 . Q . . V . II 15.833 .7184 1.73 . Q V 15.917 .7342 2.29 . Q. V . 16.000 .7565 3.24 . . Q . V. . I 16.083 .7923 5.19 . Q V 16.167 .8504 8.44 Q 16.250 .9173 9.72 . . . . V Q . 16.333 .9626 6.58 . . . Q • V . I 16.417 .9867 3.49 . • Q . V . 16.500 .9998 1.90 Q V . 16.583 1.0088 1.32 . Q . . . V. I 16.667 1.0162 1.07 Q V. 16.750 1.0227 .94 Q V. 16.833 1.0286 .86 . Q . . . V. 16.917 1.0286 .00 Q . . . V. 17.000 1.0286 .00 Q . . . V. ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 3 » » >MODEL FLOW- THROUGH DETENTION BASIN ROUTING « «< If I ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW - THROUGH DETENTION BASIN USING FIVE - MINUTE UNIT INTERVALS: SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: I DEAD STORAGE(AF) = .000 SPECIFIED DEAD STORAGE(AF) FILLED = .000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = .000 I BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION: 1 INTERVAL DEPTH OUTFLOW STORAGE NUMBER (FT) (CFS) (AF) 1 .00 .00 .000 II 2 .20 .21 .016 3 .40 .90 .032 4 .50 1.35 .041 5 .70 2.55 .057 I 6 1.00 2.90 .082 7 1.50 4.74 .116 8 1.70 5.30 .136 I 9 1.80 5.57 .146 0 2.00 6.04 .170 11 2.20 6.49 .187 12 2.30 6.70 .200 13 2.35 10.28 .208 14 2.50 10.60 .220 I II 15 3.00 11.60 .270 16 3.50 12.42 .320 17 4.00 13.00 .380 1 INFLOW II (STREAM 1) 1 V effective depth T - (and volume) V II detention < - -> outflow basin A 1 storage basin outlet V OUTFLOW (STREAM 1) 1 I BASIN ROUTING MODEL RESULTS(5- MINUTE INTERVALS): TIME DEAD- STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF) If 15.583 .000 1.1 .44 1.1 .035 15.667 .000 1.2 .44 1.1 .036 15.750 .000 1.4 .46 1.1 .037 1 15.833 .000 1.7 .50 1.3 .041 15.917 .000 2.3 .56 1.5 .046 16.000 .000 3.2 .67 2.0 .054 16.083 .000 5.2 .89 2.6 .072 16.167 .000 8.4 1.36 3.5 .106 16.250 .000 9.7 1.74 4.8 .140 I 16.333 .000 6.6 1.81 ® .148 16.417 .000 3.5 1.68 5.4 .134 16.500 .000 1.9 1.46 4.9 .113 16.583 .000 1.3 1.18 4.1 .094 1 16.667 .000 1.1 3.2 .080 16.750 .000 .9 .82 2.8 .067 16.833 .000 .9 .68 2.6 .055 It 16.917 .000 .0 .51 1.9 .042 17.000 .000 .0 .42 1.2 .034 II END OF FLOOD ROUTING ANALYSIS II 1 1 E , * * * * * ** ** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » »> UNIT- HYDROGRAPH ANALYSIS « « < Fcou1 AkQ-c)UIUD, F3 Orl to AC.(Ze 1 II (UNIT - HYDROGRAPH ADDED TO STREAM #1) t *USER ENTERED "LAG" TIME = .196 HOURS 1 UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 42.517 I WATERSHED AREA = 10.000 ACRES = BASEFLOW .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED I MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .770 *HYDROGRAPH MODEL #1 SPECIFIED* 1 SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .22 1 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .63 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = .95 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 1.80 I SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 2.54 SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 6.25 II PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 II 3 -HOUR FACTOR = 1.000 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 1 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 II MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 UNIT HYDROGRAPH DETERMINATION I INTERVAL "S" GRAPH UNIT HYDROGRAPH II NUMBER MEAN VALUES ORDINATES(CFS) 1 3.253 3.935 II 2 21.881 22.528 3 54.449 39.387 4 81.494 32.707 5 93.223 14.185 II 6 97.626 5.324 7 98.776 1.391 8 99.439 .802 9 99.775 .407 10 99.944 .204 11 100.000 .068 I TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 3.7997 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 1.4079 It A 2 4 - H O U R S T O R M l i R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) II TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 Ir 15.583 .6798 1.29 . Q . V. . . 15.667 .6894 1.40 . Q . V. . 15.750 .7005 1.61 . Q . V. . 1 15.833 .7141 1.98 Q V 15.917 .7320 2.59 Q V 16.000 .7569 3.62 . Q . .V . I 16.083 .7954 5.60 .Q . V 16.167 .8581 9.11 Q . V 16.250 .9350 11.16 . . Q V . 16.333 .9979 9.13 Q . V . . 1 16.417 1.0345 5.31 Q V. 16.500 1.0552 3.02 Q V. 16.583 1.0680 1.86 . Q . . V . 1 16.667 1.0781 1.46 . Q V 16.750 1.0866 1.24 . Q V 16.833 1.0942 1.10 . Q . . .V . 16.917 1.1011 1.01 . Q . . .V . li 17.000 1.1076 .94 .Q . . .V . 11 END OF FLOOD ROUTING ANALYSIS Pv.oe►a- - 1.q3 1\ I A3 li. Ib = Z, f5 c-€s to 1 Pat) H\11)ez€12_AP+ 5,5 Fuo,.,..) -emu 5P., iN 1 Z,IS 5w l ��Nb �, 105 GFS - tom- F Low 1 1 1 1 1 1 5 ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * F L O O D R O U T I N G A N A L Y S I S I USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: I * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHFUT.DAT O 14FUT 2 S. DMZ 1 TIME/DATE OF STUDY: 10: 5 6/20/1988 2 \ le. 5TO -M EVENT ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS««< 1 (UNIT - HYDROGRAPH ADDED TO STREAM #1) 1 *USER ENTERED "LAG" TIME = .171 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES 1 UNIT INTERVAL PERCENTAGE OF LAG -TIME = 48.733 WATERSHED AREA = 10.000 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .760 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .26 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .74 I SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.13 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.00 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 2.98 I SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 6.50 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = 1.000 I 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 I 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: I MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 1 UNIT HYDROGRAPH DETERMINATION 4 INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 4.233 5.119 3 .. I 2 28.261 29.058 3 66.157 45.831 4 88.707 27.271 5 96.617 9.566 I 6 98.619 99.407 2.422 7 .952 8 99.763 .430 9 99.941 .215 1 10 100.000 .072 II TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 3.8054 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 1.6103 1 1 1 1 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H II HYDROGRAPH IN FIVE - MINUTE INTERVALS (CFS) $IaSEp ON l0 Pte, S 1 TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 15.583 .7271 1.99 . Q . V , 15.667 .7440 2.45 . Q . V , I 15.750 .7642 2.94 Q V , 15.833 .7881 3.46 Q V. 15.917 .8168 4.18 . Q . V 16.000 .8546 5.47 . Q .V . I 16.083 .9109 8.18 . . Q . V 16.167 1.0002 12.98 . VQ 16.250 1.1026 14.87 . . V Q. . I 16.333 1.1742 10.40 . . Q V 16.417 1.2153 5.97 .Q V 16.500 1.2390 3.44 . Q . V 16.583 1.2541 2.19 . Q . .V 1 16.667 1.2649 1.57 . Q . V . 16.750 1.2738 1.29 . Q . .V 16.833 1.2817 1.14 . Q . V 1 16.917 1.2889 1.04 . Q . V . 17.000 1.2956 .97 .Q . V '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 1 i t $ IF******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D ROUTING A N A L Y S I S I USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) * ** PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: I * BETA TEST SITE EVALUATION ONLY * FILE NAME: DET2 5 . DAT teT 25 • b t 3 1 TIME /DATE OF STUDY: 15:48 6/21/1988 I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 10 » » >USER SPECIFIED UNIT - HYDROGRAPH « «< Fpm sAcj p 1r (UNIT - HYDROGRAPH ADDED TO STREAM #1) I *USER SPECIFIED DATA: I THE RUNOFF HYDROGRAPH IS DEFINED BY A SERIES OF DATA PAIRS OF THE FORM (N, Q) WHERE N IS THE 5- MINUTE INTERVAL NUMBER AND Q IS THE FLOWRATE. THE DATA PAIRS DEFINE POINTS ON THE I HYDROGRAPH CURVE WHERE KNOWN VALUES EXIST. VALUES BETWEEN GIVEN DATA PAIRS ARE LINEARLY INTERPOLATED BY THE PROGRAM. TOTAL NUMBER OF DATA PAIRS ENTERED = 17 li DATA PAIR INTERVAL NUMBER FLOW RATE(CFS) TIME(HRS) I 1 1 ( .083) .00 2 187 (15.583) 1.53 3 188 (15.667) 1.93 4 189 (15.750) 2.33 I 5 190 (15.833) 2.78 6 191 (15.917) 3.39 7 192 (16.000) 4.47 II 8 193 (16.083) 6.69 9 194 (16.167) 10.61 10 195 (16.250) 12.16 11 196 (16.333) 8.51 II 12 197 (16.417) 4.85 13 198 (16.500) 2.78 t 14 199 (16.583) 1.78 II 15 200 (16.667) 1.29 16 201 (16.750) 1.06 17 202 (16.833) .93 i II RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 } TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 1.4348 If 2 4 - H O U R S T O R M 1 R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 IF 15.583 .9833 1.53 . Q . . V . 15.667 .9966 1.93 . Q . . V . I 15.750 1.0126 2.33 . Q . . V . . 15.83 1.0318 2.78 Q . V . 15.917 1.0551 3.39 . Q . . V. . 16.000 1.0859 4.47 . Q . . V . I 16.083 1.1320 6.69 . . Q . .V . III 16.1 1.2051 10.61 .Q V 16.250 1.2888 12.16 . . . Q . V . 16.333 1.3474 8.51 . . Q . . V . I 16.417 1.3808 4.85 . Q . . . V . 16.500 1.4000 2.78 Q . . V. 16.583 1.4122 1.78 . Q . . . V. I 16.667 1.4211 1.29 . Q . . . V. 16.750 1.4284 1.06 . Q V. 16.833 1.4348 .93 .Q . . . V 16.917 1.4348 .00 Q . . . V 17.000 1.4348 .00 Q V ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 3 » » >MODEL FLOW- THROUGH DETENTION BASIN ROUTING « «< II ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW - THROUGH DETENTION BASIN USING FIVE - MINUTE UNIT INTERVALS: SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: I DEAD STORAGE(AF) = .000 SPECIFIED DEAD STORAGE(AF) FILLED = .000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = .000 II BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION: 1 INTERVAL DEPTH OUTFLOW STORAGE NUMBER (FT) (CFS) (AF) 1 .00 .00 .000 II 2 .20 .21 .016 3 .40 .90 .032 4 .50 1.35 .041 5 .70 2.55 .057 II 6 1.00 2.90 .082 7 1.50 4.74 .116 E. 8 1.70 5.30 .136 I 9 1.80 5.57 .146 10 2.00 6.04 .170 11 2.20 6.49 .187 12 2.30 6.70 .200 13 2.35 10.28 .208 14 2.50 10.60 .220 i 15 3.00 11.60 .270 I 16 3.50 12.42 .320 17 4.00 13.00 .380 1 INFLOW (STREAM 1) 1 II V effective depth T - (and volume) V 1 detention < - -> outflow basin A I I storage basin outlet V OUTFLOW (STREAM 1) II I BASIN ROUTING MODEL RESULTS(5- MINUTE INTERVALS): TIME DEAD - STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF) 15.583 .000 1.5 .53 1.5 .043 15.667 .000 1.9 .56 1.6 .045 I 15.750 .000 2.3 .60 1.8 .049 15.833 .000 2.8 .66 2.1 .054 15.917 .000 3.4 .74 2.4 .060 16.000 .000 4.5 .88 2.7 .072 I 16.083 .000 1.21 3.2 .096 16.167 .000 10.6 1.72 4.5 .138 16.250 .000 12.2 2.14 5.9 .182 I 16.333 .000 8.5 2.27 6.5 .196 16.417 .000 4.8 2.17 6.5 .184 16.500 .000 2.8 1.92 6.1 .161 16.583 .000 1.8 1.69 5.6 .135 I 16.667 .000 1.3 1.42 4.9 .110 16.750 .000 1.1 1.13 3.9 .091 16.833 .000 .9 .93 3.1 .076 IL 16.917 .000 .0 .70 2.7 .057 17.000 .000 .0 .53 2.0 .043 II END OF FLOOD ROUTING ANALYSIS 1 1 1 li , **************************************************************************** IL FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 II >»»UNIT-HYDROGRAPH ANALYSIS<<«< BAskmomfof CZt „se peDgfrru,k Fog_ /.q3 A c II (UNIT-HYDROGRAPH ADDED TO STREAM #1) FuLJA-611\lb 641(gOd AT OW) *USER ENTERED "LAG" TIME = .196 HOURS I I UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 42.517 II WATERSHED AREA = 10.000 ACRES BASEFLOW = .000 CFS/SQUARE-MILE VALLEY (DEVELOPED) S-GRAPH SELECTED II MAXIMUM WATERSHED LOSS RATE(INCH/HOUR) = .485 LOW LOSS FRACTION = .760 *HYDROGRAPH MODEL #1 SPECIFIED* II SPECIFIED PEAK 5-MINUTES RAINFALL(INCH)= .26 II SPECIFIED PEAK 30-MINUTES RAINFALL(INCH) = .74 SPECIFIED PEAK 1-HOUR RAINFALL(INCH) = 1.13 SPECIFIED PEAK 3-HOUR RAINFALL(INCH) = 2.00 SPECIFIED PEAK 6-HOUR RAINFALL(INCH) = 2.98 II SPECIFIED PEAK 24-HOUR RAINFALL(INCH)= 6.50 PRECIPITATION DEPTH-AREA REDUCTION FACTORS: II 5-MINUTE FACTOR = 1.000 30-MINUTE FACTOR = 1.000 1-HOUR FACTOR = 1.000 3-HOUR FACTOR = 1.000 II 6-HOUR FACTOR = 1.000 24-HOUR FACTOR = 1.000 II RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 111 UNIT HYDROGRAPH DETERMINATION IF 1 INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) I - 1 3.253 3.935 2 21.881 22.528 4 II 3 5 54.449 81.494 32.707 93.223 39.387 14.185 6 97.626 5.324 8 II 7 98 .776 99.439 1.391 .802 9 99.775 .407 II 10 11 99.944 100.000 .204 .068 1r TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 3.8054 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 1.6103 I] 14 1 If 2 4 - H O U R S T O R M II R U N O F F H Y D R O G R A P H HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) 11. TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 li 15.583 .7229 1.86 . Q . V . 15.667 .7388 2.31 . Q . V . . 15.750 .7580 2.78 Q V . II 15.833 .7808 3.30 Q V. 15.917 .8081 3.96 . Q V . 16.000 .8432 5.10 . Q V il 16.083 .8943 7.41 Q . V . 16.167 .9740 11.57 QV 16.250 1.0705 14.02 . . . V Q , . 16.333 1.1509 11.67 . . . Q V , I 16.417 1.2004 7.20 . . Q . V. . 16.500 1.2302 4.33 Q V 16.583 1.2482 2.60 . Q • . .V I 16.667 1.2607 1.83 . Q .V 16.750 1.2706 1.43 . Q .V 16.833 1.2790 1.22 . Q . . .V 16.917 1.2865 1.09 . Q . . .V li 17.000 1.2934 1.00 . Q . . . V . il END OF FLOOD ROUTING ANALYSIS ?Ro 2foE.p cp e ) , 9 S A 14 ,oZ K 2- 7 /CPS 10 AO Y,b o 6R-AP t+S • 1 5 GFS FP 0 77-14U 64V IV 2.71 11.3 / -A)dwo /34Sinl 1 q. / CF s 7°-01-c- 1 1 1 1 ffi 1 1 1 IF ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOOD R O U T I N G A N A L Y S I S ' USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHFUT.DAT II TIME/DATE OF STUDY: 14:50 6/20/1988 [DO `W. 5o eVI G�1 C�tv7 I ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 » » >UNIT- HYDROGRAPH ANALYSIS ««< IF (UNIT- HYDROGRAPH ADDED TO STREAM #1) *USER ENTERED "LAG" TIME = .171 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 48.733 WATERSHED AREA = 10.000 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .653 * HYDROGRAPH MODEL #1 SPECIFIED* SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .32 SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .92 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.40 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.60 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.75 ' SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.00 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 111 UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 4.233 5.119 1 2 28.261 29.058 I 3 66.157 45.831 4 88.707 27.271 = 5 96.617 9.566 I 6 98.619 2.422 7 99.407 .952 8 99.763 .430 I 9 99.941 .215 10 100.000 .072 Ir TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 4.5383 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 2.9600 II 1 1 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H I HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) BASED 00 ( 0 A CP-C S 11 - TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 15.583 1.4837 3.52 . Q . V . 15.667 1.5121 4.12 . Q . V . 15.750 1.5448 4.75 . Q. V . 15.833 1.5824 5.45 . Q .V . 15.917 1.6265 6.42 . . Q .V . 16.000 1.6821 8.06 . . Q . V . 16.083 1.7606 11.40 . . . QV . . 16.167 1.8795 17.27 . . . V Q , 16.250 2.0142 19.55 . . . V . Q. 16.333 2.1109 14.04 . . . Q . 16.417 2.1697 8.54 . . Q . V. I 16.500 2.2069 5.40 Q V. 16.583 2.2330 3.80 Q V 16.667 2.2532 2.93 . Q . . V . I 16.750 2.2703 2.49 . Q . V 16.833 2.2858 2.24 Q V 16.917 2.3000 2.07 . Q . . .V 17.000 2.3135 1.96 . Q . . .V 1 II II E , 1 A 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D R O U T I N G A N A L Y S I S 1 USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) II Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * FILE NAME: DET100 . DAT W7 II TIME /DATE OF STUDY: 15:33 6/21/1988 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 10 » » >USER SPECIFIED UNIT - HYDROGRAPH ««< FOC 6.19 Pi S If (UNIT - HYDROGRAPH ADDED TO STREAM #1) *USER SPECIFIED DATA: THE RUNOFF HYDROGRAPH IS DEFINED BY A SERIES OF DATA PAIRS OF THE FORM (N,Q) WHERE N IS THE 5- MINUTE INTERVAL NUMBER AND Q IS THE FLOWRATE. THE DATA PAIRS DEFINE POINTS ON THE HYDROGRAPH CURVE WHERE KNOWN VALUES EXIST. VALUES BETWEEN GIVEN DATA PAIRS ARE LINEARLY INTERPOLATED BY THE PROGRAM. TOTAL NUMBER OF DATA PAIRS ENTERED = 17 li DATA PAIR INTERVAL NUMBER FLOW RATE(CFS) TIME (HRS ) II 1 1 ( .083) .00 2 187 (15.583) 2.88 3 188 (15.667) 3.37 4 189 (15.750) 3.89 II 5 190 (15.833) 4.46 6 191 (15.917) 5.26 7 192 (16.000) 6.60 1 8 193 (16.083) 9.34 9 194 (16.167) 14.14 10 195 (16.250) 16.01 11 196 (16.333) 11.50 II 12 197 (16.417) 6.99 13 198 (16.500) 4.42 14 199 (16.583) 3.11 1 15 200 (16.667) 2.40 16 201 (16.750) 2.04 17 202 (16.833) 1.83 II RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 2.5113 IF 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H IL HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 IF ▪ 15.583 1.8545 2.88 . Q . . V. 15.667 1.8778 3.37 . Q • . V. . 15.750 1.9045 3.89 . Q . . V 15.833 1.9353 4.46 . Q . . V 15.917 1.9715 5.26 . Q . .V 1 16.000 2.0169 6.60 . . Q . . V 16.083 2.0813 9.34 . . Q • V ▪ 16.167 2.1787 14.14 . . Q . V i 16.250 2.2889 16.01 . . . . Q V . I 16.333 2.3681 11.50 Q V 16.417 2.4163 6.99 Q V 16.500 2.4467 4.42 . Q • V 16.583 2.4681 3.11 . Q • . V. III 1 16.667 2.4846 2.40 . Q . V. 16.750 2.4987 2.04 Q V. 16.833 2.5113 1.83 Q . . . V 16.917 2.5113 .00 Q . . . V 17.000 2.5113 .00 Q . . v ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 3 » » >MODEL FLOW- THROUGH DETENTION BASIN ROUTING« «< I I ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 1 THROUGH A FLOW - THROUGH DETENTION BASIN USING FIVE - MINUTE UNIT INTERVALS: II SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: DEAD STORAGE(AF) = .000 SPECIFIED DEAD STORAGE(AF) FILLED = .000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = .000 II , BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION: 1 INTERVAL DEPTH OUTFLOW STORAGE NUMBER (FT) (CFS) (AF) 1 .00 .00 .000 II 2 .20 .21 .016 3 .40 .90 .032 4 .50 1.35 .041 5 .70 2.55 .057 II 6 1.00 2.90 .082 7 1.50 4.74 .116 8 1.70 5.30 .136 II 9 1.80 5.57 .146 10 2.00 6.04 .170 11 2.20 6.49 .187 , 12 2.30 6.70 .200 13 2.35 10.28 .208 4 14 2.50 10.60 .220 111 15 3.00 11.60 .270 I 16 3.50 4.00 12.42 .320 17 13.00 .380 I INFLOW II (STREAM 1) I V effective depth T - (and volume) V II detention <--> basin outflow T - 7 --- A II 1 V storage 1 basin outlet OUTFLOW (STREAM 1) II I BASIN ROUTING MODEL RESULTS(5-MINUTE INTERVALS): TIME DEAD-STORAGE INFLOW EFFECTIVE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CFS) DEPTH(FT) (CFS) VOLUME(AF) It 15.583 .000 2.9 .87 2.7 .071 15.667 .000 3.4 .92 2.8 .075 I 15.750 .000 3.9 1.00 2.9 .082 15.833 .000 4.5 1.14 3.2 .091 15.917 .000 5.3 1.29 3.7 .102 16.000 .000 6.6 1.51 4.4 .117 I 16.083 .000 9.3 1.80 5.2 .146 16.167 .000 14.1 2.30 6.2 .200 16.250 .000 16.0 2.78 9.0 .248 I 16.333 .000 11.5 2.81 .251 16.417 .000 7.0 2.53 tEED_ 10.9 .223 16.500 .000 4.4 2.26 8.6 .194 16.583 .000 3.1 2.02 6.4 .172 II 16.667 .000 2.4 1.82 5.9 .148 16.750 .000 2.0 1.60 5.3 .126 16.833 .000 1.8 1.36 4.6 .106 17.000 IL 16.917 .000 .000 .0 .77 .0 1.00 3.6 2.8 .082 .063 II END OF FLOOD ROUTING ANALYSIS 1 1 1 d h I /******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L O O D ROUTING A N A L Y S I S II USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) ** *PRELIMINARY /EXPERIMENTAL VERSION * ** Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7A Release Date: 1/09/87 Serial # BETA06 II Especially prepared for: II * BETA TEST SITE EVALUATION ONLY * FILE NAME: UHFUT.DAT 1 TIME/DATE OF STUDY: 8:12 6/23/1988 11 *************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 » » > UNIT - HYDROGRAPH ANALYSIS « «< Foe FL3L,.) pieJDoN 13 {3S€D ON 10 psC, I (UNIT - HYDROGRAPH ADDED TO STREAM #1) 1 *USER ENTERED "LAG" TIME = .196 HOURS UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES II UNIT INTERVAL PERCENTAGE OF LAG -TIME = 42.517 WATERSHED AREA = 10.000 ACRES BASEFLOW = .000 CFS /SQUARE -MILE VALLEY(DEVELOPED) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) = .485 LOW LOSS FRACTION = .653 li * HYDROGRAPH MODEL #1 SPECIFIED* E SPECIFIED PEAK 5- MINUTES RAINFALL(INCH)= .32 i I SPECIFIED PEAK 30- MINUTES RAINFALL(INCH) = .92 SPECIFIED PEAK 1 -HOUR RAINFALL(INCH) = 1.40 SPECIFIED PEAK 3 -HOUR RAINFALL(INCH) = 2.60 SPECIFIED PEAK 6 -HOUR RAINFALL(INCH) = 3.75 II SPECIFIED PEAK 24 -HOUR RAINFALL(INCH)= 9.00 PRECIPITATION DEPTH -AREA REDUCTION FACTORS: I 5- MINUTE FACTOR = 1.000 30- MINUTE FACTOR = 1.000 1 -HOUR FACTOR = 1.000 3 -HOUR FACTOR = 1.000 1 6 -HOUR FACTOR = 1.000 24 -HOUR FACTOR = 1.000 1 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 15.50 MODEL TIME(HOURS) FOR END OF RESULTS = 17.00 II UNIT HYDROGRAPH DETERMINATION IF INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1r 1 3.253 3.935 2 II 3 21.881 22.528 54.449 39.387 4 81.494 32.707 5 93.223 14.185 6 97.626 5.324 I 7 98.776 1.391 8 99.439 .802 9 99.775 .407 10 99.944 .204 s, 11 100.000 .068 I TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 4.5383 TOTAL STORM RUNOFF VOLUME(ACRE - FEET) = 2.9600 f 1 1 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H IF HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) BhSeD 0M ICS IkC r TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 II 15.583 1.4763 3.34 . Q V. • 15.667 1.5034 3.94 . Q • V • 15.750 1.5347 4.55 . Q. V . 15.833 1.5708 5.24 . Q .V . II 15.917 1.6130 6.13 • • Q .V II 16.000 1.6652 7.59 Q . V 16.083 1.7372 10.45 . . Q V 16.167 1.8443 15 . V ••Q I 16.250 1.9719 V Q • 16.333 2.0794 15.61 . . V .Q 16.417 2.1487 10.07 . . Q V. . II 16.500 2.1935 6.50 . • Q V. 16.583 2.2232 4.32 . Q • . V 16.667 2.2458 3.28 . Q • . V • 16.750 2.2643 2.69 . Q . V • II 16.833 2.2806 2.36 . Q V • 16.917 2.2954 2.15 . Q • .V • 17.000 2.3091 2.00 . Q • . •V . END OF FLOOD R OUTING ANALYSIS pop k e Foe. I .-q F\<-e ,c [3 , 3 = 3.58 IFS ob i-Nbv.abeAPtirs '• 11.2 Flow - R1-z.0 LkS l (•1 3.6 S F�00.i Fre-Jo /JD / 4,73cI:s 7-0;A-L- 1 1 SECTION- 5 RATIONAL METHOD ANALYSIS TO DETERMINE LOCATION OF CATCH BASINS FOR FUTURE STORM DRAIN MAINLINE USING 10 YEAR STORM EVENT 1 r { TOTAL WATERSHED AREA = 15.02 ACRES SOIL TYPE: A LAND USE: SINGLE FAMILY RESIDENTIAL 5 - 7 DWELLING UNITS PER ACRE 9 • '. II 069X0316 5 RA (YIETNoD PcNAL`IS6 Foe. 5IZ ING Mb LEGITING CM - BkStNS 1 r t' 1 1 4 1 1 N 4A _Al MI P-4 1s SCALE 1 Z �� . • SIRECT Z r ■-__1 4 1 i 1 t.+54 7 LA MOS 5 i n : 1 1 a5 cot $ i Acres 1 , A ii 1 MAT U N um OQ. SAND tiUkS r ST. I tars ACRES VattetSgeb Wilk z 15.22 Men II RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) *** PRELIMINARY/EXPERIMENTAL VERSION *** Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Serial # BETA06 Especially prepared for: * BETA TEST SITE EVALUATION ONLY * I FILE NAME: ULT.DAT RDI2- S6 C) CATC44 - BINS I 1.15 TIME/DATE OF STUDY: 13:34 6/10/1988 STOROI, EV ENT 10 "2 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- I USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 I *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = .9500 11 II FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« °I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 DWELLINGS/ACRE I TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 1335.60 DOWNSTREAM ELEVATION = 1323.50 ELEVATION DIFFERENCE = 12.10 TC = .389*[( 1000.00** 3.00)/( 12.10)]** .20 = 14.907 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.191 I SOIL CLASSIFICATION IS "A" RESIDENTIAL 5-7 DWELLINGS/ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 6.14 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 6.14 **************************************************************************** I FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6 >>>»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< I UPSTREAM ELEVATION = 1323.50 DOWNSTREAM ELEVATION = 1318.66 STREET LENGTH(FEET) = 310.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 I **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREETFLOW MODEL RESULTS: 7.25 STREE .. P STREET FLOWDEPTH(FEET) = .47 r` HALFSTREET FLOODWIDTH(FEET) = 10.63 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.89 PRODUCT OF DEPTH &VELOCITY = 1.82 STREETFLOW TRAVELTIME(MIN) = 1.33 TC(MIN) = 16.24 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.081 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = 1.54 SUBAREA RUNOFF(CFS) = 2.21 EFFECTIVE AREA(ACRES) = 5.54 I AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 5.54 PEAK FLOW RATE(CFS) = 17.961 6 GF5 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 11.38 FLOW VELOCITY(FEET /SEC.) = 3.92 DEPTH *VELOCITY = 1.90 Itc*************************************************************************** III FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< « < I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE ' TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 1334.85 DOWNSTREAM ELEVATION = 1321.86 I ELEVATION DIFFERENCE = 12.99 TC = .389 *(( 1000.00 ** 3.00)/( 12.99)] ** .20 = 14.697 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.209 ' SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA RUNOFF(CFS) = 7.29 • TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 7.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< I UPSTREAM ELEVATION = 1321.86 DOWNSTREAM ELEVATION = 1320.25 STREET LENGTH(FEET) = 60.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 • SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 I * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.29 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 9.12 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.65 PRODUCT OF DEPTH &VELOCITY = 2.04 STREETFLOW TRAVELTIME(MIN) = .22 TC(MIN) = 14.91 1 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.190 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 $_ EFFECTIVE AREA(ACRES) = 4.70 II AVERAGED Fm(INCH/HR) = .485 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 17.291 , END OF SUBAREA STREETFLOW HYDRAULICS: 3 GFS s DEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 9.12 II FLOW VELOCITY(FEET /SEC.) = 4.65 DEPTH *VELOCITY = 2.04 li ******* ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< 1 DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE II TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 650.00 UPSTREAM ELEVATION = 1326.00 DOWNSTREAM ELEVATION = 1318.52 II 1 ELEVATION DIFFERENCE = 7.48 TC = .389 *[( 650.00 ** 3.00)/( 7.48)] ** .20 = 12.674 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.415 SOIL CLASSIFICATION IS "A" 1 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA RUNOFF(CFS) = 4.95 TOTAL AREA(ACRES) = 2.85 PEAK FLOW RATE(CFS) = 4.95 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** I FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1318.52 DOWNSTREAM ELEVATION = 1318.26 STREET LENGTH(FEET) = 80.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .040 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.95 II STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION II THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.77 PRODUCT OF DEPTH &VELOCITY = .96 STREETFLOW TRAVELTIME(MIN) = .75 TC(MIN) = 13.43 II 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.332 SOIL CLASSIFICATION IS "A" 1 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 2.85 AVERAGED Fm(INCH/HR) = .485 1 TOTAL AREA(ACRES) = 2.85 PEAK FLOW RATE(CFS) = 14.951 FS 6 G END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOODWIDTH(FEET) = 14.38 gi FLOW VELOCITY(FEET /SEC.) = 1.77 DEPTH *VELOCITY = .96 A 1 _ 1 C. B. II I 1 CURB OPENING ( Interception ) 1 Given: (a) discharge Q,10 = 7. Z 9 CFS (b) street slope S = .Oo 2 - ' /' I curb (c) c type "A -2" "D" street width = 20 ft. 1 1 (d) half Fe Vi 1- yDeol..o6y 1 Solution: 1 la y2= Therefore y=1 •44' 1 1 z d Q /L = • I L_ Q/4 L = 7.2c1 / . 4 = 18,23 (L for total interception) USE Z 1' Low 'cAit - B' TRY: L = ft. • 1 L = /, =l 1 : 1 a/y = . 33/ ___ -- = 1 1 I QP= X = _ CFS (Intercepted) c= _ _ CFS(Carryover) I I Q 7 1 I -35- i 1 1 � C. B. • / 1 CURB OPENING ( Intcrccption ) (kb>J Q'S . 1,9G t 4- Given: (a) discharge Qom, = 12. I CFS 1 (b) street slope S = ' /' (c) curb type "A -2" "D" (d) half street width = ft. I t ® Solution: - ' " - ' ■ '!t ) Therefore y =1 0 •54 I 1 @ / L = 0. 1 L = (Z . q J / p_S = 25.87_ (L for total interception) TRY: Ip= 21 ft. 1 1 /L =_/ 25-82. =1.SI 1 I a/y = .33/ .54- 1 , to l li 1 S/Q 1 li. I Q, X 1 2 11 1 = 11, (2 CFS (Intercepted) � ° Qc 12 i - 11 = 1.2q CFS(Carr 1 1 ■ 1 -35- 6: • l' • - • . DEPTH OF FLOW- 4 .54 . • ' x .01 C.: 03 04 .05 .06 .06 .10 .2 .3 4 .5 6 0 10 0 • PER FOOT CF �. . . DISCHARGE _. _... _ . / 1 f . LENGTH OF CURB - �'� —I- INLETS S '_:HEN INTERCEPTING 'a 4-° 100 ' O F GUTTER FLOW - i - =-- — H --- // _ � i . T _.- .1-- i- -1f /� I 1 1 r 1 1 ./' 1 ./1 , c I i I I I ( I o'. /I /f . 1II . III°"/ /ti 10 =11111=7111.. ' Tic'', ' i r.or es wszailimumulum. • .- .... O 1 ' 1111110111111111111 06 ' —1 — l _1,--! / .! 1 �� -+•-- 44 4 1 I ! - f- i 1—L / — 1 • -� 1 4 oa 1 1 1 I ' 1 111 i i • I ___L ! J___ / / — I - 7 : � 03 / . .02 . ' - / / 1 / I 1 j 1 -T i / / I [ 1 1 I 1 1 1 1 . 1 a /.v A my .6 -- . (b) _l. I _;_ g 1 , I- _. �._ , I, 1 1 i • • PARTIAL INTER. _ o, ;/' >� • -Li- CEPTION RATIO. -; L' - 1 1 - 1 . �p • ' F OR INLETS O I 1 P ► +Lt. L� �. 1 i 1 1 � LENGTH LESS ! ; /�° /� 1 ' 2 THAN L //; 1 1 ( Il — I.I • • J. 1 1 , tiO _ -- 4 • 1 t t 1 , l 1 1 I X 10 05 .06 .08 .10 . .3 ' 4 .5 .6 . lit TABLEM 1 BUREAU OF PUBLIC ROADS CAPACITY OF CURB OPENING INLETS ,.. . n ' I r• nnrrtr%%I tnr I no A n>= r r 1 ATtoN <L Yv,e7-1-0.D M■AL Fog 51Z1ly CikTU -4- 13 dk51N5 1 w ATE s t Pew 1 15.02 ACEES � � /Hz e 1 4 . 0 4, 7 AC2E5 1 k..12-ES 1 0 N ® I rt 0 ‘....7 , cis 1 1 t ASS I Z.85 fi str.Etc u �ScFS NoTTo G © Q SI�Nh Foesr S. ScALE I r:7, I 7 . ;.N,„ - i ,,„ II , , 1 , q Acg.E.5 , . ,), ,, . ,s , ; ,,, 1 1 } 1 CATCH (331%51 N S LOCATE AT ►voDES ® AND a STop_m Dais, (1.1 MAIN L(NE IN Fly ........ ums l 1 1 FO(_ (ZA1t0Mf(L ANA-1 -`ISIS Of SUf SoUTti of' sfkNDHU2s7 57. SEE 'FOTWE "DEV€t -OR p GDOD mON Milo NArt, sTv(Dy FILE f■fA - ME' ©LO [RCT,DPT /2Aj FI ,6 tO NODES l 0 -- 12 STeEE w = 0.31 =1 ,q3 Ac E Q 3.6C cis T = (1•18 rn11Q, e (NCO T M m m m 01 m m NOD 41 •1I I ,-1 .1 .1 .1 .1 .-. .1 .1 •11 Y VZ Z O O 0 0 0 O 0 0 V7_ C QO •I 40 I i C• 0 0 0 0 0 O 0 0 C.) E I I W OD.M•-I ONO, C ON 0 0 0 0 0 0 0 0 ON •-1 ' 0 0 O O O O' O O m WW •"1 WW 0 0 0 0 0 0 M I O (1-.41-7 O O O V 0 O. O O 0.1-17 O O O O O 0 U) 1 In D pii 1 0C. 3Y '] 01 U)O0. 1-U O 0 O O O O O W .•1 11) N V 0 p 0 0 0 al N O O m I m ' II V) c ' .+ , .1 Y. 2 O O O O O 0 .•1 I In 1i U O p m 0 • •7, ID U) ID O O O 3J O O O O 0 m i v Fc 0 0000 0 n • y 1) .1 .1 . J .1 O co O O O D 0 O Cr VC N -• V .o N n 4 m In (141- N h co OD 01 O1 n I.) . 4 O O: O 0 O OI O O p.-. m N N N N N N , •1 ct 0 J C M O 0, 0 0) 0 0 O O .-1 4 I. N N 4 0) •O O Cpr l J .•r^ Oi N ID CO O 0) ON r.... r • OW N M N N M N •-•4 • .> 4 .1 M Q, 1l) •0 1. CO . O O J 1 I I O' j . NU 01 4-1 01 0 N 01 0) I m U N OI O O. O 0I O U) 00 - m I• .•1 U) N ',.• 01 J LU ' V 4 Ill U• 10 0 b 40 CC I ■• M N 4-1 N N N 4 1 7 m M 1 m m M m M O .1 1-I .1 N r1 RI .1 , .1 1 0 I0 OO O O '0 O O I£ 0 OI .I 0. O . 0 O 10 01 N 01 N U) I M Y • • • •I • • •1U 10 m CO N O N V 01 O O O O O O, O O J • '• • 17i m V 4 Ut U) 10 10 U m1 L .-4 )1 0 ) .1 0 O0 O O O O O O (4) m m M M 4)) M m fn 0 - 1 h 1 0 ' 0 .--1 O O N ( 4 RI .-4 .. .. .1 1.4 H >. , I D ID O O O O. ID O T U) 0 ' 01 CO 10 4 00 J J N•^. .•1 4.4 I.1 IO N 4 N In c c r 1. Z^ 0 O I O O 0 0 O O Z _N., .•1 N N N m 4.) 4 U) 0.1 I 0 at O O O a O O i 11.. ..... .1 41 .1 7 Y • •, . M m m m M m M • Z43. 0 01 0 10 O 0: O 0 Z .1 .1 6-4 .1 I .1 1 1 41 W Z i ` I i U) U) U• N. • ID CO ID 1. 2 C.... .n .n m . m m. m m .1 41 C .•I.•. 1. .1 •1 m O N V .•I •..1 O • 0 r • • 2 E I • J O 4.1 IL N N m m m • •••• 4 O CY 1 3 O O1 O O: O 0 0 0 � 1.1-R4 , .1 4.1 .1 e 4 M m M M m M Al 1 m 1 ( 0 41 -I RI N H H N I N Z' r In /n • tVU/ N 14) 11• In N 1 • . r co C] V et - V 4 co CO CO OD 0. • • • N Ni ( N 4-1 •1 .-1 .1 >v 10 10 10 ID V < V A • R0 3 .0 O 01 0 O 0 O m 0 CO •• 1 I '0 0 0 , 0 0 0 0 .0 .0 1. 6 .•101 U) 111 N U• ti .-1 I-1 V .I • CO Cl. • J m• O 01 0 0 0 0 O OD 0. Li- ID p ID ID • 0' 0 e I" .• N .1 Z v U m I M m •O-. i1 . •i I .1 N' ( 0 r ••-• 10 U) 0 U) U• 1 m m .1 • N • U) U• 1 n OI' m b V CO Z Jr .. O 0 0 0 OD OD CO • 1 N N .•1 m 10 N • N U) W 0U. In CO CO OD CO 4 V 4 U) 11 • . r U. • .1 O 0 O O O O O •• N J N NI N N m m 4 14) W 4 4 - 4 ) 5 0 0 0 0 0 0 0 .n ID 1 0. 0 0.0. • 11 O O O O 0 0 0 • m M M M T M m M 1.0•-•• O "'I 41 .1 N I.1 .1 N RI O 11 PI I U) 111 U) /. ID W 0 F. 3 J r E N I. • ..I N M O N V N E 00. 0 J J J J J J J p C I- , J 0 .1 N N m m m m Z 1 U- •• LL U. W 0. w 0. 0. 0. N : 11- N •1 11 .1 H N N N W CO Z Z D' m m M m M M ( M E Y 0 1 O U) .1 ..1. N R1 .•I RI N .•.1 4- CO ••. L.) N N N N 1n CO w U U) C UR 10 ID V> U) O O O CO Z I = O 0. ON W 1. N I ID O i Z 01r. W • .-I W • r CO F4, 4 0) ID CO U) 0. )-I v Z .1 .1 . . e1 '1 .Z .1 v 1 VC • • • W i C I Z 0 01 N 4 O ID O CO 0 C J J 0 W 1 01 m,: m y m N, 11 .•. G .-. O O O m 0 4 , O !!! -I 1 .•I O Zr W O 0 0 O O 0 U Z•-• • I. • W . 10 1 i Z.•. pv 0 • • Cl • L .. CY 0 CY i N .1 N N H .. .1 6 0 0 C O m m M M M M' m O C OW C j C 0•-• 3, • • ' • • 1-3 .. Q I 0 - .00! •9 0 01 O O n 1.1 n M Y U)O MZ 0000000 0 0 m 0 !V Ni N N - r m1 .• 4 )U Z .. .i 1 3'D 0 I Z 40 ' v Y 1 I D Y .•• J J , C Wi . 1 O U.1.€ Oz 0 V L 4 4 OD W W 0. OD { W U).'1 O I M M m m m mI M O U (On VC N N N N .-1 .. .-I i. .1 W VC t v C C • j . _ X. X O O O O r. 1.. 1. • m f0 X • • I 0 0.O i N N N fV N, W 0.0 - p M m el 1 (•1 m > 1D Z C I W C Off O /:;). O O 1. 1. 1. m w R41.1 1 U) 1-14.1 v i Z N (V N N I ...1 1-12 N 11 N m 4 In. 10 A' OD 01 Z LI Z W1.0 J I i MILD 1 ..1 •'1..4 • ' )."I (44 ‚ OU, (1) ON ZO H N V U) 10 1 m • 1.11 CT W CW o ODi N N N N N N1 N N O CIA( Z Y 0.0 U -J 0.0 J t • •