HomeMy WebLinkAboutEtiwanda Creek Drainage Corridor 1
ETIWANDA CREEK DRAINAGE CORRIDOR
1 DESIGN CONCEPT REPORT
1
June, 1989
1
Prepared For:
The North Etiwanda Land Owners Consortium
P.O. Box 216
1 So. Laguna, California 92677 -0216
■
Prepared By:
Fuscoe, Williams, Lindgren & Short, Inc.
11651 Sterling Avenue, Suite A
1 Riverside, California 92503
1
(lap avk
1
* EXES
4/30/93 *
1 F p F��� dee"(-1
Submitted By: .
Gerald J. Baril, P.E.
1
1
111 mime (Ac milat mamma
mum a:1mm Ramp '
1
VELE CO' =ITEMS
1
Me
1 ifiailizometar i
4CECUTIVE SMOWY E -1
1 Ater= 1 - IN Q3CTIQd ,
1.1 General 1 -1
II 1.2 Ptvject Description 1 -1
1.3 Background Information 1 -2
1.4 Financing 1-4
1.5 Public Agency Permits & Approvals 1 -4
II
11 tainSOT 2 - PBCOECP ISSUES
2.1 Eti anda Debris Dam/Basin 2 -1
2.2 Armorflex Channel 2 -3
1 2.3 Comte Channel 2 -5
2.4 Environmental 2-8
2.5 Etiwarx a Creak Diversion 2
II 2.6 Water Conservation 2-9
1 SWUM 3 -AIWERNATIVES ANALYSIS
II 3.1 General 3 -1
3.2 Channel Alternatives 3 -2
3.21 Alternate No. 1 3.2
3.22 Alternate No. 2 3 -2
1 3.23 Alternate No. 3 3 -2
3.24 Alternate No. 4 3 -3
3.25 Alternate No. 5 3 -3
II 3.26 Alternate No. 6 3 -3
3.27 Alternate No. 7 3 -3
3.28 Limited Velocity Cbrrrete Channel 3 -3
II - 3.3 Debris Basin vs Dam 3-4'
1
1
1
'!ANI o ain iS (continued)
Fing
SECPtaR 4 - FREFEMMAIUDERNATIVE
4.1 Project Description 4 -1
4.2 Project Costs 4 -2
SEMEN 5 - AND DEVE[EMENr PIANOS
1 5.1 Project Alternatives 5-1
5.2 Action Plan 5-1
5.3 Progress Schedule 5
11 SEMEN 6 - APPEND:DC
A. Design Criteria
B. 100 -Year Design Flaw Schematic
C. Hydraulic Calculations - Parabolic Armorflex Channel
D. Hydraulic Calculations Trapezoidal A n rflex Charnel
E. Hydraulic Calculations - Rectangular Concrete Channel,
Most Efficient Hydraulic Section
F. Hydraulic Calculations - Rectangular Concrete Channel,
40 fps Maximum Velocity
G. Hydraulic Calculations - Capacity of Existing Etiwanda
Channel, Victoria Street to
San Sevaine Basin No. 5
H. Hydraulic Calculations - Capacity of Existing San Sevaine
Channel, Victoria Street to
San Sevaine Basin No. 5
1
I
r
1
t
1
•
t:
ACRICRIECGEMENr
Fuscoe Williams, and Short, Inc. wishes to acknowledge the following
r organizations and individuals for their participation and interest in the
by preparation of this report:
6 North Etiwanda land Owners Consortium
Ahmanson Development - * Craig Page
Mark Kehke
* Bob King (Entec)
Akins Development - Ralph Spargo
Oliver Angell - Owner
*• Caryn Company - Joe Dilorio
Century American - Ron Metzler
r " Sing -Wang Cheng - Paul Taylor
Fred Eder - Owner
Cecil Johnson - Owner
Eli Joshua - Owner
Landmark land Company - * Kevin Manning
* Mike Kerney
John O'Neil - Owner
PDC - Vincent Petralia
Rockfield Development Co. - Sonny Geary
hi
Gil Rodriguez - Owner
Standard Pacific - * Kevin Pohlson
1 Tracy & Haigh Dev. Co. - * Tan Tracy
* Tom Haigh
Unitex Management Corp. - Jeff Pierson
Russ Zasio - Owner
6 * Flood Control Subcommittee Member
Elected Representatives
Supervisor Jon Mikels, District 2
Pm
County of San Bernardino
Mayor Dennis L. Stout
City of Rancho Cucamonga
P"
San Bernardino County Flood Control District
Ken A. Miller, P.E., Director
Lewis S. Neeb, P.E., Project Manager
Kenneth D. Guidry, P.E., Chief, Water Resources Division
Robert Corchero, P.E., Chief, Planning Division
r "
Riverside County Flood Control and Water Conservation District
Ken Edwards, P.E., Chief Engineer
David T. Sheldon, P.E., Assistant Chief Engineer
Frank Peairs, P.E., Planning Engineer
City of Rancho Cucamonga
Russell Maguire, P.E., City Engineer
Walt Stickney, P.E., Engineering Department
Consultants
Bill C. Mann & Associates - Bill C. Mann, P.E.
Land/Plan/Design Group - Jess Harris
Steve Kelly
Moore & Taber, Geotechnical - Douglas R. Bell, P.E.
Gary Lass, P.E.
Engineering - Science, Inc. - David M. Hall, P.E.
William & Schmid - Dick Schmid, P.E.
Mark Seits, P.E.
Bill Young, P.E.
Geoproducts Company - Jim Fish, Ph.D.
Dangernnnd & Associates, Inc. - Pete Dangeruo rl
Bctbi Lyon
David Rainville - Golf Course Architect
Ft coB, Wi l l i, Lin:Wen & Short, Inc.
Pat FLscoe, P.E., President
Don Lir>dgren, P.E., Principal
Ray Allard, P.E., Associate
Gerald J. Baril, P.E. Project Manager
Steve May, P.E., Project Manager
Lan -Yin Weber, P.E., Ph.D.
ii
i
it
r EXECUTIVE
its
SUMARY
RUMANIA CREEK IRAINAGE
!' DESIGN ODNCEPP REPazr
1I
PURFOSE
The purpose of this report is to establish a design concept for Etiwanda Creek
that (1) provides 100 -year flood protection for proposed development in the
Etiwanda North Specific Plan area, (2) meets the land development objectives of
the North Etiwanda Land Owners Consortium and the City of Rancho Cucamonga,
""" (3) can be reasonably permitted by the U.S. Army Corps of Engineers and
California Department of Fish & Game, and (4) will be accepted for ownership
r' and maintenance by the San Bernardino County Flood Control District.
irs
STUDY LIIrII'IS
The limits of the study for this Etiwanda Creek project are frcan the double
channel under construction at Victoria Street, to the mouth of the canyon
4 approximately 3 miles upstream.
P6 AtMERIZATIQI
The Design Concept Report for Etiwanda Creek was prepared under contract with
r* the Caxyn Company, representing the Etiwanda North Land Owners Consortium.
MO= ALTERNATIVES
w Nine alternatives for the channelization of Etiwanda Creek are presented or
discussed in this report. The project costs vary from $15 to $24 million. The
.• channel sections 'chosen include parabolic and trapezoidal armorflex, and
i■
rectangular concrete. A cost estimate is included for a rectangular concrete
t wo channel with a maximum velocity of 40 feet per second. This cost estimate is
provided as a comparison for the conventional rectangular concrete channel with
a maximum velocity of 70 feet per second. The project alternatives are
disused in Section 3 of this report.
r"
it PREMOMMAMMENATIVE
The preferred alternative plan for Etiwanda Creek Channel is primarily an
armorflex lined channel as shown on the schematic plan following this summary.
The project construction cost is $21 million which includes the Etiwanda debris
basin and expanding the capacity of the existing concrete channel frcan San
L E -1 •
r-
r
Sevaine Basin No. 5 to the double channel under construction at Victoria
Street. Armorflex was chosen for design, aesthetic, and environmental reasons
rm as discussed in various sections of this report. Armorflex is a pre-cast
rr interlocking concrete block product that is cabled together to form a
continuous channel lining. The blocks have voids in which soil is placed and
bp then vegetated. In a short time, the blocks are covered with vegetation and
the channel takes on a natural appearance. The product is new in this area but
has been in use for about 20 years.
Ps B1 ND INFORMATION
There are a number of other reports and documents nts existing or being prepared
that relate to this report on Etiwanda Creek, which are listed below and
discussed in Section 1.3:
• Master Plan for Ultimate Use of North Etiwanda Properties
For: San Bernardino County Flood Control District and the City of
Rancho Cucamonga
1: By: The Caryn Company, Representing Etiwanda North Land Owners
(Consortium)
Date: April 17, 1989
L . • San Sevaine/Etiwanda Creek Hydrology and Basin Routing
By: Fuscoe, Williams, Lindgren and Short, Inc.
r • Date: January, 1989
• Loan Application Report, Proposed San Sevaine Creek Water Project
00 . By: Engineering- Science
Bill Mann & Associates
For: County of San Bernardino
Date: April, 1986
r{
toi • Etiwanda North Specific Plan
By: The Caryn Company, Representing the Land Owners
Date: Current
• Crehensive Master Plan of Flood Control and Drainage for the North
Etiwanda Area
#r - By: Roscoe, Williams, Lindgren and Short, Inc.
1rr Date: Current
The preferred alternative plan was developed in a series of workshop meetings
with other environmental, land planning and geotechnical consultants involved
with preparation of the Etiwanda North Specific Plan. The alternatives studied
were presented to a Flood Control Sub- Committee of the Land Owners Consortium,
and all of the consortium members at their monthly meeting. The sub-committee
had the responsibility for selecting a preferred alternative.
E -2
1
FINANCING
FUnding for construction of the Etiwanda Creek improvenents is planned to be
provided through a !.110-Roos COmmunity Facilities District. An election to
establish the District will be held in the Fall of 1989. Financing is
discussed further in Section 1.4 of this report.
ril
PUBLIC "GREY PERMITS AND APPROVALS
Permits will or may be required by the following agencies:
• U.S. Army COrps of Engineers
rm • California Department of Fish & Game
• California Regional Water Quality Control Board
• California State Department of Water Resources,
Division of Safety of Dams
• San Bernardino COunty Transportation/Flood Control Department
• City of Rancho Cucamonga
(: PROJECT ISSUES
There are a number of projects issues or constraints which are discussed in
r il detail in Section 2 of this report. The following outlines the primary issues:
0h* • Etiwanda Creek Debris Facility
- Excavated Basin vs a Dam
- Basin Location
1: • Armorflex Channel Lining
- Maintenance
- Fencing
0-
• Concrete Channels
- cavitation of invert from high velocities
cil - Maintenance
- Liability
• Environmental
inil - Concrete vs Armorflex
- Mitigation Costs
• Etiwanda CreekDimersion to San Sevaine Basin No. 5
til - Riverside County concerns downstream
• Water Conservation
- Preservation of sprsadinggraunds for the )JD and CBMWD
Water Replenish/rent and Cyclic Storage Requirements
1:
E-3
ETIWANDA CREEK DRAINAGE CORRIDOR
omok4 PREFERRED ALTERNATIVE
$21,000,000.
II
II
.. .. I III II
LADWP CORRIDOR. J
' SCE CORRIDOR II
PROPOSED Epp \'''
,� -- - BRIDGE ell
ST \\ i---:.; _\ \ � II
N -% \
< V STA. 9 ..
.5o I 0
\\ 150 +00 < o gII
\ 1 9(rC II ..
y '; II ''SCE CORRIDOR
II
Q
n W I 9y
104' TO 141' v : \
4,11 4:12zzr=ci:::1_ ,: t 1 ' s '..4. C1
ill
v Z2 C‘t
PARABOLIC \�
I SECTION S. 100 +00
PROPOSED 24th STREET 11 EXISTING SUMMIT AVENUE
-- _____— _ ____ — = It —�'
BRIDGE
\''
/ /
_ W �
9 0' TO 135' • \
�fC
`" TRAPEZOIDAL ilf Lai SECTION
BRIDGE
DIVERSION STRUCTURE
SUMMIT AVENUE
- - — -- — _ - - _ - - __
- — — -- I RCP OR RCB
LEGEND I W I STA.
15' TO 24 72 +00
1■21. CONCRETE CHANNEL f
H =11' TO 12'
�. �
r> CONCRETE CONDUIT
a�■I ®■ ARMORFLEX TRAP. .
CHANNEL RECTANGULAR —
■� ARMORFLEX PARABOLIC SECTION --
CHANNEL i
HIGHLAND AVENUE
RECONSTRUCTED I
SECTION EXIST. We 9 A CHANNEL
VICTORIA' i
BASS •
15 �- .EXIST. SAN SEVANE CHANNEL
.- VICTORIA AVENUE_____ _ \_ _ _
FUSCAIE
r
WILLIAMS s.,µ
' I"'s' O'' CHANNEL UNDER CONSTRUCTION
,.l i,,, s py
&SNORT F v' STA.
n.ur„ �' - 18 +00 MAY 1989
x ,.. r.R I...,., s... -,... EWLS ,N 2106.1101
0.
"^ SBCI'IOi 1
Dasocuanati
0.
w 1.1 General
Aft The development of Etiwanda North will require e the improvement of Etiwanda
w. Creek for flood protection from Victoria Avenue to the canyon mouth, a distance
of apprcodmately three miles. FWIS has prepared a number of conceptual plans
On
and cost estimates that would provide the necessary flood protection with
construction costs varying from $15 million to $24 million. The real cost,
0.
however, must include costs for habitat mitigation and enhancement, time delay
costs in obtaining envircmmental permits, annual maintenance costs, and
development enhancements as a cost credit.
r..
Flood control options that were analyzed included a rectangular concrete
charnel, an armorflex lined channel, a composite rectangular concrete and
armorflex channel, and leveed channels of rock or armorflex North of 24th
Pm
Street. Seven alternatives were presented to the Flood Control Subcommittee of
✓ the North Etiwanda Land Owners Consortium. The subcommittee unanimously
On selected a preferred alternative based on the real costs and that alternative
is presented in this report. The flood control project option selected is
«•. primarily an armorflex lined charne1 as described below. Armorflex is a
+... precast concrete block product which is described in Section 2.2.
�•• 1.2 Project Description
The Etiwanda Cheek Drainage Corridor project contains the following elements:
0.
• A 100 year frequency flood control protection system
.• • An adjacent lcw flow natural stream system
• A wildlife trail
Pa • Water conservation
+r
• Mitigation for increased storm flows as a result of land development
Po
k • Provisions for future integration of local storm water anti-pollution
devices
Oft
• A ddhris basin to protect the flood control system
1 -1
w
Po
This report addresses the Flood Control System, including the debris basin. As
`p shown an the schematic plan in Section 4, the project begins just South of
Victoria Avaenie where it joins the double San Sevaine and Etiwanda Channels now
um" under construction. Fran this point 3,300 feet upstream, the existing Etiwanda
pm Creek concrete charnel is being expanded to provide for ultimate development
p flows. The existing channel ends here adjacent to San Sevaine Basin No. 5. A
new rectangular concrete channel is proposed upstream from here to a structure
diverting flows to Basin No. 5 to provide for runoff mitigation. The diversion
pp
is conveyed to Basin No. 5 in an underground system. Fran the diversion
structure, an axnxrflex lined trapezoidal channel is proposed upstream to 24th
pp Street. At this point, an armorfl.ex lined parabolic channel is proposed to
extend for the remainder of the project to the proposed debris basin at the
pp mouth of Etiwanda Canyon.
s»
p„ 1.3 gr ird infomn atian
The Caryn Ccnpany, representing the North Etiwanda Land Owners Consortium, has
been involved with the San Bernardino County Flood Control District and the
City of Rancho Cucamonga in the planning and financing of necessary and/or
desired flood control facilities, open space enhancement, and the ultimate use
`' of future surplus District properties in the Etiwanda North planning area. The
"" Flood Control District is the largest property owner in this area, with 1,329
acres in the unincorporated area to be annexed to the City, and another 441
acres within the City. The Caryn C7a:pany has submitted a draft proposed Master
, Plan to the District describing possible uses for the District's properties.
w.
This design concept report was prepared for the North Etiwanda Land Owners
.r
Consortium and forms an integral part of the Master Plan described above, as
.• well as the Etiwanda North Specific Plan currently being prepared and reviewed
` by the City of Rancho Cucancnga.
.w.
pp Other reports integral to this Design Concept Report for Etiwanda Creek include
pp the "San Sevaine/Etiwanda Creek Hydrology and Basin Routing" report prepared by
p FWIS and submitted to the District in January, 1989. This report is being
revised to reflect the latest hydrology to be used for final design of Etiwanda
pm
Creek. The revised report will also present the latest concept for San Sevaine
w Basins 1 thru 5 and the diversion of a portion of Etiwanda flows into Basin No.
pp
5. FWIS is also preparing a oacnprehensive Master Plan of flood control and
` 1 -2
p.
drainage for the North Etiwanda area. That document will assist the Flood
ft. C ntrol District in evaluating individual project proposals within the North
Etiwanda area.
The County of San Bernardino is also processing a "Loan Application Report,
proposed San Sevaine Creek Water Project" under the Small Reclamation Projects
fto
Act (Public Law 84 -984) . This Bureau of Reclamation project includes Etiwanda
Creek and debris dam. The proposed bureau inpzovement for Etiwanda Creek is a
conventional rectangular concrete darnel. At this time, the North Etiwanda
""' Land Owners Consortium is proceeding with a Community Facilities District under
"" the Mello-Roos Act to provide funding for the Etiwanda Creek preferred
alternative presented in this report.
..
In developing the preferred plan, FWLS prepared same fifteen alternative
conceptual plans and cost estimates in concert with the several consultants
involved in preparation of the Etiwanda North Specific Plan. Workshop meetings
•ft were held with engineering, enviromnrental, lard planning, and geotecduzical
input. The alternatives were narrowed to seven and presented to the Flood
Control Sub - Committee of the Land Owners Consortium. The sub - committee
`. selected a preferred alternative utilizing arnorf ex channel lining. This
.�- alternative was then presented to all of the consortium members on June 6,
,�.. 1989. A subsequent Flood Conitrol Sub -O mnittee meeting was held on June 20.
At that time, the alternatives were once again reviewed and FWLS was directed
to prepare this report with armorflex as the preferred alternative.
It should be noted that the Flood Control Sub- ammittee considered the ability
.. to attain Fish & Game and Carps of Enginwrapprovals as important as technical
flood control design matters and costs. Opinions were expressed, that if a
i° "' conventional concrete channel were proposed, the project could very well be
.• delayed for years or stopped altogether.
Concurrently with the review of this design concept report by the District and
City, FWLS will be preparing 200 scale preliminary design drawings.
be
Preliminary plans are scheduled to be completed in September 1989 for review by
all concerned parties and agencies. The goal is to have approved plans and
our permits and be ready to advertise for construction bids in Jaraiaxy 1991.
— 1 -3
vow
1.4 Financing
om• As stated previously, funding for the proposed Etiwanda Creek improvements is
,,.. planned to be provided throagh a Milo-Roos amity Facilities District
(CFD). An election to establish the District will be held later this year.
'Ihe construction cost for the preferred alternative is $21 million. A 30%
tow constr ctian contingency has been included, which can be reduced to 10% an the
final estimate prepared from approved drawings. No allowance has been made for
`" escalation of unit prioes between now and the actual bidding date. Expenses
not inclined in the $21 million corstruction cost are contract administration
eo and inspection, CFD costs, engineering, and plan check and permit fees.
.. Additionally, no allowance has been provided for rights- of-way for the channel
Na or debris basin, or environmenta1 mitigation.
The bond dollar limit for the cFD should include any or all of the above cost
tor
factors deemed appropriate in addition to the $21 million construction cost.
`` 1.5 Public Agency Pits and Approvals
The construction of Etiwanda Creek and debris dam improvements will require
environmental clearance and permits from a number of public agencies. The
,,r, environmental approval process is being accomplished in conjunctical with the
r ,,, Etiwanda North Specific Plan, and will include an environmental resource
managanent plan for North Etiwanda including fran Day Creek Easterly to Duncan
Canyon. Permits will or may be required by the following agencies:
• U.S. Army Corps of Engineers
• California Department of Fish & Game
• California Regional. Water Quality O itrol Board
leva
• California State Department of Water Resources,
Division of Safety of Dams
law
• San Bernardino Ccunty TransportatiarVFlood Ccntrol Department
• City of Rancho Cucamonga.
1 -4
w
tow
Pm
SECTION 2
✓
PNOMMTIBEUES
pm
2.1 Etiiwenda Debris Dam/Basin
.. The proposed project includes a debris catchment facility at the apex of the
— alluvial fan that has been generated over the years by debris flaws out of
PM
Etiwanda Canyon. Preliminary estimates indicate that a 100 -year flood event
pm
could produce debris volumes in excess of 400,000 cubic yards. On an averaged
annual basis, the Etiwanda Creek Watershed can be expected to produce abaft
15,000 cubic yards of debris per year. The basin will be designed to discharge
`p clear water in a 100 -year event with a significant factor of safety.
Typically, a debris catchment facility is a dam created by an excavation just
..� large enough to balance the earthwork. If the dam is large enough in size or
y ,,,,,, volume, design and construction fall within the jurisdiction of the State
Mm
Division of Darn Safety. Preliminary design of the catchment by others as part
of a proposed Bureau of Reclamation project for Etiwanda Creek indicate the dam
w
would be State jurisdictional and require very stringent design measures.
Pm
WM
A number of sites were investigated for location of the debris facility,
PM including multiple basins in the watershed (see site location maps on pages 3-
''° 20, 3 -23) . Multiple basins were more costly than a single basin, and would
,.m result in a greater environmental impact. The sites were narrowed to three for
a more detailed analysis. Site No. 1 is located just North of the LADWP
easement. This is also the site that was chosen for the Bureau of Reclamation
pm
Etiwanda Creek project. Site No. 2 is located further up the canyon at the end
of the existing flood control right -of - way. Site No. 3 is located still
.w further up the canyon, approximately 700 feet North of the existing flood
✓ control riot -of -way.
1
""' Critical habitat areas, topography, aesthetics, and seismic constraints make
.. siting of the debris facility difficult. Sites 1 and 2 essentially avoid all
m but the seismic constraint. Site No. 3 was considered as a dam only with no
pm
basin excavation upst ream. The dam height would be approximately 100 feet.
The debris catchment area has riparian woodlands with Maple and indite Alder
■.
trees. Site No. 3 also has seismic constraints, is the most costly, has
pm
` 2 -1
PO
W
Pa
WO
A maintenance and access problems, and has the greatest environmental impact and
would be state jurisdictional.
0.
•� The seismic constraint at sites 1 and 2 can be mitigated by con a
debris "basin" rather than a "dam . The basin world be an excavation totally
0 . below the existing ground level. The basin concept results in an additional
cost of about $1 million more than a dam at sites 1 and 2. However seismic
design requirements for the dam concept could reduce this immommerftal cost. On
the plus side, the debris basin would generate about 1.2 million cubic yards of
fill material for use by nearby landowners, be more aesthetic than a high dam,
and minimize State Division of Damn Safety involvement which will speed up the
approval process. In turn, construction of the debris "basin" could
`• conceivably proceed ahead of the channel and provide considerable "fast track"
flood and debris protection on the alluvial fan. Accordingly, we are using a
debris basin and have selected Site No. 1 as the most economical. Site No. 1
is located the farthest downstream which eliminates about 1,600 feet of channel
Po
and has less excavation.
PP
It should be noted that access to proposed development on the East side of
r"' Etiwanda Creek will require access across the creek at two locations. One
•- crossing would be located immediately upstream of the debris basin. A second
�.. crossing would be located immediately upstream of the existing flood control
easement. Some form of dhannelization of Etiwanda Creek will be required
upstream of the debris basin to accommodate the crossings. Channelization
could be accomplished with a combination of concrete and/or armored training
levees. The planning and financial responsibility for crossings and necessary
dhannelization are beyond the scope of this report and the CFD.
PP
UP In summary, the primary issues involved with the debris catchment facility are:
• Is a debris " dam" technically or economically feasible, or advisable, in
u.
view of the geotedinical seismic constraints at the mouth of Etiwanda
A• Can
• Will the proposed debris " basin" mitigate the geotexinical seismic
constraints?
0.
, Will the proposed debris "basin" be a non State Division of Davy Safety
jurisdictional facility?
2 -2
P.
2.2 Armorflcc Qhame1
Armorflex charnel lining, although new to this area, has been in use for about
twenty years. Riverside County Flood control District has several new projects
,., where it will be used. It is a pre -cast concrete block product where the
blocks interlock and are cabled together. A polyester cable will be used with
a scuff jacket for protection during installation. A geotechnical fabric is
placed on the soil beneath the block to prevent the loss of fine soil
0. particles. The blocks are available with voids for placement of soil which can
0. be seeded with grass. The grass roots form a matrix under the geotechnical
fabric and adds to the stability of the system. Design velocities may remove
.w the grass blades, but the roots remain and regrowth occurs.
... Maintenance of turfed armorflex is estimated to be $700 per acre per year.
r . Included in that cost is turf maintenance, debris and trash removal, and fence
maintenance. Based on an average channel width of 125 feet, annual maintenance
is estimated to be $2.00 per lineal foot. If turf med,rdarerce is not required,
0.
the cost is estimated to be about $0.50 per lineal foot per year. Tlrrf
maintenance includes irrigation, fertilizer, and weekly mowing.
.r
The critical design factor for armorflex is velocity which is based on
.. experimental data. Tests have been run at Simons, Li & Associates (SLA)
hydraulic research facility in Fort Collins, Colorado. Class 30 block, the
0 . lightest manufactured, was subjected to velocities somewhat in excess of 20
feet per second (fps). As stated in SLA's report dated January 13, 1989, six
eight our tests were performed after whidn the armorflex system was inspected
for deformation, settlement, and loss of subsoil. None of these conditions
indicating incipient instability were found, indicating stable hydraulic
0.
performance.
In light of the test limits, we have limited the design velocities for the
,A., proposed armorflex channel to a maximum of 20 fps. TO achieve this velocity,
0 . channel drops or grade adjustments are required for the upper 3,700 feet. The
maximal grade adjustment is 2.5% in this reach. The differential will be taken
up in 2 to 3 foot vertical increments with a sloping apron over a distance of
0.
10 feet.
Two geometric sections have been chosen for the armorflex channel. A parabolic
section was chosen for the reach upstream of 24th Street through the proposed
2 -3
r..
golf course. The geometric parabola chosen has a depth of six feet at top
"" widths of 140, 160, and 180 feet. The average slope is quite flat and is
«.,
approximately 13 horizontal to 1 vertical which blends easily into the golf
course. The average depth of flow is about four feet for the 100 -year design.
The parabola is a very efficient hydraulic section. The shallow depth
minimizes the tractive forces acting an the lining, and the flat side slope
results in low velocities near the channel edges. The significance of these
factors is a smaller size or r aQs of armorflex blocks required compared to a
`" trapezoidal section, and the use of a grass lining in the freeboard section of
the channel because of the lower velocity.
Downstream of 24th Street to San Sevaine Basin No. 5, a trapezoidal armorflex
charnel section with three horizontal to one vertical (3H:1V) side slopes was
selected. The trapezoidal section was chosen over the parabolic because there
was no need for flat side slopes to blend into a golf course. The 3H:1V side
slopes result in an average channel width reduction of 25 feet. This reach
will serve as a continuation of the proposed wildlife corridor. The channel
`° will require fencing, whereas the need for fencing for the parabolic section is
•- very minimal and could be eliminated.
In summary, the primary issues involved with the use of araarflex are:
'. • The acceptance of a new product in this District
• Will fencing of the parabolic armorflex channel be required through the
golf course?
• Will the higher cost of an armorflex charnel be offset by mitigation and
+.• time delay costs?
*' • Will the sodded 13H:1V freeboard area of the parabolic section through the
golf course be acceptable?
,., • Maintenance of the turf in the golf course segment.
r
oft
PP
PM
PP
PM
PM
2 -4
Pm
UM
w•►
r.
pm
Toe following outlines the advantages and disadvantages of armorflex channel
O" lining:
mp
r
DitacM
• Aesthetically pleasing with • Higher construction cost
grassed surface than conventional concrete
ws cannel with velocities greater
• An enviromentally acceptable than 40 feet per second.
"" flood channel
pm
• New product for this area
•• • Chain link fencing can be complicates approval process
eliminated on the parabolic
mp section • Right- of-Way requirements greater
than concrete charnels
.• • Turfed armorflex can be maintained
by the District or as an integral • Maintenance by District may be an
part of a golf cause issue
• Minimal or no mitigation • District liability may be an
`• requirements issue if fencing is not used
Pa
• Channel integrity maintained for flows
"•" in excess or design frequency
Pm
• Relatively high flow resistance for
lower velocities
• Easily integrated with golf course
``" • . Graffiti proof
Pus
• Lower maintenance costs than conventional
r
concrete channel with high cavitation
causing velocities.
mp
pm
.• 2.3 ate Cte nel.
+w
The use of a conventional concrete channel for Etiwanda Creek was the leading
alternative based on constxtutian costs only. Other factors dealing with real
pm
costs, as discussed previously, can eliminate this option as the preferred
alternative. However, a concrete channel is proposed for a short distance
.m downstream from the San Sevaine Basin 5 diversion structure to the existing
wp concrete charnel. Armorflex was not used in this short reach due to the
""" requirement for long concrete transition structures at each end, leaving only a
"" very short length of armorflex in the center.
pm
r
pp
2 -5
w
Pm
w.
'^"" A critical design issue with concrete charnels is cavitation, which starts in
M ` ° the 40 to 50 fps velocity range. On Etiwanda Creek, utilizing the most
Om efficient hydraulic section, the velocity varies from 41 to 71 fps. All but
ir. the lower 1,700 feet has velocities in excess of 50 fps. Additionally,
m ,,, velocities can be expected to exceed 40 fps upstream of 24th Street on an
annual basis. Downstream of 24th Street, a 5 -year storm flow will produce
velocities in excess of 40 fps.
Pm
I he probability of a minor to moderate cavitation producing storm occurring a
"' short time prior to the. 100 -year design storm is very real. This is a primary
concern. Erosion of the invert by cavitation from the prior storm could reduce
P the channel capacity by about 40 percent. In other words, the 100 -year channel
►rm in reality may only be a 10 -year channel. This is a very serious potential
natality.
ability.
The seriousness of this prob em is well recognized by the Los Angeles and
Pm
Orange County Flood Control Districts. Both Districts have lost concrete
um
channel inverts firm cavitation by "clear" flaws. The Los Angeles County Flood
"" Control District policy is "no concrete channels with velocities greater than
'" 40 fps ". Their design procedure is to utilize a Bureau of Reclamation Type 3
.m Stilling Basin with a sloping apron drop structure, utilizing baffle blocks and
hr. the hydraulic jump to dissipate the energy.
Po
In the case of Etiwanda Creek, a stilling basin is not a practical solution,
tar
especially if the channel is kept in an excavated section. The structure would
.• be approximately 315 feet long and 175 feet wide at the middle baffle block
mm
section. And, the channel invert at the downstreamn end would be in about 30
"" feet of cut. The alternative solution for a 40 fps maximum velocity is a wide
t "" charnel varying in width from 45 to 80 feet at a cost of $24 million.
pm
A concrete channel with velocities in excess of 40 fps presents a high cost
pm maintenance problem. Replacing invert concrete on an annual to bi- annual basis
would be in addition to the routine maintenance costs for silt, trash and
debris removal; road, fence and gate maintenance; and rodent and weed control.
Pm
Based on an average channel width of 14 feet, routine maintenance is estimated
Wm
to be $0.50 per lineal foot per year. Assuming the replacement of 4-inches of
pi
_ 2-6
P"
ow
"" concrete every other year, this would result in an annual cost of about $35 per
NW lineal foot per year.
mm
The primary issues involved with the use of a conventional high velocity
mm concrete chard are summarized below:
• Velocities for the 100 - ear design flows in a conventional hydraulically
efficient concrete channel are in excess of 70 feet per second. Cavitation
„ would occur and erode the channel invert.
r. • Velocities in the reach above 24th Street wild be in excess of 40 feet per
second for flows only slightly greater than the one -year frequency event.
"' Cavitation begins in the 40 to 50 feet per second range.
w.
• Velocities in the lower reach below 24th Street would exceed 40 fps for the
•- year frequency event.
um • Model studies may be required to verify design calculations.
PM
The following outlines the advantages and disadvantages of a conventional high
u m
velocity rectangular concrete channel:
A•
M Disadvantages
'^ • Lower initial construction cost • Can be aesthetically unpleasing
r.
• Conventional design for faster • Difficult to obtain
PP approval process environmental permits
um • Least right- of-way requirements • Difficult to integrate
.• with a golf cause
• mom maintains and assumes
.• liability for charnel • High velocities can result
in cavitation and erode the
•- charnel invert
um
• Maintenance costs will be high
,,,mm for replacement of invert
concrete
um
• F+enhci,rhg and a 20 foot wide
"'• access road could be required
um on each side of the channel
00 • Channel capacity could be reduced
to a 10 -year design flow if the
u m invert is eroded by cavitation.
If not replaced prior to a large
mm
storm, this could be a serious
o w liability.
pm
u" 2 -7
pm
m.
pm
wu
"" 2.4 Envirommedbal
km Construction of Etiwarrla Creek Channel will require a permit from the U.S Army
00 Corps of Engineers and the California Department of Fish and Game. The
", proposed project is located on an alluvial fan. Removal of alluvial fan scrub
pp
habitat will require mitigation by replacement or preserved habitat in other
areas. Discussion with the environmental agencies have indicated a minimum
err
habitat replacement ratio of 5 to 1 for concrete channels. A ratio of 10 to 1
'"" is possible. Indications are that an armorflex channel would not require
air mitigation, and would serve to reduce overall mitigation requirements for
•w development of the area. In terms of real costs as discussed previously,
mitigation for the concrete channel is estimated to be $5,000,000 based on a 4
pm to 1 replacement ratio and $80,000 per acre for land and enhancement costs. It
p , should be noted that any enhancement of the San Sevaine Basins would not count
as channel mitigation. The primary environmental issues are summarized as
follows:
r.
.. • Are mitigation costs a " real" cost that need to be applied to construction
No
costs?
• Is it possible to obtain Corps and Fish & Game permits in a reasonable time
Pm frame if a concrete channel were selected as the preferred alternative?
w
p „ 2.5 Etiwanda Creel: Diversion
The diversion of a portion of Etiwarxla Creek flows into San Sevaine Basin No. 5
pp
is the subject of a report FMS filed with the San Bernardino Minty Flood
Control District, in February 1989, for their review and approval. The purpose
bo
of the diversion is to mitigate increased storm runoff from proposed
development in the Etiwarda Creek Drainage Basin. The mitigation will be
" ° accomplished by reducing peak discharges through flood control detention in the
Pm San Sevaine Basins. The alternative to diversion is onsite detention.
pm Three issues are associated with diversion of Etiwarda flows into San Sevaine
Basin No. 5. First, the peak flows in San Sevaine Charnel downstream of Basin
5 must not be increased. This is being accomplished with the proposed
pm
modifications to San Sevaine Basins.
w■
"m The second issue relates to a previous agreement between the San Bernardino
Flood Control District and the Riverside County Flood Control District. By
pm agreement, the maximum discharge in San Sevaine Creek at the County line shall
mr. 2 -8
pm
bo
Paw
not exceed 12,100 cfs. This is also being acacrplished by additional detention
of peak flows in Jtrrupa Basin.
+.� The third issue deals with timing on construction of the proposed channel and
basin improvements, which is a concern of the Riverside County Flood Control
District. Certain existing facilities in Riverside County are inadequate with
amo
as little as 2,500 cfs capacity and the timing for their replacement is not yet
certain.
All of the above issues have been dealt with an a continual basis in concert
with Williamson & Schmid (W & S) , who are the engineers representing the major
landowners South of I -15. Joint meetings between the two flood control
wr districts, FWLS and W & S were held cal April 20 and May 25. Coordination
efforts are continuing and it is expected that the diversion and related issues
will be resolved.
2.6 Water Canservatian
The Etiwanda North Specific Plan proposes a golf course along the prcposed
Etiwanda Drainage Corridor as a development option. The Etiwanda Creek water
spreading grounds are located adjacent to the creek both North and South of
•- 24th Street. If the spreading grounds are eliminated or reduced for the golf
course or development, alternative locations will be required for spreading
both local drainage flaws for water conservation and imported water for
grouydwater replenishment.
.. preliminary studies indicate that the use of San Sevaine Basin No. 5 will
taw
satisfy the major needs for spreading local drainage and storm flows for water
...
conservation.
The spreading grounds North of 24th Street are being used by the Chino Basin
Mmminipa Water District (C 1D) and the Metropolitan Water District (WD) for
water replenishment in the Chino Basin for overdrafts in aocordarnoe with an
adjudicated decision, and cyclic storage such as in "wet years ". The present
use of the Etiwanda spreading grounds can be transferred to Basin 5. However,
". a lack of capacity may arise due to a proposal by MD to use Basin No. 5 for
spreading imported water. Consequently, it may be necessary to use Basins 2
2-9
mo
Mr
PM
and 3 in addition to Basin No. 5 (Basin No. 4 is prtpcsed to be combined with
.P Basin No. 5) for spreading of imported water.
m.
"o With the golf course option, a meandering low flow stream with ponds has the
P.. potential for significant water spreading of both local drainage flows for
,,, water conservation, and imported water for gter replenishment.
.w
um
mem
w.
PM
PA
■1
OP
Mr
Mm
pm
PM
mn
up
pm
W
PM
am
!P.
um
pm
am
p
W. 2 -10
Pm
Pm
SHafIllf 3
AIATEENATIVENAMIBBIS
i "" 3.1 General
.. The alternatives analysis for Etiwarx a Creek included the diversion of
�.,
approximately 32% to 100% of Etiwanda flows into San Sevaine Basin No. 5. The
lesser diversion amount was finally selected as the most economical. All
Pm
alternatives presented herein are based on that percentage which is 2,300 cfs
0.
out of 7,200 cfs approaching the diversion structure at Basin No. 5.
..
"N fl a preferred alternative which is discussed in Section 4, is a slight
xi" modification of Alternate No. 1 described in this section. All channel
alternatives studies were combinations of rectangular concrete, parabolic
r ., armorflex, and trapezoidal armorflex sections. Two alternatives above 24th
k Street considered rock and armorflex lined levees in consideration of larxi
planning and development phasing. All alternatives were identical downstream
of 24th Street. Included in this downstream reach are a trapezoidal armorflex
channel from 24th Street to just above San Sevaine Basin No. 5, which will
serve as a continuation of a proposed wildlife corridor. At that point, a
diversion stricture will convey 2,300 cfs underground to Basin No. 5, and a
rectangular concrete channel will extend downstream to the existing Etiwanda
�• Creek connate trapezoidal channel. This existing facility will be enlarged to
,.. provide capacity for the 100 -year design storm. The existing channel will be
, modified by replacing the outside sideslope with a vertical wall.
The alternative construction costs for the entire system, including Etiwanda
m•
Debris Basin and appropriate street and utility road crossings, varied from $15
to $24 million. The $15 project is a rectangular e r rete channel, excepting
the reach between 24th Street and the Basin 5 diversion structure. The maximum
*• velocity in this concrete channel system reaches 71 feet per second (fps). The
$24 million project is a rectangular concrete channel, for the entire system,
eft with a maximum velocity of 40 fps. It is cur professional opinion that the $24
million project is the design equivalent of the armorflex channel based on
maximum allowable design velocities. The preferred alternative is a $21
million project with all armorflex upstream of the diversion structure at Basin
big
No. 5. The maximum velocity in the armorflex channel is 20 fps.
3 -1
v
Om
3.2 Charnel Altexnatimes
Seven conceptual channel alternatives with schematic plans and cost estimates
"` are presented in this section. We have also included a cost estimate only for
an all concrete channel, from existing Etiwanda Channel to the debris basin,
„oly designed for a naxinun velocity of 40 fps. As stated in Section 3.1, all
,,.
channel alternatives are identical below 24th Street. The following
descriptions are therefore above 24th Street only.
Pm
r
3.21 Altura No. 1 - $19,000,000
"^" Alternative No. 1 is a parabolic arum channel with sodded freeboard slcpes
by from 24th Street to the Northerly limit of the LADWP Corridor, and a
rectangular concrete channel from that point to the debris dam. It has been
assumed that LAMP and SCE equi itent will cross the channel directly, and no
.. culvert or bridge crossing is required. The schematic plan and cost estimate
by are shown on pages 3 -5 and 3-6 respectively.
3.22 Alternate No. 2 - $19,000,000
Alternate No. 2 is a trapezoidal am orflex charnel from 24th Street to the
Northerly limit of the IADWP Corridor, and a rectangular concrete channel fran
410' that point to the debris dam. No special crossings at the LAMP and SCE
Pm Corridors were again assumed. The trapezoidal section has 3H:1V side slopes.
+m This alternate is intended to show the incremental cost difference with the
parabolic section which blends more easily with the golf course, having
,,,, apprcorimately a 1311:1V side slope. The schematic c plan and cost estimate are
shown on pages 3 -7 and 3 -8 respectively.
mm
r.
3.23 Alternate No. 3 - $17,500,000
P" Alternate No. 3 is a parabolic armorflex channel (with sodded freeboard slcpes)
from 24th Street to just downstream of a proposed East -Test Road between the
*w two SCE Corridors, and a concrete rectangular channel from that point to the
debris dam. An R.C. box culvert is required at the IADWP and SCE Corridors.
,r„ An R.C. box culvert is provided at the future East -West Street crossing, as
apposed to Alternates 1 and 2 which provided a bridge. This alternative was
also considered in connection with a proposed golf course layout option. The
r..
schematic plan and cost estimate are shown on pages 3-9 and 3 -10 respectively.
Wm
br 3 -2
3.24 Alternate No. 4 - $17,500,000
Alternate No. 4 is trapezoidal armorflex channel form 24th Street just
downstream of the proposed East -lest Street, and a rectangular concrete channel
from that point to the debris dam. An R.C. box culvert is provided at the
future East -West Street and the Utility Corridors. The schematic plan and
r.. cost estimate are stun on pages 3 -11 and 3 -12 respectively.
3.25 Alternate No. 5 - $15,000,000
Alternative No. 5 is a rectangular concrete channel from 24th Street to the
debris dam. R.C. box culverts are provided at the future East -West Street and
Utility Corridors. The maxim velocity in this system reaches 71 fps. The
PP" schematic plan and cost estimate are shown on pages 3 -13 and 3 -14 respectively.
r 3.26 Alternate No. 6 - $17,500,000
rr., Alternative No. 6 is a rock lined levee from 24th Street to the debris dam.
This alternate is related to optional development and phasing scenarios for the
area. Channel stabilizers are required at the upstream and downstream
transition areas. The schematic plan and cost estimate are shorn on pages 3 -15
and 3 -16 respectively.
3.27 Alternate No. 7 - $17,500,000
Alternate No. 7 is a combination of an armorflex and armorf•rm (described
P. earlier) levee from 24th Street to the debris dam. Armorform is used below
w existing grc rri to the potential sccur level. This system is an alternative to
the rock levee. the advantages over rock are availability, short construction
time, more envirocmnentally acceptable as it can be vegetated, and does not
attract rodents. The schematic plan and cost estimate are shown on pages 3 -17
p. and 3 -18 respectively.
r•
3.28 Limited Velocity Concrete Cbarsmel - $24,000,000
t"• Section 2 discusses the velocity issue with concrete channels having velocities
in excess of 40 fps, and the experimental limiting velocity of 20 fps with
Jr. armorflex. The preferred armorflex alternative design meets the maximum
velocity criteria. Accordingly we have prepared a cost estimate for a
rectangular concrete channel that meets the maximum velocity criteria of 40 fps
for concrete. The channel width varies from 45 to 80 feet. This is in
3 -3
oft
r.
w " comparison to the az crf't ex channel width of from 104 to 140 feet. The cost
o` estimate is shown on page 3 -19.
3.3 Debris Bassin vs Dam
H The various issues and constraints involved with the proposed debris catchment
,,,,, facility for Etiwanda Creek were discussed in detail in Section 2.1. The
alternatives analysis dealt with location in regard to property access,
him
critical habitat areas, ground faults, and aesthetics. Seismic constraints and
aesthetics led to the analysis of a debris "basin" versus a debris 'Mama".
r
,0 The preferred alternative for the Etiwanda Creek debris catchment is an
"" excavated " basin" with no embankment or conventional spillway, located at Site
"a No. 1 as shown on the site location plan on page 3 -20. The cost estimate is
shown on page 3 -22.
oh
The debris "basin" at Site No. 1 is theoretically more costly than a "dam" at
Site No. 1 or No. 2 however, reducing State Division of Safety of Dams
sirs
involvement to a minimum, aesthetics, and the generation of excavated material
o h
for use by adjacent land owners were overriding factors. Additional costs for
to the "dam" concept, unknown at this early stage, for seismic mitigation could
" result in the damn being more costly and was also a factor in the selection.
Pm A cost estimate is also included for a debris basin at Site No. 2 and is shown
, on page 3 -25. The alternative darn at Site No. 3 is approximately 100 feet high
by state criteria. This high dam in a seismic area represents a highly
technical and involved design analysis which is beyond the scope of this
report. We have therefore not included a cost estimate for that alternative.
oh
Ur
w
oh
ar
we
0. 3-4
0,
o.
ETIVANOA ALTERNATE NO. 1
DEBRIS $19,000,000.
li
II
ill
1 1 •
�' LADWP CORRIDOR . 11
.
'SCE CORRIDOR 11
PROPOSED BRIDGE II
EAST \ 11 _ f x
ii 9111
yam` \\ -/ 1 STA. 90,E
yG \\ I. 1 50 +00 0 °')
\ ` Q 'lI
;
4 �
II SCE CORRIDOR
,�A (, r
A:
ti ,\
lk w
v a �.
h
`or. ,
STA. 100 +00 \ 1I
1 . ii
1 PROPOSED 24th STREET 1I EXISTING SUMMIT AVENUE
1 I ,
j BRIDGE
X / \\\
%'\
1
w
0 097' a BRIDGE _
I / ; Q A / STA. 72 +00
SUMMIT AVENUE _ I1
RCP OR RCB
DIVERSION
LEGEND STRUCTURE
minwomm• CONCRETE CHANNEL
11111 alillme CONCRETE CONDUIT . 8EWNINE'
1111111111111111 ARMORFLEX TRAP.
CHANNEL
i •
- 11111=1111111 ARMORFLEX PARABOLIC
CHANNEL
HIGHLAND AVENUE ,_ _ _
EXIST W • t A CHANNEL
VETOaA' II
UM •
` EXIST. SAN SEVAINE CHANNEL
VICTORIA AVENUE -- --‘1 _ .
. *JSCOE , I651 „,.,lI, • b........ ,.J,. 1
WILLIAMS MS , - , ,, - uu A _-DBL.
s " " "' CHANNEL UNDER CONSTRUCTION
Bt
LINDGREN M\ - ,., tS. 410 STA.
SHORT 1 8 +00 y 7 MAY 1989
.•..r ..... ..... .................. O� '~ FWLS JN 2106.1101
3 -5
0.
um
mm
CONCEPTUAL COST ESTIMATE
on
, PROTECT: ETIWANDA CHANNEL
NEL
VICTORIA AVENUE '10 DEBRIS DAM
,.. DATE: MAY 26, 1989
JOB NO. 2106.11.01
um
ALTERNATE "1" - PARABOLIC ARMORFIEX CHANNEL UPSTREAM OF 24TH S ttita' TD NORM
"""' END OF UMW ROW CORRIDOR AND TRAPEZOIDAL ARMORFLE X CHANNEL
I DO STREAM OF 24TH Sumba' AND ATE CHANNELS AT NORTH AND
SCUTI'H ENDS OF PROTECT. SOD ON PARABOLIC FREEBOARD SLOPES
1
D/S OF 24TH Slx@:a
p ITEM
NO. DESCRIPTION ENTITY UNIT COST COST
1. A R M O R F L E X CL 50 303,667 S.F. $4.30 $1,305,768.00
• 2. ARMORFLEX CL 30 30,849 S.F. $4.00 $123,396.00
,,,,,, 3. SEEDING OVER ARMORF'TEX 334,516 S.F. $0.05 $16,725.00
4. SOD 39,000 S.F. $0.50 $19,500.00
0.• 5. MIDGE AT SMUT AVENUE 8,748 S.F. $80.00 $699,840.00
6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
0" 7. 10 Fr DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
• 9. EXPAND ExIsr. EI'IWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
tr 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
11. CHANNEL CONCRETE 3,133 C.Y. $275.00 $861,575.00
*I 12. FENCE 9,570 L.F. $8.50 $81,345.00
,,,,, 13. STRUCTURAL BACFFILL 5,600 C.Y. $4.50 $25,200.00
14. CUTLET STRUCTURE 1 L.S. $80,000.00 $80,000.00
SUBTOTAL $6,070,760.00
11 " WS OF 24TH STREET
"'" 1. ARM RELC CL 110 65,524 S.F. 10.00 $655,240.00
, 2. AIZERFTEX CL 50 676,048 S.F. 4.30 $2,907,006.00
3. SEEDING OVER ARMORFLEX 741,572 S.F. 0.05 $37,079.00
P 4. EXCAVATION 79,000 C.Y. 2.75 $217,250.00
5. SOD 299,379 S.F. 0.50 $149,690.00
r "' 6. FENCE 16,400 L.F. 8.50 $139,400.00
.w 7. TWO TRANSITION STRUCTURES 2,080 C.Y. 310.00 $644,800.00
8. BOX CULVERT AT 24TH ST. 277 C.Y. 310.00 $85,870.00
"'' 9. BRIDGE AT STA 151 +30 6,588 S.F. 100.00 $658,800.00
10. CHANNEL CONCRETE 2,172 C.Y. 275.00 $597,300.00
•• 11. STRUCTURAL BAS• 4,000 C.Y. 4.50 $18,000.00
u 12. DEBRIS BASIN CUTLET MIMS 1 L.S. 2,220,000.00 $2,220,000.00
06 SUBTOTAL $8,330,435.00
um TOTAL $14,401,195.00
P+ 304(+-) CONTINGENCY $4,598,805.00
GRAND TOTAL $19,000,000.00
,." 3 -6
sw
ALTERNATE NO. 2
E ', ■
'DEBRIS'
MON $ 19,000,000
II
•
• 0
811
, iihr, 4
- I•L ADWP CORRIDOR
If ..
% NIIIIII---- SCE CORRIDOR ..--..„,,..,. II
—A_
• •
....__
PROPOSED
NN , ' Ati '...-..........
. .
cl
VO < , V
--,.... ----
STA
\\ z 150+00 iii°
. I
• \I 41, I I S.j.__,
SCE CORRID014.-----„
---
•-
c
tij
-.1
C
r.4
t
I I
I I : I I
I I
I I 1 • Vt,,z„
V
NI
V 11
I \ \
0, ) ,) ,, 90 , , • „, ,,, \
C'Clis
P 1 Iiik \ \
I , \
I I STA. 100+00
-. 11 il
[ PROPOSED 24th STREET 'II-IIN 11 II EXISTING SUMMIT AVENUE
1 i
R.C. BOX
%.
DI,
5 ), Z 1T - ---BRIDGE \--'--"------
,,.-
-,-
!.!.
_51.1144MIT AVENUE ILI __ ___-- .. - 2. -- - -V7-'
_ 1 z . RCP OR RCB
il
DIVERSION
LEGEND STRUCTURE ------ /
aminglimio CONCRETE CHANNEL ,,
WM UMW 11 CONCRETE CONDUIT STA. 72+00 /
11:241%xsoadraa ARMORFLEX TRAP. .
CHANNEL 1 .,
•
I; I
_ HIGHLAND AVENUE _ _-_-
e
EXIST. W. •A CHANNEL
WC:MENAI
_-.EXIST SAN SEVAINE CHANNEL
‘,.........,
=_.=,
UNDGREN ,-, VICT_OBIA AVENUE _ _ \ • ---- , —I-=--- --- - - --
WILLIAMS ----:"--_,, ,, r - CHANNEL UNDER CONSTRUCTION
IS; 11,0 C:4,'
.,..--0.. STA. /
& SHORT 18+00 MAY 1989
---- -- ' -'6 , ---
.. FWLS JN 2106.1101
3-7
ww
+w•
M
wr
Ok caNcEpraAL COST ESTIMATE
" PROTECT: ETIWANDA CHANNEL
VICIORIA AVENUE TO DEBRIS DAM
"" DATE: MAY 26, 1989
„ JOB IAA. 2106.11.01
..r. ALTERNATE "2" - TRAPEZOIDAL ARMORFLEX CHANNEL F120i( BASIN 5 DIVERSION STRUCTURE
RE
10 NCHrIE END OF LAW ROW CORRIDOR AND CONCRETE CHANNELS AT
"w"" AT NORM AND SCUM ENDS OF PROJECT. ARMORF1EX CU FREBOARD SLOPES
D/S OF 241H S12Ma
Noe
ITEK
+"""' NO. DESCRIPTION (XIANTI'TY UNIT COST COST
' 1. AMORE= CL 50 303,667 S.F. $4.30 $1,305,768.00
..",, 2. ARMDRFLEX CL 30 30,849 S.F. $4.00 $123,396.00
3. SEEDING CVER ARMO2FLEX 334,516 S.F. $0.05 $16,725.00
w 4. SOD 39,000 S.F. $0.50 $19,500.00
5. BRIDGE AT SMUT AVENUE 8,748 S.F. $80.00 $699,840.00
'""' 6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
.,,.r 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
-. 9. SAND EXIST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
w"'' 11. CHANNEL CONCRETE 3,133 C.Y. $275.00 $861,575.00
12. FENCE 9,570 L.F. $8.50 $81,345.00
13. STRUCTURAL B 5,600 C.Y. $4.50 $25,200.00
411. 14. CUTLET STRUCTURE 1 INS. $80,000.00 $80,000.00
,r. SUBTOTAL $6,070,760.00
U /S. OF 24TH S ma
1. ARMORFLEX CL 110 55,018 S.F. 10.00 $550,180.00
2. ARMORF'IEX CL 50 669,676 S.F. 4.30 $2,879,607.00
'"' 3. AR'LEX CL 30 94,564 S.F. 4.00 $378,256.00
4. SEEDING OVER ARM RF EX 819,258 S.F. 0.05 $40,963.00
'"" 5. EXCAVATION 78,000 C.Y. 2.75 $214,500.00
... 6. SOD 119,960 S.F. 0.50 $59,980.00
7. FENCE 16,400 L.F. 8.50 $139,400.00
.".. 8. TWO TRANSITION STRUCTURES 1,514 C.Y. 310.00 $469,340.00
9. BOX CULVERT AT 24TH ST. 277 C.Y. 310.00 $85,870.00
iv
10. BRIDGE AT STA 151 +30 6,156 S.F.
100.00 $615,600.00
0,, 11. fig, aticRerE 2,319 C.Y. 275.00 $637,725.00
12, STRUCTURAL BAMILL 3,500 C.Y. 4.50 $15,750.00
b 13. IIS BASDI curizr WrHtls 1 L.S. 2,220,000.00 $2,220,000.00
w. suorom $8,307,171.00
0.
TOTAL $14,377,331.00
30%(+-) CONTINGENCY $4,622,669.00
aw
GRAND TOTpJ, $19,000,000.00
.• 3 -8
w
.
ALTERNATE NO. 3
. - $17,500,000
II
II
all
II
R.C. BOX
- LADWP CORRIDOR iI
` •SCE CORRIDOR 11
PROPOSED = R. C. BOX Y II
E "ia' III
\\� - _ J)
9` s '' �
STA. V. zII
150 +00 III
. \\ r 31
\-1 `
y J '� `SCE CORRIDOR
t 1. `\ oy T \
STA. 100 +00 II
PROPOSED 24th STREET \ II _ _ EXISTP G SUMMIT AVENUE
R.C. BOX
/ \ \\\
,� U
N P
w / / BRIDGE
SUMMIT AVENUE RCP OR RCB
LEGEND DIVERSION
STRUCTURE e
•••■ CONCRETE CHANNEL 0.4t '
M•1 CONCRETE CONDUIT STA. 72 +003 -�
sommin■ ARMORFLEX TRAP.
CHANNEL
ARMORFLEX PARABO'.IC 1
CHANNEL
I1l0 S -AND AVENUE _.- _
1
EXIST • CHANNEL
NW
b EXIST. SAN SEVAIE CHANNEL
� VICTORIA ENUE AV - - \'
. _Y II651.flrrilup eha.ru.. 4
Ill ral :a DBL.
Ar 1
. 0.1 nnrin 9250/
S tiu rnai tsa auo CHANNEL UNDER CONSTRUCTION
V 1P y
8t STA.
18 +00
P,
MAY 1999
curlantl•w., Lund .wn.n,.. FWLS JN 2108.1101
-
3 -9
...
.w.
CONCEPTUAL COST ESTIMATE
0.
.. PROTB T: ETIMINOA CHANNEL
VICTORIA AVENUE TO DEBRIS DAM
,.. DATE: NAY 26, 1989
JOB NO. 2106.11.01
r
ALTERNATE "3" - PARABOLIC ARM RFLEX CHANNEL UPSTREAM OF 24TH Sue= TO
`" WEST Sue= AT STA 151 +30 AND TRAPEZOIDAL ARM 2F TEX CIIANNEL
oo DC STREAM OF 24TH S1xr: a' AND CONCRETE CAS AT NORM
AND SOUTH END OF PROTECT. SOD CSI PARABOLIC FREEEQARD SIDS
o.
DVS OF 24TH S1xr:r:1'
'4r
so ITEM
NO. DESCRIPTION QUANTITY u rr COST COT
Aw
1. ARM RFLEX CL 50 303,667 S.F. $4.30 $1,305,768.00
2. ARM ETIEX CL 30 30,849 S.F. $4.00 $123,396.00
w 3. SEEDING OVER ARCRFZEX 334,516 S.F. $0.05 $16,725.00
4. SOD 39,000 S.F. $0.50 $19,500.00
,,., 5. BRIDGE AT summrr AVENUE 8,748 S.F. $80.00 $699,840.00
6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
4 '" 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
"' 9. EXPAND EXIST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
"w. 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
11. CHANNEL COrTCRErE 3,133 C.Y. $275.00 $861,575.00
,.. 12. FENCE 9,570 L.F. $8.50 $81,345.00
13. STRUCTURAL BACK FILL 5,600 C.Y. $4.50 $25,200.00
o" 14. CITrLEr STRUC1URE 1 L.S. $80,000.00 $80,000.00
so
SUBPYAL $6,070,760.00
*- U/S OF 24TH S1xr:m1'
1. ARCRFLEX CL 110 50,068 S.F. 10.00 $500,680.00
w 2. ALEX CL 50 511,819 S.F. 4.30 $2,200,822.00
3. SEEDING OVER ARMRFTEX 561,887 S.F. 0.05 $28,094.00
,,.. 4. ECCAVATION 87,000 C.Y. 2.75 $239,250.00
5. SOD 250,065 S.F. 0.50 $125,032.50
ow 6. FENCE 16,400 L.F. 8.50 $139,400.00
7. TED TRANSITION STRUCTURES 2,080 C.Y. 310.00 $644,800.00
Aw
8. BOX aTLVERT CONCRETE 447 C.Y. 310.00 $138,570.00
w. 9. aiANNEL CIE 4,382 C.Y. 275.00 $1,205,050.00
10. STRUCTURAL BACXFILL 6,000 C.Y. 4.50 $27,000.00
'""" 11. ISIS BASIN AND CUTIEr WORKS 1 L.S. 2,220,000.00 $2,220,000.00
""" EDSPOTAL $7,468,699.00
""" WI'AL $13,539,459.00
ow
30 %(+-) CONTIMENCY $3,960,541.00
o. GRAND TOTAL $17,500,000.00
'~ 3 -10
a
ALTERNATE NO. 4
$17,500,000
II
II
.. .. l► i ii
I1. LADWP CORRIDOR fi .C. B OX j`
1 SCE CORRIDOR 11
PROPOSED = — R.C. BOX Y lI
EgST \ \\ �%
/ \� \ _m1I
I:. 9L s\ / STA. z11
\\ 150 +00 o a ll
\\ II
` r II
'SCE CORRIDOR
- 1
p #I
.15 \\
a \ N
CI)
\ 1 1
I STA. 100 +00 11
— _ PROPOSED 24th SST — 11 EXISTMG SUMMIT AVENUE
R.C. BOX
, %/A
U .
4>. cle14*\..„
co
Z�
BRIDGE �
i
SUMMIT AVENUE I
RCP OR RCB
LEGEND DIVERSION
STRUCTURE
CONCRETE CHANNEL
STA. 72+00
—■•. CONCRETE CONDUIT
ow= ■ ARMORFLEX TRAP. �
CHANNEL
I
fFI,I AND AVENUE 1 __-_-
1
EXIST W: .A CHANNEL
MOW I!
IOW
,� EXIST. SAN SEVAIE CHANNEL
VICTORIA AVENUE ‘...;iii
FUSCOE IIfSl.lMrl/rfA .4r•rr.H•, .Irrlh•A
xx :xx• r f d�N .nr l ., vnn DBL.
;;! ;NM/R ■
(714)04-01N y ' = CHANNEL UNDER CONSTRUCTION
/A.Y(] /9) 1SJ .IWO
�4 P STA.
ICA* 18 +00 = MAY 1889
cxm rrq/wrr., • /andSun.,v..r, Ot. F FWL$ .II 2106.1101
3 -11
00
r.►
0.
0..
C10NMMA', MST ATE
PROJECT: EFIF ANTA CHANNEL
`" VICTORIA AVENUE TO DEBRIS DAM
DATE: MAY 26, 1989
JOB NO. 2106.11.01
ALTERNATE "4" - TRAPE XZOIDAL ARND FLEC CHANNEL FROM BASIN 5 DIVERSION
_ STRUCTURE '10 EAST-WEST Snte e : AT STA 151 +30 AND CONCRETE
0. _ CHANNELS AT NORM AND SOUTH ENDS OF PROJECT. AT IRFIEC ON
FREEBOARD SLOPES
D/S OF 24TH b'xmzeV
00
ITEM
^•. NO. DESCRIPTION QUANTITY UNIT CET COST
0.
1. ARNORFLEX CL 50 303,667 S.F. $4.30 $1,305,768.00
a" 2. ARNDRFIEX CL 30 30,849 S.F. $4.00 $123,396.00
.p. 3 . SEEDING OVER ARMORFLEX 334,516 S.F. $0.05 $16,725.00
4. SOD 39,000 S.F. $0.50 $19,500.00
0 . 5. BRIDGE AT SIMT+IIT AVENUE 8,748 S.F. $80.00 $699,840.00
6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
* 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
"""' 9. EXPAND FAST. EI'IWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
.. 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
11. CHANNEL ATE 3,133 C.Y. $275.00 $861,575.00
- 12. FENCE 9,570 L.F. $8.50 $81,345.00
13. S'IIaJCIURAL BhaTILL 5,600 C.Y. $4.50 $25,200.00
.0 14. CCTITET STRUCTURE 1 L.S. $80,000.00 $80,000.00
"°` SUBTOTAL $6,070,760.00
•. U/S OF 24TH Sue=
'"" 1. AC ERFT.EX Cl, 110 32,665 S.F. 10.00 $326,650.00
• 2. A MDRFIEX CL 50 534,852 S.F. 4.30 $2,299,864.00
3. ARNORFLEX CL 30 70,637 S.F. 4.00 $282,548.00
... 4. SEEDING OVER AlICRFLEX 638,154 S.F. 0.05 $31,908.00
5. EXCAVATION 86,000 C.Y. 2.75 $236,500.00
• 6. SOD 89,840 S.F. 0.50 $44,920.00
7. FENCE 16,400 L.F. 8.50 $139,400.00
""" 8. IW) TRANSITION STRUCTURES 1,514 C.Y. 310.00 $469,340.00
r.. 9. BOX QrEvE r CONCRETE 447 C.Y. 310.00 $138,570.00
10. CHANNEL CONCRETE 4,382 C.Y. 275.00 $1,205,050.00
M"' 11. S'I JCIURAL BACKFILL 5,500 C.Y. 4.50 $24,750.00
12. DEBRIS BASIN AND OUTLET 193R10 1 L.S. 2,220,000.00 $2,220,000.00
ifte
SUBTOTAL $7,419,500.00
w., 'I I L $13,480,260.00
.. 30%(+ -) CONTINGENCY $4,019,740.00
GRANDTOTAL I, $17,500,000.00
" 3 -12
y.
A00., ALTERNATE NO. 5
lomili $15,000,000
II
II
/ I I I
"......_
R.C. BO X LADWP CORRIDOR •- 11
'''''.--- CORRID013.--. ll
7--.--. — ----= =_-- II
EASi :•:"...,' , ,---- - --___
.-.....,...„
!I
STA. --.............. a ll
150+00 16
4 t its \ R.C. BO X
\\ o 01
\\ 1
g I I
‘`
t.
V i 1.1 11 ' SCE CORRIDOR.--,,
' ii
R.C. BOX- 1
t
1 14
17
T
'SIN .04k,c‘1/4,
a f
0
en
1
II
I R.C. BO X il
PROPOSED 24th SMUT _ II _ EXISTING SUMMIT AVENUE
=--. --- =.- --. -- =-- =_-_.-- = = =---= =_-- --. .- _ T T __ il
i
STA. 100+00
/ \\
%.\
1-- zi,ew
)k*
\---,
a
e% BRIDGE
-
4 '
,..
T AVENUE .— ----"" ----
DIVERSION RCP OR RCB
LEGEND STRUCTURE
=Nom= CONCRETE CHANNEL
CONCRETE CONDUIT STA. 72+00
1
Moimii• ARMORFLEX TRAP.
CHANNEL
r
HIGHLAND AVENUE
.........) l ak*\ EXIST A CHANNEL
$1
EXIST. SAN SEVAINE CHANNEL
‘5
\ '
VICTORIA AVENUE ,- -
• • DBL
, ( n4) )14 DM 4 CHANNEL UNDER CONSTRUCTION
If4A ( , 14) (c4 ONII) 0 .0 0" i S 8 T + A o . 0
0*-4°' MAY 1909
FWLS JN 2106.1101
aril linsfoseers lAnd SurVeV,r3
3-13
irw
wft
OM
OONCEMALCOST ESTIMATE
Pm
, PROTECT: ETIWANLA CHANNEL
VICTORIA AVENUE TO DEBRIS DAM
.. DATE: MAY 26, 1989
JOB NO. 2106.11.01
ALTERNATE "5" - REC1AJLAR CANNEL WITH AMR:FLEX TRAPEZOIDAL CHANNEL
". DMIS REAM OF 247H Sutra'
D/S OF 247H Stmt'
r ..
ITEM
NO. DESCRIPTION QUANTITY UNIT COST COST
1. ARMORFZEC CL 50 303,667 S.F. $4.30 $1,305,768.00
+• 2. ARMORF EX CL 30 30,849 S.F. $4.00 $123,396.00
3. SEEDING OYER ARMORFLEX 334,516 S.F. $0.05 $16,725.00
PP ' 4. SOD 39,000 S.F. $0.50 $19,500.00
%, 5. MIDGE AT SUMMIT AVENUE 8,748 S.F. $80.00 $699,840.00
6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
r. 7. 10 Fr DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
"" 9. EXPAND EXIST. EPIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
P.
11. CHANNEL CIE 3,133 C.Y. $275.00 $861,575.00
✓ 12. FENCE 9,570 L.F. $8.50 $81,345.00
13. STRUCTURAL BACKFIIL 5,600 C.Y. $4.50 $25,200.00
"" 14. CUTLET STRUCTURE 1 L.S. $80,000.00 $80,000.00
`" SUBTOTAL $6,070,760.00
,',. U/S OF 24TH StMEWV
'" 1. EXCAVATION 57,000 C.Y. 2.75 $156,750.00
2. CHANNEL OONCRETE 9,549 C.Y. 275.00 $2,625,975.00
P. 3. CAIN LINK FENCE 16,400 L.F. 8.50 $139,400.00
.0 4. ACAS RAMP CONCRETE 164 C.Y. 310.00 $50,840.00
5. BOX CULVERT CONCRETE 782 C.Y. 310.00 $242,420.00
•• 6. STRUC1URAL BACKFILL 14,400 C.Y. 4.50 $64,800.00
7. DEBRIS BASIN AND CITrIEI' WO KS 1 L.S. 2,220,000.00 $2,220,000.00
Y.
SUBTOTAL $5,500,185.00
,`.,, TOE, $11,570,945.00
0. 30%(+-) CONTINGENCY $3,429,055.00
."
GRAND TOTAL $15,000,000.00
w
„. 3 -14
...
ALTERNATE NO. 6
Wilt $ 17,500,000
II
II
1 il l
•
11
•
LADWP CORRIDOR JI
` •SCE CORRIDOR .--...," II
PROPOSED EAST \ .11
N
9 `1t(t , 00 0 \ ONTO i QI I
\\ , • gll
\\ 9e ' III
• • F y 11 SCE CORRIDOR
g
lo
9
ill 9
a
ti c tzs �
o. \
STA. 100+00 II
II
PROPOSED 24th STREET 11 EXISTING SUMMIT AVENUE
________ �__ -- - - - - -- i —=
R.C. BOX I .
/ \\
a \
w
off% ��_
f0 / BRIDGE
AVENUE ___
RCP OR RCB
LEGEND
DIVERSION
EGEND
STRUCTURE , �� y e s
ROCK LEVEE ` � ' ; •'fi
STA. 72 +00 y �n , .
CONCRETE CHANNEL
CONCRETE CONDUIT Im m o • „ 4ve , ° '
ARMORFLEX TRAP. — =I I -0 . ;'°
CHANNEL
.t I. AND AVENUE 1
EXIST W • CHANNEL
emit
15 EXIST. SAN SEVAI NE
E CHANNEL
■ VICTORIA AVENUE _ __
� 1165/ 4811,,6 .xn,.w. •WI..1 DBL.
Hl,nkM t »ll/l.nth. 92581 f
WRISCCIE �rr�� + it 111110 �VIVI TA• CHANNEL UNDER CONSTRUCTION li F 18 +00 MAY 19e9
FWLS .IN 2106.1101
3 - I
..r
..
'w" O VM PI AL COST ESTIMATE
0 ' ~ PROTECT: EITWANDA C NNEL
r. VICTORIA AVENUE TO DEBRIS DAM
DATE: MAY 26, 1989
., JOB N0. 2106.1101
o w
Mff "6" - ROCK LEVEE SYSTEM UPSTREAM OF 24TH sTREer WITH
0. TRAPEZOIDAL ARMORFTEX AND CONCRETE CHANNELS
DCMISTREAM OF 24TH STREET
ow
D/S OF 24TH STREET
p.
. ITEM
N0. rEscsIPrici ¢ANrITY UNIT COST COST
PM
1. ARMENFTEX cL 50 303,667 S.F. $4.30 $1,305,768.00
"" 2. ARMDRFLEX CL 30 30,849 S.F. $4.00 $123,396.00
3. SEEDING C1 ARMORF1EX 334,516 S.F. $0.05 $16,725.00
0.
4. SOD 39,000 S.F. $0.50 $19,500.00
✓ 5. BRIDGE AT SUM IT AVENUE 8,748 S.F. $80.00 $699,840.00
6. TFA TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
ma 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
r. 8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
9. EXPAND EXIST. EI'IWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
.. 10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
11. CHANNEL CCNCRE E 3,133 C.Y. $275.00 $861,575.00
" 12. FENCE 9,570 L.F. $8.50 $81,345.00
13. STRUCTURAL BACKF ILL 5,600 C.Y. $4.50 $25,200.00
0.
14. OUTLET STRUCTURE 1 L.S. $80,000.00 $80,000.00
o
SUBTOEhL $6,070,760.00
•"a U/S OF 24TH Stiirr,t'
"' 1. mimsisrriaN S URC TURE 2,507 C.Y. 310.00 $777,170.00
2. BOX CULVERT 277 C.Y. 310.00 $85,870.00
3. WEST LEVEE FII,,L, 35,449 C.Y. 2.70 $95,712.00
wr 4. EAsr LEVEE FILL 36,007 C.Y. 2.70 $97,219.00
5. WEST LEVEE ROCK 18,456 C.Y. 37.00 $682,872.00
'" 6. EAST IE'VEE ROCK 22,660 C.Y. 37.00 $838,420.00
ow 7. SHEET PILING STABILIZERS 139,950 S.F. 18.00 $2,519,100.00
8. DEBRIS BASIN AND our= % 2KS 1 L.S. 2,220,000.00 $2,220,000.00
o.
SUBTOTAL $7,316,363.00
ow
ICOML $13,387,123.00
OM
w 304(+-) CONTINGENCY $4,112,877.00
0+ GRAND 'IQrAL $17,500,000.00
r
Pft
OM
3 -16
. .
Attit".. ALTERNATE NO. 7
$17,500,000
, ..
, II
II
a 1 1
LADWP CORRIDOR •-----...,
.11
MI .
SCE CORRIDOR.-. 11
. . N
— _.=--- -_-.-_-_ ------_
— PROPO - S - E — D Y 1 I
,.',.
I , ■-:„,.. , _i lil
liZt‘r . 'N
le fk‘\ -- Z - 11
\\ 1 N Is3 oci
„, 01
\\ .,
01
SCE CORRIDOR--
• 1 'N
'. *..
\ \ I
il l:§ , i . ■, t
\,1
7 T 0
.,1:
iij I II , 0„,,
\
P STA. 100+0, \
' \ \
I \
\
PROPOSED 24th STREET 11 EXISTING SUMMIT AVENUE
-=. =- = .- =_ _ ....=. = -... --1 = =_ _=_ _- - -= = = _- _ . _ 1 _
1! ,
R.C. BOX
, ■,\
).\
AVENUE
,
., _ _ .._ /"‘ ---- ---
BRIDGE
SUMMIT =----.-----
__ . _. - _.. -- =-_-_
R T CP ieweit oR R ,
LEGEND
1 DIVERSION
STRUCTURE .,
ARMORFLEX LEVEE
STA. 72+00
CONCRETE CHANNEL Nam= '
Warm s
CONCRETE CONDUIT mono
ARMORFLEX TRAP. in ism .
CHANNEL
HIGHLAND AVENUE ......
, EXIST. W . IA CHANNEL
VICTORIA '
SAM
. ' -
-.EXIST. SAN SE VANE CHANNEL
1 -
_VICTORIA.AYENA
. _
FUSCOE 1II,5111.,11, I ,1"11.. I
, ■ .,,,,,Int „---
- -•CIBL
WILLUMS f -, o, I, Ill. .--"<- ,------
CHANNEL UNDER CONSTRUCTION
latiNAWN i.“ r-/,) 15.1 OW
4-4-41 --' ' 1: 1 - A + O O
MAY 1989
, FWLS JN 2106.1101
3-17
....
0.
0.
w.
„. CONCEPIUAL COST ESTIMATE
6 " PROJECT: ETIWANCA CHANNEL
VICTORIA AVENUE TO DEBRIS DAM
"". DATE: MAY 26, 1989
0. JOB NO. 2106.1101
E.. ALME TE "7" - ARMORFLEX LEVEE SYSTEM UPS'IRFAM OF 24TH Sauna' WITH
TRAPEZOIDAL ARMCff2= AND CONCRETE CHANNELS
". DO AM OF 24TH 5111'
D/S OF 24TH STREET
ITEM
NO. DESCRIPTION QUANTITY UNIT COST COST
,. 1. ARMORFLEX CL 50 303,667 S.F. $4.30 $1,305,768.00
-- 2. ARMORFLEX CL 30 30,849 S.F. $4.00 $123,396.00
3. SEEDING OVER ARMORFLEX 334,516 S.F. $0.05 $16,725.00
4. SOD 39,000 S.F. $0.50 $19,500.00
5. BRIDGE ATr AVENUE 8,748 S.F. $80.00 $699,840.00
6. TWO TRANSITION STRUCTURES 2,763 C.Y. $310.00 $856,530.00
+•� 7. 10 FT DIA. RCP PIPE 1,334 L.F. $320.00 $426,880.00
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
-'" 9. EXPAND FAST. ETIWANDA CH. 3,300 L.F. $375.00 $1,237,500.00
10. EXCAVATION 120,000 C.Y. $2.75 $330,000.00
11. CHANNEL CONCRETE 3,133 C.Y. $275.00 $861,575.00
,,. 12. FENCE 9,570 L.F. $8.50 $81,345.00
13. SI JCJURAL BACK FILL 5,600 C.Y. $4.50 $25,200.00
'`' 14. OUTLET STRUCTURE 1 L.S. $80,000.00 $80,000.00
... SUBTOTAL $6,070,760.00
.. U/S OF 24TH Slit'
-- 1. TRANSITION STURCIURE 2,507 C.Y. 310.00 $777,170.00
2. BOX CULVERT 277 C.Y. 310.00 $85,870.00
'""' 3. WEST LEVEE FILL 35,449 C.Y. 2.70 $95,712.00
4. EAST LEVEE FILL 36,007 C.Y. 2.70 $97,219.00
5. WEST LEVER ARMORFLEX 74,771 S.F. 4.00 $299,084.00
a•• 6. EAST LEVEE macgrumc 75,778 S.F. 4.00 $303,112.00
7. WEST LEVEE ARM>RFORM 169,716 S.F. 3.00 $509,148.00
8. EAST LEA AF4 179,111 S.F. 3.00 $537,333.00
9. SHEET PILING STABILIZERS 139,950 S.F. 18.00 $2,519,100.00
10. DEBRIS BASIN AND C JrLEr WORKS 1 L.S. 2,220,000.00 $2,220,000.00
SUBTOTAL $7,443,748.00
= $13,514,508.00
0.
%. 30%(+ - CONTINGENCY $3,985,492.00
.E.. QED TOTAL $17,500,000.00
3 -18
...
e.
0.
CO ST ITAL COESTIMATE
PROTECT: EPIW NOA CHANNEL
VICPCl2IA AVENUE TO DEBRIS BASIN
0 ., DATE: JUNE 15, 1989
JOB NO. 2106.11.01
DESCRIPTION - RECTANGULAR CONCRETE CHANNEL WITH MAXIMM
VELOcrTY OF 40 ref' PER SECOND
D/S OF 24TH Stixrt'
ITEM
• NO. DESCRIPTION QUANTITY UNIT COST COST
" 1. CHANNEL =CRETE 12,761 C.Y. 275.00 $3,509,275.00
+.. 2. BOX CZJIERT CONCRETE 760 C.Y. 310.00 $235,600.00
3. 10 FT. DIA. RCP PIPE 1,334 L.F. 320.00 $426,880.00
4. JUNCTION BOX 1 L.S. 6,500.00 $6,500.00
• 5. EXPAND EXIST. ETIWANDA �. 3,300 L.F. 375.00 $1,237,500.00
6. EXCNVATION 110,000 C.Y. 2.75 $302,500.00
,., 7. FENCE 9,570 L.F. 8.50 $81,345.00
8. STRUCTURAL BACK'ILL 13,000 C.Y. 4.50 $58,500.00
*w 9. OUTLET STRUCTURE 1 L.S. 80, 000.00 $80,000.00
0. SUBTOTAL $5,938,100.00
U/S OF 24TH SxmEa
P
1. EXCAVATION 192,000 C.Y. 2.75 $528,000.00
• 2. CHANNEL CONCRETE 28,807 C.Y. 275.00 $7,921,925.00
3. CHAIN LINK FENCE 16,200 L.F. 8.50 $137,700.00
4. ACCESS RAMP CONCRETE 164 C.Y. 310.00 $50,840.00
• 5. BOX CULVERT CONCRETE 2,517 C.Y. 310.00 $780,270.00
6. SI JCIURAL BAC TILL 27,300 C.Y. 4.50 $122,850.00
7. DEBRIS BASIN AND OUTLET Wl)RK5 1 L.S. 2,929,060.00 $2,929,060.00
SUBTOTAL $12,470,645.00
0.
WEAL $18,408,745.00
r..
.. 304(+-) CONTINGENCY $5,591,255.00
um GRAND Tom, $24,000,000.00
0 . 00C 17
0.
r.
... 3 -19
0.
1 8 1 . I
l i ril 3a
t i ll
= Pc,. c a
1 I a
W a H
UG W
�. o t
N • I X
�• • l u
cc z
•
ll ci o
¢ a
3� H
c o I)
i. 1 1 ! Q
ci
o
il
II W cc
LL I I A cc
cc N
cm 4
1 .. :E : ::11, 1 t i ikt ii 1 (c-?) 2
oss/ ' � a
086, . �[• .. , , � NI
--p661 �i k ' aor. 01%.
0661 • ` • I.
if -41 4i ' i bilk , .. 4
in
4 t ir kir - - ' ' 0
tk Ilir:.,'.„.::.7.:'-..1 -yS r N;
joc-o
Al
WM
■
osoa W
ILJ
li, V:::::,41 ii a
CC uj
s pa -;:s Z V� 4,---1
Iiiii-iir W
i l 1::::( 1 (
% I
•
I ' �M
• I 1F
•
•
•
• tc
co
la
• I is cn
O
l a
o ci\
Q' o
i C
•
c.
e�1 '
3 -20
Z
yg$ 0
�0 °+ 0 0 0 0 0 o m e 68 p ^
N
U m 8'^0144 ', 0
U W Fir-t. J =
t- 0
0 0 C 4 4 0 11 a
0
us II. N a
S N +
u.
t CC w
0 '
CC 1 a o m s' - f 1
\ 7 W w
W
e CO LL N _ F J
¢ K
a
\ W
4 ii5.
o i Z
° V N
+ a
to
° Y
f W
/
\ 3 W
` m
oo. W W
o ° O
O \ o - U G
I Z
a
O \ t, ' o Q
N ` °+ 0 W
x \ m Z0
w \ 1 W
\ ' O
\ - g �O
\ �a
cc r
Q °
i \cc 3^ °o
V + +
m p
co 1, °1/4:ic,
Z 0.
rr
W w
p a
m
o. m
i ▪ p
Q U 1 \
= R
U o
a N o
o a o
Z
Q o
7-
W
o W °o
J1 +
O
a
O
cc
a
T. 0
u
Ts_
v
N
O
+
+
O O O O O 0 00 0 0
° M O - 0
N N N 0 ^ ^ 0
O
+
3 -21
m.
r.•
mo
low
0" OONC EPIUAL COST ESTIMATE
wm
ow
PROTECT: EI'IWANDA CHANNEL
DEBRIS BASIN SITE 1
PM
DATE: JULY 7, 1989
um JOB NO. 2106.11.01
0.
ITEM
.r NO. DESCRIPTION QUANTI'T'Y UNIT COST COST
ow
"w 1. EXCAVATION 1,200,000 C.Y. 2.00 $2,400,000.00
2. ARMORFORM 60,000 S.F. 4.00 $240,000.00
''"
3. OUTLET TOWER 65 L.F. 500.00 $32,500.00
`,. 4. 36" R.C.P. DRAIN 3,955 L.F. 110.00 $435,050.00
5. DEBRIS BARRIER 2,000 L.F. 30.00 $60,000.00
6. CHIN LINK FENCE 3,300 L.F. 8.50 $28,050.00
tow
smarm $3,195,600.00
.ft 30%(+ —) CONSTRUCTION CONTINGENCY $804,400.00
a.
TOTAL $4,000,000.00
0.
mw
..
tai
0.
`W
,w.
r..
OM
w
P.
DOC 28
wm
0. 3 -22
w
3 N
C
8 W Q �i
f a o
'I 1 �
\ 1 --
0
i l l Q --
co w r . o r
m� i1 J' -
l f
I r� _ ilP/1/114-
{ o ,
4.44 7 , 0 ...p.,,. ,L,..),. : ,.
��pp , ° • DCq ' r v
nC,\ �� .-• 'P i 4 N Q
I V 14 . 11 ''. 'tN k / , ''.--. . -
2' \\\ *,
--- '1, \.,____,. ,' 4 `\ .. ., \\\ 7 -.. __ - _.„ F
L,- -�Soozz -J s ►
,v \ Ap \ , \ j L r , ____N______,,,,
____ _ _._ ,
, ,_\_.,__,,•,,,
,,,, :,„,--- _ _____ g . , \ , _.,‘„,___
.,,. ______,, _ - ____----- -..,‘,, , ,.\,,,
�. \� • \' ,
'ilLe ; - ;; --,\
331 W fil Ca
Q CM
W
o o
?' illt \ •
I 2
• 1 14L ° \ , 1 \ \ 1 , \ ... \ '1 / ► .. Lia
Z / 3 ! J 1 r N I • W M cv ( k �� _ \ / y I I 1 ' 4
E J� / '
w ..�
0 r� , L- ,' ....... \'
y - .,' / /
• � S E T
b r
, �, 9 4(/ r
a
c �. / ° €
o
do ! / f w 0 �'
�J 11
v /'f � /� 1 // y W a
co
W
/ 3 -23
di � a
0
c
0 0 o O o -,,,a. o
o err N N N N N N T T o Pal J $ N
. + YY
N
o
O
O
N
1 1
O '
W + Ir
J A 3
q o
8 o V
I
II I
z W J
O LL N-
P & ii ° W N
o +
UJ w Z
o > ZI.-
GC U QN
O.
2 0 e =z
o 0 In e VQ
LL • to
CC in
N
\ 2 �1 W
cc W m
a 2 o W W
2 + M c
J m CC
\ o V c
\ a
\ CI"
e Q
\ W o r -
W
\ 0
Z
. Qw
N
\ i 0
\ o o
a m ~n
z \ - W
o
a \ o, 3 0
O
w w
J o�
\ o
s \ ) .
o
\ N o
tt
d
\ L
(7:"."1:6 n n o °
W z / \ ?s m
Q J 11
Cr W
4C Z W
m Z z G
F
N
ri U n
W a o.
C z a
< 0
3
O
41 o
W b
0
W
N
O
6
O
R O
a +
0 o 0 0 e o 0 a e
O N N
N 0 0 0 P W
N N N 01 N N N - A o
0
+
3 -24
.., CONCEPTUAL COST ESTIMATE
PROJECT: =WANDA CHANNEL
DEBRIS BASIN SITE 2
DATE: JULY 7, 1989
*a" JOB NO. 2106.11.01
, ITEM
NO. DESCRIPTION QUANTITY UNIT COST C0ST
1. EXCAVATION 1,618,516 C.Y. 2.00 $3,237,032.00
2. ARCERFOR 4 60,000 S.F. 4.00 $240,000.00
3. airLEr ZCIWER 65 L.F. 500.00 $32,500.00
4. 36" R.C.P. DRAIN 2,583 L.F. 110.00 $284,130.00
5. DEBRIS BARRIER 2,000 L.F. 30.00 $60,000.00
6. CHAIN LINK FENCE 4,100 L.F. 8.50 $34,850.00
SUBTOTAL $3,888,512.00
30%(+ —) CONSTRUCTION CONTINGENCY $1,111,488.00
'MAL $5,000,000.00
imo
a..
r."
DOC 28
1
3 -25
SI,1TrC 4
PR's ianmsN ►TrvE
4.1 Project Description
•- The preferred alternative for Etiwanda Creek is a combination of parabolic and
trapezoidal armorflex charnel sections from a diversion structure in the
vicinity of San Sevaine Basin No. 5 upstream to the mouth of the canyon. The
diversion structure and conduit will divert 2,300 cfs to Basin No. 5. From
this point, a rectangular concrete charnel will be constr ucted downstream to
.. the existim Etiwanda Creek concrete channel. The existing trapezoidal channel
is not adequate to convey even the reduced flows. The capacity will be
expanded, by replacing the outside sloping wall with a vertical wall,
downstremn to the double channel under construction just South of Victoria
�.. Street. The schematic plan and cost estimate are shown on pages 4 -3 and 4 -4
respectively.
A debris basin at the canyon mouth is included in the project and is required
to be constructed concurrently with the channel. . It should be not that the
armorflex blocks have a compressive strength of about 8,000 psi canpared to
3,000 to 5,000 psi for a conventional concrete channel. Theoretically, debris
0. in the flaw would do more damage to the channel concrete than the arncrflex
blocks. And, annorflex block, if desired, can be easily replaced. Of course,
0. none of the above considers the armorflex velocity of 20 fps versus 70 fps for
a concrete charnel as an additional damaging factor.
The rectangular concrete channel between the existing channel and the diversion
structure varies in width from 15' to 24', and varies in height from 6' to 12'.
0• The trapezoidal annorflex section from the diversion structure to 24th Street
is 7' in depth and varies from 90' to 135' in width. The parabolic armorflex
charnel from 24th Street to the debris basin is 4' to 5' in depth and varies
"" fran 104 to 140 feet in width.
mm The preferred alternative includes bridges at a proposed realigned Summit
.� Avenue, 24th Street, and a future East-West Street just South of the upper SCE
Corridor. The upper 3,700 feet of the channel will have drop structures to
maintain a maximum velocity of 20 fps in each reads. The vertical drop will
4 -1
ow
... be in 2 to 3 foot increments over a 10 foot horizontal distance. The minimum
■w spacing is approximately 100 feet, and the maximum 600 feet.
4.2 Project abets
oo conceptual construction costs have been estimated for the facilities included
0 „ in the preferred alternative. Additional costs and fees in addition to
o.
construction costs are discussed in Section 1.4. Preliminary construction
plans have not yet been prepared for the project. A 200 scale plan view has
been prepared and is available under separate cover. Typical sections and
hydraulic calculations for the proposed facilities are included in the Section
"° 6 Appendix. Construction costs for the preferred alternative are summarized
below. Detailed estimates for the overall project and debris basin follow.
ow
o. Downstream of 24th Street $ 6,230,843
Upstream of 24th Street 9,719,685
ow
Subtotal $15,950,528
w, Construction contingency 5,049,472
.' Total Construction cost $21,000,000
Um
Om
MO
Wim
WM
00
OM
PO
Ow
Pr
PM
OM
wrr
OW
WM
PM
4 -2
o.
ETIWANDA CREEK DRAINAGE CORRIDOR
4
• =t, PREFERRED ALTERNATIVE
$21,000,000.
IL II
II
X 11
I
' I
LADWP CORRIDOR. .11 •.
SCE CORRIDOR. 11
_ ,........----BRIDGE jI
PROPOSED EAST \ i \
IP IZt‘z
STA. o 21
\\ 150 +00 00 II
\\ 7� 311 `
yCy ; � II ` SCE CORRDOR+\
. 4
7 , \
u W S
t
104' TO 141' 7
o
7
PARABOLIC ‘S\ SECTION St8. 100 +00
i II
PROPOSED 24th STET 11 _ _ EXISTING SUNMNT AVENUE
___________ —___ -- r — II —
BRIDGE \\
,
90' TO 135'
�,�
TRAPEZOIDAL
SECTION
BRIDGE
/ DIVERSION STRUCTURE
.... T AVENUE ---
RCP OR RCB
LEGEND W STA.
1 . 15' TO 24'1 72 +00
9MMM>.MM� CONCRETE CHANNEL ';: '°
H=11' TO 12' H. ,'i. V s t : .: +i _ .
NNE Ems CONCRETE CONDUIT
=Imm■ ARMORFLEX TRAP.
•
CHANNEL RECTANGULAR
ENEMIES ARMORFLEX PARABOLIC SECTION I : ' "' ,'"
CHANNEL
HIGHLAND AVENUE
RECONSTRUCTED
SECTION I EXIST • 'A CHANNEL
VICZIONV
r *Af"
;;, •,,.- , EXIST. SAN SEVAIE CHANNEL
VICTORIA A - _ - �� •
116i1 .Sfr•rl /nx .Lr,rru, Sulb•A = DBL.
8WFUSC°E Nhvnbl.. (.,olhmrb, )15N.J
MX 1na,.IS ouo Hay CHANNEL UNDER CONSTRUCTION
�Fp STA. MAY 1999
18 +00
flrll Earners •L,r„ I.SVnnrrrs
FWLS .N 2106.1101
•
4 -2
p.
wr
CONCEPTUAL COST ESTIMATE
tip
"" PROJECT: ETIWANIA CREEK CHANNEL
up VIC CRIA AVENUE TO DEBRIS BASIN
DATE: JUNE 2, 1989
,e. JOB NO. 2106.11.01
u. DESCRIPTION: STA 18 +15 TO 51 +15 EXPAND EXISTING ETIWANDA CHANNEL
51 +15 TO 71 +88 CONSTRUCT RECD CONCRETE CHANNEL
"^ 71 +88 TO 100+00 (CL 24T11 ST.) CONSTRUCT TRAPEZODIAL AI DRFTEX CHANNEL
r.. 100+00 TO 179+80 CONSTRUCT PARABOLIC ARM RFTEX CHANNEL
DVS OF 24111 STREET
ow
rm
,,.. NO. DESCRIPTION QUANTITY UNIT COST COST
ft. 1. ARNDRFIEX CT, 50 376,367 S.F. $4.30 $1,618,378.00
2. AW' RFLF C CL 30 40,288 S.F. $4.00 $161,152.00
""" 3. SEEDING OVER ARMORFTEX 416,655 S.F. $0.05 $20,833.00
ti.,, 4. SOD 41040 S.F. $0.50 $20,720.00
5. BRIDGE AT summrr AVENUE 8,748 S.F. $80.00 $699,840.00
e•• 6. TRANSITION STRUCTURE 1,662 C.Y. $310.00 $515,220.00
7. 10 FT DIA. RCP PIPE 1,355 L.F. $320.00 $433,600.00
Or
8. JUNCTION BOX 1 L.S. $6,500.00 $6,500.00
p• 9. EXPAND EXIST. ErIWANDA �. 3,300 L.F. $375.00 $1,237,500.00
10. EXCAVATION 128,000 C.Y. $2.75 $352,000.00
'W 11. CHANNEL CONCRETE 3,579 C.Y. $275.00 $984,225.00
12. FENCE 9,570 L.F. $8.50 $81,345.00
'" 13. SIRUCIURAL BACILL 4,340 C.Y. $4.50 $19,530.00
r, 14. OUTLET STRUCTURE 1 L.S. $80,000.00 $80,000.00
.. SUBTOTAL $6,230,843.00
DVS OF 24TH STREET
tip
.. 1. ARMORFIEX CL 50 1,014,984 S.F. 4.30 $4,364,431.00
2. ARMORFTEX C, 30 2,996 S.F. 4.00 $11,984.00
tip 3. SEEDING OVER ARMORFLEX 1,017,980 S.F. 0.05 $50,899.00
4. EXCAVATION 130,000 C.Y. 2.75 $357,500.00
'"' 5. SOD 402,422 S.F. 0.50 $201,211.00
✓ ,,, 6. FENCE 15,960 L.F. 8.50 $135,660.00
7. BRIDGE AT 24TH ST. 7,392 S.F. 100.00 $739,200.00
,o. 8. BRIDGE AT STA 151 +30 6,588 S.F. 100.00 $658,800.00
9. DEBRIS BASIN/OUTLET WORKS 1 L.S. 3, 200, 000.00 $3,200,000.00
SRS SUBTOTAL $9,719,685.00
Pft
k. 1. AIL CONCRETE INCLUDES REINFORCING Si 1L. TOTAL $15,950,528.00
2. COSTS DO NM INCLUDE ENGINEERING OR
P" CONTRACT AIIWIIS /INSPECTION. 30% (+-) CONTINGENCY $5,049,472.00
3. A1RrDRFTEX COST'S PROVIDED BY DISTRIBUTOR.
4. RIGHT-OF-WAY COSTS Nar INCLUDED. GRAND TOTAL $21,000,000.00
,.., DOC 27
pp
.. 4 -
0.
OONCEPIUAL O)ST a4. t r" TE
ww
"'" PROTECT: EPIWANDA CHANNEL
DEBRIS BASIN SITE 1
0" DATE: JULY 7, 1989
ow JOB NO. 2106.11.01
ITEM
pp
NO. DESCRIPTION QUANTITY UNIT COST COST
pp
is' 1. EXCAVATION 1,200,000 C.Y. 2.00 $2,400,000.00
2. AORFO1 60,000 S.F. 4.00 $240,000.00
'"
3. OUTLET TOWER 65 L.F. 500.00 $32,500.00
, 4. 36" R.C.P. DRAIN 3,955 L.F. 110.00 $435,050.00
5. DEBRIS BARRIER 2,000 L.F. 30.00 $60,000.00
•". 6. CHAIN LINK FENCE 3,300 L.F. 8.50 $28,050.00
p. SUBTOTAL $3,195,600.00
30 %(+—) CONSTRUCTION CONTINGENCY $804,400.00
r
TOTAL $4,000,000.00
tiltt
wm
■ r
tom
wr
ma
irr
tom
o tt
tor
r..
pp DOC 28
4 -5
Immo
OM
■• RECOMENIIMCNS AND EEVEEDBBRU MANS
P. 5.1 Iie000nenr7ed Project Alternatives
Fusooe, Williams, Lindgren and Short, Inc., in collaboration with the Caryn
Company and the North Etiwanda Land Owners Consortium, makes the following
recommendations to the County of San Bernardino Department of
Transportation/Flood Control and the City of Rancho Oicancoga:
1. The Etiwanda Creek Channel preferred alternative described in this
report be approved in principle.
2. The Etiwanda Creek debris " basin" concept be approved in principle as
'"" an alternative to a debris "dam ".
A.
3. The Etiwanda debris basin be located at Site No. 1 as described in
low this report.
4. Me County of San Bernardino Department of TransportaticrVFlood Control
initiate action to locate a regional site for debris disposal for the
m.
various planed and existing debris basins from Day Creek to Duncan
poi Canyon.
5. the City of Rancho Cucamonga review the preferred alternative plan and
construction cost estimate and determine its adequacy for a Be110-Rocs
election.
P- 5.2 Action Plan
wr Ihe following action plan is recommended in the interest of expediting the plan
development and approval process for the Etiwanda Creek project.
1. FWLS proceed with the preparation of 200 -scale preliminary design plans
.., for the preferred alternative.
'"' 2. FWLS initiate action with the State Department of Water Rescurces,
Division of Safety of Demos to determine if the State would have
jurisdiction over the proposed debris basin.
3. FWLS initiate geotecimical investigation for a debris basin at Site No.
1 as described herein.
NB
w.
OM
Pm
rrr
PA
.► 5-1
.o.
5.3 EITHANDA CREEK DRAINAGE
'"` PROGRESS SCHEDULE
0..
Alternatives Analysis Feb. 89 May 29, 1989
0.
Landowners Flood COntrol - May 31, 1989
Subccmnittee Meeting to Select
Nw Preferred Alternative
Lanimner3Meeting to Present - June 6, 1989
Preferred Alternative
MK
Prepare Draft Design Concept Report June 7, 1989 June 20, 1989
Finalize Design Concept Report June 10, 1989 June 23, 1989
Public Agency Review and Approval June 1989 December 1989
of Design Concept
0.
Preliminary Design ;nary Desi June 1989 September 1989
Public Agency Review and September 1989 December 1989
Approval of Preliminary Design
Final Design and Agency Processing January 1990 December 1990
«-,
Environmental Permits March 1990 December 1990
as Advertise and Award Construction January 1991 February 1991
Contract
•-
am
r.
wr
.r,
m
9..
5 -2
r..
DESIQil
DE IQI FIQMS
• 100 -year frequency flood per separate report to be updated for final
design.
TEERIS BASIN
• Etiwanda debris basin volume requirements per separate report by Bill Mann
& Associates.
A'iEiC QAHINEfS
• Mraximnn velocity of 20 fps
• Mannings n = 0.03 for velocity calculations
• Mannings n = 0.035 for capacity calculations
• Freeboard area sodded on parabolic section
CONCRETE CHANNELS
• U.S. Army Corps of Engineers criteria for determining range of Manning's n
for velocity and capacity calculations, air entrainment, and
superelevation. Los Angeles County Flood Control District criteria for
freeboard.
w
JAW
OMIla
a
Aft
•r
fs•
rr
IWO
dAl
Int
IMP
oft
l
0
awl 10031FAR EESIGN FICWC
Al B
ti
.s
IOW
ETIWANDA CREEK DRAINAGE CORRIDOR
DESIGN FLOWS
Niap 100 -YEAR (CFS)
/ 10 -YEAR (CFS)
V DESIGN REACH
II
4000 11
2360 RII
It 211
I, • L A DWP CORRIDOR •---„,\ f
SCE CORRIDOR II
_
_ II
_ � �3 �: / l l
PROPOSED Y
EAST � � ::- � U
N. � _ 1 I
9 ` g \ i 5300 9 —
t \\
3127 ° tP z �l
\\ Iii
0 ill
0 () SCE CORRIDOR
/ �
7
S \\
u y
• C1
y „ \ `\
to
5900
P
3481 1
STA. 100 +00 11
PROPOSED 24th STREET ' II EXISTING SUMMIT AVENUE
________ �_= II =__ - - _ 11 =_
0 •
6700 / \\
3953 4,4
9 11
• AVENUE _ ____. - '
2300
1357
'''&
7200
4248 I O
: b �;.
STA. DIVERSION 1
;•:.„, ', ,..! , - q. ;.
72 +00 STRUCTURE
4900 11 ,, ti .0.4. : i`;, ury; .,.
2891
NOW TO SAN SEVAINE 3500 " `
CHANNEL. 2065 9
......1 : ' AV__,..
- - - IWA' A 111
5900 CHANNEL
3481 ... _ w EXIST . CHANNEL
� ) ( .0 • = CAPACITY)
~; :; ' S r EXIST. SAN SEVAINE CHANNEL
• II.;.. :. .. E — - - ■ , (5,200 CFS CAPACITY)
i .
, • • MU Werll..K:term , %saleA
Nlrw.•G /e, ('n1(p.n.W 91101 DBL.
.-
(714).151•01M11 G/ CHANNEL UNDER CONSTRUCTION
t77] 0 " (w41.154 Imo 4 SAN SEVAINE (4,740 CFS)
.109*-*‘- say1P STA. ETIWANDA (7 996 CFS)
dfc 1 8 + 00 11AY 1988
COW fn•luw.. • Land.u.,e FWLS .MI 2106.1101
Oft
IPO
ant
orno
aim
.r.
A
w
r•
rt
r
A
"ML
PIM
Orr
A
W =RN= CAIQRATICNS
PARABOLIC ARICHFLEX QWIN
APPENDIX C
Mk'
FUSCOE 11651 Sterling Avenue, Suite A PROJECT: ET /WAA/DA CANNEL PROJECT NO: 2 / 0 6 . //D /
�/� Riverside, CA 92503 BY: DATE: CHECK: DATE:
' �� ■LL�S (714) 354 -0161 T Z , I 7_ - 89 I
UNDGREN
& SNORT PARA60L /C A,eMOerLE7(
CHAN/4EL• ✓ - 2 0 t /-e .
Civil Engineers • I,and.Surt+Pgors /u Ax. - SHEET / OF 1/
-' \ • .... N. '- - N. 4) c0 C O
o y0 A p � HNINI o ioo 0 0 yv + y * o; N
II 11 4 $ 40rt +o+ 4 -}c4 0 0 '� * I. <
o 0 0 0 o 0 0 o o cri O o o °o
x 1
,,
N N N
O O 0 0 o o P P c. 0 2 0 0
ww W ow ww wW ww O�
. �l O u1 0 kr H 0 v)0 ' o u o
x ,'a * ,u) Si) ,v) ,kit ,Q1 .v) m ,■1 4
- < 0 4 L ) . -.o .4) .p "Q .1■) NI J N N 1
O p o 0 00 00 00 00 0 0 E
O 0 0 0 00 00 0 0 0 0 0 0 1
T
0 y OD p 0 O D P P O O P P o o
O 0 00 oo 00 too o0 LO o b Z.
x Nh ww �w �� 00 00 C o (� 1.
0 0 ON 0∎ 01 ON 0 0 •A * - P
0
'P 'A oN v cb ' 0o ao -P •p A . P .A .A qZ r>
00 00 00 00 00 00 00 O,
\ 0 1 0 1 01 ON ON ON is 01 01 ON 0\ 0\ ON 01 8% 0 h
y
` COoo O O C.%) to ww 0 b e0 0 0 CO CA X
1.
°N o, 0\ eN 00 00 �� � ,v ��
D ' 1 vv �,v o0 0 r
I
N • O 4 $A O - 0 c r - r
o
o
fN
\1
N. N. N� �� �� � N. N. N. m
0 oo 0 Ni o ' v >I ciN a0 v .o r
N. 0
N ul N. 01 a\ Ul 00 1\3%o vv v) -o w ..- t•) --00 I -
1
CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
I === =" = =
(c) Copyright 1982-88 Advanced,Engineering Software (aes)
I/ 8/ Ver. 3.3A Release Date: 8/02/86 Serial # 2224
Analysis prepared by:
�
I Fuscoe, Williams, Lindgren & Short
I/
.
•
I ' *� *�*�*/ �*�*���*�***�e��* 0ES��%PT%�W �F STUDY �* *�****
* PARABOLIC ARMORFLEX CHANNEL *
11 * �
�0 cfs, m=0.030 =
*T§, ��%DTH=440 ft, DEPTH=6 ft, -��max=2�� fps *
~- , ��»**********************��******«+**a********e*******��*�+e*******e***** ****
____
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER '/X" COORDINATE "Y^ COORDINATE
1 .00 100.00
-- 2 10.00 98.41
3 30.00
�� & 50.00 94.49
��
`� 5 70.00 94.00
6 90.00 94.49
7 110.00 95.96
I 8
130.00 98.41
9 140.00 100.00
SUBCH��NNEL SLOPE(FEET/FEET) = .026800
J SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
W�
�� SUBCHANNEL FLOW(CFS) = 7205.5
~~ SUBCHANNEL FLOW AREA(SQUARE FEET) = 366.15 .
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 19.679
SUBCHANNEL FROUDE NUMBER = 2.005
I SUBCHANNEL FLOW TOP-WIDTH(FEET) = 122.40
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.99
��
n�r ___ `_
11 TOTAL TOTAL IRREGULAR IRREGULAR C�NNE � �����> WANTED =
��MPUT�COMPUTED IRREBULAR CHANNEL FLOW(CFS) =
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE:
ELEVATION 98.1)0 I/
I NOTE: WATER SURFACE IS BEL0W EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
��
�� .
** *********************** DESCRIPTION OF STUDY **************************
* NRABOLIC ARMORFLEX CHANNEL *
I * Q 7200 cfs , n=0035 �
* .1 WIDTH=140 ft, DEPTH=6 ft, Vmax=20 fps . Z. 1F
II * ENTERED INFORMATION FOR SUBCHANNEL NUMBEP 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I 1
2 .00
10.00 10.0.-m
98.4
3 30.00 95.96
I 4
5 - 50.00
70.00 94.49
94.00
6 90.00 94.49
7 110.00. 95.96
I/ 8
130.00
140. 1
00 98.41
9 100.00
SUBCHANNEL SLOPEWEET/FEET) = .036800
1 SUBCHANNEL MANNINGS FRICTION FACTOR = .035000
I SUBCHANNEL FLOWCFS) = 7e10.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 407.23
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.706
SUBCHANNEL FROUDE NUMBER = 1.739
11 SUBCHANNEL FLOW TOP-WIDTH(FEET) =
126.55
SUBCHANNEL HYDRAULIC DEPTH(FEET) =
3.22
TOTAL I RREGULAF CHANNEL FLOW (CFS) WANTED --- 7200.00
I COMPUTED IRREGULAR CHANNEL FLOW(CFS) ,--, 7210.22
ESTIMATED IPREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I ELEVATION 98.93
NOTE: WATER SURFACE IS BELOW EXTREME
I/ LEFT AND PI3HT BA% ELEVATIONS.
11 ** *********************** DESCRIPTION OF STUDY **************************
* P'RABOLIC ARMORFLEX CHANNEL *
II * Q 6700 cfs, )1=0.030 *
* "I' WIDTH=140 ft, DEPTH=6 ft, Vmax=20 fps *
11 ** ***********************************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I 1
.00 100.00
2 10.00 98.41
1/ 3
4 30.00
50.00 95.96
94.49
5 70.00 94.00
1/ 6
7 90.00
110.00 94.49
95.96
8 130.00 98.41
9 140.00 100.00
• SUBCHANNEL SLOPE(FEET/FEET) = .030400
SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
3
1 :
SUBCHANNEL FLOW(CFS) = 6709.8
SUBCHANNEL FLOW AREACSOUARE FEET' = 372.28
SUBCHANNEL FROUDE NUMBER = 1.826
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 123.03
I I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 3.03
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6700.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6709.81
I ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 98.65
II ,
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
1
II ** *********************** DESCRIPTION OF STUDY ********************1-***4*
* P - ABOLIC ARMORFLEX CHANNEL *
* C/ -700 cfs, n=0.035 *
I I * T P WIDTH=140 ft. DEPTH=6 ft, Vmax=20 fps *
** ***********************************************************************
II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
II 1
.00
10.0C 100.00
2
98.41
3 30.00 95.96
5
• 4
50 .00
70.00 94.49
94.00
6 W).00 94.4
11 7
9 110.'10
130.00 98.41
140.00 95.96
2
100.00
SUBCHANNEL SLOPE(FEET/FEET) = .030400
11 SUBCHANNEL MANNINGS FRICTION FACTOR = .035000
II SUBCHANNEL FLOW(CFS) = 6702.1
SUBCHANNEL FLOW AREA(SQUARE FEET) = 413.58
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 16.205
II SUBCHANNEL FROUDE NUMBER = 1.584
SUBCHANNEL FLOW TOP-WIDTH(FEET) =
127.18
SUBCHANNEL HYDRAULIC DEPTH(FEET) =
3.25
11 -I
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6700.00
11 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6702.08
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
II ELEVATION 98.98
NOTE: WATER SURFACE IS BELOW EXTREME
1 LEFT AND RIGHT BANV ELEVATIONS.
1/ ***1 DESCRIPTION OF STUDY *************************-7,
* 0=5900 cfs, n=0.030
* 'or WIDTH=5900 cfs. DEPTH. ft, Vma fps v
***********************************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBEF 1 :
I
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
I 2 10.00 98.41
3 30.00 95.96
4 50.00 94.49
5 70.00 94.00
I 6 90.00 94.49
7 110.00 95.96
II 8 130.00 98.41
9 140.00 100.O0
SUBCHANNEL SLOPE(FEET/FEET) = .030400
SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
II
SUBCHANNEL FLOW(CFS) = 5926.0
SUBCHANNEL FLOW AREA(SQUARE FEET) = 341.91
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.332
SUBCHANNEL FROUDE NUMBER = 1.808
�� SUBCHANNEL FLOW TOP-WIDTH(FEET) = 119.85
�� SUBCHANNEL HYDRAuLIC DEPTH(FEET> = 2.85
��
�� ------ -_- T_ --_ __ IR__R_____FL_ - OW__ _ - _ S) __W
__ _
5 900
= ___________
OTAL CH_ (CFANTED .0�
COMPUTED IRREGULAR CHANNEL FLOW/CFS> = 5925.96
ESTIroATED IRREGUL� L R CHANNE NORMAL DEPTH WATER SURFACE
n�
ELEVATION............................. 9 2.4 0
II NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
11
�� ~************************* DESCRIPTION OF STUDY **************************
��
* PARABOLIC ARMORFLEX CHANNEL_ *
* 0=5900 cfs, n=0.035 *
I * TOP WIDTH140 ft, DEPTH6 ft, Vmax20 fps *
*************************************************************************
� --1.-
� I * �NTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
�� 2 10.00 98.41
3 30.00 95.96
4 50.00 94.49
I 5 70.00 94.00
6 90.00 94.49
1 7 110.O0 95.96
I 8 130.00 98.41
9 140.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .030400
I/ SUBCHANNEL MANNINGS FRICTION FACTOR = 035090
5.
SUBCHANNEL FLOW(CFS) = 5918.8
SUBCHANNEL FLOW AREA(SQUARE FEET) = 379.69
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.> = 15.589
SUBCHANNEL FROUDE NUMBER = 1.569
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 123.79
I/ SU9CHANNEL HYDRAULIC DEPTH(FEET) = 3.07
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5918'82
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I ELEVATION 98.71
NOTE: WATER SURFACE IS BELOW EXTREME
��
LEFT AND RIGHT BANK ELEVATIONS.
II
********************* DESCRIPTION OF STUDY *******************+******
I * PARA�OLIC ARMORFLEX CHANNEL *
* Q=5900 cf=. n=0.030 *
* - MR WID1H=18 m
O ft, DEPTH=6 ft, Va fps «
I ************************************************* ***+*****
I « ENTERED INFORMATION FOF/ SUBCHANNEL NUMBER ' :
NODE NUM8ER "X" COORDINATE "Y" COORD7NA7E
1 .00 100.00
I 2 25.0 97.13
� 50 00 9'..1
� .
4 75. 94.17
I I 5 90.�0 94'00
- 6 105.00 q4.17
7 130,00 95.19
8 155.00 97.13
II 9 180'00 10
SUBCHANNEL SLOPE(FEET/FEET/ = .055G00
�� SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
.
��
.'' ...
I SUBCHANNEL FLOW(CFS) = 5919.1
SUBCHANNEL FLOW AREA(SQUARE FEET) = 298.18
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 19.851
SUBCHANNEL FROUDE NUMBER = 2.351
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 134.72
II SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.21
��
�� TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5919.12
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION...................~......... 97.40
I/
NOTE: WATER SURFACE IS BELOW EXTREME
��
LEFT AND RIGHT BANK ELEVATIONS.
U� 6"
************************** DESCRIPTION OF STUDY **************************
I * PARABOLIC ARMORFLEX CHANNEL *
* Q=5900 cfs, n=0'035 *
* TOF WIDTH=180 ft. DEPTH=6 ft, Vmax=20 fps *
**********************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
2 25.00 97.13
1 3 50.00 95.19
4 75.00 94.17
5 90.00 94.00
6 105.00 94.17
��
7 130.00 95.19
8 155.00 97.13
9 180.00 100.00
�� SUBCHANNEL SLOPE(FEET/FEET) = .055800
SUBCHANNEL MANNINGS FRICTION FACTOR = .035000
��
�� ................. -------------- ...... ----- . --------- '~ --------- ',...'....^..
SUBCHANNEL FLOW(CFS) = 5916.2
II SUBCHANNEL FLOW AREA(SQUARE FEET) = 331.02
SUBCHANNEL Fl OW VELOCITY,FEET/SEC.) = 17.872
SUBCHANNEL FROUDE NUMBER = 2.040
SUBCHANNB FLOW TOP-WIDTH(FEET) = 138.90
I/ SUBCHAN HYDRAULIC DEPTH/FEET) = 2.38
1/ TOTAL IRREGULAR 2HANNEL FLOW(CFS) WANTED = 59)0.00
COMPUTE[ IRREGULAR CHANNEL FLOW(CFS) = 5916.21
��
�� E
EST�MATED IPRDULAR CHANNEL ^1ORMAL DEPTH WATER SJRFACE
-~ ELEVATION.......'...'.....~........... 97.64
II NOTE: WArER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BAN' ( ELEVATIONS.
II
I ************************** DESCRIPTION OF STUDY ******************** * PARABOLIC ARMORFLEX CHANNEL *
* 0=5900 cfs, n=0.030 *
* TOP WIDTH=180 ft, DEPTH=6 ft, ��ax=20 fps *
I **************************************************************************
I * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
II 2 25.00 97.13
3 50.00 95.19
4 75.00 94.17
5 90.00 94.00
v�
6 105.00 94.17
7 130.00 95.19
�� 8 155.00 97. 13 ~
�� 9 180.00 100.0; "
SUBCHANNEL MANNINGS FRICTION FACTOR = .03000
��
�� SUBCHANNEL FLOW(CFS) = 5917.8
SUBCHANNEL FLOW AREA(SQUARE FEET) = 302.23
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 19.580
SUBCHANNEL FROUDE NUMBER = 2.308
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 135.24
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.23
II
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5917.81
��
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I ELEVATION 97.43
NOTE: WATER SURFACE IS BELOW EXTREME
I LEFT AND RIGHT BANK ELEVATIONS.
II
************************** DESCRIPTION OF STUDY ***********t**************
I * pARAOLlC PRMORF_FX CHANNEL -.- U= c fs ~ n=0.0 e 3�
* /Ot WIDTH- ft. DEPTH=6 ft, Vm�•=20 fps *
+*************x****************************************«4:*********
�� 4 ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
�� NODt NUlBER "X" CO[/RDINA "Y
TF " COOPD]NAT[
7 . 00 100.90
2 a'.,7.0. 97.13
I 3 50.00 9�.19
4 75.00 c
5
90.00 94.00
I 6 105.00 94.17
7 130.00 q 5.19
8 155. 97.13
II 9 180.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .053600
SUBCHANNEL MANNINGS FRICTION FACTOR = .035000
II
SUBCHANNEL FLOW(CFS) = 5905.9
I SUBCHANNEL FLOW AREA(SQWARE FEET) = 335.20
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 17.619
SUBCHANNEL FROUDE NUMBER = 2.002
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 139.42
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.40
________ -____________-__
I/ _____________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5905.95
U�
�� ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
-- ELEVATION....... ....... ..... ...... .... 97.67
II NOTE: WATER SURFACE IS BEL3W EXTREME 8
--- - ---- -`'`- --'^--~^'~
r
** * * *.k*- * * * * *• * * *•* * * * * * * **** DESCRIPTION OF STUDY ******** * *- *•: * *. * * *•►:• *--* .
I 4 PARABOLIC ARMOPFLE:X CHANNEL 4
•;f ( cfs., n =0.030
* TOP WIDTH =1 b,O ft, DEPTH =jam-• ft. Vma.' =20 fps at
* *
# *
•* * * * *4 ** ** •r{ * *•* ** rf ** *
* * •* *•* * * * * * ** * ** * *•*•* * * * * * ** * *•*•* ** -* * ** * •rf *-#• * ** •3(•;r
I/ _ __- - _ -__ - - - -- _ - --
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
II 2 2 r . 00 97.37
3
4 60.00 94.37
5 80.00 94.00
II 6 100.00 9 4.37
ry 12(_r , ( :ri r 95.5)
S 140.00 97.37
9 160.00 — 10.
c'; c.r
SUBCHANNEL SLtOP'E t FEET /FEET) = (:r536(:?::r
SUF-:CH )NNEL MANN I NGS FRICTION 1° ACTOF = .03)0)C
II
. . x . . . . 7 n . c . r: • .., , e r co . ' . . r ' " , r r p R } . = a . . W . + • . . . r . ,
:U .L. H'.NN F:
:._ . I.7W CFS. c-.40 i
v tit CHiAs`-1.t•- EL FLOW AF:E( t ;01_4 E PEE 1) -- 27(:} ?
II #_t JDC_H(?NNNEL. FLOW VE':._ -O " :1 ..; i FEET , SEC . ', =
19.5L2
S'!BC HAI EL r F 0 ODE NUME E -.- '.?OR
f -W4F_L.. FLOk TOP—] DTH ! FFFT = 1E1.08
II SU HCHANC E. __ )-YDPAill 1C : DEF H c: r= EF_.T ; _ 2.P4
I/ ?' E:;' "F %=AL I F CANNEL NNEL_ FL_ OW ! C"E W(NTED V •j :' 1 .3L+ : . °i > r '
CONFUTED I RR:EL U .._AF° *..;H NNi EL. FL =7W (CF S C
II EE T I M=,TED IRREGULAR ' r' HANNEL NORMAL DEPTH WATER SURFACE
ELEVATION . 9'7.44
II NOTE: WATER SURFACE T S BELOW EXTREME
LEFT AND RIGHT BANI( ELEVATIONS.
ii
1 *• • * * * • * * • * *** * **- ** *•* * **• ** DESCR,I PT I ON OF STUDY *•* * *** * *** *** * *** * * *** •*4 •* •*
* PARABOLIC ARMORFLE X CHANNEL *
* 0=5300 cfs , n =0.035 *
* TOP WIDTH =160 ft, DEPTH =6 ft, Vmax =20 fps
I ****** • ****•*************•**************•**• * * *•* * * * * * * *•* * * * * * * * * * *•* * * * ** :A 4t *•* *•*•*
1/ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 .
NODE NUME:EP "X" COORDINATE' "Y" COORDINATE
r 1
2 2rr. 0 :, 97.3 -
3 : +000 95.50
4 60.00 94.37
1 5
30.0( 9 L1-00
6 i o(: , (.r( ° 94.37 q
� - - - -
8 140.00 97.3r
9 160.00 100.C:
SUBCHANNEL SLOPE(FEET/FEET) = .053600
�� SUBCHANNEL MANNINGS FRICTION FACTOR = '035(00
�
I SUBCHANNEL FLOW(CFS' = 5324.8
- SUBCHANNEL FLOW AREA(SQUARE FEE = 301.48
SUBCHANNEL PLOW VELOCITY(FEET/SEC.) = 17'662
SUBCHANNEL FROUDE NUMBER = 2.003
�� SUBCHANNEL FLOW TOP-WIDTH(FEET) = 124.88
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 2.41
II
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5300.00
I COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5324.77
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
II ELEVATION 97.69
NOTE: WATER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANK ELEVATIONS.
,***********+***r*****- DE5C OF STUD" ****.-***•+****v-********
* o� 4R� �
QRLFX CH� L �NE *
I 4 P F. n=0.030 *
* -1- OF WIDTH ft, DEPTH +t, VTIa,=2» fps *
I/ �4*--.V*4* .4)(-ift***kt-****1-AX*******
- ----------------'---------------------------'------------ '--------------
+ ENTERED I FOR SU8CHANMEL NUMBEP ) :
I/ NDDE UmBER "X" COORDINA7E "Y^ COOPDIN4T[
.00 1 0: .0
1C' 98.41
II
3 . 9t
4 50.0) 9L.49
5 70.0C �4.0�
I 6 9 000 94'49
7 110.00 95'96
8 130.00 98.41
9 140.00 100.00
I SUBCHANNEL SLOPE(FEET/FEET) = .065000
SUBCHANNEL MANNINGS FRICTION FACTOR = .030000
^
11
SUBCHANNEL FLOW(CFS) = 4006.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 198.89
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 20.145
SUBCHANNEL FROUDE NUMBER = 2.498
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 98.4
I/ SUBCHANNEL HYDRAULIC DEPTH(FEET> = 2.02
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4000.v0
»�
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4006.60
I ESTIM4TED IRREGULAR CHANNE| NORMAL DEPTH WATER SURFACE
NOTE: WATER SURFACE IS BELOW EXTREME
�
1 LEFT AND RIGHT BANK ELEVATIONS'
v �
--------- ---------- ---- - - ---------------------'-
II
************************** DESCRIPTION OF STUDY **************+***********
I * PARABOLIC ARMORFLEX CHANNEL *
� * Q=4000 cfs, n=0.035 *
�
* TOF� WIDTH=140 ft, DEPTH=6 ft, Vmax=20 fps *
********************************************************************-*****
II _ _____ ________
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I 1 .00 100.00
2 10.00 98.41
I 3 30.00 95.96
4 50.00 94.49
5 70.00 94.00
6 90.00 94.4
�� 7
110.00 95.96
8 130.00 98.41
9 140.00 100.O0
I SUBCHA�]NEL SLOPE(FEET/FEET) = ,0650("
SUBCHANNEL -IMNINGS FRICTION FACTOR = .035000
~ � . ^ .^ '. . '.. . .' .'. ... .^' . ....' '- '.. .~ . 00" ..''' . ' ..''... '...... '. ~ . '^ '. ' . '' '
�� SUBCHANNEL FLOW(CFE> = +021.8
SUBCHANNEL FLOW AREA(SQUARE FEET) = 221.97
SL|BCHANNEL =LOW VELOCITY(FEET/SEC. ) = 18.11E5
II SUBCHANNEL FROUDE NUMBER = 2.167
TUBCHANNFL FLOW TOp-WIDTH(FEET) = 102.22
--
SUECE| HYDRAULI_ DEPTH(,E-T) = 2.17
TOTAL IRREGULAR CHANNEL FLOW(CFS> WANTED = 4 000.00
II COMPUTED IR�EGULAR CHANNEL FLOW(CFS) = 4021 . 76
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
II
ELEVATION ........ ........''..''' ..... . 97.32
I NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
-v
II
II
1/
FUSCOE 11651 Sterling Avenue, Suite A PROJECT: E T /W4NQA cypi PROJECT NO: 2/ 0 6 -- . HH o I
""
WILLIAMS Riverside CA 92503 BY: CHE (714) 354 -0161 T = , DATE: 6...23.49 I DATE:
& ORT RECTAA/CULAg CONC. CHAA✓NEL
(moc EFFic1EN NyACAU1le
Civil Engineers • Land .Surveyors SHEET / OF Z9
S E . 0 I O N `
co V., W W `a 4 4A* NN O ■
J v. co (I) y _Joorn�o T .4 � �1v - + -., + + �4- �y+ + y * m �
- }0.4+ o rt 'E0 ++0+ +04 + +0 0 0 0 o D `C
C C O G O o0 00 0 0 00 0O GO po CQC 00 O d y
... t� >
N RI
0 0 0 CO W I .0 J N .0 .0 01
0 O 0 0 0i0 0 0o o O
.. fi X 0 0 0 0 o 0 0 0 0 0 0 ��
'1 I1 ! m
f ? 7 °Y; I t� 7.4V), i tn V1 700 to /0 10 t. "i •j
Q 9 ,, " 1 OI i1 i �� , t 1 Ii i1 1, n n ,i D O
'.` o o 9 co o p O: Lb O cb p O 000 O 0 Z
0 O 'o9t!o�i0 o o iou� 0 ' 0 0 0 RI
,.. N `I owioo'o h W
! ° w o C\
'11 0 co � 6, i o. ' 0 o- 0 00 I C op 00 c co to
N ! N W � - A ' v 1 ' °1 1 m v U'I o\ O
r) c Y) o,I 9 (?\ , ` _NI i N oo CO 1 V
n o 'Q i N I p v u1 -P F N w Z Z
Ga oN 1.. t,3 I U) _o co
y O O r C
y � O � o O l o
n
,� o o l 1 Nj J 1 o I 1 C z
_ 1 1 J I,
I
i k o N �' .! o O o O o awe
1, O o i o o ,a oo N1 .A z I `
-
P o l _ __ _i. __ ., -- ---- -- -1
W w w o 0o — < NI < . o
N co •P , o •0 — o -1 1
_ _ -- _---- r _ z _ -. a
Cu W W t+.) W w w W w { W w o
a o 0 0 c 0 ° ° O O a �R `"
.,,d ` ` ` . . . . I ► 1
o o N N ' o Ni ���1 c
e o a o O p o O o 0 0 O . •o Zr
p° ° P 00 0 0 0 0 0 0 0 o O 0 o 0 0 0 O O
I� O O d 0 0 0 00 0° Q 0 O 0 0 a. 0 0 0 0 0 n
'A W w v w k,, w w �t w H w w w w c3,- W
,4a o 01 t 01 N 0 1 a% J ( I V I 47 1 4Q ro gyp •A H * 'P
> co t,i -- Ni ut w ° who ;A 0 v o0 . o C NI
- o ° -- tt∎ .1 �lijN ° v N vO O NVo R
'A (u 'P ,p W `A W '4 N(0 N W 4. . N '')7,, N N o ;
c� N � - PN o N. .7SN$lj Nik?.�oowN . t
FUSCOE 11651 Sterling Avenue SuiteA PROJECT: E77p/,4k/QA CNMNEL PROJECT NO: 2/0(,,//Q /
Riverside CA 92503 BY: DATE:
4 _2g4,1 (714) 354 -0161 T. I. 6 -284,1 CHECK: 1 DATE:
�.
LINDGREN
& SHORT
'"" Civil Engineers • Land Surveyors SHEET 2- OF 29
gECTAA/GULA IZ COtJC ETE C/NAt/NEL SECT /ON
6 2 .9%000 C.�.5 . W /1 TO /2 ,/ /0 PTO /O,so
Q = 4, 900 W = /S To /6' ,.9 /1 TO /2 '
0_5,300 c,-(s • W_ /3' To /S H= /1 To Aso
a. 5,-6100 as. W= /S/ TO /6 H = / /.Sa TD /Z �
Q = 6, 700 c.{s. W = /e f1 = /2,5
. Q: 7,Zoo C.ts. W: 17' f/ _ /2.So
1 •i
•
; .
•
1'
+aai
a+w
eKi
..g
FUSCOE 11651 Sterling Avenue SuiteA PROJECT: ET /g/,WD4 C#A,VNEL PROJECT NO: 2/06', /101
- WILLIAMS Riverside, 354 -0161 BY: 7-r 1 DATE: -23 89 CHECK: I DATE:
UNDGREN
SHORT
Civil Engineers • Land Surveyors SHEET 3 OF 29
Rom STA . 53 - r oo To STA. 66 +00
a _ - ,9 00 c.{'s. , S= 0,02og
TRy b = /8 Fog K. o. O p7 4• so
o,s6 = 9 = o. o / S , ,Q oAA PLATE 4-
Q- 6,301 c. f s Too co, re✓ArJvE
.� TRy
D = 8 FoR K= 0.007 R. ¢,
0 . 0 1 S F /201' eLATE ¢-
Q ¢, co 8 c.-'. s . ezost TO q, gone. i.s.
�_ so usE b =1
DAB= 8.3$ V= 36. 57 �-�. % , / 2.2-3 l
Foie lc= 0.002 , R= 4.
n =
0.013 Feo M PGA rF
7.52 ' , VMA = *0 f- /./S•� - 2.62
X
F VMAx 10.7 0 2
g 32.2 x 7.5
f 0M PL ATE ¢ S d 4 = /. OS OR 5 Riie EA/ne,Vn/M ENT
DA= 8.38Xo.og
DA _ o. 12
FUSCOE 11651 Sterling Avenue SuiteA PROJECT: E7,W4,04 am/viva PROJECT NO: 21o6. I/O /
"" Riverside CA 92503 BY: DATE: CHEC DATE:
WILLIAMS (714) 354 -0161 7 . r. I ‘,.23,81
&
Civil Engineers • Land Surveyors SHEET 4- OF 29
FRoM 57A. 66 +00 TO STA. 7/t 88
Q = 4, 900 s. , 5 0.036 8
Tkyb /4 Fo,e k_0.007, R_ 3.5o
D 7 � o.o is FROM PLATE ¢
Q = 4,293 C.fs . A/ar G o0
Tiny b = /5 FOR k : 0.007 , _ 3.75
b 7.S' = 0.0 /5" p oM PATE 4
Q = 5,16 I CI.S . CLOSE To . 9v0'. {S
So usE 6 = /5
D 1 = 722' V = ¢5.27 IV. /se., F.: 2 97
Fog k, 0.002. , A = 348
71 = 0.01 3 FROM PLATE it-
,
DN = 49 ' , VMAX.= SO.3�i� /sue . F v - 3.48
6.
F YAr.Ax _ 50.3 C = 3,4-8
.32.2x6.49
FROM PLATE 15- /a - DR // 7' Ai'- ENTRA /NMEN
bA= 722x0.II
_� __0.7
FUSCOE 11651 Sterling Avenue SuiteA PROJECT: ET /H/AN A C/>/4M✓a PROJECT NO: 2/ 0 6. //0 /
4" WILLIAMS Riverside, CA 92503
(714) 354 -0161 I BY: DATE: 6 23- B 9
CHECK: DATE:
Tr
UNDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET S OF 29
FROM STA. 7/t 88 TO STA • 82 t S0
Q =
7,20o e.i'. . Sr; 0.0368
%may Foie K= 0.007 , ¢.SO
D= 9 o.ots Fie0n^ PLATE 4-
R 0 = 8,3g2 C.i.s . Too CoA/SEg✓A7i ✓E
T i e y b= /7 FOR K = 0.007 1e 1.zS
I� = g' S = 0.01 s FieOM PLATE ¢
Q = 7 CLOSE TO 7 zoo e1-{-S
So USE 6- /7
�M D 1 8.49' , V= q9. g7 1c /sue. , , 3.o
Fog K. o•ooz A R_ 1.26
n - 0.01 3 FiO■ PLATE 4-
D,/ = 7.64 , yMAx- SS47i1. /sec
F V SS. 4 7 = 3. 54-
9 x D ,( 32.2 x7.64 -
FROM PLATE 45 � _ /• /0 oR /0/ , c t A/TR•9 /�s/MENT
DA = e. 99 x 0./0
Q y= )(55.47) (/7)
32.2 x g000
Ay= 0.20
FUSCOE 11651 Sterling Avenue, SuiteA PROJECT: f,r /W44.44 ey,o/NE/ PROJECT NO: 2/D6./10
L N LL IAMS
Riverside
(714) 354 -0161 T _ • J 6 23.8
BY: DATE: _ CHECK: DATE:
SHORT
C'irit Engineers • LandSurveyors SHEET C OF 2.9
FROM STA. 82-r To STA. ( 171-0O
Q. 6 , 7 0o c. S. , S. 0.0362
7 / b /7 Foie K 0.007 , R.= 1.25
e.5
. S ' �► = 0.01s Fie 0 M PLATE 4
.G�
7,205 c ,f S. Too coNSF,'vA77VE
Tier b. /6 / Fo x= 0.007, 12 = 4,00
= 8' 71 : 0 .01 S Fie PLATE 4
Q = 6 , /3o e.f S ctoSE To 6,7ooC. {•S.
So USE b = /6
S,SS', V.- 48.9s�-1 /see , F 2.9S
Foie /c_ o•0oz , R- 4
7= 0. FRo ∎ PATE 4
b 76 , VMA�= 54, 5"2 c., = 3• 7
YMA, 54 , SZ _
).1-75"-- 3.4 7
'j3 ?. ?x7,6
r o v PLATE 4-5" -- a�m� _ /// 0 i // , 6 Abe F,✓Tie/v,✓M F,✓T
v = • 5'5 x 0 . / )
FUSCOE 11651 Sterling Avenue Suite A PROJECT: ET,WAWM CNANNa PROJECT NO: 2 /0C, // 0 /
WILLIAMS Riverside CA 92503 BY: DATE: CHECK DATE:
UNDGREN
& SHORT
(714) 354 -0161 • ?, r . I 6 Z3 g� I
Grit Engineers • Land Surveyors SHEET 7 OF 21
FROM STA 971 TO STA. /07+00
Q: S,9oo c.f s . , S= 0.0368
TRy b= /s' FOR K = 0.007 , ,e= 3.75
= 75 71 = 0 01 S F/'0AA PLA TE ¢ 5 /C/ C. . ,/OT (,000
TA b= / FO te !< = 0.007, R= 1,0o
D / F PtATE 4-
71� 0�0/S
a � 6,/30 CLOSE TO S, 9ooe /.s
So v 5 E
DA/ = 7.77 /) ►/ _ 47.44-1
Fog k= o.00z , /2= 3 94
- 71= o.ot F,OAA PLATE 4
D = 6.99 i VA4 S?. /Sec. F; 3•S2
F VAAAX. 52.76 3.sZ
J 5 %t J 32.2xC.99
FgOM PLATE 4S Gi ld _ 1.1/ a 1/ X° ,¢ /R t /NMr/i/T
DA = 777x 0.1/
DA' o .$S '
o y _ ( /) (SZ .7 S) /0
32.2x goon
Ay = 0. /7 '
✓.y
FUSCOE 11651 Sterling Avenue Suite PROJECT: ETAvg4/1,q cMNNEL PROJECT NO: 2 / . 0G //O/
- WILLIAMS Riverside, (7 354 -0161 BY: TZ 1 DATE:e Z 3 $q CHECK: DATE:
NDGREN
& SHORT
Ciril
Engineers • Land Surveyors SHEET 8 OF 2.
F o 57 /071 -00 TO 57A . /25
Q = s goo c4..5., S. 0.05
7 b. /6 ' FD2 = 0.007 �= 4.0o
- 8 = O. 0 / 5 Fg- OM PLA?'E 4-
Q 7,398 cf.s . Too coA✓sE,evgri
TRy 6= /s F0,2 K= 0.007, 12= 3.75
0 S Fg0AA PLATE 4-
61. 6,22_8 c.{ s. eGOSE To S, 900
So USE b
1D. - 7.2 0 ' , V . 54. ‘ 3.1f.c . , Div = 3.5-9
Foe- k. 0.0 0 2 = 3 6 7
71 0. O / 3 F,eOM. PLATE ¢
I) N _ 6.48 ' � V Max = 6 PI .) F= 4,20
`
F - VM4 X • _ 60.74 4.2o
4 32.2x6.4 8
F20 ■ PLATE 45 ack.4 = 1.15 0 C /57 ig ENTkA /'WfFNI
DA= 720x0 15
D /,
Ay _ (/ )( 60.74 1Y / s)
32.2 x Bobo
Ay_ ozi
FUSCOE 11651 Sterling Avenue, Suite A PROJECT:ET/WA/al C//ANNEL PROJECT NO: 2 /06./101
WI Riverside CA 92503 O
4 , 0
WI LL IAMS (714) 354 -0161 BY: Tr, I DATE: 6-2 3_0 9 CHECK DATE:
LI NDGREN BY
& SHORT
Civil Engineers • Land Surveyors SHEET / OF 2
FROM STA. /2 St 00 To STA. /4C-1-00
Q = 5 300 c.f.S . , S O.OS3C
Tgy 6= /S' F02 k= 0.007, R= 3.75
P-= 7'5 ' = 0.01 S F/ oM PLATE 4
Q = 6, Z 2 8 C. { . Too Con/ SE.e✓AT, VE
TRY 6:: /4 / rope `c= 0.007, 1Z:7_ 3.s0
D- 7 ' 0• o l S o /v. PLA ¢
Q = S, / 62 c .{•s. ‘105E 0
So USE b = /4 /
b _ 7 V= 5-3.17- .ARc., F = 3 SI
Fog k . 0 , g = 3.53
o• O► 3 FgO/A PLATE 4
DA/ = 6.40, VMax S9•/�1</. /ter., 4 . 1 2
F VMA • 59./6 4. /
9xD 32.2"( 64o
F/ ?LATE ¢ S elP,� _ /. / S pg. /S7 Aim f,✓T,EA /4/14ENT
b = 7/2(
DA= 1,D7
FUSCOE 11651 Sterling Avenue. Suite A PROJECT: ET /W04N0A e #ANNEt PROJECT NO: a/06 /
- LINDGREN
Riverside, 714) 354 -0161 BY: -T= 1 DATE: Z 3, g e l CHECK DATE:
SHORT
Ciril Engineers • Land Survegors SHEET 10 OF 2/
FROM STA. /46100 To STA. /4e. +Z0
0:: 5,,3oo c.f• S= O.OSS6
Tgy b _ /4 ' FOR k = 0.007 g= 3.5
b = 7 ' -n = o. ots FRaAk p A
Q =
6,54 8 C,4 . 7 Co n/SEe VA r/ V E
TRy h.= /3 / Foe l<= 0.007, g= 3.2s
0 '0 1 S F- An pLATE 4-
_ = 5 34 7 C.0 5 . c4oSE To s, 300
So USE b = /3
DN - 6.13 ' l/_- 63.37 //i'., ,t _ ¢.f
Foie k = 0002 , g- 3.2_3
7l . O. O / 3 Fje O M PLATE 4
DI - S 7 8, VMA,= 70.SZ R /sge. = S. / 7
1/ x• _ 70. 5
5 1 7
9 X1� J 32..2 x 578
F e 0M PLATE f S drn� _ 1, 2 Z 0 g 222 A/A E//7 A /A'MENT
D = 6.43x 0.22
•
- FUSCOE 11651 Sterling Avenue, Suite A PROJECT:ET/W4V44 CklA/WEL PROJECT NO: 2/0e. j/0/
R iverside, CA 92503 BY: DAT E: CHECK: DATE:
• WILLIAMS (714) 354 -0161 T.I k 2 3 -49
LINDGREN
- & SHORT
• (aril Engineers • Lund Surveyors SHEET /1 OF 2'
FROM STA. /48 +Z-o 0 S7A • /63t
Q o.0gs6
TRy b = /3 ' Fog. k= D,Do7
6•S _ 0 015 F,e0AA PLATE
= S, 3 7 ¢ e.-1.S. T00 co A/SER ✓A'Ti VE
7 Ry b /2 Fog k= 0.007, 12.= 3.00
- h=0.015 PAC
Q.= 4,34/ e-(,s. etas( To 4,00oclrS
50 USE 6 : /2 '
5764
FOR 0.002, i2= 2 l
0 0 i 3 FF'ON\ fGATE 4-
D ,�
6708 , vit4Ax 6s 68 fad r., �- , 57/4-
r Y A x 5 . 6 ‘8 = ,S; /4-
\F5
\132.2
F,€OM PLATE ¢S a/9)/ = / 2 2 - 0 227 ,4 /k EA/TRA /e✓/ -!En/T
D 56¢ x 0.2 2
D 124
¢-'
Ay y _ (/) (65 -(Z>
32.2 x Soo°
Ay _ 020'
FUSCOE 11651 Sterling Avenue, Suite A PROJECT: E T / W A ' / M a b i l o v f L PROJECT NO: 2 / 0 6'. / / 0 /
WILL IAMS
Riverside, CA 92503
(714) 354 -0161 TI . BY: DATE: e Z3_89 CHECK DATE:
LINDGREN
a,r I
SHORT
Civil Engineers • Land Surveyors SHEET /2 OF 2/
FROM 5TA . /'3+ So 7'0 57 4 . /77t00
2 _ 49',00 0 c l s. , S. 0.070 8
TRy /3 Fog o g- 3.2E
) . 'S = 0 -o oM P LATE
887 C./ . TOO CDiS vA /VC
TX)/ I /2 Fo = 0,007 R = 3.00
= 6 " = 0.0i S Fte oNk Pt /i 7E
Q -
3,9 48 e .1 , ecoSE To 4, 00.)e: s
So USE b _ 12
D N = 6.06 " V= 5 Alsic . / FN= 3.94 -
/
Fag A 0.00 Z-, g= 3.01
o .0 13 Fie° m PLATE 1
Da s. ¢ S , VMA,c. _ 0.2/ P/see. F _ 4,6i
J 9 X D
432.2 S
FRO". PLATE 4S 46.-V i/g oie /8» A/2 Ed/7RA /NNFNT
.,, D A = 6o6Xa ►l8
D _ /•
Ay = (C/.2/)Y /Z)
32.2x 2000
Ay= 0./7'
•
,., FUSCOE 11651 Sterling Avenue, Suite A PROJECT: E : 0 N D A C / / 4 , v N E L PROJECT NO: a i O 6 I
WILLIAMS iverside, CA 92503
(714) 354 -0161 I d 23- 9 BY: DATE: / CHECK DATE:
LINDGRIEN
�� ■ T I
SHORT
Civil Engineers • Land Surveyors SHEET /3 OF 2_9
FROAk STA . /771 00 TO /82 +O0
Q = 4,000 e.fs. ) S= 0.0945
TKy b= 12- / FO. Kr- o, 0o7 ) R 3.00
D_ 6 ' n = 0.o /S Exo/tA. P«I
Q = 4 5 /C. S. Too Con/ £R T)VE
77 =, Fog k= 0.007,
D = ss p . 0 Is rgon& PLATE ¢
Q = 3,6 17 e ctosF To 4, o0o P. -1• S .
Co USE b /!
D = S. 93 V = 6/.2 8 c- f- /sec / _ 1.4 3
FOR K 0,002 , )2= 2.85
= 0 .01 3 FROiv. PL ATE 4-
D = .573 3, V . = 68.26- /Sec. F= 572/
F- VMAY 68.Z6 5-2 /
x7) •132.2x
,C O, PLATE d'`' _ /� 2 z 0 g. 2 2 /. AiR E�✓Tg4 /i✓MFiVT
D = 5 )( 0.2
DA = /•30
y _ )( 8.26)
3 2.2 x g 00
Ay= 0
•
.• ,
....
' •
410
? ,liti
....
EM 1 1 10-2- 1601 ) . H .
.Ar,oe nd ix III 1
. II: ■1,
. .1
..„. . .
1 Jul y 70 ,
I ... I .
• ," i
k ilk
......
•
300
I t-- -
! ; I ■ i i 1
.....
• - . \ \ - - ______
--L...
\_
_-..\\_______
• .,.. i
250
- - °C3ILL"‘. ___ Mni==
_ I
k ik m - 1\ .' ____. _ .40 MI1=111111111
, . 11. 0 0 ?,0_ , , MINI i .
. i 1 • .
21111%.. .
MINI
..- .Ab. .. at' o o___,
200 7 .. .... .
. . ctr .-.. i•
-0 _____
--- coll
_.
._._,
_ ,.= ====0 ,
1 :•,i
i . • i
• ,
IMINIIIMMI111111111111111 :
1 .
iso ONNO A .46111APMSEtWarA NIMINIMMINIIIIINI=1
„„,,,,,=0027-_-■ `tar N•lt_-_*--. , =1:11= •
....,.
....... OINNINENINCE
MCNEIL A agg,
I . o . - „ ........ .
m.... - ..
. _._ • P IININIENIENCININ
I . .
MIME . 4 olit#
....... . w • 1 .1,• MINEINNI
.... _
o -
ME . NNIONININI
u MUNN . — Al N
• - h • _ . mei /
1 .1 ' . • ; !
' .
.A.A..A
,,,l' i n •.,,, ,
. .,„
,•__ , ,,i ,
9 0 - ._-_-=:- -- ----- - ----F
__ . --\\-F .._ - . . _ 7\ . _______ I
-.---- T • .• i
-4-4-- 11 - • Nr t :- I=
8 0 ----d----
---d ....,
_=t-7-7
. .
I t i
e o 11.111.111111.11 - Imurro , _ . . t
1111N ; i y : r
iimuli I I IN =•1111 Illh:liaill t . 11"1W i ; I ; ti
. IIIIIIII IMMO 1
MN MIMI E MINIM
. ' i • I I
MIMI 11111111NNINEINIEN■ %. ... , .
„ MIMI . ININININIIINNIMENEMIL 'II. A '11‘ •
0.006 0.01 0.015 0.02 0.03 0.04
„.,..„
.. I 1.
MANNING'S fl
I • 1 •
,-,
BASIC EOUATIONS
•!;jr ....,
C•32 II LOG.*12.2R /It
,..
"" 23.415 • 21.1115 LOG,. R in . . '1.: I I: I
-dm WHERE:
• ' I
C•CHE29 COEFFICIENT
rt. MANNiNG•S RESISTANCE
, ■
..46 COFFFICiENT
11 ' il
R. HYDRAULIC RADIUS, IF T
,
k•EOUMIALENT ROUGHNESS
HEIGHT, F T
'; ! I .'S •
4.01
, ,• , .;
AM
OPEN CHANNELS , ! i i! I
. • , 1 . , i
C -n- R — K RELATION
! ...,. v.,
0.008 < ri < 0.04 '
•
. • ' I .. • ' 1
SE E TEXT PAGE 6 ■
, i i 1., ; , ■
Plate 4
...,
. .
. .
..
III- 6 ,
•
! I I • ! :i - I
.1 .
•
,
. . 1 i l .
I , , 1 ' l
. .... ................ ....,,,,,,•••••• ••■••••••■••...., • t••• .1,7 rolnE•71, , ........1. • •••••11,7•014,11................. ' 4
,!
. - .
ol.. • - • .... '" •- :Um 4:: •••• '',"*".; . : • . . '
. ,‘,.. .
...,..
• . ..,
•
......
. ::;;.*:..•
• .. , • • • 1
•!!..':.
. .
.,•,,.. •
,.„.•
..• -..•..,i
• - EM 1110-2-:1601
, .
• • ,
' 41as
' . • Append.' III •
ix ,,•......-},
. .
• - .
1 July • 7 0 - • :•• .•.,
...-
. • • : 11
:, ;.",....:•:;; : 1 : ':: i
. , •
. .
•
.. ..
• lingiaMMIZIMOIMENINIM IBMINIONIMB.
ilaingeMnallaillialliiii IM • . , . j: j
11 11111111••111••111111 , • • •••••1111••••:r11111
......
• . • • • Laaansimusoan. .11/1 ...•
1111 LEGEND 11111111111111111=111•131/111111111•111111 • • I
• : !I
.... I •
gnu 0 MINNESOTA DATA MIHIMI•111W
111111111111ZIO•• •
• • KITTITAS DATA LUI•111111111111•1111111111 • . 1.
.....
•im sau mminne i nu rrimum i s mini nsammama in •
3 RIIMM ENBMINNIMMBIIIMOILULLMUNOMMIrMi n al a,
masimmanimammummmammummammommasammargro_na
mammammammanammammammmam Emma James .
. . '.......',.. !;
•
- . ••
— i ••11111•1111•1111111111•••••••••••• • Mr/K11111
d ••••••••••••••• 111•111111•111111•11•• MINIM • . •
,..t • ••1111•111••• 1 AISMI•1111111' • n •
•
- d ••••§••••••••••••••••••••INIUI• 1111111111011
.•-•, I • ••••■• .. . MIMI . . •. • :. . :1
••11111111111111••••••••••••••••••1111111• 111•1111•1111111 • : ..• : l' .
— I . . - 2 ••••• ! 111111•••
•••••• * ••••• . ' . -
. ,
I - . . . ••••••••••••••••••••••••• 11111111111•••••• '1:ji ...::
• I • ••••••••••••••••••11111111 • •11111111111.111111 • •
..... I innumamensimmumusam ..aa■Raminles .
•:ENENDMENsiG,1airEn . iormizaiummu . • . ,
•
• • '...."•••; l'
NINitam mammammomma . • .. . ,
—
.... I CURVE BELOW '''"
111011_11A'• 1 _ •••11111111.••••••••••• • •
•
.4.4 I • 1 ••••••••••••1114•111116111•••1111 • 111•1111111•••••••
11•• ••••• 11111/1 GAIBliartql1.1111•••••••••••1111••••••••
••••111/1 E 2 s 11 • 1311 • 111 • 72 • 111 •••11111•11••••••11111111•1111•••••
0 4 a • . 12 16 . . .. •
. .. • ..... . • r■
. . ... . .. •
1 •
. • .
. F = y_ • • . • •
, -•
• 1971 . . .
• .
• , L ., • , ,„,
,
001
a. EXPERIMENTAL DATA • .
• ,
• •
• .
., • •
. •
1.2
•
• 1. •.: *1
. _ I •• • maimmammommaammammaipummanummanam . .. . .
am • ...,. sirsaimammm IIIMMIIIMMENNIUM• '. :. . . .
••• • ,.. 111•_•••• ' • .
..... / • • •• 11111•111M*11111••
- • ..
1111111111111111 IIII••••••••• ••••••■■•4111=1• ' •
• •
• .
...111• • •11111111•• %••••••••• 1.1.1
. 1 RIM m. • • .
Ilan: . ; , .! . ....,..!
purom
— 1
merms SUGGESTED DESIGN CURVE :14._ .411111•••••111•N• -.• - ., • ,, ;•1 a .
• •
• • •,.• .:',.:: ..
d
•RIS• . lama .6•111•1•••••••••• 1.11 .
m • ••• KM ••11111 • ' • • ...... Ill
...... 1.1
4 mamammarnammommammammainaul:mmammammammaim • • . • . .
amammam gamarammmammiamma masammammammom . •
amammum amammagiamappiammam mommaammiuram • • .
mamammammammaamommpammamommamamawmpammam .• .
...
ammmammmomimamammnamammwmammalmommammamm • •
••••••••••••1111UP21••••••1•••••••••111•11111••••• • . • • ..• .11
• witumwspromminspianimmenvispromuuuesommg_wis . •
•
aoitai IIIIIIMIMNIIPPWPnaIMMIMMNIIIIIMMIIIIIMIMlinillIllilnMlla..nll.. . • • . . • . . . ••••• .1 • .:
.
. 1111.1111111111prilliginall.......1.111.1111.111P11.1.11111UNNIIIIME • , •
• 111.11.11..IIIIIIMINIMINEEMEMIIIIM111.11....11.111111.1111.M.I. . .
. • ..
. ... • i. 1 .1 • • • I I:
0..., • " -
• • • 2 3 i , . • . •
• • .. . •
• .'
. ___ ..... _ • F z: --• - - . ' • . : • 0 • • ,":
... .... - -. - _.... -
• . •. .
_ - - . ..
i
. .. .. /..::::::,•••••:!.... ..ti.:..t.11/.,
•
. , . '•,!.. • *:., •
-
. ........ ..... .: ........ : . ' .. ,
. --b. DESIGN CURVE •
- . .
_
. •
NOTE: 4 m = D H EPT OF WATER AND AIR MIXTURE
. ':-...
. . . _
. d = COMPUTED OEPTH FOR NON- • .
. .
•
AERATED FL -
OW -
V = COMPUTED -VELOC1T:r..E0R.NON- .
]
. .. • .
, ,
. . .., .
• . •. r. . ....
•
AERATED FLOW-------"
. • • ' ' •
. .
, .
• . •
- • . g = GRAVITATIONAL ACCELERATION • .
i ;.1
.
• . F = FROUDE NUMBER FOR NONAERATED • ' • . .. • • •, . . •
' ,1 1
•T FLOW . .
?::!- l i
. .
•
•
• •
• • • • . . , . . ... .... •
AIR ENTRAINMENT - : - • -
. • . • ..•:: • ••••• .
. .
. . . • • :- .. • • - .2.'. , 1i
. . .
- I SEE TEXT PACE 53 ' • ._....
• . • .
. . , ...:': -. ...... 0 ,I.
. • .k-late 45
• • ..: - .. 1 ,.
•
• , .......,. .
. . . • . •
• • • • •
• • • •
T
• • . •
. __, • .
• .. • . ...
- .•" - - • ,... :-, •
•
. III - 4 7 • • .... - • . .. .. ,........ .• .,,,
_ ..4 ____............... • •: • • . ' . • ..":`. •:-*.;:-..• 1 I
•
i.-- ;') ••. 1.,
. •
1
i•- z-77.;'. ;*;.:_:: .• • • . •.' /..,...• :•
. . .
•
.
. . • . . • ...,. ..1.1 - . /.5 •.:. • .. t.t ...-:..! I
•
. • .. .. . .. . . .tzt,.-• ..,.. }
. .
„,,,r . : ffi g T e r r i g j n i m m u l p s e r m ■ - - _ _ _ _ _ _ _ _ _ . ........ - ---.- -..-- . ..
* -* * =* *.** * ** * * ****** *4-** • •x** * ** ** - : --• ** * ** *fi• - -• • -• • *•-•f -4• t. • • • .:.
HYDRAU_ I C ELEMENTS -° I PROGRAM F'ACKAG
C) C 1982 -88 Advanced Engineeriro Scftwar (aes
Ver. 2.7A Release Date: 6/25/BE Se #' 2324
II A : ic.ly=_i =_f preparec: by!
II
II TIME /DATE OF STUDY: 6 :20 1/ 1/1980
II •************* ***** ***.**** DESCRIPTION OF STUDY **************** ***•x *- - -•
* RECTANGULAR CONCRETE CHANNEL *
1 * 0=4Q00 cfs, n=0.01"
* i . 6 ft WIDE, 12 ft DEEP
*
*.*..*..*..*• ** *•**•**•*•**•*•*•*••*•****•*•*******•***•*•*•*•******** *•*• * * *•* * * * * * * * * * *•*• * ** * ***** ** **
II * *4 * * *•* * * ** *.k *. * * * *•* *•* * * * * * * * ** * * * * * *. * * **• * * * * *.* * * * * * * * * * *•f * * * *** ** * * *•* : * * *-*
• :: CH/INNEL INPUT INFORMATION
I CHANNEL (HOR I ZONTAI._ / VER T I CAL_ ' = . t-�t:
F.ASE I DTH (FEET) _ ‘6.00
CAN Tf`NT CHANNEL S!_OF'F ( FEET /FEET :? = .0206W
II i .N I FC•.R F } ,-,W; CPS) = it-c'10.(10
_ C - ��� N3S FFtIC1 IO' 11 _.. h AC- TO`''_11 t_.__._. .._____._____�_____- .___�.__ --
N DRt1 iL.- DEFT.- FLOC -, I Nf= O( NAT ON :
II NORMS?_ DE F`TH (FEt T) -- 5-36
- OW TOP- -W DTH (FE E i ) _= 1
II {_ ` .. f.' _ - T + _.. - C-` . �.�• . /- y
- � = t�i r A;�:�_( -` `C:� ±'AF's.. `= E.E.. 1
W DRAU1 .t C DEPTH (F�E f ) ^ fi e.
FLOW AVERAGE- VELOCITY (FEE /SEC .) •- 36.57
'iN I FOF M FROUDE N' =- 2.2F7
II PRE_SEUF:E MOMENTUM ( POUNDS) = - 382237.7 +. :>
AVER' GED VELOCITY HEAD(FEET) T) 20.762
S P E C I F I C ENERGY (FEET ' = 29.1:3
`T I CA _- DEPTH F OW INFORMATION: -_ -_ - _____=_.__ = =- ______.____
1 aRITICAL FLOW TOP - WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SGUARE FEET) = 228.48
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.28
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 21.45
II CRITICAL. DEPTH(FEET) = 14.88
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 305440.60
AVERAGED CRITICAL_ FLOW VELOCITY HEAD(FEET) = 7.142
I CRITICAL. FLOW SPECIFIC ENERGY(FEET) = 21.422
****4(********************* DESCRIPTION OF STUDY * * * * * * * * * *•* * * * ** **•- * * ****-*
il n RECTANGULAR CONCRETE CHANNEL x_
4 0=4900 rfs r n=0.013 *
* 6 ft WIDE. 12 ft DEEP *
II *****-h.***************** * * * * * * *-*x -*•*-*•*•* - * * * * * * * * ** ••* --* **• * *•*•* *•* *•* ** * *•* * * *•**••**
* *it ** -* * * * ••* *•3i`. * * * ** ** * * * *4 * *** * * * ** * * * * * 3f . ? ** * * **•***•* * ***•* •* * • * * * *•* *•* * * *• *#: •*- *•'X
II M1 .
: :. . :.:CHANNEL I NF`UT I NFCJRriAT I W - :
CHANNEL L (HORIZONTAL / VERT I CAE_) _ .00 /6'
^ ' - ''
CON CHANNEL SLOPE(FEET/FEET) = .020800
L�NIFORM FLOW(CFS> = 4900.00
MANNINGS FRICTION FACTOR = .0130
m� =__ === =============_____===
NORMA_-DEPTH FLOW INFORMATION:
N� ----------------------------------------------------------------------------
NORMAL DEPTH(FEET) = 7.52
FLOW 10P-WIDTH(FEET) = 16.00
F1 OW AREA(SQUARE FEET) = 120.39
I HYDRAULIC' DEPTH(FEET) = 7.52
FLOW AVERAGE VELOCITY(FEET/SEC.) = 40.70
I UNIFORM FROUDE NUMBER = 2.615
PRESSURE + MOMENTUM(P8UNDS) = 414740.80
AVERAGED VELOCITY HEAD(FEET) = 25.722
SPECIFIC ENERGY(FEET) = 33.247
NI ===_ _
CRITICAL-DEPTH FLOW INFORMATION:
___
CRIDICAL FLOW TOP-WIDTH(FEET) = 16.00
0� CRITICAL FLOW AREA(SQUARE FEET) = 228.48
|�
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.28
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 21.45
I CRITICAL DEPTH(FEET) = 14.28
CRITICAL FLOW PR + MOMENTUM(POUNDS) = 30544(1 .60
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.142
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 21.422
+-***** *** DESCRIPTION Or= STUDY **********************
I 4 RECTANGJLAR CONCR� CHANNEL
+ Q=4900 cfs. n=0.0 * 15
* 15 ' t �IDE, 11 ft DEEP *
II *i..* 1 -Y.**,,-*-*+ii**A4.1**********-x*1-1 , 4 . ********* 4 ******* 4 ***** 4 **.** -4,- *.*** - f - **
******
II CH/ IN' U �
l TFO
CH)NkEL Z(HORIZONTAL/VERTICAL) = .00
RASE-IDTH(FEET� = 15.0»
II CONS ' �ANT CHANNE� ELOPE(FEET/FEET) = .0368O0
UN[FJRM F/-Ot-(CFS) = 4900.00
MANNINGS FRICTION FACTOR = .0150
0� NORMA|'-DEPTH FLOW INFORMATION:
>>>>> NORMAL DEPTH(FEET) = 7.22
I FLOW TOP-WIDTH(FEET) = 15.00
FLOW AREA(SOUARE FEET) = 108.23
HYDRAULIC DEPTH(FEET) = 7.22
I FLOW AVERAGE VELOCITY(FEET/SE.) = 45.27
UNIFORM FROUDE NUMBER = 2.970
PRESSURE + MOMENTUM(POUNDS) = 454261.50
AVERAGED VELOCITY HEAD(FEET) = 31.827
I SPECIFIC ENERGY(FEET) = 39.042
-
I ---- CRITICAL FLOW INFORMATION
CRITICAL ELM TOP-WIDTH(FEET) = 15.00
CRIlICAL FLOW AREA(SQUARE FEET) = 223.64
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.91
N� CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 21.91
CRTTICAL DEPTH(FEET) = 14.91
1 II , / CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 312082.70
� AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.454 y�7
�RITICAL FLOW SPECIFIC ENERGY(FEET> = 22.364
~ -
************************** DESCRIPTION OF STUDY ********************
I A- RECTANGULAR CONCRETE CHANNEL *
* Q=4906 cfs, n=0.013
* 15 ft WIDE. 11 ft DEEP *
II ******** ************************************************ * *****************
**********************************************************************
I >>>> CHANNEL INPUT INFORMATION
CHANNEL 2/HORIZONTAL/VERTICAL) = .00
|�
BASEWIDTH(FEET) = 15.00
N� CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
�� UNIFORM FLOW(CFS) = 4900.00
MANNINGS FRICTION FACTOR = .0130
� =========
N� NORMAL-DEPTH FLOW INFORMATION:
�
I >>>>> NDRML DEPTH(FEET) = 6.49
FLOW TOP-WIDTH(FEET) = 15.00
FLOW AREA(SQUARE FEET) = 97.30
HYDRAULIC DEPTH(FEET) = 6.49
FLOW AVERAGE VELOCITY(FEET/SEC.> = 50.36
I UNIFORM FROUDE NUMBER = 3.484
PRESSURE + MOMENTUM(POUNDS) = 497875.00
AVERAGED V HEAD(FEET) = 39.378
I
SPECIFIC ENERGY(FEET) = 45.865
==========================__ _ ______________====_______===============
CRITICAL-DEPTH F INFORMATION:
N� -'--------------------------------------------------------------------------
�� CRITICAL FLOW TOP-WIDTH(FEET) = 15.00
CRITJCAL FL3W AREA(SQUARE FEE') = 223.64
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 14.91
I CRITICAL �LOW AVERASE VELOCITY(FEET/SEC.) = 21.91
CPITICAL DEPTH(FEEr) = 1/.91
CRITICAL FLOW PRESSURE + MOMENTUr(POUNDS) = 31208�
0� AVEFAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.4
|�
7RJTICAL FLOW SPECIFIC ENERGY(FEET = 22.364
11 ** DESCRIPTION OF STUDY ********
* RECTAN CONCRETE CHANNEL *
* P=7200 cfs, n=0'015 *
il * 17 ft WIDE. 12.5 ft DEEP *
******************************************* ******** **************** 'Y 3 *****
i **********************************************************************
>>>>CHANNEL INPUT INFORMATION<<<<
CHANNEL Z(HORIZONTAL/VERTICALY = .00
N1 BASEWIDTH(FEET) = 17.O0
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 7200.00
I MANNINGS FRICTION FACTOR = .0150
_ ___
NORMAL FLOW INFORMATION:
_ ____________
�� >>)>> NORMAL DEPTH(FEET) = 8.49
FLOW TOP-WIDTH(FEET) = 17.00
FLOW AREA(SQUARE FEET) = 144.39
I HYDRAULIC DEPTH(FEET) = 8.49
FLOW AVERAGE VELOCITY(FEET/SEC.) = 49.87
II UNIFORM FROUDE NUMBER = 3.O15 ' � PRESSURE + MOMENTUM(POUNDS) = 734026.20 ��
AVERAGED VELOCITY HEAD(FEET) = 38.611
II CRITICAL—DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP— WIDTH(FEET) = 17.00
CRITICAL FLOW AREA(SQUARE FEET) = 301.37
II CRITICAL.. FLOW HYDRAULIC DEPTH(FEET) = 17.7.
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 23.89
CRITICAL DEPTH(FEET) = 17.73
II CRITIC AL FLOW PRESSURE + MOMENTUM(POUNDS) _ c:;r jt y33.3
AVEF`AGEL CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863
L :RITICPL FLOW SPECIFIC ENERGY(FEET) = 26.591
II ************************** DESCRIPTION OF STUDY ******** * * ***** ** *** *****
* RECTANGULAR CONCRETE CHANNEL *
* Q =7200 c_fs, n =0.013 •*
* 17 ft WIDE. 12.5 ft DEEP *
** * *•***- * * * *•* *•**••* *•* :•*••********•****•*•***** * * * * * * * * * * * * * * * * * *** * * * * *** ***• • - •
II * * * * * * * *•* * * *•* *• **•********•*•**********•******* **• ** *• **• **• * * * * **• * * * * * * ** *** ..k�_s* *•:
. ' CHANNEL INPUT INFORMATION •=: <: -: :•_:
II _ - -- CHANNEL 2 (HOP`; I .ZONTAL /VERTICAL) = - . C;t_ - - -- - --
FsASEW! I PTH ( "EET) = 17.00
r T CHANNEL. SLOPE (FEET /FEET) = . 036800
II JN I FC.RM F`_.DW (CFS) = 7200.0
Hr ";NP. I N(S FR 12 T 1 OP: FACTOF= = .0130
I/
If- 5Cr.. r ' \ i )- i 'S FOr A i i
P.'0RM= L DEPTH(FEET) — 7.'5
LOW TOP - W 1 DTH (F"E:ET) = ]. 7 .6`. -;
1/ (it,: ARE I ( SQUARE FEET) 189.80
HV t , DR '_ I C DEFTH (FEFT) = 7.64
+ V t E . I t r" T \ F �' ! S ) r=.5./-7
:
FLi�6M1• A:�EF;•�t =E •1c:���...I (� EE ":. � -r - - -
II L NI FOF M " .2E NUMBER = vi�
: 1. --E rq' lt;.E� + r-OmENTI!M ( POUNDS ) P0
AVERAGED VE _CSC I TY HEAD (FEET) = 47.7C'0
SPECIFIC ENERGY :FEET = 55.41
II -- -
CRilICAL—DEFTH FLOW INFORMATION:
II C I I : : : AL FLOW TOP—WIDTH(FEET) __ = ] 7 . c'tc :;
t: Ft I I :r L PLOW �1F:F_ty (Snl_1�5RE FEET) 301.37
C R I T I C A L FLOW HYDRAULIC DEPTH(FEET) = 17.73
II CRITICAL_ FLOW AVERAGE VELOCITY(FEET /SEC.) 23.89
CRITICAL DEPTH(FEET) = 17.73
CRITICAL FLOW PRESSURE + MOMENTUM (POUNDS) = 500033.30 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.863
1 CRITICAL FLOW SPECIFIC ENERGYtFEET) = 26.591
* * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * *- *- * * **
11 * RECTANGULAR CONCRETE CHANNEL *
* Q =6700 c f s, n=0.015 *
16 ft WIDE, :12.5 ft DEEP *
* **; * o • * k -* * * ** • -* •• * *• *• * * * * * * * * * * * ** * * ** * * *•*•* • *- * *• * *• * * * * * ** * ** • * * * **n
* *•* ?c. :••* * •-*- -* ****4 *** * *4 ********4 * * *•t * *-* * * * * * * *•*• *•* *****-4-M if-i$ * * * * *•* •* *i - * * *•*• *3« v h :
::: : ::: CHANNEL_ INPUT INFORMATION %
CHANNEL (HORIZONTAL / VERTICAL) _ .0C:
II 8ASEW I DTH (FEET) = 16.00 = CONE F CHANNEL SLOPE ( FEET /FEET) = . 0'6800
I9
U I F `'RM FLOW (CFS) = 6700.00
s .r
NORMAL—DEPTH FLOW INFORMATION:
II NORMAL DEPTH(FEET) = 8.55
FLOW TOP—WIDTH(FEET) = 16.00
II FLOW AREA(SOUARE FEET) =
HYDRAULIC DEPTH(FEET) = 8.55 136.87
FLOW AVERAGE VELOCITYkFEET/SEC.) = 48.95
11 UNIFORM FROUDE NUMBER = 2.949
PRESSURE + MOMENTUM(POUNDS) = 672104.40
11 SPECIFIC ENERGY(FEET) = 45.763
CRITICAL—DEPTH FLOW INFORMATION:
II CRITICAL FLOW TOP—WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SDUARE FEET) = 281.51
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59
II CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.80
CRITICAL DEPTH(FEET) = 17.59
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.90
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.796
I I CRITICAL FLOW SPFCIFIC ENERGY(FEET) = 26.390
************************** DESCRIPTION OF STUDY **************************
I * RECTANGULAR CONCRETE CHANNEL *
* Q=6700 cfs, n=0'013 *
* 16 ft WIDE, 12.5 ft DEEP *
il -4*-1.-****4*****-*4* , (*.x4.****o*******************************x******
***** ***** ***** ************************************************ * ********** **
>>>) CHANmEL INPUT INFORMATION
11
CHANNEL Z(HOPIZONTAL/VERTICAL) = .00
I BASEWIDTH(FEET) = 16.0)
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 6700.00
MANNINGS FRICTION FACTOR = .0130
II --=------------======-----
NORMAL—DEPTH F lNFORMATION:
/>>>> NORMAL DEPTH(FEET) = 7.68
il FLOW TOP—WI[>TH(FEET` = 16.00
FLOW AREA(SQUARE FEET) = 122.89
I HYDRAULIC DEPTH(FEET) = 7.68
FLOW AVERAGE VELOCITY(FEET/SEC.) = 54.52
UNIFORM FROUDE NUMBER = 3.467
PRESSURE + MOMENTUM(POUNDS) = 737309.60
AVERAGED VELOCITY HEAD(FEET) 4 .884 46.153
I SPECIFIC ENERGY(FEET) = 53.834
I CRITICAL—DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP—WIDTH(FEET) = 16.00
CRITICAL FLOW AREA(SQUARE FEET) = 281.51
I CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 17.59
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.> = 23.80
CRITICAL DEPTH(FEET) = 17.59
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 463551.90
I AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.796
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 26.390
il 2o ************************** DESCRIPTION OF STUDY ********************+*****
* Q=5900 cfs, n=0,015 *
* 16 it WIDE, 12 ft DEEP *
II *if*****4-**-1-*4-*******4********************************w - ********** . ** . M*
*****************************************
I >�`>> CHANNEL INPUT INFORMATION <<<<
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 16.00
I CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.3{
MANNINGS FRICTION FACTOR = .0150
_
0I NORMAL-DEPTH FLOW INFORMATION:
I >> >>> NORMAL DEPTH(FEET) = FLOW TOP-WIDTH(FEET) = 16.O0
FLOW AREA(SQUARE FEET) = 124.36
HYDRAULIC DEPTH(FEET) = 7.77
FLOW AVERAGE VELOCITY(FEET/SEC.) = 47.44
I UNIFORM FROUDE NUMBER = 2.999
PRESSURE + MOMENTUM(POUNDS) = 572601.30
AVERAGED VELOCITY HEAD(FEET) = 34.951
I SPECIFIC ENERGY(FEET) = 42.724
CRITICAL-DEPTH F�OW INFORMATION:
I
CRITICAL FLOW TOP-kID = 16.0C
[RJTICAL FLOW AREA(SQUARE FEET) = 253.62
CnITCAL FLOW HYDRAULIC DEPTH(FEET) = 16.16
I CRl�IC FLOW AVEPAGE YELOCITY(FEET/SE( . > = 22.81
CRlTICAL DEPTH(FEET) = 16.1b
CpIT7CAL �LOW PRESSURE + MOMENTUM(POUNDS) = 391262.20
il AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = B.082
CP!TICAL FLOW SPECIFIC EqERGY(FEET) = 24.245
I ****+****** *** ************ DESCRIPTION OF STUDY ********+***************e
* RECTANGULAR CONCRETE CHANNEL *
« r=5900 cfs, n=0.013 I * 16 ft WIDE, 12 ft DEEP *
*************+************************************************************
**************************************************************************
��
CHANNEL INPUT INFORMATION <<<
I CHANNEL Z(HORIONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 16.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.90
I MANNINGS FRICTION FACTOR = .0130
--= - -
NORMAL FLOW INFORMATION:
I --------- ---- - ------- -
>>>>> NORMAL DEPTH(FEET) = 6.99
FLOW TOP-WIDTH(FEET) = 16.00
FLOW AREA(SQUARE FEET) = 111.85
�� HYDRAULIC DEPTH(FEET) = 6.99
FLOW AVERAGE VELOCITY(FEET/SEC.) = 52.75
UNIFORM FROUDE NUMBER = 3.516
I PRESSURE + MOMENTUM(POUNDS) = 627520.90
AVERAGED VELOCITY HEAD(FEET) = 43.209
SPECIFIC ENERGY(FEET) = 50.199 2. 1
~~ CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOk TOP-WIDTH(FEET) = 16.00
CRITICAL FLOW AREA FEET) = 258.62
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.16
0� CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.81
CRITICAL DEPTH(FEET) = 16.16
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 391262.30
I AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.082
CRITICAL FLOW. SPECIFIC ENERGY(FEET) = 24.245
11 ************************** DESCRIPTION OF STUDY ******************
* RECTANGULAR CONCRETE CHANNEL *
II * Q=5900 cfs, n=0.015 *
* 15 ft WIDE, 11.5 ft DEEP *
**************************************************************************
II ****************************************************************************
'.')-CHANNEL INPUT INFORMATION<<<<
0� CHANNEL Z(HORIZONTAL/VERTICAL) = .00
�� BASEWIDTH(FEET) = 15.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNIFORM FLOW(CFS) = 5900.00
I HANNINGS FRICTION FACTOR = .0150
==========___ __=_________ _ __________ __=___
NORMAL-DEPTH FLOW INFORMATION:
II )>�>) NOPMAL DEPTH(FEET) = 7.2)
FLOW TOP-WIDTH(FEE = 15.00
�� FLO� AREA(SCUARE FEE = 1 1 Y �
�� HYDRAULIC DEPTH(FEET = 7
FLOW ER4GE VEL9CITY(FEET/SEC.) = 54.63
UNIFORM FROUDE NUIBER = 3.588
N� PRES + MOMEN = 648851.90
w� AVERAGED oEL[ HE^in(FEET> = 4` . 333
SPECIFIC ENEFGY(FEE') = 53.53
�� __-_= ====== __________________________________ =___________________
o�
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOW TCP-WID = 15,00
II CRITICrL FLOW AREA(SQUARE FEET) = 252.11
CRITIC FLOW HYDR DEPTH(FEET) = 16.87
CRI FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.31
1 CRITICAL DEPTH(FEET) = 16.87 _
m� CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 399770.60
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.437
I CRITICAL FLOW SPECIFIC ENERGY(FEET) = 25.311
II ************************** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
* Q=5900 cfs, n=0.013 *
* 15 ft WIDE, 11.5 ft DEEP *
II *********************************************************************
**************************************************************************+*
N� �)>'CHANNEL INPUT INFORMATION<<<<
��
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 15.00
I CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNlFORM FLOW(CFS) = 5900.00
MANNINGS FRICTION FACTOR = .0130 22. I
NORMAL-DEPTH FLOW INFORMATION
_ .
>>>>> NORMAL EEPTH(FEET) = 6.48
FLOW TOP-WIDTH(FEET) = 15.00
I FLOW AREA(SQUARE FEET) = 97
HYDRAULIC DEPTH(FEET) = 6.48
FLOW AVERAGE VELOCITY(FEET/SEC.) = 60.74
UNIFORM FRDUDE NUMBER = 4.207
II PRESSURE + MOMENTUM(POUNDS) = 714122.90
AVERAGED VELOCITY HEAD(FEET) = 57.292
SPECIFIC ENERGY(FEET) = 63.768
I ____ _ _____ __ =========
CF'I FLOW INFORMATION:
I CRITICL FLOW TOP-WIDTH(FEET) = 15.00
CRITICAL FLOW AREA(SQUARE FEET) = 253.11
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.87
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.31
II CRITICAL DEPTH(FEET) = 16.87
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 399770.60
I AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.437
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 25.311
************************** DESCRIPTION OF STUDY *********************+****
II * RECTANGUL(R CONCRETE :HANNEL *
* Q=5300 cfs, n=0.C15 *
+ 14 ft WIDE, 11'5 ft DEEP *
� � �
I �����* � ��** � �� ����**** � �� ��� ������������**� � �����*
I **%44'A**4*/****'YW* 4 "4 ,4 **4 4 ** 4 ***** -4 * 44 (*** 4. ** 4- ** " t*** * ' 4-4 * * * . X 4 * -4*-Y*44 ' .4.****
[HAN�EL INPUT INFORMATION
CHANNEL Z(HORIZONTAL/VERTICAL` = .00
B4SEWIDTH(FEET� = 14.00
I CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNIFCRM FLOW(CFS) = 530O.00
M�NJING FRICTION FACTOR = .0150
II ===== NORMAL-DEPTH F INFORMATION:
NORMAi DEPTH(FEET) = 7.12
~� FLOW TOP-WIDTH = 14.0O
FLOW AREA(SQUARE FEET) = 99.68
HYDRAULIC DEPTH(FEET) = 7 12
I FLOW AVERAGE VELOCITY(FEET/SEC.) = 53.17
UNIFORM FROUDE NUMBER = 3.511
I PRESSURE + MOMENTUM(POUNDS) = 568234.30
AVERAGED VELOCITY HEAD(FEET) = 43.897
SPECIFIC ENERGY(FEET) = 51.017
II
CRITICAL-DEPTH FLOW INFORMATION:
- - ------
CRITICAL FLOW TOP-WIDTH(FEET) = 14.00
CRITICAL FLOW AREA(SQUARE FEET) = 230.30
I CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.45
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.01
U�
CRITJCAL DEPTH(FEET) = 16.45
0� CR�TICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 354566.00
�� AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.224
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 24.674
II
************************** DESCRIPTION OF STUDY *******
4 ‹ RECTANGULAR CONCRETE CHANNEL * II * Q=5300 cfs n=0 . -~ 013 ��� +
* 14 ft WIDE, 11.5 DEEP ,
***************************************************************************
II >>>>CHANNEL INPUT INFORMATION
CHANNEL Z(HORIZONTAL/VERTICAL> = .00
BASEWIDTH(FEET) = 14.00
II CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0130
�� ======__--_ � _ ____=______ _ ============_==
o�
NORMA--DEPTE FLOW INFORMATION:
>>>>> NORMAL DEPTH(FEET) = 6.40
II FLOW TOP-WIDTH(FEET) = 14.00
FLOW AREA(SOUARE FEET) = 89.59
HYDRAULIC DEPTH(FEET) = 6.40
N� FLOW AVERAGE VELOCITY(FEET/SEC.) = 59.16
o�
UNIFORM FROUDE NUMBER = 4.121
PRESSURE + MOMENTUM(POUNDS) = 625503.40
I AVERAGED VELOCITY HEAD(FEET) = 54.346
SPECIFIC ENERGY(FEET) = 60.745
II CRITICAL-DEPTH FLOW INFORMATION:
__'_ _____
CRIT]CgL FLOW TOP-WIDTH(FEET: = 14.00
CRITICAL FLOW AREA(SQUARE FEET) = 230.30
I CRITICAL FLOW HYDRULIC DEPTH(FEET) = 16.45
'PT FLOW AVERAGE VELOCITY(FEET/SEC.: = 23.01
7RITIC DEPTH(FEET) = 16.
CrITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = :Ft!,-5,t!:..00 I AVE9AS[D CRITICAL FLOW VELOCITY HEAD/FEET) = 8.224
CRIT1CAL FLOW SPECIFIC ENERGY(FEET) = 24.674
��
��
**+****-****************** DESCRIPTIOr OF STUDY *********-
II * RECTANGULAR CnNCRE - H-v 'NEL *
* O=5300 cfsn=0.015 *
* 13 ft WIDE, 11 ft DEEP *
*****
NI ******************************************************************
CHANNEL INPUT INFORMATION
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
^�
BASEWIDTH(FEET) = 13.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
I UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0150
_
N�
NORMAL-DEPTH FLOW INFORMATIONx
��
----- - ------
>> >>> NORMAL DEPTH(FEET) = 6.43
| FLOW TOP-WIDTH(FEET) = 13.00
II FLOW AREA(SQUARE FEET) = 83.64
HYDRAULIC DEPTH(FEET) = 6.43
FLOW AVERAGE VELOCITY(FEET/SEC.) = 63,37
U�
N� UNIFORM FROUDE NUMBER = 4.403
°� PRESSURE + MOMENTUM(POUNDS) = 667652.30
AVERAGED VELOCITY HEAD(FEET) = 62.357
SoECIFIC ENERGY(FEET) = 68.791
I === _ _ ______ =___________ _=_ ====__
CRITICAL-DEPTH FLOW INFORMATION:
____ ___________
�� CRITICAL FLOW TOP-WIDTH(FEET) = 13 ^ 00
�u�
w� CRITICAL FLOW AREA(SOUARE FEET) = 224.66 -'
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = d'.,1
CRITICAL DEPTH(FEET) = 17.28
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 363433.80
I AVERA9ED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.642
CRlTICAL FLOW SPECIFIC ENERGY(FEET) = 25.924
*********************** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
I I * Q=5300 cfs, n=0.013 *
* 13 ft WIDE. 11 ft DEEP *
********************************************************************
*
I ************************************************************* ************ *
*
>>>>CHANNEL INPUT INFORMATION—f-
_____
N� CHANNEL Z(HORIZONTAL/VERTICAL) = .00
U�
BASEWIDTH(FEET) = 13.00
CONSTAN CHANNEL SLOPE(FEET/FEET) = .085600
II UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0130
___=====
I NORMAL-DEFTH FLOW INFORMATION:
____________ ___
>>>>> KORIAL DEPTH(FEET) = 5.78
FLCW TOP-WIDTH(FEET) = 13.00
�� FLO� ARE FEET' = 75.16
��
HYDrAULIC DEPTH(FEET) = 5.7C
FLOt- AVERASE VELOCITY(FEET/SEC. = 70.52
U4TFORM FROUDE NUMBER = 5.169
I FRES7URE - MOMENTUM(POJNDS) = 737860.3-
AVERAEED VELOCITY HEAD(FEET) = 77.223
SPECIFIC EN[RGY�FEET) = 83.004
�� ===
��
C/IT]CAL-DEFTH FLOI / INFORMATTON
��
�� C»ITl[A� F TOP-��IDTH<FEET) = 13.00
CFITIrAi FLOW AREA/SQUARE FEET = 22
CRITICAL FLOW HYDRnULTC DEPTH(FEET) = 17.28
CP,TICAL FLOW AVERASE VELOCITY(FEET/SEC.! = 23.5q
N� CRIT:CA DEPTH(FEET) = 17.28
CRITICAL FLCW PRESSURE + MOMENTUM(POUNDS) = 363433.80
AVERASED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.642
I CRITICL FL3W SpECIFIC ENERGY(FEET) = 25.924
�� ************************** DESCRIPTION OF STUDY **************************
I �~
�� * RECTANGULAR CONCRETE CHANNEL *
I * 0=4000 cfs, n=0.015 *
* 12 ft WIDE, 10 ft DEEP ^ *
N� **************************************************************************
~~
*************************************************************************
N�
''.,%. CHANNEL INPUT INFORMATION , :f
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 12.O0
11 CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
UNIFORM FLOW(CFS) = 4000.00
MANNINGS FRICTION FACTOR = .0150
_
NORMAL-DEPTH FLOW INFORMATION:
�� >>>)> NORMAL DEPTH(FEET) = 5.64
0� � ��
~� FLOW TCP-WIDTH(FEET ) = 12.00 - ~'
_. -. .. _''.~'.._ ____ 'r, -.
/
HYDRAiH DEPTH(FEET) = 5.64
FLOW AVERAGE VELOCITY(FEET/SEC.) = 59.06
UNIFORM FROUDE NUMBER = 4.38�
�� PRESSURE + MOMENTUM(POUNDS) % 381
469743.30
AVERAGED VELOCITY HEAD(FEET) = 54.165
SPECIFIC ENERGY(FEET) = 59.809
II = _ = =______==___ ==========
CPITICL-DEPTH FLOW INFORMATION:
CRITICAL FLOW TOF-WIDTH(FEET) = 12.00
��
CRITICAL F AREA(SQUARF FEET) = 181.35
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
II CRITICAL DEPTH(FEET) = 15.11
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80
II AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.55
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667
************************** DESCRIPTION OF STUDY *******************4******
1
�� * RECTANGULAR CONCRETE CHANNEL *
* 0=4000 cfs, n=0.013 *
* 12 ft WIDE. 10 ft DEEP *
II ********************************************************************** ****
il ****
CHANNEL INPLT INFORMATION
- -- _ _ - ____--_____________'__________ - _________
CHAN Z/HOR]ZONTAL/VERrICAL) = .
BASEJIDTH/FEET) = 12.00
�� CONSTANT CH/-INNE SLOPE(FEET/FEET = .085600
UNIFOFM FLOA(CFS) = 4000.O0
MANNINGS FRICTION F4CTOR = .013':' 11 ==__=_= ___============
NOFMAL-DEPTH FLOW INFORMAT'ON:
_ _
_______________ ____
_____
�� >>> >> NORMAL DEPTH(FEET) = 5.08
o�
FLOW TOF-WIDTH(FEET) = 12.00
FLOW AREA(SQUARE FEET) = 60.91
HYDRAULIC DEPTH(FEET) = 5.08
II
FLOW AVERAGE VELOCITY(FEET/SEC.) = 65.68
UNIFORM FROUDE NUMBER = 5.137
PRESSURE + MOMENTUM(POUNDS) = 518732.20
AVERAGED VELOCITY HEAD(FEET) = 66.976
°� SPECIFIC ENERGY(FEET) = 72.052
—======
II CRITICAL—DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP—WIDTH(FEET) = 12.00
CRITICAL FLOW AREA(SQUARE FEET) = 181.35
0� CRITICAL FLOW HYDRAULIC DEPTH(FEET) =
15.11
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRITICAL DEPTH(FEET) = 15.11
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80
o�
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 22.667
1/
************************** DESCRIPTION OF STUDY **************************
II * RECTANGULAR CONCRETE CHANNEL *
* 0=4000 cfs. n=0.015 *
* 12 ft WIDE, 10.5 ft DEEP *
**************************************************************************
,�u�
~~ ** ********** *** ********************************************* ****************
[ -
CHANNEL Z(HORIZONTAL/VERTICAL) = . 00
I BASEWIDTH(FEET) = 12.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .070800
UNIFORM FLOW(CFS> = 4000.00
MANNINGS FRICTION FACTOR = .0150
II ==__ __=_____===__________=
NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 6.06
«�
FLOW TOP-WIDTH(FEET) = 12.00
FLOW AREA(SQUARE FEET) = 72.72
I HYDRAULIC DEPTH(FEET) = 6.06
FLOW AVERAGE VELOCITY(FEET/SEC.) = 55.01
UNIFORM FROUDE NUMBER = 3.938
PRESSURE + MOMENTUM(POUNDS) = 440150.60
AVERAGED VELOCITY HEAD(FEET) = 46.987
°� SPECIFIC ENERGY(FEET) = 53.047
II ---------
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 12.00
CRITICAL FLOW AREA(SQUARE FEET) = 181.35
�� CR7TICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11
CRIT:CAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRITICAL DEPTH(FEET) = 15.11
I CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 256482.80
AVERASED CRITICAL FLOW VELOCITY HEAD(FEET) = 7.555
II CRITICAL FLOv SPECIFIC ENERGY(FEET) = 22.667
****+* DESCRlPTION OF STUDY *************
-1- RECTANGULR CONCRETE CHANNEL *
�� / Q=4000 cfs. �= *
* 12 ft WlDE, 10.5 ft DEEP *
***
-_ *«*************+***************************************
>>>> CrANNEL INPUT TNFORMATION
CHANNEL Z(HORIZONTAL/VERTICAL> = .00
BASEWIDTH(FEET) = 12...
CONSTANT CHANNEL SLOPE(FEET/FEET) = .070800
II UNIFORM FLOW(CFS) = 4000'00
MANNINGG FRICTION FACTOR = .0130
II NORMAL-DEPTH FLOW INFORMATION:
___________
>>>>> NORMAL DEPTH(FEET) = 5.45
FLOW TOP-WIDTH(FEET) = 1 12.00
II FLOW AREA(SQUARE FEET) = 65.35
HYDRAULIC DEPTH(FEET) = 5.45
FLOW AVERAGE VELOCITY(FEET/SEC.) = 61 .21
I UNIFORM FROUDE NUMBER = 4.623
PRESSURE + MOMENTUM(POUNDS) = 485596.80
AVERAGED VELOCITY HEAD(FEET) = 58.183
I SpECIFIC ENERGv(FEET) =
_ 63.629
_ __
CPJTICAL-DEPTH FLOW INFORMATION:
il ____ ______________
CRIT ICAL FLOW TOP-WTDTH(FEET) = 12.00
CRITICAL FLOW AREA(SQUARE FEET) = 181.35
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 15.11
I CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 22.06
CRTTICAL DEPTH(FEET) = 15'11 2 7
'4VE‘A3ED CR7TICAL FLOW VELOCITY HEAD(FEET) = 7.555
CPJTTCAL FLOW SPECIFIC ENERGY = 22.667
II
************************** DESCRIpTION OF STUDY ********************
11 x RECTANGULAR CONCRETE CHANNEL *
* Q=4000 cf n=0.015 *
* 11 ft WIDE, 10.5 ft DEEP
**************************************************************
~~ *****.h**********
>> >>CHANNEL INPUT INFORMATION
I CHANNEL Z(HORIZONTAL/VERTICAL) = .00 _
BASEWIDTH(FEET) = 11.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .094500
UNIFORM FLOW(CFS) = 4000.00
w� MANNINGS FRICTION FACTOR = .0150
_ _ _ _
il NORMAL-DEPTH FLOW INFORMATION:
>>>>> NORMAL DEPTH(FEET) = 5.93
FLOW TOP-WIDTH(FEET) = 11.00
II FLOW AREA(SQUARE FEET) = 65.27
HYDPAJLJC DEPTH(FEET) = 5.93
FL T
OW AVERAGE VELOCITY/FEET/SEC.) = 61.28
I UNIFORM FROUDE NUMBER = 4.433
PRESSURE J MOMENTUM(POUNDS) = 487119.30
AVERAGED YELOCITY HEAD(FEET) = 58.316
I I SpEClFIC ENERGY(FEET) = 64.250 =====================================_======================================
CRITICAL-DE FLOW INFORMATION:
-------------------------------------------------------------- ---------
CRlTICAL FLOW TOP-WIDTH(FEET) = 11.n(
~~
CRITICAL FLOW AREA/SQUARE FEET) = 176.15
CRITlCA� FLOW HYDRALLIC DEPTH(FE T) = 1
CRITICAL FLOW AVERAGE VELOCITY(FEET/FEC.> = 22.71
U�
CRITICAL DEPTH(FEET) = 16.01
CRITICAL FL PRESSURE + MOMENTUM(POUNDS) = 264030.70
'«ERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = R.111 �� CRITICcL FLOW SPECIFIC ENER8Y(FFET) = 24.021
I ***+************ **** ****** DESCRIPTIIN OF STUDY *************************
* RECTANGULAR CONCRETE CHANNEL *
* 0=4000 cf n=0.013 �
I * 11 ft WIDE, 10.5 ft DEEP *
**************************************************************************
11 ****************************************************************************
>>>>CHANNEL INPUT INFORMATION --...r
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 11.00
��
CONSTANT CHANNEL SLOPE(FEET/FEET> = .094500
UNIFORM FLOW(CFS) = 4000.00
MANNINGS FRICTION FACTOR = .0130
11 ==== _ _
NORMAL-DEPTH FLOW INFORMATION:
1/ -
> >>>> NORMAL DEPTH(FEET) = 5.33
FLOW TOP-WIDTH(FEET) = 11.00
FLOW AREA(SQUARE FEET) = 58.60
I HYDRAULIC DEPTH(FEET) = 5.33
FLOW AVERAGE VELOCITY(FEET/SEC.> = 68'26 23
PRESSURE + MOMENTUM(POUNDS) = 538860.80
AVERAGED VELOCITY HEAD(FEET) = 72'351
SPECIFIC ENERGY(FEET) = 77.679
====
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 11.00
CRITICAL FLOW AREA(SQUARE FEET) = 176.15
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 16.01
I CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 23.71
CRITICAL DEPTH(FEET) = 16.01
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 264030.70
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 8.007
�� CRITICAL FLOW SPECIFIC ENERGY(FEET) = 24.021
I/
��
C
C
C
C
C
C
C
C
C
L
C
C
40 FES MUM= IMIDIerf
MOM= F
11651 Sterling Avenue, Suite A PROJECT: E 14'DA C//ANNEL PROJECT NO: 2/0‘,/10/
��� $
Riverside, CA 92503
«. n ■� S (714) 354 -0161 BY: 7 1 . l DATE: 03,8ci CHECK DATE:
& * ,PEC TANCOLAR CDN e1/4A/g z
Civil Engineers • Land Surveyors VELOC/rY = ¢ FPS' SHEET / OF 29
°g'" \ -s-- \ \ \\ \.. \ \ - -0 co co v q A
et V v 0 , 0\ •A •A .-1 N N to 0 V V N N v N °`
1p * •4 * + + Ot 4.. ♦ a+ ♦ 0 + 4 1 i C� + t 0+
c N O CO vi O O
11 " �� �� � o vi O 0 O O O o 0 0 0 u 0 0 0 O O W 1/41 O p f'
,� N D
,� ■J x A V ;t4 A
' 11 O O 0 ( W -6 - N 40 .. 0 I l
■ 0 O p O 0 0 p p 0 O O 'Q
a y y
O O O O 0 0 O O 0 O O O li
00 0 � p 1 co 0 9. p ISO ° 9 °
9 co
S.:0 0 0 O 0
4 �4
o o . to 1, - to 0, 0 . 0_ W o C
4) 10
11 , �1 �� 0 'q O 4 :0 a, ,o p co o n o 0 - co � �
' 1 ^ - 0 ul c.1) Ill o H ' h cr1 clti i N H w O n1
X o 0 0 o 0 0 0 0 O 0 u1, `i `. \
11 1 1 y
O O ` ■ N N N 1 N 3 w u tr
° eN uN o " *A CO O p p °o Z 1.
X r o v d
Z Z Z o O ° o o 0 i
h�� h o 0 w I II o, 1 N � � it
O 4 0 0 Z b 1.
- Z < a o O O 0 0 0 0 ' 0 0 0 0 aRI
n N h o A W �A N o W N oN co v p j �
ill
n n \ y N N N N N ( w W w w
0
Z NJ b N w a 00 ix N a r .
� w w w w w w o�
f. r 0 o 0 0 0 0 0 0 0 O 0 X n
• • 0
� Z
o c/1 u1 u1 � n °•) v `� �‘' n
D I y y W(1 0 0 0 0 0 0 0 0 0 0 . A
+ V o O 0 0 o o 0 0 0 0 ° A
0 + 0° 0 0 o b o - °
C, o o u U1 U U U Ul °
n
y y `^ c" -"° '4
v W h °� o y RI
co co A,N h w ..4 w 1.
P N W! v - O v N
∎r w
FUSCOE 11651 Sterling Avenue, Suite A PROJECT: ET /WA/44 eihtwa PROJECT NO: 2/0‘ 110
Riverside CA 92503
(714) 354 -0161 I 6 Z6 -8
BY: DATE: 9 I CHECK DATE:
- WILLIA T = .
- LINDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET Z OF 29
R ECTA Al COLA R Co,JC! ETE C NAtIIJEL SEC-nod
V4i,4 = 10 f-A /sae .
a= ¢000 c.-Fs. W= 75' To 80 H = 55O'
4,9 e s' . = 23.5 TO 45' H/ = 65o To 9527
a = S, 300 C.f S. W = 75 H = ssO
s, yoo c. . w = 65 To 75 H.- 6.00 To C510 '
Q = 6, 70 o W = 65" ' E = 6
Q = 200 e.{'s. W = 65 1 = 7,00
1' w ' 1
1
y w
:MO
FUSCOE 11651 Sterling Avenue SuiteA PROJECT:ET/WANDA e PROJECT NO: 2106, / /o /
WILLIAMS
Riverside, CA 92503
(714) 354 -0161 T -_ I 6'' gi 1 BY: DATE: CHECK DATE:
. Z
&
Civil Engineers • Land.Surnryors SHEET 3 OF 29
1 0/►/l STA • S51 TO STA • 66 +00
a = ¢ 900 e.74s . S= o•020 e 9 Y,v,A/ _ 10 A/see .
T g y b = Z¢ ' FOR k= 0.002, TA- 0.013
V = 3 9.0 2— .LES TWA N 49 4/see,
MAX
7 b . 23.5 Foie K.= O.O02 7L 0.0/3
\ 39./ 771, ,eLosE To 4-0 p. /see .
So USE. b. 23.5 , DN= 53 -
FOR ,k 0.007 7t = O.0/5
D = 87 V - 3s51)17 1 1/44ue., F =2.f8
VMAx . _ 39.17 = 2 .99
XD f 32.2 NC 573 z
FROM PLATE 4 — dm ; /OR OR 8% A/,e ENT,eA /i lF$T
D - 5:87xo.o8
D 0,47
ti�
FUSCOE 11651 Sterling Avenue, Suite A PROJECT: Ej /WANDA e//,4 V /Q PROJECT NO: 2/0(.1/0/
,.. Ri CA 92503 BY, DATE: CHECK DATE:
WILLIAMS (714) 354 -0161 ' T Z I 6' z (� 8
UDGREN
& N SHORT
Civil Engineers • Land Surveyors SHEET 4 OF 29
0 - FRON\ STA. 67-t TO srA - 7/7 88
Q _ 1,900 C•�S / s'= 0.03 V MAX . = 40 Tom' SAC'
TR y b = ¢C FOR K= 0.002, 0.0/3
vmAx 39,47 7f /IStc , LESS T//A'/ 40 A
TRY b_ 4S Fog K= 0.00 -n _ 0.0/3
V MO 39.7 S t' / /Sec . G1OSE T o
40
Co •
USE b =4s , D A/ - 2.74
Fog /C 0.007 , 71= 0.0/S
D = 3.00 V= 36.3- 1-/1/4ec . F�= 3.70
F-_ . 31,79 - _ �•
.9 X D \J 3 2.2 X Z •74
FQ dM PLATE 45 —
/./ 6 OR /6% AIR Eit/r A/N/,tfA//
D = 3- 0ox /6
DA : 0 •��
c
c
c
c
c
r
E
HYERAULIC CAILIKATIONS -
CAPACITY OF WSW= SAN MAINE CHANNEL,
VICTORIA SINEW TO SAN SWAINS BASIN NO. 5
APPENDIX H
1
boo
- ma „ 116sr ingAvenue,sire PROJECT: ET /WANO4 C/1ANMr& NO: Z1 O 6 , 110 /
R verside, Call brnla 92503
N (714)354.0161 BY: ?; _, ' DATE: , /g-_8c? CHECK I DATE:
�'"" � (n4)354-0810
.
Clod Engineers •land Surveyors SHEET / OF /1
-4 v) • �N NV1 N = o� ti) v� DN o 1St .'3
w ~ D N • y t o. -o W rn
n
y 0 w .� w �p O w PN V\ Po w VI
-.Mil .. o* - ul �i %.1
• t>7 "vtr1 a 4 0 q N ,Acl u) 0
o .1 . y w ° o ` i + c �t - t
J = p `31 .1 N P 0D .,• J -,A :Pi ' mil ` N
- - 0 co $ W - CO (Pi V W O N O
0 0 0 o 0 0 O 0 0 O o 0 O 0 0 O
p 0 0 0 0 o 0 0 0 0 o o o
o O O o O o 0 0 O u\
p p O o O o r
- b o O N N N o O O O 0 0 O O N p
u14 u1 U1 Crl u 1 VI 14 'P - A A *A • P `A * 'P
N) N N N N N O 0 0 p 0 0 0 O 4 'I
0
V W O H H N N * W o O u)
O 4 .p O W . c O a0 -A kri O y Z
�. -0 -. ,p vi N N *4) W W
CO W
V1
0 m
q v a) 90 v o u - v1 - -- j A
_p ` r r)
Z
N W N CO N W N /1 Z
1I o N h o ( o H 0 o NO r
. . , , o
o
0 y
3 ITI
v o v. O 2 aj o� W �► ( vi
- .
. - 1
y
0
O O 0 O O O O O O O O 0 O O O to
,„, o O 0 0 0 O O O 0 p 0 p O O o
vl
II ** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
' __ WITH ALL DIMENSIONS IN FEET OR FEET AND SECOI`IDS __
(c) Copyright 1982 -88 Advanced Engineering Software (aes)
II Ver. 3.3A Release Date: 8/02/88 Serial # 2224
Analysis prepared by:
II FUSCOE, WILLIAMS, LINDGREN & SHORT
1
11 *: *_ * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
*: CAF'AC I TY FOR SAN SEVA I NE CHANNEL *
_•{
* =121 00 c fs. S=0_0240 *
i.
REEBOA "+'.D-- ").)0 -f 3- *
. E* 0 :** ***,' * ** ** r* * * * * * ** * * * ** ************* * * * * * * * * * * * ** : : : * *=r * * ** * * ***rn
II * E NTERED INFORMATION FOR 3 UBCHANNEL._ NUMBER 1 .
'BODE NUMBER " X " COORDINATE "Y" COORDINATE
1 - --
33.5
1 3.
a 2000
3= 20,
5i) 1)i).t)_)
SUBCHANNEL SLOPE ( FEE / FEET) = .024000
EIJI: _HANNEL MANNINGS FRICTION -ACTOR •- .014000
II US-Od 9 U3 ' CHPrNNEL ,FL_OW ( CFS) - 12003.0
II SUBCHANNEL FLOW AREA(SQUARE FEET) = 239.76
EUiCHANNEL FLOW VELOCITY(FEET /SEC.) = 50,062
SI.JBCHANNEL FROUDE NUMBER = 3.296
SUECHANNL FLOW TOP-WIDTH(FEET) = _ 3.46
11 3UBC;I IANNEL HYDRAULIC ' DEPTH (FE = 7.17
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 12 000.00 - - - -
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 12003.02
1 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 99.97
II NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANE: :: ELEVATIONS.
II
II * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* CAPACITY FOR SAN SEVA I NE CHANNEL *
* 0=7000 c f s . S=.0024(1 *
II * FREEBOARD= 2.5 ft *
*********************************:********* * * * * * * * * * * * * * * * * * * * * * * * * * * * ** **
7
'
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINTE "Y" COORDINTE
^ �� 1 .00 100.00
2 .00 91.00 f i i i
I 3 20.00 91.00 u
4 33.50 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
I SUBCHANNEL FLOW(CFS) = 7009.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 162.58
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 43.113
SUBCHANNEL FROUDE NUMBER = 3.252
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 29.79
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.46
_ _________
II
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7000.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7009.34
I ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION...............~............. 97.53
II
NOTE: WATER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANK ELEVATIONS.
II **)(*********************** DESCRIPTION OF STUDY **********************
* CAPACITY FOR SAN SEVAINE CHANNEL *
II * Q=5200 c S=0.0240 *
* FREEBOARD= 3.5 ft *
************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
NI 1 .00 100.00
2 .00 91.00
3 20.00 91.00
I 4 33.50 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 5200.1
SUBCHANNEL FLOW AREA(SQUARE FEET) = 131.55
I SUBCHANNEL FLOW VELOCITY(FEET/SEC~) = 39.529
SUBCHANNEL FROUDE NUMBER = 3.225
I SUBCHANNEL FLOW TOP-WIDTH(FEET) = 28.19
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.67
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5200.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5200.14
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
=. =..^'T 96'46 ~n
'
____ == = ===== = ===================
0� ** RESULTS OF IRREGULAR CHAN ANALYSIS ii
U�
~� CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
=====______________
(c) Copyright 1982-88 Advanced Engineering Software (aes)
Ver. 3.3A Release Date: 8/02/88 Serial # 2224
-- Analysis prepared by:
FUSCOE, WILLIAMS, LINDGREN & SHORT
II
************************** DESCRIPTION OF STUDY **************************
II * CAPACITY FOR SAN SEVAINE CHANNEL *
* Q=18800 cfs, 8=0.0240 *
II * FREEBOARD= 0.00 ft *
****
* E INFORMATION FOR SUBCHANNEL NUMBER 1 : /
N�
NODE NUMBER "X" COORDINATE "Y" COORDINATE i... �� ~f
1 .0O 100-00 /
�� 13.50 91.00 /5 ;
38.50 91.00 � , icl
4 52.00 100.00
���
II SUBCHANNEL SLOPE(FEET/FEET) = .024000
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
�� . ^ '^' . ..' .. ' .. ' .. ' ^'^ . . ^ . ......... ............~^..'.. ^.. . .. ..... ^.. .......^ .
-- SUBCHANNEL FLOW(CFS) = 18807.9
II SU9CHAN�EL FLOW AREA(SQUARE FEET) = 345.56
SUBCHANNEL FLOW VELOCITY(FEET/8EC.) = 54.427
SUBCHANNEL FROUDE NUMBER = 3.719
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 51.95
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 6.65
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 18800.00
m� COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 18807.92
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
II ELEVATION 99.98
N� NOTE: WATER SURFACE IS BELOW EXTREME
o�
LEFT AND RIGHT BANK ELEVATIONS.
NI ________-------------- - -------------------------------------------
************************** DESCRIPTION OF STUDY **************************
II * CAPACITY FOR SAN SEVAINE CHANNEL *
* 0=10300 cfs, 8 *
* FREEBOARD= 2.5 ft *
II ********************************************************
°�
�
'
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : /
NODE NUMBER "X" COORDINATE "Y" COORDINATE L �� ^�
[
~~ 1 .00 100.00
2 13. 50 91 .00 ���/ |� ��
3 38.50 91.00 � 4 /
II 4 52.00 100.00 2.5'
SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
I SUBCHANNEL FLOW(CFS) = 10313.6
SUBCHANNEL FLOW AREA(SOUARE FEET) = 225.05
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 45.829
SUBCHANNEL FROUDE NUMBER = 3.589
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 44.44
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.06
II
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 10300.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 10313.59
I ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 97.48
�
I
NOTE: WATER SURFACE IS BELOW EXTREME
I A LEFT AND RIGHT BNK ELEVATIONS.
_________________________ ___________________________________________________
I/ ************************** DESCRIPTION OF STUDY *************************
* CAPACITY FOR SAN SEVAINE CHANNEL *
I * Q=770O cfs, S=0.024O *
� FREEBO 35 ft ***
II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
11 1 .00 100.00
2 13.50 91.00
3 38.50 91.00
4 52.00 100.00
-- SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
....
SUBCHANNEL FLOW(CFS) = 7705.1
SUBCHANNEL FLOW AREA(SQUARE FEET) = 183.34
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.027
SUBCHANNEL FROUDE NUMBER = 3.525
SUBCHANNEL FLOW TOR-WIDTH(FEET) = 41.53
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.41
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7700.00
COMPUTED IRREGLLAR CHANNEL FLOW(CFS) = 7705.14
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATICN 96.51 z.-
��
** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
II WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
(c) Copyright 1982 -88 Advanced Engineering Software (aes)
II Ver. 3.7A Release Date: 8/02/88 Serial # 2224
Analysis prepared by:
II FUSCOE, WILLIAMS, LINDGREN & SHORT
II
II * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
: CAPACITY FOR SAN SEVAINE CHANNEL
:* 0=1481)n = f i , S=0.0240 *
11 * FREEBOARD_ 0.00 ft *
* * * * * ° * * * ** * * * *** ** * * * * * * * * * ** * *: ******** * * * * * * * * * * * * * * * * * * * * * * * * * *: * **
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 .
NODE NUMBER "X" COORDINATE "Y„ COORDINATE
as
1 . .y .1 9 90.0 0
2 ,f ;__ .00 JO'
11 Yea''() 100. 0 3 ZO'
S UBCIH A:NNEL SLOPE (FEET r EE T) = .024000
10
SUBCHANNEL MANNING-3 FR I Cr-T I ON FACTOR - -- .0140C)
t: UBCHANNEL FL_L:=J (CFS) =- 14507.9
II U SUBCHANNEL FLOW AREA(SQUARE FEET) 275.37
-- SUBCHANNEL FLOW VELOCITY (FEET /SEC .) = 52.684
SUBCHANNEL FROUDE NUMBER = 7.710
SUBCHANNEL FLOW TOP - WIDTH(FEET) = 75.00
11 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 7.87
11 TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 14 500.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 145 07.91
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 100.01
II NOTE: WATER SURFACE IS ABOVE LEFT OR RIGHT
BANE( ELEVATIONS.
' *n * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* CAPACITY FOR, SAN SEVAINE CHANNEL *
* Q= 8800 c f s . S= 0.0240 *
II * FREEBOARD= 2.5 ft *
:****************************************** * * * * * * * * * * * * * * * * * * * * * * * *;t * * *k*
6
'
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINTE "Y" COO| INATE 35, �"
1 .00 10O.00
,�
2 .00 90.00 "=U
�� 3 20.O0 90.00 �� So'
~~ 4 35.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 8809.7
I SUBCHANNEL FLOW AREA(SQUARE FEET) = 191.57
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 45.988
SUBCHANNEL FROUDE NUMBER = 3.272
U�
0� SUBCHANNEL FLOW TOP-WIDTH(FEET) = 31.22
m� SUBCHANNEL HYDRAULIC DEPTH(FEET) = 6.14
II
- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 8800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 8809.69
I ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 97.48
II
NOTE: WATER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANK ELEVATIONS.
____________________________________________________________________________
II ************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR SAN SEVAINE CHANNEL *
I * 3= 6900 cfs, S=0.0240 *
* FREEBCARD= 3.5 ft *
*****
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I 1 .00 100.00
2 .00 90.00
3 20.00 90.00
I 4 35.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .024000
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 6901.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 160.79
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.922
SUBCHANNEL FROUDE NUMBER = 3.251
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 29.70
N� SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.41
��
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6901.58
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
FIF VAT T 96.47 _,
C°.OTE. L TER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANK ELEVATIONS.
II
*:: * * ** * * * ***** **** *** * ** DESCRIPTION OF STUDY ** ** *** * ** *:K* *** * * ** * * * **
II * CAPACITY FOR SAN SEVAINE CHANNEL *
* C=12700 cfs, S =0.0252 *
* FREEBOARD= 0.00 ft *
II ** ie**************************************** * * * ** * * * * * * * * * * * * ** * * * * * * * * ** **
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE
33.5.
1 .00 100.00 .00
/ r
20 . U� 91 . U(a
2.0'
4 77.50 100.00 II SUBCHANNEL SLOPE(FEET/FEET) = .02520o
i
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
I/ SUBCHANNEL FLOW (CFS) = 12323.0 = - 5UBCHANNEL FLOW AREA(SQUARE FEET) = 240.10
SUBCHANNEL FLOW VELOCITY (FEET /SEC .) - 51.724
II SUBCHANNEL FF'OUDE NUMBER = 7.377
'3LHCHANNEL F1 "W TOP- s+JIDTH(FEET) -
3.47
SUBCF ANNEL HYDRAULIC DEPTH (FEET) = 7.17
TOTAL I R F:ESULAR CHANNEL FLOW (' °FS) WPNT -D = 12701).00
II COMPUTED IRREGULAR CHANNEL FLOW (Cf- S ; — 127:2.97
EST I IATED IRREGULAR CHANNEL NC RMAL DE - WATER SURFACE
II ELEVATION..,... . . ......... ............. 99:93
NOTE; WATER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANt ELEVAT CONS .
II
* *.1*** * * * ** *;JC * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * ** * * * * * * * * * **
CAPACITY FOR SAN SEVAINE CHANNEL *
* 0- 71017 cfs. S= 0.0252 *
: t FREEBOARD= 2.5 ft *
***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
II
* EI`• INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE
1 .00 100.00
.00 91.00
II - 2i l .00 91.00
4 3.50 100.00
SUBCHANNEL SLOPE ( FEET /FEET) = .n25200
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
8
'
SUBCHANNEL 'FLOW AREA(SQUARE FEET) = 161.39
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 44.048
SUBCHANNEL FROUDE NUMBER = 3.3= U �
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 29.73 .
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.43
II ---- ------------------ ---- ------ ------------------ ------
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7100.O0
II COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7108.86
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 97.49
NOTE: WATER SURFACE IS BELOW EXTREME
I LEFT AND RIGHT BANK ELEVATIONS.
II
************************** DESCRIPTION OF STUDY **************************
I * CAP FOR SAN SEVAINE CHANNEL *
* Q=5400 cfs, S=0.0252 *
* FREEBOARD=3.5 ft *
II **************************************************************************
I * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 NODE NUMBER "X" COORDINATE "Y" COORDINATE
33.5 /
1 .00 100.0O
/
2 .00 91.00 �r F
0 � 3 20.00 91.00
4 33.50 100.00 2.0'
II SUBCHANNEL SLOPE(FEET/FEET) = .025200 . SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
N� SUBCHANNEL FLOW(CFS) = 5409.9
�� SUBCHANNEL FLOW AREA(SQUARE FEET) = 132.97
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 40.686
SUBCHANNEL FROUDE NUMBER = 3.306
I U SUBCHANNEL FLOW TOP-WIDTH(FEET) = 28.26
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.70
II
_ _
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 5400.00
II COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5409.88
.
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
II ELEVATION 96.51
I NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
__ ________ - _______
II
II 0
-- -- -
'
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
--
1
************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR SAN SEVAINE CHANNEL lc
�� * 0= 14800 cfs, S=0.0252 *
* FREEBOARD= 0.00 ft *
**************************************************************************
1
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
N�
/ �� NODE NUMBER "X" COORDINATE "Y" COORDINATE
��
36-
1 .00 100.00 f
2 .00 90.00 10 ^�.��'. �
I 3 20.00 90.00 ^ .
4 35.00 100.00 �L0
SUBCHANNEL SLOPE(FEET/FEET) = .025200
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
U�
^^^`^^^^^^^^^^^^^^^^^`^^^^^^^^^^^^^^^^^^^^`^^~^^^^^^^^^^^~^^^^^^^^^^^'^^~^^^
0� SUBCHANNEL FLCW(CFS) = 14807.8
U�
~� SUBCHANNEL FLOW AREA(SQUARE FEET) = 274.67
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 53.910
SUBCHANNEL FRO= NUMBER = 3.391
II SUBCHANNEL FLOW TOP–WIDTH(FEET) = 34.99
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 7.8•
II ____–____ ________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 14800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 14807.78
1
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 99 99
....~........................ .
I
NOTE: WATER SURFACE IS BELOW EXTREME
II LEFT AND RIGHT BANK ELEVATIONS.
II
I ************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR SAN SEVAINE CHANNEL *
I * Q= 9000 cfs, S0.0252 *
* FREEBOARD= 2.5 ft *
**************************************************************************
II
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
— 00 100
1 ^ 00 ^
2 .00 90.00
I 3 20.00 90.0O
4 35.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .025200
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
� '
'
SUBCHANNEL`FLOW AREA(SQUARE FEET) = 19 1.25
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 47 .094
If SUBCHANNEL FROUDE NUMBER = 3.352
SUBCHANNEL FLOW TOP—WIDTH(FEET) = 31.20
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 6.13
__________
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 9000.00
I COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 9006.85
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I ELEVATION 97.47
II NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
I
****** DESCRIPTION OF STUDY **************************
I * CAPACITY FOR SAN SEVAINE CHANNEL *
* Q= 7100 cfs, 5=0.0252 *
II * FREEBOARD= 3.5 ft *
*************************************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE /
.35
1 .00 100.00 ' I 00 90.00 /�
20.00 90.00
35 00 100 00 2o
4 ^ ^
SUBCHANNEL SLOPE(FEET/FEET) = .025200
I SUBCHANNEL MANNlNGS FRICTION FACTOR = .014000
II ............... .........................
SUBCHANNEL FLOW(CFS) = 7108.7
SUBCHANNEL FLOW AREA(SQUARE FEET) = 161.39
1 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 44.047
I SUBCHANNEL FROUDE NUMBER = 3.332
SUBCHANNEL FLOW TOP—WIDTH(FEET) = 29.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.43
II
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 7100.00
I COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7108.68
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I ELEVATION 96.49
I NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
II
Tf 2 oi
1 ETIWANDA CHANNEL
2 HYDRAULIC CALC. BY TONY ISLAM
III 3 OPEN CANNEL VICTORIA TO BASIN 5
3 1753.061303.64 1 1313.9
S 1815.1 1304.26 2 .014
2930.0 1325.5 2 .014
S 2900.0 1327.5 3 .015
4565.0 1366.5 3 .015
S 4660.0 1369.5 2 .014
III 1 46t0.0 1369.5 2 .014 1000.0
5212.0 1385.0 2 .014
H 2 1390.05
III D 1 2 13.5 25.33
D 2 2 9.0 23.5
D 3 1 9.0 25.5 0.0 1.5
4900.0
1
1
1
1
1
1
I
1
1
1
1
1
1
N'ITES 3 0 r
1. GLOSSARY
I = INVERT EL= VATION
1 C = CRITICAL DEPTH
W = WATER SURFACE ELEVATPON
H = HEIGHT OF CHANNEL
E = ENERGY GRADE LINE
Ill 1 = CURVES CROSSING OVER
B = BRIDGE ENTRANCE OR EXIT
Y = WALL ENTRANCE OR EXIT
2, STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY
1
1
1
1
1
1
1
1
1
1
1
1
1
ETIWANOA CHANNEL
I HYDRAULIC CALC. BY TONY ISLAM 0
OPEN CHANNEL VICTORIA TO BASIN 5 J of
III 1733.06 .I W CH E .
• TX
:923.65 .I W H C E . R
1994.24 ,
1984.93
2''35.42
2106.01
2176.60
2 247.19
I 2317.78 I W H C E R
2288.38
2458.97 .
2529.56 .
I 2500.15 ;
2870.74
2741.33 .
2811.92 .
2282.51 I W H C E TX
2953.10 . I W HC E . R
3023.69 .
I 3 :.94.28 .
2154.87
22 ,
33'5.54
344'.23 .
'Si7.83
I 3538.42 ;
3559. ?1
37 .
III 3800,19
2970.79 . 1 W HC E R
2941.37 .
' 4011.95 .
4082.55
4153.14 . .
4223.73 i
:94.32
4384.91
4435.50 •
4506.09 i .
4576.68 I W H C E TX
»647.28
I 4717.87 F WH C E 1X
4788,46 I W H C E R
4859.05
4429.b4 .
1 T300.23 .
5070.82
5141.41
1 5212.00 I W HC E. R
. .
•
1303.64 1314.93 1326.22 1337.51 1348.80 1360.09 1371.38 1382.67 1393.97 1405.26 1415.55
1
Fusax PROJECT: PROJECT NO:
11651 Sterling Avenue, Suitt A ET /6!/gND GNANNEL 2/06'. /10 �
Riverside, CA 92503 BY I DATE CHECK f DATE:
S (714) 354 -0161 77I , 6' u s9
LINDGREN
& SNORT
Civil Engineers • Land Surveyors SHEET 5 OF 29
FRoAA STA• 77t 63 TO STA. 82 +5O
Q = 7 20 o G. f s. , S= 0.03 vMAX = 10 fl• / .
Trey 6= 6¢' FOR k- O.00z, 7x. _ 0.013
V MAx • = ¢o, g 2-1t GRE•ATEie T7/AA/ Q0 /Ste
Td)' b =65 FOR K= 0.002, n =0.013
VMA)e = ¢0. gf eLOSE To ¢O , /See
So usE b = 6S r , D„/ = 2.73
FOR
K =o•0o7
D,, = 2- •98 V. 37. /G4/sue. FN= 3.79
F VMAY = 40 . S$ _ 4.3 3
xo J 37.2x2,73
FRoM PLATE ¢-s di"- OR /6% A/R E,✓T,eA /.vf L VT
2.98x
D _ 0 . ¢8
6) , 0)00.5s) 2- (‘5)
32.2,cgoo o
Sy o ¢i
11651 Sterling Avenue Suite A PROJECT: ET /194I/OA CAANN PROJECT NO: Z /0g", //0
WILUAMS �'�'� R ive rsi d4 CA 92503 BY: DATE: 6 89 I CHECK DATE: (714) 354-0161 &Mar
TI.
aril Engineers • Land Surveyors SHEET 6 OF 29
FROM 5TA . S24- So "TO STA • 97„00
Y q� � -
a= 6,700 c . f s. , S= 0.0 36 8 , ,u, 1-A�sec •
TR b= 6 FOX k 0.002 L 0.0/3
1/ 44x. = 3 9 . 2 g /4' /see. LESS TNAnI 40
s
TRy b= cc Fog k = 0 . o O 2 0.0/3
39,49 . CLosE TO 40 4 /sea .
So USE b.= Cs D,/
2.6/
Fog- /C = 0.007 _ 0.0 /S
DA — 2.85 , V= 3'./5744/1e.) F= 3.77
F� V iicA x __
39.48 = 4,31
J32.2x2.6/
rgoM PLA 4S — d /d = //‘ OR /tS /0 AhQ EAVrAW,VM&Vr
DA = 2.85x 0./C
DA - 44
FusCOE 11651 Sterling Avenue, Suite A PROJECT: ET /w4VDA e/AfiV /EL PROJECT NO: 2/0 /10/
WILLIAMS 9250
!
Riverside, CA -0161 ?r is Zt+'�9 BY: DATE CHECK DATE:
(714) A 1 • I
SHORT
Civil Engineers • Land Surveyors SHEET 7 OF 2'f
F'R S TA • 97,-0O To STA • /07tOO
Q = S, 9 00 c.f.'s. Sr O.o368 V,HA 1 11• /,tae .
7 6= 6 Fog K ,O,00L, = 0.0/3
VA.1 ". = 37.4 -o f// LESS 4e) 14.tc -ec
F0d2 0 K 0.002 -
T1e�/ b = 6's �
so usE b= 65 , b = 2.4
Fo k = 0.007 , n : 0.0/5
Dm= 2.6¢ V= 30,4/ {fs/ser., r = 3.73
9XD j .2x 2,4 I
FROM PLATE 4 2� _ /�/6 o,e /6/ Aire ENre4 /df1Fn/T
D 2.64x
DA= 0. #2
y (l) (37.421
32.2x8000
A y = 0.36
11651 Sterling Avenue, Suite A PROJECT: ET /0;44DA C/IANNEL PROJECT NO: 2/0 6. 1/0
Riverside, CA 91503
(714) 354 -0161 BY: T . r , I DATE 6'u's9 CHECK 1 DATE:
1 LINDGREN
& SHORT
Civil Engineers • Land Surveyors SHEET 8 OF 26i
FROM STA. /084- 45 To STA. 125 -1-0O
Q - S, 900 e,fs. , S= o.o.S36 , V, t4Ax 4oi/ /s&.
Trey b = 76 Foil k 0.00 z. I. = 0.013
VMaX. = 3 9. SC /gee , is THAN ¢o- !•/see
Tl2y b = 75 , j o i e 0 . 0 0 1 „ n = 0.013
v,, Ax , = 40.0 8 f� •sec e Losc To 40 -ft% .
So USE 6= 7S D /• 9'
OR K= 0.007 �. O.0 /
= S
F ,
D 2./4' , V. 3G•73 /sic• FA/ = 4 . 42 -
F= V "AAY• _ 40.08 57°5- �D 3 ?.2x/,96
FROM PLATE '5” — _ / 20 A-64 y? eA /i✓MENT
D _ 2./4x0,20
bA = 0.
Ay = ( /) (40.08) '7S
32.zg goo°
FUSCOE Avenue, Sui A PROJECT: /v D /NEL PROJECT NO: 2 /0C, //D /
11651 Sterling A u PROJECT ET/ MAMA A �// 1
WILLIAMS Riverside, 92503 BY: T= 1 DATE Z6 -s9 CHECK I DATE:
UNDGREN
& SNORT
Civil Engineers • Land Surveyors SHEET 9 OF 21
FROM STA . /2_5 0 TO STA . /¢6'4-0
Q- 5,300 ef S. o.os3� YMAX= 40 P./Set .
Tiny b = 76 FOR !c: 0.001, = 0.0/3
VMAx = 3 8.2 91l 4LESS r//AA/ .
TRy b - 7s i FOR. K: 0.00 2 - = O.0/ 3
VMAX. = 3g -Fl•% •
50 USE b = 75' x ) D,,, /•8�
Fog K = O. 0/
0.007 = S
F i� o , n
3SZS
2.00 ) V = 11�see fin/ = 4.39
F- YMAx. 38 -47 _ Sop
9CD 32.2�c /.84
Fie orn PLATE 4 .24■Vd _ /. 2 0 oR zo ° ° A/4. E1✓TRA /NMEA/T
�A = 2.00,( 0.2O
1 0 4
1
1
Avers Suite PR OJECT: //(/A,(/ e NNEL PROJECT NO: Z /0( //Q/
FUSON 11651 Sterling Avenue, E r Q'4 �A
Ri c 90161 BY: DATE q� CHECK I DATE:
i WILLIAMS (7 de, 3540161 T 2. Z6�
uN N
aril Engineers • Land surveyors SHEET /0 OF Zq
FRoM 57A. /4-64-00 TO STA • /48+ ZO
Q - 5;300 e.l S. S= 0.OSS( ,, YA4Ax. _ # fi isee •
TRy b = 74' FO#Z K1 O.002 � ' : 0-0/3
VAtAx . = f lr S¢ ff' /Stc . 6KEATEI- 77/An1 494 L
TRr b - 7s FOR k= 0.002 -rt. o•of
vmAx . = 44.37 f�- /sec .
So usE = 7 5 " ' , DN = /,5-9
Fog K.• 0.00 77-0.0 /s
bN = /.74', V= 1 o 7 1 4 4 ' . ) F. 5:44-
�/ M.►x . _ 44.3 7 = . z o
,,y x D 3 ?.2x /.S'9
FROND PLATE ¢S -- /.30 o R 307 A/A Fir.
DA_ 174- xor3o
DA O. SZ
.
FVSCO „ 11651 Sterling Avenue SuiteA PROJECT: ET /WAVLA C/€44.4.0 PROJECT NO: 2/06./101
Ri CA 92503 BY: DATE CHECK DATE:
NI.LIA1111S (714) 354 -0161 7 , _ , I �- 2e 81 I
DGREN
& SHORT
Cirdl Engineers • Land Surveyors SHEET /1 OF 2c1
FROM STA. /¢84-2 To STA . /C31- go
Q _ *,00 e.7rs. , S= o.o2s6• , VAAAX. = 4° /4f1- .
TT y b . 76 ' FO'. k = ,o . 0 o z y ii 0.013
VMAX•= 34 5 •� GESS r#4i ¢oci• /sae .
k= .002_ 7t- O.O/3
TRy b = 7 S Foie 0 ,
E VmAx . = 3 't .7 8 -Ricer, , eioSE Tv 4-0 P. /me ,
50 USE b = 7S' , Div = / -34-
F o g k= 0.007 'YL 0, 0IS
D,4 _ /-16 ' , V = 36.4( / s ¢ c ., F = s 3 l
F V,KAx • _ 3978 _ 6-0 6•
D 432.2x 1.34 -
FROM PMTE 4s — d.V _ 1.30 0g 30 % AAe- EA/reAm/HkNT
E " _ /4-e• x 0.3 O
DA = 0
.78 Z 7s
by = (/)( ) r )
32.2_ x800
Ay. 04-
El
11651 Sterling Avenue, SuiteA PROJECT: ef /j�/ /( €NAI/NEL PROJECT NO: z /oC, J /0/
Fuson Riversidy CA 92503
WILLIAMS (714) 354 -0161 BY: 7Z. I DATE 26_89 CHECK I DATE:
WW1
C'iril Engineers • Land Surveyors SHEET /2 OF 21
FRO STA . /63# SO TO ST'A • /77-t- 0O
000 �. s. S= 1/ ¢a /sue
Q — ¢i 0.070 8 l �S�tA�X . _ 7
Tie/ b= 76 FOR.. k 0,00 0,0/3
yMAx = 3 7 .3 4. #.1,/s t Esc 7 ''.‚•
TRY b = 75" FOie / c = 0.00 2 , = D. 0/ 3
V,RAX . = 37. 5 •
So USE b- 75 , v v - 12 -
Fog k_ 0.007, = 0 . 0 15
D /•Ss ", V: 34.39filPre, N. -4.87
f _ 37.53 _
XD f32.
FROM PLATE 4S a /2 0 Die 2-0X. e /'f EA/TRAM/146W
bA = /rSS
N
O.3
I (37 53 L 7S)
6 y_ � > > �
32.2)(80
/� y- 0 .4/
1
1 1651 Sterling venue, Suite PROJECT:ET //4 4 /t1/A/E PROJECT NO Z/0 �' / /0
mow 11651 c /
Riverside, CA 92503
• (714) 3540161 7- r. I 6 Z�'8� f BY: DATE CHECK DATE:
WILLIAMS UNDGREN
SHORT a
(MI Engineers • Land Surveyors SHEET /3 OF 2 -/
FKom. s rA . /78 f- ¢s To STA • /82
000e . s. S 0.09 45 ) I/ Ake = 10 N•/SQ.e .
rKy b= 8/ FOR k 1 0.002, = 0.D/3
VMAX . = 31.77 //see • LESS 77644/ l0 #/sSee
T/ey b . 8o Foie k = 0.002. — O. 0/ 3
V,RA, . _ fto • 02 P/s ' . eeoSE TD 4- 0—Wsec .
S• CJ b— 80' � D /•2S�
FOR K= 0.007 1 1 0 . 0 / 5 —
D - / , 36' � V. 3Cia- 8./Sec F .r:5" =3
N
F= - ' - °'` . _ �' 0 Z = 6. t
} q ;-(D 437.2x/.2s-
FieDM PLATE ¢S — d..4 _ /•3 0 DA 3o% A/2 r,vrRA /NMENr
D = /'36x0
DA=
Dy _ O)(4o•oz) (gv
32.2 X S000
by 0
•
'! k
... ._ ...r. +++n.. +•.r�.v:V:x- a'. -4-. .._lit: •.Q•j.'24� ..,�:�:- _.• f+Y .. P.1
i,aillosuYWrra.iri.bW. = " —+rW..MU....r .... _ _ • - �ll� r
1 • I! !I
•
EM 111 -2 -1601 f :1; ?I
A;:ncndi.x III �
1 July 70 ' 4.
l 11
E .
300 . ` 41 ; I {
'= tip + _ ` --*- . _:
250 Op—i ;. I
0 0 0 _1 oi.._..�.
-. - - _ • �� 0 ... _ -- ---_ . -_ I
.. I . I
00 p \
200 0 p ■
O
E _......_, --.
1 . ; I 44, °5 ! " :7;0 1 - ' ,7- - -___ --- I :1 1
- - 4ii 4Vel i filit i * 130 .�� f .I .
I •, "- .'- i ‘P.. 1111 , I. .
I ). _ C o:♦ _ Ap
�■�
. I - ......-_-,„ o �1
_____f
- a _ -_- ,_: 'tom_ - 1 , '
90
. ..1 3 - =_::..7_ - _:::::::.
J •
9 3 --_4- - - �- � _ , e f_. —. it ! I
--`- . - of + 1
• c .
30 _ . . 1
0.009 0.01 0.013 0.02 0.03 0.04 4 :1I ; .:
N 'S ANNING 11 ,
I' i
E . BASIC EQUATIONS i
1'
. C•32 •1-044012.20" i�, i,
141,11 1
i. 1•
.,... '
A 23.93. 21.93100to R/R
WM(R(: • lit • C. CHEST COEFFICIENT _ . 'i t�
R.NANNING•S R (31STANC(
'
cor rr IC1(NT ' ! I'' I I
R.NrDRAuLIG RADIUS, FT
P. • (OU,vALEHT ROUGMNE33 I 1 f JJ
1
N(IGM T, F T 1. 1 1' 1
•
• I�.ii.1
OPEN CHANNELS • � ! 11
' ?;
C-n -R -K RELATION {I p I1
0.008 < < 0.04 ;.
. I i I, II
'fF TEXT 6 ' 'I � l
_• fI 1 • t
Plate 4 ,; I,
i1'i q
E III - 6 ■ • .„
:I 1 � J
• , I • ,'
,,., ; I 'i ,
c
/¢ i;.II .� :,1
i • .
•
:A I
•
EM 4��0 - 2 -;1601 ��s;} �!
• Appendix III' •••,' ' , E •
1 July •7 0 •• ., �
• :!.;
`;,1
• ` •W. />t■J•.A1!{.p■aa /■ ■IWI 1111..■/■
/..s.o ' ■■YSa R�ar•/•a e : ;:
II I �
LEGEND 111 MOWN /�fiMUM= i ..7t '
I 1 0 MINNESOTA DATA •
• • KITTI Y � ■ � � / • • • ' . II
. OATH (E •ii ■ •t■/ ■1�S■ :''
■■.mmu
• Y■ ■R /R■■/UWWIIII ;
Y.■./■ /■Y/./■i■■ii ■ ■
■/ ■■■W / ■. ■R■fr■ii■• ■Y••••• / /rY■■ ■I
3 ■.. / ////.■.. ■/■ ■/■t
■ » /1f■■■Y/■t/ ■//
• ■■■ ■R ■.Y. ■ ■� ■tY...111W • ■ ■ti F ■ . • • I : I
.Y ■t../.. ■ ■■1111•W . t ° • MENA • .
a m ■. /R ■ ■ /Y.■Y■■■i/I1 ■■a■ /■ "MINN !.t 1
• 11111111111•111111111•11111•1•111•1111111111111•11111141••••••A 40111410.1510 - • : �;
J ••••••••1111111•••••••••011111•••1111/11111 / . ��� ■ t�
.. /■ :.�
■.n■//■■ ■. ■n■■ ■■/n■ ■.H . �Q■ ■ / //■
= •••••11111•11111••••11111•11111•111111M111111 a' , • n■R.Y . • •
■■/■■■//■■///■■■.■■/■/■/ 1112•M1111••111111 ( ••••••••••••11111••••••••• C �!RRY■Y • • • •
111111•111111.1111111111111•111111111171111111 • ' •1•111X•1•• - • ■ ■ ■ ■R■ ■ ■ ■■YRHY■ ■ ■� �� ■Ri■RR ■M ■■ • • •
:SEE DESIGN n.n ■.■RS .41.11111111111111111111111111•1111111111 I
CURVE OELOw ■R.�� ■■iumho�RnRRt.■RR ■.RRR ■ ■■
1111111111111111111111111111114 ■ ■R qA ■ Ausa t1 / ■ / 3so ■Y ■mmu %3mm • . • •
1111/ ■ '•'.;: =''•I;
//■tR Y
1 R7 nRa ■ ■it 1111 / ■t /t■RYt / /t■ r..' •;. I .
a •
O. EXPERIMENTAL DATA . ••
• I 1.2 !: %;
C. u H R ER�� ■ t .� ■ Y . �� mom /t ■■ A� •
��
C T ■n/■■■■■ 1111 1111■■■ .sa. •i.I� r.'...VU1 ' , ■n R • . ■RR R ■RY.■ ..■RRR /R /■■ A , ; :: ■■ I b R ■ ■ ■ ■/ I " 11 / 11 DESI C URVf .rRAI'i3'.'■■■■ ■ MM/ /Ira AR./ / / /Y ■ ■ ■3■ 1 .11 ::;`• i J m /R■ ■■ Y ■■ ■/� //■ 1111 : 11 I t i /al ti t ONN IMM / w O% ■R/ 11 // .... II • 1111 11 �. . ■� r/.u..■..■ •� Y. /... : EN3M M M ■. t. /// . h; 1111. . �. •
■3. //R �.:i.■ ■.■■■IU...ulU..#. ■.N■.Yt■ �' "1
• ;
I •../.o ■... ■ ■�i 1111■/.■/ ■ .t■ /. ■M ■.R■i ■t.. ■ ■..Y■ ., � ......1.11; ^
ter- _ s • • . ' % ; : I I
_ _ F = v _ _ ,11_11. % 1111 " -;•�
:
-b. DESIGN CURVE S
•
• , 1•c . �I ;;1 f
��� r ,NOTE: / s DEPTH OF WATER AND AIR MIXTURE 1
.r . 1111 • 'S, �;
= COMPUTED DEPTH FOR NON-
I AERATED FLOW - •
.T.T.EOR.NON- •'
V • =COMPUTEO•VELOCi
AERATED FLOW '•"-•- • 1 ;;I • •
Y = GRAVITATIONAL ACCELERATION = :4. * II
• DE NUMBER FOR NONAERATED • • • •
' F z FROU tt 1 .
FLOW 1111 • >... .�;airy'.• 1
: '?.: : !.1!`t
.' 1111 : ,,11,11••.•1;
• _• • A IR ENTRAINMENT.
.; 11 ' ; ' ? ▪ I'
•
SEE PAGE SS 0 . . ' 1111 • ' . • ^ + °I ;.
i . : • . • • Ha te'45• •• " j h .
is
•
•
III - 4? r:`�::_ • �'' is ° - ':3..;;; :i1 ••
. :— .o- ��' tr ' �
•
►'• i 1:. •j.'r M i . -3. • j , ; `. •
s. •
• • . . •. i s : 1
IY
•
_- _. — ».._ __.- _......._.._......_.......... w' f x i..:r+...w.w..iF....rr:.. o...f..r.n.i. — '-- ,...
.***** ** * ***** ***** ***** ***********+*•****.****** ****************************.. , ' ,..',,%
HYDRAULIC ELEMENTS - 1 PROGRAM PACKAGE
C) Cctpyr i. gh t 1982 - -88 Advanced Eng i newer i ng Software tees)
Ver. 2.7A Release Date: 6/25/BB Serial # E384
Analysis prepared by:
TIME/DATE OF STUDY: 8:14 1/ 1/1980
1
. ** ** * ***** *** * * *** **** * ** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL
*• 0=4900 c f s, n =0.013 *
- 23.5 ft WIDE, 9.5 ft DEEP, Vmar. =40 fps
* *• *• * *** • *** * * * * *• ** • * * * *• *•* *• * * * * * *• * * *• * * *• *• * * * * * * *• * * * * *• *• * *• * * **** * **
r
*** ,******•************•***•*•**•******************•**•* * * * **• * * * * **• **• * * ** **• * ** ** * **
CHPN EL INPUT I NFORMAT I ON •::: e /
CHANNEL Z.(HORIZ.ONTAL /VERTICAL) _ .00
GASEWIDTH(FEET) = 23.50
CONSTANT CHANNEL SLOPE (FEET /FEET) = .020800
aN T: FORM FLOW (CFS) -• 4900.00
tvz,NN!N3S FRICTION FACTOR :- .0130
NDRMAL -DEPTH =LOW INFORMATION:
- - - -- --------- NC;RMAL DEPTH(FEET) = 5.32 • - -_ -- --- __.__.____
FLDW TOP-WIDTH(FEET) = 23.50
F' OW (4PEA (SQUAR:E FEET) = 125.10
1YDR!')! ±L I C DEPTH(FEET) = 5.22
PI OW AVERAGE VELOCITY (FEET/ SEC .) = 39.17
UNIFORM FROUDE NUMBER = 2,992
PRESSURE + MOMENTUM(POUNDS) = 3927 )9.60
;`}'ERASED VELOCITY HEAD(FEET) = 23.823
F ECI'FIC ENERGY(FEET) = 29.146
CRITICAL -DEPTH FLOW INFORMATION:
:RITICAL FLOW TOP - WIDTH(FEET) = 23.50
CRITICAL FLOW AREA(SQUARE FEET) = 259.72
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 11.05
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 18.87
CRITICAL DEPTH(FEET) = 11.05
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 268706.00
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 5.527
CPITICAL FLOW SPECIFIC ENERGY(FEET) = 16.579
,,, -/t*********************** DESCRIPTION OF STUDY **************************
* F CT ANSULPR CONCRETE CHANNEL *•
* 9- =49()0 cfs, 1=0.015 *•
* 23.5 ft WIDE, 9.50 ft DEEP, Vmax =40 fps *
*.* Y * . * 4 ** * * *•x *•* ***•****•****•*********•*•**.******•**** *• * * ** * * * * **• * * * * * *• * * * * *•* * * **
# . k . ** * * *# * -. ** •*••*************•**********••*•******** * *•*•*• * **• **• * * * **• * ** * * * * * *•* * * *•* **
:::
CHANNEL INPUT I NFORMAT I ON< <:: {;
=:• 4 ANNE _ 7 (HOR I ?ONTAL. /VERTICAL) = . 00 /6'
A CRITICAL FLOW VELOCITY HEAD(FEET) = 5
MANNINGS FRICTION FACTOR = .0150
NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 5.87
II FLOW FOP-WIDTH(FEET) =
4 . - LOW AREA(SOUARE FEET) =
HYDRAULIC DEPTH(FEET) = 5.::.50
138.01
FLOW AVERAGE VELOCITY(FEET/SEC.) = 35.50
I UNIFORM FROUDE NUMBER =
PRESSURE + MOMENTUM(POUNDS) 362429.60
AVERAGED VELOCITY HEADIFEET) = 19.575
II SPECIFIC ENERGY(FEET) = = 25.447
CRITICAL-DEPTH FLOW INFORMATION:
II CRITICAL FLOW TOP-WIDTH(FEET) = 23.50
CRITICAL FLOW AREA(SQUARE FEET) = 259.72
CR I T 1 CAL FLOW AVERAGE VELOC I TY ( FEET/SEC. ) = 19.97
, R I T I CPA_ FLOW PRESSURE + MOMENTUM ( POUNDS ) = 268'
I CRITICAL FLOW SPECIFIC ENERGY(FEET) = 16.579
I ******** DESCRIPTION OF STUDY * RECTANGULAR C[ CHANNEL *
g=490C cfs, n=0.013 *
* '5 ft m
WIDE. 6.50 ft DEEP, Vax=40 fps *
II *******************************************************+******
I **************** ******************* ***v*********
CHANNEL INPUT INFORMATION <
["ANNEL :(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 45.00
II CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 4900.00
MANNINGS FRICTION FACTOR = .0130
II ��_= NORMAL-DEPTH FLOW INFORMATION:
N� >>>>> NORMAL DEPTH(FEET) = 2.74
�� FLOW TOP-WIDTH(FEET) = 45.00
FLOW AREA(SQUARE FEET) = 123.17
HYDRAULIC DEPTH(FEET) = 2.74
I FLOW AVERAGE VELOCITY(FEET/SEC.) = 39.78
UNIFORM FROUDE NUMBER = 4.238
PRESSURE + MOMENTUM(POUNDS) = 388287.00
I AVERAGED VELOCITY HEAD(FEET) = 24.578
3PECIFIC ENERGY(FEET) = 27.313
II CRITICAL FLOW INFORMATION:
___________
CRITICAL FLOW TOP-WIDTH(FEET) = 45.00
CRITICAL FLOW AREA(SQUARE FEET) = 322.56
I CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.17
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 15.19
CRITICAL DEPTH(FEET) = 7.17
I CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 216386.00
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 3.583
^^ -`G.^ .7
4 � �
'
I ************************** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
* Q=4900 cfs, n=0.015 *
* b5 ft WIDE, 6.50 ft DEEP, Vmax=40 fps *
I **********************************
********* ****************************************************** *************
I >>>/ Cq U NNEL INPT INFORMATION<<<<
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 45.00
I CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 4900.00
II MANNINGS FRICTION FACTOR = .0150
___J _
NORMAL-DEPTH FLOW INFORMATION:
__ ___
I >>>>> NORMAL DEPTH(FEET) = 3.00
FLOW TOP-WIDTH(FEET) = 45.00
FLnW AREA(SQUARE FEET) = 134.84
HYDAL|L DEPTH(FEET) = 3.00
I F AYERAGE VELOCITY(FEET/SEC.) = 36.34
UNIFORM FROUDE NUMBER = 3.700
PRESS[RE + MOMENTUM(PgUNDS) = �57672.00
AVERAGED VELOCITY HEAD(FEET) = 20'505
v�
ECI ENERGY(FEET) = 23.502
______ =======__-__================
II '�PTT F)OW I�FORmA
___
_____ ____________________________ ______________________________________
CPTICAL FLOW TOP-WIDTH(FE = 45.0D
:RITICAL FLOW AREA(SQUARE FEET) = 322
I CRITICAL FLOW HYDRAULIC DEPTH(FEET> = 7.17
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC,> = 1
II CRITlCAL DEPT}�(��ET) = -7 .1 - 17 Cc FLOW PRESSURE + MOMENTUM(PnUND9> = '1686.00
=
�VERA�3�D cc- FLOW VELOCITY HD( = 3,.8
[=IT:CAL FLOw SPEC FIC ENERGY(FEET) = 10.751
II
�*-w.--*»****************** DESCRI�TION OF STUDY **************************
* RECT CONCRETE CHANNEL 4- �� At. Q=7200 cfs, n=V.013 *
* 65 ft WIDE, 7.00 ft DEEP, Vmax=40 fps *
**************************************************************************
I �************************************************** *************************
>>>>CHANNEL INPUT INFORMATION<<<<
II ______
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 65.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 7200.00
��
lANNINGS FRICTION FACTOR = .0130
=== _ _
II N/ F-OW INFOPMATION:
__--__-_--________________
�/>>> NORMAL DEPTI-=FEET= = 8.73
FLOW TOP-WIDTH(FEET) = 65.00
II FLOW AREA(SQUARE FEET) = 177.41
MvDRAULIC DEPTH(FEET) = 2,73
I FLOW AVERAGE VELOCITY(FEET/SEC., = 4O.58
UNIFORM FROUDE �UMBER = 4.329
FREESURE + MOMENTUM(POUNDS) = 581361.20
A
'
I CRITICL-DEPTH FLOW INFORMATION
C9ITICAL FLOW TOP-WIDTH(FEET) = 65.00
CRITICAL FLOW AREA(SQUARE FEET) = 471.19
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.25
II CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 15.28
CRITICAL DEPTH(FEET) = 7.25
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 319774.80
I AVERAGED CR[TICAL FLOW VELOCITY HEAD(FEET) = 3.626
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 10.875
II ************************** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
'T. 0=7200 cfs, n=0.015 ^ *
II * 65 ft WIDE, 7 ft DEEP, Vmax=40 fps *
*************************************************************************
I ****************************************************************************
CHANNEL INPUT INFORMATION
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
�� BASEWIDTH(FEE-r) = 65.00
�ONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
CNIFOEM FLOW(CFS/ = 7200.00
I MANNINGS FRICTION FACTOR = .0150
============________===__ ===______________=======____ =======
3R�^0L-DEPTH FLOW INFORMATION:
I ----
>��>>
NORMAL DEPTH(FEET) = 2.98
FLOW TOP-WIDTH(FEET) = 65.00
- LOW AREA(SQUARE FEET) = 193.78
I \DPAULIC DEPTH(FEET) = 2.98
- LD4 AVERAGE VELOCITY(FEET/SEC.) = 37.16
UNIFORM �cOUDE NUMBER = 3.792
II PRESSURE + MOMENTUM(POUNDS) % 7Q2
536455.20
AlF VELOClTY HEAD(FEET) = 21,438
3PECIFIC ENERGY(FEET) = 24
II ========= -=-- ------ - ----===------=---------=== -------
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 65.O0
II CRITICAL FLOW AREA(SQUARE FEET) = 471.19
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 7.25
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 15.28
I CRITICAL DEPTH(FEET) = 7.25
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 319774.80
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 3.626
I CRITICAL FLOW SPECIFIC ENERGY(FEET) = 10.875
I ************************** DESCRIPTION OF STUDY **************************
* PECTANGULAR CONCRETE CHANNEL *
' 0=6700 cfs, 11=0.013 *
* 65 ft WIDE. 7 ft DEEP, Vmax=40 fps
I *
****************** **********************************************************
I �>>> CHANNEL INPUT INFORMATION
____ - _____________
2F-ANNEL Z = .00
B4SEWIDTH(FEET) = 65.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
-- .."rcnow c .. A.,00 nil /9
'
______
NI
NJRMAL-DEPTH FLOW INFORMATION:
-------------------------------- --- - -
>>>>> NORMAL DEPTH(FEET) = 2.61
I FLOW TOP-WIDTH(FEET) = 65.00
FLOW AREA(SQUARE FEET) = 169.73
HYDRAULIC DEPTH(FEET) = 2.61
FLOW AVERAGE VELOCITY(FEET/SEC.) = 39.48
UN[FORM FROUDE NUMBER = 4.305
I PRESSURE + MOMENTUM(POUNDS) = 526371.60
AVERAGED VELOCITY HEAD(FEET) = 24.197
SPECIFIC ENERGY(FEET) = 26.809
II === CRITICAL-DEPTH FLOW INFORMATION:
-------------- -
I CRITICL FLOW TOP-WIDTH(FEET) = 65.00
CRITICAL FLOW AREA(SQUARE FE�T> = 449.19
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 6.91
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 14.92
I CRITICAL DEPTH(FEET) = 6.91
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 290514.10
A�ERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 3.455
N�
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 10.365
��
E ************************* DESCRIPTION OF STUDY ********
* RECTANGULAR CONCRETE CHANNEL *
* o=6700 cfs, n=0.015 *
* ,5 rt WIDE, 6.5 ft DEEP. Vmax=40 fps *
II ***+«****�*****************v***********************�**+*****+«****+
�,*����� � � � � � ���� �� � ���
���������������������������������������******
I >> CHANNEL INPUT INFORMATION
____________________________________ '________________
C I Z(HORIZONTAL/VERTICAL) = .00
DASEWl = 65.»
II r CHANNEL SLOPE(FEET/FEET) = .036300
"NIFORM FLOV = 670)
M�NNINGS FRTCrlON FACTOR = .0150
I
>1JRMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 2.85
�� FLOW TOP-WIDTH(FEET) = 65.00
FLOW AREA(SQUARE FEET) = 185.35
HYDRAULIC DEPTH(FEET) = 2.85
I FLOW AVERAGE VELOCITY(FEET/SEC.) = 36.15
JNIFORM FROUDE NUMBER = 3.772
PRESSURE + MOMENTUM(POUNDS) = 485836.20
I AVERAGED VELOCITY HEAD(FEET) = 20.291
SPECIFIC ENERGY(FEET) = 23.142
====_________ _
II CRITICAL-DEPTH FLOW INFORMATION:
- - - - -
CRITICAi FLOW TOP-WIDTH(FEET) = 65.00
CRITICAL �>OW AREA(SQUARE FEET) = 449.19
0� -
N� CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 6.91
r,RITlCAL FLOW 4VERAGE VELOCITY(FEE7/SEC.> = 14.92
CRITICAL DEPTH(FEET) = 6.91
I - RITICAL FLOW PRESSURE + MOMENTUM(POUNDS) =
A 290514.10
"AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 3.455
CRITICAL FLDW SPECIFIC ENERGY(FEET) = 10.365
II 20
W1G4-14.4L4.4.4-W-1 np np (41 ************************** I
-- - _ -
'
* (=5900 cfs, n=0.013 *
* 65 f- WIDE, 6.5 ft DEEP, Vmax=40 fps *
NI *********************************************************************** **
I **** ************************************************************************
>>}> CHNNEL INPUT INFORMATION<< _____________
CHANNEL Z(HORlZONTAL/VERTICAL) = .00
I � q4SEW[DTH(FEET> = 65.00
� ~ CONSTANT CHANNEL SLOPE(FEET/FEET) = .036800
UNIFORM FLOW(CFS) = 5900.00
MANNINGS FRICTION FACTOR = .0130
I ==== - - - -
NORMAL-DEPTH FLOW INFORMATION:
II . NORMAL DEPTH(FEET) = 2 41 i
FLOW TOP-WIDTH(FEET) = 65.00
FLOW AREA(SOUARE FEET) = 156.83
HYDRAULIC DEPTH(FEET) = 2.41
I FLOW AVERAGE VELOCITY(FEET/SEC. ) = 37.62
UNIFORM FROUDE NUMBER = 4.268
FRESSURE + 1OMENTUM(POUNDS) = 441935.20
I ;vECAGEn VELOCITY HEAD(FEET =
21.976
SpE[IFIC FNERGY(F = 24.38
II Cq FLOW INFORMATION:
C FLOW TOP-1,IDTH(FEET = 65.00
7 FLOW AREA(S0JARE FEET= = 4!2.61
II [ ` p� TlCAL FL04 1-11 DI-PTH(":EET' = 6.35
:R FLOW AVERAGE VELOCITY(FEET/SEC.> = 14.30
IR[ DEPTH(FEET) = 6'35
I - RITICAL =LOW PRESSURE + MOMENTUM(FOUNDS) = 245209 .
ERA7ED CRIT]CAL FLOW VELOCITY HEAD(FEET) = 3.'75
r RITICAL FLO4 SPECIFIC ENERGY(FEET) = 9.523
II
***+********************* DESCRlPT TON OF STUDY **************************
e- 7ECT�NGULAR C CH�NNEL -,k N� * Q=5900 cfs, n=0.015 *
* 65 ft WInE, 6.5 ft DEEP. Vmax=40 fps *
.-,E.x.±x-************************************************************
I ****************************************************************************
>>�>CHANNEL INPUT INFORMATION<<<<
I ---- '3HANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 65.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .036300
I IA CONSTANT
FLOW(CFS) = 5900.00
MANNINGS FRICTION FACTOR = .0150
==__ _
II NORMAL-DEPTH FLOW INFORMATION:
�>/)> " DEPTH(FEET) = 2.64
F1 OW TOP-WIDTH(FEET> = 65.00
I FLOW AREA(SQUARE FEET) = 171 .46
HYDR�ULIC DEPTH(FEET) = 2.64
FLOW AVE3AGE VELOCITY(FEET/SEC.) = 34.41
N� "NIFORM FROUDE NUMBER = 3.724 ��
PRESSURE + MOMENTUM(POUNDS) = 407541.20
AVERAGED VELOCITY HEAD(FEET) = 13.386
II 0 SECIFIC ENERBY(FEET) = 21.24 2/ =_____=___ _ ____ ___________=________=___
i :F;'[ T 1 C "L_ FLOW TOP- J 17'_H (FEET) = X55.00
':F I T I C:A ?_ FLOW )PEA (SOUi RE FEET) = 412.61
CRITICAL FLOW L IYDF AUL I C DEPTH(FEET) - 6.35
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 14.30
11 CR. I f I CA_ DEPTH (FEET) = 6.35
CRITICAL FLOW PRESSURE + MOMENTUM (POUNDS) = 245209.30
,WERAGED CRITICAL_ FLOW VELOCITY HEAD(FEET) = 3.175
R I T I CA'_ FLOW SPECIFIC ENERGY 'FEET) = 9.523
II
.* * *:- •*•* ******************** DESCRIPTION OF STUDY *** *** *******************•
I * RECTANGULAR CONCRETE CHANNEL *
* ,0=5900 cfs, n= 0.013 *
* ' ft WIDE, 6 ft DEEP, Vmax =40 fps *
1
A ** *4 *** it -*•*•*•**•*•**•*••****••***•*•*•*** • * ** ****** * * ***** ***** * *•* ** * *• •*• ***** * *** ****•it**
CHANNEL INPUT I NFORMAT I ONE: "
A � CHANNEL 2(HORIZONTAL /VERTICAL) = .00 �. - ________---- _--- ____ -
BASEWIDTH(FEET) = 75.00
II ' ONSTANT CHANNEL SLOPE(FEET/FEET) _ .053600
)N I F' lRM FLOW (2F9) = 5900 , 00
MANNIMGS FP 1 CT I C'N FACTOR - _ ,- )120
II r-0RMAL- DEPTH FLOW INFORMATION: _______ - - - - --
;: NORMAL DEPTH FEET) = 1.96
II F �_ - 'W TOP - 4I DTH :FEET) = . 00
FFLOW -, °F 1 { SL!UARE r F E = 14
H DF :!I rLIC DEPTH(FEET) =- 1.96
II FLOW AVERAGE VELOC 1 TY ( FEET /SEC .) =
40.08
,n' I FORM FROUDE NUMF:ER = 5.0
:.- R. :SSURE + MOMENTUM (F- '.FUNDS) 46
1VFR( VELOCITY HEAD(FEET) = c--4. 946
___ .._._._-' F IC EN Rry {; EE - ) - - - - -- 7- .__} r7_._. _._- _.__. ______.�.._.� _._.._: _____________
t I :; T I OA.L -'?E F'TH FLOW 1 NF�0RMAT ON
I I R T T I C A L . FLOW TOP -WIDTH (FEET :_ _ 75.00
C R I T I C A L FLOW AF'EA i Sr?UARE FEET, = 432.92
II c:R I T I CAL FLOW HYDRAULIC DEPTH(FEET) = 5.77
CRITICAL FLOW AVERAGE VELOC 1 TY (FEET! EC . ) = 13.63
CRITICAL DEPTH(FEET) = 5.77
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 233797.30
II AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.885
RITICAL FLOW SPECIFIC ENERGY(FEET) = 9.656
II * .t. * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY **************************
* PECTANGULAR CONCRETE CHANNEL '
II * c =-59)() cfs, n =0.015 *
* '?:5 ft WIDE, 6 ft DEEP, Vmax =40 fps *
II **** * y * * * ** * ** * * *** * * * * * ** * * * * * * * * ** ' ** * ** ** * *** *•* * * * **
O - !ANNEL. INPUT INFORMATION
I CHANNEL 2 HOR 170NTAL /VERTICAL) =
'3 .00
A�SEW DTH (FEET) = 75.00
CCNSTANT CHANNEL SLOPE(FEET /FEET) = .053600
UNIFORM FL_ = 590 :50.00
MP.NN I N HS: FRICTION FACTOR = .0150 22
'
>�>�> NORMAL DEPTH(FEET) = 2.14
FLOW TOP-WIDTH(FFET) = 75.00
II FLOW AREA(SQUARE FEET) = 160.65
HYDRAULIC DEPTH(FEET) = 2.14
FLOW AVERAGE VELOCITY(FEET/SEC.) = 36.73
I UNIFORM FROUDE NUMBER = 4.422
PRESSURE + MOMENTUM(POUNDS) = 430651.10
AVE9AGED VELOCITY HEAD(FEET) = 20.945
SPECIFIC ENERGY(FEET) = 23.087
�� ===_
CRITICAL-DEPTH FLOW INFORMATION:
il CRITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 432.82
I CRITICL FLOW HYDRAULIC DEPTH(FEET) = 5.77
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 13.63
CRITICAL DEPTH(FEET) = 5.77
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 233787.30
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.885
I CRITICAL FLOW SPECIFIC ENERGY(FEET) = 8.656
************************** DESCRIPTION OF STUDY **************************
��
* g'ECTANSULAR :ONCRETE CHANNEL *
* Q=5300 �fs,n=0.013 '4
* 75 f+ WIDE, 5.5 ft DEEP, Vmax=40 fps *
N� ***********************************************************************
***i-**********************************************************************
I/ C'|4-NNEL TNPUT INFORMATION
C/l�NNEL Z(HORIZONTAL/VERTICAL) = .00
8AS�WIETH(FEET) = 75.00 ��
COrISTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNIFORM FLOW(CFS) = 5300.)0
0� A
�NNlNGS FRICTION FACTOR = .013)
�� ===== ========== - _________=_ =___________=============_ ___=======
�ORM FLOW [NFORlIATION:
I NORMAL DEPTH(FEET) = 1.84
FLUW TOP-WIDTH(FEET) = 75.00
II =LOW AREA(SQUARE FEET) = 137.76
F|YDRAULIC DEPTH(FEET) = 1.94
FLOW AVERAGE VELOCITY(FEET/SEC.) = 38.47
UNIFORM FROUDE NUMBER = 5.003
PRESSURE + MOMENTUM(POUNDS) = 403045.30
I AVERAGED VELOCITY HEAD(FEET) = 22.984
SPECIFIC ENERGY(FEET) = 24.821
N� CRITICAL-DEPTH FLOW INFORMATION:
��
I CRITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 402.96
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 5.37
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 13.15
CR DEPTH(FEET) = 5.37
II CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 202637.30
AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.686
II CRITICAL FLOW SPECIFIC ENERGY(FEET) = 9.059
************************** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
I. * Q= cfs, n=0.015 *
: _ -__- ' - ~7 �m
PAGE 1
I WATER SURFACE PROFILE LISTIN8
ETIWANDA CHANNEL ' 0 f 4
HYDRAULIC CALC. BY TONY ISLAM
OPEN CHANNEL VICTORIA TO BASIN 5
III STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL H6T/ BASE/ ?L NO AVBPR
ELEV OF FLOW ELEV HEAD 6RD.EL. ELEV DEPTH DIA ID NO. PIER
L/ELEM SO SF AVE HF NORM DEPTH ZR
}}}ffff}{ffffffffffffffffffffffffffffff fffffffffffffffffffffffffffffffffffff ffffffffffffffff fff fffff ffffffffffffffffffff{ffffffffff
III :753.06 1303.64 6.03 1309.67 5900.0 39.61 23.17 1332.84 .00 11.90 13.50 25.33 .00 0 .00
TRANS STR .01001 .02008 1.24 .00
1 1815.00 1304.26 6.47 1310.73 5900.0 38.81 23.41 1334.14 .00 12.51 9.00 23.50 .00 0 .00
I 491.17 .02093 .01937 9.51 6.36 .00
2306.17 1314.54 6.60 1321.13 5900.0 38.06 22.52 1343.65 .00 12.51 9.00 23.50 .00 0 .00
523.83 .02093 .01763 9.24 6.36 .00
2830.01 1325.50 6.92 1332.42 5900.0 36.29 20.47 1352.89 .00 12.51 9.00 23.50 .00 0 .00
TRANS STR .02857 .02110 1.48 .00
III 2900.00 1327.50 5,34 1332.94 5900.0 37.44 21.79 1354.63 .00 10.61 9.00 25.50 00 0 .00
9 11.02 .02342 .02297 20.92 5.33 1.50
i 3311.02 1348.94 5.39 1354.23 5900.0 37.05 21.33 1375.56 .00 10.61 9.00 25.50 .00 0 .00
753.98 .02342 .02116 15.95 5.33 1.50
III 4565.00 1366.50 5.62 1372.12 5900.0 35.32 19.39 1391.51 .00 10.61 9.00 25.50 .00 0 .00
I II TRANS STR .03158 .01433 1.36 1.50
4660.00 1369.50 7.86 1377.36 5900.0 31.36 15.87 1393.23 .00 12.51 9.00 23.50 .00 0 .00
I 3CNCT STR .00000 .01979 .00 .00
4660.00 1369.50 5.05 1374.55 4900.0 41.27 26.47 1401.03 .00 11.05 9.00 23.50 .00 0 .00
552,00 .02808 .02811 15.52 5.05 .00
5212.00 1385.00 5.05 1390.05 4900.0 41.29 26.50 1416.55 .00 11.05 9.00 23.50 .00 0 .00
I
1
1
1
1
'
************************************************************
I >>>) CHANNEL INPUT INFORMATION
CHANNEL Z(qORIZONTAL/VERTICAL) = .00
I BASEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .053600
UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0150
�� ==== ___=_____=______
NORMAL-DEPTH FLOW INFORMATION:
'-- - -
N� >>> NORMAL DEPTH(FEET) = 2.00
��
FLOW TOP = 75.00
FLOW AREA(SOUARE FEET) = 150.35
HYDRAULIC DEPTH(FEET) = 2.00 /
I FLOW AVERAGE VELOCITY(FEET/SEC.) = 35.25
UNIFORM FROUDE NUMBER = 4.388
^ PRESSURE + MOMENTUM(POUNDS) = 371468.20
�� AVERAGED VELOCITY HEAD(FEET) = 19.296
�
SPECIFIC ENERGY(FEET) = 21.301
__= ==___ _____==_________-___==
I rRITICAL-DEPTH FLOW INFORMATION _______________________________ -----
:RITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW )REA'SQUARE FEET � = 402.96
N� [RITICAL FLOW HYDRAULIC DEPTH(FEET` = 5.37
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC = 13.15
�flITICAL DEPTH(FEET) = 5.37
"r`C4 - FL9W PRESSURE 1- MOMENTUM(POUNDS' = P('‘ ,3n
�� '
-IVERAGED CRIT FLOW VELOCITY !-FAD(FEET) = 2,86
CRITICAL FLOW SPECIFIC E'JEPGY(FEET) = 3.059
****************** DESCPIPTION OF STUDY ********
* �ECTANGULAR CO CHANNEL
*
II * '7=5300 cfs, n=0'013 *
* ?5 ft WIDE 5'5 ft ')EEP. Vnax=40 fos +
°��***+
II ********************* *******************************************************
CHANNEL INPUT INFORMATION
I CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
II UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0130
NORMAL-DEPTH FLOW INFORMATION:
N�
>>>>> NORMAL DEPTH(FEET) = 1.59
FLOW TOP-WIDTH(FEET) = 75.00
NI FLOW AREA(SQUARE FEET) = 119.45
HYnPAULIC DEPTH(FEET) = 1.59
F, OW AVERAGE VELOCITY(FEET/SEC.) = 44.37
0� LNlFORM FROUDE NUMBER = 6.196
�� pI-ESSURE + MOMENTUM(POUNDS) = 461660.20
AVER��GED VELOCITY HEAD(FEET) = 30.571
N� SPECIFIC ENERGy(FEET/ = 32.164
�� =_ ___
CRITICAL FLOW INFORMATION:
_
11 CRITICAL F TOP-WIDTH(FEET) = 75.00
rrrrrrm crinu uPFA(qQ||ARE FEET) = 402.96 24-
I;R 11 ,:°.A(._ F%. -- rW AVERAGE ''FLOC I T`3' ( FEET /SEC ,) -- 13.15
II B 'F' I r I CAL. -LISP T H (cE F...T) = 5.37
L: I T I CAL PLOW PRESSURE + MOMENTUM (FOUNDS) _02637. 0
F CF' [ T I CAL FLOW VELOCITY HERD (FEET) = 2.686
11 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 9.0059
4 . § ;**.. * - ***** *** *• • **** * DESCRIPTION OF STUDY • *• ••ir• f ** - ** -*•?r•* * #*• • * - • *• •
il * - -'EC"ANGULAR CONCRETE CHANNEL *
* r = 'W;Oo cfs, n =0.015
* 75 ft WIDE, 5.5 ft DEEP, Vmax 40 fps *
II - * *********** ** *****•1(******** * ** * * **•3F•lf *** * * * *** ** * **•* * * * **** * *** ** *** **
• *--***••*•*•**••**•*•*•**-******•*•*•**••**•*•**•*•**••***••**•********* *•* *•* **** **** ********** *** * ***
_ CHANNEL INPUT INFORMATION < “ --
CHANNEL :(HORIZONTAL /VERTICAL) = .00
:ASEW I DTH (FEET) = 75.00
II CONSTANT CHANNEL SLOPE(FEET /FEET) = .085600
UNIFORM FLOW(CFS) = 5300.00
MANNINGS FRICTION FACTOR = .0150
DE-`�tAL T_'}EF'T! -i FLOW INFORMATION:
._ � - - - - -- ____ - ______
11 .:> .:. NOFMA_ DEPTH(FEET) = 1.74
LOW TOP--WIDTH(FEET) = 75.00
' A;E A S'?1!r =ARE FEET) 120.32
HYDF:A;JL I C DEPTH (FEET) = 1.74
II ' ii.. �7i�1 �', ._ •.:) �: %= ! -.00 I T 'FEET, .,E.0 7) �0.67
'_ I :C N1 ' - ; 9 01J J
DE ' UMBE R. 5.437
ccc ; MOMENTUM(POUNDS) •- 42.4 ?71 ='T
I AVE _RA ED VELOCITY HEAD (FEET) =
25 . ,j 83
3PEC I F I ( ENERGY (FEET) = 27.421
• T I CAi._ - DEPTH FLOW INFORMATION:
II OR:TTICAL. FLOW TOP - WIDTH(FEET) _ '75.00
- R 1 T I CAS T= I_0!:I PRE , (SQUARE FEET) = 402.96
CF. I T I CAL FLOW HYDRAULIC DEPTH (FEET) = 5.37
R I T I CAL FLOW AVERAGE VEL.00 I TY (F=EET /SEC =) = 13.15
;F,[ rICA!_ DEPTH( FEET) = 5,37
O R I T I C A L FLOW PRESSURE + MOMENTUM (POUNDS) = 2'. ?2637.3 3
II
',"F D CRITICAL FLOW VELOCITY HEAD (FEET) = 2.696
CF( I T I CAL FLOW SPECIFIC ENERGY (FEET) = 9.059
li * * 1, ** **** ** * *** *** *** * ** ** DESCRIPTION OF STUDY * **•x * * * * * * *-* ** * *** * * * *•* *• **-
* RECTANGULAR CONCRETE CHANNEL *
II * C= cfs, n =0.013 *.
• 75 ft WIDE, 9.5 ft DEEP, Vmax =40 fps *
*- #•i * *9( ** * **-lE•**** * * * * * * * * * * * * * * ** ********* * * * * * * * * * * * * * * * * * * * * * * * * * ** * * **
II 4 * ** *•* • *• * - * * * * # ** * * * * * * * * * * ** ** •***********•*• * * * * * * * * * * * * * * * * * * * * * * * * * ** * * **
CHANNEL INPUT I NFORMAT I ON< •': C <
11 CHANNEL 2(HORICONTAL /VERTICAL) = .00
B SEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .085600
II UNIFORM FLOW (CFS) = 4000.00 _
MANNINGS FRICTION FACTOR = .0130
!NORMAL- -DEPTH FLOW INFORMATION:
;FORMAL DEPTH(FEET) = 1.34
- --
--!Y DRAUL_ I C DEPTH (:-:EET) = 1.34
II f=!__OW AVERAGE VELOCITY(FEET /SEC.) = 39.78
UNIFORM FROUDE NUMBER = 6.053
PRESSURE + MOMENTUM(POUNDS) = 312527.40
II AVERAGED VELOCITY HEAD(FEET) 24.566 --
SPECIFIC ENERGY(FEET) =
CRITICAL-DEPTH FLOW INFORMATION:
11 _ - CRITICAL FLOW TOP-WIDTH(FEET) = 75.00 - - - - - --
CRITICAL FLOW AREA(SQUARE FEET) = 333.94
I , CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 11.98
CRITICAL_ DEPTH(FEET) = 4.45
II CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30
AVERAGED CRITICAL FLOW VELOCITY HEf�1D(FEET) = 2.228
CRITICAL FLOW SPECIFIC ENERGY(FEET) 6.680
II * * ** ** ********* *•********** DESCRIPTION OF STUDY **************************
* RECTANGULAR CONCRETE CHANNEL *
II • 0=4000 ifs, .1 =0.015
* '?5 ft WIDE, 5.5 ft DEEP, Vmax =4O fps *
*********•** * * * * * * * * * * * * * * * * * * * * * * * * **
ill
* * * * * *• * * * *.*.*.* * * * * * * * * * * ** * * * * ** * * * * * * * * * * * * * * * * * * ** * * *** * * * * *•* * * * * * * * * **
CHANNEL I NF'U - I INFORMATION
<:
/I i_ ; = ( eft_ R I :ON -Al._ / VE RT I CAL) •_ . 0'_5
6ISEW DT'i t FE 1 ) 0
75.0
CONS I NT CHANNEL SLt3PE. (FEET!,• -F E T) = .03560('
M a I F: G FRICTION t O) F 4C)i 7r "r •'-�{ }5}
1/
_ _ _ ._._____..___.__.,___._----_.._______.-•----.-_.___--
- --- .- _- _t1PdN! I1�= G`� FACTOR 0 1 {_. -.
h ORMAL -DEPTH ;LOW INFORMA
0i•MAL DEPTH (.FEE =T) = J.. ='•6
:-LOW T WI.LATH'FEE.T) = 75.00
II = L -OW ::=AREA' SGUJARE FEET P =RAUL I C = 09.72
' :D ?E.F' TH (= EET) 1.46
' FLOW AVERAGE VELOCITY (FEET /SEC..) _ 36.46
II UNIFORM FROUDE NUMBER = 5.312
;PRESSURE 4 - MOMENTUM(POUNDS) = 297S01.40
AVERAGED VELOCITY HEAD(FEET) = 20.639
GPECIFIC ENERGY(FEET) = 22.101
- - -- CRITICAL -DEPTH FLOW INFORMATION: --
11 CRITICAL FLOW TOP-WIDTH(FEET) = 75.0 a
% F ;ITICAL FLOW AREA(SQUARE FEET) = 333.94
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
I/ CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 11.98
CRITICAL DEPTH(FEET) = 4.45
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30
PALEFAC E D CRITICAL FLOW VELOCITY HEAD(FEET) = 2.228
1 2RI FLOW SPECIFIC ENERGY(FEET) = 6.680
II *•*• *•* * ***** * ************** DESCRIPTION OF STUDY ************* ****** *******
* RECTANGULAR CONCRETE CHANNEL *
* 0=4000 c f -. , - 1=n.013 *
* 75 ft AIDE, 5.5 ft DEEP, Vmax =40 . cps • *
11 * * * * * * * ** * * * * * * **** *•* *** * * **** ***********.***** * * * * * * * * * ******** **_** *** *_* *•*
26
v ••euSLY...LYSLAI ,..,Ysc.]t se_. sc 3t.•.[..f[.Y.1[.YYiLY.Y.YYY.IL 3LY3[.Y.Y YY YY1tYY.li. X..1i..iL L b 3/•Y k Kk•Y YY• �- '�." '**
'
-------------- ---- -----------------------------------------------
2/HORIZONTAL/VERTICAL) = .00
IIH(INNEL
BASEWIDTH(FEET) = 75.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .070800
UNIFORM FLOW(CFS) = 4000'00
I MNNINGS FRICTION FCTOR = .0130
=_______
NORMAL-DEPTH FLOW INFORMATION:
I >>>>> NORMAL DEPTH(FEET) = 1.42
FLOW TOP-WIDTH(FEET) = 75.00
FLOW AREA(SQUARE FEET) = 106.57
I HYDRAULIC DEPTH(FEET) = 1.42
FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.53
I UNIFORM FROUDE NUMBER = 5.549
PRESSURE + MOMENTUM(POUNDS) = / 295663.30
AVERAGED VELOCITY HEAD(FEET) = 21.875
SPECIFIC ENERGY(FEET) = 23.296
li
II CRITICAL-DEPTH FLOW INFORMATION:
.
I CRI�ICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(SQUARE FEET) = 333.94
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 11.98
CP[TICAL DEPTH(FEET) PT(FEET) = 4.45
I [RITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 139240.30
u'/EAGED CRITICAL FLOW tvELOCITY HEAD(FEET) = 2.229
CRI FLOW SPECIFIC ENERGY(FEET) = 6.680
******** DESCRIPTlON OF STUDY *****************+********
I ,, RECANGULR CONCRETE C�ANNEL * 1 cfs, n=0.015 �
* 75 ft WIDE, 5.5 ft DEEP, Vmax=40 cos *
II +**********************************************************
4-R-4-41-4**
>�>> CH�NNEL INPUT INFORMATION<
J ----
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 75.00
�� CONSTANT CHANNEL SLOPE(FEET/FEET) = .070800
l�
`- UNIFORM FLOW(CFS) = 4000.00
MANNINGS FRICTION FACTOR = .0150
__
It NORMAL-DEPTH FLOW INFORMATION:
-___-___-
>>>>> NORMAL DEPTH(FEET) = 1.55
I FLOW TOP-WIDTH(FEET) = 75.00
FLOW AREA(SQUARE FEET) = 116.30
HYDRAULIC DEPTH(FEET) = 1.55
I FLOW AVERAGE VELOCITY(FEET/SEC.) = 34.39
UNIFORM FROUDE NUMBER = 4.867
PRESSURE + MOMENTUM(POUNDS) = 272230.80
A«E VELOCITY HEAD(FEET) 1 18.368
I SPECIFIC ENERGY(FEET) = 19.919
_ ____=___ _ _______
I CRITICL-DEPTH FLOW INFORMATION:
----
CRITICAL FLOW TOP-WIDTH(FEET) = 75.00
CRITICAL FLOW AREA(5QUARE FEET) = 333.94
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.45
I CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 11.98
--- ---- ---- ' `- --
71111 ------- ---
�>>! NORMAL DEPTH(FEET) = 1.25
.1.111111111111111.111111.1.1.111111.111111111111.1.11111111111.11.1.....1111.1111111111.1.111111111111.1.111111111111111"1"1.111.1.1
OPTTICCL FLOW SPECIFIC ENERGY(FEET) = 6.680
* RECTANGULAR CONCRETE CHANNEL
li 4.-**.*******************.********************************************-*******
il CHANNEL INPUT INFORMATION“<<
CHANNEL .7(HORIZONTAL/VERTICAL) = .00
BASEWIDTH(FEET) = 80.00
11 CONSTANT CHANNEL SLOPE(FEET/FEET) 1 .094500
UNIFORM FLOW(CFS) = 4000.00
MANNINGS FRICTION FACTOR = .0130
II NORMAL-DEPTH FLOW INFORMATION:
I �LOW TOP = 80.00
FLOW AREA(SQUARE FEET) = 99.95
-1YDRAULIC DEPTH(FEET) = 1.25
=LOW AVERAGE VELOCITY(FEET/SEC') = 40.02
il uNIFCR�« FROUDE NUMBER = 6.310
PRESSURE + MOMENTUM = 314128.20
AVER�GED VELOCITY HEAD(FEET) = 24.872
SPE�I�IC ENERGY(FEET) = 26.121
^�
��
CRITICAL-DEPTH FLOW INFORMPTION:
�� CpTTICAL FLOW TOP-WIDTH(FEET) = 80.00
CRITICAL FLOW AREA(SQUARE FEET) = 341.32
CFITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.27
II CRITICAL FLOW AVERASE VELOCITY(FEET/SEC') = 11.72
7 DEPTH(FEET) = 4.27
CRIrICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 136276.80
I AVERAGED CRITICAL FLOW VELOCITY HEADFEET) = 2.133
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.399
II * + ************************ DESCRIPTION OF STUDY **************************
* �ECTANGULAR CONCRETE CHANNEL *
* =4000 cfs, n=0,015 *
I/ * 80 ft WIDE, 5.5 ft DEEP. Vmax=40 fps *
*************************************************************************
I ****************************************************************************
>>>>CHANNEL INPUT INFORMATION<<<<
CHANNEL Z(HORIZONTAL/VERTICAL) = .00
I/ BASEWIDTH(FEET) = 80.00
CONSTANT CHANNEL SLOPE(FEET/FEET) = .094500
UNIFORM FLOW(CFS) = 4000.00
I MANNINGS FRICTION FACTOR = .0150
===== _ _ _ _ _ = =
NI:RMAL-DEPTH FLOW INFORMATION:
I - ---- >>>>>
i NORMAL DEPTH(FEET) = 1.36
'FLOW TOP-WIDTH(FEET) = 80.00
FLOW AREA(SQUARE FEET) = 109.10
N� HYDRAULIC DEPTH(FEET) = 1.36 -- =I nu at Pnur4� UPI nrrTv(FFFT/qFr') = n�'+ -7-~
PRESSURE + MOMENTUM(POUNDS) = 288841.20
AVERAGED VELOCITY HEAD(FEET) = 20.873
SPECIFIC ENERGY(FEET) = 22.237
CRITICAL-EEPTH FLOW INFORMATION:
CRITICAL FLOW TOP-WIDTH(FEET) = 80.00
CRITICAL FLOW AREA(SQUARE FEET) = 341.32 •
CPITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.27
I CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 11.72
CRITICAL DEPTH(FEET) = 4.27
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 136276.80
I AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 2.133
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 6.399
====---- - ---
11
II
IP
11
11
~^~
L it
ho
tn
4it
r
t
c
=RW= mammas -
CAPACITY OF Magma ICEMANDA CHANNEL,
VICICIRM STREET ID M SWAIM MIN M. 5
APPEND:DC G
4 p, „ 5COE 11651 Sterling Avenue, Suite A PROJECT: ET /WANDA C/#AddiEL NO: 2_/o6" . //o /
Riverside, Cal brnia 92503
V. WILLIAMS (714)354 -0161 BY: 7- = I DATE 4_/6_ 89 CHECK I DATE:
64 %(714) 354 -0810
LISMIN
Civil Engineers -Land SIMIVO►s SHEET / OF /C7
in "C y ``� by y
1. 3> 0 D D D
.pis N .A .A ` W t N (1
yt_ w ti .7 "v N` 61 43 -.It, 63 y -
#vo _Q e 0 � boo 2
O Q 1oo cy -0
`i o
IV cfa Q1 Zik ) ■ ,•A , 11I 1 W 41
CO 0 0 0 0 0 0 o co y 0
o o o 0 0 0 0 0 0 o 0
• r)
o 0 0 0 0 0 0 0 op PP (A D
rr_ 0 0 0 o N c._, O 0 0 0 0 0 r
N N N N N N 0
CO co CO C:0 CO co N CO CO (X1 co co 03 rri
N N N N N 'b . 1
„ w w - A w , p cI
w %
Cr > ',.'o v1 W 01 O i .qk 0\ N N
`D ■0 W CO 0 W
a> U N -° P H N NI O , •o ('1 0
i `c
.....
GN co n1 0
ii i m p v o 0 O v co ko y3
0 43 1\3 ril
o IS
k "1
r
o ,o o �o •o m _
_ryl
t co Qo O v k f•
ul
y
� O 0 O O O O O O O O o
O
* o O p 0 2 O 0 o O 6 o o tt
!■ ■ 1165! SterlingAvenrrti Suite PROJECT: ET /rd/,IA//)I C//,4NN£L PROJECT NO: 2 / p 6 , /1 /
Riverside, Callibrnla 92503
„'' WILLIAMS (714)354 -0161 BY: - 7- 4_/,‘_ uN = 1 DATE: 4_�- 89 CHECK I DATE:
...... rax (714,354 -�a
..,.. Civil Engineers -Land Surveyors SH EET 2 OF /6
r
cry vl u1 m
N N N r%
w -
o c O O
o -9 0 2
CO Co 0 4 p
0 0 0 o 0 0 o
0 0 0 o 0 o 0 0 0
r
o 0 o p o P 9 0 0
o 0 0 0 0 0 0 p 4 0
0
P
ao
N -0 CO 0 N `p C O J
y
b Z
ON O 91 9) Cp O1 N �
0\ co pp co . -4 �o r Z
1.
m r
W N W N R1
W . O O
b
b
vi
■Q .0 0 4 CO c0 `Q ` q y
$ O ocs co ∎ ZO Z r o
• 0 0 0 0 0 0 o p z.
0 0 0 0 h
..m O 0 0 0� �� o
'
,
I === =_________=_-_________ _ ** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
II SECONDS
- ----------------------------------------------------------
‚ ' (c) Copyriht 1982-8B Advanced Engineering Software (as)
Ver. 3.3A Release Date: 8/02/88 Serial # 2224
, Analysis prepared by:
I/ FUSCOE, WILLIAMS, LINDGREN & SHORT
`
��
��
��
'
��U
�� *** ********************** DESCRIPTION OF STUDY **************************
* CAACITY FOR ETIWANDA CHANNEL *
II * Q= 300 cfs, S=0.0228 *
* FR EBOARD= 0.00 ft *
*** **********************************************************************
(
��
�� * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
'
�� 1 .00 100.00
2 13. 50 91.00 4�
b5�V"� k"
3 23.50 91.00 ��" � , U
�� 4
23.51 100
�� .
SUBCHANNEL SLOPE(FEET/FEET) = .022800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
,
_ - ........................ ........ ........................... ..... . ......... ~
SUBCHANNEL FLOW(CFS) = 6308.7
SUBCHANNEL FLOW AREA(SQUARE FEET) = 149.67
J SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.152
SUBCHANNEL FROUDE NUMBER = 2.940
. SUBCHANNEL FLOW TOP-WIDTH(FEET) = 23.44
I SUBCHMNNEL HYDRAULIC DEPTH(FEET) = 639
�N -------------------------- - - --�----
�� TOTAL IRREGULAR CHANNELFLOW(CFS) WANTED = 6300.00 `
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6368.74 .
'
ESTIMATED IRREGULAR NORMAL DEPTH WATER ACE '� '
-= ELEVATION 99.45
' I/
NOTE: IS SURFACE � BELOW E�TR�M� . �'
LEFT AND RIGHT BANK ELEVATIONS.
`
I __- ____
U�K ** *********************** DESCRIPTION OF STUDY **************************
'- * CAPACITY FOR ETIWANDA CHANNEL *
I Q.` 3500 cfs, 8=0.0228 *
* FiEEBOARD= 2.5 ft *
** ****************************************��**����*��*�**�***���****�*****
�'`
-
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
�� 1 .00 100.00
2 13.50 91.00
111 3 23.50 91.00
4 23.51 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .022800
1/ SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
� .
..~°'
'
FLOW(CFS)
I ^ 9�.�4
SUBCHANNEL FLOW ' ^~~'^^- ~ '��-^^' ' b��\ ---11"-- 1 / '|FLOW � = 36.385
I FROUDE ���
FLOW TOP-40� == 19.73 .��
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.80
II ---- ---
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3500.00
I CONPUTED IRREGULAR CHANMEL FLOW(CFS) = 3505.40
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I/ ^
ELEVATION 97.48
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
1/
�N0
�� ** *********************** DESCRIPTION OF STUDY **************************
* C^rACITY FOR ETIWANDA CHANNEL *
I * Q�'�700 cfs, S=0.0228 *
* F 3.5 ft /` *
**i********************************************************************W**
I
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORD%NATE "Y" CQORDINATE
1 .�0 100.00 .
2 13.50 91.00
3 23.50 91.00
I
4 �O0.00
SUBCHANNEL SLOPE(FEET/FEET) = .022800
�� SUBCHANNEL MANNINGS FRICTION FACTOR = ^A14000
��
�
��O�K���� = 2700.1
. �__�.--
I FLQW AREA(SOUARE FEET) = 79.30
FLOW ���G��T��FEET�S�C° y = 34.017
SUBCHANNEL FROUDE NUMBER = 2.886
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.39
I � SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.32
_
��
I
T IRREGULAR CHANNEL FLOW(CFS) WANTED = 2700.00 �
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2700.08 �
��
�� ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ii ----------- ff - REggErr1TWBULARC4444grAN;LYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
I I WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
= ==-====== = =====
(c) Copyright 1982-88 Advanced Engineering Software (aes)
li Ver. 3.3A Release Date: 8/02/88 Serial # 2224
Analysis prepared' by:
FUSCOE, WILLIAMS, LINDGREN & SHORT
1
II ** ********************** DESCRIPTION OF STUDY *****************t********
* C ACITY FOR ETIWANDA CHANNEL
I * Q 0900 cfs, S=0.0228 *
* F EBOARD= 0.00 ft *
**
11 * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE #
II 1
.00
13.50 100.00
2
91.00 7\74:
' MI 7, •
25.50 91.00
11 4 79.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .022800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
II ,
**pSaa�s.
SUBCHANNEL FLOW(CFS) = 10917.4
1/ SUBCHANNEL FLOW AREA(SQUARE FEET) = 228.41
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 47.798
SUBCHANNEL FROUDE NUMBER = 3.477
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 38.92
11 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.87
I/ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 10900.00'
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 10917.39
1/ ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFAOE
ELEVATION 99.97
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
1 -
'
i * *********************** DESCRIPTION OF STUDY **************************
4r - ACITY FOR ETIWANDA CHANNEL *
k 0,5700 cfs, 5=0.0228 *
11 * , - EEBOARD= 2.5 ft *
** ***********************************************************************
-
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
' NODE NUMBER "X" COORDINATE "Y" COORDINATE k ��
v � m�
I 1 .0(� 100.00
2 13.50 91.00 ��� �»
3 25^5W- 91.00 - \ � /
i � 4 �9.�0 100.00 a^
SUBCHANNEL SLOPE(FEET/FEET) = .022800
SUBCHANNEL MANNINBS FRICTION FACTOR = .014000
1111
....
SUBCHANNEL FLOW(CFS)
SUBCHANNEL FLOW AREACSOUARE FEET) = 141.42 4�� � ) = 40.321
FROUDE NUMBER = ,3.354
FLOW = 31.50
I ' HYDRAULIC DEPTH(FEET) = 4.49
II FLOW(CFS) WANTED = 5�0m� 00
TOTAL IRREGULAR w�//�a ^
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5702.09
J ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 97.50
111 NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
I . _-__-_____
___
� ***'
-
�
�� ********************** DESCRIPTION OF STUDY **************************
* C~'''ACITY FOR ETIWANDA CHANNEL *
*
* Q 4100 cfs, S=0.O228 �
II *
* F� EBOARD= 3 5 ft . � .� . ' ---��- ********************************��** ** ************************* *********
I * ENTERED INFORMATION FOR SUPCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I ` 1 .00 100.00
2 . 13.50 91.00
3 25.50 91.00 I 4 39.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .022800
I MANNINGS FRICTION FACTOR = .014000
�
. . . �� . . 0
FLOW(CFS) ��101 ��
FLOW AREA(SOUARE FEET) = 111.12 . '
SUDCHANNEL i � FLOW VELOC%TY(FEET/SEC.) = 36.90g SUSCHANNEL � FR8UDE NUMBER = 3.292
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 28.47
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 3.90
�
---' ------ ------
�� TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4100.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4101.38
11 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
alt. AO A
** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EDUATION
II WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
__- __ -__ ___ (c) Copyright 1982 -88 Advanced Engineering Software (aes )
11 Ver. =.TA Release Date: 8/02/88 Serial # 2224
Analysis prepared by
I , FUSCOE, WILLIAMS, LINDGREN & SHORT
11
II *:*: * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
* Cr'PACITY FOR ETIWANDA CHANNEL *
II * ( 7 L:fs, 8 - 0.0268 1;4
* FREEBOAF;D= 0.i:0 f t
* j.:.k * * *::k *:+ *:*: k:*****************************'**** * * * * * * * * * * * * * * * * * * * ** * * * * **
1 11 ------------------ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 . - '-- •-- __.,_ - --
NODE NUMBER "X" COORDINATE "Y" COORDINATE I- 39 -I
II
4 .9:00 - /2'
S' 8 I -': ^N; iEL SLC)F`E ( EET /F .ET) -"',
_. ;UBCHANNEL MgNP' I NGS: FRICTION FACTOR = ,014000
ai )
II Si . 2BC:v''A:NN�•L } FLOW(CFS) _ 11919,
I/ SUBCHANNEL FLOW AREA ('SOLARE FEET) = 229.57
SUI3CHANNE:_L FLOW VELOCITY(FEET/SEC.) = 51.919 1
SUBCHANNEL FROUDE NUMBER = 3.771
SUBCHANNEL FLOW TOP-WIDTH(FEET) = : 79.00
1 SUBCHANNEL HYDRAULIC DEPTH (FE ET) = 5.89
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 11900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 11919.7.8
li ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 100.00
ili NOTE: WATER SURFACE IS ABOVE LEFT OR RIGHT
BANK ELEVATIONS.
I * * * * * * ** * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * **
A • R ETIWANDA n
:• CAPACITY FOR LT _ �,t�NDA CHANNEL *
: ' :2 *
11 * FREEBOARD= 2.5 ft *
7
|- - -
'
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : ���«
NODE NUMBER "X" COORDINATE "Y" COORDINATE i's ml
�� 1 .00 100.00 2 13.50 91.00 1.6 /
3 25.50 91.00 j, 1'
II 4 39.00 100.00 /2'
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 6200.8
SUBCHANNEL FLOW AREA(SQUARE FEET) = 141.73
�� SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 43.750
SUBCHANNEL FROUDE NUMBER = 3.637
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 31.53
�� SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.49
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6200.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6200.85
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 97.51
II NOTE: WATER SURFACE IS BELOW EXTREME
I/ LEFT AND RIGHT BANK ELEVATIONS.
II ********************** * *** DESCRIPTION OF STUD» **************************
I * CAPACITY FOR SAN SEVAINE CHANNEL *
I * Q=4400 cfs, S=0.0268
II * FREEB]ARD= 3.5 ft *
*
*************************************************************************
1/ ____
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
1 NODE NUMBER "X" COORDINATE "Y" COORDINATE
NI 1 .00 100.00
2 13.50 91.00
�� 3 25.50 91.00
�� 4 39.00 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
11
SUBCHANNEL FLOW(CFS) = 4415.4
SUBCHANNEL FLOW AREA(SQUARE FEET) = 110.55
ill SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 39.939
SUBCHANNEL FROUDE NUMBER = 3.568
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 28.41
�� SUBCHANNEL HYDRAULIC DEPTH(FEET) = 3.89
_____
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4400.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4415.42
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 96.47 9
'
I ** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
_=_______________
(c) Copyright 1982-88 Advanced Engineering Software (aes)
Ver. 3.3A Release Date: 8/02/88 Serial # 2224
- Analysis prepared by:
0�
�� FUSCOE, WILLIAMS, LINDGREN & SHORT
,�
II ************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR ETIWANDA CHANNEL *
* 0 cfs, S=0.0268 *
I * FREEBOARD= 0.00 ft
*
�� ****x*********
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
,�
IODE NUMBER "X" COORDINATE "Y" COORDINATE
��'��
1 1 � 1 .00 100.00
� 2 17.50 91.0D /.�� , ^
4 23.51 100.00
�� SUBCHANNEL SLOPE(FEET/FEET) = .026800 10
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
�� .'..'...^.'......................'....'.....................^...^.^.......'.
SUBCHANNEL FLCW(CFS) = 6911.8
S�BCHANNEL FLOW AREA(SQUARE FEET) = 150.84
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 45.822
�� SUBCHANNEL FROUDE NUMBER = 3.188
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 23.51
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 6.42
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 6900.00
�� COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 6911.75
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
il ELEVATION 100.00
I NOTE: WATER SURFACE IS ABOVE LEFT OR RIGHT
BANK ELEVATIONS.
I/ ____________________________________________________________________________
************************** DESCRIPTION OF STUDY **************************
��
�� * CAPACITY FOR ETIWANDA CHANNEL *
* 0=3900 cfs, 8=0.0268 *
* FREEBOARD= 2.5 ft *
�� Y*************************************************************************
q� ��
^
'
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
23.5
m� 1 .00 100.00 ,
2 13. 50 91.00 /.8Z � u ��
3 23.50 91.00
I 4 23.51 100.00 /o/
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
11
J SUBCHANNEL FLOW(CFS) = 3800.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 39.448
SUBCHANNEL FROUDE NUMBER = 3.146
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3800.56
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 97.48
NOTE: WATER SURFACE IS BELOW EXTREME
~~ AND ND RIGHT 8ANK ELEVATIONS.
II ************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR ETIWANDA CHANNEL *
* Q=2�00 cfs, S=0.0268 *
II - * cREEBOARD= 3 5 ft *
**
��
�� * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COCRDINATE
II 1 .00 100.00
2 13.50 91.00
�� 3 23.50 91.00
�� 4 23.51 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 2800.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 76.81
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 36.455
SUBCHANNEL FROUDE NUMBER = 3.126
I SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.18
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.22
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 2800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 2800.27
�� �� ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
P/ pouTTnm 96.45 ^~
'
** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
o�
CALCULATIONS BASED ON MANNINGS EQUATION
II WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
==_______===__________=__________________
(c) Copyright 1982-88 Advanced Engineering Software (aes)
1/ Ver. 3.3A Release Date: 8/02/88 Serial # 2224
Analysis prepared by:
1/ FUSCOE, WILLIAMS, LINDGREN & SHORT
**,7*********************** DESCRIPTION OF STUDY **************************
v�
* CAPACITY FOR ETIWANDA CHANNEL *
I * Q=8500 cfs, S=0.0268 * .
* FREEBOARD0 00 ft *
**************************************************************************
II * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMBER "X" COORDINATE "Y" COORDINATE
�
���
�� 1 .00 10O.00 /
u�
2 15.0 *r
0 90.00 ����`� �
`� V
3 25.00 90.00 , '
4 25.01 100.00 ��^
II SUBCHANNEL SLOPE(FEET/FEET) = .026800
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
1 ii
III ..'....'....'.~..'...'................~'.......^.^.'..........'...'.........
SUBCHANNEL FLOW(CFS) = 8404.6
W� SUBCHANNEL FLOW AREA(SQUARE FEET) = 174.S5
�� SUBCHANNEL FLOW VELOCITY(FEET/SEC.> = 48.067
SUBCHANNEL FROUDE NUMBER = 3.203
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 25.00
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 6.99
I/ TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 8400.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 8404.61
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 99.99
ii NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
II ________
�� ************************** DESCRIPTION OF STUDY **************************
��
�� * CAPACITY FOR ETIWANDA CHANNEL *
* O=4900 cfs, S=0.0268 *
*
* FREEBOARD= 2.5 ft
il ************************************************************************* /1
'
T. ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I ODE N�MBER "X" COORDINATE "Y" COORDINATE 2 NODE /
1 .00 100.00 1
2 15 00 90.00 t57- `^
^ � ^
II 3 25.O0 90.00 4 25.01 100.00 10'
SUBCHANNEL SLOPE(FEET/FEET) = .026800
I/ SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
.....
I SUBCHNNEL FLOW(CFS) = 4907.3
SUBCHANNEL FLOW AREA(SQUARE FEET) = 116.61
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 42.082
SUBCHANNEL FROUDE NUMBER = 3.163
I SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21.21
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4900.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4907.31
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION.................. 97.47
II
NOTE: WATER SURFACE IS BELOW EXTREME
I/ LEFT AND RIGHT BANK ELEVATIONS.
II ************* - ************ DESCRI OF STUDY k******************
* CAPACITY FOR ETIWANDA CHANNEL *
* Q=3800 cfs, S=O.O263 *
I * FREEBOARD= 2.5 ft *
*
II ______________________ �
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
NI 1 .00 100.00
2 15.00 90.00
3 25.00 9O.00 00
I
I 4 25 01 100 . .
SUBCHANNEL SLOPE(FEET/FEET) = .026800
II SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 3800.4
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 39.447
5LB[HANNEL FROUDE NUMBER = 3.146
I SLBC�ANNEL FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 3800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 3800.41
11 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
_._..._-...
01, An 1,1
II ** RESULTS OF IRREGULAR CHANNEL ANALYSIS **
CALCULATIONS BASED ON MANNINGS EQUATION
WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS
(c) Copyright 1982 -88 Advanced Engineering Software (acs)
ii Ver. 3.3A Release Date: 8/02/88 Serial 4* 2224
Analysis prepared by
II FUSCOE, WILLIAMS, LINDGREN & SHORT
II
al
?K***** * * * * * ** * * * * * * * ** * * ** DESCRIPTION OF STUDY * * * * * * * ** ** * * *** * * * * * * ** **
II K Cr,'ACITY FOR ETIWANDA CHANNEL *
* 0.= 7900 cfs, S- 0 *
I * F EEr OARD = 0.)0 ft *
*;i?:K *:: **************** ?K** * * * * * *:? ** * * * * * * * * *`K **** K* * * *** * * * *:* * * ** * * * ** M*:k*
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1
NODE NUMEER "X" COORDINATE "Y" COORDINATE
23•S
L5 - \: ----- 1 4
SUBCHANNEL SL_OFE ( FEET /FEET ) = .054400 100.00 /01
8UFCHANNEL MANNINGS FRICTION FA CTOR = ,)14000
1 II
S! 1 B C =H A N €N E:=L FLOW(CFS) = 7805.7
SUBCHANNEL FLOW AREA (SQUARE FEET) = 150.27
II SUBCHANNEL FLOW V _LOC I TY (FEET SEC .) -= 65.210
SUBCHANNEL FR:OUDE NUMBER 4.541
SUBCHANNEL FLOW TOF-WIDTH (FEET) = 23.48
II SUBCHANNEL HYDRAULIC DEPTH (FEET) = 6.40
----------
IRREGULAR CHANNEL FLOW(CFS) WANTED = 9800.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 9805.68
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 99
I/ NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
I **: * * ** * * * *** *:K * * ** * * * *1? ** DESCRIPTION OF STUDY * * * * ** * * * * *t * * * * * ** * * * ** **
* CAPACITY FOR ETIWANDA CHANNEL *
:: 0 =5400 cfs, 8= 0,05.44 *
: FREEBOARD= 2. 5 ft *
* ** *:t* * * * ** % * * * * * * * ** ?: * * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** % * * * * ** * * * ** * *4?* ** * **
/3
* ENTERED INFORMATION FOR SUB NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
II
23, 1
II 1 .00 100.00 K
/
2 17.50 91.00 IS:� -� ~� K
��
9
3 23.50 91.00 . , .
�� 4 23 51 100 00 i0
.
SUBCHANNEL SLOPE(FEET/FEET) = .054400
1 SUBCHANNEL MANNINGS FRICTION FACTOR = .014000 II
II SUBCHANNEL FLOW(CFS) = 5414.8
SUBCHANNEL FLOW AREA(SOUARE FEET) = 96.34
I SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 56.203
SUBCHANNEL FROUDE NUMBER = 4.482
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
I SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
II TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 54 00.00
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5414.77
II ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION............................. 97.48
11 NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
I/
II ********************1- DESCRIPTION OF STUDY **************************
1 * CA FOR ETIWAN]A CHANNEL *
- k Q= 400� cf�, S=0 *
il * FREEBOARD= 3.5 ft
m* ************************************************************* ***********
I * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
I NODE NUMBER "X" COORDINATE "Y" COORDINATE
I
1 .00 100.00
1
2 13.50 91.00
3 23.50 91.00
4 23.51 100.00
�� SUBCHANNEL SLOPE(FEET/FEET) = .054400
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
II
SUBCHANNEL FLOW(CFS) = 4002.4
I SUBCHANNEL FLOW AREA(SQUARE FEET) = 77.00
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 51.982
SUBCHANNEL FROUDE NUMBER = 4.453
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 18.20
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.23
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 4000.00
w�
COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 4002.42
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
m� 96.46
— -- —
'
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
V�
************************* DESCRIPTION OF STUDY *************************
* CAPACITY FOR ETIWANDA CHANNEL *
�� * Q= 12000 cfs, S=0.0544 *
* FREEBOARD= 0.00 ft *
**************************************************************************
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER "X" COORDINATE "Y" COORDINATE
I »
1 .00 100.00 /
-7, 15.00 90 00 / �
^ ���, �� U
1 3 25.00 90.00 `^ n
�� 4 25.01 100.00 /0
SUBCHANNEL SLOPE(FEET/FEET) = .054400
I SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
^^^^^^^^^^^^~^^^^^^^
SUBCHANNEL FLOW(CFS) = 12026.8
II SUBCHANNEL FLOW AREA(SQLARE FEET) = 175.35
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 68.586
S U �
BCHANNEL FOUDE NUMBER = 4. 565
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 25.O1
U�
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 7.01
�� -___________ __________ _
____________________________________________
�� ��_��������
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 12000.)0
COMPUTED IRREGULAR CHANNEL FL3W(CFS) = 1202
ESTIMATED lPrEGULAR CHANNEL NORMAL DEPTH WATER SURFACE
I/ ELEV4TION ..... ..........^..... ..... ... 100.01
NOTE: WATER SURFACE IS ABOVE LEFT OR RIGHT
I I BANK ELEVATIONS.
1 ************************** DESCRIPTION OF STUDY **************************
* CAPACITY FOR ETIWANDA CHANNEL * , .
I * Q7000 cfs S=0 O544 *
* FREEBOARD= 2.5 ft *
***********************************$**************************************
II
* ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 :
NODE NUMBER 'X" COORDINATE "Y" COORDINATE
I 1 .00 100.00
2 15.00 90.00
3 25.00 90.00
�� 4 25.01 100.00
SUBCHANNEL SLOPE(FEET/FEET) = .054400
SUBCHANNEL MANNINGS FRICTION FACTOR = .014000
"�
�c"
��
SUB FLOW A FEET) = 1
S UBCHANNEL FLOW VELOCITY(FEET/SEC.) = 59.992
I 3UBCHANNEL FROUDE NUMBER = 4.507
SUBCHANNEL FLOW TOP-WIDTH(FEET) = 21.23
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 5.50
I
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED =7000.-7°.°0
I COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 7008.
I ESTIMATED IRREGULAR CHANNEL NORML DEPTH WATER SURFCE
ELEVATION 97.48
NOTE: WATER SURFACE IS BELOW EXTREME
I LEFT AND RIGHT BANK ELEVATIONS.
II
************************** DESCRIPTION OF STUDY **************************
I * CAPACITY FOR ETIWANDA CHANNEL * Q= 5400 cfs, S=0.0544 *
'k FREB
ECARD= 3.5 ft *
II ******** * **** * ************************************************************
I * ENTERED INFORMATION FOR SUBCHNNEL lUMBER 1 ' NODE NUMBER "X" COORDINATE "Y" COORDINATE ^
1 .00 100.00 /
4 25.01 100.00
2 15.00 90.00 ����\ �� 3 25.00 90.00 ,
��
SUBCHA SLOPE(FEET/FEET) = .054400
�� SUBCHVINEL MANNINGS FRICTION FACTOR = .014000
SUBCHANNEL FLOW(CFS) = 5414.6
SUBCHANNEL FLOW AREA(SQUARE FEET) = 96.34
SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 56.202
SUBCHANNEL FROUDE NUMBER = 4.482
I SUBCHANNEL FLOW TOP-WIDTH(FEET) = 19.73
SUBCHANNEL HYDRAULIC DEPTH(FEET) = 4.88
I/
TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 54
�� COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 5414.
ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE
ELEVATION 96.48
I
1
NOTE: WATER SURFACE IS BELOW EXTREME
LEFT AND RIGHT BANK ELEVATIONS.
M�
----'------------------------------------------ ----------------------
1