Loading...
HomeMy WebLinkAboutWest End - Tract 15957 Tract 15957-6 f 1 HYDROLOGY AND HYDRAULIC REPORT 1 1 1 al LEWIS HOMES PROJECT PHASE 4B TRACT NOS. 15957 AND 15957 -6 CITY OF FONTANA STATE OF CALIFORNIA • `/ '4-`; , j' m. Re, 9 (F "4 �' • `\ No. 46158 m * Exp.! " 31 %.e C i :AI 0F Prepared by: Hall and Foreman, Inc. 203 North Golden Circle Drive, Suite 300 Santa Ana, California 92705 -4010 (714) 664 -0570 Qctgber 9,1998 Revak') I-i 99 adol 1 1 r 10 GENERAL 111 The project is a portion of a land development project by Lewis Homes located in the City of Fontana, California. The site is bounded to the north by Day Canyon Drive, East Avenue to the west, West Liberty Parkway to the east, and Miller Avenue to the south. Phase 4B is composed of Tract nos. 15957 and 15957 -6 with a total land area of about 18 acres. Tract 15957 -6, which is located at the northern side of the development area, will have 48 residential lots while tract 15957 with have 49 residential lots. i This drainage study is conducted to design the proposed drainage system in the development site. Portion I of Day Canyon Drive, about 0.4 acre, will be draining to the project site. Aside from this "offsite" tributary, the rest of runoff will be coming from the site itself. The site will be graded creating a low point at the cul -de -sac of `BB" street. A high point will be located at the junction of "Y" and "Z" streets creating a southerly runoff flow along "Y" street and an easterly flow along "Z" street. 111 HYDROLOGY i I I The hydrology method used in this study is based on the San Bernardino County Hydrology Manual. The calculations were made using the AES software for San Bernardino. The site has a soil classification of type "A ". 1 The proposed drainage system, catch basins and pipelines, is designed for the 100 -year storm event. The 8 runoff- carrying capacity of the streets were also checked for the 100 -year storm event. I HYDRAULICS Curb opening catch basins were designed to intercept most of the design 100 -year storm flows using the AES software "HELE 1" program. Hydraulic grade lines (HGL) for pipes were calculated using the 1 LACFCD computer program F0515P, WSPG. I Results of calculations for inlets and pipelines indicate adequate for the proposed drainage system. Streets are also found to be adequate in conveying the 100 -year storm event indicating that flood levels are well below proposed pad levels. 1 I R ` � 1 1 • if t Ii, .: I 3 HYDROLOGY CALCULATIONS 1 i 1 1 IRU Hall & Foreman, { Inc. Civil Engineering • Planning • Surveying • Public Works I UBJECT �vUrLS SHEE �' I6 -Q - - I DATE 9 11 JOB NO. as ( T OF , CI r" I 1 CO 41? 0 ' A A I , 0 v - , - * - 0 . 0 % - in. _. ::,;,- el ‘,, . 4 r - ,yam r`). 'ZS' 16Z 9 O 1 3 liell �`� i; r • Ai (i)i `a' l N r; e 14 v - .- 1 4..-- e '. 5 ' d — 2 Cal i 0,2 ) V A UN NY 191 GI - ' .: ... 0 _ tA'- 1 - 1 11 1 0 N ® t A j L . p <i tf* C:' . c4 PI ' C ' (5-- -TO 1 rf' 1 0 DO' A 9 n .114. M U E x ,c, 1 � .1h. I 1 el -4- 0 A I 0 0 a?� 1 IS) i `� ® 1 1 0 rss ...Q ,..., Q � 1 0 .. I� O ®A � 41) � to .� 1 ..t 3 ,.., e 3 I ,. CI CI (.4 .9 0 „Is ts 2 0 3 North Golden Circle Drive. Suite 300, Santa Ana. California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 1 ar 4 Hall & Foreman, Inc Civil Engineering • Planning • Surveying • Public Works UBJECT BY DATE JOB NO. SHEET OF l,bW S ifDMJ&S I Q- -- 1 �` • ,)o • 1 I RSA 1 — z n 1 4 e 1 ..,® , i , 1 .47 I f i\ 0 ,i , , , t Ner 0 3 Zo a 6 q 5 4 e 1 , 0 1 ... 0 ] N ... o r . ` ® a A .. - el I A , 0 ./. el .ei ' 1 0 M 0. Q I . 6, rA A el 111 1- lel ® ' d ' AN \ 4 As 0 t.-. , 1 . 203 North Golden Circle Drive, Suite 300. Santa Ana. Califomia 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 LEWIS HOMES PROJECT . CITY OF FONTANA HYDROLOGIC SUMMARY TABLE Tc10 Q10 Tc100 Q100 Node Nos. (min) (cfs) (min) (cfs) 11 10.08 1.99 10.08 3.19 3 12 11.11 3.22 10.98 5.22 14 8.94 0.57 8.94 0.87 15 10.52 0.89 10.36 1.36 16 11.52 4.58 11.34 7.30 17 13.65 7.42 13.18 12.16 18 8.48 1.4T 8.48 2.24 I 20 8.01 1.37 8.01 2.16 21 9.23 2.77 9.10 4.46 22 10.82 4.24 10.52 6.94 1 23 11.84 4.27 11.40 7.03 24 5.51 0.44 5.51 0.67 25 7.84 2.97 7.61 4.77 26 9.53 5.08 9.10 8.33 1 28 8.58 2.41 8.58 3.82 29 10.01 1 3.42 9.53 21.77 30 5.41 0.37 5.41 50 6 I 32 9.06 1.96 9.06 3.12 33 10.20 3.21 10.15 5.16 35 10.66 3.75 10.55 6.00 ir 36 12.19 5.27 11.90 8.60 37 13.71 6.55 13.26 10.83 • 38 13.81 6.76 13.35' 11.16 I 39 14.06 7.76 13.57 12.81 41 10.12 2.49 10.12 3.98 42 11.91 4.11 11.75 6.69 43 12.81 12.49 12.59 20.51 101 10.49 20.25 10.32 32.90 102 10.98 32.35 12.27 52.77 1 1 1 1 1 Hydsumtable.xls ® ®gini��m®inomfi ®�gg 7.0 6. EI migra®gl® li®ili lgo®usi®® isial MEM II ! = ' ES11111MEMEMIC s.o wag -OgrniallaNNEWAI : MlliiffiillIEMENISM®IMINIENS 4 .0 ==.,..r,........4...=-E1 ..� == ..w EL ....__wrr5 "y"�• �' V _ Y.Y �• � a � ./ is m = r a � -�_ r�� ' -1 O _. = = M =s ue=' - = -- _ __.::ter- =.E . ��• _= 1 2-0 E a - _. S mow. = = __- c ��. : = =_ =-�,.� =-...� = NI -.. ON. .r•a -11 w n./.ww w...4 w•..a5• • w •i �..... w.•• w wr..w .a.a. I.• _ in• M... o. W a. a• AMU EMI O ..a«« M•.5.•.O r•4 n .nu 5•..a./•11 aa..M.... • WA •• M••ww•.w•.w. �. w.a ew . w.� �f...a.....w M ...Y •a ..w T •■01O•OO MAIM. O. 1•Y Se�OOI OS ...1.•.• UM WW1 ■ NMI n.. .. ..O. . IN w' Y M •••••• Una wa. M.�•• 5U 5 •• ....t = + •«.. r. .a.....11.�.M�OO. OI«M.....N 11•'•41 MNI MI. Rf1ww..7•..� NM. II�O ►•. •.1541 1.1... .. 1 .01. 0. ONLY 5 ..1.1..11 .. f. 1.l1 a MN Y ..1 ■I ■1 .1�A.M.•� / il O ••.•`../ I II t.. •.I•. 1/.�f .1�I R1. V a.a .�11.111.N WON 115. 1w*.� ME MI 0IS PION M . .M \\..Y.YM Rit.w. 1 I 1#a H ! rD LIM . • 1.M 1 .. VI n1...= 155.1 isa HMI M.11 Ulu ISM ma 11111•1111111111•4 UM NMI fl.�1111n5f1a1••. WUM NOM f7/ .fA1 1.111IVI. YM...IA 1 O1M 1 1/Haf.la.a.I tfalfl Z Mr �11R0.fN a51.�MA. M.M UI ■M.I ■■■ 11I51 . ammo.. t.. l..lf1 M...4. I a�l..'U...... /.Oa.a Y1tl - mr.. ...11M1101/1M/�.� =111111. In UM UM aM1 ma mu f1..1n•rrum n Ri WM OM mti 11tH I trill 1..∎ ..1fi /1M. M.n./.a M'IllN M MS MM 11M 101O .O111 N smaOfllM 11 M ■M MMMMMM N111Y /MO HMI m" oW INAI H 11114 N MOM SS awmMM.lN� mums um= usu mmum u inin l l n t ma lumina a usMMMMM 111111W1114/411111111111 MI ll UII..► M.M 1111 }• teMrta111B11r1111nn11111tllttle Spurn sm. own lr nra uossrr ananetn /u tlt11tmitientuplimn. l llu M tM 1141R.:Yl, l illl Util ttlimn 1- 1. a =wuen°nlcuauusumawnln/llnu u�r tlru ral utmuunuumumulnannunt .wultnrts��metmeneMlre CM -s= -mss - _-- -- _ - . .:.z= :::- ____ =r;��a Z 0.9 mac- s =:___ = - _=� = _ : �� =z a= w __a =_ - = _ - - -= -= _ ...::.._ -- _= Z 0.7 . .7 : =_ _ = =_ : : : = =••a •••••••••••• __ '� -... _ :° =-----. === S=P, J 15� • •71111 MY �w...M- . 15..4..4 ..- .MwM•w uuwu .•A••=mr• • =••.� . 15.15 Yaw. •• 1 =w 0 . 6 . 4•.1ow.....r. . wo• rw•+. w ••••• s.•a.a.•w•rw.w.waimImmu15••15«. as M. una. w.wu...u._u.w sow avow o.« .«. MD= MOM ■ - _ __ _>:=== _ r_ - - -m _ -ma _ - "__c =: 2. J --_ - = = = -__ . - = � _ v = - = =.-r = = := =i . _- _ :- __ _,, _ � - s: • �] - = - =L� :::__ - -_ _ ___=- - --- _ - - - 4. 0.5 -_ = == = .c= = = �z - - =:L _ :. -� : -= ct CC 0.4 - - . _ =� -- === == = === ::: = = == :� ...� = =- = ::= = = =0.77-- .a _= =� .............• t.. ......... _._..;yam .' ... � � = mow. •moss• • wiw O = •••• ..... ww•Rom.. . : w... w.•.0 -. n.u..a.w... « •••. ••••• uw.- 5154ao. w. a + au « y.....•..wl.-..w ;as ww .r h .u.. ` •= nm n..w,.. =.. uwu• 0.3 rd. ra 4�o 51•1 .. i� Iso..n u .. .wr. o.w w ..w•r. . ii===. in = �zs.s.�a =�_ =ti _ z =_ .rJ- ate= .z lr� =s s p a - c s °_- _ 3 -- __ -- -= "== =°i-= = - -- • WM.= mom --_= 51_ ..r -- :-: . . . -- , 3 : : ...... a"" •= -• _ a__ .2� =aa � = == �:.==.E -A � �� =:� = = r. �a•44.•O fYr aw o Oa•5a�a55.. ��wwwwl =4 ..�..a.w.ww = X•111151 .. • «r. afY.�OI.. µ•, - - -. - 54.54.. Ia..f1... wR...M O..• fad � {. .N 5155 ll �a . ' . 14 5 - .554 1µr. . .44 / 5. 1.1 aY afO fa...�CCumea Ll5f/. am i.5 1445../ A.44 S1' 54 �t.� '4P5. �1.1Rw 0.......... 551. 11W RLt• =no woe OO.I.S���_ �1 mow awry .544.{.. mamma S•U • • maw Now MNP.N \i 51/. .Y.11� .fa 51 liar...! NM 1.11/ttttts MOM 1 n u� 1 1 In .- mynas o n el U M M NI n 1�i I r1rM��wanww MRnMOtull�r111nn1n �l� ewlr� ■n � allI Le 111Ml rltU =il id :li MIM■ unhillmlu =atri NT llmutln lnlulurRl. tl5l/YnuUUU.nnp 0.1 r1/tT15J1MY111 WIMllRN MIN NE 11111f111 WWI W ll tl /tMU MUM Mfr W1117o 1 UM mg... - 4=151 /117.M.M w1J 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 90 90 STORM DURATION (MINUTES) 1 DESIGN STORM FREQUENCY =-_* YEARS 1,C U)15 - I E'S ONE HOUR POINT RAINFALL = -• 11.. INCHES rI2- 0t.S,GT 1 LOG -LOG SLOPE • G - T`t OF TO 0TaJ A PROJECT LOCATION = CA -1-\ Of F19 rfl _ 1 2 . . SAN BERNARDINO COUNTY INTENSITY - DURATION CURVES HYDROLOGY MANUAL CALCULATION SHEET 1 p - FIGURE 0-3 1 Cr 3.5 3.5 N I_____ _ . ,__ N 1 3 3 1 1 N 2.5 2.5 W Z V Z -3 . 2 2 i I- a 0 1► 1. J iiii J u_ 1.5 .....„../ 1.5 . e. a te O r _ s t i 1 / � ►.49 i ,.........----<--;-- 1 ' 0.5 0.5 • 1 0 - 0 I 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE' I I. FOR INTERMEDIATE RETURN PERIODS PLOT 10 -YEAR AND I00 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10 -YEAR ONE HOUR• 0.95" AND 100 -YEAR CNE HOUR • I.60 25 -YEAR ONE HOUR • me. 1 REFERENCE .NOAA ATLAS 2, VOLUME 21 - CAL.,1973 RAINFALL DEPTH VERSUS SAN BERNARDINO COUNTY RETURN PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES D -7 FIGURE D -2 i.*************************************** ***** * * *** * ****** * * * * * * * * * *** ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -92 Advanced Engineering Software (aes) Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * *-* * * * * * * *- *- *- * ** * * * * * ** * CITY OF FONTANA, LEWIS HOMES PROJECT * ONSITE SYSTEM HYDROLOGY ANALYSIS, Q10 * * FILENAME: "FONTANA" BY" E. M. RUIZ ************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FILE NAME: FONTANA.DAT TIME /DATE OF STUDY: 13:18 9/30/1998 ___ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) = .389 *(( 195.00 ** 3.00) /( 2.00)] ** .20 = 8.012 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.347 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fp(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.37 TOTAL AREA(ACRES) = .53 PEAK FLOW RATE(CFS) = 1.37 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« < < 4 UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.13 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.57 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.08 PRODUCT OF DEPTH &VELOCITY = .85 STREET FLOW TRAVEL TIME(MIN.) = 1.22 TC(MIN.) = 9.23 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.074 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .66 SUBAREA RUNOFF(CFS) = 1.54 EFFECTIVE AREA(ACRES) = 1.19 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 2.77 END OF SUBAREA STREET FLOW HYDRAULICS: Om DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 ON FLOW VELOCITY(FEET /SEC.) = 3.15 DEPTH *VELOCITY = .95 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 » STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.66 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.02 PRODUCT OF DEPTH &VELOCITY = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 1.59 TC(MIN.) = 10.82 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.795 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 1.77 EFFECTIVE AREA(ACRES) = 2.04 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 4.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET /SEC.) = 3.17 DEPTH *VELOCITY = 1.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. - STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.39 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.28 PRODUCT OF DEPTH &VELOCITY = 1.14 STREET FLOW TRAVEL TIME(MIN.) = 1.02 TC(MIN.) = 11.84 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.648 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = , .10 SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) = .30 EFFECTIVE AREA(ACRES) = 2.17 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA- AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 4.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET /SEC.) = 3.19 DEPTH *VELOCITY = 1.11 FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA« « < UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE = .0235 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.27 FLOW VELOCITY(FEET /SEC) = 3.58 FLOW DEPTH(FEET) = .22 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 12.23 3 * * * * * * * **** ** * *,. * *** ** * * ** * * *** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.23 RAINFALL INTENSITY(INCH /HR) = 2.60 AREA - AVERAGED Fm(INCH /HR) _ .46 AREA - AVERAGED Fp(INCH /HR)._ = .97____ AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 3 **********+**********************+*********** * * ** * * * * * * * * * * * * * * * * * * ** * ** * *** FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< il DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 I DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) = .304 *[( 190.00 ** 3.00)/( 3.50)] ** .20 = 5.512 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.189 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 , 4 , SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .44 TOTAL AREA(ACRES) = .12 PEAK FLOW RATE(CFS) = .44 ii +**********************+********************* * **+ * * * * * + * * *** * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 ril li » STREET FLOW TRAVEL TIME THRU SUBAREA««< ____ _ ____ _____ II UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(C FS) - - =- - 1.78 II STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.57 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.58 PRODUCT OF DEPTH &VELOCITY = .72 STREET FLOW TRAVEL TIME(MIN.) = 2.33 TC(MIN.) = 7.84 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.391 ;I SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.62 EFFECTIVE AREA(ACRES) = 1.12 AREA - AVERAGED Fm(INCH/HR) = .44 AREA - AVERAGED Fp(INCH/HR) _ .97 AREA - AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 2.97 ;I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY (FEET /SEC.) = __3,02_ _ .DEPTH*VELOCITY = -99 3 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< 3 UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 gm DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.22 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET /S£C.) = 3.16 PRODUCT OF DEPTH &VELOCITY = 1.10 STREET FLOW TRAVEL TIME(MIN.) = 1.69 TC(MIN.) _. 9.53 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.016 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 !I SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 2.48 EFFECTIVE AREA(ACRES) = 2.21 AREA - AVERAGED Fm(INCH/HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 P EAK FLOW RATE(CFS) = 5.08 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET /SEC.) = 3.16 DEPTH *VELOCITY = 1.17 FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< _ » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0200 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.08 FLOW VELOCITY(FEET /SEC) = 3.49 FLOW DEPTH(FEET) = .24 TRAVEL TIME(MIN.) = .48 TC(MIN.) = 10.01 *********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.01 RAINFALL INTENSITY(INCH /HR) = 2.93 AREA- AVERAGED Fp(INCH/HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) = .389 *(( 330.00 ** 3.00)/( 6.90)] ** .20 = 8.576 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.213 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fp(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.41 TOTAL AREA(ACRES) = .98 PEAK FLOW RATE(CFS) = 2.41 *** * * **** * * * ** * ** * ** * * * ** * * * * *** ** iii******** * * * * * ** * * * * * ** * * ** * * * * * * * * * * * ** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.54 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 * r II AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.24 11 PRODUCT OF DEPTH &VELOCITY = 1.05 STREET FLOW TRAVEL TIME(MIN.) = 1.85 TC(MIN.) = 10.43 . 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.857 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 ii SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.26 EFFECTIVE AREA(ACRES) = 2.04 AREA - AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 4.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD = 11.04 II FLOW VELOCITY(FEET /SEC.) = 3.26 DEPTH *VELOCITY = 1.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < Iiii » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< _ -- TOTAL NUMBER OF STREAMS = 3 II CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.43 RAINFALL INTENSITY(INCH /HR) = 2.86 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO !1 CONFLUENCE FORMULA USED FOR 3 STREAMS. II ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae ii (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 13.42 10.01 2.929 .97 .48 .47 5.94 2 12.54 12.23 2.597 .97 .48 .47 6.42 II 3 13.37 10.43 2.857 .97 .48 .47 6.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.42 Tc(MIN.) = 10.006 II EFFECTIVE AREA(ACRES) = 5.94 AREA - AVERAGED Fm(INCH /HR) = .47 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 II FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 II II » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING USER - SPECIFIED PIPESIZE« «< = = ___ DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.1 UPSTREAM NODE ELEVATION(FEET) = 40.00 li DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 35.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 13.42 TRAVEL TIME(MIN.) = .06 TC(MIN.) = 10.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) = .389 *[( 360.00 ** 3.00)/( 4.00)] ** .20 = 10.077 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.917 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.99 TOTAL AREA(ACRES) = .91 PEAK FLOW RATE(CFS) = 1.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.68 STREET FLOW MODEL RESULTS: 11 STREET FLOW DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.15 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.42 PRODUCT OF DEPTH &VELOCITY = .99 STREET FLOW TRAVEL TIME(MIN.) = 1.04 TC(MIN.) = 11.11 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.750 SOIL CLASSIFICATION IS "A" RESIDENTIAL - 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = SUBAREA RUNOFF(CFS) = 1.37 EFFECTIVE AREA(ACRES) = 1.58 AREA- AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 FLOW VELOCITY(FEET /SEC.) = 3.66 DEPTH *VELOCITY = 1.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 - » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = 1.00 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.691 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.69 AVERAGE FLOW DEPTH(FEET) = .25 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .41 TC(MIN.) = 11.52 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 1.58 AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.22 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING -FULL GUTTER(NORMAL DEPTH = GUTTER HIKE) END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .25 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET /SEC.) = 3.69 DEPTH *VELOCITY = .92 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.52 RAINFALL INTENSITY(INCH /HR) = 2.69 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 - EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.22 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 280.00 f UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET)_ _ =.- 67.00 - ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304 *[( 280.00 ** 3.00)/( 1.00)] ** .20 = 8.937 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.135 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .57 TOTAL AREA(ACRES) = .21 PEAK FLOW RATE(CFS) = .57 Ad FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 SO DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = .76 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .22 HALFSTREET FLOOD WIDTH(FEET) = 4.68 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.25 PRODUCT OF DEPTH &VELOCITY = .50 i; STREET FLOW TRAVEL TIME(MIN.) = 1.58 TC(MIN.) = 10.52 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.843 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) = .37 EFFECTIVE AREA(ACRES) = .36 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CFS) = .89 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 FLOW VELOCITY(FEET /SEC.) = 2.25 DEPTH *VELOCITY = .52 1 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. 1 II II STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 - INTERIOR STREET CROSSFALL(DECIMAL) = .020 II OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF_HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.15 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.91 PRODUCT OF DEPTH &VELOCITY = .67 II STREET FLOW TRAVEL TIME(MIN.) = IN.) = 11.49 10 YEAR RAINFALL INTENSITY(INCH/HR) 97 T = 2 SOIL CLASSIFICATION IS "A" ii COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .22 SUBAREA RUNOFF(CFS) = .51 ii EFFECTIVE AREA(ACRES) = .58 AREA-AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 1.36 ii END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 FLOW VELOCITY(FEET /SEC.) = 2.96 DEPTH *VELOCITY = .72 I: *** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 itzl » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< ' _ _ _ _ TOTAL NUMBER OF STREAMS = 2 li CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.49 i; RAINFALL INTENSITY(INCH /HR) = 2.70 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 II EFFECTIVE STREAM AREA(ACRES) = .58 TOTAL STREAM AREA(ACRES) = .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.36 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. il ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 4.58 11.52 2.691 .97 .39 .38 2.16 II 2 4.58 11.49 2.695 .97 .39 .38 2.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW RATE(CFS) = 4.58 Tc(MIN.) = 11.521 EFFECTIVE AREA(ACRES) = 2.16 AREA - AVERAGED Fm(INCH /HR) = .38 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.29 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.92 PRODUCT OF DEPTH &VELOCITY = 1.45 STREET FLOW TRAVEL TIME(MIN.) = 2.13 TC(MIN.) = 13.65 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.431 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 3.43 EFFECTIVE AREA(ACRES) = 4.12 AREA - AVERAGED Fm(INCH /HR) = .43 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 If TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 7.42 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) =13.35 FLOW VELOCITY(FEET /SEC.) = 3.90 DEPTH *VELOCITY = 1.54 FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »> USING USER - SPECIFIED PIPESIZE « «< ========= = aaaaaa= aaaa = == DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.1 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER { iNC+( -) - = 18. - NUMBER - OF PIPES = 1 - PIPE - FLOW(CFS) = 7.42 TRAVEL TIME(MIN.) = .12 TC(MIN.) = 13.77 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 » » >CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY« « < ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae II ;I (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 18.97 13.74 2.421 .97 .47 .45 10.54 2 18.95 13.77 2.418 .97 .47 .45 10.54 3 20.22 10.07 2.918 .97 .47 .46 8.96 !l 4 20.25 10.49 2.847 .97 .47 .46 9.24 di 5 19.74 12.30 2.588 .97 .47 .46 10.10 TOTAL AREA = 10.54 di COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: di PEAK FLOW RATE(CFS) = 20.25 Tc(MIN.) = 10.494 EFFECTIVE AREA(ACRES) = 9.24 AREA - AVERAGED Fm(INCH /HR) = .46 7! AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .47 ii TOTAL AREA(ACRES) = 10.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ii FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 opt » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< ii » » >USING USER - SPECIFIED PIPESIZE ««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.8 INCHES � -FLOW VELOCITY(FEET /SEC.) = 10.0 ii UPSTREAM NODE ELEVATION(FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 / FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 ill GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 20.25 TRAVEL TIME(MIN.) = .48 TC(MIN.) = 10.98 Pi NO , FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 i bil »» >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ii FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 I: »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< ____________ _ _ _ DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 ELEVATION DIFFERENCE(FEET) = 2.30 TC(MIN.) = .304 *(( 160-00** 3.0D)/( 2- .30)] ** .20 = 5.408 10 YEAR RAINFALL INTENSITY(INCH /HR) = 4.237 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .37 TOTAL AREA(ACRES) = .10 PEAK FLOW RATE(CFS) = .37 FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 ii 4 il » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < II » » >TRAVELTIME THRU SUBAREA« < UPSTREAM NODE ELEVATION = 44.70 II DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = .37 FLOW VELOCITY(FEET /SEC) = -1.98 FLOW- DEPTH(FEET) = .09 II TRAVEL TIME(MIN.) = .21 TC(MIN.) = 5.62 FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 » INDEPENDENT STREAM FOR CONFLUENCE« « < il TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.62 71 RAINFALL INTENSITY(INCH /HR) = 4.14 Mi AREA- AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = .10 TOTAL STREAM AREA(ACRES) = .10 PEAK FLOW RATE(CFS) AT CONFLUENCE = .37 . , FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ===== =-- = !! DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE ii TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 4a DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .389 *(( 325.00 ** 3.00)/( 5.00)] ** .20 = 9.063 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.108 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 II SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.96 TOTAL AREA(ACRES) = .-83 - PEAK FLOW RATE(CFS) = 1. 96 - FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 II »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA «« < a UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 I; DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 M INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.67 STREET FLOW MODEL RESULTS: OR STREET FLOW DEPTH(FEET) = .30 ill HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.03 PRODUCT OF DEPTH &VELOCITY = .91 41! STREET FLOW TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 10.20 a 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.895 SOIL CLASSIFICATION IS "A" - RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .65 SUBAREA RUNOFF(CFS) = 1.41 iii EFFECTIVE AREA(ACRES) = 1.48 AREA - AVERAGED Fm(-INCH/HR) = .49 AREA- AVERAGED Fp(INCH/HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY(FEET /SEC.) = 3.26 DEPTH *VELOCITY = 1.02 PR ii *************************************+ * * * * * * * * * * * * * * * + * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 a III » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW « < » » >TRAVELTIME THRU SUBAREA« «< 76 ___________ = = = = UPSTREAM NODE ELEVATION = 58.00 MB t DOWNSTREAM NODE ELEVATION = 56.60 CHANNEL LENGTH THRU SUBAREA(FEET) = ' 80.00 CHANNEL SLOPE = .0175 ii CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 - CHANNEL FLOW THRU SUBAREA(CFS) = 3.21 li FLOW VELOCITY(FEET /SEC) = 2.89 FLOW DEPTH(FEET) = .21 TRAVEL TIME(MIN.) = .46 TC(MIN.) = 10.66 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< _ _ 10 YEAR RAINFALL INTENSITY(INCH /-HR) = 2.819 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 II SUBAREA AREA(ACRES) = SUBAREA RUNOFF(CFS) = .64 EFFECTIVE AREA(ACRES) = 1.74 AREA - AVERAGED Fm(INCH /HR) = .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 il TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 3.75 TC(MIN) = 10.66 i immormerrommor r FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) =_20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.68 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.50 id PRODUCT OF DEPTH &VELOCITY = 1.22 STREET FLOW TRAVEL TIME(MIN.) = 1.52 TC(MIN.) = 12.19 om 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.602 SOIL CLASSIFICATION IS "A" • RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 1.87 EFFECTIVE AREA(ACRES) = 2.72 AREA - AVERAGED Fm(INCH /HR) = .45 VIP AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 5.27 END OF SUBAREA STREET FLOW HYDRAULICS: ' DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET /SEC.) = 3.59 DEPTH *VELOCITY = 1.29 OR 40 FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « « < = == _ UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.12 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.50 PRODUCT OF DEPTH &VELOCITY = 1.34 STREET FLOW TRAVEL TIME(MIN.) = 1.52 TC(MIN.) = 13.71 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.425 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 ;I SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 1.71 - EFFECTIVE AREA(ACRES) = 3.70 AREA - AVERAGED Fm(INCH/HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 6.55 END OF SUBAREA STREET _FLOW HYDRAULICS DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 3.45 DEPTH *VELOCITY = 1.36 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 3 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< »» >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 44.70 !M DOWNSTREAM NODE ELEVATION = 44.00 ii CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.55 FLOW VELOCITY(FEET /SEC) = 4.23 FLOW DEPTH(FEET) _ .25 TRAVEL TIME(MIN.) = .10 TC(MIN.) = 13.81 ;;; FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< = == = TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: rl TIME OF CONCENTRATION(MIN.) = 13.81 hi ii RAINFALL INTENSITY(INCH /HR) = 2.41 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 ai AREA- AVERAGED Ap = .47 MO EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 il PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 5.39 5.62 4.141 .97 .45 .44 1.61 2 6.76 13.81 2.414 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.76 Tc(MIN.) = 13.808 EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = .45 il AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 II FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » >TRAVELTIME THRU SUBAREA« « < UPSTREAM NODE ELEVATION = _44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE = .0308 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.76 FLOW VELOCITY(FEET /SEC) = 4.37 FLOW DEPTH(FEET) = .25 TRAVEL TIME(MIN.) = .25 TC(MIN.) = 14.06 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.06 RAINFALL INTENSITY(INCH /HR) = 2.39 U, AREA- AVERAGED Fm(INCH /HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.76 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) = .389 *[( 240.00 ** 3.00)/( 2.80)] ** .20 = 8.485 10 YEAR RAINFALL INTENSITY(INCH /HR) = 3.234 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.41 TOTAL AREA(ACRES) = .57 PEAK FLOW RATE(CFS) = 1.41 FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA« « < UPSTREAM NODE ELEVATION = 44.30 DOWNSTREAM NODE ELEVATION = 42.00 ;1 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 il CHANNEL SLOPE = .0575 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 II CHANNEL FLOW THRU SUBAREA(CFS) = 1.41 FLOW VELOCITY(FEET /SEC) = 3.61 FLOW DEPTH(FEET) = .12 TRAVEL TIME(MIN.) = .18 TC(MIN.) = 8.67 II FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.67 RAINFALL INTENSITY(INCH /HR)- = 3.19 _ AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 II EFFECTIVE STREAM AREA(ACRES) = .57 TOTAL STREAM AREA(ACRES) = .57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.41 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. • ** PEAK FLOW RATE TABLE ** id Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 6.64 5.89 4.026 .97 .46 .44 1.99 ir 2 7.76 14.06 2.389 .97 .47 .45 4.37 3 7.27 8.67 3.192 .97 .46 .45 2.92 i: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.76 Tc(MIN.) = 14.056 EFFECTIVE AREA(ACRES) = 4.37 AREA - AVERAGED Fm(INCH /HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 ii TOTAL AREA(ACRES) = 4.37 II FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 »» > COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. II STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 II OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.87 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .46 !1• HALFSTREET FLOOD WIDTH(FEET) = 16.82 i AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.67 11 PRODUCT OF DEPTH &VELOCITY = 1.24 STREET FLOW TRAVEL TIME(MIN.) = .87 TC(MIN.) = 14.93 OR 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.304 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .12 SUBAREA RUNOFF(CFS) = .24 EFFECTIVE AREA(ACRES) = 4.49 AREA- AVERAGED Fm(INCH /HR) = .44 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 7.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.82 FLOW VELOCITY(FEET /SEC.) = 2.63 DEPTH *VELOCITY = 1.22 FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.93 RAINFALL INTENSITY(INCH /HR) = 2.30 If AREA - AVERAGED Fm(INCH /HR) = .44 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 id EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 z , PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.76 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 hi » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < ________ = =a= ri DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE ai TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 455.00 UPSTREAM ELEVATION(FEET) = 59.90 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) = .389 *[( 455.00 ** 3.00)/( 7.90)] ** .20 = 10.121 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.909 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE-, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) = 2.49 FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ;I * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.44 STREET FLOW MODEL RESULTS: - STREET FLOW DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.14 PRODUCT OF DEPTH &VELOCITY = 1.02 STREET FLOW TRAVEL TIME(MIN.) = 1.79 TC(MIN.) = 11.91 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.639 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 1.90 EFFECTIVE AREA(ACRES) = 2.12 AREA - AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 4.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 FLOW VELOCITY(FEET /SEC.) = 3.39 DEPTH *VELOCITY = 1.14 di *************+***********************?******** * * * * * * * * + * * * * * * * * * + + * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 id STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 PP DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.62 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 - AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.15 PRODUCT OF DEPTH &VELOCITY = 1.13 STREET FLOW TRAVEL TIME(MIN.) = .90 TC(MIN.) = 12.81 II 10 YEAR RAINFALL INTENSITY(INCH /HR) = 2.526 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .56 SUBAREA RUNOFF(CFS) = 1.03 EFFECTIVE AREA(ACRES) = 2.68 AREA- AVERAGED Fm(INCH /HR) = .49 1: AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 II TOTAL AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) = 4.92 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET /SEC.) = 3.07 DEPTH *VELOCITY = 1.13 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 3 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VAL- U£S«<« - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.81 3 RAINFALL INTENSITY(INCH /HR) = 2.53 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 77 AREA - AVERAGED Ap = .50 ii EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.92 P j RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. id ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) ! 1 10.74 6.77 3.704 .97 .46 .45 3.53 li 2 11.81 9.54 3.015 .97 .47 .45 5.04 3 12.14 14.93 2.304 .97 .47 .46 - 7.17 4 12.49 12.81 2.526 .97 .47 .46 6.60 um COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.49 TC(MIN.) = 12.808 • EFFECTIVE AREA(ACRES) = 6.60 AREA - AVERAGED Fm(INCH /HR) = .46 id AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 7.17 :: - FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 il » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING USER - SPECIFIED PIPESIZE « «< II = = DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.0 UPSTREAM NODE ELEVATION(FEET) = 37.00 II DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 12.49 II TRAVEL TIME(MIN.) = .02 TC(MIN.) = 12.83 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 » »> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY« « < 1: = =__ limmormw ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) - (ACRES) ;I 1 28.45 6.79 3.696 .97 .47 .45 9.29 2 31.46 9.56 3.011 .97 .47 .46 13.15 3 32.20 12.83 2.523 .97 .47 .46 16.72 4 30.44 14.95 2.302 .97 .47 .46 17.71 5 32.23 10.55 2.837 .97 .47 .46 14.47 6 32.35 10.98 2.771 .97 .47 .46 14.96 7 32.22 12.78 2.529 .97 .47 .46 16.68 8 31.23 14.23 2.371 .97 .47 .46 17.51 il 9 31.21 14.26 2.368 .97 .47 .46 17.52 TOTAL AREA = 17.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.35 Tc(MIN.) = 10.978 EFFECTIVE AREA(ACRES) = 14.96 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 Pii TOTAL AREA(ACRES) = 17.71 END OF STUDY SUMMARY: wl TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 10.98 ii EFFECTIVE AREA(ACRES) = 14.96 AREA - AVERAGED Fm(INCH /HR)= .46 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 32.35 iii ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) iii 1 28.45 6.79 3.696 .97 .47 .45 9.29 2 31.46 9.56 3.011 .97 .47 .46 13.15 3 32.23 10.55 2.837 .97 .47 .46 14.47 isi 01:q' 4 32.35 10.98 2.771 .97 .47 .46 14.96 MO 5 32.22 12.78 2.529 .97 .47 .46 16.68 6 32.20 12.83 2.523 - .97 .47 .46 16.72 om 7 31.23 14.23 2.371 .97 .47 .46 17.51 illii 8 31.21 14.26 2.368 .97 .47 .46 17.52 9 30.44 14.95 2.302 .97 .47 .46 17.71 __ __ __ ___ ____________ _____ ill END OF RATIONAL METHOD ANALYSIS II II 1 ■N' Hall & Foreman, Inc. • Civil Engineering • Planning • Surveying • Public Works I 31ECT BY DATE JOB NO. SHEET OF l.,GWVS. 1� s 1 -- 1 9- 2-1 - lg 1 s 1 a s 1 2 0 . so ., .,..- CI. rc. .*_ . . 4.0i wp A ® 0 l . � ro ,., e `> v i FS ` r J N el -. 4 ' ". . A 411 , 0 I t , 41 ..1‘14: • 2 a- '� -5 r IV 2 ID 11 412), ....: - - 0 A - - iir lell A 0 0 , , Q , ,..,... - 1 di ,4-. ,____. Oil 1 ISO - LA I 161 J1 0 ,rt per/ n U CI .,.0 1■. (1-:.s.' 41) 0 cA el 6 m i Z io r „ ,, ,......, ,, 4 E`? le . -4- 0 A J I .d. 119 '9 iiii c:: e 4,..,„ e I ... v, i t-4- 49 A si cs‘ 0 . 1 v.., isl I ..k _ 14 ,.,., I .9 e r......,,.. - el 1 43) . o i o 1 3 t-s--: , 41) „°,43, O .0 S UN I \j, r .• / 203 North Golden Circle Drive. Suite 300. Santa Ana. California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 I UR Hall & Foreman Inc Civil Engineering • Planning • Surveying • Public Works 1 UECT ` BY I GATE 1 JOB NO. I SHEET OF 3 , 3 .4-. c,J. f I 1 , _ . .1:th 0 r-- : - -.4: I P 0 sriLuii" N:}' 6 3 3 ?,o r 5 tJ 450 a� .. e OR 1 ' - Z. 0 . ® ° 411) , ibo . . 110 iiii r el ,i- 0 M t M 0 . -1--- Q j 4.. tJ e S , . r. 1 ri 0 0 Lit -6\ .. 0 , AISI,. I r-- . 203 North Golden Circle Drive. Suite 300. Santa Ana. Califomia 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 * * * k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -92 Advanced Engineering Software (aes) MI Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * CITY OF FONTANA, LEWIS HOMES PROJECT * * ONSITE HYDROLOGY ANALYSIS, 25 -YEAR STORM EVENT * FILENAME: "FONTANA ", OUTPUT FILE: "FONT25.OUT" BY: EMRUIZ FILE NAME: FONTANA.DAT TIME /DATE OF STUDY: 13:44 9/30/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: == = pm -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 OR SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 1st SLOPE OF INTENSITY DURATION CURVE _ .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.1800 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 ij »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) = .389 *(( 195.00 ** 3.00)/( 2.00)] ** .20 = 8.012 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.949 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.65 TOTAL AREA (ACRES) = .53 PEAK FLOW RATE(CFS) = 1.65 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.58 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.94 PRODUCT OF DEPTH &VELOCITY = .88 STREET FLOW TRAVEL TIME(MIN.) = 1.28 TC(MIN.) = 9.29 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.614 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .66 SUBAREA RUNOFF(CFS) = 1.86 EFFECTIVE AREA(ACRES) = 1.19 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 3.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 FLOW VELOCITY(FEET /SEC.) = 3.41 DEPTH *VELOCITY = 1.06 h _ FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 OR » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< == UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 Ai DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.43 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.31 PRODUCT OF DEPTH &VELOCITY = 1.15 STREET FLOW TRAVEL TIME(MIN.) = 1.45 TC(MIN.) = 10.74 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.313 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 2.16 N. EFFECTIVE AREA(ACRES) = 2.04 AREA - AVERAGED Fm(INCH/HR) = .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.19 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 FLOW VELOCITY(FEET /SEC.) = 3.23 DEPTH *VELOCITY = 1.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA «« < UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.37 STREET FLOW MODEL RESULTS: , STREET FLOW DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.66 PRODUCT OF DEPTH &VELOCITY = 1.31 STREET FLOW TRAVEL TIME(MIN.) = .91 TC(MIN.) = 11.65 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.155 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) = .36 EFFECTIVE AREA(ACRES) = 2.17 AREA - AVERAGED Fm(INCH /HR) = .46 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 5.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET /SEC.) = 3.58 DEPTH *VELOCITY = 1.29 11 FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW «< » THRU - SUBAREA « - « < UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE = .0235 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.26 FLOW VELOCITY(FEET /SEC) = 3.67 FLOW DEPTH(FEET) = .24 TRAVEL TIME(MIN.) = .39 TC(MIN.) = 12.03 ************************#******************** * * # * * * * * * * * * * * *+ * * * * * * * * * * * ** ** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.03 RAINFALL INTENSITY(INCH /HR) = 3.09 AREA - AVERAGED Fm(INCH /HR) = .46 AREA- AVERAGED Fp(INCH /HR) = .97 - AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.26 11 ************* * * * * * * * * * * * * * + * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) = .304 *[( 190.00 ** 3.00)/( 3.50)] ** .20 = 5.512 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.943 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .52 TOTAL AREA(ACRES) = .12 PEAK'FLOW RATE(CFS) = .52 FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 i] » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< ======aaaaaaasaa == == a=aa=== ========== ==____== UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL.) -_=-- --.0-20 - SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.16 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.15 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.76 PRODUCT OF DEPTH &VELOCITY = .80 STREET FLOW TRAVEL TIME(MIN.) = 2.17 TC(MIN.) = 7.69 25 YEAR RAINFALL INTENSITY(INCH /HR) = 4.049 M R SOIL CLASSIFICATION IS "A" II RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 II SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.21 EFFECTIVE AREA(ACRES) = 1.12 AREA - AVERAGED Fm(INCH/HR) _ .44 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 3.63 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 FLOW VELOCITY(FEET /SEC.) = - 3.00 DEPTH *VELOCITY = 1.01 II ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 II »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.17 r STREET FLOW MODEL RESULTS: li STREET FLOW DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 ' AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 1.66 TC(MIN.) = 9.34 ' il 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.602 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 il SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 3.06 EFFECTIVE AREA(ACRES) = 2.21 AREA - AVERAGED Fm(INCH /HR) = .46 II AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 6.24 END OF SUBAREA STREET FLOW HYDRAULICS: ' DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET /SEC.) = 3.57 DEPTH *VELOCITY = 1.36 I FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 3 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA«« < == = UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = .0200 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 il MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = • 6.24 II FLOW VELOCITY(FEET /SEC) = 3.63 FLOW DEPTH(FEET) = .2-6 _ TRAVEL TIME(MIN.) = .46 TC(MIN.) = 9.80 * * * * * * * * * * * * * * * * * * **************************.* * * * * * * * * * * * * * FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 3 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.80 RAINFALL INTENSITY(INCH /HR) = 3.50 AREA- AVERAGED Fm(INCH /HR) = .46 ) ., AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 r"' TOTAL STREAM AREA(ACRES) = 2.21 hi PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.24 IP hi FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 ri » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 • ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) = .389 *[( 330.00 ** 3.00)/( 6.90)] ** .20 = 8.576 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.791 ' SOIL CLASSIFICATION IS "A" ' rl RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 hi SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.92 i TOTAL AREA(ACRES) = .98 PEAK FLOW RATE(CFS) = 2.92 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. -- - - - STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.30 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .35 ! HALFSTREET FLOOD WIDTH(FEET) = 11.04 hi M i 3 ' AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 11 PRODUCT OF DE ?TH &VELOCITY = 1.12 STREET FLOW TRAVEL TIME(MIN.) = 1.87 TC(MIN.) = 10.44 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.369 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 ;I SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.75 EFFECTIVE AREA (ACRES 1 - = - - - - _ 2- . -0 4- - - AREA - Fm (-INCH /HR) = . 4 9 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 5.30 END OF SUBAREA STREET FLOW HYDRAULICS: , DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET /SEC.) = 3.61 DEPTH *VELOCITY = 1.29 II FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< !1l » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.44 RAINFALL INTENSITY(INCH /HR) = 3.37 AREA- AVERAGED Fm(INCH /HR) = .49 ii AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 t TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO i; CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae i: (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 16.38 9.80 3.500 .97 .48 .47 5.89 2 15.46 12.03 3.094 .97 .48 .47 6.42 II 3 16.31 10.44 3.369 .97 .48 .47 6.13 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.38 Tc(MIN.) = 9.800 II EFFECTIVE AREA(ACRES) = 5.89 AREA - AVERAGED Fm(INCH/HR) = .47 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 .. II i FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 II » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « < I » » >USING USER - SPECIFIED PIPESIZE «« < II ASSUME FULL - FLOWING PIPELINE ill PIPE -FLOW VELOCITY(FEET /SEC.) = 9.3 UPSTREAM NODE ELEVATION(FEET) = 40.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 35.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 16.38 TRAVEL TIME(MIN.) = .06 TC(MIN.) = 9.86 II FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 II » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< II FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 II » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< = li DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) = .389 *[( 360.00 ** 3.00)/( 4.00)] ** .20 = 10.077 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.442 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) = .91 PEAK FLOW RATE(CFS) = 2.42 t * 1 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 1] » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< = __________ = UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 I; STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED US -ING MEAN FLOW(CFS) = - 3.26 II STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.70 PRODUCT OF DEPTH &VELOCITY = 1.11 STREET FLOW TRAVEL TIME(MIN.) = .96 TC(MIN.) = 11.03 II 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.259 ry SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 II SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .67 SUBAREA RUNOFF(CFS) = 1.67 EFFECTIVE AREA(ACRES) = 1.58 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 FLOW VELOCITY(FEET /SEC.) = 3.60 DEPTH *VELOCITY = 1.17 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 »» >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) _ .02000 MAXIMUM DEPTH(FEET) = 1.00 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.198 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 4.23 AVERAGE FLOW DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .35 TC(MIN.) = 11.39 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 1.58 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50' TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 3.94 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER -HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET /SEC.) = 4.23 DEPTH *VELOCITY = 1.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< === = = = = = = =_ == _ == _ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.39 RAINFALL INTENSITY(INCH /HR) = 3.20 AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.94 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 280.00 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 67.00 ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304 *[( 280.00 ** 3.00)/( 1.00)] ** .20 = 8.937 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.699 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) _ .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .68 TOTAL AREA(ACRES) = .21 PEAK FLOW RATE(CFS) = .68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< _ UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = .90 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .23 HALFSTREET FLOOD WIDTH(FEET) = 5.26 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.28 PRODUCT OF DEPTH &VELOCITY = .53 STREET FLOW TRAVEL TIME(MIN.) = 1.56 TC(MIN.) = 10.50 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.358 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) = .44 EFFECTIVE AREA(ACRES) = .36 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CFS) = 1.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 FLOW VELOCITY(FEET /SEC.) = 2.30 DEPTH *VELOCITY = .56 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. 1; STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 a SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.36 11 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.97 PRODUCT OF DEPTH &VELOCITY = .72 STREET FLOW TRAVEL TIME(MIN.) _ .95 TC(MIN.) = 11.45 11 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.188 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 2 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .22 SUBAREA RUNOFF(CFS) = .61 EFFECTIVE AREA(ACRES) _ .58 AREA - AVERAGED Fm(INCH /HR) = .10 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 ii TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 1.61 END OF SUBAREA STREET FLOW HYDRAULICS: am DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 til FLOW VELOCITY(FEET /SEC.) = 3.05 DEPTH *VELOCITY = .78 ii FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 1-‘4 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< _ TOTAL NUMBER OF STREAMS = 2 ii CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.45 RAINFALL INTENSITY(INCH /HR) = 3.19 AREA - AVERAGED Fm(INCH /HR) = .10 i; AREA- AVERAGED Fp(INCH /HR) = .97 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = .58 il TOTAL STREAM AREA(ACRES) = .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.61 ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO II CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** II Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 5.55 11.39 3.198 .97 .39 .38 2.16 2 5.54 11.45 3.188 .97 .39 .38 2.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.55 Tc(MIN.) = 11.389 EFFECTIVE AREA(ACRES) = 2.16 AREA - AVERAGED Fm(INCH /HR) = .38 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 0 a II ******************************** * * * * * *** * * * * ** + * * * * * **** * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 6 » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< « < UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.67 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.04 PRODUCT OF DEPTH &VELOCITY = 1.59 STREET FLOW TRAVEL TIME(MIN.) = 2.06 TC(MIN.) = 13.45 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.894 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 4.25 EFFECTIVE AREA(ACRES) = 4.12 AREA - AVERAGED Fm(INCH/HR) = .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 9.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET /SEC.) = 4.11 DEPTH *VELOCITY = 1.71 * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 » » >COMPOTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » USING USER - SPECIFIED PIPESIZE««< 2 xaxsaaaaaxsaxxsxx aaaa== a == saaaaa a DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.7 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 9.13 TRAVEL TIME(MIN.) = .12 TC(MIN.) = 13.57 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 »» >CONFLUENCE MEMORY BANK n 1 WITH THE MAIN- STREAM MEMORY« «< _= a x =a= -= === ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) II 1 23.37 13.57 2.879 .97 .47 .45 10.54 2 23.30 13.64 2.870 .97 .47 .45 10.54 3 24.66 9.86 3.486 .97 .47 .46 8.88 4 24.75 10.50 3.357 .97 .47 .46 9.32 II 5 24.28 12.10 3.084 .97 .47 .46 10.09 TOTAL AREA = 10.54 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW,RATE(CFS) = 24.75 Tc(MIN.) = 10.505 EFFECTIVE AREA(ACRES) = 9.32 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .47- TOTAL AREA(ACRES) = 10.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** II FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< II » » >USING USER - SPECIFIED PIPESIZE« « <__ DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.4 ii UPSTREAM NODE ELEVATION(FEET) = 39.30 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 ii PIPE - FLOW(CFS) = 24.75 TRAVEL TIME(MIN.) = .47 TC(MIN.) = 10.97 II * j FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< il ' ** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 ========= »»>RATIONAL METHOD INITIAL = SUBAREA ANALYSIS « < DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 II ELEVATION DIFFERENCE(FEET) = 2.30 TC(MIN.) = .304 *[( 160.00 ** 3.00)/( 2.30)) ** .20 = 5.408 25 YEAR RAINFALL INTENSITY(INCH /HR) = 5.000 II SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 II SUBAREA RUNOFF(CFS) = 44 TOTAL AREA(ACRES) = .10 PEAK FLOW RATE(CFS) = .44 II FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 ii » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< i » »>TRAVELTIME THRU SUBAREA« « < i, UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = .44 FLOW VELOCITY(FEET /SEC) = 2.24 FLOW DEPTH(FEET) = .09 TRAVEL TIME(MIN.) = .19 TC(MIN.) = 5.59 ********************************************* * * * * * * * * * * * * * + * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 ;I » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.59 RAINFALL INTENSITY(INCH /HR) = 4.90 1 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .10 - EFFECTIVE STREAM AREA(ACRES) = .10 TOTAL STREAM AREA(ACRES) = .10 PEAK FLOW RATE(CFS) AT CONFLUENCE = .44 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< __ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE OR TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 gg INITIAL SUBAREA FLOW - LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .389 *(( 325.00 ** 3.00) /( 5.00)] ** .20 = 9.063 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.668 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.38 TOTAL AREA(ACRES) = .83 PEAK FLOW RATE(CFS) = 2.38 ********************************************* * * * * * * * + * * * * * * * * * * * * * * * * * * + * + ** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 F ''f OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREET -S CARRYING RUNOFF = 1 1i * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.23 di STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.29 PRODUCT OF DEPTH &VELOCITY = 1.03 STREET FLOW TRAVEL TIME(MIN.) = 1.05 TC(MIN.) = 10.11 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.434 SOIL CLASSIFICATION IS "A" RESIDENTIAL - 5 - DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .65 SUBAREA RUNOFF(CFS) = 1.73 IIA1� EFFECTIVE AREA(ACRES) = 1.48 AREA - AVERAGED Fm(INCH /HR) _ .49 is AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.93 END OF SUBAREA STREET FLOW HYDRAULICS: pm DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 *5 3 FLOW VELOCITY(FEET /SEC.) = 3.24 DEPTH *VELOCITY = 1.09 OR vI FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 01 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » »>TRAVELTIME THRU SUBAREA< «< UP }; STREAM NODE ELEVATION = 58.00 '.� DOWNSTREAM NODE ELEVATION = 56.60 di CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 • CHANNEL SLOPE = .0175 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.93 FLOW VELOCITY(FEET /SEC) = 3.08 FLOW DEPTH(FEET) _ .23 I; TRAVEL TIME(MIN.) = .43 TC(MIN.) = 10.55 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.349 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .26 SUBAREA RUNOFF(CFS) = .76 EFFECTIVE AREA(ACRES) = 1.74 AREA - AVERAGED Fm(INCH /HR) = .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 4.58 TC(MIN) = 10.55 0 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.73 STREET FLOW MODEL RESULTS: :1 STREET FLOW DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.57 PRODUCT OF DEPTH &VELOCITY = 1.32 STREET FLOW TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 12.04 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.093 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) _ .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 2.30 EFFECTIVE AREA(ACRES) = 2.72 AREA - AVERAGED Fm(INCH/HR) = .45 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 6.48 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 RALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET /SEC.) = 3.70 DEPTH *VELOCITY = 1.41 FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 IP » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< s === = = == == == _= = = = =c == _ = =_ = = == =cos = = = == UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.93 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.66 PRODUCT OF DEPTH &VELOCITY = 1.48 STREET FLOW TRAVEL TIME(MIN.) = 1.46 TC(MIN.) = 13.50 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.888 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 PI SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 2.12 EFFECTIVE AREA(ACRES) = 3.70 AREA - AVERAGED Fm(INCH /HR) = .46 - AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 8.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET /SEC.) = 3.64 DEPTH *VELOCITY = 1.52 di FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < » » >TRAVELTIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 !I CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 s CHANNEL FLOW THRU SUBAREA(CFS) = 8.09 id FLOW VELOCITY(FEET /SEC) = 4.38 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = .10 TC(MIN.) = 13.59 fig FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 4 00 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< = = = == i � 0 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.59 OR RAINFALL INTENSITY(INCH /HR) = 2.88 di AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.09 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 11 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 6.56 5.59 4.900 .97 .45 .44 1.62 2 8.35 13.59 2.876 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.35 Tc(MIN.) = 13.594 EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fm(INCH /HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 :1 FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA«« < UPSTREAM NODE ELEVATION = 44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE = .0308 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8.35 FLOW VELOCITY(FEET /SEC) = 4.58 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = .24 TC(MIN.) = 13.83 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: floqin TIME OF CONCENTRATION(MIN.) = 13.83 Ai RAINFALL INTENSZTY(INCH/HR) = 2.85 AREA- AVERAGED Fm(INCH /HR) = .45 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.35 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< f � ^ _ == _ =_ PI Ai DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) = .389 *[( 240.00 ** 3.00)/( 2.80)] ** .20 = 8.985 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.816 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) = .57 PEAK FLOW RATE(CFS) = 1.71 *0 FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » THRU SUBAREA««< UPSTREAM NODE ELEVATION = 44.30 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 4 II il CHANNEL SLOPE = .0575 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.71 ii FLOW VELOCITY(FEET /SEC) = 3.89 FLOW DEPTH(FEET) = .13 TRAVEL TIME(MIN.) = .17 TC(MIN.) = 8.66 3 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.66 RAINFALL INTENSITY(INCH /HR) = 3.77 ii AREA - AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = .57 Pm Li TOTAL STREAM AREA(ACRES) = .57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.71 OR RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO li CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (C FS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 8.06 5.85 4.772 .97 .46 .44 2.01 2 9.58 13.83 2.846 .97 .47 .45 4.37 3 8.90 8.66 3.770 .97 .46 .45 2.96 COMPUTED CONFLUENCE ESTIMATES ARE AS `FOLLOWS: OR PEAK FLOW RATE(CFS) = 9.58 Tc(MIN.) = 13.830 id EFFECTIVE AREA(ACRES) = 4.37 AREA- AVERAGED Fm(INCH/HR) = .45 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 4.37 id II FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 - - II DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 II * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 9.72 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 ill AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.90 ii PRODUCT OF DEPTH &VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) = .80 TC(MIN.) = 14.63 25 YEAR RAINFALL INTENSITY(INCH /HR) = 2.751 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA PERVIOUS LOSS. _RATE, Fp (I-NCH_ /HR)_ _ SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .12 SUBAREA RUNOFF(CFS) = .29 EFFECTIVE AREA(ACRES) = 4.49 AREA - AVERAGED Fm(INCH /HR) = .44 AREA- AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = :46 TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 9.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOOD WIDTH(FEET) = 17.98 FLOW VELOCITY(FEET /SEC.) = 2.86 DEPTH *VELOCITY = 1.39 FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.63 RAINFALL INTENSITY(INCH/HR) = 2.75 AREA- AVERAGED .Fm(INCH /HR) = .44 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.58 F* * * ** * * * * * FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 PR » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < __ DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 455.00 UPSTREAM ELEVATION(FEET) = 59.90 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) = .389 *(( 455.00 ** 3.00)/( 7.90)] ** .20 = 10.121 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.433 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) = 3.02 FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 A STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. t STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 ii OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.19 MI STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.46 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.45 PRODUCT OF DEPTH &VELOCITY = 1.16 II STREET FLOW TRAVEL TIME(MIN.) = 1.63 TC(MIN.) = 11.75 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.139 SOIL CLASSIFICATION IS "A" 11 RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 ili SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 2.34 ii EFFECTIVE AREA(ACRES) = 2.12 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 5.06 fil END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET /SEC.) = 3.45 DEPTH *VELOCITY = 1.24 ii FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 il » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 ril STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. ill STREET HALFWIDTH(FEET) = 20.00 Ps DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 Ili INTERIOR STREET CROSSFALL(DECIMAL) = .020 II SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.70 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.26 PRODUCT OF DEPTH &VELOCITY = 1.24 STREET FLOW TRAVEL TIME(MIN.) = .87 TC(MIN.) = 12.62 t 25 YEAR RAINFALL INTENSITY(INCH /HR) = 3.007 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .56 SUBAREA RUNOFF(CFS) = 1.27 EFFECTIVE AREA(ACRES) = 2.68 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) = 6.08 END OF SUBAREA STREET FLOW HYDRAULICS: II DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 3.20 DEPTH *VELOCITY = 1.26 +********************************************* * * * * * * * * * * * * * * * * *,. * * * * * * * * * * ** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 » INDEPENDENT STREAM FOR CONFLUENCE« « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.62 RAINFALL INTENSITY(INCH /HR) = 3.01 a AREA- AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.08 II RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. il ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 13.07 6.67 4.407 .97 .46 .45 3.54 ri 2 14.49 9.52 3.562 .97 .47 .45 5.10 3 15.04 14.63 2.751 .97 .47 .46 7.17 4 15.39 12.62 3.007 .97 .47 .46 6.61 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.39 Tc(MIN.) = 12.617 EFFECTIVE AREA(ACRES) = 6.61 AREA- AVERAGED Fm(INCH/HR) = .46 • AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 ii i TOTAL AREA(ACRES) = 7.17 ril ii FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 »» > COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» >USING USER - SPECIFIED PIPESIZE ««< ___ DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 19.0 UPSTREAM NODE ELEVATION(FEET) = 37.00 DOWNSTREAM NODE ELEVATION(FEET) =_ - -- - 34.00 II FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 15.39 TRAVEL TIME(MIN.) = .02 TC(MIN.) = 12.64 II II FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 » MEMORY BANK 4 2 WITH THE MAIN- STREAM MEMORY « «< _ __ _ II ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae ( CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 34.54 6.70 4.398 .97 .47 .45 9.31 II 2 38.55 9.54 3.557 .97 .47 .46 13.30 3 39.63 12.64 3.004 .97 .47 .46 16.73 4 37.71 14.66 2.749 .97 .47 .46 17.71 5 39.38 10.33 3.391 .97 .47 .46 14.37 II 6 39.66 10.97 3.271 .97 .47 .46 15.12 7 39.65 12.57 3.014 .97 .47 .46 16.67 8 38.52 14.04 2.821 .97 .47 .46 - 17.54 II 9 38.44 14.11 2.813 .97 .47 .46 17.56 TOTAL AREA = 17.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: II PEAK FLOW RATE(CFS) = 39.66 Tc(MIN.) = 10.971 EFFECTIVE AREA(ACRES) = 15.12 AREA - AVERAGED Fm(INCH/HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 1! = TOTAL AREA(ACRES) = 17.71 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 10.97 I: EFFECTIVE AREA(ACRES) = 15.12 AREA - AVERAGED Fm(INCH /HR)= .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 39.66 i; ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) ii 1 34.54 6.70 4.398 .97 .47 .45 9.31 2 38.55 9.54 3.557 .97 .47 .46 13.30 3 39.38 10.33 3.391 .97 .47 .46 14.37 ir 4 39.66 10.97 3.271 .97 .47 .46 15.12 5 39.65 12.57 3.014 .97 .47 .46 16.67 6 39.63 12.64 3.004 .97 .47 .46 16.73 • 7 38.52 14.04 2.821 - .97 .47 .46 17.54 8 38.44 14.11 2.813 .97 .47 .46 17.56 ki 9 37.71 14.66 2.749 .97 .47 .46 17.71 ___ = = = 71 END OF RATIONAL METHOD ANALYSIS ii II II II II *..****************************************** * * * * * ** ** ** ** * * * * ** * ** * * **** * ** RATIONAL METHOD-HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -92 Advanced Engineering Software (aes) Ver. 1.9A Release Date: 6/26/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 - TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * ** * CITY OF FONTANA, LEWIS HOMES PROJECT * ONSITE SYSTEM HYDROLOGY ANALYSIS, 100 -YEAR STORM EVENT * FILENAME: "FONTANA ", OUTPUT FILE: "FONT100.OUT" BY: EMRUIZ Ii FILE NAME: FONTANA.DAT TIME /DATE OF STUDY: 13:43 9/30/1998 um Ills USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: am -- *TIME -OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.5000 ***************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < == DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 195.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 63.00 ELEVATION DIFFERENCE(FEET) = 2.00 TC(MIN.) = .389 *(( 195.00 ** 3.00)/( 2.00)] ** .20 = 8.012 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.020 - -- SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 - DWELLINGS /ACRE SUBAREA LOSS RATE, Fp(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.16 TOTAL AREA(ACRES) = .53 PEAK FLOW RATE(CFS) = 2.16 di FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 6 R. » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< MO UPSTREAM ELEVATION(FEET) = 63.00 DOWNSTREAM ELEVATION(FEET) = 58.00 - STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 3.39 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.45 PRODUCT OF DEPTH &VELOCITY = 1.08 STREET FLOW TRAVEL TIME(MIN.) = 1.09 TC(MIN.) = 9.10 o ft 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.651 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 Hi SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 ON SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .66 SUBAREA RUNOFF(CFS) = 2.47 44 EFFECTIVE AREA(ACRES) = 1.19 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) = 4.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET /SEC.) = 3.34 DEPTH *VELOCITY = 1.16 * FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 RR » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < `ro _ UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 53.00 , STREET LENGTH(FEET) = 288.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 di DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.91 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.38 PRODUCT OF DEPTH &VELOCITY = 1.29 STREET FLOW TRAVEL TIME(MIN.) = 1.42 TC(MIN.) = 10.52 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.263 14; SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = 414 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 2.89 d i 3. EFFECTIVE AREA(ACRES) = 2.04 AREA- AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 6.94 - END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 3.65 DEPTH *VELOCITY = 1.44 .$. * + * * * * * ** *** **** ***************************** * *+ *** * * * * * * * * + * * * * * * * *. * * ** * ** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.17 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.77 PRODUCT OF DEPTH &VELOCITY = 1.48 77 STREET FLOW TRAVEL TIME(MIN.) = .88 TC(MIN.) = 11.40 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.062 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = - .10 um SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) = .46 EFFECTIVE AREA(ACRES) = 2.17 AREA - AVERAGED Fm(INCH/HR) = .46 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 r! TOTAL AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) = 7.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 3.70 DEPTH *VELOCITY = 1.45 FLOW PROCESS FROM NODE 23.00 TO NODE 29.00 IS CODE = 5.1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 85.00 CHANNEL SLOPE = .0235 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7.03 FLOW VELOCITY(FEET /SEC) = 4.03 FLOW DEPTH(FEET) = .26 TRAVEL TIME(MIN.) = .35 TC(MIN.) = 11.76 MI Arm FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.76 RAINFALL INTENSITY(INCH /HR) = 3.99 AREA - AVERAGED Fm(INCH /HR) = .46 AREA- AVERAGED Fp(INCH /HR ) = .97 AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.17 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.03 :1 FLOW PROCESS FROM NODE 19.00 TO NODE 24.00 IS CODE = 2.1 id » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< Pm DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 190.00 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 61.50 ELEVATION DIFFERENCE(FEET) = 3.50 TC(MIN.) = .304 *[( 190.00 ** 3.00)/( 3.50)) ** .20 = 5.512 !, 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.283 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .67 TOTAL AREA(ACRES) = .12 PEAK FLOW RATE(CFS) = .67 rm FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 6 bri »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 61.50 DOWNSTREAM ELEVATION(FEET) = 54.60 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 *'TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 2.82 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.30 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.86 PRODUCT OF DEPTH &VELOCITY = .89 STREET FLOW TRAVEL TIME(MIN.) = 2.10 TC(MIN.) = 7.61 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.179 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 4.22 EFFECTIVE AREA(ACRES) = 1.12 AREA - AVERAGED Fm(INCH /HR) = .44 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 4.77 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 FLOW VELOCITY(FEET /SEC.) = 3.25 DEPTH *VELOCITY = 1.17 ********************************************* * * * * * * * * * * * * + * * + * * + * * * * * * * * * * ** FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « PI UPSTREAM ELEVATION(FEET) = 54.60 DOWNSTREAM ELEVATION(FEET) = 49.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 �rl * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 6.81 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.58 PRODUCT OF DEPTH &VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) = 1.49 TC(MIN.) = 9.10 !".' 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.652 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 61 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 4.09 EFFECTIVE AREA(ACRES) = 2.21 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) _ .97 AREA - AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) = 8.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET /SEC.) = 3.75 DEPTH *VELOCITY = 1.56 FLOW PROCESS FROM NODE 26.00 TO NODE 29.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA «« < UPSTREAM NODE ELEVATION = 49.00 DOWNSTREAM NODE ELEVATION = 47.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE _ .0200 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 1 CHANNEL FLOW THRU SUBAREA(CFS) = 8.33 FLOW VELOCITY(FEET /SEC) = 3.89 FLOW DEPTH(FEET) = .29 TRAVEL TIME(MIN.) = .43 TC(MIN.) = 9.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « TOTAL NUMBER OF STREAMS = 3 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.53 RAINFALL INTENSITY(INCH /HR) = 4.53 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 2.21 • TOTAL STREAM AREA(ACRES) = 2.21 id PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.33 FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 330.00 UPSTREAM ELEVATION(FEET) = 61.40 DOWNSTREAM ELEVATION(FEET) = 54.50 ELEVATION DIFFERENCE(FEET) = 6.90 TC(MIN.) = .389 *[( 330.00 ** 3.00)/( 6.90)] ** .20 = 8.576 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.820 • SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.82 1,1 TOTAL AREA(ACRES) = .98 PEAK FLOW RATE(CFS) = 3.82 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 6 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 54.50 DOWNSTREAM ELEVATION(FEET) = 47.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.66 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .37 OM HALFSTREET FLOOD WIDTH(FEET) = 12.20 1 :I AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.53 PRODUCT OF DEPTH &VELOCITY = 1.31 STREET FLOW TRAVEL TIME(MIN.) = 1.70 TC(MIN.) = 10.28 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.324 id SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 li SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 3.66 EFFECTIVE AREA(ACRES) = 2.04 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) = 7.05 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 FLOW VELOCITY(FEET /SEC.) = 3.71 DEPTH *VELOCITY = 1.46 :1 ***************** **********.,****** ***** ******* * * * * * * * * * * * * * * * * * * * * * *,. * * * * * ** FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 1 um » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < iiii » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< _ TOTAL NUMBER OF STREAMS = 3 !""" CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: kW TIME OF CONCENTRATION(MIN.) = 10.28 RAINFALL INTENSITY(INCH /HR) = 4.32 AREA - AVERAGED Fm(INCH /HR) = .49 ii AREA- AVERAGED Fp(INCH/HR) = .97 AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2.04 ir TOTAL STREAM AREA(ACRES) = 2.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.05 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO r CONFLUENCE FORMULA USED FOR 3 STREAMS. ili ** PEAK FLOW RATE TABLE ** u se Q Tc Intensity Fp Ap Fm Ae ii f (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 21.77 9.53 4.525 .97 .48 .47 5.86 2 20.69 11.76 3.989 .97 .48 .47 6.42 II 3 21.70 10.28 4.324 .97 .48 .47 6.15 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.77 Tc(MIN.) = 9.526 EFFECTIVE AREA(ACRES) = 5.86 AREA - AVERAGED Fm(INCH /HR) = .47 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .48 TOTAL AREA(ACRES) = 6.42 FLOW PROCESS FROM NODE 29.00 TO NODE 101.00 IS CODE = 4 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« < » » >USING USER - SPECIFIED PIPESIZE« «< ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 12.3 � UPSTREAM NODE ELEVATION(FEET) = 40.00 =4 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 di :1 FLOW LENGTH(FEET) = 35.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 21.77 TRAVEL TIME(MIN.) = .05 TC(MIN.) = 9.57 * * * * * + ** * * * * * *. * * * * ** ********************** * * * * * ** * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< di FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2.1 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < PR DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 360.00 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC(MIN.) = .389 *[( 360.00 ** 3.00)/( 4.00)] ** .20 = 10.077 rl 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.375 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HP,) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.19 TOTAL AREA(ACRES) _ .91 PEAK FLOW RATE(CFS) = 3.19 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 ki » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« pm UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 60.00 STREET LENGTH(FEET) = 213.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.29 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.88 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.92 PRODUCT OF DEPTH &VELOCITY = 1.27 STREET FLOW TRAVEL TIME(MIN.) = .91 TC(MIN.) = 10.98 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.155 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .67 SUBAREA RUNOFF(CFS) = 2.21 EFFECTIVE AREA(ACRES) = 1.58 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH/HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 5.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 FLOW VELOCITY(FEET /SEC.) = 3.90 DEPTH *VELOCITY -= 1.35 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 12.00 TO NODE 16.00 IS CODE = 9 » » >COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA «« < UPSTREAM NODE ELEVATION(FEET) = 60.00 DOWNSTREAM NODE ELEVATION(FEET) = 58.00 - CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .030 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.077 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 r e SUBAREA PERVIOUS AREA FRACTION, Ap = .10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 4.23 AVERAGE FLOW DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) = .35 TC(MIN.) = 11.34 SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = .00 EFFECTIVE AREA(ACRES) = 1.58 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50' TOTAL AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) = 5.22 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO (GUTTER -HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .28 FLOOD WIDTH(FEET) = 8.00 FLOW VELOCITY(FEET /SEC.) = 4.23 DEPTH *VELOCITY = 1.19 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.34 RAINFALL INTENSITY(INCH /HR) = 4.08 AREA - AVERAGED Fm(INCH /HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.58 TOTAL STREAM AREA(ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.22 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 280.00 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 67.00 ELEVATION DIFFERENCE(FEET) = 1.00 TC(MIN.) = .304 *[( 280.00 ** 3.00)/( 1.00)] ** .20 = 8.937 ;1 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.702 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .87 TOTAL AREA(ACRES) = .21 PEAK FLOW RATE(CFS) = .87 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 63.20 STREET LENGTH(FEET) = 214.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 id SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.15 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.84 !�! AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.51 PRODUCT OF DEPTH &VELOCITY = .61 STREET FLOW TRAVEL TIME(MIN.) = 1.42 TC(MIN.) = 10.36 71 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.304 id SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) = .57 EFFECTIVE AREA(ACRES) = .36 AREA - AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = .36 PEAK FLOW RATE(CFS) = 1.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 FLOW VELOCITY(FEET /SEC.) = 2.57 DEPTH *VELOCITY = .66 FLOW PROCESS FROM NODE ******* ***** 15.00 TO NODE 16.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 58.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. !R STREET HALFWIDTH(FEET) = 20.00 RI d $ DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 ii SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 1.76 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.32 PRODUCT OF DEPTH &VELOCITY = .85 STREET FLOW TRAVEL TIME(MIN.) = .85 TC(MIN.) = 11.21 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.104 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 ir SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 ii SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .22 SUBAREA RUNOFF(CFS) _ .79 EFFECTIVE AREA(ACRES) = .58 AREA - AVERAGED Fm(INCH/HR) = .10 i: AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 TOTAL AREA(ACRES) = .58 PEAK FLOW RATE(CFS) = 2.09 END OF SUBAREA STREET FLOW HYDRAULICS: rw DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 6.99 FLOW VELOCITY(FEET /SEC.) = 3.45 DEPTH *VELOCITY = .92 ii ii FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1 » INDEPENDENT STREAM FOR CONFLUENCE««< -J » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 7 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.21 RAINFALL INTENSITY(INCH/HR) = 4.10 AREA- AVERAGED Fm(INCH /HR) = .10 Pm AREA- AVERAGED Fp(INCH /HR) = .97 6 AREA- AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = .58 TOTAL STREAM AREA(ACRES) = .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.09 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO II CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 7.30 11.34 4.077 .97 .39 .38 2.16 2 7.29 11.21 4.104 .97 .39 .38 2.14 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.30 Tc(MIN.) = 11.336 ii EFFECTIVE AREA(ACRES) = 2.16 AREA - AVERAGED Fm(INCH /HR) = .38 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .39 TOTAL AREA(ACRES) = 2.16 ii * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *********4*** FLOW PROCESS FROM NODE 16.00 TO NODE__ 17.00 -IS- CODE -= 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < ii UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 47.10 STREET LENGTH(FEET) = 500.00 CURB,HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 il DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = - :020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 10.13 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .43 ii HALFSTREET FLOOD WIDTH(FEET) = 15.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.23 PRODUCT OF DEPTH &VELOCITY = 1.81 STREET FLOW TRAVEL TIME(MIN.) = 1.97 TC(MIN.) = 13.31 i] 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.703 SOIL CLASSIFICATION IS "A" ii RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 5.68 il EFFECTIVE AREA(ACRES) = 4.12 AREA - AVERAGED Fm(INCH/HR) = .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 TOTAL AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) = 12.13 K• END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 FLOW VELOCITY(FEET /SEC.) = 4.40 DEPTH *VELOCITY = 1.99 ' :: ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 12.13 13.31 3.703 .97 .44 .43 4.12 il 2 12.16 13.18 3.725 .97 .44 .43 4.10 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 12.16 Tc(MIN.) = 13.18 AREA - AVERAGED Fm(INCH/HR) = .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 EFFECTIVE AREA(ACRES) = 4.10 FLOW PROCESS FROM NODE 17.00 TO NODE 101.00 IS CODE = 4 »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< »» > USING USER - SPECIFIED PIPESIZE« «< ==== == __ _ _ DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 11.4 UPSTREAM NODE ELEVATION(FEET) = 42.00 DOWNSTREAM NODE ELEVATION(FEET) = 39.30 ii FLOW LENGTH(FEET) = 74.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 12.16 TRAVEL TIME(MIN.) = .11 TC(MIN.) = 13.29 :1 :I i 4r4r4r4r****************4 ****** +111.***11r4r*** ****** FLOW PROCESS FROM NODE _ 101.00 TO NODE 101.00 IS CODE = 11 » »> CONFLUENCE MEMORY BANK if 1 WITH THE MAIN- STREAM MEMORY« « < Al ** PEAK FLOW RATE TABLE -* Q Tc Intensity Fp Ap Fm Ae ( CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 31.25 13.29 3.70 6- .97. .47 .45 10.52 el 2 31.10 13.41 3.685 .97 .47 .45 10.54 id 3 32.69 9.57 4.512 .97 .47 .46 8.82 4 32.90 10.32 4.312 .97 .47 .46 9.34 5 32.40 11.81 - 3. 979 :97 : 4T .46 -- -- 10.07 TOTAL AREA = 10.54 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: IN PEAK FLOW RATE(CFS) = 32.90 Tc(MIN.) = 10.325 iii EFFECTIVE AREA(ACRES) = 9.34 AREA - AVERAGED Fm(INCH/HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 10.54 OR ii ll FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 4 ii » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA «« < » » >USING USER - SPECIFIED PIPESIZE ««< XP _= = = = i ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 10.5 UPSTREAM NODE ELEVATION(FEET) = 39.30 Tr DOWNSTREAM NODE ELEVATION(FEET) = 34.00 io FLOW LENGTH(FEET) = 290.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 - NUMBER OF PIPES = 1 u+ PIPE- FLOW(CFS) = 32.90 ill TRAVEL TIME(MIN.) = .46 TC(MIN.) = 10.79 ilif FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 • »»>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK 4' 2 « «< di ____ = = 2 ** * a * FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 2.1 il » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)) ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 44.70 ELEVATION DIFFERENCE(FEET) = 2.30 i; TC(MIN.) = .304 *[( 160.00 ** 3.00)/( 2.30)] * - .20 = 5.408 100 YEAR RAINFALL INTENSITY(INCH /HR) = 6.356 SOIL CLASSIFICATION IS "A" PO COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 YYi • 40 di SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = .56 TOTAL AREA(ACRES) = .10 PEAK FLOW RATE(CFS) = .56 di FLOW PROCESS FROM NODE 30.00 TO NODE 38.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA«c < <. _. 3 UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 5.00 3 CHANNEL SLOPE = .0280 • CHANNEL BASE(FEET) = .00 . "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = .56 FLOW VELOCITY(FEET /SEC) = 2.16 FLOW DEPTH(FEET) = .10 TRAVEL TIME(MIN.) = .19 TC(MIN.) = 5.60 me di FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 som »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< di TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: di TIME OF CONCENTRATION(MIN.) = 5.60 RAINFALL INTENSITY(INCH /HR) = 6.22 AREA AVERAGED Fm(INCH /HR) = .10 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) = .1'0 yes TOTAL STREAM AREA(ACRES) = .10 PEAK FLOW RATE(CFS) AT CONFLUENCE = .56 Li L1 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 2.1 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ________ ____________________ _ == DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]** .20 ;I INITIAL SUBAREA FLOW - LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 67.20 DOWNSTREAM ELEVATION(FEET) = 62.20 ELEVATION DIFFERENCE(FEET) = 5.00 TC(MIN.) = .389 *[( 325.00 ** 3.00)/( 5.00)] ** .20 = 9.063 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.662 SOIL CLASSIFICATION IS "A" ;I RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 wR SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = .83 PEAK FLOW RATE(CFS) = 3.12 um FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 6 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < 11 UPSTREAM ELEVATION(FEET) = 62.20 DOWNSTREAM ELEVATION(FEET) = 58.00 di STREET LENGTH(FEET) = 207.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL}- -_ - - -- -,0-20 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 4.25 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) _ .35 HALFSTREET FLOOD WIDTH(FEET) = 11.04 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.18 PRODUCT OF DEPTH &VELOCITY = 1.10 so STREET FLOW TRAVEL TIME(MIN.) = 1.08 TC(MIN.) = 10.15 PR 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.357 off` SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .65 SUBAREA RUNOFF(CFS) = 2.27 EFFECTIVE AREA(ACRES) = 1.48 AREA - AVERAGED Fm(INCH/HR) = .49 R AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.16 END OF SUBAREA STREET FLOW HYDRAULICS: f ,,, DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.62 ' FLOW VELOCITY(FEET /SEC.) = 3.51 DEPTH *VELOCITY = 1.26 ai irm FLOW PROCESS FROM NODE 33.00 TO NODE 35.00 IS CODE = 5.1 tim. » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW«« < » »>TRAVELTIME THRU SUBAREA« « < tow =_ UPSTREAM NODE ELEVATION = 58.00 4 1 1 1 DOWNSTREAM NODE ELEVATION = 56.60 Ji CHANNEL LENGTH THRU SUBAREA(FEET) = 80.00 CHANNEL SLOPE = .0175 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.16 FLOW VELOCITY(FEET /SEC) = 3.33 - FLOW DEPTH(FEET) = .25 TRAVEL TIME(MIN.) = .40 TC(MIN.) = 10.55 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.257 = _ SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 CP s SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 1 1 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = SUBAREA RUNOFF(CFS) = .97 EFFECTIVE AREA(ACRES) = 1.74 AREA - AVERAGED Fm(INCH /HR) _ .43 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .44 TOTAL AREA(ACRES) = 1.74 PEAK FLOW RATE(CFS) = 6.00 TC(MIN) = 10.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 6 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < UPSTREAM ELEVATION(FEET) = 56.60 DOWNSTREAM ELEVATION(FEET) = 50.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 11 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 PR * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.52 STREET FLOW MODEL RESULTS: OR STREET FLOW DEPTH(FEET) _ .39 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.96 PRODUCT OF DEPTH&VELOCITY = 1.56 STREET FLOW TRAVEL TIME(MIN.) = 1.35 TC(MIN.) = 11.90 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.961 • ;;; SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 m" SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 3.07 EFFECTIVE AREA(ACRES) = 2.72 AREA - AVERAGED Fm(INCH /HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = ,46 a ,,, TOTAL AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) = 8.60 END OF SUBAREA STREET FLOW HYDRAULICS: W DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 FLOW VELOCITY(FEET /SEC.) = 3.87 DEPTH *VELOCITY = 1.61 di FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 » »>COMPOTE STREET FLOW TRAVEL TIME THRU SUBAREA««< UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 44.70 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 10.02 =3 STREET FLOW MODEL RESULTS: i STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.66 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.89 PRODUCT OF DEPTH &VELOCITY = 1.71 STREET FLOW TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = 13.26 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.710 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .98 SUBAREA RUNOFF(CFS) = 2.84 EFFECTIVE AREA(ACRES) = 3.70 AREA - AVERAGED Fm(INCH /HR) = .46 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 10.83 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.24 FLOW VELOCITY(FEET /SEC.) = 3.93 DEPTH *VELOCITY = 1.77 OR �r X de FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 5.1 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW «« < » »>TRAVELTIME THRU SUBAREA «« < RR =__= UPSTREAM NODE ELEVATION = 44.70 DOWNSTREAM NODE ELEVATION = 44.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = .0280 di CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 411 g; CHANNEL FLOW THRU SUBAREA(CFS) = 10.83 FLOW VELOCITY(FEET /SEC) = 4.74 FLOW DEPTH(FEET) = .30 i1 TRAVEL TIME(MIN.) = .09 TC(MIN.) = 13.35 • *****************+++ * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** id FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 1 OR OW » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.35 RAINFALL INTENSITY(INCH /HR) = 3.70 AREA- AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.83 11 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 8.65 5.60 6.224 .97 .45 .44 1.65 2 11.16 13.35 3.695 .97 .46 .45 3.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AI PEAK FLOW RATE(CFS) = 11.16 Tc(MIN.) = 13.353 EFFECTIVE AREA(ACRES) = 3.80 AREA - AVERAGED Fp(INCH/HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 TOTAL AREA(ACRES) = 3.80 ji FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 5.1 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW «« < » »>TRAVELTIME THRU SUBAREA « UPSTREAM NODE ELEVATION = 44.00 DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE = .0308 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 11.16 FLOW VELOCITY(FEET /SEC) = 4.95 FLOW DEPTH(FEET) = .30 Op TRAVEL TIME(MIN.) = .22 TC(MIN.) = 13.57 am FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 ON » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< _= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.57 RAINFALL INTENSITY(INCH /HR) = 3.66 AREA - AVERAGED Fm(INCH/HR) = .45 • AREA - AVERAGED Fp(INCH /HR) = .97 PR AREA - AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 3.80 TOTAL STREAM AREA(ACRES) = 3.80 w PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.16 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ;I DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 240.00 UPSTREAM ELEVATION(FEET) = 47.10 DOWNSTREAM ELEVATION(FEET) = 44.30 ELEVATION DIFFERENCE(FEET) = 2.80 TC(MIN.) = .389 *(( 240.00 ** 3.00)/( 2.80)] ** .20 = 8.485 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.851 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 2.24 TOTAL AREA(ACRES) = .57 PEAK FLOW RATE(CFS) = 2.24 Pm we 4 4 I iii qiii * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 18.00 TO NODE 39.00 IS CODE = 5.1 :i » » > COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » » >TRAVELTIME THRU SUBAREA « < UPSTREAM NODE ELEVATION = 44.30 :I DOWNSTREAM NODE ELEVATION = 42.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = .0575 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 25.000 ` MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2.24 FLOW VELOCITY(FEET /SEC) = 4.1G FLOW DEPTH(FEET) = .15 TRAVEL TIME(MIN.) = .16 TC(MIN.) = 8.65 il Pm ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** hi FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«« < MO TOTAL NUMBER OF STREAMS = 2 pow CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: '"a TIME OF CONCENTRATION(MIN.) = 8.65 li RAINFALL INTENSITY(INCH /HR) = 4.80 AREA - AVERAGED Fm(INCH/HR) = .49 mo AREA- AVERAGED Fp(INCH /HR) = .97 iiii AREA - AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = .57 TOTAL STREAM AREA(ACRES) = .57 :,,:, PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.24 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO " CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae PP (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) girl 1 10.61 5.83 6.075 .97 .46 .45 2.04 2 12.81 13.57 3.659 .97 .47 .45 4.37 :I 3 11.80 8.65 4.796 .97 .46 .45 3.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.81 Tc(MIN.) = 13.572 EFFECTIVE AREA(ACRES) = 4.37 AREA - AVERAGED Fm(INCH /HR) = .45 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 4.37 3 FLOW PROCESS FROM NODE 39.00 TO NODE 43.00 IS CODE = 6 I JI »» > COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< _ _ 7ji UPSTREAM ELEVATION(FEET) = 43.60 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 140.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 " DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 is di INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 13.00 ** *STREET FLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .53 FLOOD WIDTH(FEET) = 20.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 3.01 SPLIT DEPTH(FEET) = .23 SPLIT FLOOD WIDTH(FEET) = 5.26 SPLIT FLOW(CFS) = .61 SPLIT VELOCITY(FEET /SEC.) = 1.54 STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 20.00 OR AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.01 PRODUCT OF DEPTH &VELOCITY = 1.58 STREET FLOW TRAVEL TIME(MIN.) = .78 TC(MIN.) = 14.35 me 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.539 di SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 ms SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .12 SUBAREA RUNOFF(CFS) = .37 EFFECTIVE AREA(ACRES) = 4.49 AREA - AVERAGED Fm(INCH/HR) = .44 OR AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 ) MN TOTAL AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) = 12.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET /SEC.) = 3.01 DEPTH *VELOCITY = 1.58 on FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< mit ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: :1 TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH /HR) = 3.54 AREA - AVERAGED Fm(INCH /HR) = .44 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 4.49 TOTAL STREAM AREA(ACRES) = 4.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.81 :1 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < di DEVELOPMENT IS SINGLE FAMILY RESIDENTIAL -> 5 -7 DWELLINGS /ACRE TC = K *((LENGTH ** 3.00) /(ELEVATION CHANGE)]** .20 INITIAL SUBAREA FLOW - LENGTH(FEET) = 455.00 um UPSTREAM ELEVATION(FEET) = 59.90 OM :1 DOWNSTREAM ELEVATION(FEET) = 52.00 ELEVATION DIFFERENCE(FEET) = 7.90 TC(MIN.) _ .389 *[( 455.00 ** 3.00)/( 7.90)) ** .20 = 10.121 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.364 SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH/HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.98 TOTAL AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) = 3.98 3 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 6 3 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA «« < UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 45.20 P1 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 r! INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 PI SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 5.53 STREET FLOW MODEL RESULTS: PP STREET FLOW DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.44 , PRODUCT OF DEPTH &VELOCITY = 1.27 STREET FLOW TRAVEL TIME(MIN.) = 1.63 TC(MIN.) = 11.75 • 100 YEAR RAINFALL INTENSITY(INCH /HR)'= 3.989 P"! SOIL CLASSIFICATION IS "A" RESIDENTIAL -> 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) _ .97 SUBAREA PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .98 SUBAREA RUNOFF(CFS) = 3.09 EFFECTIVE AREA(ACRES) = 2.12 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 AREA- AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.12 PEAK FLOW RATE(CFS) = 6.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.77 FLOW VELOCITY(FEET /SEC.) = 3.82 DEPTH *VELOCITY = 1.46 * * ** * ** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 6 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM ELEVATION(FEET) = 45.20 DOWNSTREAM ELEVATION(FEET) = 42.50 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 PP SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVEL TIME COMPUTED USING MEAN FLOW(CFS) = 7.53 STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.39 PRODUCT OF DEPTH &VELOCITY = 1.41 STREET FLOW TRAVEL TIME(MIN.) = .84 TC(MIN.) = 12.59 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.828 SOIL CLASSIFICATION IS "A" RESIDENTIAL - 5 -7 DWELLINGS /ACRE SUBAREA LOSS RATE, Fm(INCH /HR) = .4850 SUBAREA PERVIOUS LOSS RATE, Fp(INCH /HR) = .97 SUBAREA PERVIOUS AREA FRACTION Ap = .50 SUBAREA AREA(ACRES) = .56 SUBAREA RUNOFF(CFS) = 1.68 EFFECTIVE AREA(ACRES) = 2.68 AREA - AVERAGED Fm(INCH /HR) = .49 AREA- AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.68 EA PK FLOW RATE(CFS) = 8.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .42 HALFSTREET FLOOD WIDTH(FEET) = 14.51 eye FLOW VELOCITY(FEET /SEC.) = 3.63 DEPTH *VELOCITY = 1.51 Oh Pm FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «« < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.59 ) RAINFALL INTENSITY(INCH /HR) = 3.83 AREA - AVERAGED Fm(INCH/HR) = .49 AREA - AVERAGED Fp(INCH /HR) = .97 - AREA- AVERAGED Ap = .50 hd EFFECTIVE STREAM AREA(ACRES) = 2.68 TOTAL STREAM AREA(ACRES) = 2.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.06 mg RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 17.14 6.64 5.620 .97 .46 .45 3.57 2 19.15 9.42 4.555 .97 .47 .45 5.13 3 20.18 14.35 3.539 .97 .47 .46 7.17 4 20.51 12.59 3.828 .97 .47 .46 6.68 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.51 Tc(MIN.) = 12.588 EFFECTIVE AREA(ACRES) = 6.68 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 7.17 7 1; FLOW PROCESS FROM NODE 43.00 TO NODE 102.00 IS CODE = 4 is �1 T » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » »>USING USER - SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 20.4 UPSTREAM NODE ELEVATION(FEET) = 37.00 DOWNSTREAM NODE ELEVATION(FEET) = 34.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 20.51 TRAVEL TIME(MIN.) _ .02 TC(MIN.) = 12.61 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 » » > CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY« « < ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 45.59 6.66 5.609 .97 .47 .45 9.42 2 51.19 9.44 4.549 .97 .47 .46 13.42 3 52.66 12.61 3.825 .97 .47 .46 16.85 4 50.58 14.37 3.536 .97 .47 .46 17.71 5 52.10 10.04 4.385 .97 .47 .46 14.24 6 52.63 10.79 4.200 .97 .47 .46 15.12 7 52.77 12.27 3.887 .97 .47 .46 16.58 8 51.54 13.77 3.627 .97 .47 .46 17.53 9 51.36 13.90 3.607 .97 .47 .46 17.58 TOTAL AREA = 17.71 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 52.77 Tc(MIN.) = 12.275 EFFECTIVE AREA(ACRES) = 16.58 AREA - AVERAGED Fm(INCH /HR) = .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 TOTAL AREA(ACRES) = 17.71 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.71 TC(MIN.) = 12.27 EFFECTIVE AREA(ACRES) = 16.58 AREA - AVERAGED Fm(INCH /HR)= .46 AREA - AVERAGED Fp(INCH /HR) = .97 AREA - AVERAGED Ap = .47 PEAK FLOW RATE(CFS) = 52.77 ** PEAK FLOW RATE TABLE ** Q Tc Intensity Fp Ap Fm Ae (CFS) (MIN.) (INCH /HR) (INCH /HR) (INCH /HR) (ACRES) 1 45.59 6.66 5.609 .97 .47 .45 9.42 2 51.19 9.44 4.549 .97 .47 .46 13.42 3 52.10 10.04 4.385 .97 .47 .46 14.24 4 52.63 10.79 4.200 .97 .47 .46 15.12 5 52.77 12.27 3.887 .97 .47 .46 16.58 6 52.66 12.61 3.825 .97 .47 .46 16.85 7 51.54 13.77 3.627 .97 .47 .46 17.53 8 51.36 13.90 3.607 .97 .47 .46 17.58 9 50.58 14.37 3.536 .97 .47 .46 17.71 END OF RATIONAL METHOD ANALYSIS 1 3 3 3 1 OR STREET CAPACITY • CALCULATIONS 1 1 UM Hall & Foreman, Inc. • Civil Engineering • Planning • Surveying • Public Works JBJECT BY n 1041-E J OB NO. I SHEET OF S T( r Co fJ�� Cg I a - -� 1� 5 1 s 3 ( {i -r c ) 1W l +(oi s 11 0J c.-T I•� Iq t ," s I 1 1 7 ,0.),-7 \7 , • _ 3 45 -�. -_ —� t 1•5 Fly . V1= 0,oco I 1 o•Izs' A, - (2, 4- 0•4-as x I.. 0.64-92, SF v I t A,- = (g . s X 0,y2 h " 3.47)-2-5- sr :. - T = 4.071 , Sf ililli t ('5 0 • 1 ,7 + - I — (q.., 1 " 7-o, 4c1C" r e 4,07 - -----7-0-4615- I6g4 . urn IA ii � i (. �L (, ,OII, ;---- 3 Q • 1z8., -vs 5 C;? 5 0 3 0,00c Av, Dy.„, la•Z( 0.00 -?s- I1,(5' 1 p 0 I 0 IZ g7 0.0 t•1 o . 0 17-s 14.3 a,ol - z0 -35- ii 0.0'x' IL3-.11 0,04E z1.35_ 0 ,o 115* 1.03 0 0300 2y•1i0 kg,_ d 203 North Golden Circle Drive. Suite 300. Santa Ana. California 92705 -4010 • Tel 714/664-0570 • Fax 714/664 -0596 M Hall & Foreman, Inc. • Civil Engineering • Planning • Surveying • Public Works UBJECT BY 0....4 ..... DATE JOB NO SHEET OF STtT �A � -r-Y 1 I - o 1-9 I ; 7 ct II, frt., Q I CO , i C CA Po b6 Iz , a,70 = 5, yz oi9. ,a I9 / iiii 141-9—c 1( 0 , &tat, :-- 3. 7, + as 5, = o_ote0c c - Ig.17 7 0 r o iiii 4w iw N &P& - CQ - 7 _ 1" 0,-e -_-_ 17.7 > 7 4 N ii.4_k_ 17 lab - (� . z - 171 1 g— ill 5, = D. olg cd ii'llii IQ &SU 2.1 Q (s-9 _ -2-1.77 aecr = 17. Ka- W ,..x-.-. S, - .oti k - rats_ Q.a...L.A....151-A—Lt._4_,c c .C e _ 4 „ ) — q N 9._k_k_../ ,_ci 2 .,. 0 3 J -, loo -- h-, -I -t• 77 -- 33 .97 < ;S, g 3 .'• (DJ, ,...4 ,-/--L_G., 4-4_. : )1_,.(2i.1 .. iii 203 North Golden Circle Drive, Suite 300. Santa Ana. California 92705 -4010 • Tel 714/664 -0570 • Fax 714 /664 -0596 IIN Hall & Foreman, Inc. Civil Engineering • Planning • Surveying • Public Works ;UBJECT I BY 1 DATE l JOB NO. 1 t SHEET OF 3 3 RD k_ 2t.; 4-. 7 7 4 ` = 3 ucc_z, A 6, (au - 7 ) 50 . =- o of - - 3 N 4 � A (exa -- < N . 3 90 - rk S = .OZO N 2- 7 (t Iry : 10,g) C A = 1$.3 Sa = D • oyo 3 N a-y ( 0 CA-1 12-45 - f rw 3 3 203 North Golden Circle Drive, Suite 300, Santa Ana, California 92705 -4010 • Tel 714/664 -0570 • Fax 714/664 -0596 on 1 CURB OPENING INLET CALCULATIONS 3 3 1 1 N LI / ` I J ' _ I J - 0 CANYON DRIVE a T SUMTER STREET Y dill , , , _ AR A47 a 3 \ CATCH BASIN 2 _ - o - CUMBERLAND PL. 3 ATCH ASIN 1 i Fr __ CO ti CO - w Z CA CH BASIN 3 - W /9 a GETTYSBURG ST. 3 E- 0) _ _ L 1_1 __ w 3 ! _ i al AA1 4[� O & n I n . ICI1ATCU��vtBAS I MS a r.rr 4. $. IS. Up* a 11711-1117. 101-112-M7 wC BMX I�AIl75W' 11 -11 -9 11.47.19 _ H: \5195 ASING \AREAJC2 di :1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 0 id TIME /DATE OF STUDY: 10: 0 1/12/1999 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * VILLAGE OF HERITAGE * * AREA 4B * * DEPTH OF FLOW CALCULATION - CATCH BASIN #1 * Ad ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** wA ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .019000 i-j CONSTANT STREET FLOW(CFS) = 12.16 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 !"'• DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 OR FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: :1 STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 16.82 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.13 PRODUCT OF DEPTH &VELOCITY = 1.91 0 1O e�w * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 TIME /DATE OF STUDY: 10:11 1/12/1999 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * VILLAGE OF HERITAGE * * AREA 4B * * CATCH BASIN SIZING - CATCH BASIN ##1 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 12.16 - act" F GUTTER FLOWDEPTH(FEET) = .46 BASIN LOCAL DEPRESSION(FEET) = .17 FLOWBY BASIN WIDTH(FEET) = 21.00 M » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 32.9 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 10.9 S e Z1' l I.I.C. —10.9 = 1, t c.0 1 4-0 cR rt 3 PP SS a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 TIME /DATE OF STUDY: 10:17 1/12/1999 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * VILLAGE OF HERITAGE * AREA 4B * * DEPTH OF FLOW CALCULATION - CATCH BASIN #2 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « 11 CONSTANT STREET GRADE(FEET /FEET) = .019000 i CONSTANT STREET FLOW(CFS) = 21.7 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 18.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 Pim CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1.50 Ili CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 19.43 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.63 PRODUCT OF DEPTH &VELOCITY = 2.30 6 4 id h * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 3 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 TIME /DATE OF STUDY: 10:20 1/12/1999 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * VILLAGE OF HERITAGE IR * AREA 4B ij * CATCH BASIN SIZING - CATCH BASIN #2 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « :111 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 21.70 0 100 GUTTER FLOWDEPTH(FEET) = .50 77 BASIN LOCAL DEPRESSION(FEET) = .30 FLOWBY BASIN WIDTH(FEET) = 28.00 • » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 39.6 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 18.6 1.1 Ckl Mows 4-0 cB L3 2 P, 60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** :1 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 TIME /DATE OF STUDY: 10:38 1/12/1999 ( * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * VILLAGE OF HERITAGE P * AREA 4B * DEPTH OF FLOW CALCULATION - CATCH BASIN #3 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET /FEET) = .020000 Zd l•1 +�. Z�i.7 a. CONSTANT STREET FLOW(CFS) = 24.70 Qv-„ L AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL),= .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 1,50 MO CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS MO STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .56 HALFSTREET FLOOD WIDTH(FEET) = 21.65 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.14 PRODUCT OF DEPTH &VELOCITY = 2.87 :V OR MO PIO Pi ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1237 Analysis prepared by: HALL & FOREMAN, INC. 13821 NEWPORT AVENUE, Suite 200 TUSTIN, CALIFORNIA 92680 -7803 714/544 -3404 TIME /DATE OF STUDY: 10:41 1/12/1999 id * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** id * VILLAGE OF HERITAGE * AREA 4B MI * CATCH BASIN SIZING - CATCH BASIN #3 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 24.70 BASIN OPENING(FEET) = .67 DEPTH OF WATER(FEET) = .56 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 19.09 4 ..' � isle 14 wok irr 111 3 PIPE HYDRAULICS WSPG CALCULATIONS 3 3 ,,,„ F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING HERITAGE VILLAGE AREA 4B PROPOSED LINE "A" Q 100 STORM FILE: 954HA.INP /OUT 3 1 1 1 pi, DATE: 1/12/1999 TIME 19:40 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 30 4 - - 2.50 - CD 24 4 2.00 CD 1 3 0 0.00 5.00 3.50 0.00 0.00 0.00 CD 36 4 3.00 6 ^ 3 3 ‘4,4 P gm Art di F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION INVERT SECT W S ELEV 1099.09 1233.40 36 1237.20 ELEMENT NO 2 IS A REACH - --- • - * - - * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 0 1113.10 1233.54 36 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1133.21 1233.74 36 0.013 0.00 51.12 0.00 0 3 ELEMENT NO 4 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1140.86 1233.81 36 0.013 0.00 0.00 0.00 0 ELEMENT NO 5 IS A JUNCTION * * * * * * • U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 3 1145.54 1233.86 36 24 0 0.013 20.5 0.0 1235.00 0.00 37.60 0.00 ELEMENT NO 6 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N 1145.54 1233.86 36 0.013 _ ELEMENT NO 7 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1250.00 1234.87 30 0.013 0.00 0.00 0.00 0 ELEMENT NO 8 IS A REACH * ' * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H III 1254.09 1234.98 30 0.013 0.00 0.00 0.00 0 ELEMENT NO 9 IS A REACH * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1289.29 1235.98 30 0.013 0.00 90.00 0.00 0 ELEMENT NO 10 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1404.11 1239.25 30 0.013 0.00 0.00 0.00 0 ELEMENT NO 11 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 1409.44 1239.38 24 18 0 0.013 12.2 0.0 1239.52 0.00 45.00 0.00 OM ill 3 :II 3 0 Pi di li F O 5 1 5 P PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING 3 ELEMENT NO 12 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1435.39 1240.12 24 0.013 0.00 0.00 0.00 0 ELEMENT NO 13 IS A WALL ENTRANCE * U/S DATA STATION INVERT SECT FP 3 1435.39 1240.12 1 0.500 ELEMENT NO 14 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W 5 ELEV 1435.39 1240.12 1 0.00 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING 3 ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV . INV + DC :11 Pe 0 PO 3 :11 3 0 0 lig IMP 2 LICENSEE: HALL & FOREMAN F0515P PAGE 1 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE AREA 4B PROPOSED LINE "A" Q 100 STORM 3 FILE: 954BA.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 1099.09 1233.40 3.800 1237.200 54.4 7.70 0.920 1238.120 0.00 2.395 3.00 0.00 0.00 0 0.00 14.01 0.00999 .006652 0.09 2.060 0.00 1113.10 1233.54 3.753 1237.293 54.4 7.70 0.920 1238.213 0.00 2.395 3.00 0.00 0.00 0 0.00 20.11 0.00995 .006652 0.13 2.062 0.00 1133.21 1233.74 3.826 1237.566 54.4 7.70 0.920 1238.486 0.00 2.395 3.00 0.00 0.00 0 0.00 7.65 0.00915 .006652 0.05 2.130 0.00 1140.86 1233.81 3.806 1237.616 54.4 7.70 0.920 1238.536 0.00 2.395 3.00 0.00 0.00 0 0.00 JUNCT STR 0.01068 .004618 0.02 0.00 TRANS STR 0.00000 .002583 0.00 0.00 1145.54 1233.86 4.605 1238.465 33.9 6.91 0.741 1239.206 0.00 1.980 2.50 0.00 0.00 0 0.00 104.46 0.00967 .006831 0.71 1.754 0.00 1250.00 1234.87 4.309 1239.179 33.9 6.91 0.741 1239.920 0.00 1.980 2.50 0.00 0.00 0 0.00 4.09 0.02689 .006831 0.03 1.254 0.00 1254.09 1234.98 4.227 1239.207 33.9 6.91 0.741 1239.948 0.00 1.980 2.50 0.00 0.00 0 0.00 3 35.20 0.02841 .006831 0.24 1.234 0.00 1289.29 1235.98 3.615 1239.595 33.9 6.91 0.741 1240.336 0.00 1.980 2.50 0.00 0.00 0 0.00 36.52 0.02848 .006831 0.25 1.233 0.00 1325.81 1237.02 2.834 1239.854 33.9 6.91 0.741 1240.595 0.00 1.980 2.50 0.00 0.00 0 0.00 HYDRAULIC JUMP 0.00 1325.81 1237.02 1.328 1238.348 33.9 12.80 2.543 1240.891 0.00 1.980 2.50 0.00 0.00 0 0.00 16.93 0.02848 .021617 0.37 1.233 0.00 1342.74 1237.50 1.353 1238.855 33.9 12.49 2.423 1241.278 0.00 1.980 2.50 0.00 0.00 0 0.00 r iii 2 :II v 2 3 O MB . E LICENSEE1 HALL & FOREMAN F0515P PAGE 2 - WATER SURFACE PROFILE LISTING HERITAGE VILLAGE AREA 4B PROPOSED LINE "A" Q 100 STORM FILE: 954BA.INP /OUT i ll STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 3 18.94 0.02848 .019701 0.37 1.233 0.00 1361.68 1238.04 1.407 1239.449 33.9 11.91 2.203 1241.652 0.00 1.980 2.50 0.00 0.00 0 0.00 13.02 0.02848 .017403 0.23 1.233 0.00 1374.70 1238.41 1.463 1239.875 33.9 11.36 2.003 1241.878 0.00 1.980 2.50 0.00 0.00 0 0.00 9.39 0.02848 _ .015386 0.14 1.233 0.00 • 1384.09 1238.68 1.522 1240.202 33.9 10.83 1.820 1242.022 0.00 1.980 2.50 0.00 0.00 0 0.00 iiii INIP 6.90 0.02848 .013624 0.09 1.233 0.00 1390.99 1238.88 1.585 1240.461 33.9 10.32 1.655 1242.116 0.00 1.980 2.50 0.00 0.00 0 0.00 5.03 0.02848 .012089 0.06 1.233 0.00 1396.02 1239.02 1.653 1240.673 33.9 9.84 1.504 1242.177 0.00 1.980 2.50 0.00 0.00 0 0.00 3.71 0.02848 .010748 0.04 1.233 0.00 3 1399.73 1239.12 1.724 1240.849 33.9 9.39 1.368 1242.217 0.00 1.980 2.50 0.00 0.00 0 0.00 2.45 0.02848 .009579 0.02 1.233 0.00 1402.18 1239.19 1.802 1240.997 33.9 8.95 1.243 1242.240 0.00 1.980 2.50 0.00 0.00 0 0.00 1.46 0.02848 .008569 0.01 1.233 0.00 1403.64 1239.24 1.886 1241.123 33.9 8.53 1.130 1242.253 0.00 1.980 2.50 0.00 0.00 0 0.00 0.47 0.02848 . 007697 0.00 1.233 0.00 1404.11 1239.25 1.980 1241.230 33.9 8.13 1.026 1242.256 0.00 1.980 2.50 0.00 0.00 0 0.00 i ll 1 1 JUNCT STR 0.02439 .005046 0.03 0.00 1409.44 1239.38 2.699 1242.079 21.7 4.42 0.303 1242.382 0.00 1.584 2.00 0.00 0.00 0 0.00 7.73 0.02852 .002775 0.02 0.960 0.00 lli 1417.17 1239.60 2.500 1242.100 21.7 4.42 0.303 1242.403 0.00 1.584 2.00 0.00 0.00 0 0.00 MI tr x fig FPj 3 1 1 1 PR I I li LICENSEE: HALL & FOREMAN F0515P PAGE 3 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE AREA 4B PROPOSED LINE "A" Q 100 STORM FILE: 954BA.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 7.74 0.02852 .002600 0.02 0.960 0.00 1424.91 1239.82 2.268 1242.089 21.7 4.64 0.334 1242.423 0.00 1.584 2.00 0.00 0.00 0 0.00 3.91 0.02852 .002534 0.01 0.960 0.00 1428.82 1239.93 2.133 1242.066 21.7 4.86 0.367 1242.433 0.00 1.584 2.00 0.00 0.00 0 0.00 2.88 0.02852 _... .002743 0.01 0.960 0.00 r 1431.70 1240.02 2.022 1242.037 21.7 5.10 0.404 1242.441 0.00 1.584 2.00 0.00 0.00 0 0.00 I li 2.22 0.02852 .003018 0.01 0.960 0.00 1433.92 1240.08 1.925 1242.003 21.7 5.35 0.444 1242.447 0.00 1.584 2.00 0.00 0.00 0 0.00 1.47 0.02852 .003319 0.00 0.960 0.00 i iii 1435.39 1240.12 1.851 1241.971 21.7 5.57 0.481 1242.452 0.00 1.584 2.00 0.00 0.00 0 0.00 WALL ENTRANCE 0.00 OPO 1435.39 1240.12 2.476 1242.596 21.7 2.50 0.097 1242.693 0.00 1.061 5.00 3.50 0.00 0 0.00 iii ON 3 0 iiiii 0... R= I .., 3 3 1 IR i „, nie HERITAGE VILLAGE AREA 48 , PROPOSED LINE "A" Q 100 STORM FILE: 954BA.INP /OUT 1099.09 .I C H W E . R 1105.20 . - - - . 1111.32 . 1117.43 . I C H W E . R 1123.55 . 1129.66 . 1135.78 . I C H W E . R . 1141.89 . 1 C H W E . JX 1148.01 . I C H W E . R 3 1154.12 . 1160.24 . 1166.35 . 1172.46 . 1178.58 . 1184.69 1190.81 1196.92 1203.04 1209.15 1215.27 1221.38 1227.50 1233.61 • • 1239.72 . 1245.84 . 1251.95 . I C H W E . R 1258.07 . I C H W E R • 1264.18 . Id 1270.30 . 1276.41 . 1282.53 . 1288.64 . 1294.76 . I C H W E . R 1300.87 1306.98 . 1313.10 1319.21 . 1325.33 . 1331.44 . I C H W E . R 1337.56 . I W C H E . R i 1343.67 . I W C H E . R 1349.79 . 1355.90 1362.02 . I W C H E R 1368.13 . 1374.24 1380.36 I W C H E R 1386.47 I W C H E R 1392.59 . I W C H E . R 1398.70 . I -WC HE . R 1404.82 I W C HE R � 1410.93 Z W C H E R s 1417.05 I WC H E R 1423.16 I X H E JX 1429.28 . I C H W E . R 1435.39 . I C X E . R 1233.40 1234.57 1235.74 1236.92 1238.09 1239.26 1240.43 1241.60 1242.78 1243.95 1245.12 NOTES 1. GLOSSARY 3 I . INVERT ELEVATION C . CRITICAL DEPTH W . WATER SURFACE ELEVATION H . HEIGHT OF CHANNEL E . ENERGY GRADE LINE X . CURVES CROSSING OVER B BRIDGE ENTRANCE OR EXIT Y . WALL ENTRANCE OR EXIT 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY 1 .., ,, iii . r F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING HERITAGE VILLAGE AREA 4B PROPOSED LATERAL "A -1" Q 100 STORM. - - - FILE: 954BA.INP /OUT 3 3 3 • ON 3 3 3 Ali DATE: 1/13/1999 TIME: 9:36 F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 24 4 2.00 3 3 3 3 3 3 3 F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE — ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION INVERT SECT W S ELEV 102.47 1234.02 24 1238.40 ELEMENT NO 2 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 120.70 1236.26 24 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV ■ 120.70 1236.26 24 0.00 NO EDIT ERRORS ENCOUNTERED — COMPUTATION IS NOW BEGINNING RIR 4,14 i c8 LICENSEE. HALL & FOREMAN F0515P PAGE 1 WATER SURFACE PROFILE LISTING HERITAGE VILLAGE AREA 4B PROPOSED LATERAL "A -1" Q 100 STORM FILE: 954BA.INP /OUT FY STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HUT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR 102.47 1234.02 4.380 1238.400 20.5 6.52 0.661 1239.061 0.00 1.624 2.00 0.00 0.00 0 0.00 18.23 0.12287 .008212 0.15 0.691 0.00 120.70 1236.26 2.290 1238.550 20.5 6.52 0.661 1239.211 0.00 1.624 2.00 0.00 0.00 0 0.00 1 1 Li Li • R F 0 5 1 5 P WATER SURFACE PROFILE - TITLE CARD LISTING HERITAGE VILLAGE AREA 4B PROPOSED LATERAL "A -3 Q 100 STORM 3 FILE: 954BA3.INP /OUT 3 3 3 1 3 F i DATE: 1/13/1999 TIME 9:40 - F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 18 4 1.50 1 rig 1 c *AI F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING -- -- - " ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT W S ELEV 102.47 1239.29 18 1242.10 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 119.98 1239.37 18 0.013 0.00 0.00 0.00 0 ELEMENT NO 3 IS A SYSTEM HEADWORK'S * * U/S DATA STATION INVERT SECT W S ELEV 119.98 1239.37 18 0.00 NO EDIT ERRORS ENCOUNTERED- COMPUTATION IS NOW BEGINNING 3 1 hi • { t 0 4 II I WATER SURFACE PROFILE LISTING HERITAGE VILLAGE AREA 4B - PROPOSED LATERAL "A -3 Q 100 STORM FILE: 954BA3.INP /OUT STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELE7 DEPTH DIA ID N0. PIER L /ELEM SO SF AVE HF NORM DEPTH 2R 102.47 1239.29 2.810 1242.100 12.2 6.90 0.740 1242.840 0.00 1.322 1.50 0.00 0.00 0 0.00 17.51 0.00457 .013489 0.24 1.500 0.00 119.98 1239.37 2.966 1242.336 12.2 6.90 0.740 1243.076 0.00 1.322 1.50 0.00 0.00 0 0.00 3 7 e 9 am IR 9 id D-LOAD TABLE IPA 1 , . . .._ ill i - : A i!':Ii--1As-4-AgigliiMENOIMP.'3"E'g w • 2 I . iiiimimimm It, .• _ _ Mk M/ l'IMWI il 1 al2111111111131111111 irk w . ._ zu < Z S * i •.• 9 I Q 2wtno i tit, • Ow -1 I — .., Jz 30 0 • C C c l . I '2 i t 4 Z I I N c3 14 ::-:4 - - I i T - 3 . . t -43 - , I 6 - . .. 1– ... _: 0.) 0 d : .,• I it _ § ' i I w 0 0 m 1 . -J I 1 6 I a- w te. :4: : • _ ii . .. oc.) – -.: z 1 , I . . ; ; 11 5 . ...1 ( : 4 • / I P .: :: t , . • 0 m _ 8 0 I I sL. z 0 t7, § - .,.-. 2 t n - -,4 • - ..,.■ .-- -J M W , .■ ' c c - S • ‘ - I 1 .) I v • ' 1 : •-•1 R 1 I 0 0 I 6 z --j . _ ■ _J 1 I 9 . 1: . i . 1 g cc a Li 1 1011911E15111:1EMBEI ! ... ,,, ...., . w ... ; 1 E1111121:11121111Ella 11 i g EICEEIN:121:11:112131213 . _. : .,., . i a I • • . ' , r. -. - = z - INE1111:3311 2INEEEE _ • ° - arm _ ___,. 2 : i o • ' z Li 1 • s 1 !xl ...—..—......-----