Loading...
HomeMy WebLinkAboutJurupa Industrial Center AEI �r ■ • • • CIVIL ENGINEERING • LAND SURVEYING HYDROLOGY & HYDRAULIC CALCULATIONS FOR JURUPA INDUSTRIAL CENTER (JURUPA AVENUE, MARLAY AVENUE & MULBERRY AVENUE) FOR CITY OF FONTANA JOB # 767 NOVEMBER 25, 1996 41 ,,� 1 6800 Valley View Avenue • La Mirada, CA 90639 • (714) 521-4811 • Fax (714) 521-4173 rn HYDROLOGY & HYDRAULIC CALCULATIONS FOR JURUPA INDUSTRIAL CENTER PREPARED UNDER THE SUPERVISION OF: _Aid/tA MA MICHAEL J. BLOMQUIST DATE: R.C.E. 53098 EXP. 06/30/99 a INTRODUCTION A: PROJECT LOCATION The commercial site is located in the city of Fontana. A portion of the study is on the northeast comer of Mulberry Avenue and Jurupa Avenue, while the remainder is bound by Marlay Avenue, Jurupa Avenue, and Mulberry Avenue. (See figure 1.) B: STUDY PURPOSE The purpose of this study is to determine the drainage facilities necessary to convey the flows for the commercial site. C: PROJECT STAFF Thienes Engineering staff involved in this study include: Brian L. Thienes Michael J. Blomquist Brian P. Weil 4 w A -ip VI los Ai v.re - - - No 1-UNLOUNS I I I 1 1 I I I I • 1 ' la MOLTIVO ST I r ..... 7 1 0 11 I R I I &TAT, Da 1 -..' ilattLIAIRT " DR <I I Z I > 1 01. I Y, • 11 Ia I ,,e• pvtANO . EMPIRE VALLEY ! BLVD VALLEY i.sta B LVD ...tto 4to vw i I y I 8 I I - - -9 , "NC 1 I AK 6119ALTEA ST C I I el - I I t., , I i 44' I I 1...--- m id - - - WAS...Ill -.- 9E71, — •-• f• 4 I rt....-. ' i ,..,1 , ' I . ■C,--:-1 , 4— FRWY . s '-'-' " =_-a7 , ' . \,. .-- ,e t ---,..... ,. 1 i I I Kt 1 AV I I C AIRPORT 0 1 j; _I .1 1 S LOV 17,00 ER rct I AV .11 in 1 g 1 I 1 ! 1 t • > "I I E I 1 1 I < I C. 1 I i50 DR vo8 `Z I 1 < 1 I > : < s 1 . + t 'ir - + - - - sis - - - - , - - + - 0, e i I CAMEO DA I I I I 0 I\ I '14I P In ,.1-, :,,,.-. 'ak,' i . ■., a 1 ,..--t ..., ?, : , -...,_ / ; rk / . .i ad I I i 5... i r t V , 1 1 SANTA ANA AV L [ I I _S,ANTA ANA AV I I 2,22TA I ANA SANTA ANA -,..... , r , L - ; •fl j_.) i It i ( ,,, I f. _ •10 . i Li t 1 1 L..... .: ,,, . c < PL ! I 1 Z AhL, ST 1 1 1 i ., ..., , ,L POSE , ", P 1 - so ROSECT i 1= il 'L.., ,...., :. • . t i 1 2111 k 1 rii ! •., , r 4. VVE _ _ r ...g-, "),- 1 : I JUAL/PA ill MAI K 1,457 1 I i 4. _ _ rs... .5 &,- 3 5 Et 7• • 0A. I 1 L J_ AV L—F.-5"-------'•—■,<......___ " ,__ . := F137 .4 r i it.... 3 06 1 . 1 5 ,,, . -.: - '1 .1 g% = • ,... ,...„..:4. ...,, 1 .11 /CLA .__DT.A i T r .\ 4 rr ,. - ... l• • •L ,. . k CMAItAAiAL ';', i . ...lf tt., >I fet?ca. s" ••••.; . 1 4: ..`'''''' t ' " kt . " I ST I AV 5"DnW . "..:: 0 I ..'. ''....' v. ... .- i,,... s.' :' s '■' ,,,. A . 2 , I - lt. ...,....... 1 ,mAIKAT AVI • 4,7, 1,,, -4, . '' ' + I I Z I:14 1 ,, „EAU '"C.' . .`,"..":.'" i 1 k l ' ' ''Z ' ie ' ''' .., :- 1 . ' :' "'" '''' ) '.1 , ! ,„1 . Z. ; :=1":■ " ,.. 4 . s ; a k ,:1 ` 1 iLet I 3i., .- ' " 3 -- , .-:- i° ,,,, .1,1 ,- .<.„' -- -.-AN,.., - sr-:, 1 5 .0.6,5,... to 1 ' F. . I Ct -. 8 a i , i• UNION AV ) f : e. )'' • . 4 , :7, •■••••••,-.., ' • - ,, ....." tiD .,0" ••• - 1 ■ Ili.; •• 1 ,tt P { , 1.0, < ' — EL COSIENTO , VF . ..I s 4 A A • •,, - L 2, .. ,,,,,, . 2 ?.. 2 F I 3 I 4... ' ."`..:".... .././ - t k , • , . . . . , ..40 ... W O DR imings 0 ... I 1 - I CHEAAY . .y, c s MTN ' .,. ti - 3 -.• lyt. , , ava .. .-..‘.,,,:: -:.,. - -....2`..it , rrit '''.' s „ ,.. - I 1 I 1 P. ADE( I ,„. 5 I 1,,..A.12f4.1,14 ■ . V ' 1 SBDO . _ - -- i 12S01 ■EAST COUNTT ONE ADI — I ,, A . t , ... 9 f ,..1 0.1P PAPP . •• • ..•1 --■• 1 ••■•••— •••••••• All . RIViRSIDE CO - ,x_2 - . + - — 11MG.t.A •-■ ' '''"&----=-4Z @ .-.' •-•.‘ . •L --. -• — — —iasw..,.-1/-1 • ,'el- T , ,,... . ,..„ „„ . . 3 . ,..i r 1 ,,•.1;/4. AV I , ••::: • ....Z.:: •-, • ... ..... 5 5_ ,,...{.. ...-,,. 1 P A . r •,- ... ...... r• a - _, ?, ,-- 2 6AN.NaveOPO Le / / • - ... r..... a".., - t 1 ---) L.,-- i--1-4,/,.1 Vf Niu■S v I 4 , „ ., .5 ,... .5 ' I . ,' 1 ,. V I ; , '... / , 1 1 . e',.: . i I , , .. ....., • - ---- - - - 4es 8 < t''- nouSLE •9 i 1. 1 .../ (./ .1.1 U l • •••• tT 1 0 aij• I • •! • • I Z OLEY •• It• • D I I < 0 I 3 I ' I A SS I •••:? 't?: 1 N 4. ctu, LI, 4.4 I r. . vai 1 1 4 E1 r, 4.. or 1 1--- \_ __ i _ _1_ _ ' i . ti. ,-... IS (F 8 ON E) 1111 4111 , AIN VAI 44 N DISCUSSION The area of study is generally bounded by Jurupa Avenue on the north, Mulberry Avenue on the east, San Sevine channel on the west, and Marlay Avenue on the south. In addition, approximately 22 acres at the northeast comer of Jurupa and Mulberry are included. Contained within the area is a commercial site on the comer of Marlay Avenue and Mulberry Avenue that encompasses approximately 36 acres. This site drains from north to south where the flows will be picked up in two 36" RCPs, which will ultimately drain into a storm drain in Marlay Avenue. Flows from the area northeast of Jurupa Avenue and Mulberry Avenue are assumed to be ultimately conveyed to the corner of Marlay and Mulberry Avenues. The storm drain in Marlay Avenue is designed to carry the developed 100 -year peak flow rate from this area. The 100 -year peak flow rate at the coiner of Marlay and Mulberry is approximately 120 cfs. The storm drain in Marlay Avenue continues west where it will outlet into San Sevine channel. The 100 -year peak flow rate at the outlet is approximately 290 cfs. In addition to the outlet at Marlay Avenue, there is also an outlet to San Sevine Channel at Jurupa Avenue. Two catch basin in Jurupa Avenue intercept flows from an approximate 8 acre area, where a 30" RCP conveys these flows to San Sevine Channel. 100 -year peak flow ", rate at the outlet is approximately 23 cfs. For interim conditions, the area from the northeast comer of Mulberry and Jurupa Avenues is considered to be undeveloped, and 25 -year peak flow rate will be used to size interim facilities. The flows from this area will be picked up in a series of catch basins, then flow south in a pipe which will be allowed to daylight into Mulberry Avenue approximately 600' south of Jurupa Avenue. The 25 -year peak flow rate in this pipe is approximately 30 cfs. Flows will continue south on the west side of Mulberry Avenue where they will be intercepted at the comer of Marlay and Mulberry Avenues. The catch basins on Mulberry Avenue just north of Marlay Avenue are designed to intercept 100 -year ultimate peak flow rate from the areas on the west side of Mulberry and north of the proposed commercial site. Until the facility in Mulberry Avenue is extended to Jurupa Avenue, we will assume that these catch basins will receive the entire 100 -year undeveloped runoff from the comer of Mulberry and Jurupa Avenues. Three flowby catch basins, each 28 feet wide, are needed to intercept the 100 -year peak flow rate which is approximately 90 cfs-60 cfs from the developed area plus 30 cfs from the undeveloped area. For ultimate hydrology, all areas are future commercial sites with the exception of a Southern California Edison easement which will remain undeveloped. Soil groups "A" & "B" were used per San Bernardino County Hydrology Manual. A A " APPENDICES A -1 ULTIMATE HYDROLOGY CALCULATIONS A -2 INTERIM HYDROLOGY CALCULATIONS A -3 HYDRAULIC CALCULATIONS A-4 CATCH BASIN CALCULATION A -5 SUPPORTING FIGURES, TABLES AND CHARTS A-6 HYDROLOGY MAP a APPENDIX A-1 • ULTIMATE HYDROLOGY CALCULATIONS ON ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Especially prepared for: A • * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * 100 -YEAR ULTIMATE HYDROLOGY * FOR STORM DRAIN IN MARLAY AVENUE * * • ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: \AES \RATSB \FILES \G767.100 TIME/DATE OF STUDY: 4:29 11/15/1996 . USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL * -- » USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 • SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 - USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3000 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< • DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 941.73 DOWNSTREAM ELEVATION = 931.26 ELEVATION DIFFERENCE = 10.47 TC = .304 *[( 1000.00 ** 3.00)/( 10.47)] ** .20 = 11.992 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.416 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 18.22 TOTAL AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) = 18.22 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 6 » »>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« « < A UPSTREAM ELEVATION = 931.26 DOWNSTREAM ELEVATION = 925.88 STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. a STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 18.92 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEET) = 20.11 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.47 PRODUCT OF DEPTH &VELOCITY = 2.51 STREETFLOW TRAVELTIME(MIN) = 1.23 TC(MIN) = 13.22 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.221 A" SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 .. SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.41 EFFECTIVE AREA(ACRES) = 6.60 41 AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 6.60 PEAK FLOW RATE(CFS) = 18.56 °" END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEET) = 20.11 FLOW VELOCITY(FEET /SEC.) = 4.38 DEPTH *VELOCITY = 2.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: . TIME OF CONCENTRATION(MINUTES) = 13.22 RAINFALL INTENSITY (INCH. /HOUR) = 3.22 AA EFFECTIVE STREAM AREA(ACRES) = 6.60 TOTAL STREAM AREA(ACRES) = 6.60 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.56 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 936.39 - DOWNSTREAM ELEVATION = 925.88 ELEVATION DIFFERENCE = 10.51 • TC = .304 *[( 1000.00 ** 3.00) /( 10.51)] ** .20 = 11.983 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.417 " SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 14 SUBAREA RUNOFF(CFS) = 16.62 • TOTAL AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) = 16.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< A- » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: " TIME OF CONCENTRATION(MINUTES) = 11.98 4 RAINFALL INTENSITY (INCH. /HOUR) = 3.42 EFFECTIVE STREAM AREA(ACRES) = 5.56 A TOTAL STREAM AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.62 CONFLUENCE INFORMATION: m STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 18.56 13.22 3.221 .10 6.60 2 16.62 11.98 3.417 .10 5.56 .. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE 4. NUMBER Q(CFS) AREA(ACRES) 4 1 34.19 12.16 2 34.49 11.54 '° COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.49 TIME(MINUTES) = 11.983 EFFECTIVE AREA(ACRES) = 11.54 TOTAL AREA(ACRES) = 12.16-•- - ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6 • » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< • UPSTREAM ELEVATION = 925.88 DOWNSTREAM ELEVATION = 920.50 STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. - STREET HALFWIDTH(FEET) = 40.00 • DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 • OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 35.20 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .68 HALFSTREET FLOODWIDTH(FEET) = 26.05 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.05 PRODUCT OF DEPTH &VELOCITY = 3.43 STREETFLOW TRAVELTIME(MIN) = 1.09 TC(MIN) = 13.07 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.244 SOIL CLASSIFICATION IS "A" m COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.42 EFFECTIVE AREA(ACRES) = 12.04 AVERAGED Fm(INCH /HR) = .097 m TOTAL AREA(ACRES) = 12.66 PEAK FLOW RATE(CFS) = 34.49 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .67 HALFSTREET FLOODWIDTH(FEET) = 25.45 FLOW VELOCITY(FEET /SEC.) = 5.17 DEPTH *VELOCITY = 3.45 ®********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: "' TIME OF CONCENTRATION(MINUTES) = 13.07 RAINFALL INTENSITY (INCH. /HOUR) = 3.24 EFFECTIVE STREAM AREA(ACRES) = 12.04 TOTAL STREAM AREA(ACRES) = 12.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 34.49 A ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 10.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 .* INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 931.04 w DOWNSTREAM ELEVATION = 920.50 ELEVATION DIFFERENCE = 10.54 LL • TC = .304 *[( 1000.00 ** 3.00)/( 10.54)] ** .20 = 11.976 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.419 SOIL CLASSIFICATION IS "A" - COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 16.62 . TOTAL AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) = 16.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 - » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 11.98 RAINFALL INTENSITY (INCH. /HOUR) = 3.42 • EFFECTIVE STREAM AREA(ACRES) = 5.56 TOTAL STREAM AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.62 CONFLUENCE INFORMATION: - STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 34.49 13.07 3.244 .10 12.04 • 2 16.62 11.98 3.419 .10 5.56 4 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. m SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 50.24 17.60 2 49.98 16.59 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAR FLOW RATE(CFS) = 50.24 TIME(MINUTES) = 13.072 EFFECTIVE AREA(ACRES) = 17.60 4 TOTAL AREA(ACRES) = 18.22 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 14.00 IS CODE = 6 q. » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< 1 " UPSTREAM ELEVATION = 920.50 DOWNSTREAM ELEVATION = 916.22 STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 '" DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 50.78 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .76 HALFSTREET FLOODWIDTH(FEET) = 30.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.45 PRODUCT OF DEPTH &VELOCITY = 4.16 STREETFLOW TRAVELTIME(MIN) = .92 TC(MIN) = 13.99 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.114 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) = 1.09 EFFECTIVE AREA(ACRES) = 18.00 AVERAGED Fm(INCH /HR) = .097 . TOTAL AREA(ACRES) = 18.62 PEAK FLOW RATE(CFS) = 50.24 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .76 HALFSTREET FLOODWIDTH(FEET) = 30.20 FLOW VELOCITY(FEET /SEC.) = 5.39 DEPTH *VELOCITY = 4.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.114 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.72 EFFECTIVE AREA(ACRES) = 19.00 AVERAGED Fm(INCH /HR) = .097 ,,, TOTAL AREA(ACRES) = 19.62 PEAK FLOW RATE(CFS) = 51.60 TC(MIN) = 13.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = .13.99 RAINFALL INTENSITY (INCH. /HOUR) = 3.11 Ai EFFECTIVE STREAM AREA(ACRES) = 19.00 TOTAL STREAM AREA(ACRES) = 19.62 .1 PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 12.00 TO NODE 14.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< a DEVELOPMENT IS COMMERCIAL • TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 1000.00 " UPSTREAM ELEVATION = 925.69 DOWNSTREAM ELEVATION = 916.22 ELEVATION DIFFERENCE = 9.47 TC = 304 *[( 1000.00 ** 3.00)/( 9.47)] ** .20 = 12.235 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.375 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 13.75 TOTAL AREA(ACRES) = 4.66 PEAK FLOW RATE(CFS) = 13.75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.23 • RAINFALL INTENSITY (INCH. /HOUR) = 3.37 EFFECTIVE STREAM AREA(ACRES) = 4.66 • TOTAL STREAM AREA(ACRES) = 4.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.75 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 51.60 13.99 3.114 .10 19.00 2 13.75 12.23 3.375 .10 4.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 64.25 23.66 2 62.78 21.28 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: • PEAK FLOW RATE(CFS) = 64.25 TIME(MINUTES) = 13.989 4 EFFECTIVE AREA(ACRES) = 23.66 TOTAL AREA(ACRES) = 24.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 14.00 TO NODE 20.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< A » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.4 UPSTREAM NODE ELEVATION = 912.22 DOWNSTREAM NODE ELEVATION = 911.58 FLOWLENGTH(FEET) = 160.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 64.25 « TRAVEL TIME(MIN.) = .36 TC(MIN.) = 14.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 - » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.35 ' RAINFALL INTENSITY (INCH. /HOUR) = 3.07 EFFECTIVE STREAM AREA(ACRES) = 23.66 TOTAL STREAM AREA(ACRES) = 24.28 PEAK FLOW RATE(CFS) AT CONFLUENCE = 64.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 18.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< • DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 660.10 • UPSTREAM ELEVATION = 936.81 DOWNSTREAM ELEVATION = 926.05 ` ELEVATION DIFFERENCE = 10.76 TC = .304 *[( 660.10 ** 3.00)/( 10.76)] ** .20 = 9.296 ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.980 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 4.51 TOTAL AREA(ACRES) = 1.29 PEAK FLOW RATE(CFS) = 4.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 6 a » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< UPSTREAM ELEVATION = 926.05 DOWNSTREAM ELEVATION = 916.38 " STREET LENGTH(FEET) = 593.40 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 • INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 r SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.24 STREETFLOW MODEL RESULTS: A STREET FLOWDEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 12.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.33 PRODUCT OF DEPTH &VELOCITY = 1.39 ° STREETFLOW TRAVELTIME(MIN) = 2.97 TC(MIN) = 12.27 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 4; SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 w SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 3.45 EFFECTIVE AREA(ACRES) = 2.46 AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) = 7.25 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.58 FLOW VELOCITY(FEET /SEC.) = 3.56 DEPTH *VELOCITY = 1.53 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** As FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 12.27 RAINFALL INTENSITY (INCH. /HOUR) = 3.37 EFFECTIVE STREAM AREA(ACRES) = 2.46 TOTAL STREAM AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) AT CONFLUENCE '= 7.25 CONFLUENCE INFORMATION: . STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) -(INCH /HOUR) (IN /HR) AREA(ACRES) 1 64.25 14.35 3.067 .10 23.66 2 7.25 12.27 3.370 .10 2.46 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE • NUMBER Q(CFS) AREA(ACRES) 1 70.83 26.12 2 67.77 22.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 70.83 TIME(MINUTES) = 14.349 EFFECTIVE AREA(ACRES) = 26.12 . TOTAL AREA(ACRES) = 26.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 26.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.0 INCHES • PIPEFLOW VELOCITY(FEET /SEC.) = 7.5 UPSTREAM NODE ELEVATION = 911.58 DOWNSTREAM NODE ELEVATION = 911.28 FLOWLENGTH(FEET) = 75.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 70.83 TRAVEL TIME(MIN.) = .17 TC(MIN.) = 14.52 ..********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< ,, CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.52 RAINFALL INTENSITY (INCH. /HOUR) = 3.05 EFFECTIVE STREAM AREA(ACRES) = 26.12 Am TOTAL STREAM AREA(ACRES) = 26.74 PEAK FLOW RATE(CFS) AT CONFLUENCE = 70.83 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 24.00 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 • INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 922.17 44 DOWNSTREAM ELEVATION = 915.91 ELEVATION DIFFERENCE = 6.26 " TC = .304*[( 1000.00** 3.00)/( 6.26)]** .20 = 13.291 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.211 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 6.17 • TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 6.17 **************************************************************************** . FLOW PROCESS FROM NODE 24.00 TO NODE 26.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<<< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 - DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.1 • UPSTREAM NODE ELEVATION = 911.91 DOWNSTREAM NODE ELEVATION = 911.28 • FLOWLENGTH(FEET) = 40.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 6.17 TRAVEL TIME(MIN.) = .09 TC(MIN.) = 13.39 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1 • >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<«< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 13.39 RAINFALL INTENSITY (INCH./HOUR) = 3.20 EFFECTIVE STREAM AREA(ACRES) = 2.20 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.17 CONFLUENCE INFORMATION: 4 STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH/HOUR) (IN/HR) AREA(ACRES) 1 70.83 14.52 3.046 .10 26.12 2 6.17 13.39 3.198 .10 2.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) A 1 76.69 28.32 4 2 74.84 26.29 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: .. PEAK FLOW RATE(CFS) = 76.69 TIME(MINUTES) = 14.516 EFFECTIVE AREA(ACRES) = 28.32 TOTAL AREA(ACRES) = 28.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.00 TO NODE 36.00 IS CODE = 3 » »>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)««< DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.8 . UPSTREAM NODE ELEVATION = 911.28 DOWNSTREAM NODE ELEVATION = 908.72 FLOWLENGTH(FEET) = 640.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 m PIPEFLOW THRU SUBAREA(CFS) = 76.69 TRAVEL TIME(MIN.) = 1.38 -- -- TC(MIN.) = 15.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 15.89 . RAINFALL INTENSITY (INCH. /HOUR) = 2.88 EFFECTIVE STREAM AREA(ACRES) = 28.32 TOTAL STREAM AREA(ACRES) = 28.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 76.69 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 28.00 TO NODE 30.00 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 - INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 922.17 DOWNSTREAM ELEVATION = 915.91 ELEVATION DIFFERENCE = 6.26 TC = .304 *[( 1000.00 ** 3.00)/( 6.26)] ** .20 = 13.291 m 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.211 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 4.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 36.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< A UPSTREAM ELEVATION = 915.91 DOWNSTREAM ELEVATION = 908.66 m. STREET LENGTH(FEET) = 625.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 4 4 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 46 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 4 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.53 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 12.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.95 PRODUCT OF DEPTH &VELOCITY = 1.23 0 STREETFLOW TRAVELTIME(MIN) = 3.53 TC(MIN) = 16.82 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.788 SOIL CLASSIFICATION IS "A" 40 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.66 -a EFFECTIVE AREA(ACRES) = 2.60 AVERAGED Fm(INCH/HR) = .097 46 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 6.30 END OF SUBAREA STREETFLOW HYDRAULICS: " DEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 14.17 FLOW VELOCITY(FEET /SEC.) = 2.86 DEPTH *VELOCITY = 1.27 " ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< . CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 16.82 .. RAINFALL INTENSITY (INCH. /HOUR) = 2.79 EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.30 -********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 32.00 TO NODE 34.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL n TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 n UPSTREAM ELEVATION = 922.17 DOWNSTREAM ELEVATION = 912.38 4 ELEVATION DIFFERENCE = 9.79 TC = .304 *[( 1000.00 ** 3.00)/( 9.79)] ** .20 = 12.154 " * 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.388 SOIL CLASSIFICATION IS "A" 0 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 21.62 TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 21.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 5 » »>COMPUTE TRAPEZOIDAL - CHANNEL FLOW « « < » » >TRAVELTIME THRU SUBAREA««< 4 UPSTREAM NODE ELEVATION = 912.38 DOWNSTREAM NODE ELEVATION = 908.66 A CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 1.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 21.62 4 FLOW VELOCITY(FEET /SEC) = 6.25 FLOW DEPTH(FEET) = 1.86 TRAVEL TIME(MIN.) = 1.47 TC(MIN.) = 13.62 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.165 SOIL CLASSIFICATION IS "A" .,,, COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 20.43 EFFECTIVE AREA(ACRES) = 14.70 AVERAGED Fm(INCH /HR) = .097 44 TOTAL AREA(ACRES) = 14.70 PEAK FLOW RATE(CFS) = 40.59-- o TC(MIN) = 13.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .. FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 13.62 RAINFALL INTENSITY (INCH. /HOUR) = 3.16 EFFECTIVE STREAM AREA(ACRES) = 14.70 . TOTAL STREAM AREA(ACRES) = 14.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.59 CONFLUENCE INFORMATION: . STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 76.69 15.89 2.885 .10 28.32 4 2 6.30 16.82 2.788 .10 2.60 3 40.59 13.62 3.165 .10 14.70 ,,, RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE a NUMBER Q(CFS) AREA(ACRES) . 1 119.74 45.48 2 115.92 45.62 • 3 118.72 41.08 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: '" PEAK FLOW RATE(CFS) = 119.74 TIME(MINUTES) = 15.892 EFFECTIVE AREA(ACRES) = 45.48 TOTAL AREA(ACRES) = 46.24 I ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 » »> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< ;„R UPSTREAM ELEVATION = 908.66 DOWNSTREAM ELEVATION = 885.54 STREET LENGTH(FEET) = 1925.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 124.02 * * *STREETFLOW SPLITS OVER STREET - CROWN * ** FULL DEPTH(FEET) = .96 FLOODWIDTH(FEET) = 40.00 FULL HALF - STREET VELOCITY(FEET /SEC.) = 5.87 SPLIT DEPTH(FEET) = .67 SPLIT FLOODWIDTH(FEET) = 25.45 SPLIT VELOCITY(FEET /SEC.) = 4.35 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET)- -= --•-° .96 HALFSTREET FLOODWIDTH(FEET) = 40.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.87 PRODUCT OF DEPTH &VELOCITY = 5.63 STREETFLOW TRAVELTIME(MIN) = 5.46 TC(MIN) = 21.36 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.416 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 8.56 • EFFECTIVE AREA(ACRES) = 49.58 AVERAGED Fm(INCH /HR) = .097 - TOTAL AREA(ACRES) = 50.34 PEAK FLOW RATE(CFS) = 119.74 END OF SUBAREA STREETFLOW HYDRAULICS: - DEPTH(FEET) = .96 HALFSTREET FLOODWIDTH(FEET) = 40.00 FLOW VELOCITY(FEET /SEC.) = 5.87 DEPTH *VELOCITY = 5.63 .********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 37.00 TO NODE 45.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « • DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.4 UPSTREAM NODE ELEVATION = 877.30 DOWNSTREAM NODE ELEVATION = 876.71 FLOWLENGTH(FEET) = 118.00 MANNINGS N = .013 a ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 119.74 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 21.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1m FLOW PROCESS FROM NODE 45.00 TO NODE 45.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: a TIME OF CONCENTRATION(MINUTES) = 21.57 RAINFALL INTENSITY (INCH. /HOUR) = 2.40 EFFECTIVE STREAM AREA(ACRES) = 49.58 TOTAL STREAM AREA(ACRES) = 50.34 A PEAK FLOW RATE(CFS) AT CONFLUENCE = 119.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 38.00 TO NODE 41.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 100.00 • UPSTREAM ELEVATION = 885.60 DOWNSTREAM ELEVATION = 884.38 ELEVATION DIFFERENCE = 1.22 TC = .304 *[( 100.00 ** 3.00)/( 1.22)] ** .20 = 4.630 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.774 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 1.53 .. TOTAL AREA(ACRES) = .30 PEAK FLOW RATE(CFS) = 1.53 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 41.00 TO NODE 45.00 IS CODE = 3 • » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« «< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 - DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.3 UPSTREAM NODE ELEVATION = 879.71 DOWNSTREAM NODE ELEVATION = 879.00 FLOWLENGTH(FEET) = 7.00 MANNINGS N = .013 • ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.53 - TRAVEL TIME(MIN.) = .01 TC(MIN.) = 5.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 45.00 TO NODE 45.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 5.01 RAINFALL INTENSITY (INCH. /HOUR) = 5.76 EFFECTIVE STREAM AREA(ACRES) = .30 TOTAL STREAM AREA(ACRES) = .30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.53 CONFLUENCE INFORMATION: 41 STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 119.74 21.57 2.402 .10 49.58 2 1.53 5.01 5.765 .10 .30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) a- 1 120.36 49.88 2 69.97 11.82 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ' PEAK FLOW RATE(CFS) = 120.36 TIME(MINUTES) = 21.566 EFFECTIVE AREA(ACRES) = 49.88 TOTAL AREA(ACRES) = 50.64 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 3 » »>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< • »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< . DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.8 m UPSTREAM NODE ELEVATION = 876.71 DOWNSTREAM NODE ELEVATION = 876.18 m FLOWLENGTH(FEET) = 178.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 • PIPEFLOW THRU SUBAREA(CFS) = 120.36 TRAVEL TIME(MIN.) = .38 -- TC(MIN.) = 21.95 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 42.00 IS CODE = 2 • » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < • NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 811.30 .. UPSTREAM ELEVATION = 914.53 DOWNSTREAM ELEVATION = 906.00 ELEVATION DIFFERENCE = 8.53 TC = .706 *[( 811.30 ** 3.00)/( 8.53)] ** .20 = 25.593 .. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.168 SOIL CLASSIFICATION IS "A" • NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 5.34 • TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 5.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 42.00 TO NODE 46.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA««< 4 UPSTREAM NODE ELEVATION = 906.00 DOWNSTREAM NODE ELEVATION = 891.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 1475.20 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = .50 CHANNEL FLOW THRU SUBAREA(CFS) = 5.34 FLOW VELOCITY(FEET /SEC) = 2.59 FLOW DEPTH(FEET) = .20 4 TRAVEL TIME(MIN.) = 9.51 TC(MIN.) = 35.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 46.00 TO NODE 46.00 IS CODE = 8 m »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.793 SOIL CLASSIFICATION IS "A" m COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 12.10 SUBAREA RUNOFF(CFS) = 18.47 -,,, EFFECTIVE AREA(ACRES) = 16.50 AVERAGED Fm(INCH /HR) = .290 m TOTAL AREA(ACRES) = 16.50 PEAK FLOW RATE(CFS) = 22.33 m TC(MIN) = 35.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '* FLOW PROCESS FROM NODE 46.00 TO NODE 49.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« «< DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 5.9 UPSTREAM NODE ELEVATION = 887.25 DOWNSTREAM NODE ELEVATION = 886.00 FLOWLENGTH(FEET) = 290.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) - =- 30.00 NUMBER OF PIPES = 1 .., PIPEFLOW THRU SUBAREA(CFS) = 22.33 TRAVEL TIME(MIN.) = .82 TC(MIN.) = 35.92 .********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 35.92 RAINFALL INTENSITY (INCH. /HOUR) = 1.77 4 " EFFECTIVE STREAM AREA(ACRES) = 16.50 TOTAL STREAM AREA(ACRES) = 16.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.33 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 293.70 UPSTREAM ELEVATION = 894.60 DOWNSTREAM ELEVATION = 891.25 ELEVATION DIFFERENCE = 3.35 TC = .304 *[( 293.70 ** 3.00)/( 3.35)] ** .20 = 7.221 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.631 SOIL CLASSIFICATION IS "A" W COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 6.94 TOTAL AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 6.94 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "" FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 3 » »>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « « < » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< m ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 4 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.6 UPSTREAM NODE ELEVATION = 887.25 * DOWNSTREAM NODE ELEVATION = 886.00 FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 O ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 6.94 TRAVEL TIME(MIN.) = .10 TC(MIN.) = 7.32 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 • » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 7.32 RAINFALL INTENSITY (INCH. /HOUR) = 4.59 • EFFECTIVE STREAM AREA(ACRES) = 1.70 * TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE -= 6.94 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 22.33 35.92 1.769 .29 16.50 2 6.94 7.32 4.594 .10 1.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE • NUMBER Q(CFS) AREA(ACRES) ri 1 24.91 18.20 2 20.18 5.06 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.91 TIME(MINUTES) = 35.923 EFFECTIVE AREA(ACRES) = 18.20 TOTAL AREA(ACRES) = 18.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .. FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 3 • » » > COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 20.4 UPSTREAM NODE ELEVATION = 886.00 DOWNSTREAM NODE ELEVATION = 880.60 0 FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 24.91 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 35.96 0********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 35.96 * RAINFALL INTENSITY (INCH. /HOUR) = 1.77 EFFECTIVE STREAM AREA(ACRES) = 18.20 ^* TOTAL STREAM AREA(ACRES) = 18.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.91 -********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 7 » » >USER SPECIFIED HYDROLOGY INFORMATION AT NODE « «< USER - SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 21.95 RAIN INTENSITY(INCH /HOUR) = 2.38 EFFECTIVE AREA(ACRES) = 49.58 TOTAL AREA(ACRES) = 50.64 PEAK FLOW RATE(CFS) = 120.36 m AVERAGED LOSS RATE, Fm(IN /HR) = .097 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** + FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 1 N » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: m' TIME OF CONCENTRATION(MINUTES) = 21.95 RAINFALL INTENSITY (INCH. /HOUR) = 2.38 EFFECTIVE STREAM AREA(ACRES) = 49.58 TOTAL STREAM AREA(ACRES) = 50.64 PEAK FLOW RATE(CFS) AT CONFLUENCE 120.36 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 24.91 35.96 1.767 .27 18.20 2 120.36 21.95 2.377 .10 49.58 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 113.09 67.78 2 141.75 60.69 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 141.75 TIME(MINUTES) = 21.950 EFFECTIVE AREA(ACRES) = 60.69 a TOTAL AREA(ACRES) = 68.84 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 56.00 IS CODE = 3 » » > COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 63.0 INCH PIPE IS 47.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.1 -.r UPSTREAM NODE ELEVATION = 876.16 DOWNSTREAM NODE ELEVATION = 875.76 0 FLOWLENGTH(FEET) = 132.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 141.75 TRAVEL TIME(MIN.) = .27 TC(MIN.) = 22.22 4 4********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 4 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 22.22 RAINFALL INTENSITY (INCH. /HOUR) = 2.36 EFFECTIVE STREAM AREA(ACRES) = 60.69 TOTAL STREAM AREA(ACRES) = 68.84 PEAK FLOW RATE(CFS) AT CONFLUENCE = 141.75 .,********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 52.00 TO NODE 54.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « DEVELOPMENT IS COMMERCIAL ------ TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 960.00 UPSTREAM ELEVATION = 887.02 - DOWNSTREAM ELEVATION = 883.68 ELEVATION DIFFERENCE = 3.34 TC = .304 *[( 960.00 ** 3.00)/( 3.34)] ** .20 = 14.706 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.022 • *USER SPECIFIED(SUBAREA): COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0790 SUBAREA RUNOFF(CFS) = 6.36 TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 6.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.022 SOIL CLASSIFICATION IS "A" - COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = 1.32 `" EFFECTIVE AREA(ACRES) = 2.90 AVERAGED Fm(INCH /HR) = .082 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 7.67 TC(MIN) = 14.71 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 54.00 TO NODE 56.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« «< m » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.5 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.1 UPSTREAM NODE ELEVATION = 880.20 DOWNSTREAM NODE ELEVATION = 879.80 m FLOWLENGTH(FEET) = 20.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 7.67 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 14.75 m ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.75 '" RAINFALL INTENSITY (INCH. /HOUR) = 3.02 EFFECTIVE STREAM AREA(ACRES) = 2.90 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.67 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE • NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 141.75 22.22 2.359 .13 60.69 2 7.67 14.75 - - - - 3- 017 .08 2.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: - STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 147.71 63.59 2 129.50 43.17 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 147.71 TIME(MINUTES) = 22.221 EFFECTIVE AREA(ACRES) = 63.59 TOTAL AREA(ACRES) = 71.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< • » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« «< • DEPTH OF FLOW IN 63.0 INCH PIPE IS 49.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.1 - UPSTREAM NODE ELEVATION = 875.76 DOWNSTREAM NODE ELEVATION = 874.51 • FLOWLENGTH(FEET) = 419.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 147.71 m TRAVEL TIME(MIN.) = .86 TC(MIN.) = 23.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 1 m »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 23.08 "" RAINFALL INTENSITY (INCH. /HOUR) = 2.31 • EFFECTIVE STREAM AREA(ACRES) = 63.59 TOTAL STREAM AREA(ACRES) = 71.74 PEAK FLOW RATE(CFS) AT CONFLUENCE = 147.71 al ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Nf FLOW PROCESS FROM NODE 58.00 TO NODE 60.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< w DEVELOPMENT IS COMMERCIAL • TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 696.20 4 UPSTREAM ELEVATION = 899.85 DOWNSTREAM ELEVATION = 896.37 ELEVATION DIFFERENCE = 3.48 TC = .304 *[( 696.20 ** 3.00)/( 3.48)] ** .20 = 12.028 " 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.410 SOIL CLASSIFICATION IS "A" "" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA RUNOFF(CFS) = 11.93 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 11.93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 62.00 IS CODE = 5 • » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA« «< • UPSTREAM NODE ELEVATION = 899.85 DOWNSTREAM NODE ELEVATION = 890.05 CHANNEL LENGTH THRU SUBAREA(FEET) = 1372.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 • MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = .50 CHANNEL FLOW THRU SUBAREA(CFS) = 11.93 • FLOW VELOCITY(FEET /SEC) = 2.22 FLOW DEPTH(FEET) = .33 TRAVEL TIME(MIN.) = 10.32 TC(MIN.) = 22.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.351 *USER SPECIFIED(SUBAREA): COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0880 SUBAREA AREA(ACRES) = 14.26 SUBAREA RUNOFF(CFS) = 29.04 EFFECTIVE AREA(ACRES) = 18.26 AVERAGED Fm(INCH/HR) = .090 TOTAL AREA(ACRES) = 18.26 PEAK FLOW RATE(CFS) = 37.16 • TC(MIN) = 22.35 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 62.00 TO NODE 64.00 IS CODE = 3 0 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.5 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 18.4 14 UPSTREAM NODE ELEVATION = 887.00 DOWNSTREAM NODE ELEVATION = 878.00 FLOWLENGTH(FEET) = 135.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 37.16 a TRAVEL TIME(MIN.) = .12 TC(MIN.) = 22.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 1 4 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < • » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 22.47 .. RAINFALL INTENSITY (INCH. /HOUR) = 2.34 EFFECTIVE STREAM AREA(ACRES) = 18.26 im TOTAL STREAM AREA(ACRES) = 18.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = 37.16 CONFLUENCE INFORMATION: *" STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 147.71 23.08 2.306 .13 63.59 2 37.16 22.47 2.343 .09 18.26 • RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: • STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 184.25 81.85 • 2 183.42 80.16 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 184.25 •TIME(MINUTES) = 23.085 EFFECTIVE AREA(ACRES) = 81.85 TOTAL AREA(ACRES) = 90.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 64.00 TO NODE 70.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLAW) ««< • DEPTH OF FLOW IN 69.0 INCH PIPE IS 52.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.7 .. UPSTREAM NODE ELEVATION = 874.48 DOWNSTREAM NODE ELEVATION = 874.09 • FLOWLENGTH(FEET) = 126.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 184.25 TRAVEL TIME(MIN.) = .24 TC(MIN.) = 23.33 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** a FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < * CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 23.33 . RAINFALL INTENSITY (INCH. /HOUR) = 2.29 EFFECTIVE STREAM AREA(ACRES) = 81.85 4 TOTAL STREAM AREA(ACRES) = 90.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 184.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 FLOW PROCESS FROM NODE 66.00 TO NODE 67.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 625.00 UPSTREAM ELEVATION = 903.84 DOWNSTREAM ELEVATION = 895.75 ELEVATION DIFFERENCE = 8.09 TC = .304 *[( 625.00 ** 3.00)/( 8.09)] ** .20 = 9.524 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.922 *USER SPECIFIED(SUBAREA): COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0860 SUBAREA RUNOFF(CFS) = 18.64 mi TOTAL AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) = 18.64 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 67.00 TO NODE 68.00 IS CODE = 5 • » » >COMPUTE TRAPEZOIDAL- CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION = 895.75 • DOWNSTREAM NODE ELEVATION = 884.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1000.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 • MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 18.64 • FLOW VELOCITY(FEET /SEC) = 3.46 FLOW DEPTH(FEET) = .33 TRAVEL TIME(MIN.) = 4.81 TC(MIN.) = 14.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 68.00 TO NODE 68.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.069 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 14.82 EFFECTIVE AREA(ACRES) = 10.90 AVERAGED Fm(INCH /HR) = .080 - TOTAL AREA(ACRES) = 10.90 PEAK FLOW RATE(CFS) = 29.32 TC(MIN) = 14.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 68.00 TO NODE 70.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 15.7 .,,, UPSTREAM NODE ELEVATION = 880.00 DOWNSTREAM NODE ELEVATION = 877.50 FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 29.32 TRAVEL TIME(MIN.) = .05 TC(MIN.) = 14.39 40******** ************* ***************************** ********* *** *** ** * ** * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 » »» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »» »AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< " CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 14.39 RAINFALL INTENSITY (INCH. /HOUR) = 3.06 EFFECTIVE STREAM AREA(ACRES) = 10.90 " TOTAL STREAM AREA(ACRES) = 10.90 A PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.32 CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE or NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 184.25 23.33 2.292 .12 81.85 2 29.32 14.39 3.062 .08 10.90 4 RAINFALL INTENSITY AND TIME -OF -- CONCENTRATION RATIO *• CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 205.99 92.75 2 183.28 61.39 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 205.99 TIME(MINUTES) = 23.326 EFFECTIVE AREA(ACRES) = 92.75 TOTAL AREA(ACRES) = 100.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE = 3 »> »»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « »» »USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)««< DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.5 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.8 UPSTREAM NODE ELEVATION = 874.07 DOWNSTREAM NODE ELEVATION = 872.10 FLOWLENGTH(FEET) = 663.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 205.99 TRAVEL TIME(MIN.) = 1.25 TC(MIN.) = 24.58 a ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** y. FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 1 » »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< Al CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 24.58 RAINFALL INTENSITY (INCH. /HOUR) = 2.22 EFFECTIVE STREAM AREA(ACRES) = 92.75 TOTAL STREAM AREA(ACRES) = 100.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 205.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 ' FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 2 • • APPENDIX A -3 1 El HYDRAULIC CALCULATIONS Po P" JIM l PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 11/22/96 PAGE 1 F JECT: H.G.L. CALC. FOR LINE "A" 767A.DAT DESIGNER: B.P.W. \ `1� ti ` , � ( L2 MAX 0 ADJ G LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N AO 8 1 874.15 2 291.6 291.6 141.59 869.05 869.47 0.00 78. 0. 3 0.00 0.10 0.27 1 3 20 0 0. 45. 0. 8.00 0.013 2 3 263.6 263.6 362.72 869.50 870.59 0.00 72. 0. 3 0.00 0.10 0.05 0 4 30 0 0. 45. 0. 8.00 0.013 4 234.3 234.3 486.79 870.61 872.07 0.00 72. 0. 3 0.00 0.10 0.05 0 5 40 0 0. 45. 0. 8.00 0.013 2 5 206.0 206.0 662.63 872.09 874.08 0.00 66. 0. 3 0.00 0.10 0.05 0 6 50 0 0. 45. 0. 8.00 0.013 6 184.3 184.3 126.32 874.10 874.48 0.00 66. 0. 3 0.00 0.10 0.05 0 7 60 0 0. 45. 0. 8.00 0.013 3. 7 147.7 147.7 418.76 874.51 875.76 0.00 60: 0. 3 0.00 0.10 0.05 0 8 70 0 0. 45. 0. 4.66 0.013 se g 8 141.8 141.8 131.58 875.76 876.16 0.00 60. 0. 3 0.00 0.10 0.05 0 9 80 0 0. 45. 0. 8.00 0.013 9 120.4 120.4 172.60 876.18 876.70 0.00 54. 0. 3 0.00 0.10 0.00 0 10 90 0 0. 45. 0. 4.66 0.013 10 119.7 119.7 118.19 876.70 877.05 0.00 54. 0. 3 0.00 0.10 0.25 0 11 100 0 0. 45. 0. 8.00 0.013 i" 11 106.5 106.5 31.50 877.07 877.17 0.00 48. 0. 3 0.00 0.10 0.00 0 12 110 0 0. 45. 0. 4.66 0.013 12 78.3 78.3 39.00 877.17 877.28 0.00 48. 0. 3 0.00 0.10 0.00 0 13 120 0 0. 0. 0. 4.66 0.013 13 31.5 31.5 6.00 877.28 877.31 0.00 48. 0. 1 0.00 0.10 0.00 0 0 0 0 0. 0. 0. 0.00 0.013 2 20 32.0 27.9 37.96 871.47 872.23 882.60 30. 0. 1 0.00 0.20 0.00 3 0 0 0 0. 0. 0. 4.00 0.013 30 36.2 29.6 41.16 872.34 873.16 885.10 30. 0. 1 0.00 0.20 0.00 4 0 0 0 0. 0. 0. 4.00 0.013 2 40 32.1 28.2 41.16 873.82 874.62 887.00 30. 0. 1 0.00 0.20 0.00 5 0 0 0 0. 0. 0. 4.00 0.013 50 29.3 21.9 41.16 875.58 876.40 886.80 30. 0. 1 0.00 0.20 0.00 6 0 0 0 0. 0. 0. 4.00 0.013 2 60 37.2 36.7 140.66 875.98 885.41 889.91 36. 0. 1 0.00 0.20 0.25 7 0 0 0 0. 0. 0. 4.00 0.013 70 6.4 5.9 6.70 877.51 878.18 884.45 18. 0. 1 0.00 0.20 0.00 8 0 0 0 0. 0. 0. 4.00 0.013 2 80 24.9 21.4 112.87 877.41 886.72 0.00 36. 0. 3 0.00 0.10 0.00 9 81 82 0 0. 68. 0. 4.66 0.013 81 22.3 22.3 235.40 886.82 887.53 892.03 36. 0. 1 0.00 0.20 0.18 0 0 0 0 0. 0. 0. 4.00 0.013 3 82 6.9 2.6 79.02 887.47 888.09 891.09 18. 0. 1 0.00 0.20 0.00 81 0 0 0 0. 0. 0. 4.00 0.013 4 90 1.5 0.7 7.10 879.00 879.71 884.38 18. 0. 1 0.00 0.20 0.00 10 0 0 0 0. 0. 0. 4.00 0.013 3 100 13.2 13.2 7.00 878.30 879.00 886.00 24. 0. 1 0.00 0.20 0.00 11 0 0 0 0. 0. 0. 4.00 0.013 110 28.2 28.2 11.67 877.92 879.09 886.34 30. 0. 1 0.00 0.20 0.00 12 0 0 0 0. 0. 0. 4.00 0.013 1 COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC /RD4412.1 (INPUT) DATE: 11/22/96 PAGE 2 I3JECT: H.G.L. CALC. FOR LINE "A" 767A.DAT DESIGNER: B.P.W. L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N 2 120 41.4 41.4 11.67 877.78 878.95 887.10 36. 0. 1 0.00 0.20 0.00 13 0 0 0 0. 0. 0. 4.00 0.013 A 1 0 COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 11/22/96 PAGE 1 ,aOJECT: H.G.L. CALC. FOR LINE "A" 767A.DAT DESIGNER: B.P.W. NE Q D W DN DC FLOW SF-FULL V 1 V 2 •FL 1 FL 2 NG 1 HG 2 D 1 D 2 TW TW 440 (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 441 HYDRAULIC GRADE LINE CONTROL = 874.15 ' 291.6 78 0 6.50 4.58 PART 0.00309 10.4 10.2 869.05 869.47 874.15 874.69 5.10 5.22 0.00 0.00 *"3 263.6 72 0 6.00 4.45 PART 0.00387 9.7 10.0 869.50 870.59 875.04 875.89 5.54 5.30 0.00 0.00 41 4 234.3 72 0 6.00 4.19 PART 0.00306 8.3 9.6 870.61 872.07 876.52 876.93 5.91 4.86 0.00 0.00 4 "5 206.0 66 0 5.50 4.02 PART 0.00376 8.8 9.1 872.09 874.08 877.32 879.07 5.23 4.99 0.00 0.00 6 184.3 66 0 5.50 3.80 PART 0.00301 7.8 9.4 874.10 874.48 879.57 878.71 5.47 4.23 0.00 0.00 7 147.7 60 0 5.00 3.48 PART 0.00322 7.5 8.5 874.51 875.76 879.48 879.89 4.97 4.13 0.00 0.00 8 141.8 60 0 4.05 3.41 PART 0.00296 7.8 7.9 875.76 876.16 880.13 880.47 4.37 4.31 0.00 0.00 9 120.4 54 0 4.50 3.23 FULL 0.00375 7.6 7.6 876.18 876.70 880.77 881.41 4.59 4.71 0.00 0.00 10 119.7 54 0 4.50 3.22 FULL 0.00370 7.5 7.5 876.70 877.05 881.43 881.87 4.73 4.82 0.00 0.00 f1 106.5 48 0 4.00 3.12 FULL 0.00550 8.5 8.5 877.07 877.17 881.78 881.96 4.71 4.79 0.00 0.00 12 78.3 48 0 4.00 2.67 FULL 0.00297 6.2 6.2 877.17 877.28 882.70 882.82 5.53 5.54 0.00 0.00 f3 31.5 48 0 1.53 1.66 FULL 0.00048 2.5 2.5 877.28 877.31 883.23 883.23 5.95 5.92 883.34 0.00 3 HYDRAULIC GRADE LINE CONTROL = 874.86 !O 32.0 30 0 1.32 1.92 FULL 0.00609 6.5 6.5 871.47 872.23 874.86 875.09 3.39 2.86 875.89 882.60 °'4 HYDRAULIC GRADE LINE CONTROL = 876.21 '10 36.2 30 0 1.43 2.04 FULL 0.00779 7.4 7.4 872.34 873.16 876.21 876.53 3.87 3.37 877.54 885.10 4 ft 45 HYDRAULIC GRADE LINE CONTROL = 877.12 40 32.1 30 0 1.34 1.93 FULL 0.00612 6.5 6.5 873.82 874.62 877.12 877.38 3.30 2.76 878.17 887.00 4 A y 4 COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 11/22/96 PAGE 2 4 mo OJECT: H.G.L. CALC. FOR LINE "A" 767A.DAT DESIGNER: B.P.W. NE C D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW , (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS , HYDRAULIC GRADE LINE CONTROL = 879.32 .w0 29.3 30 0 1.26 1.84 FULL 0.00510 6.0 6.0 875.58 876.40 879.32 879.53 3.74 3.13 880.19 886.80 4 7 HYDRAULIC GRADE LINE CONTROL = 879.09 0 37.2 36 0 0.94 1.98 PART 0.00311 18.8 7.5 875.98 885.41 876.95 887.39 0.97 1.98 888.45 889.91 4 8 HYDRAULIC GRADE LINE CONTROL = 880.01 0 6.4 18 0 0.45 0.98 FULL 0.00371 3.6 3.6 877.51 878.18 880.01 880.04 2.50 1.86 880.28 884.45 4 .9 HYDRAULIC GRADE LINE CONTROL = 880.62 '20 24.9 36 0 0.73 1.60 SEAL 0.00139 3.5 6.5 877.41 886.72 880.62 888.32 3.21 1.60 0.00 0.00 HYD JUMP X = 0.89 X(N) = 0.00 X(J) = 0.89 F(J) = 14.30 D(BJ) = 0.76 D(AJ) = 3.12 81 22.3 36 0 1.69 1.52 PART 0.00112 4.8 5.4 886.82 887.53 888.71 889.22 1.89 1.69 889.77 892.03 1 HYDRAULIC GRADE LINE CONTROL = 888.52 82 6.9 18 0 0.96 1.01 PART 0.00431 5.8 5.4 887.47 888.09 888.43 889.10 0.96 1.01 889.65 891.09 X = 0.00 X(N) = 5.45 40 HYDRAULIC GRADE LINE CONTROL = 881.42 10 1.5 18 0 0.22 0.46 FULL 0.00020 0.8 0.8 879.00 879.71 881.42 881.42 2.42 1.71 881.44 884.38 A 10 HYDRAULIC GRADE LINE CONTROL = 881.83 40 13.2 24 0 0.58 1.30 FULL 0.00340 4.2 4.2 878.30 879.00 881.83 881.85 3.53 2.85 882.18 886.00 4 I COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 4 DATE: 11/22/96 PAGE 3 I )JECT: H.G.L. CALC. FOR LINE "A" 767A.DAT LISIGNER: B.P.W. InE 0 D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW 3 (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 12 HYDRAULIC GRADE LINE CONTROL = 882.33 .p 28.2 30 0 0.79 1.81 FULL 0.00473 5.7 5.7 877.92 879.09 882.33 882.38 4.41 3.29 883.00 886.34 13 HYDRAULIC GRADE LINE CONTROL = 883.02 D 41.4 36 0 0.90 2.10 FULL 0.00385 5.9 5.9 877.78 878.95 883.02 883.07 5.24 4.12 883.71 887.10 A 4 4 4 4 V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) — DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) — DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) 18 SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ 2 UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ 2 DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE aw EOJ 11/22/1996 3:35 4 4 4 V V COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 11/14/96 PAGE 1 04 mi 3JECT: STORM DRAIN JURUPA AVENUE DESIGNER: B.P.W L2 MAX 0 ADJ 0 LENGTH FL 1 FL 2 CTL /TW D W S KJ KE KM LC L1 L3 L4 Al A3 A4 J N 8 1 910.00 2 22.5 22.5 462.60 905.00 908.51 0.00 30. 0. 3 0.00 0.20 0.18 1 3 0 0 90. 0. 0. 7.00 0.013 a 2 3 8.5 8.5 97.00 909.01 909.98 0.00 24. 0. 1 0.00 0.20 0.00 0 0 0 0 0. 0. 0. 3.00 0.013 A 14 4 , COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 11/14/96 PAGE 1 401JECT: STORM DRAIN JURUPA AVENUE DESIGNER: B.P.W NE Q D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW y!0 (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS m1 HYDRAULIC GRADE LINE CONTROL = 910.00 4 2 22.5 30 0 1.44 1.61 FULL 0.00301 4.6 4.6 905.00 908.51 910.00 911.45 5.00 2.94 0.00 0.00 4 3 8.5 24 0 0.85 1.04 FULL 0.00141 2.7 2.7 909.01 909.98 912.33 912.46 3.32 2.48 912.60 0.00 A a A V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER m X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) a SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ a UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ a DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 11/18/1996 22:13 A a 0 a a 5, COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC /RD4412.1 (INPUT) DATE: 11/24/96 PAGE 1 PR OJECT: INTERIM PIPE CALCS FOR MULBERRY AT JURUPA DESIGNER: B.P.N. L2 MAX 0 ADJ 0 LENGTH FL 1 FL 2 CTL /TN D W S KJ KE KM LC 11 L3 L4 Al A3 A4 J 8 1 912.64 42 2 15.1 15.1 539.88 910.64 912.26 0.00 24. 0. 3 0.00 0.20 0.13 1 3 0 0 90. 0. 0. 4.66 0.013 3 20.6 20.6 149.88 912.36 912.81 0.00 30. 0. 3 0.00 0.20 0.00 0 4 0 0 60. 0. 0. 4.00 0.013 412 4 10.9 10.9 45.94 912.91 913.05 0.00 24. 0. 1 0.00 0.20 0.00 0 0 0 0 0. 0. 0. 4.00 0.013 A A A A A w A A A A LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 11/24/96 PAGE 1 PROJECT: INTERIM PIPE CALCS FOR MULBERRY AT JURUPA ,,,DESIGNER: B.P.W. LINE Q D W DN DC FLOW SF -FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CFS) (IN)(IN) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 1 HYDRAULIC GRADE LINE CONTROL = 912.64 A 2 15.1 24 0 2.00 1.40 FULL 0.00445 4.8 4.8 910.64 912.26 912.64 915.05 2.00 2.79 0.00 0.00 3 20.6 30 0 1.89 1.54 FULL 0.00252 4.2 4.2 912.36 912.81 915.61 915.98 3.25 3.17 0.00 0.00 4 10.9 24 0 1.45 1.18 FULL 0.00232 3.5 3.5 912.91 913.05 916.51 916.61 3.60 3.56 916.84 0.00 4 ^u! A A 4 k5 n9 41 V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END 00 X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER mo X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ a UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ B DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE 05 EOJ 11/24/1996 22:52 A A A ^% A A n d S. n \� 0 , 0 , iv/ �� ��1 0 -- r r- I J oL 1-1 r 1 OR 1 APPENDIX A -4 PPR PI • CATCH BASIN CALCULATIONS in 6 ii" i 11 1 Pn i TRACT No. • 7 e f' • g • CIVIL ENGINEERING • LAND SURVEYING survey of I by Jdate Pcsb of I { t CD f d SCALE. F 146 t4 .4 a<... 0,..,,,e..„.. , CQ,..u3-(0. . s 'I M .,, -y d tcx!` to 5 14.—.. c. Vlutt.,-;)u-I, l t , t _ I F .4.1_ TuCupP\ r' 2e A - • II ZA A Rc, vc v � oE4cLo.'G� 17, t;t/E�w��:::� • i w ►►► ut ECM \xIE,-‘. be p►c.0 k .,,) s\'c = 51.b as v Q THE c.oe -A . a-` Su.Q A 4 1.1vlbv..wY ADD pRN v..1 to pRuio`)t ,...- . - - --s 4 'STot�' 1�0.a►►.% M !'laela,.� i r ,N ' t ."; _ _ E k5ki. \ r.. .) \ ?' Fve tAtti.■►.■ t.4)) WE: will r . q, (..r1 ` <If\ 0.J \t.1 S ‘ \AJ` . 1..'r • iZc, s e. it) cle.c,v4 to t}.656 G., kclr.. Pa psv- S (XS w ELL. . cp,-ra 9,A51 aS •...i►ll be. duty. L „R'L-u i -5' ,,$)-5 i clue, 59.3 c.cS - as • $5 9 c. . 16800 Valley View Ave. • La Mirada, CA 90639 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. r • tide/med. es4ieeu t CIVIL ENGINEERING • LAND SURVEYING survey of 1by date ' job no. 'sheet of 1 L *TLN b kzlui toss a-c NddS 31 co too ` 10 CLS t 7 1 6 r . \ ..s.k.a.ezr i l w e s Q s . = - 9$ (5 es c k c . 1 ' c ' ) rr�.n 1 11 (.o) 0,,55uM E " d e zes.sl o 1' qJ = .9% l..= 90/ 'S 91.$ 8 VSE 2 c.u9.1 v 2564 - . • _ .52- Q ? z (go) ire. GcS . IN 1ez.c_ec:3-" , `lO - t(.0 4i.4 6). Q,.c) Y 41.A- E t-� _ - C. 56€ c. i &c )a cetlo-Ola.&\ PkAes ) ram -. 11(.4) QJ . - - E 3. c' _ kt. - X6.1 • �3 lnC- 'LfJ c.0 z-6 a ri k4 2 W5tl r • 4ci Tablc 41(0 Job Op = hpb(.4 = 2� Q rr �lo � = 13.2- cC's . 16800 Valley View Ave. • La Mirada, CA 90639 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. " ei 6/26teet6ty CIVIL ENGINEERING • LAND SURVEYING survey of I by date job no. sheet of (.) qco = = .55 (. 5 6c (4..1\t� tl ,J cotlo.41,4 ,` e. () M TkbtL 1./1(c,) C = , 5 2_ _'> L- = 13 . Z( = 25. c1. 5Z u 16800 Valley View Ave. • La Mirada, CA 90639 • (714) 521-4811 • Fax (714) 521 -4173 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE <<«««««<««««««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» (C) Copyright 1982,1986 Advanced Engineering Software [AES] « « « « « «< « «« « « « « «« « « « » » » » » » » » » » » » » » » » » »» «««« « «« « « «« « «« » » » » » » » » » » » » » » » » » »» Advanced Engineering Software [AES] SERIAL No. I00956 VER. 2.3C RELEASE DATE: 2/20/86 ««««««« ««««« ««« «««<» » » » » »» » » » » » » » » » » »» * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** STREET FLOW DEPTH APPROACHING CATCH BASIN AT NODE 37A * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** `" »>STREETFLOW MODEL INPUT INFORMATION«« • CONSTANT STREET GRADE(FEET /FEET) = .017800 CONSTANT STREET FLOW(CFS) = 90.00 • AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 m CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 40.00 CONSTANT SYMMETRICAL STREET CROSSFALL(DECIMAL) = .025000 .. CONSTANT SYMMETRICAL CURB HEIGTH(FEET) = .67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .16700 • FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS • STREETFLOW MODEL RESULTS: - NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. .. STREET FLOWDEPTH(FEET) = .95 HALFSTREET FLOODWIDTH(FEET) = 31.98 �• AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.94 PRODUCT OF DEPTH &VELOCITY = 6.58 4 d 4 'r HYDRAULIC ELEMENTS - I PROGRAM PACKAGE ««<««<««««««««««««««>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» (C) Copyright 1982,1986 Advanced Engineering Software [AES] 4 4 ««««««« « « «« « « «« « « «« » »» » » » » » » » » » » » » » » »» 4 4 ««««««« « « « « «««« « «« « » » » » » »» » » » » » » » » » » »» Advanced Engineering Software [AES] SERIAL No. I00956 VER. 2.3C RELEASE DATE: 2/20/86 ««««««« ««« ««« « « «« «<» » »» » » » » » » » » »» » » » »» * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A+ STREET FLOW DEPTH APPROACHING CATCH BASIN AT NODE 37B * * * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** , . » >STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) = .017800 CONSTANT STREET FLOW(CFS) = 41.40 "" AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 40.00 CONSTANT SYMMETRICAL STREET CROSSFALL(DECIMAL) = .025000 CONSTANT SYMMETRICAL CURB HEIGTH(FEET) = .67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 4 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS 4 STREETFLOW MODEL RESULTS: Aq NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. a STREET FLOWDEPTH(FEET) = .74 HALFSTREET FLOODWIDTH(FEET) = 23.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.76 PRODUCT OF DEPTH &VELOCITY = 4.26 4 4 4 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE « • « « « « « « « « << < « « « « » » » » » » » » » » » » » » » » » »» (C) Copyright 1982,1986 Advanced Engineering Software [AES] Wi ««««««« «««« « «« ««« « « » » » » » » » » » » » » » » » » » »» ««««««« « «« « ««« « «« « « » » » » » » » » » » » » » » » » » »» Advanced Engineering Software [AES] SERIAL No. I00956 VER. 2.3C RELEASE DATE: 2/20/86 -««««««««««««««««««<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» sx * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** «0 STREET FLOW DEPTH APPROACHING CATCH BASIN AT NODE 37C * * ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - »>STREETFLOW MODEL INPUT INFORMATION «« "' CONSTANT STREET GRADE(FEET /FEET) = .013800 CONSTANT STREET FLOW(CFS) = 13.20 "°' AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 40.00 • CONSTANT SYMMETRICAL STREET CROSSFALL(DECIMAL) = .025000 CONSTANT SYMMETRICAL CURB HEIGTH(FEET) = .67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 • CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = .16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .55 HALFSTREET FLOODWIDTH(FEET) = 15.95 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.93 PRODUCT OF DEPTH &VELOCITY = 2.15 A 'M A A TRACT No. e • & zee' W 'n CIVIL ENGINEERING • LAND SURVEYING survey of 1by ' date 'job no. 'sheet of 4-t F- L ' .1 V St T +kbt: L 1. to c,(5 / 4 - 1 Y �. l 1 r • f ^. Q, = 11 �{�. c6 C. - wi .Z„ LGAL h. .'1 t t-t = . �3 t-V , / ►.n h .�I f rr JSE TAbt� L_ Z. c-t5 /P c,A �r�c 4 � z 3 16800 Valley View Ave. • La Mirada, CA 90639 • (71 521-4811 • Fax (714) 521 -4173 TRACT No. Y&n4 & p i , we 4iflf • CIVIL ENGINEERING • LAND SURVEYING survey of 1date f I by I no. 'sheet of Q►cx, ' 8.5 c. $'' Gutb �au w��.\. 2 L,c-rat_ Otp�S�c� r.1 heici1k oca■■ (ti) = 6.5 = .11 A 90 )!I ( N> C . e t3 4�f = • 83 _ 1.16 r h .ii vyr; T4,1 G L Z.Z cC5 �� - 2 - $'1 F w( 2" (it;,,, _..,� ..v .�ita)J Of - -83 _ \ Mc. h c .Cs / l• c,q\? 14.2 (0.A5 16800 Valley View Ave. • La Mirada, CA 90639 • (714) 521 -4811 • Fax (714) 521 -4173 TRACT No. CIVIL ENGINEERING • LAND SURVEYING survey of 1 by !date !job no. !sheet of Sy”-k? Z'" c...0 w 1 V Local._ 4c 9Zes5ro ' A (C k Io W . k kA) po N/h . a) - , , VSO �A -�Cc. L. C.►aJ pe? ooi- t L 1 C.0 2. U �� N 4.1 16800 Valley View Ave. • La Mirada, CA 90639 • (714) 521-4811 • Fax (714) 521 -4173 Pi 1 1 1 1 1 APPENDIX A-5 p L SUPPORTING FIGURES, 1 TABLES, AND CHARTS 1 1 1 u 1 • s ,'• . r. - - Y -+"� z Y ,•' i . N , i I , I Z J I i ! •. N i� i )..i m» li a c IN- 1 _ -'�. .., 1 \- I -t — ! / 1 \ i ! •r T � t g i~ a i i 1 I IY I , r h - 1.� F� + ! + r — - i - N " a j 1 --- r - - - - I ; �._ �g - - 1 — I - I _ L * 4 u. 1 - � } - I" t , � - - i - 051- •- ,-' - '' -- - - _ ° i ' • - J ! tz. ir i - r 1,/ ~ 1 — , I - * i' k J or 6 - - r a I Y \,:.,...,.. ou- 81 a '1 I t ±t; L-1 _ t - - '. a 3 I I \'q - 1 J li /I I • ill. . , Z W a. 1- - i 1 N 1 0 . 'llii J r.ui" Q : s L.] . 1 d _ 0•,.‘ ....i..., 1 %6-.114 , • A ' \ Ilir:.mrp _ : ._:::! YAM D -I i ll l i a (P: ; ''_: 1 2 1 ' ( t r ': 1 10 r , 1 0 < u_ ir L :l ir . its. , 1 ...T fi, .. i,• . ir _ . - 2 T 7 1 - . T - lii ,, Nos ,2,, ,!. , i, _ _ 111 Ear ® 5 I 1 : ; . , ,, 4 - ; : i i ; i tX , , . _ L , Y- -� X - . w+ ,c�`� +1 ,� i` "C1,F . i I� V i. o • : N _� _ N _ I I I� b rN, �) o d ..r s _ O . . 4 T - 1 ,..., , „ - w Q . v - 1 = i , � , I . i® >- I ' d ® ili�tr rt -I $ - ' 4 fr :r!! p cr 0 t - I � 0 O b _ __,..„ . „T....3. ib ,.— 2 \;_ .,.90 • -:ii -_ )- ifi _ , _,_:_ f a 0 - i __ __ _ ., A _ \___T _, , , , 4 , 1 4 'IL? , , ,. '.. i 1 AI . irAmmenititi, . „.0 ...J.---_,,:;:'" %.' < >- I H 1 1 - ' ' ?" 1 i ! 1 ;Am- . IL ,.... i 1140 „ 6 .4 , 1 ,- - _ 1 „ , ;iii rioir4 N., N, ' f i it 7 - ti \-- 1 Ji - =f ' Nic _. r � ' � 7 I r r7' Vim 611114444kr 1 1 r. , - , ' A, , - 1 - - 7 ilL, SALMI I - I /� ��� ., 'i .. i- N t 1111kitt'Aro, h 111 11Pirrillif Awirgiftv 1 i 9 I ilikiiir - --! ,, 1 7 - -, * ,,,_, , NM A 3. _ }. a.� A ; l '' w n ,,q� F es , ; ' " +: i, .�; I _ III • ) ■' � .� ii t �•` a E y a (I r r 1 rD to y L + ) 7 - 1 —■..M11r1rWa'Zre,ICVIPrgkldkig: I" I I : 1. - 4111111 t Olti ilope,.., „,„ . - i r 1 - r _ imempismarw - •t'---!.-!,- • _.. , 1 1 _ r 1:: -.......... . _ 1 4 "" H 7 11 • , 11 • . ,, si i - _dd.. ce /fir 1 1 114- ....., w. I . _ T __ 1 e . —I _ — °- Ile « I ' 7 -- o y , f , - .___ • i t , , ss■ •,, • i L 2 1 N j N I , it T i - I-- -I- - -t- - " - i - (1 f - 1 1 .. /. - 1-- t- ! -- T- 1- I - i-- a I I I- •I H 4 + + H ; - f • In 0 f : ~' _ ti `` `; w : .,. i ; ` .: .Ii :'�r g` b' - lam' /� ILJ IX W . "il .. r .y 16i 4 sr r, W + i 0. - -0 - • r' /i' . , .. . i ^' •..,. ` , 4.. ` .. CC CD '`: � I ; ( t • � � - .r, . • _ I ,' , i6. kt. . icy 1 ! j �J W •r - e. 1. .7,,A phi ' ------ %, rte`, :, , r • . l.: " r "- }:; i / .. . a" -1,1 is - O X'' ' fi J •11,,- III 0 cn • CC t �"` • t 1' L% r, u , t of =r,. >— CI ' fi "J.. '- / ..... ' � • f l s:h'.' / I.. . CO NI S - ...`'i.r Y . , I . a - Y: -,,.1 � TJ - , , ` i * r e � e r .. e - -s..r r r r F! 1, V ' - _ -- �, i1 Vi .i''!' �r . 1' , . -J s ∎ ra, ,� :� "� = - -. T - �. -. , �s;,;,,, _ ' G ree.:;�. . : T, . .`'ss ow .rtiTrt.�",. _ —a- r Y • 't ". t ' . i %4�r►• i ., >> \ ;l.�q d�� �.' t.. S1G���;z N t �, t., ' mss Mj xS � ', .:a' '>.: �. i 1 — --i■ ). y. .. _� J y n-r . - „'".e 14\•. !J e, P � ' � , 1 . J`.i . -p i ,, >.' - a + y 1 \ A, G r v'. J ;`•1' } } P ',. p �., t F J” ^ti. 4S . Jt ``i 'r, .dG _ . Wit{ . , S "" . I ._ + t4 m:.nv . gn " , / %' "`v.t\' \:: is � jt .� „ •. i ��, 4., tr: . � < i - .K•.'. . '\'C' i . \ ,N r '• ;�. � : t - 1 ” '/, 'Y y /,' h� 4r , 1 . r''.' T � (` �_ I'• J. - FYI 1� - ,:•. --t<i � ii, ` tl f l \ Y� .I yl t P '' It "e - = .J l . i jF" SJ< �. ���. �; 1 M • / e. ( (i , r -. ,2. .. .• - ry ' ' , �)G �� . p ., E .... •t J v . 'r r in j --- I = -� [ ,� .: _ ",';',"?‘"#) ue: a, *'' ` :: N 4 - 4_ ; ,; ' .4, .� ate . : - 1 ti ; _ ' • I I • 1 , . ' •r1a`.: Le _ . :ki . vimY - .12L::�1..✓K (' - ..�,'.. _ t t i,+. - � • l: a: , J' Y - I:I . �[ T ; ` t fi i'i , � ' ..< ", , ,, Afr . � . ' F � ` 1 .> ,. ,.;, ', +;•. 'a , .. ti_j ' , .., r- - . I R l i: � r' ; `"i � r '` . _ _ bF.F ,. , ti >�,, I;,r:,� ' F ;, %.,� R _ F : V \ 1 .P - ` �,.- -rs•; � " + ti.. .— ","1 '�jyr ",'S .. ,-,-,-,,,, •• •..�. ' - CI r, 3 / ' 1 . [ ' r _ -o ; }•'•. .._ I 4 p .+.. K ; ' - r'; %': .J F. "`'w �I .. _ _ t� t 3_ —7 i t . J ... . --,, - yfi^T'••.N^ fir-.• - - } -Nn"• -J , "1',i t fi - �' 1:7 % * ti F' 4 ., ..` .- i . • , t - g U X;:r - d ' .'' It :: ,.. T ,•.: , ..1 , i �.: •._ . 'g_ ' . - � . \'''',-..';'''' " % W a ( \ / 1 • `..1; (' / I v -` i �" T! � r t N r« •••;.1::. 'ir ,yj vk'4 a i "'� I 1' . F Y M` : J - � • ... r `, w_ f �. - •`•'v;T;. ,c. r f. i 11 ' ' Y . T 9 ! fi r : ._ .`� / « l ' • �, � i'' 'I _li .. �• .a' : . ;S'.': ' \:.,: ,,, " 1 ' 1 2 .i t W • 1 ' 1 • t ' _a.' - ``` 't. ,•e 4�. ; - __ F�-..: a .. - r:r �r a . t rl q� i " ei:: � • *.ii • C R:, ) f • � : ! �I I U I Ifs - � , , ' r , , y �. . �L4 � � / � ) - t'-�i, `7 . � ' � - ` : \ + , + 1 - ' J : ` ., f I' .V }J t; , � — R = ; : ` , I j ... X •' •., £ �� ,,, 'v � J,. "..o.,-3 ,,,, - 'r• } ` f `- is — }', -. :,_,. , , ;,� i, ; a V) 1 . c i' ' +} ! 1 t r tf f '_- # d , \ !!"r� • y i .i *'w i1 C� 1 i ' 'I I - T .n..`, f"°S 7 ' •.,:,, • ii fl(fMFL III , - a. /.I' - _ /' ` -- \. - g \ i .' .� '. ; ; ;!€,yt`J . 't:`,, * - `r"", / : . y ,,�• a• 1 • , , � , _ `err.' I 1�,, ! -' 4'^ " %. . - .... _ 'a ' � •"! � r � . f'�• ' µ r , , ! �I 1 o ° • �b - ••• - • - u { � � � i1 • ' d' •'� 1 II ,(.� • � 'A - ' r : ,'' - .. _ � a~r" • , t i S; r > ,. w • V i ` -'- ` • \ "' ,r,-'< �r F•+ r - - `l -- u" r,,:- ' J -' / " 6): : - - - + \ / ! ; � x\ " Y i'dr • , 1 'V' :. i z a • s ir1.1, i r I y� ; ' - 9 � i + 3 1 r y a i � ,7 -: . F ' w ter.. m a • ' I : `\ / 1 I {f i . m ° , 'I' I F,, •'r 1 • h L: I f : - -- '> - - •� - __. :.•' - .1 = / s,,. • �,.� ' ^ . ?� <,•/ - "..,!=i':•':./ . , 7 • , t a R p Ir:'" r, . U IS • } f �•• - -Y - __ '3Y^ ..1 e ,a ` . k i i; u 'i • . -= .% /` -:I' • .. I I f i • 'v.' ` t � � y i ' , . k . 1 ( E ',Lf -) a i'''' ; 1. j ti. .sa` ! �' ,--1- �i � � > \I( • � i / ' I ... V • I . .� t • ..- - '? - 'i1y ,t' �' $ ...� '- .. •• ` 1 � .1 4 ' i' -- \ I . ;`. • • y ' f„ Y '� : ? i . i r l ` J ` 'y .° I i ? L • ' I r d I` I - i . :I ` Fi .:1L _� r . •' r ' S• mss ° I • ! 1 1 .' Y� a ( - j , T 1n.. \ . Ie l u 1 '1111, - -1 „ ; `. y _ :�. '” , I',..-4=--- T ";'•4," e _, I / . , ° �'' : ,e,,,,-,` ; s r i'-. 1 I j1 /_ -� ,....11111,11,.• b -- l _ , - � .4.,,,-',„ . ` ✓ j i r } r� '.`i 't .6, J`\[4 '' " :t i� ' (�1 y 1 Y ; ' l{ � i 'YYY TTT ��, i 0--- `at J i , Q . l ti, .. , i3 . . r` R • Yf � =I-i_ .' - ( II t� -r ( r ;m rT : ` t [fI . �, ; t"�\ ' a 1 , S t . R1 • !)r ■ iu1�1 t 1 � � l tIt11 J � 5 � F M �. ! I r i . w 'j.3 , ` w`: r j t I ) 1 4 f• ', { 9 - ..... 1 ' de's \fi ` ' k � � 1 C " f.• ∎ :1e �\ ; =, _-•ice ,_�s ' / -•: -- - -_' '! - - - -_i< '‘...-"r:';"' i ar.,p a "u.� C YY11', '' ■rl ll . , i�s1 1 1 i f \r s ' - r. j 1Y r ' 1 + -1 r i , / J - + ♦ r r : r p c•' > " , � - ' ir 'i ; :. ^'" ,r \ •RU , 1 r .4 • I - id, ' 'sue In , - 5 ,�, � 1 � 1 ' tri. , p I .r GIIII X11 f Ifl D , ∎.:- , t rl, G N a 1111111IIJI ( [ ` `,'" o . ' ,'_,. t a /' ! . - r w ^ 'rs / 1 / & `�' ah 0 " '1 1 1 . ' J. k .i ' i „■If • W • — , l ' .I -� i s r a yl � �v' ,:•.; . ..% \ 1 0 • 4 ' 7 r� it ."0, IJ ;' � i E r ' 4, : It �l I I - - ---•-•-•,,,,,,,,..:,•• CO I kria , c ' ',',4".- ` s •* •. t. / • -r "' ', 1I it W : •I ., i ' , ,, h, .7 Q . , ,, 7 , N t a te ' ?., t- - „ ,� [ , ^ = ll A• • ! ) „ I L ��%11►'.�►' 1 . / .. , ,'y f Y`i 1 y . I i., -• ” ►. .� r, '; ,• Y • 7 •7 .1."' r [ % u I f -.. _ .' 1 ' , f . - ' , r p. � m9Rr Ii 1. ' : ?, l I , i 9 r , i,c ' f F 1 4 � O n •1 1 , 3 r .��'�M ■ = " JO B �� ■ �� � � .•�ll'li ), „ w . Y d. ,',..-_,.••-,... .. .. v ' i l Y ,, I , ' 7 , �. „.. � 4 r ri: t l f I R • 1 �. /1 + . i ...Ili! 1f , - �', I ) / . � . " yyi li r 4'.' •i-fE -' ry 'r'•h i V a I U Z �_ 1 1 _ ■: dl f . �. nP.j 1 I i U �' ua < � / ' ';'•. ,, .. } • ,: �^ . ,p(; Z • •! ;i !! iwin 4�ii:n.•i .! I '_' - i �'' +, ',' ; . :iy •• ` � 1 L f e #+ f r - - ' � ,r " / 1 o „ � , ! ,--t;- V • 1 ►1 . ! i - 11. ' �.dllll � � ,, = r; , 1 (. ,. ; 1 l•r. ':,'.‘"';',,,,,'‘"f, �� "/ , , ,,q 1' /r' • _. j� l .7 ' 1,./ J' __1■S11 r I ' r : >. ' • f : •� ' %y...p , ,1^ "y c i , ' ? 4i '. . , 1; tl 1r • • .: ' ' F'. _ ' _ . 'b;, , � Y J,y -. 1 T , v` . •,/ ..4 . ;; q ., r t . ;FY , r .� 1 . '\_ I. . E I ! • + < \ ...•. \ J +' -t r. Ix ` / ° tU rY - 1k11,,,......',,,, v :.� r t " _ i ' " , \ I i : '. ., 3 .l ` f, r ' f r a • 1 `` ed. 1 .! �_. I� , 1 14 ' •,� .r ` ` � 1 ; 1 fti .. !Vj a ' _ f ,‘,04n' ,�g�4 y+.•7. , • -� L�' 1F..� c � , `��1r 'R ` . . � - �:,I tj �. i.. : �'V - F i O11,o • r, l• t `"i e+ �' _ ''S. i P � • ' {';2� � 1 . n • . .I _ ■ , . : -c , i.:. '. 1 a err- _ - `, ' • -' I +2+. - ',--,- 44 "' ' ,1 .. er , r r h .ft ,_ 1- / r :.'.. f �' i « " i "� • .e I .4; ,,,,V.7. S t � ; - �, ' st • ±.f• r_4 „yZ ` • 1r ' � . =• V r ,.-'. _•\ f(< -:!: ,,y .' '1. !' , a c a '_• J t IA' _ , .... 1.. 1 R ' -. •' F. :4 �- � u d; - ,^• ” 1� • `'� t � r \ � ` t „ 1 t YF V, _ -_ ' i-` ' �`m.' b �`,i `. - ` .y 1 � _mot , :t;t , '- ! : n . � , r • ` rte �* _- f — t , J m u I , � ' ' r :' �` S f C l ,,. r . =I. le�' �� 3 1 �� I , k J - � ` � S ' +i r A �1�. �3Y,�,, - 'r-y1.. A ta 1 1 r,!lrs: r, _ . �,�J r ' , S �Vf' � • � - � - � � 2 .. ' i Y ` . . ` "' r � ; ;,, {.:, . 1111 .7� � . .0 1 F �t ,." � 5 S , r ' F > i1' y' 1 •smalls J , to , e 1 7, 1 - r � m, m i f+ 4 l!GIIIII !'� 1 1 ;e '), "4 ' '4,., ' t rt , {s r ■ ' i.ilur 1 � N ! Y d ,),.'il 3 ., •.�' - „ ' '�., - ' �`5 a fi t' i7 . ■11 .1 Y� � �. C" 1111 4 , r ,• ' ' e . ! . :'by' ° u b. ^ '' ro' : •,,;,, / : I4 '' ":::44, :( •. ..7w ■ 6'" ° � `. : .tK' , , �� .ti. M • 1:11 ,■'■ 11 11I�L . r � } _ 'A. k l ! �' i,: -n3•4.?4r., ` \ tY .11�;,' `' " , :,,, `` x � I:YI �' 1 , S � L' -3,� ` ' I. , .i c . < „ ., . r '� . - ,.., f ` r' > '� :r { r, , , - a _ - - `,r - : " �;.-: t . •- = ; , �� : Y- + - ' .i . • i i .: :,. ,4=,1 • *•. ' f',11 �b :'/ f - =a ' t,�:7 ? �.: � �` � _ � ,/° . � _ " .`ti � %� �,�• : '3 ^: t .: '�,� . i �i t _ J i r - >,' .. ! . !c • �' " /•."�, 'A t ✓ Y� Y . 'R ..•q :^ a O I t \ ik ..! ■ ■e r ' . ,-,..,....z:..,..,..\;‘,-,,, •, „F,',.:: r .-._%-, ,. c� '., .�t . �_, . ".,-;.,0,?,,.:”, i .T � %1 . i .,- r ir 41 ! , { - - 'r .:. , -_ . .e f •1 .. ' k7 I \ j , `{. ¢� j ,;,,' r 111�} 11�L - ', %4 ■ ,,,► � `t' 1Ib11! •�. R R i� �= i a ' 1 U: ., . , {" i , ' ''1 '••'? -'J 7' : - ., 1. � --.; 3 , 4 ..,!. �'N _ 111111 6 y n . , / . T _ l GI c ^ C ? , ,I'. i 1 O , a ~ • r ep "` 1 ' t^..: _ ii1�. ( V 1 ' r1 I. 31 f i ; " ' ' r . •, l 1=-41 „ ' 1` 7 .. ; r = <I f - - -., ` • .. s t z J'>'''. )y J �-• _' I �i� .r_ ± �..' :_ '•,•. � iTt' t� . , � `' :s . }i11 . III a % /'. ' i 1! . �:` ',, ,'1. L t:f -'E�ii "" •'i , _ .,iitA1 ' J '+ . � +Q p y. J }y ' !� F '. -s - e,3 - r --„'4, '., i � . y - k. 5 Z N` , ' 1 f. i . ,; . , � c < _ , '' r i .T' r 7..44 - . . - ", J ...I ∎ , , : �. ".i jl - :'I : Y 1 , { 1 , /y l /1� : {.. - ' : `' - ,ay P ,. ` ..e ,,, ...IV ' ° t: , '�'., y +I {ice rffR�tt 'r; r, o• ' • : , , `;`� . P � `' i c Q G I •.v�� _ : . /• - n ? — , " ;-...: �I`a' 1. , r4J'i "l.•.' jr -J ,'.L 1. ", t ..J ( '� :k' I ' r �`.. 'llrr.l � }.. � V " / -;: 7 ' , ' C' Y2{ i, •!' ,wq , 1)1,","1,:. •. L� ,. - � "' Z Y4 /` , ,...1.: , ,, , ',';:;7-','; '` r 1 \ r ;'' ' '. I - • - '. - ..'.'2 1 ...-.-: " � ' / r ` � i I N. +` , -; ; : j k. < '�. r :�. ‘1,,,i 4'ti -:: FL . 1 .. ' c, • ,F:: - ��,',P'-'0,''.f• , _ . Q �' y ' I 1/0,-,-',..-''''P. '"" ' .1 . � Cr 0 . ` ii : ,F / �dri "> <,'.'�:L•s ;v..�:,n - !',x ® _ p. n . " :Z` - � •�:;i.. . 7., _..7� !' _ " ?a - 6 I- :..tk .sn4 -- ' ( +, ;•1.\._ts=K: -I "1 -- .1 (ic_'j_ -'' -, O eirk 7�3.� / , r ` ��I , �� .�iry . : {. ' 7 j'. f -- .. �:`' - r�. - (rir° - ` : Y '`t c _ + °' _ : t1l'Iw, . 1 . - ;.'f.. `•:- , +;' , ' ,i- r ;a -* . 'S '. %` ?r;� �.. , 1 • - (' } e3.�;� ...i:.ie` J ''I• �a�as:M ' ` 1 .1 Y. ?lr.,l. -. t. O F F . I.. ;�,:� • . .C 7 , - m .,l . a .�,.�r _ , i'.? "y . ' %a ` �_ ,\ ` it' i 1 � !�.l' ; ' \'� ' j t. w.uC:L -. f� r � _ ` � 1: � . ! - ^ . J ^'S�'+ f Y , .. - ' .. _ . !.l �j : I�� i ,•" O ,, " 1, `•v . r,. ` „'' . , ..J� _ _ \ l t :± - •v ..,., ��.: --ri ',� ' 11 � . ; 4 cis '` i 'y - %\ .ti[ .-s% t: \ )'',.,,,z;.11 z_ r r 7; ' ,” • .f. `` • z ` : -`'J� k ''�✓ I. ?, } 1 , w �, � .y � ` , , F ( ' I ' a r a y ,. _ 1 ' _ , - • -5' ,1 7 r ' !, '` ` + ' } -k'l t t -, ?` .s... 3 t1 ° • - - ;i',- ,. -. isJ `. ,.. ; r' . :). ;,:!`- 7:,, - : !' •'i. - \.7. - - 3l.. y �•� 1 a k'"� (f) _ 1 OR 1 1 APPENDIX A-6 Pis P" HYDROLOGY MAP r 1 1 1 1 6 P • i I 41 MED I JO / � Mr -, -- // . -. �i -C 8 - _ i - JO 6 — - 1 - -2 -1-9 9 4— - 7--C 3— _ y - , -- 8 .. .6-.4-- 7.5 2 .-.,- 1 7 -. - - . s' -6.5 .' .0 ' - /.0 • .,. - /.O c l f 1 . - � , 5 _, 6 - - - .9 g �p. ---5.5 , - a !!- -' 1 0, - . . -,_ k -6 ...._:„,' Ii ill r-5 y ,- .7 - V 4-. i 4 - - . - o _r i -� Q, - r 4 •-3.5 � ■ 1 - .4 `0 r . o •J oo ik _ p, - /� r 08 Q .25 \ q - o .06 - l., _ 3 o - o o I. -`.2.5 N ti o4 - 0 25 ra .2- r 1 . _ -. -�.. , 1. ' - •� .02 - o -- .2 a . 1 -2 Q _,• o ./5 . O / - gti .15 .- r /it • tri . -/ S - _L — .h Curb . A T • Loco/ Depression (a) , _,.2 . _ TABLE L 30- Bureau :,f P /4.C:c oes /c •cpr?oh for cooflc.• /y cf curb • aw.. ,o., Two i.csh . 0 C ocef7,t7g ii' /e /s a/ /ow ,cc' ::`s 3"- . . . . DEPTH OF FLOW -y -FEET . : .01 .0 il .03 .04 .05 .06 .08 .10 .2 .34 .5 .6 .0 101 - i -7 - -1 - i I - - -- '/ .8 '• / - • ( a) DISCHARGE PER FOOT OF - } �_ _ ; I r _ .6 __-- -T LENGTH OF CURB OPENING - - -�' - .. _ � ' - -1 - - f -' ; - 5 - I - INLETS 1 S t- HEN INTERCEPTING _ - I - � i . / / 4 - 4 - 100 % OF GUTTER FLOW -}- -.- - I- -1.• /74 i- T --- t -- - - 1 .3 . . : :- i : : _ i_ 4.......t. - H1 T 1 �� 1 j -T-+ il 0. I 144, .1_ : /°/ I I:, i ' . - p , - i�5r ! _ �� to 11111•11M111111111111111111 . 1 :c -' / ° / ' ' . � N■■�11�■ .o8 i 1 I ti ° ■11�■■■�1 . .05 _ . T / - E - 1 - f - • I ! 1 1 1 I / /1 / 1 1 � ! .04 . . - 1 -- -7.- 1 - r j f 4■Ehmrannil l• - r / / 1 . ..•.. s H ' ' • - /,X ./t _ 1 i 1 1 1 I .I 1 I 1 .01, . , .. ,_110r .. .:.: - (b) -. -r 1 ' - C-- - - _ � � �• 16 5 5 , • . PARTIAL INTER.- tH 1 -' ;"...•- 1 I 1 • • CEPTION RATIO. - fi 1 - ° 1 -- ; ; 'T ! 1-- -- FOR INLETS OF � Li -; ;P7! - I 1 LENGTH LESS ! i 1 , 1 /,o/ 1 ;t ! . THAN L • •.1 �- / ; I 2 • 1 ''! /� -- I I 1 • . • �.. ti - i- ( • ! /.� 'I i 1 1 • - ., /A I .1J 1 I "" - .05 .06 .08 .10 .2 .3 4 S .6 .e LO - • • • 1 -9/1 : TABLE M • .. BUREAU OF PUBLIC ROADS • CAPACITY OF CURB OPENING INLETS - DIVISION TWO • WASH., 0. C. -34- • ON CONTINUOUS GRADE dr EFFECTIVE AREA(ACRES) = 7.45 AVERAGED Fm(INCH /HR) = .723 TOTAL AREA(ACRES) = 7.45 PEAK FLOW RATE(CFS) • = 9.82 END OF SUBAREA STREETFLOW HYDRAULICS: 4 DEPTH(FEET) = .47 HALFSTREET FLOODWIDTH(FEET) = 15.41 FLOW VELOCITY(FEET /SEC.) = 3.83 DEPTH *VELOCITY.= 1.79 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 8 ,,, » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.187 SOIL CLASSIFICATION IS "A" .r NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = 2.26 SUBAREA RUNOFF(CFS) = 2.78 ,. EFFECTIVE AREA(ACRES) = 9.71 AVERAGED Fm(INCH /HR) = .746 40 TOTAL AREA(ACRES) = 9.71 PEAK FLOW RATE(CFS) = 12.60 • TC(MIN) = 25.20 -• --- **************************************************************************** "°" FLOW PROCESS FROM NODE 10.00 TO NODE 14.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « « < - UPSTREAM ELEVATION = 920.50 DOWNSTREAM ELEVATION = 912.60 STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 13.06 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 16.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.70 PRODUCT OF DEPTH &VELOCITY = 2.26 STREETFLOW TRAVELTIME(MIN) = 1.06 TC(MIN) = 26.27 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.134 SOIL CLASSIFICATION IS "A" :ar COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .92 •. EFFECTIVE AREA(ACRES) = 10.21 AVERAGED Fm(INCH /HR) = .714 m TOTAL AREA(ACRES) = 10.21 PEAK FLOW RATE(CFS) = 13.05 END OF SUBAREA STREETFLOW HYDRAULICS: " DEPTH(FEET) = .48 HALFSTREET FLOODWIDTH(FEET) = 16.09 FLOW VELOCITY(FEET /SEC.) = 4.69 DEPTH *VELOCITY = 2.25 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 10.00 TO NODE 14.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 4 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.134 SOIL CLASSIFICATION IS "A" 4 NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = 1.01 " EFFECTIVE AREA(ACRES) = 11.06 AVERAGED Fm(INCH/HR) = .722 TOTAL AREA(ACRES) = 11.06 PEAK FLOW RATE(CFS) = 14.05 TC(MIN) = 26.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 26.27 RAINFALL INTENSITY (INCH. /HOUR) = 2.13 • EFFECTIVE STREAM AREA(ACRES) = 11.06 TOTAL STREAM AREA(ACRES) = 11.06 " PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.05 **************************************************************************** m FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 2 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 • INITIAL SUBAREA FLOW - LENGTH = 460.00 UPSTREAM ELEVATION = 941.70 ,. DOWNSTREAM ELEVATION = 935.80 ELEVATION DIFFERENCE = 5.90 • TC = .706 *[( 460.00 ** 3.00)/( 5.90)] ** .20 = 19.601 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.544 • SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 " SUBAREA RUNOFF(CFS) = 3.57 TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) = 3.57 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 5 • » » >COMPUTE TRAPEZOIDAL- CHANNEL FLOW « « < » »>TRAVELTIME THRU SUBAREA « « < UPSTREAM NODE ELEVATION = 935.80 4 DOWNSTREAM NODE ELEVATION = 930.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 330.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 "' CHANNEL FLOW THRU SUBAREA(CFS) = 3.57 FLOW VELOCITY(FEET /SEC) = 2.34 FLOW DEPTH(FEET) = .39 "" TRAVEL TIME(MIN.) = 2.35 TC(MIN.) = 21.95 a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.376 " SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 ` SUBAREA AREA(ACRES) = 2.91 SUBAREA RUNOFF(CFS) = 4.08 EFFECTIVE AREA(ACRES) = 5.21 # AVERAGED Fm(INCH /HR) = .820 TOTAL AREA(ACRES) = 5.21 ' PEAK FLOW RATE(CFS) = 7.30 TC(MIN) = 21.95 °"********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 5 4 » »>COMPUTE TRAPEZOIDAL- CHANNEL FLOW««< » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 930.40 " DOWNSTREAM NODE ELEVATION = 924.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 340.00 .. CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 A CHANNEL FLOW THRU SUBAREA(CFS) = 7.30 FLOW VELOCITY(FEET /SEC) = 2.75 FLOW DEPTH(FEET) = .52 ". TRAVEL TIME(MIN.) = 2.06--- TO(MIN.) = 24.02 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '" FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.252 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 4.25 EFFECTIVE AREA(ACRES) = 8.51 . AVERAGED Fm(INCH/HR) = .820 TOTAL AREA(ACRES) = 8.51 °... PEAK FLOW RATE(CFS) = 10.97 TC(MIN) = 24.02 .********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 5 A » » >COMPUTE TRAPEZOIDAL- CHANNEL FLOW « «< • » » >TRAVELTIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION = 924.80 DOWNSTREAM NODE ELEVATION = 916.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 • CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 A CHANNEL FLOW THRU SUBAREA(CFS) = 10.97 FLOW VELOCITY(FEET /SEC) = 3.28 FLOW DEPTH(FEET) = .58 " TRAVEL TIME(MIN.) = 2.03 TC(MIN.) = 26.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.145 ,. SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 4 * SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.84 EFFECTIVE AREA(ACRES) = 9.51 m AVERAGED Fm(INCH/HR) = .744 TOTAL AREA(ACRES) = 9.51 .1 PEAK FLOW RATE(CFS) = 11.99 TC(MIN) = 26.05 , 4*** *44** *44 *4* 4444** *44 *44* *4444 *44* *4444**** 4444** * * * * * * * * * * ** **44444*** *44 FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.145 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = 3.81 SUBAREA RUNOFF(CFS) = 4.54 . EFFECTIVE AREA(ACRES) = 13.32 AVERAGED Fm(INCH /HR) = .766 TOTAL AREA(ACRES) = 13.32 PEAK FLOW RATE(CFS) = 16.53 TC(MIN) = 26.05 ************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4444 * * * * * * * * * * * * * * * * * * * * * * * * * ** 4111 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: m TIME OF CONCENTRATION(MINUTES) = 26.05 RAINFALL INTENSITY (INCH. /HOUR) = 2.14 EFFECTIVE STREAM AREA(ACRES) = 13.32 TOTAL STREAM AREA(ACRES) = 13.32 • PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.53 CONFLUENCE INFORMATION: • STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 14.05 26.27 2.134 .72 11.06 • 2 16.53 26.05 2.145 .77 13.32 " RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 30.46 24.38 2 30.57 24.29 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ,■ PEAK FLOW RATE(CFS) = 30.57 TIME(MINUTES) = 26.050 EFFECTIVE AREA(ACRES) = 24.29 41 TOTAL AREA(ACRES) = 24.38 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 24.38 " EFFECTIVE AREA(ACRES) = 24.29 PEAK FLOW RATE(CFS) = 30.57 " END OF RATIONAL METHOD ANALYSIS ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 19RF SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,86,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 Especially prepared for: * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * 100 -YEAR HYDROLOGY * * FOR WEST SIDE OF MULBERRY AVE. * DOES NOT INCLUDE FLOWS FROM NORTHEAST OF JURUPA AND MULBERRY ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** . FILE NAME: \767 \767I.DAT TIME/DATE OF STUDY: 22:28 11/12/1996 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 - SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 e *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 18.00 IS CODE = 2 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 660.10 UPSTREAM ELEVATION = 936.81 - DOWNSTREAM ELEVATION = 926.05 • ELEVATION DIFFERENCE = 10.76 TC = .304 *[( 660.10 ** 3.00)/( 10.76)] ** .20 = 9.296 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.980 SOIL CLASSIFICATION IS "A" 4 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 4.51 TOTAL AREA(ACRES) = 1.29 PEAK FLOW RATE(CFS) = 4.51 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 6 » »>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< UPSTREAM ELEVATION = 926.05 DOWNSTREAM ELEVATION = 916.38 . STREET LENGTH(FEET) = 593.40 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 • INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.24 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 12.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.33 PRODUCT OF DEPTH &VELOCITY = 1.39 STREETFLOW TRAVELTIME(MIN) = 2.97 TC(MIN) = 12.27 w 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.370 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 3.45 EFFECTIVE AREA(ACRES) = 2.46 AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) = 7.25 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.58 FLOW VELOCITY(FEET /SEC.) = 3.56 DEPTH *VELOCITY = 1.53 ' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 26.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< » »> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.7 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 4.4 UPSTREAM NODE ELEVATION = 911.58 . DOWNSTREAM NODE ELEVATION = 911.28 FLOWLENGTH(FEET) = 75.00 MANNINGS N = .013 . ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 7.25 • TRAVEL TIME(MIN.) = .29 TC(MIN.) = 12.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 12.55 RAINFALL INTENSITY (INCH. /HOUR) = 3.32 ,., EFFECTIVE STREAM AREA(ACRES) = 2.46 TOTAL STREAM AREA(ACRES) = 2.46 i PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * FLOW PROCESS FROM NODE 22.00 TO NODE 24.00 IS CODE = 2 4 " » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 « INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 922.17 * DOWNSTREAM ELEVATION = 915.91 ELEVATION DIFFERENCE = 6.26 " TC = .304 *[( 1000.00 ** 3.00)/( 6.26)] ** .20 = 13.291 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.211 *" SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 6.17 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 6.17 m ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 24.00 TO NODE 26.00 IS CODE = 3 » » > COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< • » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« « < ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.1 • UPSTREAM NODE ELEVATION = 911.91 DOWNSTREAM NODE ELEVATION = 911.28 • FLOWLENGTH(FEET) = 40.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 6.17 TRAVEL TIME(MIN.) = .09 TC(MIN.) = 13.39 • ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1 ,.w » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: • TIME OF CONCENTRATION(MINUTES) = 13.39 RAINFALL INTENSITY (INCH. /HOUR) = 3.20 . EFFECTIVE STREAM AREA(ACRES) = 2.20 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.17 N CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE °" NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 7.25 12.55 3.323 .10 2.46 2 6.17 13.39 3.198 .10 2.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 13.26 4.52 2 13.13 4.66 m COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.26 TIME(MINUTES) = 12.554 • EFFECTIVE AREA(ACRES) = 4.52 TOTAL AREA(ACRES) = 4.66 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 26.00 TO NODE 36.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.2 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 4.9 UPSTREAM NODE ELEVATION = 911.28 'w DOWNSTREAM NODE ELEVATION = 908.72 FLOWLENGTH(FEET) = 640.00 MANNINGS N = .013 • ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 13.26 4 TRAVEL TIME(MIN.) = 2.17 TC(MIN.) = 14.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 • » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 14.72 RAINFALL INTENSITY (INCH. /HOUR) = 3.02 :rr EFFECTIVE STREAM AREA(ACRES) = 4.52 TOTAL STREAM AREA(ACRES) = 4.66 ... PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -, FLOW PROCESS FROM NODE 28. 00 TO NODE 30.00 IS CODE = 2 • » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< - DEVELOPMENT IS COMMERCIAL • TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 922.17 DOWNSTREAM ELEVATION = 915.91 ELEVATION DIFFERENCE = 6.26 • TC = .304 *[( 1000.00 ** 3.00)/( 6.26)] ** .20 = 13.291 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.211 • SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 - SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 4.20 _********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 36.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< UPSTREAM ELEVATION = 915.91 DOWNSTREAM ELEVATION = 908.66 v. STREET LENGTH(FEET) = 625.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 • DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.53 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .42 HALFSTREET FLOODWIDTH(FEET) = 12.98 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.95 PRODUCT OF DEPTH &VELOCITY = 1.23 STREETFLOW TRAVELTIME(MIN) = 3.53 TC(MIN) = 16.82 A 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.788 • SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 4 ' SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.66 EFFECTIVE AREA(ACRES) = 2.60 Ai AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 6.30 4 " END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 14.17 • FLOW VELOCITY(FEET /SEC.) = 2.86 DEPTH *VELOCITY = 1.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 11 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 A » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: . TIME OF CONCENTRATION(MINUTES) = 16.82 RAINFALL INTENSITY (INCH. /HOUR) = 2.79 • EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.30 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 °" FLOW PROCESS FROM NODE 32.00 TO NODE 34.00 IS CODE = 2 • » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< DEVELOPMENT IS COMMERCIAL • TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 • INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 922.17 - DOWNSTREAM ELEVATION = 912.38 ELEVATION DIFFERENCE = 9.79 • TC = .304 *[( 1000.00 ** 3.00)/( 9.79)] ** .20 = 12.154 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.388 - SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 .. SUBAREA RUNOFF(CFS) = 21.62 TOTAL AREA(ACRES) = 7.30 PEAK FLOW RATE(CFS) = 21.62 . ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA« « < UPSTREAM NODE ELEVATION = 912.38 DOWNSTREAM NODE ELEVATION = 908.66 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 m CHANNEL BASE(FEET) = .00 "Z" FACTOR = 1.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 * CHANNEL FLOW THRU SUBAREA(CFS) = 21.62 FLOW VELOCITY(FEET /SEC) = 6.25 FLOW DEPTH(FEET) = 1.86 "" TRAVEL TIME(MIN.) = 1.47 TC(MIN.) = 13.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 8 4 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.165 41 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 A ' SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 20.43 EFFECTIVE AREA(ACRES) = 14.70 AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 14.70 PEAK FLOW RATE(CFS) = 40.59 TC(MIN) = 13.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: 44 TIME OF CONCENTRATION(MINUTES) = 13.62 RAINFALL INTENSITY (INCH. /HOUR) = 3.16 - EFFECTIVE STREAM AREA(ACRES) = 14.70 TOTAL STREAM AREA(ACRES) = 14.70 '" PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.59 m" CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 13.26 14.72 3.021 .10 4.52 2 6.30 16.82 2.788 .10 2.60 3 40.59 13.62 3.165 .10 14.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: • STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 57.93 21.50 2 54.10 21.82 3 59.27 20.99 • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 59.27 TIME(MINUTES) = 13.619 - EFFECTIVE AREA(ACRES) = 20.99 TOTAL AREA(ACRES) = 21.96 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 36.00 TO NODE 38.00 IS CODE = 6 » »> COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA ««< a UPSTREAM ELEVATION = 908.66 DOWNSTREAM ELEVATION = 885.54 STREET LENGTH(FEET) = 1925.00 CURB HEIGTH(INCHES) = 8. '" STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 " OUTSIDE STREET CROSSFALL(DECIMAL) = .020 A SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 63.80 O STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. # THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. " THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .85 A HALFSTREET FLOODWIDTH(FEET) = 34.36 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.32 AA PRODUCT OF DEPTH &VELOCITY = 4.50 STREETFLOW TRAVELTIME(MIN) = 6.03 TC(MIN) = 19.65 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.540 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 44 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 9.01 EFFECTIVE AREA(ACRES) = 25.09 '' AVERAGED Fm(INCH /HR) = .097 TOTAL AREA(ACRES) = 26.06 PEAK FLOW RATE(CFS) = 59.27 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .82 HALFSTREET FLOODWIDTH(FEET) = 33.17 FLOW VELOCITY(FEET /SEC.) = 5.30 DEPTH *VELOCITY = 4.35 END OF STUDY SUMMARY: • TOTAL AREA(ACRES) = 26.06 EFFECTIVE AREA(ACRES) = 25.09 • PEAK FLOW RATE(CFS) = 59.27 .» END OF RATIONAL METHOD ANALYSIS - 0 4 w m A 4 0 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< NATURAL AVERAGE COVER ' TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 734.70 • UPSTREAM ELEVATION = 914.53 DOWNSTREAM ELEVATION = 909.89 42 ELEVATION DIFFERENCE = 4.64 TC = .706 *[( 734.70 ** 3.00)/( 4.64)] ** .20 = 27.237 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.088 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 5.02 • TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 5.02 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 72.00 TO NODE 74.00 IS CODE = 5 »»>COMPUTE TRAPEZOIDAL - CHANNEL - FLOW ««< m » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 909.89 DOWNSTREAM NODE ELEVATION = 901.20 • CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.02 " FLOW VELOCITY(FEET /SEC) = 2.43 FLOW DEPTH(FEET) = .20 TRAVEL TIME(MIN.) = 3.08 TC(MIN.) = 30.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = 8 • » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.958 *USER SPECIFIED(SUBAREA): • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0890 SUBAREA AREA(ACRES) = 9.08 SUBAREA RUNOFF(CFS) = 15.27 ' EFFECTIVE AREA(ACRES) = 13.48 AVERAGED Fm(INCH /HR) = .328 - TOTAL AREA(ACRES) = 13.48 PEAK FLOW RATE(CFS) = 19.78 TC(MIN) = 30.32 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 74.00 TO NODE 76.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< " » » >TRAVELTIME THRU SUBAREA ««< M" UPSTREAM NODE ELEVATION = 901.20 DOWNSTREAM NODE ELEVATION = 893.85 • CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 m CHANNEL FLOW THRU SUBAREA(CFS) = 19.78 FLOW VELOCITY(FEET /SEC) = 3.67 FLOW DEPTH(FEET) = .33 TRAVEL TIME(MIN.) = 2.72 TC(MIN.) = 33.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 76.00 TO NODE 76.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.860 SOIL CLASSIFICATION IS "B" * COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 SUBAREA AREA(ACRES) = 4.70 SUBAREA RUNOFF(CFS) = 7.55 4 EFFECTIVE AREA(ACRES) = 18.18 AVERAGED Fm(INCH /HR) = .262 " TOTAL AREA(ACRES) = 18.18 PEAK FLOW RATE(CFS) = 26.13 TC(MIN) = 33.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 76.00 TO NODE 78.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA««< - UPSTREAM NODE ELEVATION = 893.85 DOWNSTREAM NODE ELEVATION = 886.14 • CHANNEL LENGTH THRU SUBAREA(FEET) = 650.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 • MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 26.13 • FLOW VELOCITY(FEET /SEC) = 3.43 FLOW DEPTH(FEET) = .39 ry TRAVEL TIME(MIN.) = 3.16 TC(MIN.) = 36.20 '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 78.00 TO NODE 78.00 IS CODE = 8 • » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.760 SOIL CLASSIFICATION IS "B" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0750 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 7.58 EFFECTIVE AREA(ACRES) = 23.18 AVERAGED Fm(INCH/HR) = .222 - TOTAL AREA(ACRES) = 23.18 PEAK FLOW RATE(CFS) = 32.09 - TC(MIN) = 36.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 78.00 TO NODE 80.00 IS CODE = 3 A » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < * DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.1 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 21.5 UPSTREAM NODE ELEVATION = 883.14 DOWNSTREAM NODE ELEVATION = 874.70 FLOWLENGTH(FEET) = 75.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 '* PIPEFLOW THRU SUBAREA(CFS) = 32.09 • TRAVEL TIME(MIN.) = .06 TC(MIN.) = 36.26 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .. FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 1 * » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MINUTES) = 36.26 RAINFALL INTENSITY (INCH. /HOUR) = 1.76 • EFFECTIVE STREAM AREA(ACRES) = 23.18 m TOTAL STREAM AREA(ACRES) = 23.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.09 CONFLUENCE INFORMATION: • STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 205.99 24.58 2.221 .11 92.75 2 32.09 36.26 1.759 .22 23.18 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 44 SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE "" NUMBER Q(CFS) AREA(ACRES) 1 234.29 108.46 2 192.90 115.93 • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 234.29 TIME(MINUTES) = 24.580 EFFECTIVE AREA(ACRES) = 108.46 TOTAL AREA(ACRES) = 124.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 88.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)««< DEPTH OF FLOW IN 75.0 INCH PIPE IS 58.7 INCHES • PIPEFLOW VELOCITY(FEET /SEC.) = 9.1 UPSTREAM NODE ELEVATION = 872.08 • DOWNSTREAM NODE ELEVATION = 870.62 FLOWLENGTH(FEET) = 487.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 75.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 234.29 TRAVEL TIME(MIN.) = .89 TC(MIN.) = 25.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< "-- - - - - -- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 25.47 RAINFALL INTENSITY (INCH. /HOUR) = 2.17 EFFECTIVE STREAM AREA(ACRES) = 108.46 . TOTAL STREAM AREA(ACRES) = 124.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 234.29 &********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 82.00 TO NODE 84.00 IS CODE = 2 4 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< 4 DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 • INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 901.20 a DOWNSTREAM ELEVATION = 894.10 ELEVATION DIFFERENCE = 7.10 TC = .304 *[( 1000.00 ** 3.00)/( 7.10)] ** .20 = 12.960 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.260 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 ' SUBAREA RUNOFF(CFS) = 16.34 e. TOTAL AREA(ACRES) = 5.70 PEAK FLOW RATE(CFS) = 16.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** a FLOW PROCESS FROM NODE 84.00 TO NODE 86.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL- CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION = 894.10 - DOWNSTREAM NODE ELEVATION = 884.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 775.00 `-° CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNINGS FACTOR = .013 MAXIMUM DEPTH(FEET) = 2.00 . CHANNEL FLOW THRU SUBAREA(CFS) = 16.34 FLOW VELOCITY(FEET /SEC) = 3.71 FLOW DEPTH(FEET) = .30 TRAVEL TIME(MIN.) = 3.48 TC(MIN.) = 16.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.826 ,. SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 • SUBAREA AREA(ACRES) = 8.90 SUBAREA RUNOFF(CFS) = 22.04 EFFECTIVE AREA(ACRES) = 14.60 AVERAGED Fm(INCH /HR) = .075 TOTAL AREA(ACRES) = 14.60 "" PEAK FLOW RATE(CFS) = 36.15 TC(MIN) = 16.44 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 86.00 TO NODE 87.00 IS CODE = 3 aaY » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.0 UPSTREAM NODE ELEVATION = 880.20 "' DOWNSTREAM NODE ELEVATION = 880.00 FLOWLENGTH(FEET) = 20.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 36.15 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 16.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.823 SOIL CLASSIFICATION IS "B" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 • SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 15.50 AVERAGED Fm(INCH /HR) = .075 TOTAL AREA(ACRES) = 15.50 m PEAK FLOW RATE(CFS) = 38.33 TC(MIN) = 16.48 m********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< 4 " DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 30.6 UPSTREAM NODE ELEVATION = 880.00 DOWNSTREAM NODE ELEVATION = 872.80 FLOWLENGTH(FEET) = 30.00 MANNINGS N = .013 . ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 38.33 TRAVEL TIME(MIN.) = .02 TC(MIN.) = 16.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: • TIME OF CONCENTRATION(MINUTES) = 16.50 RAINFALL INTENSITY (INCH. /HOUR) = 2.82 • EFFECTIVE STREAM AREA(ACRES) = 15.50 „, TOTAL STREAM AREA(ACRES) = 15.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 38.33 CONFLUENCE INFORMATION: • STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 234.29 25.47 2.174 .13 108.46 • 2 38.33 16.50 2.821 .08 15.50 "' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 263.58 123.96 • 2 238.12 85.75 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: m PEAK FLOW RATE(CFS) = 263.58 TIME(MINUTES) = 25.472 EFFECTIVE AREA(ACRES) = 123.96 m TOTAL AREA(ACRES) = 139.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 88.00 TO NODE 98.00 IS CODE = 3 4 » » »COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » »»USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « « < DEPTH OF FLOW IN 78.0 INCH PIPE IS 61.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.4 m UPSTREAM NODE ELEVATION = 870.60 DOWNSTREAM NODE ELEVATION = 869.49 m FLOWLENGTH(FEET) = 365.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 78.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 263.58 TRAVEL TIME(MIN.) = .65 TC(MIN.) = 26.12 40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 1 »» »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 26.12 RAINFALL INTENSITY (INCH. /HOUR) = 2.14 EFFECTIVE STREAM AREA(ACRES) = 123.96 - TOTAL STREAM AREA(ACRES) = 139.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 263.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 90.00 TO NODE 92.00 IS CODE = 2 »» »RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 - INITIAL SUBAREA FLOW - LENGTH = 761.30 UPSTREAM ELEVATION = 911.00 DOWNSTREAM ELEVATION = 901.50 ELEVATION DIFFERENCE = 9.50 TC = .706 *[( 761.30 ** 3.00)/( 9.50)] ** .20 = 24.110 • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.247 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 4.72 TOTAL AREA(ACRES) = 3.68 PEAK FLOW RATE(CFS) = 4.72 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 92.00 TO NODE 94.00 IS CODE = 5 " »» »COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 901.50 DOWNSTREAM NODE ELEVATION = 899.90 a CHANNEL LENGTH THRU SUBAREA(FEET) = 455.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 m MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.72 FLOW VELOCITY(FEET /SEC) = 1.34 FLOW DEPTH(FEET) = .27 TRAVEL TIME(MIN.) = 5.66 TC(MIN.) = 29.77 a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 8 0 »» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 0 0 al 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.979 *USER SPECIFIED(SUBAREA): COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0900 SUBAREA AREA(ACRES) = 7.70 SUBAREA RUNOFF(CFS) = 13.09 o EFFECTIVE AREA(ACRES) = 11.38 AVERAGED Fm(INCH /HR) = .326 TOTAL AREA(ACRES) = 11.38 PEAK FLOW RATE(CFS) = 16.93 TC(MIN) = 29.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 94.00 TO NODE 96.00 IS CODE = 5 » » > COMPUTE TRAPEZOIDAL- CHANNEL FLOW « «< • » » >TRAVELTIME THRU SUBAREA ««< UPSTREAM NODE ELEVATION = 899.90 DOWNSTREAM NODE ELEVATION = 882.66 ✓ CHANNEL LENGTH THRU SUBAREA(FEET) = 1696.30 CHANNEL BASE(FEET) = .00 '!Z'! FACTOR = 50.000 • MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 16.93 FLOW VELOCITY(FEET /SEC) = 3.15 FLOW DEPTH(FEET) = .33 TRAVEL TIME(MIN.) = 8.99 TC(MIN.) = 38.76 ° '********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.690 • SOIL CLASSIFICATION IS "B" .„ COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0750 SUBAREA AREA(ACRES) = 12.40 SUBAREA RUNOFF(CFS) = 18.02 EFFECTIVE AREA(ACRES) = 23.78 AVERAGED Fm(INCH/HR) = .195 . TOTAL AREA(ACRES) = 23.78 PEAK FLOW RATE(CFS) = 31.99 TC(MIN) = 38.76 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 96.00 TO NODE 98.00 IS CODE = 3 » » > COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« « < DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 24.3 . UPSTREAM NODE ELEVATION = 878.60 DOWNSTREAM NODE ELEVATION = 871.20 • FLOWLENGTH(FEET) = 50.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 31.99 TRAVEL TIME(MIN.) = .03 TC(MIN.) = 38.79 ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « A M_ A CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 4 TIME OF CONCENTRATION(MINUTES) = .38.79 RAINFALL INTENSITY (INCH. /HOUR) = 1.69 is EFFECTIVE STREAM AREA(ACRES) = 23.78 TOTAL STREAM AREA(ACRES) = 23.78 ' PEAK FLOW RATE(CFS) AT CONFLUENCE = 31.99 " CONFLUENCE INFORMATION: STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 263.58 26.12 2.141 .12 123.96 4 2 31.99 38.79 1.689 .20 23.78 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. • SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 291.64 139.97 2 236.48 147.74 - • COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 291.64 TIME(MINUTES) = 26.118 °" EFFECTIVE AREA(ACRES) = 139.97 TOTAL AREA(ACRES) = 163.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 989.70 - UPSTREAM ELEVATION = 922.17 DOWNSTREAM ELEVATION = 913.57 ELEVATION DIFFERENCE = 8.60 TC = .304 *[( 989.70 ** 3.00)/( 8.60)] ** .20 = 12.396 - 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.349 SOIL CLASSIFICATION IS "A" " COMMERCIAL SUBAREA LOSS RATE, Fln(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 8.49 TOTAL AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) = 8.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 108.00 IS CODE = 3 » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< "' DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.5 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 4.5 " UPSTREAM NODE ELEVATION = 909.57 DOWNSTREAM NODE ELEVATION = 909.17 FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 8.49 TRAVEL TIME(MIN.) = .37 TC(MIN.) = 12.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: .. TIME OF CONCENTRATION(MINUTES) = 12.77 a RAINFALL INTENSITY (INCH. /HOUR) = 3.29 EFFECTIVE STREAM AREA(ACRES) = 2.90 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.49 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 4 $ INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 923.22 • DOWNSTREAM ELEVATION = 913.57 ELEVATION DIFFERENCE = 9.65 TC = .304 *[( 1000.00 ** 3.00)/( 9.65)] ** .20 = 12.189 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.383 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 14.19 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 14.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** . FLOW PROCESS FROM NODE 106.00 TO NODE 108.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(MINUTES) = 12.19 RAINFALL INTENSITY (INCH. /HOUR) = 3.38 • EFFECTIVE STREAM AREA(ACRES) = 4.80 TOTAL STREAM AREA(ACRES) = 4.80 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.19 CONFLUENCE INFORMATION: .. STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 8.49 12.77 3.290 .10 2.90 2 14.19 12.19 3.383 .10 4.80 ' RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. "" SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 22.28 7.70 2 22.53 7.57 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . PEAK FLOW RATE(CFS) = 22.53 TIME(MINUTES) = 12.189 EFFECTIVE AREA(ACRES) = 7.57 ✓ TOTAL AREA(ACRES) = 7.70 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 3 rr » » >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« « < 46 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.6 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 5.7 • UPSTREAM NODE ELEVATION = 909.17 DOWNSTREAM NODE ELEVATION = 907.37 FLOWLENGTH(FEET) = 450.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 22.53 TRAVEL TIME(MIN.) = 1.32 TC(MIN.) = 13.51 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,,, FLOW PROCESS FROM NODE 112.00 TO NODE 114.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< .. DEVELOPMENT IS COMMERCIAL • TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 1000.00 *' UPSTREAM ELEVATION = 923.22 DOWNSTREAM ELEVATION = 911.00 • ELEVATION DIFFERENCE = 12.22 TC = .304 *[( 1000.00 ** 3.00)/( 12.22)] ** .20 = 11.627 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.480 SOIL CLASSIFICATION IS "A" • COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 21.01 - TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 21.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 5 » »>COMPUTE TRAPEZOIDAL - CHANNEL FLOW « « < • » » >TRAVELTIME THRU SUBAREA« «< - UPSTREAM NODE ELEVATION = 911.00 DOWNSTREAM NODE ELEVATION = 903.50 - CHANNEL LENGTH THRU SUBAREA(FEET) = 725.00 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 50.000 MANNINGS FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 21.01 4 FLOW VELOCITY(FEET /SEC) = 3.25 FLOW DEPTH(FEET) = .36 TRAVEL TIME(MIN.) = 3.71 TC(MIN.) = 15.34 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** A. FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< In 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.947 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = 7.60 SUBAREA RUNOFF(CFS) = 19.49 41 EFFECTIVE AREA(ACRES) = 14.50 m AVERAGED Fm(INCH/HR) = .097 TOTAL AREA(ACRES) = 14.50 ", PEAK FLOW RATE(CFS) = 37.19 TC(MIN) = 15.34 A A 4 4 4 **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 118.00 IS CODE = 3 >>>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« * DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.1 UPSTREAM NODE ELEVATION = 899.50 DOWNSTREAM NODE ELEVATION = 899.00 FLOWLENGTH(FEET) = 100.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 37.19 TRAVEL TIME(MIN.) = .24 TC(MIN.) = 15.58 A END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 14.50 , EFFECTIVE AREA(ACRES) = 14.50 PEAK FLOW RATE(CFS) = 37.19 END OF RATIONAL METHOD ANALYSIS aM A 411 A A A 4 4 � APPENDIX A -2 INTERIM HYDROLOGY CALCULATIONS 1 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,66,87 Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 «w * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * 25 -YEAR EXISTING CONDITION HYDROLOGY .,* FOR AREA NORTHEAST OF JURUPA AND MULBERRY * PEAK FLOW RATE USED FOR SIZING INTERIM PIPE .w ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FILE NAME: \767 \767C.DAT TIME/DATE OF STUDY: 2:41 11/15/1996 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF -CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 25.00 • SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 w USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.0400 .********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 - INITIAL SUBAREA FLOW - LENGTH = 650.00 UPSTREAM ELEVATION = 940.50 DOWNSTREAM ELEVATION = 931.30 . ELEVATION DIFFERENCE = 9.20 TC = .706 *[( 650.00 ** 3.00)/( 9.20)] ** .20 = 22.070 " 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.895 SOIL CLASSIFICATION IS "A" is NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 3.68 ' TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 3.68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< UPSTREAM ELEVATION = 931.30 DOWNSTREAM ELEVATION = 925.90 ail STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 " INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.06 4 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .37 HALFSTREET FLOODWIDTH(FEET) = 10.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.10 PRODUCT OF DEPTH &VELOCITY = 1.15 STREETFLOW TRAVELTIME(MIN) = 1.78 TC(MIN) = 23.85 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.809 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .77 .r EFFECTIVE AREA(ACRES) = 4.30 AVERAGED Fm(INCH/HR) = .736 ., TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 4.15 END OF SUBAREA STREETFLOW HYDRAULICS: ▪ DEPTH(FEET) = .37 HALFSTREET FLOODWIDTH(FEET) = 10.59 FLOW VELOCITY(FEET /SEC.) = 3.17 DEPTH *VELOCITY = 1.17 -'********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.809 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA AREA(ACRES) = 2.65 SUBAREA RUNOFF(CFS) = 2.36 EFFECTIVE AREA(ACRES) = 6.95 AVERAGED Fm(INCH/HR) = .768 . TOTAL AREA(ACRES) = 6.95 PEAK FLOW RATE(CFS) = 6.51 • TC(MIN) = 23.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6 • » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< .. UPSTREAM ELEVATION = 925.90 DOWNSTREAM ELEVATION = 920.50 STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 4 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.88 • STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH &VELOCITY = 1.49 • STREETFLOW TRAVELTIME(MIN) = 1.57 TC(MIN) = 25.42 y. 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.741 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .74 40 EFFECTIVE AREA(ACRES) = 7.45 AVERAGED Fm(INCH/HR) = .723 mi TOTAL AREA(ACRES) = 7.45 PEAK FLOW RATE(CFS) = 6.83 END OF SUBAREA STREETFLOW HYDRAULICS: ' DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.34 FLOW VELOCITY(FEET /SEC.) = 3.47 DEPTH *VELOCITY = 1.47 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.741 SOIL CLASSIFICATION IS "A" 0 NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA AREA(ACRES) = 2.26 SUBAREA RUNOFF(CFS) = 1.87 • EFFECTIVE AREA(ACRES) = 9.71 AVERAGED Fm(INCH /HR) = .746 • TOTAL AREA(ACRES) = 9.71 PEAK FLOW RATE(CFS) = 8.70 TC(MIN) = 25.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -1 FLOW PROCESS FROM NODE 10.00 TO NODE 14.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 920.50 DOWNSTREAM ELEVATION = 912.60 • STREET LENGTH(FEET) = 300.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 . INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.06 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.60 PRODUCT OF DEPTH &VELOCITY = 1.96 STREETFLOW TRAVELTIME(MIN) = 1.09 TC(MIN) = 26.51 0 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.698 SOIL CLASSIFICATION IS "A" dr COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .72 • EFFECTIVE AREA(ACRES) = 10.21 AVERAGED Fm(INCH /HR) = .714 4 " TOTAL AREA(ACRES) = 10.21 PEAK FLOW RATE(CFS) = 9.04 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 13.34 FLOW VELOCITY(FEET /SEC.) = 4.59 DEPTH *VELOCITY = 1.95 1 "********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 FLOW PROCESS FROM NODE 10.00 TO NODE 14.00 IS CODE = 8 0 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.698 SOIL CLASSIFICATION IS "A" 0 a NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = .85 SUBAREA RUNOFF(CFS) = .67 °* EFFECTIVE AREA(ACRES) = 11.06 AVERAGED Fm(INCH /HR) = .722 TOTAL AREA(ACRES) = 11.06 PEAK FLOW RATE(CFS) = 9.71 " TC(MIN) = 26.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "" FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: .r TIME OF CONCENTRATION(MINUTES) = 26.51 RAINFALL INTENSITY (INCH. /HOUR) = 1.70 ▪ EFFECTIVE STREAM AREA(ACRES) = 11.06 TOTAL STREAM AREA(ACRES) = 11.06 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.71 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** " FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 2 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< • NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW- LENGTH = 460.00 UPSTREAM ELEVATION = 941.70 DOWNSTREAM ELEVATION = 935.80 ELEVATION DIFFERENCE = 5.90 • TC = .706 *[( 460.00 ** 3.00)/( 5.90)] ** .20 = 19.601 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.035 - SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 2.51 TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) = 2.51 °********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL - CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 935.80 DOWNSTREAM NODE ELEVATION = 930.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 330.00 I. CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 a CHANNEL FLOW THRU SUBAREA(CFS) = 2.51 FLOW VELOCITY(FEET /SEC) = 1.95 FLOW DEPTH(FEET) = .36 " TRAVEL TIME(MIN.) = 2.82 TC(MIN.) = 22.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.877 a SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA AREA(ACRES) = 2.91 SUBAREA RUNOFF(CFS) = 2.77 EFFECTIVE AREA(ACRES) = 5.21 . AVERAGED Fm(INCH /HR) = .820 TOTAL AREA(ACRES) = 5.21 PEAK FLOW RATE(CFS) = 4.96 TC(MIN) = 22.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ,. FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 5 » »>COMPUTE TRAPEZOIDAL- CHANNEL FLOW « » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 930.40 41 DOWNSTREAM NODE ELEVATION = 924.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 340.00 - CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 "*" CHANNEL FLOW THRU SUBAREA(CFS) = 4.96 FLOW VELOCITY(FEET /SEC) = 2.41 FLOW DEPTH(FEET) = .45 - TRAVEL TIME(MIN.) = 2.35 - • TC(MIN.) = 24.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 8 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.768 . SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 • SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) = 2.82 EFFECTIVE AREA(ACRES) = 8.51 4 ' AVERAGED Fm(INCH /HR) = .820 TOTAL AREA(ACRES) = 8.51 - PEAK FLOW RATE(CFS) = 7.26 TC(MIN) = 24.77 " ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 5 » » >COMPUTE TRAPEZOIDAL- CHANNEL FLOW « « < » » >TRAVELTIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION = 924.80 • DOWNSTREAM NODE ELEVATION = 916.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 • CHANNEL BASE(FEET) = .00 "Z" FACTOR = 10.000 MANNINGS FACTOR = .030 MAXIMUM DEPTH(FEET) = 1.00 ' CHANNEL FLOW THRU SUBAREA(CFS) = 7.26 FLOW VELOCITY(FEET /SEC) = 2.73 FLOW DEPTH(FEET) = .52 TRAVEL TIME(MIN.) = 2.44 TC(MIN.) = 27.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.671 m SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.42 EFFECTIVE AREA(ACRES) = 9.51 A AVERAGED Fm(INCH/HR) = .744 TOTAL AREA(ACRES) = 9.51 Al PEAK FLOW RATE(CFS) = 7.94 TC(MIN) = 27.21 ..********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 18.00 TO NODE 20.00 IS CODE = 8 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.671 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = 3.81 SUBAREA RUNOFF(CFS) = 2.92 . EFFECTIVE AREA(ACRES) = 13.32 AVERAGED Fm(INCH /HR) = .766 :.. TOTAL AREA(ACRES) = 13.32 PEAK FLOW RATE(CFS) = 10.86 111 TC(MIN) = 27.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 " FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ' TIME OF CONCENTRATION(MINUTES) = 27.21 RAINFALL INTENSITY (INCH. /HOUR) = 1.67 EFFECTIVE STREAM AREA(ACRES) = 13.32 TOTAL STREAM AREA(ACRES) = 13.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.86 CONFLUENCE INFORMATION: • STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 9.71 26.51 1.698 .72 11.06 • 2 10.86 27.21 1.671 .77 13.32 "" RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. "" SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) 1 20.60 24.03 NY 2 20.31 24.38 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: • PEAK FLOW RATE(CFS) = 20.60 TIME(MINUTES) = 26.508 EFFECTIVE AREA(ACRES) = 24.03 . TOTAL AREA(ACRES) = 24.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 3 » »> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA « « < » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)« «< DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 4.4 Ai UPSTREAM NODE ELEVATION = 913.10 DOWNSTREAM NODE ELEVATION = 912.80 FLOWLENGTH(FEET) = 150.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 20.60 TRAVEL TIME(MIN.) = .57 TC(MIN.) = 27.08 - ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 A » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MINUTES) = 27.08 - RAINFALL INTENSITY (INCH. /HOUR) = 1.68 EFFECTIVE STREAM AREA(ACRES) = 24.03 TOTAL STREAM AREA(ACRES) = 24.38 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 - INITIAL SUBAREA FLOW - LENGTH = 660.00 UPSTREAM ELEVATION = 936.80 "" DOWNSTREAM ELEVATION = 926.10 ELEVATION DIFFERENCE = 10.70 TC = .304 *[( 660.00 ** 3.00)/( 10.70)] ** .20 = 9.305 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.182 SOIL CLASSIFICATION IS "A" - COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 3.58 • TOTAL AREA(ACRES) = 1.29 PEAK FLOW RATE(CFS) = 3.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FLOW PROCESS FROM NODE 11.00 TO NODE 21.00 IS CODE = 6 " » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « « < " UPSTREAM ELEVATION = 926.10 DOWNSTREAM ELEVATION = 916.40 STREET LENGTH(FEET) = 593.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 38.00 . INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ■ * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.95 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 11.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.13 PRODUCT OF DEPTH &VELOCITY = 1.23 • STREETFLOW TRAVELTIME(MIN) = 3.16 TC(MIN) = 12.46 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.670 SOIL CLASSIFICATION IS "A" 41 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF(CFS) = 2.71 m EFFECTIVE AREA(ACRES) = 2.46 AVERAGED Fm(INCH /HR) = .097 . TOTAL AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) = 5.70 END OF SUBAREA STREETFLOW HYDRAULICS: m DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 12.39 FLOW VELOCITY(FEET /SEC.) = 3.30 DEPTH *VELOCITY = 1.34 +********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: Im TIME OF CONCENTRATION(MINUTES) = 12.46 RAINFALL INTENSITY (INCH. /HOUR) = 2.67 EFFECTIVE STREAM AREA(ACRES) = 2.46 TOTAL STREAM AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.70 „********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 12.00 TO NODE 21.00 IS CODE = 2 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 °" INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 922.10 ' DOWNSTREAM ELEVATION = 915.90 ELEVATION DIFFERENCE = 6.20 TC = .304 *[( 1000.00 ** 3.00)/( 6.20)] ** .20 = 13.317 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.566 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA RUNOFF(CFS) = 4.89 m TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 4.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: - TIME OF CONCENTRATION(MINUTES) = 13.32 RAINFALL INTENSITY (INCH. /HOUR) = 2.57 EFFECTIVE STREAM AREA(ACRES) = 2.20 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.89 CONFLUENCE INFORMATION: m STREAM PEAK FLOW TIME INTENSITY FM EFFECTIVE NUMBER RATE(CFS) (MIN.) (INCH /HOUR) (IN /HR) AREA(ACRES) 1 20.60 27.08 1.676 .75 24.03 "* 2 5.70 12.46 2.670 .10 2.46 3 4.89 13.32 2.566 .10 2.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. SUMMARY RESULTS: STREAM CONFLUENCE EFFECTIVE NUMBER Q(CFS) AREA(ACRES) o 1 27.22 28.69 2 30.07 15.58 3 30.17 16.48 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: "' PEAK FLOW RATE(CFS) = 30.17 TIME(MINUTES) = 13.317 EFFECTIVE AREA(ACRES) = 16.48 TOTAL AREA(ACRES) = 29.04 • END OF STUDY SUMMARY: „. TOTAL AREA(ACRES) = 29.04 EFFECTIVE AREA(ACRES) = 16.48 PEAK FLOW RATE(CFS) = 30.17 END OF RATIONAL METHOD ANALYSIS 4 ft 4 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) Copyright 1983,86,8/ Advanced Engineering Software (aes) Ver. 4.1B Release Date: 2/20/87 . * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * 100 -YEAR EXISTING CONDITION HYDROLOGY «..* FOR AREA NORTHEAST OF JURUPA AND MULBERRY * PEAK FLOW RATE USED FOR SIZING CATCH BASINS AT MARLAY AVENUE • ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** - FILE NAME: \767 \767100.DAT TIME/DATE OF STUDY: 2:50 11/15/1996 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 • SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 • USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.3000 .********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 2 » » > RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< NATURAL AVERAGE COVER TC = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)] ** .20 INITIAL SUBAREA FLOW - LENGTH = 650.00 UPSTREAM ELEVATION = 940.50 DOWNSTREAM ELEVATION = 931.30 „. ELEVATION DIFFERENCE = 9.20 TC = .706 *[( 650.00 ** 3.00)/( 9.20)] ** .20 = 22.070 .. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.369 SOIL CLASSIFICATION IS "A" NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH /HR) = .8200 SUBAREA RUNOFF(CFS) = 5.30 ', TOTAL AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) = 5.30 a ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 4 " FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 931.30 DOWNSTREAM ELEVATION = 925.90 4 STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.79 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 12.66 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.23 PRODUCT OF DEPTH &VELOCITY = 1.33 STREETFLOW TRAVELTIME(MIN) = 1.70 TC(MIN) = 23.77 A 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.266 SOIL CLASSIFICATION IS "A" COMMERCIAL SUBAREA LOSS RATE, Fm(INCH /HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .98 40 EFFECTIVE AREA(ACRES) = 4.30 AVERAGED Fm(INCH/HR) = .736 .. TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) = 5.92 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 12.66 FLOW VELOCITY(FEET /SEC.) = 3.30 DEPTH *VELOCITY = 1.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4.00 TO NODE 6.00 IS CODE = 8 r » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLAW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.266 SOIL CLASSIFICATION IS "A" +r NATURAL AVERAGE COVER "GRASS" SUBAREA LOSS RATE, Fm(INCH/HR) = .8200 SUBAREA AREA(ACRES) = 2.65 SUBAREA RUNOFF(CFS) = 3.45 �• EFFECTIVE AREA(ACRES) = 6.95 AVERAGED Fm(INCH /HR) = .768 40 TOTAL AREA(ACRES) = 6.95 PEAK FLOW RATE(CFS) = 9.37 TC(MIN) = 23.77 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 6 » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA « «< UPSTREAM ELEVATION = 925.90 DOWNSTREAM ELEVATION = 920.50 . STREET LENGTH(FEET) = 330.00 CURB HEIGTH(INCHES) = 8. STREET HALFWIDTH(FEET) = 46.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 44.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 4 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.84 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .47 HALFSTREET FLOODWIDTH(FEET) = 15.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.84 PRODUCT OF DEPTH &VELOCITY = 1.79 a STREETFLOW TRAVELTIME(MIN) = 1.43 TC(MIN) = 25.20 a 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.187 SOIL CLASSIFICATION IS "A" 41 COMMERCIAL SUBAREA LOSS RATE, Fm(INCH/HR) = .0970 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) = .94 01111111 ;. .. ... _ , • , A 0 . ' . . . r . C.. c 1 m , a , . , crt • P .-- • -i ,9"' C ( (-).... P — .----7. s— , r _< cy 17 i 40 0.., I li - 0 G s --c , 1 , I , I 1 i • t i 1 C.) 1 ' i . . I I , c . . , ,11 . b I f t . . . , tr i wr,, • .... 9 6 41U111119 o I 1 ■to i i 1 1 1 N I g 5 5 .0 o J. sO % Ale SO NO t NO IV AO AD 'VA !lqllIllIlIll OMNI OA 50 c... Mal . 0 c ". M. e ....u■Aws■rmasimmnamour■IrAmmwsumewa....■. ......t.ff•Nw......w/..mr.....r4.t'UIIIII41■■ 11114•41444 INIM/iMWAIIIIIIIIIIIIIV,glIIIMM ; rireAr r ,-,,, , ,.•„..4. ... .,,,. • .., I Cr, • 0 . oilgir , 0 O lir . '1:4 1 r • e ‘.. 41110114111,gllh'r . 4 ISN CV i A - it 1 is i ZPIja V I P Cs A d O F. . ,..) . , o , _......,....... 1 , ... • - , va 0 a / . . .. ,. . . ; n.) A 4 , :7 • SO 4fA,1 ...- 0 . , 4A. 6 or f ..., 8 0,.? ,0 ru (NI ! ir "F illAh ce .., .....0 Lt' r ru en C 8 rt, t %11) i ‘I, 1 ru n) , . . ‘c, . , i coru _ i § . [ •. , 1,.: