Loading...
HomeMy WebLinkAboutSan Sevaine Creek Watershed :1 d _ HYDROLOGIC ANALYSIS AND MODELING OF THE SAN SEVAINE CREEK WATERSHED 4114; SAN BERNARDINO COUNTY di di di January, 1986 (Revised March, 1986) (Revised October, 1986) (Revised January, 1987) alm di Prepared by 90; Bill Mann & Associates 1814 Commercenter West Suite A :1 San Bernardino, CA 92408 and Hall & Foreman, Inc. 3186 -L Airway Avenue Costa Mesa, CA 92626 gli Ai MR TABLE OF CONTENTS qd di Page +i SECTION 1. INTRODUCTION AND PURPOSE OF STUDY 1 MR 1.1 PROJECT LOCATION 1 di 1.2 STUDY PURPOSE 1 'i SECTION 2. HYDROLOGY 4 di 2.1 DISCUSSION OF EXISTING CONDITIONS 4 m g 2.2 PROPOSED FLOOD STORAGE AND WATER 5 di CONSERVATION BASINS 2.3 METHODOLOGY 8 +1 2.4 DETENTION BASINS - 17 mot SECTION 3. SUMMARY OF COMPUTER MODELING AND RESULTS 23 Ag di FIGURE I — VICINITY MAP 2 • FIGURE II — DRAINAGE PLAN SUMMARY 7 FIGURE III — WATERSHED GEOMETRIC DATA 11 FIGURE IV — NODE SCHEMATIC DIAGRAM 14 di FIGURE V — LOWER SAN SEVAINE BASIN 21 (DEPTH — VOLUME— OUTFLOW CURVES) FIGURE VI — JURUPA BASIN (STORAGE— CHANNEL FLOW) 22 Ai FIGURE VII — RUNOFF PER SQUARE MILE 26 APPENDIX I APPENDIX II (UNDER SEPARATE COVER) A. SAN SEVAINE AND ETIWANDA CHANNEL WATERSHED MR HYDROLOGY COMPUTER RUNS (2 BINDERS) di B. WEST END STORM VOLUME COMPARISON COMPUTER DATA (2 BINDERS) gig di 'III di i d q d; SECTION 1. INTRODUCTION AND PURPOSE OF STUDY 1.1 Project Location d The report covers the Upper Etiwanda Creek Watershed and the San Sevaine Creek Watershed from the San Gabriel Mountains to the proposed Jurupa Basin at Jurupa Avenue. The watershed is roughly bounded by Etiwanda Avenue on the west, Sierra Avenue on the east, the San Gabriel Mountain ridgeline on the north, and the San Ber- d nardino Freeway and Jurupa Avenue on the south. See Figure No. 1 for the watershed boundary and the schematic location of the San Sevaine Creek Channel gm di System and pertinent facilities. qd di 1.2 Study Purpose d di The purpose of this study is to update the hydrology for the San Sevaine Creek Channel System originally provided in the Day, Etiwanda and San Sevaine Creeks J System Drainage Plan dated March, 1983. The Drainage Plan is referred to for 4114 specific details on the San Sevaine Creek Channel System not covered in detail di in this report. di The BD Fontana West End Venture, an approximate 1,500 -acre development located Al north of Foothill Boulevard and east of East Avenue, was approved by the City of Fontana in April, 1985. The proposed development is traversed by the existing Etiwanda and San Sevaine Channels. In accordance with the Day, Etiwanda and San Sevaine Creeks System Drainage Plan, a "Flood Control Facilities Study" and recommendations to control flood flow and drainage through the proposed "West End Venture" were provided. The study and a . supplemental report are listed below for reference. di West End Specific Plan, Flood Control Facilities Study, September, 1984 r i is S ' 0 - ! it ' ;* il . _ . 1 ' :� it - i " •--3 i--- i j a:. f's ° �I 4..w - ` C ✓ r I. r , S (')U'J'.- - k e ; ''u....),„ L.--V t • t.''''.6 ' ,;" '' ' .-6 1 i ' U t. ¢ • ai : . . f ,.. . • 1 t' , 1 I! , . . , , ., � �- • " t _ • 1- ilk , 99 v 41 AMR West End Specific Plan, Flood Control Facility Alternative, p � Y Supplemental Report, November, 1984 These studies and the plan of action for flood and drainage control have been approved by the City of Fontana and the Flood Control District. The plan in general calls for the improvement of the San Sevaine Creek Channel from the Devore Freeway to Foothill Boulevard in its ultimate form; the improvement of an "interim" channel for existing San Sevaine Creek flows from Foothill Boule- vard southerly through the Santa Fe Railroad with a connection to the existing San Sevaine Channel; partial excavation of the proposed Lower San Sevaine Basin, possible partial excavation and /or d- evelopment of Hickory and /or'Jurupa Basin; the construction of a storm drain along Baseline Avenue; and any neces- sary onsite drainage facilities. One of the conditions of the Flood Control Facilities Plan approval is to 1 provide updated hydrology and hydraulic calculations for the proposed facilities. The plan for the flood control facilities for the West End Venture has been updated and is entitled "Revised Supplemental Report, Flood Control Facili- MO ties, BD Fontana West End Venture, January, 1986 ". This report and the corresponding computer modeling provides the necessary up- date of the hydrology. The 100 -year design storm will be used for the channel design. Although not a part of this analysis and report, the probable maximum flood (PMF) will be used for the Etiwanda Debris Dam design and Lower San Sevaine Basin spillway design. ]I- The BD Fontana West End Venture project area is shown on Figure No. 1. The overall flood control facilities planning and preliminary engineering was performed by Bill Mann & Associates. The computer analysis and modeling was performed by Hall & Foreman, Inc. 1 3 1 SECTION 2. HYDROLOGY 2.1 Discussion of Existing Conditions The San Sevaine Creek Watershed above the Devore Freeway consists of two major, mountainous drainage courses, Etiwanda and San Sevaine Creeks, and several smaller drainage courses that are tributary to San Sevaine Creek. Etiwanda Creek flows south and southeast from the canyon mouth to an existing concrete channel that conducts the flows under the Devore Freeway. The Eti- wanda Spreading Grounds, located north and south of Summit Avenue, are presently used to spread minor flows turned out from the creek. Except for the concrete lined channel under the freeway, Etiwanda Creek Channel is unim- proved and exists as a graded earth channel with no levee revetment. Below the Devore Freeway, the Etiwanda Creek Channel exists as a 110 -foot wide, 5 -foot deep rail and wire revetted channel from the freeway to Foothill Boulevard. Below Foothill Boulevard to the San Bernardino Freeway, Etiwanda Channel exists as a meandering, natural drainage course. Below the San :1 Bernardino Freeway, the City of Ontario has constructed a concrete lined channel that intercepts Etiwanda Creek flows and conducts the flows into the Day Creek System's Wineville Basin. di San Sevaine Creek and its tributaries flow into the existing San Sevaine Basins located north of the Devore Freeway. After leaving the basins, the flows pass under the Devore Freeway in a concrete lined channel that parallels the existing Etiwanda Creek Channel. Once the concrete channel clears the freeway, the flows are conducted southerly in a 30 -foot wide, 5 -foot deep rail and wire revetted earth channel to Foothill Boulevard where the flows enter Banana Street. Banana Street, a major water - carrying street, outlets into Banana Basin at Wittram Avenue. San Sevaine Creek flows then confluence with flows in the existing West Fontana Channel that parallels the Santa Fe Rail- road. Flows continue westerly to the existing San Sevaine Channel located approximately 2,500 feet east of Etiwanda Avenue. The existing San Sevaine 4 4 ai 1 1 9 3 Channel then flows due south to the Riverside -San Bernardino County Line. The San Sevaine Channel from the Santa Fe Railroad to the County Line is an unim- ] earth channel. :I There are two major channels that outlet into existing San Sevaine Channel I that conduct flows westerly from Sierra Avenue to the channel. The Mulberry ;I Channel is located north of the San Bernardino Freeway and the aforementioned i West Fontana Channel is located north of the Santa Fe Railroad. :I I The storm drain plan calls for several east west drains t hat will intercept drainage flows from between Sierra Avenue and the San Sevaine Channel and connect to the channel. The major drains will be along Foothill Boulevard, Baseline Avenue, Highland Avenue and Summit Avenue. a The 24th Street Drain, an unimproved earth ditch, conducts flows from the northwest part of the drainage area to Etiwanda Creek. Several storm drains I are proposed to connect to the Etiwanda Channel above the Devore Freeway or to the San Sevaine Channel below the freeway to serve the drainage area west of 1 the channel. The drainage area, existing Etiwanda and San Sevaine Channels, the existing lateral channels, and the existing basins and spreading grounds are shown on iiiil Figure No. 1. OR All I 2.2 Proposed Flood Storage and Water Conservation Basins 1 There are a number of existing and /or proposed flood flow retention and water conservation basins or spreading grounds located within the San Sevaine Creek I Watershed area. Only two of the basins are proposed for flood flow storage in this study. The others will be utilized primarily for water conservation and local storm flow detention and are considered as storage facilities. The proposed facilities are listed below with the proposed use. j 5 F 1 Basins and Spreading Grounds Facility Type of Use Etiwanda Spreading Grounds Water Conservation Victoria Basin* Water Conservation San Sevaine Spreading Grounds Water Conservation Rich Basin* Water Conservation San Sevaine Basins Water Conservation Lower San Sevaine Basin Flood Storage and Water Conservation Hickory Basin * Water Conservation Jurupa Basin Flood Storage and Water Conservation * Victoria, Rich & Hickory Basins may be used as flood flow detention facilities for upstream development, but sufficient information is not available at this time to include the storage capability in the hydrology analysis. Both Lower San Sevaine and Jurupa Basins were included as flood flow storage basins in the Day, Etiwanda and San Sevaine Creeks System Drainage Plan to reduce the peak flow in the downstream channel. Those basins are utilized as flood flow storage facilities in this analysis and are discussed in detail in Section 2.3, Methodology. Other basins such as Victoria, Rich, the Etiwanda Spreading Grounds and Hickory will be used to compensate for increased runoff from upstream develop- , ment. However, the basins are not considered as channel peak flow reducing facilities. The basins and spreading grounds are shown on Figure Nos. I and II. Lower San Sevaine and Jurupa Basins will have storage capacity set aside for water conservation in addition to the volume established for flood flow reduction. 6 2.3 Methodology mi The drainage area boundary is basically the same as that shown in the "Day, Etiwanda and San Sevaine Creeks Drainage Plan" with some minor modifications. The drainage area boundary is shown on Figure Nos. I and II. The drainage subareas shown in Figure No. II conform to natural and /or man- made drainage features and the proposed storm drain facilities proposed in the North Fontana Storm Drain Plan update presently being prepared by Hall & d Foreman and Bill Mann & Associates. The subareas are all large enough to be modeled by the Unit Hydrograph Method. r 9 . The proposed and existing hydrology was modeled by use of the Unit Hydrograph ■„ Method as described in the San Bernardino County Hydrology Manual. Computer software developed by AES was utilized. .r Rainfall data was generated from tables in the Hydrology Manual. Table I contains a summary of the rainfall data for each sub - basin. The 1983 version of the Hydrology Manual was used in this model analysis. sr a AO aid d 8 mia ,w ar a 4r Table I rr Summary of Rainfall Data 'ili Subarea P5M* P3OM P1H P3H* P6H P24H m 1 0.65 1.35 1.79 3.76 6.03 15.05 ` 2 0.73 1.52 1.98 4.18 6.66 16.24 m 3 0.59 1.21 1.60 3.10 4.65 10.58 a 401 0.62 1.27 1.69 3.35 5.17 12.03 41 0.58 1.21 1.60 3.20 4.90 12.00 • im 42 0.57 1.17 1.55 3.10 4.70 11.50 mm 43 0.58 1.21 1.60 3.12 4.75 10.90 .. 44 0.58 1.21 1.54 2.90 4.25 9.80 ,r 403 0.56 1.16 1.55 2.90 4.30 9.80 . 4. 0.54 1.13 1.50 2.78 4.08 8.35 J" 4.4 0.54 1.13 1.50 2.75 4.00 8.00 5.2 0.56 1.17 1.55 2.87 4.32 9.70 AO 6.1 0.50 1.13 1.55 2.90 4.40 9.80 6.2 0.54 1.13 1.49 2.78 4.10 9.50 am. ,r 7 0.54 1.13 1.49 2.40 3.66 8.00 8 0.53 1.10 1.46 2.53 3.85 9.00 .. 8.1 0.50 1.05 1.40 2.44 3.50 8.00 9 0.51 1.06 1.40 2.50 3.65 8.00 '" 10 0.49 1.02 1.35 2.50 3.70 7.20 "" 11 0.52 1.06 1.40 2.50 3.60 8.00 4. 12 0.48 0.99 1.32 2.35 3.40 7.10 a w * Obtained from a log -log plot of the adjacent rainfall values. +rr (See SBC Manual, page E -11) „ The subareas are shown on Figure No. II as [1] glli di m 9 • A description of the terminology used in Table I is provided below. ' P5M = 5- minute duration rainfall (inches) P3OM = 30- minute duration rainfall (inches) PIN = 1 -hour duration rainfall (inches) P3H 3 -hour duration rainfall (inches) P6H = 6 -hour duration rainfall (inches) Ai P24H = 24 -hour duration rainfall (inches) Rainfall losses were calculated from data generated using the soil maps in the 4 Hydrology Manual and current zoning maps from the City of Fontana and the County. Additionally, the North Fontana_Storm Drain Plan (between the Devore Ai Freeway and West Fontana Channel) is presently being updated. Therefore, the hydrology data for both plans was prepared concurrently. The SBC Hydrology Manual procedures (SCS curve numbers) were used to determine the soil loss rates. The subarea geometry was determined from a 1" = 2,000' scale USGS map and then reduced to a 1" = 4,000' scale for this report (see Figure No. III). Table IIA summarizes the watershed geometric data used in the subarea runoff hydrograph development and LAG calculations. Procedures defined in the SBC Hydrology Manual were used. Table IIB summarizes the soil loss data used in the report. all ,r ay all a1 a1 10 ar Ild s In n Table IIA is Summary of Watershed Geometric Data ar i. m Subarea L (ft) Lca (ft) H (ft) A (ac) =, 1 15,600 7,500 3,480 1,273 air 2 16,000 8,500 4,000 1,953 .i. 3 17,000 9,200 2,240 1,937 401 22,000 9,000 3,800 2,596 ill 41 19,500 10,000 2,020 1,010 Mill 42 15,500 7,500 1,420 975 mil 43 19,000 9,000 2,580 1,267 44 18,200 8,800 281 1,240 41' 403 9,000 4,500 580 301 4 10,500 4,500 60 415 ..4 4.4 3,000 1,500 55 103 1111 5.2 25,000 11,000 272 1,990 6.1 11,000 3,100 315 920 al 6.2 10,500 2,500 155 774 7 25,000 11,500 255 2,432 do 8 15,500 7,000 140 1,232 ne 8.1 8,000 3,000 103 501 a 9 32,500 13,200 285 3,928 ,1 10 16,000 9,000 200 852 ar 11 34,000 12,000 250 5,421 in 12 14,500 3,000 130 1,636 an L = length of longest watercourse ild Lca = length to centroid of area "' H = difference in elevation along watercourse ay A = watershed area in m in ar 12 Mil 4411 AM Ai Alk A Table IIB m Soil Loss Data a m m S -Curve Area Average Adjusted Low Loss Rate SBC Foothill -F ., Subarea RI Loss Rate Percentage Basin Factor Valley -V r 1 70.00 0.36 0.22 0.05 F 2 72.00 0.34 0.19 0.05 F al 3 74.96 0.30 0.24 0.04 F m 401 63.05 0.43 0.33 0.046 F m 41 65.24 0.41 0.31 0.04 F „ 42 55.8 0.51 0.41 0.02 0.2F; 0.8V All 43 58.52 0.48 0.39 0.03 0.6F; 0.4V 44 69.4 0.37 0.31 0.02 V 403 59.5 0.47 0.41 0.03 0.5F; 0.5V ®r 4 64.0 0.43 0.40 0.03 V 4.4 64.0 0.43 0.41 0.03 V 5.2 69.4 0.37 0.31 0.02 V 6.1 56.72 0.36 0.44 0.02 V .. 6.2 60.19 0.42 0.41 0.02 V . 7 69.46 0.37 0.36 0.02 V All 8.1 71.28 0.34 0.33 0.02 V 8 77.26 0.29 0.25 0.02 V 9 77.15 0.30 0.27 0.02 V AM 10 93.2 0.14 0.09 0.02 V 11 74.84 0.32 0.30 0.02 V A 12 69.4 0.38 0.38 0.02 V IR di .A s .w ar s s I2A Mk r The watershed model develops design storm hydrographs at various concentration points along the Etiwanda and San Sevaine Channels. After linking the several 4111 sub- basins by basin and channel submodels, runoff hydrographs were generated ,., in each sub -basin and then combined. The first step estimates 100 -year runoff values using depth -area adjustment on a sub -basin basis only. A "Node Diagram" of the modeling sequence is shown in Figure IV. The "nodes" numbering system is also shown on the drainage area map (Figure Nos. II and III). rti Along the San Sevaine Creek Channel, depth -area factors (see Figure No. 3 from SEC Hydrology Manual) need to correspond to the total tributary watershed area to the subject nodal point. A separate modeling pass is required for each defined node to properly "index" each node defined along the San Sevaine Creek ar Channel. This modifies all depth -area factors for each subarea upstream of the node in question. err Table III includes the index depth -area factors defined for each node on the air channel. ar r MOM d aw 13 m a ,u II /^/DEX. 4 4 / ¢ Z is ADD Sue' a ��/ NYoRe4R4pN . 0. , A 8 40/ 40,j .r /A\REsEe va,,z, 4 3 4 (SAN SE✓A/NE BAS 4 AM II CO^ v eta G,4 Q emu - ,�� T © • D c.. li, 4. 4.4 4• 3 ma t.,00E 4 403 .. 7 , • ..ii 4. Ili / vim 0 ; 0 o 0 4 MOM Ar � ,.. . ,.. ........ ,.., ® SAN SE VA /NE 8.45/N NO. 1 s © SAN SE VA /NE BAS /N NO. 2 .. , ® SAN SEVA /NE BAS /N NO. 3 am . ® SAN SE VA /NE 8A 5/N /VO. 1 . © LOWER SAN SE VA /NE BAS /N lam a all di , • SAN SE VA /NE CHANNEL HYDROLOGY Am SCHEMAT /C D /AGR ,4M . . it rr . FIGURE NO. IV in / - 14 .e.,r i.. $1 S. a "!;:_^ bJw*++AS' .�.: �. ;.M -..;. ,: '+ANA ""tIY'A•r.P !' NiliiW�M"'9N P .....mn«.....+..e..am" . ...... a»�rnawr+.. «_- * 100 ill in re i\ i l i k --- - :-- ---- - 24 - HOUR — "• 90 . - - -- = - -- -- - --- 6 - HOUR - Q r111 LU - - -- - - -- - - — 3 -HOUR > 80 . Ai O - ,. Q V Of or Z 70 1- HOUR O-- - ---- -- - — d — - .... - - - - -- - Alla u — O .- - - - -- - - - - -- — �- W • V - Of a +r — w All 6.0 30- MINUTES 4 -- -- - - - - - - - . - -- 9w - - - -- 50 in AREA (SQUARE MILES) o in 4 r NOAH ATLAS 2 a SAN' BERNARDINO COUNTY DEPTH —AREA is HYDROLOGY MANUAL CURVES ar„ 15 FIGURE E -3 me di *III CON. -1000 [- Mr -.I CM CD 000Ul-M0000 00 000) 00 OONCs•COCOU) U) All �I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ad d d 00 N 01 r..1 C0 0 U) U) CO U) M 0 0 N 00 O 00000000 00000 C. CO(OCO 44 00000 CO CO 00 0 0 00 000 Al COI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N NOU)N U)MO0d U)OOONCONN Ai 01'0000NN • . 000NCO U) U)dlN• --100 O 0 0 0 0 0 0 0 0 0 0 0 0 0 000 . M • • • • • • • • • • • • • • • •o a CY) I 00.0'00 0000 0000000 oo AO .H • ',x W '0 W W .4 D4' d W 0U)NU) 04 . OONN i n , C z a W OU)dI 0 ' 00U)d+O 0 O ) OD C. TP C9 OO C.11 O c) 0 0 0 c0 O CD rn 0 00 00 00 00 CO CO N "i a T-11 0 00 z 0 A •• 0000000 • ,. t: 1 • 0 • 3 , x Z 1-4 - W H <4 01 0000 W N0000 H 00U)N000 a a m t■ ,A r - CD O CD U) W 01 4 - 1 OU)01 00 GO W gl 1- + 0000000 00000 I 000300C-NNCO VIM <4 0 0 H • • • • • Z • • • • W H M W 0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 44 Cl H - 0 - 04 w Cd a W W x al, CV)o 04 N 0000 01 OoV)NOCDo O Nr-1. -10000 a 00.-1 oU) 011a0 0Ch0 0 4 0 0 0 00 0o O 0 0 0 CO Z OD 0O 00 N N NCO • de • .. �I 00000 0000 • CO 0 CO mn AO /� Mr- IMI.tO • 00 Ch 01 0NdiOt-0CD • U U) 0 . 00 CO N 11) 0 r` t` 0 01 •-1 dl N U) a H al 0) 00 00 U) 0 N NO .-1 COOoN000N z %./ ..... . ► .... w H .-I 01 d1 U) CO r M v 01 .--1 M •4 'O TM .-1 N ON O 0 .-4 .-1 r-1 N N Cr) CV) F.a 411 .f W N U)OoN0, 0) U)000 U)U)000MMCO 44 0.4 OOU)'NU) O0dI•-1 d l N r-1CDCO (JD rq • 40 a O e • • • • • • 1 . • 1 • • • • • • d C+7CON000 r4 QDC. V Nr4ChN0000r.4 . 4 •-1 NNMChd A A W • .-I A • .--1 M ..I • 00 I NChd N00 ' ,4 • U)N0000Or -1N A z z <V d -1 l <r • . .-1 .. gm is 16 a A A 2.4 Detention Basins There are two proposed basins within the San Sevaine Creek Watershed which are considered in this report for flood flow storage. The basins are the Lower +� San Sevaine Basin above the Devore Freeway and the Jurupa Basin at the lower end of the watershed area. There are other basins within the watershed area, including Victoria, Rich, Hickory and Upper San Sevaine Basins, and the Etiwanda and San Sevaine Spreading Grounds. These facilities will be used for detaining and conserving local runoff flows. However, there are either no plans for their use as flood a flow storage facilities, or sufficient information is not available at this time about the future use of the facilities to consider their use as storage s facilities in this study. The water conservation basins are either small .,� flow- through facilities or are utilized by pipe turnouts from the channels, and therefore, would be relatively insignificant in providing flood flow storage for peak flow reduction. The assumed use of each of the flood storage basins (Lower San Sevaine and Jurupa) in the hydrologic modeling is discussed below. ar 1. Lower San Sevaine Basin The basin schematic and approximate size provided in the Day, Etiwanda and San Sevaine Creeks System Drainage Plan were used in this analysis with some modifications. The basin will be designed to provide approx- imately 2,340 acre -feet of flood flow storage, plus 250+ acre -feet of ar dead storage to provide for local runoff detention and water conserva- tion. s An ungated, 10'x 8' reinforced concrete box structure will be utilized A to control the downstream flow from the ungated structure and spillway. The ungated conduit and spillway will be designed to pass a Q100 flow of approximately 2,650 cfs downstream. The spillway will be designed 17 ar no with sufficient freeboard to pass the probable maximum flood (PMF) in accordance with State Division of Safety of Dams and Bureau of Reclama- vi tion criteria. As indicated above, the downstream channel will be designed to handle a 100 -year design flow with adequate freeboard. 41i The stream inflow at the confluence of the existing Hawker - Crawford Channel with the existing San Sevaine Basin No. 3 is 6,846 cfs. The maximum inflow to the basin is 12,330 cfs. The proposed 2,340 acre - feet of storage in the basin will reduce the downstream flow at the basin spillway from 12,330 cfs to 2,650 cfs. The 2,650 downstream flow from the proposed basin is consistent with the Day, Etiwanda and San Sevaine Creeks System Drainage Plan, but less than the originally esti- mated 4,100 cfs outflow. A schematic plan of the proposed Lower San Sevaine Basin is included in ., the Appendix. The basin characteristics (depth vs. storage, and depth vs. discharge) assumed in the computer basin routing model are shown in Figure No. V. 410 2. Jurupa Basin The basin schematic plan provided in the Day, Etiwanda and San Sevaine Creeks System Drainage Plan dated March, 1983, utilized a basin bypass system to reduce the downstream channel peak flow below the basin to 12,100 cfs. The 1983 Drainage Plan assumed a basin storage of 1,300 AO - acre -feet with a channel design flow reduction from 18,500 to 12,100 cfs based on the hydrology available at the time the Drainage Plan was completed. Because of the need to provide for water conservation and local AO drainage flow detention, 350 acre -feet of local flow storage is needed in the basin. Additionally, the updated hydrology indicates a 100 -year 011O design flow of 23,722 cfs at the upstream end of the basin, an increase of approximately 26%. • ar 18 oft rr a If the 12,100 cfs maximum channel design flow is maintained downstream of the basin and the 350 acre -feet of local flow storage is provided, a total basin volume of 1,350 acre -feet will be necessary. The 1,350 acre -foot volume will provide 1,000 acre -feet of flood flow storage based on the 100 -year design hydrology. Therefore, a basin with a _ar total volume of 1,350 acre -feet of storage below the spillway crest is proposed. Refer to the computer runs for the peak channel flow, the ar basin volume required to handle the bypass flow of 11,622 cfs (23,722 cfs - 12,100 cfs), and the model time to the channel peak flow and maximum basin volume. a Because the basin will be used as a peak flow- reducing facility, it will be necessary to provide a basin drain to drain the 1,000 acre -foot peak flow volume within an approximate 24 -hour period. rr A 72 -inch RCP drain will drain approximately 82% of the 1,000 acre -foot peak flow volume in 24 hours. It is assumed the basin drain would be designed with a "glory hole" inlet similar to that used in Cactus and Victoria Basins. A glory hole design will retain the 350 acre -foot dead storage and will allow the remainder of the basin volume to drain if the gate is open. If it is assumed the basin starts to drain as soon as the 12,100 cfs channel flow is reached, the basin will start to drain between the 15th and 16th -hour of a 24 -hour storm. Therefore, if you assume two 100- , year storms within three successive 24 -hour periods, the basin capacity would be ava ilable for peak flow storage from the second storm. The channel below the basin will be designed for an approximate 12,100 cfs flow due to an earlier understanding with Riverside County. During ar an approximate 3 -hour period during the storm peak, the basin drain flow will increase the channel flow above the 12,100 cfs. Based on a 72 -inch RCP basin drain, the peak outflow from the basin drain will be A 19 470 cfs. Due to the short peak storm flow in the channel, the basin drain flow will increase the channel flow above the 12,100 cfs for a 3 -hour period. Based on the preliminary ultimate channel plans, a trapezoidal channel with a 20 -foot wide bottom and a 13 -foot depth will be required below the basin. The 470 cfs increase in channel flow will increase the 4 normal depth by approximately 0.20+ feet. The increase in channel flow due to the basin drain outflow can be handled adequately within the 3 -foot freeboard. The computer runs showing the 100 -year channel peak flow of 23,722 cfs and the maximum channel flow of 12,100 cfs are included in the Appendix. The inflow to the basin, the basin outflow and the total channel flow, including the basin drain flow during the 3 -hour peak • flow period, have been superimposed on the computer printout for comparison purposes. The normal depth channel hydraulic calculations downstream of the basin drain connection, both with and without the 470 cfs included, is also included in the Appendix. ar A schematic plan of the proposed Jurupa Basin is included in the Appendix. The basin characteristics (peak channel flow vs. time, and peak flood flow storage vs. time) assumed in the computer channel and basin routing model are shown on Figure No. VI. 'AI • X11 A d a 20 ar 4 ANN 4 60 - • • � So, ovTF w int AN �. 30 l . 411 1111/ fop s i0 0000 3000 0 A4-5/it/ STO,24d6 �i4•F•� 1 1 /AV Z OIV 422w N227 46140 r5r4.S✓/V OIJTFG O//J (a. IR FIGURE X 21 di OA H I w C.) a Ai W o 0 y re X al O O di y iL 23,719 1000 24,000 Ra d id BASIN STORAGE VOLUME ( BYPASS) ds 996 Ac -Ft 800 20,000 ' A. • : 600 16,000 - Z v.. 400 12,000 ' 0,r W M CHANNEL FLO , MAX = 12,100 cfs _ 200 8000 .. 0 4000 ' is 12 14 16 18 20 22 24 a TIME (HOUR) MI . di JURUPA BASIN SAN SEVAINE CHANNEL HYDROGRAPH AT BASIN PEAK FLOW VOLUME DIVERTED TO BASIN 411 IIII a 22 All FIGURE SL d SECTION 3. SUMMARY OF COMPUTER MODELING AND RESULTS 4 ,., The unit_ hydrograph predicted peak flow rates for a 100 -year frequency storm are summarized in Table V. The 100 -year flood is provided at critical points corresponding to the node points shown on Table V and Figure No. II. ar Table V also shows the peak flow rates used in the Day, Etiwanda and San Sevaine Creeks Drainage Plan dated March, 1983. The 1983 flow rates are shown where applicable for comparison purposes. - rat Table Vlshows the runoff per square mile of watershed area based on a 100 -year frequency event. The 1986 peak flow rates are 17 to 57 % higher than the peak flow rates in the ,s 1983 Day, Etiwanda and San Sevaine Creeks System Drainage Plan. The increase in peak flow at the mouth of Etiwanda Canyon is 57% and the in- "" crease in peak flow at the mouth of San Sevaine Canyon is 48%. .., The runoff for Etiwanda Creek at the canyon mouth is approximately 1,580 cfs ,,,,, per square mile and the runoff per square mile at the San Sevaine Creek Canyon mouth is approximately 1,468 cfs /mi ra Runoff per square mile for Day, Etiwanda and San Sevaine Creeks is plotted on Figure No. VII. Because of storage basins on the Day Creek and San Sevaine Creek Systems, only runoff per square mile for the upper watershed area was plotted. 4 '* The runoff per square mile for San Sevaine and Etiwanda Creeks is higher than Day Creek. a 23 Table V Unit Hydrograph Peak Flow Rate (cfs) 100 -Year Event a (Nodes) Watershed Location Point Number 1983* 1986 4 'w UPPER ETIWANDA CREEK 2 3,077 4,821 "' 3 5,287 7,385 4 - 7,996 7 - 8,114 8 - 8,209 UPPER SAN SEVAINE CREEK rr 1 1,967 2,921 401 ** - 7,425 403*** - 6,068 (12,330 * * * *) 4.1 (spillway) 4,100 2,651 AO SAN SEVAINE - ETIWANDA CREEKS 5 8,200 4,600 7 12,200 7,258 8 - 8,530 8' 12,200 14,958 9 15,550 18,218 11 18,850 22,860 12 18,850 23,722 * Day, Etiwanda and San Sevaine Creeks System Drainage Plan (March, 1983) ** Flow at San Sevaine Basin No. 1 aD * ** Flow at Hawker Crawford at San Sevaine Basin No. 3 * * ** Combined flow at San Sevaine Basin No. 3 The watershed location point numbers (Nodes) are shown on Figure No. II as Q 4 mit 24 Al Table VI Runoff per Square Mile of Watershed 100 -Year Event Watershed Location Q Watershed Area 2 Point Number (cfs) (square mile) cfs /mi UPPER ETIWANDA CREEK 2 4,821 3.05 1,580 3 7,385 6.08 1,215 • 4 7,996 7.52 1,063 7 8,114 8.73 929 8 8,209 9.51 863 UPPER SAN SEVAINE CREEK 1 2,921 1.99 1,468 401 7,425 6.05 1,227 403 6,068 7.49 810 4.1 (spillway) 2,651 14.18 >.r SAN SEVAINE - ETIWANDA CREEKS :an 5 4,600 17.45 7 7,258 21.25 8 8,350 23.18 8' 14,958 32.69 9 18,218 38.83 11 22,860 48.63 12 23,722 51.18 4. * Not applicable due to Lower San Sevaine Basin storage as as 25 •,-, - - - ' - . . _ s _ ' • . ' - • . . . _ . ._ .- .. a 1 2 1 2 3 4 5 6789 1 1 2 3 4 5 6789 I I im " 1 1 1 . _ ' 1 1 4 • , 1 1 - E.:1 ""111111111: "4.-:17-211111111111111NOMIIIII.: . , , . . . .73: -..-..- --z.---- -- --- 3. iii - Mg. a IT: = - - - .... • ' ===.... . 8 5.-. : ==== : =.1-... 322 7 ,___===== .. ...MMUS = EM Eamm illal VF M _ m-- in =====.. ......... 6 4.• EHESERIB ... : == IIM••••■•111.•••••1110 1 .. • . An& ... ==E7-1111111li IN 1 '"'"'"=- Mill•IIIINEN 1 i 1 IM::::::: ... : ... 1 1 ====='""' . " .. ... .. di == ==:: ==munil , - : i" 1 i , la i 1 ... ••••■••■•■•••••• Minna MN =MN ESEEBEEI E . . rr . -Milli ........ iimum u m mu Ira: ... :: ... :: 5 ___ onsweammommwo t ! ' I ! I MI IMO NS 011•1•111•11. - MiiMi.M.M.. . 1/11......!! ... MIEHMI ... 1.1•MI 1••• UM MN MIME ' -' - r i ! : ' - inanimenum. 1 . 12 1/4711 i ' I ' I ' ' ' 1 rill . wilmoimaism III 4 ,_ EL"Pli ___ ...... 1 ... Him .... . ... , , ,,, .„ . , ..-- ....... .....-- m ........ :3111-2::::: .... . ..... .... .. . ........... ... 44 BEffiffilr . =-- ; .. .....= 4 ' i '11111:•••- :22 2 911111ti ... : == - --ENIIMI n14_, . • - 1::::::::: .. aihiliEng: . SEIM: ..... .0.4 ININIMMI.N1 ' . t I. - S == - . t 1 { ' 1 * ' . I . .....................- . 3 11=.11=2"a ....- ==... t - - 1 cl - t 11 1' 11111 .......................• ams•••,•••• .0. ...I ■•••••••• 1411 4 111=ZE Mr .... 1.41.11111: ===ani '. f ." -. 4. ,_,; - - eg i,•••• .. • MN 1•■•■•••••••••• MP NS •• . ••■• 111•10M•all MI NW l•Mil ..... IMMO ••••=1/1M. __, ._, ,__C , 4 _,_ a• . ........----- mummignuns : 811111111 ..... "===111111 ; ; i ; ' . ' . ! 111111=1::::::::lin 4 i ... .01•11NOMIIIIMININ MUNIIIIIIMUINIIIIII ••••••• _ _ 1 .... t. _ T.1 t ----- WIZ " 0 ...... 1:1=22 . ' - i - i - -“, ■ , '- - f ' ........mal ......mung . 2 . MEIN 111.....mil AI . 11111112211 ill 1111 0 Imo: inum......zzacc:. Ki 1 l mmmm11111111:11 III ' it 11 ! all r ommummimililli jaimmummiliammina 1 , i : ' ' , . willillmilmumnimmihmimuillumaimmasiammann N a WI X 11111111111MMIIIIIIIII M MIIIMM1111111111111111 „1 .1 . r I ;.; ; ; r - 1111111111111linlIMMH111111111111111111111111MIIIIIIIM•IMMUM MEM., 11111111101111111111111111111111 II 1111111111111111111111111111111111 ; , ' : ' 1 : 1111111111111M1M1111111111111111114111111111111111111111111111111111111141M1 co 1 t - 1111011111111Millir 111101111111101211 1 I i L". :H_111111111111011111111111IMMIIIIIIIIIIIIIIIIIIIIIIIII C\J a Lc) • _flit UMWM1111111111111 1 IM1111111111111111111111111 j , 1- 1, 1 i • ' wiiiiMMUMMinimimilliiiiINUMlim•INIMMIII r -, . , , ■ 1 . 1.11111111111111111111 I 11111111111111111111111110 1 , 1 I 1 i i 1.11011111111111111111111111MIIIIIIIIIII•EIMMUIIIIIIIIIII r. 1 .____ Mil ' 11111101111111111111111 1 1111111111111111111111111111 1 ' 1111111111111111111111111111111111111111111111111111111111111111111111 9 . _ Mffir-S@REP =iiiiiP ,:---E--'21INNEEMINIOMPII ====_ -- 8 - 0.1-1- . . _ =s--.=... --==z1M. . = sn i ff -- 111 MEESWE''''' !CZ:INF .. iiMEINNINI is .=...,-..= 7 _ _ _ =======., IN szaza Mamma =EMI --lap* __ ■•■•• mm MEM IM•■■••• Man. mai 1•1=11••• NM •=11•11 IMIM•P••• .. ‘ _ _ •••■•=111=III• .. NEES qr ...... ••=1,112 ..... •••1==q111 ' - r - "I - t" " --t- ' ' 1111 U i ... 01••••■0■11orma ... 11111■111•11■111•Ms” . IIIIMIIIIIMMIMIMMIN is 5 .. _ =7:=:12 d ; ell ...I .....t 1 . , . g ..... WIIMMONIONIIIM IIIMMIIIIMENIIM . Magnagri . Olt ...... 1111111111111••• _ , _ , 4, 4 ... MENEM , 4 ,_ ,, 4 4 1 01111111111111111111E•mmo . 111•1111111111111111110111•1 4111 1122:111 1 ulummugui i ... ,..,, ... ......... w.,.. :4 '-± :44E ... .. 11 .... 11111 MUM MINIM lllllll 1111•11111111/••11 MEM 4 , _ mmoonassus l lono llllll tenimmolo 1 riss...... is :74E= HI r 1 il Mlli ......... ---- .==== : ... ..... a == ...... . 3 _ """IIIIIIMILIZZ1 91 EOM -__ - ._ ...am& 111.1011111= IIMI."%11111111%=:::::= 11•1111M4•111=1111.10111111w ...... ... I MIMS - t "," ".- . -' MEM 111•111111•■•■••■•• . ... InIVA11231 Pi lip ,„„_,,, _ , , ,,,, ..... -- , _,__,_,,. . ....______ ... maa-4 _Li. now Nigh 1: 1 ...... „„1::: -4 . , 4 ,-,- ,,, , , i ,_ 4 111 ... . _______. ........ ... -CUM .1 1 ; j .. IL fr..11."1199 11r11.9rTITI./911 1111.1111111111 ', I ; ; 1. ...... "2000 2 EMU , _._;_ IIIIIIIM111.1 - • ' 143.41.13.1:111■1111 . , - •-; . - , 1-1, BM i .........in _L.A._ .. . .. WAN ir UMM1111111111111111111111 i , i ; , _; , ; .! 1 IPIMIMIIIIIIIIIIIIIIIIOIIIIHMIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIMIIIIMIIIIIIIIIIIIOIIIIIIBIIIIII __ /11111 11 01111111111111111111111111111111 i i ; ; , , ; : i 10111111111111111111111111111111111111111111111111111111111111•111111111111MMUINIMM , , 1 , L JIM II 11111111111111111111111111. ' 1 ' 1 ; 4 4.; ; ; r111111111111111111111111111111111111111111111111111111111111111111111111111111•MMIIII - " - "1"' , ' ! : U a RI II IgniiiiiiiilliliiiMMIL 1 1 : • ' 111111111M111111111111111111111110111111111•millamill1W1111111 , 14; ' 'Maki,. I IIIMIIIIIHIIIIIIIIIIMMI . 1 J I 1 111M111111111111MIIMIMH1111111111111111•11111111ll••mM11111111 ii. ... -!--. l 'numnimm;,, •ti...114 111111111111111111111111411 • ; : : 1 , 114111111411111111111111111M111111111111111111111111111141111111111111111141111111411111111 'I' humnimuipm.. uniummunimm. t t i 1,_J _1 i : t t 1 millimmuumilimimummiummisunnuml . ---- . , 1 , , 't . Bil 1 I u MIMI iii; u leg 1111 I II IIII III ; ' " , 'PAPP MI IIIIIIIII 1111111111111111111111111111111111111111118M • 0 - - -- 1 ! -11UMMIlliiiiii'llt■ OlhilicM!IiIPI!!:;i1- E. Y, I. 141 „E 9 iiii:v.loilmminumnimmilimimmanrummuli x 8 1 _ 1 111111111111111111%1111111111111111:410niSIM . ' 1 ' ! ' i ; ' I ' lini11111111111111111111111111111111111111111111111111111111111111 a Os3 9 INEMP.M1112' .. 7 ----iimmllir..... i i l , , . t,. i •-•r, ! w p............ . ...... 2 ';' MiliErsiffiFaVr a a -zr ...r. 8 _ -====1 uT A 12: t.' - : 3 - 3: =MOW qvi : : , ; ! i Whp....: I EPEES • • i11 EIMIIIIIII"": • , , 7. BEEMEMBVIONitiiiblikihmsunqUIER s I . essliplis ; Emmilimirm: -.......---- 6 _ .........1111112 V' .....--, ' solisliiiM 01•111111•1■••■■••■■•• 111■•• •••• IMAM MINIM 1••• ... 411 C C.i wn. ......mazipmeraj . • . ol IT wow. HU % MIMI NOM ■■••••11 VIM NM ENE •=1••11 MIMI= 5 „ Egraligh Eihi NI MI i MI EH I I 1" i LINIMMIN MOIR:: ... . "MI :, P '■ ' •"" 4111 I , ,.. , . . , . .. , { 1.1 smilmesoMmitoM - i - r IiiininnillillMiiii4111111! rm. ... mummill , ; r ni 119 SIM .0 11 1 / I 1 1 • - 11.1.1 r01 1.1.1.111.1.11111.11. TI .V /11 If -L. ./ / , I / W VII/ .1 _' ; . .. V ' -.1 - ..... Mill MI= 111 ', ./ I/ 1': II• I", 1 11 A . ... Cl) 4 me ssm .... si N. ...... mom. ' ' " • ' ' 1 I Ism .. immilim LL. irro li L 11111111111111E2maniiiiiiiiiiiiiiiii lag ... ,., 7 ; ; 1 E.= ; -; ; i ; ' ; 1; I kin= ... ::1::: ..: . ,K.- :- t ..., - =Er"C•• sin: mg ....... ::_;:::: 1 i 1::14 3 Iliandhliiiiiiiiiiiiiiiiiiiiiiiii Mil:Mt ........... nu= : ; : ; : : : 1 : i ' unfili :CM s ----,.......... : ' ' - r' ' ' IINC:r. MEI 111111111111111111Hout. : ::11 pa-- plow i i ' i : :• i , 1 1 mph. ..... 111111 : .... . .. ............,_____ ... IIIIIIIMIMIII•1011110 INNIBI■INI11111•11111111 •1•1=11•11•1111111111 :::ii 410 - --:-_-,--1- --,--.-44 - iiiiMIONMONSMAIMEN .. .. 4 _ i _ . MM.= MEM MN MB . .. - -, milip , 4 iiiiii„„1 , , ! r II 1 11 111.41 WITI!!!!,11111!!! L : 4 ' ijiARi 1 i • 1ri mil ; ; ; ;oi ■ 41.14 1 . 46 111:11,... i . ImINNommula ..... iliiiiMMIUMes ill 2 - 1 Eli MUM! IMMO ' ' ; 111111 4 , ,,_____ . mmonsili mum 1 till or .....orim ...... :::::: nnunignmpi i-i,- ummouni- _ . , . , : ' t gumurannummullmmon:::::::::::::::: , • , . us IIIIIIIIIO011111111 11111111M11116' _1 . ' .. : • - :II m i li linpmmu iffi lluiliii m im.....nommipli ' milllialleliall1111111M11111114111•1111111111111111111121111111111m111 I suasommilimin 11M1111111111111H11 • i i • MMIIIIIIIIMM11111111111111141111111111111M181111111111111111111111 11111M111111111111111111111 1 1 1111111111111111114M 1 ., 1 : . , : : 7 ' '; : . IIIIUIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIM • 1 1 _ MIUM1111111111111 1 i IIIIIIIIIIIIIIIMIIIIIII I __t : , , !_, 1 . : 1 , . ; : t 1411111111111M1111111111111111111111111111111111111111111111MMIIIIII Li , I I 11 Hffil 1111Miiiiill 111 1 1 I 1. immummingi _ _ i : , , ' . ; i1,1, ; L i lumniumplommomilmmillumnpm 1 , , 1 i ! i 1 1. . •n li1111111 1111111111111MIN 1_ i . i . , i ' , i1 Iffiffilillffilffill111111111111111111111110111111111111111111M1111 Ill 1 _ 1 1 I ; M MM111111111111 ! ' I IIIIIIIMMIN I 1 ,:i . .. ' ' ! : : ' Ili mummminumnimusurnumimm 1 ,..... . . . • 1 2 3 4 5 6 7 8 9 1 t 1 la I 10 . 50 i00 2 2 • MI FIGURE NO. MI • 26 . ' e. \ and .'$a' a v - .X„ MA' \,. "ti' >, .. F• • M...• ., .4 Nd n Sale . - «!' ° F ° +1 AdR t �' ..,°.r ». .,.......w«x. _ - -. -:. — 4. APPENDIX I my 1. Lower San Sevaine Basin Plan 2. Jurupa Basin Plan AI 3. Rainfall Isohyetal Maps 4. Jurupa Basin "Flowby" and ' "Flow Through" Hydrographs 5. San Sevaine Channel Hydraulics below Jurupa Basin Outlet AO Val ar 40 is d mi s di d di LOWER SAN SEVAINE BASIN SCHEMATIC PLAN i 44 Ai ar of dill aw in alb 4/1 le V —" 0 0 0 0 0 0 0 0 g N co c0 V cv 0 co cD V cr ct CT t to M M W O 11.1 Z W f'- (n H — r► ( f ) ?" CD Q - O D H V) ON _ W N N 0 p Y Z s« •■ p _J W Qw 7 N F- 1 I `` .! O 4 U cn � > 1 , Z W ' Z ao Z O Z CC Q m Z u, • -J ., , 1 . m Z p Q v Q / i W o u W u N 1 1 0-0 Z W1••• co i \ (II cc _I a) > 1 tu O I. .c O ..- \ CO — � 0 to ■ C t LO W Q 'N tAi ._ \ . 0_ I C cf. 1 N i- v GV x + N I . - v) a o • - ti.) w O .... 4 1" Z ° Li a v I d5 o F- — • Z a z O j 1 W a, I OQW W 1 ^c " L,J m t1 J^ `� z / cc. 1 0‹ — — Na � �� w C< w 0 —NO m Q • o O v _� O p h- I W- I O c U - > cn 1 E- N, rz c w l I 2 I ) . -- > I � n 1 / , z I x r . 0 o 4 . 1 M I-•� 1 0 cu (- 0 o �� • o a. 1 ca t— W I , 1 vi- • 0 0 1 �, a. Lf, 0 1 • 1 c I — i 0 L r 1 1 Z1---- as'' ° v,, cca3 M > 1 c: V. J n O ; .460 1 O X 111\ ( Q' 2 (C2 W a t) I. J ` o (7, N 1 r , W CO . � p «-) ii. I \ ... 1 ' a1 t ' . >, 'ai o n � 1 cn \I rl 10 \\ 41 • LCi co in co q- M , . 0 0 0 0 0 0 0 0 00 c0 c7 cv 0 CD ( p sr ; [1' ct q cr —. — _ M . �1 d Z N 07 oN 1 aays aaS 11.1 -z• i o > I () � N N Z E r m D . (n O en w - L) ES Y 0 Z J W — o ! o Cr = N.• n (� O to J - ITo i QZ zoo W z -0 O; _ W 0 Z Q J 1 `� j d o j 4 : (7 ) c 0 . \ . 0 z _, w co N- 1 —_ —_; , 1 1 . _ c \ 1 <i 1.- eli `` (n o N c t I W ' 1 to . 47) \ ' \ i co }- I 1 W N T7 M v ! N Q 3 al z- • C ! I O U laJ I Q U I i I p W U i u F- U i Q 1— a Q � ? 2\ LI. 1 , U p • .5r.44° Q ! / i ' J / / z a, 4 z 4 cx O 1 / Wm U - ( 0 I J -? Q J co a' vi w f f } -- - --- o r - - - ' I 1 7111F. a) 1 ----) I I . , -- lit . U f i! o I i J ' o v c 1 1 / / i i ' i ( +n c v 7i) o _ � ,l Tc ‘si �,' ' c o „ a CP f 1 >" - -- .-- ,...--' \ \ >, 1 I ) — --. 3 c n � ` � N \ (/) v W ....— 1 ,ri._. S' go _ 'c ' cls ),, 0 L..) :i . CD \-- )1/4\/-1 / i ii- I j I I \ \ v ' - 2 m t) � 111 ' _ - 1 - �� � ,, \ L ...&- 0 vb• c c x a 1 (n cD ; L v 0.0 / CO • \\N •- a N lc) J� CC F- /'� \ \ W U / �-- -_- - - -- -� to M Cr I2uuoy3 )aaJ3 opuDMi43 bu!4syx3 ---• X O Q ct - S M N -*w v,- .•: - -.- . , ,r;: e. • w �- - .. , ,. _, r - ....,. .. - .. .....� - :,., .ma . . • ,. ,a, • ,.- s w. ° ]f'-- `i`la;y.'4:.^Rt.� " t . ... 4 +,�wr'�L..". 1 . _1 i M .W Z iii I S Z h* Q CY] D U 2 O cn — ()a Y co o W Q 9£6 88n8'1 Limos ;o doi.,, 9£6 - 0 p W m cv TAT D� � Q ,_ CC0W m o Z Cr •• a L - 1— Qo j H �' W p +1 W W �J ■ N W C!) tau 0) Ct W W Z Cr m co CI w W M p U U! (f) in O, <4 Man, LtJ M F- a0 f g �— V) L O W Q 3 N -� o a 0 a = U Z s ' 0 E cp g. • 2 2 a Z I _ � V i m 1L trl c J O w — —U o m t,. ; 2j a O a ��05 -0 J 2 i 1 d a 41 ' ••••••■■ C i J j a. To O C n .oc o Z V • ° gr .31c 'Si VI 111111 lk G r- Z5 1- • V r • c) a•. co IL 0 O N ` ID W M 0 - c 0 c° �, _ $ = c 73). c +i n o ' cc) o v ›. 1 o c cn Cl. a0 I v "51 I; ° ;� ri a 2 ft II; a 0 CI qt +- a M C 4?. CO 8 v v o . %) 4 - A .--/-'- ill v .. 9 ok N IlitH iv . J CC m U lq v c I . . 11 � ~ a to 9£6 - - 'w►A - 1 uisog jo doj 9£6 N 1 w o 2.2/ t o n • -.--.. :::-.------------#':----------......_ ‘.- '..-.......-7 . ... of ... c Ss : / S INIAMbod eq 0 4 M j!PPV S 6 N - it .:.� _ .7177:: w ; •JMT r"%r 7 � : '. i'reb 'n ,,. :•.sa1W : 1 — R +i J 2 M , M1 . 8 w 1- ir O Z lai O - w ` >-t-- Q v • -J :r �1 — ( 3 — D r- V 0 V) Z g ‘ 2 1 „ . i 4., T"------ # M :31 � oWm ^. • tr c.i M Ad: M L M O N Z Q V « M Q J Vf CP _ �— 3 ' n G w „_ , , ,.. ,. - 1 _ V Q W :73, S. m I44 .. at Q V La • 8 CO ,.,.' Q W 0 • r • V �� • w cc • ( z w Z z • a Q om - A -- V Wm a ( F ” Z li r-- , m1 o _. - 42 cn I% to 4 co . > (� U o� M I w J W J +t m = m 0 f o c cn ° Cr t it _1 3 c , 1 C at t PM +i t1 N d _1 W p OW i n- cy) ot- . 0 0) . 1 t `` 63 W 1 t t 3 w a 1 1 � 3 ac Cr I 1a c - +� 3 if i 1 ' ' w I '1 CO cn 1 o a I I ii - _ o ( 0 i. } "J z I Li U I ? I — I ..L __ I. "' N CO cr o w ti i IL; a j � ' i Li . _ _ ( I • 1 c. T O 1 - • c I � _ • - - 1 I •..- ?a7 , rs' 7 ' ,:4� n.s,:x,�jr.yn+; w..!q�""', r N>ur rm+•.cenve«N. 3Rr!>o^n ,T^r;. 71 404* ....�.._.._...,r.....,, _......w.... .. «e «w...�-- —..... .,.«,:m.r<.w.,r «, � ii a'?)u,w+.• 1. t . . — 1 V J_ /: N 0 I I �1 iv�INI'du } J �;` noW g �1� 4 . \ ` ---- ....... __ 1 1 \ S ]NJNI NI 1 IVJNIVH -- - c I I ``` E - , - IswnN VDl1V -snr A, El V a N no 9 '' 9' I \-'•?t_JV- DJNNIVLICO -------- 1 1 A8VONno9 � I ��a JO �DV1 1A -. , 0 1 A 8 V Cl N f10 9 D J' V N I V EI C I-- ---.--- ,-- .. 4. ,• 6 '0A'16 1111-1.1.00d I I ! D / ' • 9 I� , %,/ m _e resw. -.v..' — r • t ---iz- k y , r '3 AV _ J N V '1 H !H �.�. , 1 / J j , _ r / 1 9 • • • 3 AV 1.W •___ , 4 1 __ A L,1 ,...r ,.... , ,,/, � O " 7i i / y , —rdd sr- �% 74j/ �� op o o c ...‘ t \ . 1 -,-,--.'' (7; ...-- 4 . ---. ,,,[\ i 51 \ ) . I . I. / I '' . . / I., 7 . ,..,,.. ---- ,...... ■ • • k id .\ \ ` . g r • J, v •'j c f ' • r .y.�' , " - 1VI E, •, ; a. - 1 - 1edNldE . snow vz d�, ,7 i ' — A iVaNnoa 3JVNlVEla JtlJJ H .ICJ DDV -11(A W 'IL .f . ( I s ti • . tI s «. ■ >> 1` C� 14; r \ S JHDNI NI '11bn1IVU 5. ,, � - .�, uJfWf1N VsJ'd -rins - t. : ' I v 38V -ens 9JNNIVda � , I , • • AuvaNnoe Au'doNnoe OVNldda t • 1 ; ;'; rA - • 6 '0A16 1111-1.1.00.4 ' . rfl I 9 - / ;, f. fit. i g j .• • —i_—):7- I.., ,,. 1 }' 1 >A. • and C�Nb�H�IH�_ -.,,9- f, J -----7 , / ,. ...... r 4i . .„ ir .... - i T .�lj its # �, ✓ ..�— 11 \ yam + / �. ` p `.IM�Iy 17 .-%'/' \ \ '• . , -- ........... . : . i• ,,i C L2 \p ( - ' N'''''4 ' J / ; ■ aft • \ 1� ,, .L, � t „p ti \ {:. + • r^ I I ... ; « x 1 iP G * It a • . I ; ' ' •:: :" ' ' - ',, ,.. .. ' . " .30001,4 t1 .'lei."WilMi.W.10. 'IV ,,, ';-. ' I . • .' - 1 V ..L 1 1 A HOSI . , ! . . 1 unoH t. 'EIVA OL AuvaNnos DOVNI.VUG DOVII89H '.d0 20% . \ . .. ,. \ . , 1 , li \ \ ( . , c,.,3.7111D NII NI 11V :i(\11' ki --,..,:,'fi. ....... Vq11 N V V - 9 II S „........ _ , — FT ., ..*I• V (1 N.1 ri 0 3 , 1 • , V =-3 ...1 V - n S 9 ',0 ,,.' 1` I V a ------ , • I , 1 A U V 0 r4 no 8 ., • • • I I .. I . I Li H :10 3 0 V - 1 - 11 A ""•—•• d1"1".." • I 1 01 ASVON1109 99VNIVEICI i .6.....ostromos / — ‘. .........— --....—...—..........a. — .. — —. .... ... — . :C1N903 _......---__.. N ., J / - 1 1 i 1-1 I 0 0 7, . '. / . I 1*1 (24 \ . _ ....._ \ ir / 1 .....'" .....".... ' ./ do."... 8 / ...., _ 1 N ! 7 -.I s' g .....„ \ ....7 ___ i/A--- 7, ..._ .__.. --.....--;-.... . „. •:.., ... . ., " (.... 9 ,/. • '1 . J ._____ ■ .......... 3 AV CNf1H . • j --- , . /;//:-.. _ ; .,-' ' 9 i H .1, 1 ,...._„, ---1 , ,.- \ \ .1 i 1 1 . „! 0 i? _... , ........ 1 ' .....I. —; ---\ : i — — --\:::N:-:\l- \ ......... ........ ....... _ ..... ......., . ...._ , .,, 7 ' --- -- --) \ . • . , 7 ,-- _ 1:7 \ r' . • 1 ,•:::'' / -----. ,:_,Y 7 / — • i • -- -.... ■ .• ' , \ 7 i / • / 1 r', /. t _ ,........ t, 7 ( N .- -,-- ...— \,• •••'- 1) //- i ,// ---- , \ Iwi 1 . .. - 1vos • 4. - --- ., I . I i' s "'N, i i ._....• --- - • \ , .,, \ ‘ \ k ,:„........./ t ......> ..■., \ 44.4......uommil \ /0 . . 1 i \ \ . • \ 1 i . : • • # , , \ \ ,,. \ , . ., ..• .1,......,;,......—:-.—........................—...,.........—........___....,„ i i• , • . . #, .• , .• '. ,,_. • ' L _ . . . , . . ' , • . . - i"V , - ' ' t .t1PagitiKM • n ---- ---- -- - ----- --- -- 7 - : ,. . . — '4'• • ,i' 3 •.! ; ' 4 \\ , \ \ . ) \ \\ • . \ . . \\ , \ N\ '1 \\ \ \ \ \ \ It! , \ \ N y , .., \ ,. ., \ \ . \ • \ . . , 2,:.3,.... . i • . . . . ......... —.— ---- — . • 1 1 \ I \ . ,•-• , ) i \ 1 • . -•-• 1 ii -- :': • ,e2, ...- / I I ,) ; 1 ......... --- / / 1 I 1 . . . / ...-- , . ! . , 1 ,,..... 2 / N_ . ...,.,_ .. ._........,-, /2..0 _____ „ ---- ( 1 j 1. 'X / / , / ) / , • _.,-- 1 / , . a --- . , r/ , / / , 1 . 9, -- — ..,-- -/ 4. ALE: 1" 4 — -- ,/ : SC , , i ., l'• • ''' i . / 4 / ..... , . . . _„.. ...- . 1 •• 1, e• . . . ., . ...- a I ..... • , . _........ , , .. , .. ........_ _ .• }.7 ' • ,.. , ,...- ....... . \,.... , v . , 3 \ ..._,..,.. . . . „.. , ../ . ...._,....40....2. -1. /4 Z /1 . \ -S --- .,.::- I' `" 1. (: --- -..... - • ...,,,,,,, c ' — -- — 1 4/' .. -:/'' SUI • 4 . i. :° .. 1 MM T AV E. ....., 4 1 . .—.-..--.....- ..-7.):"--- - - . -,;:-.Z , „ ' „./ . „. .. . .._ , • • . ....:// ---- 7 6.1 . „.„.......„---„-._ ......, . I-- . 2,::-....:_-:-.7_,..„..../ H ■ GHLAND AV E. ______ 1 . . • 6. 2 ......_ ......_ ........ ( .ce' ...„ .....,„ • 7 1 N,, o i3ASELiNE R 0 . 1.........411170111110t .4.10P:..,› \ v--. 1 1 ; / . . \ ,r . ,.. . . . . . • . , . ^4, .../ , . 8 . . . / : 1 / / .//, . , • ! :, , . ... . , / . . \ , .............. / ... - 1 . 1. \ -, • , --- i LEGEND: .-- ..........._.......... • , • . -i. , - • 1 ..; D R A I N A G E BOUNDARY 1 0 100T H --,„, 41-- .,.... .,.„ . — ----- VILLAGE OF HERITAGE N . . BOUNDARY \ , . , . \ / .:. DRAINAGE SUB—AREA . . . . / • t. ft BOUNDARY \ ./ , 4 , /.................., ■ ....... '.—” '.7.' \ ...-......,..-. "0""•■ .- - '' , '- 1 ,, -""..---............. . ' ' < i 44 SUB—AREA NUMBER . -.,.. ... , . ,,,.. ..., \''.... • :4.-, . —RAINFALL IN INCHES ' \ • ',.-' , ,.. , --f, • p-: \ \ 2 .,: !I . . . .. .. \ . 1 ..-i \., --• . . • ,--- ...-- 1 - ..- ..: . . ....- / . \ / ; . 1 i VILLAGE OF HERITAGE DRAINAGE BOUNDARY , 100 YEAR 1 HOUR RAINFALL . . , I, ! , , 1 . , . I S O H Y E T A L i . 1 . . i . .. .. . .. i 4 1 4 t t -1V1.DAHOSi .. • _�_ 11VJNIV dnoH 9 ' I UvJA • 'oo 1. A VaNno8 � JVNIVEIa DOV1I H Jo 1 ' - J'd7�1I/� � t 1 I !'i ., i 1 \ ....Z 1 1 \ SJHONI NI -1 NIVd — . y .— AuvaNnoe d2dv-8nS 9DVNIV80 -, , , I I AddaNnoe • 9DVII8GH '.do 9V11 1A ---- 3 i 01 AEJVONno9 `�Nlyda -- ---- -• I • . CI N 30 3 i 4. ;. .0A19 "111H 1008 / c • / m /' / H I C./ j 9 Ib 3 s / p,/ 0 ivi13sde ..... _ _ _ `� y #1 O � %.16......./e "" /p` 4 _--- ' /� _ _ • *' 1 '3 AV 1 IiN fS :' I { /' � t�' 3 / 0 \ Z . . . t ...A -- �� b -- ,rn . _ I • f l0 1 I p ■ l i S , : ' : \ ' / - / . - - '0 /./- II P r ` \ \\ ` , • ' 1. i ,,:' :; : . , • . I� -.yf ...w...�N l it�.au..s .i.. TT 4, - ' ' ' ' ' ''' ' " '. i .. , . ... li . , • . , ,_ 1\11.9AHOSI ' . 11VJNIV t:1110H ve. VA 00 I. ALIVON1108 3OVNIVEla 90V1183H JO 30V111A ' '1+, '4' ■ ' V ' \ ' 0 A \ ti, iir 1 „ '4 N '1`.. / , . * 0;i`• ........ ....„,„„ ......... / . • / •1 1 / S9HONI Ni 11VANIV— ...... usiAinN vauvens II •••• - ( \ - t7-17 „ ......... "\----------_, ''' N., oc, M:IVONC109 • \ . < N.. VJEIV-9(1S 90VNIV80 -------- \ ...,4 . AuvaNnoe . \ 1 I . ... \ 30VIIE131-1 90V ."...........■ ...4,. 4 .4 .: \,.. .. t....- 0 1 AldVeN1108 30 VNIVEI0 ----- . .C1N30 f . . ......„ • t .. ....... , . -..._ _.......... _____ r ._.... , ..1‘ ., ‘,... 6 • / t Al .i '0A19 111H.1.00J if:4;f /1•1111.1•111 /111111■11■ WMINIftlImiwa illffir.•■•••■• AMININ......... ,............., , „ 4 I A • il ...., 144444 1.„,..,-...." 1 '. . e /,,,..),,,, • ....._....... . 4 ,, 45 rnS tri 4 t • 0 221 3 N 11 3 S V8 1 ' ■ ......... of ° I- ' 4., 2_ • 3 AV ONV1H1H 1 x ' . ' ---• -- • - . . , . , __ -- ' 9 . $ .., • -.. .- / ..7.-.......- '''''''"1:7 • . , ,,o.6 — .... ............ r * ..... . -.. ...........- ....."'" ........ ..... T T T ......."'.. - ...--- ....— _ ......... / , \ . ,,,, v -17 t 017 7 .4 ‘1.. .....,, .4 ,/, )-. 2 --,.. . , $ , ,. , ' , 41 A. • 0 iv }. • I'l I f ----- " F' Z r '''''' .....■... ....... ''''' or. , 1 r 1 ', ....r. ........... ......... .......... ----- --- . fr / 1 _ - 6...... ___ ....... ..._ .... ,, 0 • 0 1 . .. , t , ci 1 / / ...... ____ ..... - ....., - 4,.. ( / „0 Pfi' \ 4- q.' \ \ / Ry*. Ae \ N. \ \ \ \ \ \ \ • ..-- \ \ -- \ --- --- ____ ---- -- 7 „ •--- a QV ., I- •,1 \ N. \ .\ \ \ \ \ I - , , , ? • . , JURUPA BASIN "FLOWBY" AND "FLOW THROUGH" HYDROGRAPHS /cwt. A * * * x # * * t w * * * # * * * * # * * * * * 1******************** t , PRC..E NJ.' 17.30 TO NOD. 12.00 IS CODE _ 2 V >cL0ii: Y STRUCTUR7 ::OUTING id0DcL « «< --- _ - - -- - asaazz= = = =T 100EL STREV.1 `.J1 :ER 1 =L0WI'1 :ST A FLOu3Y STRUCTUR 1 =L'OWc:TES IN STREAM t' 1 WHICw APE- GREAT'R THAN 1 121:,;;.0 Cr.: - 7 . 777.SSUC TC 3E = XCESS_FLOWS. ) rt _'XC SS IS ASSUME') T; pr ‘1d'J'NTLY STORED. a IN F L 0W S,7_1M 1) ' 1 '020 PA 1 1 1 1 1 < - -* <= f:o:�':y structure / �? e ---€) AS 1 4 . 1 5asin 1 1 (haximum flowby 1 Pro CIS ) 1 s.torego 1 1 • 1 1 , 1 v CTR_ "'•1 1 "::.r' 74S: '47DEL :'J: '= S':LTS: 40: EL ST -r4"; 1 ST- •_:�.1 1 ;ASIN T .�: :�, =L J`n' g' ^w.'•Y v^LU'•15 (r'•' (C=',) (:..:S) (,F) ,../...): •l ...) 1 . .. • . %...Q..), I .' 57.i 52.5 2. 1:0.0 15C..! 0.000 C.-I; 114,) 715.2 • 0.000 0.41 43.4 543.4 0.000 x.::10 521.4 '22.4 0.000 0.5") 1131.1 1171.1 0.000 ?' J.6 1454.3 1454.', 0.000 I ;.7; J 1775.: 1 775, 2 0.000 :-- 707 '3'3.4 0.000 J. 417 2!14.1 • 2 1 14.1 0.000 I 1.:`JJ 22504.1 25 4.1 0.000 1. J " 2 . s 2;c1.5 0.00r1 1 1.1: 5 7 :7J,1 1719.0 0.0 I 1 2e65 y 2 1.::: - 4 2' 0.000 1.417 3023.3 3073.3 0.000 1.:JC 1 010.0 3J9O.0 O,nr�rJ i 1.13 7150.2 :% 0.:100 i.557. 3205. • 1.750 75.0 '255.'5 3:5.6 0.000 I 1 l y . „ . . . .. . . _. . • .. , _....,,„ ,,,......._ .. . . • .1- . 1.i33 3301. 3 0.09C 1.91 5744 3:44.2 3.000 0 2.00J ..„7 :;.,.....-. 3337.2 0.003 . k[ 2.07 3410.3 341'6.? 0.000 • . • 1 1 :Pi.. 2.17 3451.4 34=1.4 0.000 . • :•L 1 Z.250 3431.7 :4;1.7 0.000 l' 2.713 7510.a 3510.6 1.009 . 2.417 3531.5 3=7E.= 0.000 it 2.5.)0 3567." 3567.i 0.100 760' 3619.0 6.000 1r 4. . 1 3677.4 0.000 .---. 7 3 9.001 k 3 ...i.1 139:..! 44.3 A0?4•.3 0.000 • 'iT •'-ir 1.3C) 4145.1 4145.1 0.000 • ::..353 4260.1 4760.1 0.000 .3.167 4369.1 4 0.000 • L4 .250 4472.2 4472.? 0.000 1.535 4569.:1 3.417 4669.) 4660. 9.900 c ,.., 3.50,3 4741.5. 4761., . 0.300 . Pll 3.557 0:643 4643 0.000 I I'. 3.6'67 47.5., 455.6 0.000 • 3.730 4.;93.4 4323.4 0.000 3.313 . 497.0 4 9.000 3.')17 495).4 495.4 0.000 • . .r 4.090 4/0.5 4 1.000 - A . . 4.03 5016.1 5016.0 0.000 4.166 ¶G41.5 5941.5 0.000 il 4.25) .0(.66.9 5056. 0.000 4..1,5 r It - •1 ei J ...1-• a .C.112on %NO . . - :11. • 5116.7 0.990 4.5.:1) 5141.5 - 5141.5 0.000 4.'..: 71;! 51,6.1 1.300 4 -a • • 4.e.:6:. '71 51)9.e. -0.100 --.. 4.7:)0 521'.1 5215.=, 0.003 4.:1.1 324'.4 5742.4 . . ....;.1 .....-..: ::;:70.3 0.000 : r- ..))11. e:''',..e.. 5 ".:100 • . . , !4.% 37,2i. .5..:25.'-' 0.000 • 5.1:: 57.7,:.: T: 1.990 :..,.:../ 7 .1 7777.1 0.000 • i -; I ' - r -- . - 54 54)1. 0.000 • - -r 1 1 [ J...): • . 1 ... 4 16 542'; . i . 3 0.010 ' • 1 -, _i'l • .... _..- - - . . , . . . e. d4;i :14(.61.' oW.I..) 3.:,6 54 5496.1 0.000 :,..7: : i . ) 571 . 7 0.000 , )i 5.:!,33 f.541.4 • 5541.4 0.000 5.15 :;563. 5 16 1 .5 0.000 '.r 6.000 55v5.4 55'5.4 0.000 b.. 5t.0'.0 5)7.0 0.000 • • , 11, , _ . , r, ,.. , II . ��5 6.10^. 2.1 567-2.4 0.0 .4 • 5 }, •) �h4c . ; ¶64°.s 0.000 C :.33: `.S %= 5.c'n . 0.000 6.41 56%0. 5�.0 ^.0 0.000 ,� • 5 •.'3 5711 5 711.2 0.000 , 5.5i,3 5731.4 57.1.4 0.000 h., ��6 5751 ..', 5751 0.00 4i. 4 6.750 5771.0 5771.0 0.070 . . • 1 6.Z ;70,0, : 5710.5 0.000 '?� - 5.310 550 ?. 7 • JV 1 532%.0 5330.Q 52 0.0 0.000 ;' ., 0.000 .�-. 7.3.C5 5542.0 5 0.000 II 7 .166 5`6:•`+ 5?66.x! 0.000 • 7.230 5 °85.5 •5 35.5 - 0.000 + 7.333 5904.3 5 0.090 7.416 5c2 2.3 .5022.7 0.000 II 7.300 5947.3 5?!. 5 0. )07 '.5.53 0 J..S 3 5 0.330 7.666 5976.1 5 %7 6.1 • 0.00 3 II 7.75 5772,5 5%02.5 3.000 7. ?3 S 6006.F 5002. 1.000 7. 916 6011.7 601 °.7 0.000 . I 3.:20 6 6025. ^00 • 2.3':3 503' 5nt7,G 2.000 7..1 , 16 6046.4 604i...4 0.000 ?.230 6054.J. 6154.S 3.000 ' -z: 606.7..?. E05,:1 0.000 F..416 6073.7 6073 0.107 i�') 6055. D 60 0.000 f i f1 t .60 • . o'1 x.65': 6111.5 61 1 1 . 3 r1,70 0.000 4.750 6126.1 6126.S 0. II =33 5i43.'' 6143,0 �. ^0'J °,. +1 .', 6161.? 6161.z 1.000 4.0'00 61 .2..? 617C.2 0.300 9..•):::3 6191.° 6195.~ 0.000 1 • 9.166 517.7 6217.7 0.000 9.2: 5276.°. 6276.: 0.000 9.333 67.5.6.3 6256.5 0.000 II 9.416 6273.5 • 52'6. 0 • 9.507 629'.) 6297.0 0.000 3 531 . 6:17.' 0.000 Y•J • .606 533 533 °.1 0.000 II ? 57S3.a 6760. '.000 0.000 0.11* 64:=.6 5405.5 :•000 13 - 64 3.000 13•'.)J) 54H•) 645 1J.1:e X47:'.: ^4 16.0,00 1C•2s) 649a.' 6.4.3g.7 0.300 1 3 3 5�,4 5 ;, 4• , , 0.000 10.410 6r4.'.i . 454w.5' r.P70 1 6575.1 0.000 II 1` • • ; 6.01 1 6 5''1.2 i.077 �!; ,= :.000 12. '.'ipf..1 6NS3.1 7.000 I 1'� •._ CO3, 5 ?.:; ' • 1 '1� /.711...: x;'1 x.000 • 11 L 674J.1 1• ''• n n' a , , _ . J ., i 1 1 .l'.. , .. .. .. ., . i� y. 7 l:...//�,.. •11 11.2 ::3.: 010.6 0.000 a', 11._:.33 :3 f.: 5 . / • 1 c' 2.0 0.000 ' 11.416 6-094.2 6 0.000 ., 11.5.00 5.27.0' 6927.0 0.000 i,' 11.523 S; <.7.? 600.' 0.000 i 1 11.666 69 9:.1 6995.1 0.000 11.750 7030.3 7030.3 . 0.000 11. ?33 7055.3 7066.1 0.000 11./16 7143.3 7113.1. 0.000 r 12.00; 7141.1 7141.1 0.000 ii 12.0:13 7179.3 71 0.000 ' iF 12.105 721 7219.5 0.000 •1` 12.253 7263.1 7250.1 0.000 xr: i . 122.333 7301.5 7401:: 0.000 • 12.415 . 7344.6 7 :44.6 0.000 12.530 7 :C7.5 773 °.5 0.000 ,; 12.563 7433.5 7433.6 0.000 12.666 747. 7479.9 0.000 12.750, 7527.5 7527.6 0.000 , • 12.533 7576.5 73'6.5 0.000 12.916 702.9 7626.9 0.000 12.999 767:.1 7672. i 0.000 13.:.163 7732.3 13.166 779:.7 7710.7 0.000 13.249 7353. 7233.9 0.000 -_-[ 13.3'33 792 7 : :12. ? 0.000 13.416 7997.3 7997.3 0.000 • 13.499 • 5073.3 307s. 0.030 13.533. 8164.4 3154.4 0.001 13.'.c6 2257.3 5233.3 0.000 13.74 0344.3 3344.3 0.000 13.333 3475.6 ?436.6 0.000 13. 5523.0 2322.0 0.000 . 13.99 F613.5 2615.5 :1.000 J>'.1 570:, . 1 0.000 1 ' [ 4.E i� �'�' n 601 14.155 6801..1-• S001.1 0 , 14.6;' 295.4 . 525.4 • 0.000 ;I k 41 ..1. { • 14.337 3972.9 `.• " • % 0.000 14.416 1074.0 0074.0 0.000 14.4'9'? 91' ?1 ?9.4 0.000 '11 14.: ?3 _ 7311.7 9711.7 0.000 +'. 14.665 9495.1 1435.6 0.000 • 14.749 9577.3 ' 9573.9 0.000 14.333 °726.4 97'6.4. 0.000 , 14.716 96-1.1 . 94 0.000 gym' 14. ? 3 9 10066.5 10055.' 0.000 • . 15.013 10253.0 10253.0 0.000 li 15 166 10451.5 10451.5 0.000 . 1 5.249 10663. 10663. 0.000. JW, Lo41 23Rm or . 15.333 10F 2i.9 1^ 190 . 0.000 OvrALaW g,#/AQ,¢' IL- 1 5.41 6 11125.0. 11125.0 0.0 0 0 7345 M .. _ Fat*/ 15.49 1 1 374.2 11774.2 0.000 /- 15. 11643...) 11540.0 0.000 4 i 15.666 11 2 3. -) 11 0.000 p �-- 00.0 ` 15.741 1 ?22:.4 1?170. ;� :.1•F64 /25 14, 1 igliha 1:;.J33N1 ?5 01.100.0 3 45"/99 s2- izlsZ . 4:.71.7 312100.0 _ 12;67.3 1.'171 t: 1.204 767 . ___ . 80 .. 1A } 1.. - - = '17%; `\1'1J0.:' 1' 0.631 I /3 1 •'c , • _.- /9270 ` 1 1-,.-..177 �1: "?n•i -"..r10? 5 1 My Z - 1 z e0 -• ____. E° 1 ^5 X 14 0 1'1 ^ ^.0 N 47. ' 34 2819 23.5 . _ n4 33 S. 1 „ 1 '.: 1 ' '> . 31 ? • 4 '7. I C. 2.9 3 17 1 1''y ;.'= y1.10n. 1 ' - 4,83`‘..__ 3 4:3 _13 ft ti( 1': ' 1 c 1 G , ? :, • 6 1 ? l " f� . �l �t11 ',7.=1 '' 8,73 3513 - la,V.SS. _.: %.-4 . -o ' • .; • ;43 '•l � .0 ?170 �`2: :,.101 - 4 -- . 312. . - - - ' - .- `s' � : --- -- - _000.0 .\ 1c.5c� L.�c >.4 14 i.3;,.� ;35.Ji5 ___i_ 0,29 ; I,/b9 3 15 t6 ( 2371.7 `12103.0 .) 415.046 11,41.a 398 a4:8 10.749 2371F.6 X12133.0 �,4 °5.05 1l,6� 410 Vito 10.:31 �2' C44.1 4112100.0 G Io y qu/ 420 112.Vb . 16.416 21741.0 X12100.1 ::h. °32 %o/d . Y2, . 11 `! -.! O 16.9 3 9 2024 -3.1 y ��12130.3 5 °2 . q2° B /43 4137 g4.531 17.063 '13930.0 )12100.'7 �' .79 8Z - 44�$ •- 17 r °.96' 5,�7 4 ,,83b 4 • 171543 5171543 -"1 17.106 1 . 3 - )c c � .0 1 _i lOQ.O Q � 7 . 9� 17..i49 17055.9 12100.0 P9.13.91? ygs,4 (462- iZ15 g . 17.333 16415.9 1:100.0 1 .4 7.542 9 [x:55 H4SS5 '' • 17.416 15907.9 12130.0 ; 38 0 3� 4,59 , Irt ' 17.499 15439.1 12190.0 3 =2. ° ? 44 X14 1 ;. 17.56' 3 15051.0 1 2100.0 313.31r a rgs 41 403 ' i(2 63 :" 1'.666 14660.1 12100.0 931.097 A ' 1 3-8 0 y( 17.749 .14334.1' . 12100.0 146.473 2 2 39 q(4 42 n 5a 591 l gaF 17.333 14�0y.8 1 _1.0.0 y' I qo yG? ,4'`$($ ' 17.916 13037.4 12100.0 '70.524 1 . 4t48 4 r ,3 6 97 °. ?Q3 6 1 2573 17.Q99 1.,.. .4 1_1�JC 0 0.8(2. y q 1 1 4.053 . 13093. 12130.0 9 914 ab IZ S7r' 13.166 .1Z 312.3 12100.0 091.14 1121. 4 d 11 , Slo 13.249 12357.1 12100.0 704. 310. qa et70 . 1 2 1 51 0 15.333 . 1 2 3 2 9. 7 12100.0 ° 0 5. 9 61 a4o t t 15.416 12132.3 12100,0 °lti.131 .32. W 124509 13.4'79 11921.5 11 6.'%6.133 0 1R.5E3. 11733.1 11733.1 06.133 4453 12)2 13.566 11 577. g 11 577. ; 096.133 0 468 4 1F.74? 11473.3 1142 °.5 9 13.333 11269.3 11269.3 916.1 53 1b.716 11117.9 11113. 10 6.133 .._ ' i 1 f _ a :1 i 41.igio , ri H 13.9. 1 � :.9"? •i 1 0 996.19.7 4 19.'' 1 e:J2 .7 1 X0 »6.1 9.3 19.1 0 10751.6 1.77'0 < 7 9! . 1 3 a; 19.2.E 1G 3=..2 1063.2 996.153 1 • 1052:.3 10525.3 996.123 tick A i 19. :.16 1041 1.2 10412.2 '%6.187 1 1e'2!7.2 1" ?97.7 : "c ?3 1 1017.7 10174. 0 19.56 1003 1 0fl3; .4 5 :. 1 33 1 >, 9=9:.0 996.1'13 19 =7 7...3 9 99 6.1S 7 �- 1 6 9660.1 9660.1 )' 6.1 • ;3 1 9. fl 950 9 .4 o 04.4 996.133 , 20.033 77.?4.0 •y 7, 24.6 9 96.1 10.165 0 203.4 92:13.4 996.133 20.249 9112. 0113.9 99 6.193 21. 5:34.:) 9 '334.0 996.133 i. 2J 8955.2 ;;956.7 99:..13? • 796.133 20 • .5 • 3 :14.3 ? ?14.> > ^6.1d3 ., 3 3 3 993.13 20• ,1 ? . 1 ° - ?7.2 ) )6.1 'Z? f; 21. :566.5 966.6 0 21. 0°3 34 3475.0 :0 .1 3 21.166 `'367.6 3357• ti 9 21.249 '::C..' i3 05.9 99 6.137 ?1.!33 f,2 :1.1 :.:51.1 09 ; .1 ..3 21.416 3200.A ? 7')0.2 . 99 6.1'13 ?95.1 21 ..99 117:3.3 '31 21.5:.3 5107.4 11D 7.' »6.1?: °._t_ 5 '2f3.5 =') ').1: =1.7. !:C:0.1 J . .:[ . 1 33 e 21•; 7 ?37.? 7'37.5 : 1 1 7: ' , . 1 ...._.. . 1 Y .' s 1. ! • 3 r. e 1 J i • ::..1f:5 '21.3 7 ??1.,: X96.133 72.24 773.:x.1 77.5.1 = 22.312 774).1 7749.1 0 22.416 7714.1 • 7714.1 1• 22.4 7679.9 767 91 :.,.11.7 22.5x2 764..6• 7646..6 90 6.16'3 22.666 7614.3 7614.3 ° 22..71.9 75C3.0 7513.0 996.133 22.:32 7552.5 7552.5 1 °6.183 22. 116 7522.6 7522.6 01 6.1X31 27. 7473.2 7493.2 7 i 23.0i7 746;.3 7464.3 0 96.1E7 23.166 7435.) 7435.1 9 . )).26'- 74C..) 740i.3 2 Z 7 7 1 1 7 7 + 7 2 n n r 'L ::•� �..�. .0. *5.1•x3 23.415 755•3 7/51.1 99 6.133 . 4:.4)) 7 1:'.4 7327.4 = • 23.5f2 '301.5 7111.5 19 6.133 2:.606 7 ?';. ?:75.9 "6.133 747 7250.1 7260.': 9 ? 23•.53 - 7 7:6.2 7' ?6.2 9 25.415 7 7201. ?. 90 6.133 23. ?: 71,x.1 71 +'.1?3 { 44.J2 7 14:.1 7143.1 2 96.1i3 24.164 7JE. =.7 7:`69.7 " 9'6.1 24.24 6 6 00 6.183 24.332 6 s71.6 90 6.193 24.016 547A.3 f-413.': 21 6.183 mac, i 24.4' = 5.,...5 !,:,a.., 9 z 7.4.5 57C6.0 i 7 X6.,7 : • 24.666 `7.15.5 f ) 1T 24.744 4 ;24.7 0'424.7 »A1.117 54.::32 . : %. . 69. ; :4.• -1 6 .) 427:.5 4275.3 • ' • 24.0 4C45.0 4345.1 9 25.01_ 7164.9 3 196.117 i r 23.106 • '72?.4. :7 ?1.4 9=6.13' 23.7.»7 7.630.3 3670 9 96.133 V .l • r? 2 14°'.2 14)7.7 7 • '?c C' • 1 O i 25.416 31":.1.2 '1 1 25.431 31 3.) 496.183 . 25.532 234 ?399., 21 6.117 65.666 1449.7 14: 7 25.74 • 7 700.7 00 5.1 p'. • 25.:!2 ' !6'x.6 54;.A %'x!5.1 33 23.x16 »4 :• ?7.; -''.1 1 ,3 2.$.>' ?7 314.5 ?14.i :'•13 I Z4.:::2 4:7. ?57.4 9 L.1 ? F s s s$ a s a 1 1 u s s s us ....... 1$ s= u m x r s 1 1 1 a s 1 - 1: 1 1 r O= r 1-- ' 1 ) eLe: POUT :%5 A 1aLYS: i . 1 • .. . . rt • N * ****** , ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULICS ELEMENTS - II PROGRAM PACKAGE STORAGE BASIN HYDROGRAPH ROUTING � ************************** ` * ********************* ** * * * * * * * * * * * *it *' * *ak * * * * * ** If « « « « < « «< « « « « « « « « « < » » » » » »> » » » » » » » » » »» Y i , ‘<.' ,5,,,,... 44 t.",, - , (C) Copyright 1983.1986 Advanced Engineering_ Sof CAES] { � Esp`efcially prepared for , .. �€��' ` S YM C A S If Symplified Computer Aided Services 3 900 BIRCH ST.• SUITE 105. NEWPORT BEACH CA.. 92660 Ili «< < « « « « < <« <<‘<<«««««««<>>>>>>>>>>>»'>>>>>>>>>>>>>>>>>>>> » 1 r Y >. S ir It,r, * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** w * 3520 * T * SIN P 100 YR. STORM 72 " RCP OUTLET * 10/14/86`` .; ** ************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** = • ENTERED INFORMATION: TOTAL NUMBER, OF ; INFLOW HYDROGRAPH INTERVALS = ' 1 Fi • , a� CONSTANT HYDROGRAPH TIME'UNIT(MINUTES) = S.00O-4.414 : ASSUMED INITIAL DEPTH(cEET) IN STORAGE EASIN = 0.00 i ENTERED INFLOW HYDROGRAPH ORDINATES(CFS): r *INTERVAL FLOW *INTERVAL - FLOW *INTERVA(: FLOW * .a,r�4 ', ' * NUMBER (CFS) * NUMBER (CFS) * NUMBER - '- ?°r(CFS) * °. •." ' b: . "' ; , # * 1: -- 0.00* 2: 125.00* 3: •,rs > i ' ' 444.00* R; =s' * %' ' * ` 4: 767.00* - 5: - - 1079.00* 6: 1652.00* - * 7: 2879.00* 8: 4716.00* 9: 6836.00* * 10: 8730.00* 11: 10249.00* 12: 11169.00* _.� * . 13: --7 ,5 1w 1619.00* - 14: - 11 619.00* 15 rL"= :10944.00* r * 16: '. : =9641`.00* 17: 8145.00* 18• ` ' "� : ,L;> 6830 00* "`w ' °*'' M * 19s x782.00* 20: 4 2 1 4316.00* .. ' * 22: 3808.00* 23: 3350.00* 24: �_ - -- 2951.00* _,_ I - * 25: 2580.00* 26: 2234.00* 27: 1905.00* * 28: 1587.00* 29: 1236.00* 30: 996.00* *t .. . 31 : ; 1 - -: _I 712.00* 32: - 459.00* 33: d , r ....- - « •: '. ' . 34 • 240.00* r ,,, * • t , ,, 32.00* •35:x: 0.00* . 6r c y ., p zs sss sszs zsssssssieszsss: ss °=xaza 2== =sass= i „ =-- zsssssax S H4P� F - -- -- ` 1 DEPTH VS. AND OEPTH C �E IN ORMATION: • TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = 15 *BASIN - STORAGE OUTFLOW * *BASIN - DEPTH':` STORAGE OUTFLOW '* _ * (FEET); CACRE- FEET) (CFS) ** (FEET) "(ACRE -FEET) (CFS) --.1 C r /' * 0.000 0 .000 - ____ - - - - -- 0.000 ** 2.000 2.180 43.000* - * 5.000 30.410 209.190 ** 3.000 98.150 337.000* * 11.000 210.000 366.000 ** 13.000 309.000 384.000* �i 1 * 15.000 '4 15.000 . 7w4 - 0 - 1 - .000** 17.000:: 000 - 417.00 * 'A * 19.000 Y�'635.000 "':�'•' :433.000 ** 21.000- - '748.000 448.000* I ' * 23.000 ':.'--'11162.000 = 463.000 ** fi, t - -- 25.000 977.000 477.000* * 27.000 1093.000 491.000 ** 29.000 1211.000 ^ 505.000* > i 2. AAA A ... h, w., w _ _ •. , ,. .. , . . . . . . , .... ..... • . . _ • Advanced Engineering Software CAES7 • , SERIAL No. E1702 VER. 2.3C RELEASE DATE: 2/20/86 . .. .... f_ «<<<«««<<<<c«««««<««««>>>>>>>»»>>>>>>>>>>>>>>>>>>>>>>>»» ,.... . . ' 3. !.Vvitt.5P "-- . _ ( INITIAL BASIN DEPTH(FEET) = 0.00 • INITIAL BASIN STORAGE(ACRE-FEET) = 0.00 --- . INITIAL.BASINOUTFLON(CF5) =!• 0.00 -7777-„ri* „ ! ' ' --1-41t__ 4, • . ,.. . • ., , . I ..- BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: ...: INTERVAL (S-0*OT/2) {S+0*DT/2} NUMBER (ACRE (ACRE-FEET) n 1 't_rfe4000000 , -? , (m0000 ... ,- 2 ': ''''2:-32807 .. • .... .. • 4,, .., ,.[ 3 '"*29.68965 '31.13035 4 96.98953 99.31047 5 208.73967 211.26033 6 307.67767 310.32233 ' , -. . 0 7 .413.61914 416.38086 - 179 8 522.56403 525.43597 . ' -, “, 9 633.5097 .,..,_ . 4 , • -:, !,1 . . • 636:49103 . , ., - '8 -- 10 746.45728 749.54272 , 11 860.40564 363.59436 12 975.35742 978.64258 13 ,1091 73 10947'61 ...,14 1209.26099 1212.73901 4 .,;:q.;:*.°,,,,,.,,;;::•' . ''''''',•;',-,'''"' ' ''":.'-.. :.1!. 15 . 1333.22998 .1, • • •:i :P:. '',:.: ' , , :. ' -,9; 4 _ - I WHERE S=STORAGE(AF);0=OUTFLOW(AF/MIN.);DT=UNIT • , . . . 777- • • ,:" , - - . , . , :..k.ilOt4P. . . . .,, . ti,•i • 4,. , ... . , . ...:. N.,:y.i...:. *UNIT-HYDROGRAPH STORAGE ROUTING* NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES . . J ' OCCIAGAT..THE GIVEN TIME. BASIN INFLOW VALVEItWitESENY ,‘ . i AVERA GE4NFLOW DURING THE RECENT HYDROGRApH.UNII,INTERVAL. GRAPH NOTATION: "I"=MEAN UNIT INFLOW; "0"=OUTFLOW AT GIVEN TIME ' . , . TIME INFLOW OUTFLOW STORAGE , ;u ( :(MOURS); (CF5) , '.."4 ACRE .0 2905. s810. rm. .d. , "Lv , ,;. 0.08 „;4 •. 00 • . ' • , , 0.000 0 , " • •CBASIN'OEPTkFEET) =. „ . 0.17 125.0 15T "§ 0.806 0 . CBASIN DEPTH(FEET) = 0.7] ' 0.25 444.0 51.5 3.632 CI . . . . . - ---- CBA5INA4EPTH(FEET) = 2.23 -:.„-- . . . -.. :o. , . 0.33 •. 80.0 8.461 0 1 ..: CSASiNAEPTH(FEET) 31 2.73 . . . ...._ '1 ej 0.42 1079.0 119.7 15.205 0 1 . . . . [BASIN DEPTH(FEET) = 3.4] ,1 0.50 1652.0 180.6 25.548 0 I . . . • ----; , CBASVCDEPTH(FEET) 2 • 4,53 _ ,.. •j. 0.53 .-.,2879.0 234.7 43.946 0 I. . • . ... . •, ' CBASIN,DEPTH(FEET) = . 5.63 - -......... ---- ------------- --- -----.-------- -- --- ---. L3 iii' u_ i _ e� - 0.83 8730.0 357.5 177.216 0 I . CBASIN DEPTHCFEET) = 10.1] 0.92 10249.0 372.4 245.288 .0 . I • CBASIN DEPTH(FEET) = 11.77 1.00 11169.0 335.7 319.599 .0 • _ • - -_I_ ___- [BASIN ,DEPTH(FEET) = 13.2] : 1.08 11619.0 398.1 396.920 .0 . . . I ' CBASIN DEPTHCFEET)_= ___14.7]_ 1.17 11619.0 409.7 474.159 .0 . I j•_ [BASIN DEPTH(FEET) = 16.1] _ 1.25 10944.0 420.3 546.673 .0 • • I CBASIN DEPTH(FEET) = ___ - 17.43 1.33 9641.0 429.4 610.145 .0 . . • I . [BASIN DEPTH(FEET) = 18.6] _1:„i , 1.42 8145.0 436.8 663.253 .0 I . -. CBASIN DEPTH(FEET) = 19.5] 1.50 6830.0 442.6 707.268 .0 _�_- •__I_ _....__ • • - [BASIN.DEPTH(FEET) = 20.3] 1.58 5782.0 447.5 744.024 .0 I. -A; CBAS"IN:.DEPTH(FEET) = 20.97 . 1.67 4956.0 451.6 775.060 .0 1 ` ;. CBASIN DEPTH(FEET) = 21.5] 'YI ___ 1.75 4316.0 455.1 801.663 .0 I . , ..i CBASIN DEPTH(FEET) _ 21.93 x 1.83 3808.0 458.1 824.744 .0 . I . . . 4. CBASIN DEPTH(FEET)= 22.3] t " ' ' ;; 1.92 3350.0 460.7 844.652 .0 .I ? CBASIN DEPTH(FEET) = 22.7] 2.00 2951.0 463.0 861.795 .0 I ,',_ [BASIN DEPTHCFEET) = 23.0] ' 2.08 2580.0 464.7 876.369 .0 I. . A, _ [BASIN DEPTHCFEET) _ 23.2] ' " ` ' "' ' '` 2.17 2234.0 466.2 883.549 .0 I . . . • :" [BASIN DEPTH(FEET) = 23.5] ;' 2.25 1905.0 467.4 _ 898.453 .0 I . '` CBASIN DEPTHCFEET) = 23.6] ,', Tf • 2.33 1587.0 468.4 906.161 .0 i , ` :< ; .- � ' BASIN DEPTH(FEET) = _23.83 ] <'` r 4g w - 2.42 1286.0 469.1 911.739 .0 1 ', ; CBASIN DEPTH(FEET) = 23.9] „ 2.50 996.0 469._ 5 915.417 .0I �" "' CBASIN DEPTH(FEET) = 23.97 I 2.58 712:0 469.7 917.086 .0 , CBASIN DEPTH(FEET) _ 24.0] .. 2.67 459.0 469.7 917.013 .0 . • . ' CBASIN DEPTHCFEET) = 24.0] 2.75 240.0 469.5 915.431 I0 • . CBASIN DEPTH(FEET) = 23.97 " " '"' ' 2.83 32.0 469.1 912.420 I0 . . "' • CBASIN DEPTH(FEET) = 23.91 -,;,.,, 3.9] ::. 2.92 0.0 468.7 909.190 IC . • CBASIN DEPTH(FEET) = 23.83 3.00 0.0 468.4 905.963 I0 __ -_ CBASIN DEPTH(FEET) = 23.87` 3.08 0.0 468.0 902.739 10 4 CBASIN DEPTHCFEET) = 23.73 �___________ -..__ ___i� 3. 17 0.0 - 467.6 899.517 I0 - CBASIN DEPTH(FEET) = 23.7] 3.25 0.0 467.2 896.293 IO CBASIN DEPTH(FEET) s 23.63 ■ 3.33 0.0 466.8 893.032 I0 . . CBASIN DEPTH(FEET) = 23.57 __. 3.42 0.0 466.4 889.86° IC . . . • rGACTu nrOTW(Gr= =T) = 23_51 CBA N 1 M r:::E = 23.43 // 3.53 0.0 465.6 // CBASIN DEPTH(FEET) 23 t 3.67 = 0.0 465.2 383.450 I0 880.245 10 . . . . . . . ."" [BASIN DEPTH(FEET) = 23.33 _ A 0.0 464.8 877.042 10 . CBAIN DEPTH(FEET) =23.3] . 3.83 0.0 464.4 873.842 10 . . ,,..../ . ,, . .,.. r [BASIN DEPTH(FEET) = _23.23 - 3.92 0.0 464.1 870.645 10 . . . . .., • [BASIN DEPTH(FEET) = 23.2] 4.00 0.0 463.7 867.450 10 . . . . CBASIN7,DEPTH(FEET) = 23.1] :- 4.08 ,C,0 463.3 ..- 864.258 10 . . . • CBAS/WvOtPTH(FEET) =':' 23.03 ______ . '' 4.17 0.0 462.9 861.069 10 . . . . CBASIN DEPTH(FEET) = 23.0] - 4.25 0.0 462.5 357.883 I0 . . . CBASIN DEPTHEET) = 22.97 • . . 4.33 .:0.0 462.0 854.699 10 . . . . CBASIN DEPTH(FEET) = 22.9] 4.42 0.0 461.6 3 . CBASIN DEPTH(FEET) = 22 .:1.51S 10 . . . •%1 4.50 0.0 461.2 848.341 10 . . . . . CBASIN DEPTH(FEET) = 22.8 • 4.58 . .0:0 460.8 845.166 10 . . . CBASIN DEPTH(FEET) = 22.73 4.67 0.0 460.4 841.994 10 . . . , • '.a [BASIN DEPTH(FEET) = 22.6] 4.75 0.0 460.0 838.825 10 . . . . [BASIN DEPTH(FEET) = 22.6] 4.83 *. 459.5 835.658 10 . . . [BASIN dEPTH(FEET) = 22.53 .,,,,,, ..;. _-, 4.92 0.0 459.1 832.495 10 . . . [BASIN DEPTH(FEET) = 22.5] 5.00 0.0 453.7 829.334 10 . . . . -- EBAt - IN . DE0TH(FEET) = 22.43 5.08 0.0 458.3 826.177 10 . . . . • # CBASIN DEPTH(FEET) = 22.43 _ 5.17 - 0.0 - 457.9 ----- 323.022 IC . • . :.. [BASIN DEPTH(FEET) = 22.3] 5.25 0.0 457.5 819.370 TO . . . . --. . CBASIN DEPTH(FEET) - 22.33 5.33 0.0 457.0 816.721 ID . . . CBASIN DEPTH(FE) = 22.2] - _ ET 5.42 0.0 456.6 813.575 10 . . . . CBASIN DEPTH(FEET) = 22.2] . 5.50 0.0 456.2 310.4 10 . . -- CBASIN = 5.58 0.0 455.8 [BASIN OEPTH(FEET) 22 = 307.291 .291 TO . . di • ,.- *`..' . , 4 ,p 1 ----- 1:67 0:0 455.4 804.153 10 . . . • 1 i [BASIN DEPTH(FEET) = 22.0] II 5.75 0.0 455.0 801.018 10 . ___ . . ---.. , CBASIN DEPTH(FEET) = - 21.97 [Ni 5.83 . 0.0 454.6 797.836 I0 • . . • ,, • •,,, I . CBASIN DEPTH(FEET) = 21.93 ,- ., 5.92 0.0 454.2 794.757 10 . . CBASIN DEPTH(FEET) = 21.83 6.00 0.0 453.7 791.531 10 • • • • i!" [BASIN OEPTR i---21.8] 4:', 4 6.08 0.0 453.3 788.507 10 . . . EBASIN DEPTH(FEET) = 21.73 , -1 -------.---.... -- ii - Tz, 6 Tn . . . . • - OI 616'£89 5 - .. ._ _ - 0 - 26 - 8 y1�_ ; �fi _; C6 = (133d)H1d30 NISV91 4` .4',..., 01 L00'189 6'6£7 0 £9 '4 -_ -- _ -_, CO'02 = (133d)H_id30 NISVQ) _ _ . II , • 01 ri0'O69 i'C77 0'0 SL'8 C0'02 = (133)1-11d30 NIS1/9] • OI 2L0•£69 1'077 0'0 L9'8 .' ir: „:. CL°02 = (133d)Hid30 NISV9] II • OI 601'969 l•L77 0'0 85'8 '` CL'02 _ -_ (133)Hid30 NISV9] OI 871 5'177 0'0 05'8 II C2'02 = (i3 NISV6] • • OI 061'201 6'07 0'0 Z7'8 -; z,; l �� _ C2 = (133d)H1d30 NISb9] ■ I ' ' - M' `` • 0: S£C•SOL £•27/ 0'0 ££'8 I �:. <. -- C£"Q ? -- = (133d)Hid30 NISV6] • 01 £82'201 L'2h7 0'0 SZ'8 C7 = (13 NISV93 • • 0I � 1'£77 0'0 LL•8 • - ____ - - -. __ -- _ - `l C7 OZ = (1334)H1d30 NISV9] • OI L8£'7ll 5'£77 0'0 20'8 _ _ - - -- C5'0_2 _ = __(133d)H1d30 NISV83 • ' 01 i77•LLL 6 • £77 0'0 • 00'8 CS'02 = (133d)H1d30 NISV93 , • • • • OI 105'021 i'777 0'0 ` - - 26'1 i C9'02 = (133d)H1d30 NISVS1 • OI £9S'£2L ' 8'777 0'0 £8'L C9102 = (1334)H1d30 NISC6] ' OI 829'9ZL 2'577 0'0 SL'L CL'02 = (132d)H1d30 NISV2] OI 569'62 L 9'577 0'0 L9'L CL'02 = (133d)H10130 NISV.] 7. • 01 S9L'Z£L 0'977 0 85'1 C8'02 ____ = (133d)H1d30 NISV97 • S£Q'S£L 7 0'0 0S'L C8 = (1•3)H1d30 NISVS3 • - 01 7Lc'S£L 8'977 0 Zh'L — C6'02 = (133d)Hid30 • OI 266 2 0 ££'L 06.'_02 _____= b ] • 0I 710 9 0'0 52'1 C0'LZ = (133d)H1d30 NISVS3 • . • T -` ' OI 85L °87L 0'077 0'0 Ll'L CL'L2 =(193)H1d30 NISV9] • OI 572'1.5/ 7'877 0'0,. ` 80'L CL'LZ = (133d)Hid30:;NISV9] - -• ' 01 7££'751 8'877 0 00'1 C2'1.2 = (133)Hid30 NISV93 - - - _-- ' • OI LZ7'LSL 2'677 0'0 26'9 — - C2'L2 = (133)Hid �, OI 225'09L 9'677 -,rofb141,4t £8'9 • C£ lZ = (133d)H1d30NISV9] • • OI LZ9'£91 l'057 0'0 SL'9 C£'LZ = (133d)14id30 NISV9] ' • 0I 221•991 5'057 0 L9'9 I _ = (133d)H1d30 NISV97 ,` C7' LZ ?.:` -, • -''`•. • OI 522'691 .6'057 0'0 2S'9 Ch_'1.2 . • = (13)H1d30 NISV9] 0I Z£6•2LL £' LS7 0'0 C5'1.2 = (133d)Hid30 NISVSD 1 01 270 L'LS7 0'0 27 i, CS'L2 = (1.3 =)H1d50 NISVS] , ' 01 751.'611 L'2S7 0'0 ££'9 I = CIP;-J W I as u / CAN UEPTmcrt=) 9.03 0.0 433.7 1 9.17 EBASIN DEPTH(FEET) = 0.0 438.3 9. :ASIN OrT0H(Ft437 437.9 -ET) = 19.73 19 6 . 7 8 7 3 .931 I0 674.911 IC . 671.894 IC CBASIN DEPTH(FEET) = 19.73 . . . • , • . . ., . ' ' ' • .. 7;.1'. • ' ' ' -717 t . 9.33 _ , 437.5, ,•668.879 10 . CSAIN DEPTH(FEET) _ = . 19.63 . ,,,., 1: - . • . • 9 0.0 437.1 665.867 IC . . . --- t CBASIN DEPTH(FEET) = 19.53 9.50 0.0 436.7 662.859 I0 . . . _________ .CSASIXOEPTH(FEET) 2m, .19.53 9.58 436.3 659.852 IO • - : .',:- •-• • . --f. • EBASII4GDEPTH(FEET) =, 19.42 __________ • • tj 9.67 0.0 435.9 656.849 :0 . . . . • [BASIN DEPTH(FEET) = 19.4] 9.75 0.0 435.5 653.848 IC . . CBASIN,OEPTH(FEET) = 19.3] 9.83 , ,,•O.O. 435.1 650.950 IO . . • • ;, CBASIO)EPTH(FEET) = 19.33 , - ,La 9.92 0.0 434.7 647.955 IC . . . . [BASIN OEPTH(FEET) = 19.2] 10.00 0.0 434.3 644.363 IO . . . , • EBASINDEPTH(FEET) = 19.2] f 4 i 10.08 , ;:0.0 433.9 641.873 IO . . . • i • EBASINDEPTH(FEET) = 19.1] 10.17 0.0 433.5 638.836 ID . . . o CBASIN DEPTH(FEET) = 19.13 10.25 0.0 433.1 635.902 10 • . . • _ CBASIN DEPTH(FEET) = 19.03 -, •-'- --•-, I 10.33 - •:' 432.7 632.920 IO . . 4 • CBASIN = 19.02 10.42 0.0 432.3 629.942 IO . • • • I- [BASIN DEPTH(FEET) = 18.93 10.50 0.0 431.8 626.966 10 . . • • . _...._ - EBASIN DEPTH(FEET) = 11.91 10.58 0.0: 431.4 ' 623.994 TO • • • [BASIN DEPTH(FEET) = 18.83 ' . 10.67 0.0 431.0 621.024 IC . • • • 1 CBASIN DEPTH(FEET) = 18.7] 10.75 0.0 430.6 6”.057 10 . . . • _ __. - ..--- EBASINDEPTH(FEET) = 18.7] 10.83 0.0 430.1 615.093 IC) . . . • CBASIN DEPTH(FEET) = 1 _ -----'. 10.92 0.0 429.7 612.132 10 . . . . , . EBASIN DEPTH(FEET) = 18.6] . ' 11.00 0.0 429.3 609.174 ID • . . . f CBASIN DEPTH(FEET) = 18.5] • 4!4 • 1 11.08 0.0 42S.9 . 606.220 IO • . - [BASIN DEPTH(FEET) = 18.53 - - ___-_-___•• .......-• • 11.17 0.0 42E.4 603.268 IO . . . . ,.- [BASIN DEPTH(FEET) = 18.43 1 11.25 0.0 428.0 600.31? 10, . . . . ...____ ,... EBASIN = , 1 1 , 1 11.33 0.0 427.6 597.372 IO . . . ' 4 CBASIN.DEPTH(FEET) = 18.33 •.„.• .' ^ 11.42 070 427.2 594.429 10 CBASIN DEPTH(FEET) = 18.33 11.50 0.0 426.7 591.439 ID . . . . . - C8ASIN bEPTHfFEET) = 18.23 ___ _ •[ 11.58 0.0 426.3 581.551 IO . . . , CBASIN DEPTH(FEET) = 18.23 - P, ...., 1 11.67 0.0 425.9 595.617 IO . . . . [BASIN DEPTH(FEET) = 18.13' 117 5 n_n 4 582.695 IC . . . . , _ ... .. _ .... .. ._ ••••, ,, ,,,. - - ' - ",, . .' , '.. , • - "---4., - _ , - - L b --7 J --7 ' T1 M7-'*""-:- / 11.53 0.0 1:); 4-, r 11.92 0.0 424.6 rT 425 .0 [BASIN DEPTH(FEET) = 12.00 0.0 424.2 [BASIN DEPTH(FEET) = 12.08 _ •0.0 423.8 CBASIN-0EPTH(FEET) = 1E5;93. 756 I0 576.331 IC 18.0] 11: 57 98 !.908 I0 570.988 I0 . . . . . . • . _ ';- .. •?. 12.17 0.0 423.4 565.071 _TO . . 12.25 0.0 DEPTH(FEET) = 17.8] 0.0 422.9_ 565.156 10 . • . . [BASIN'DEPTH(FEET) = '17.73 12.33 H 0.0 422.5 562.245 10 • . • , • 2 CBASIN - DEPTH(FEET) = 17.73 •7,_,;. A 12.42 0.0 422.1 559.337 10 . . [BASIN DEPTH(FEET) = 17.6] 12.50 0.0 421.7 556.431 ID . . [BASIW:DEpTH(FEET) = 17.6] . . 1 • 12.58 '0 421.3 553.528 I0 • . . . i , [BASIN = 17.53 12.67 0.0 420.8 5 [BASIN OEPTH(FEET) = 17.557) .629 I0 . . 1111 11 12.75 [BASIN: 4.0 420.4 PTH(FEET) = 17 12.83 '':!"'0.0 420.0 547.732 I0 . . 544.838 10 . . . . . . . . 1 1 [BASIN'ZEPTH(FEET) = 17.43 ----I _ 12.92 0.0 419.6 541.947 TO . . . . . [BASIN DEPTH(FEET) = 17.3] 13. 0.0 419.2_ 539.058 IC . . . , [BASIN DEPTH(FEET) = 17.3] , t 13.08 0.0 418.8 3 EBAS/WDEPTH(FEET) = 17 52(3.173 I0 . . 13.17 0.0 413.3 533.290 10 . . . . I ' 13.25 0.0 DEPTH(FEET) = 17.23 0.0 417.9 530.410 10 ._ . . . [BASIN DEPTH(FEET) = . ,•.:.,,„,., 13.33 .' 0.0 417.5 527.534 10 . . • • '-:? : • : [BASIN DEPTH(FEET) = 17.1] • 13.42 0.0 417.1 524.659 10 . . . • CBASIN DEPTH(FEET) = 17.03 13.50 0.0 416. 5 [BAS/14 DtPTRTFEET) 17. 6;.758 I0 . . • • ___- 13.58 0.0 416.3 518.920 10 . . , • [BASIN DEPTH(FEET) = 16.9] I. 13.67 0.0 415.8 516.055 10 . . [BASIN DEPTH(FEET) = 16.9] 13.75 0.0 415.4 - 513.192 I0 - . . . . . - CBASIN DEPTR(FEET) - 16.83 13.83 0.0 415.0 510.333 10 . . • • , • [BASIN DEPTH(FEET) s 16.77 ......___ _...... 1 13.92 0 414.6 507.476 I0 . . [BASIN DEPTH(FEET) = 16.73 . 14.00 0.0 414.2 504.622 ID . . • • CBASIN DEPTH(FEET) = 16.6] 7 L 14.08 0.0 413.7 501.771 I0 • • • • ::,,:;,1' .,,l. ,--., ,,%.• [BASIN DEPTH(FEET) = 16.6] 14.17 0.0 413.3 498.923 10 . . . . L [BASIN OEPTH(FEET) = 16.5] 14.25 0.0 412.9 496.078 IO • • . . . [BASIN DEPTH(FEET) = 16.5] • 7: 14.33 0.0 412.5 493.236 I0 . • . . ,.. rMAtTU MCOTWfCCCT) m 1A L1 .. • . , . ". / [BASIN DEPTH(FEET) = 16.3] 14.5 0.0 411.2 484.726 :0 . . . . C3ASIN DEPTH(FEET) = 16.3] 14.67 0.0 410.8 481.q 10 . . . . [BASIN OEPTH(FEET) = 16.23 14.75 0.0 410.4 479.068 IC) . _ [BASIN OEPTH(FEET) = 16.23 s 14.83 0.0 410.0 476.243 10 . . . 1, [BASIN DEPTH(FEET) se 16.13 0), 14.92 0.0 409.6 473.421 10 . . . . [BASIN OEPTH(FEET) = 16.1] 4 15.00 0.0 409.2 470.601 10 • . . [BASIN DEPTH(FEET) = 16.0] i. 15.08 0.0 408.7 467.735 10 . . • • [BASIN'DEPTH(FEET) = 16.03 15.17 0.0 408.3 454.971 IO . . . . [BASIN DEPTH(FEET) = 15.9] 15.25 0.0 407.9 462.160 TO . . . . EBAS/CDEPTH(FEET) = 15.93 ,,,, 15.33 0.0 407.5 459.352 IO . . . . CBASIN :OEPTH(FEET) = 15.83 15.42 0.0 407.1 456.547 IO . . . . [BASIN DEPTH(FEET) = 15.8] 15.50 0.0 406.7 453.745 IC . . . [BASIN OEPTH(FEET) = 15.7] 15.58 0.0 406.3 450.945 10 . . . • [BASIN DEPTH(FEET) = 15.73 15.67 0.0 405.9 442.149 10 . • • • ( [BASIN DEPTH(FEET) = 15.6] 15.75 0.0 405.5 445.355 IC) . • . . [BASIN DEPTHOEET) -= 1563 15.83 0.0 405.0 442.564 IC) . . • • q: [BASIN DEPTH(FEET) = 15.5] 15.92 0.0 404.6 439.776 10 • • • • ( [BASIN DEPTH(FEET) = 15.5] 16.00 0.0 404.2 436. 10 . • • • [BASIN DEPTH(FEET) = 15.4] 16.08 0.0 403.8 434.208 IO . [BASIN DEPTH(FEET) = 15.43 16.17 0.0 403.4 431.423 10 . . • • [BASIN DEPTH(FEET) = 15.3] 16.25 0.0 403.0 428.651 10 . . . . CBASIN DEPTH(FEET) = 15.3] 16.33 0.0 402.6 425.87 I0 . . • • CBASIN DEPTH(FEET) = 15.23 16.42 0.0 402.2 423.106 IC . . . . CBASIN DEPTH(FEET) = 15.1] . . At • 16.50 0.0 401.8 420.337 I0 • • • • _ CBASIN DEPTH(FEET) = • 16.53 0.0 401.4 417.571 IO . . :BASIN DEPTH(FEET) = 15.03 16.67 0.0 401.0 414.808 10 . . • • BASIN DEPTH(FEET) = 15.03 16.75 0.0 400.5 412.043 ID . . . . [BASIN DEPTH(FEET) = 14.9] t 16.83 0.0 400.1 409.292 10 • . • [BASIN DEPTH(FEET) = 14.93 1 16.92 0.0 39 405.533 10 . . . . [BASIN DEPTH(=EET) = 14.3] 17.00 0.0 399.2 403. IC . • . [BASIN DEPTH(FEET) = 14.8] 17.08 0.0 398.8 401.03 10 . . . 0 ill [BASIN DEPTH(FEET) = 14.7] . --- - _ �_---�����`�� �.__ __- ._.=~~~~~�°='-- _^ -71 - ' CBASIN UEPTH(EET) = 14.6] !17.33 0.0 397.4 392.314 IO . ~ ~ ^ CBASIN DEPTH(FEET) = 14.6] 17°42 0.0 397.0 I90.07F IO . . . . CBASIN DEPTH(FEET) = 14.5] 17.50 0.0 396.8 587.345 IC . . ~ . ( 4' -- -- [ ���EET��'--'1��.5] ------ --- � -~-~' DEPTH(FEET) x 17.58 ]J � 3�8 1 �S4 61� ID . . ° . ,� ° �� ��� ° ° . i [BASIN DEPTH(FEET) = 14°4] � -�_--_� 17.67 0°0 395.7 381.89 IC . . . ^ \ ` [BASIN DEPTH(FEET) = 14.4] 17.75 0.0 395°3 379.155 ID _. _�____�____° ___. [BASIN DEPTH(FEET) = 14.3] 17°83 0°0 394°8 376.445 I0 . . . ~ CBASIN CF�E 14.3] _' _-_� "--- 17.92 394.4 373.727 IO . . . . I ` CBASIN DEPTH(FEET) = 14"2] 18.00 0.0 393.9 371.013 IC . . . . --- '_- [3A5IN DEPTH(FEET) = 14°2] _1. 1 ' '� 1�°O� O°D �9�°5 388.3O1 IC ° ° ° ° � [BA DEPTH(FEET) = 14.1] -__� __'-__�_ 18.17 0.0 393^1 365.592 ID . . ° ~ t CBASIN OEPTH(FEET) = 14.1] 18.25 0.0 392.6 362.887 I0 ° . • • [BASIN DEPTH(FEET) = 14°0] * 4 , '" 18.33 0°0 392°2 360.184 IO . . • , ..q1 ^ ° �2`� [BASIN DEPTH(FEET) = 14 __- -. __� 19"42 0"0 391.8 357.454 10 . . ~ ~ . ' CBASIN DEPTH(FEET) = 13.9] 18.50 0.0 391.3 354.782 IC __�_________°_ • __ ___�____ • ~_--� --------- N DEPTH(FEET) pE�T� �' 13.97 `.` I 18.58 ' 0°0 390°9 352.094 IO . . //� [BAS%N' DEPTH(FEET) =___ ------ 18.67 - r� .0 390.5 340.403 IO " . . • > CBASIN DEPTH(FEET) = 1].3] }� 1�.7� 0.0 390.0 _ 346.715 IO , _______ , . ^ ~ ^� [BASIN DEPTH(FEET) = 1 3°7] 18.83 0.0 389°8 344"030 ID . . . '` -`� ° � 4 . [BASIN DEPTH(FEET) = 13.7] '-' ' ` '-- 18. 389. -- 341.349 I0 . . • ~ CBASIN DEPTH(FEET) = 13°8] 19.00 0.0 383°8 338.670 IC . . �___ • ~ ~� ' ------- [BASIN DEPTH(PEET)=---1�°�] -�------- ` ( `�` ~, |' | ��°�8 0.0 ��S°� 335.994 IO • • � ~ .���' ° �� ^ �� [BASIN DEPTH(FEET) = 13.5] _ __,'� -___- __--' _ - '_-_ 19°17 0.0 387.9 333.321 Iu . . . I . | ^ [BASIN DEPTH(FEET) = 13.5] 19.25 0.0 387°5 330.651 ID ~_____________ • _ . _ • ~ _ ' ' -- ---- CBASIN !D --- FEET) = 13.4] ' 19.33 0°0 387°0 327.934 IO . . ° ~ ' `� CBASIN DEPTH(FEET) = 13.4] '_____ __ -- ___ . ' '-'-- 19.4 0 38 325"320 IO . . ° , ' [BASIN DEPTH(FEET) = 13.3] | ` 19° 5O � 0°0 386"2 322.653 ID . ° _______� ° __ � � - '---- [B --DEPTH(FEET) = -- 13.3] 19.58 0.0 385.8 320°000 ID . . ° • > ° , | ` | ' CBASIN DEPTH(FEET)= i i�°�� . ��---- 19. --- 0.0 - 385.3 317.345 ID . . ^ • \' ' , EBASIN DEPTH(FEET) = 13.2] 19.75 O O 384.9 314.692 IO ° . . . ° ° °__' ^ -------' ---'----� ~ � [BASIN DEPTH(FEET) =_ 13°7J 19°83 0.0 384.5 312.043 ID . . ° • [8���N DEPTH(FEET) = 13.1] __ _ -- �� " n - -' 10/ -� -' inn 70... rn ' -el .....e**0111.0..... •••....*■ r .m0 t H(FiET) = - - 20.08 0.0 383.1 304.113 10 . . . • , , [BASIN DEPTH(FEET) = 12.97 20.17 0.0 382.6 301.476 10 . . . . C6ASIN DEPTH(FEET) = 12.8) 1 , 20.25 0.0 382.2 . 298.342 10 .____ _ __ . . _ _ • ._ 7 e ' CBASIN! = 12.83 20.33 0.0 381.7 296.212 10 . . . . ;- ---- CBASINDEPTH(FEET) = 12.73 e id. 0.0 381.2 293.535 10 . . . ., [BASIN DEPTH(FEET) = 12.7) 20.50 0.0 380.7 290.061 10 _ CBASIW = 12.63 20.58 - 0.0: 380.2 . 288.341 IO , .CBASIN.DEPTH(FEET) =,,_ 12.63 , , - 20.67 0.0 379.8 285.724 10 . . . • . [BASIN DEPTH(FEET) = 12.57 20.75 0.0 379.3 283.110 10 _ [BASIN DEPTH(FEET) =' 12.53 20.83 0.0 378.8 280.499 TO . . . . • 1 [BASIN DEPTH(FEET) = 12.43 20.92 0.0 373.3 277.392 I0 . . . . [BASIN DEPTH(FEET) = 12.47 21.00 0.0 377.9 275.283 10 . . . . CBASIN DEPT4 = 12.33 ... . ,:11 21.08 0.0 377.4 272.637 10 • . li 21. 8 7 ASIN DEPTH(FEET) = 12.33 ; 0.0 376.9 CBASIN DEPTH(FEET) = 270.090 I0 12.2] . . 21.25 0.0 376.5 267.496 I0 [BASIN D = 12.23 , 21.33 0.0 376.0 264.904 IO • • • . ' ;• eA , • ,. "C CBASIN DEPTH(FEET) = 12.13 _ _ '." 21.42 0.0 375.5 262.317 10 . . . . - , [BASIN DEPTH(FEET) = 12.17 1 "',1 21.50 0.0 375.0 259.732 10 . _______ . . • • _ • -, [BASIN DEPTH(FEET) = - 12.0] . ;.'-''' 21.58 0.0 374.6 257.151 I0 • • . • . CBASIN'DEPTH(FEET) = 12.03 _ • _ 21.67 0.0 374.1 254.573 I0 . . . • _,.., r - . I BASIN DEPTH(FEET) = 11.9) ; 21.75 0.0 373.6 251.998 I0 • CBASIN DEPTH(FEET) =, 11.83 21.83 0:0 373.2 249.426 I0 . . • II 21. 2AS/N DEPTH(FEET) =, 11.83 0.0 372.7 ID . . . • , [BASIN DEPTH(FEET) = 11.73 22.00 0.0 372.2 244.293 ID • . . . ' CBASIN DtPT = 11.7] - 22.08 0.0 371.3 241.731 IO . . • . , it [BASIN DEPTH(FEET) = 11.63 .17 0.0 371.3 22 239.172 IO • • • '',:' [BASIN DEPTH(FEET) = 11.63 :..',,, 22.25 0.0 370.3 236.616 I0 . . . . _ ' - --- - C8ASIN Deff4 = -- 11.53 22.33 '0.0 370.4 234.064 IO • • . . CBASIN DEPTH(FEET) = 11.5] . 22.42 --- 0.0 369.9 231.515 ID . . . . • CBASIN DEPTH(FEET) = 11.43 22.50 0.0 36 228.969 I0 • . • . . .,..1 aWSIN tt = 11.47 , 22.58 0.0 369.0 226.426 10 . . . . 4: ;IC 'ti ' EBASIN DEPTH(FEET) = 11.33 ------ 1.6 UtrolH(rttir= 11.e.1 22.33 0.0 367.6 218.816 IC • . . . i 22. 2ASIN DEPTH(FEET) = 11.23 0.0 367.1 216.236 10 . . . . CBASIN DEPTH(FEET) = 11.1] i 4 23.00 0.0 366.7 2 [BASIN DEPTH(FEET) = 11. .75 ID . 14 . . . . If 23.08 0.0 366.2 211.236 ID . . . . • [BASIN DEPTH(FEET) = 11.0] L_ 23.17 0.0 365.7 208.715 10 . . . . -.. CBASIN DEPTH(FEET) = 11.0] 23.25 0.0 365.0 206.199 10 • . . . [BASIN DEITTH(FEET) = 10.9] 23.33 0.0 364.4 203.637 10 . . • . [BASIN DEPTH(FEET) = 10.8] 23.42 0.0 363.7 201.130 IC . . . . :3ASIN DEPTH(FEET) = 10.8] 23.50 0.0 363.1 198.6 0 . [BASIN DEPTH(FEET) = 10.7] 1 23.58 0.0 362.4 196.179 0 . • • '.,4. , • [BASIN DEPTH(FEET) = 10.6] 23.67 0.0 361.8 193.636 0 . . . . [BASIN DEPTH(FEET) = 10.6] 23.75 0.0 361.1 191.196 0 . . CBASIN DEPTH(FEET) = 10.5] 1 23.83 0.0 360.5 188.712 0 . • , • A ' [BASIN DEPTH(FEET) = 10.4] ____ 23.92 0.0 359.8 186.231 0 . . • , • CBASIN DEPTH(FEET) = 10.4] 24.00 0.0 359.2 183.755 0 . . [BASIN DEPTH(FEET) = 10.3] , 24.08 0.0 358.6 181.284 0 . . .• ,„ 1 6 [BASIN DEPTH(FEET) = 10.2] &, '1 24.17 0.0 357.9 173.816 0 . . . . [BASIN DEPTH(FEET) = 10.23 24.25 0.0 357.3 176.354 0 . . • • I [BASIN 5EPTi- = 10.1] t 4 24.33 0.0 356.6 173.895 0 . . . ,„ .• 1 [BASIN DEPTH(FEET) = 10.0] AAA. _i _ 24.42 0.0 356.0 171.441 C . . . . [BASIN DEPTH(FEET) = 10.03 24.50 0.0 355.4 168.992 0 . . . . [BASINZDEPTH(FEET) = 9.9] 24.58 ,-,)4Q:0 354.7 166.546 0 . • • • '4 CBASIWMEPTH(FEET) = 9.8] 24.67 0.0 354.1 164.106 0 . . . . CBASIN DEPTH(FEET) = 9.8] 24.75 0.0 353.5 161.669 0 . . . . ..., [BASIWDEPTH(FEET) = 9.7] 24.83 0.0 352.8 159.237 0 . . . . CBASIN OEPTH(FEET) = 9.6) 24.92 0.0 352.2 156.30 0 . . . . [BASIN DEPTH(FEET) = 9.6] 25.00 0.0 351.6. 154.336 0 • . • . [BASIN4EPTH(FEET) = 9.53 25.08 - 0.0 351.0 151.966 0 . . . . [BASIN DEPTHCFEET) = 9.4) 25.17 0.0 350.3 149.551 0 . . . . 51 [BASIN OEPTH(FEET) = 9.43 25.25 0.0 30•7 147.141 0 . . . . • [BASIN DEPTH(FEET) = 9.3] 25.33 0.0 349.1 144.735 0 . . • • [BASIN DEPTH(FEET) = 9.2] 25.42 6:6 349.5 142.333 0 _ . . . . rRASTN nFPTHf=7=T) = Q.21 L.6 t 1 l 1- - i� . 1 u. r 25.58 0.0 347.2 137.542 0 . . • • 1 C3ASIN DEPTH(FEET) = 9.1] I 25.67 0.0 346.6 135.152 0 . • C3ASIN DEPTH(FEET) = 9.0] IF' 25.75 0.0 346.0 132.763 0 _ . �, CBASIN. DEPTH (FEET) = 8.93 25.83 0.0 345.4 130.387 0 . . CBASIN DEPTH(FEET) _ 8.93 25.92 0.0 344.7 128.011 0 - -- . r C3ASIN DEPTH(FEET) = 8.8] 26.00 _ 0.0 344.1 125.633 0 [BASIN DEPTH(FEET) = 8.73 26.08 0.0 343.5 123.271 0 . . • - y _ C BASIN DEPTH(FEET) = 8.73 26.17 0.0 342.9 120.907 0 . . * [BASIN DEPTH(FEET) = 8.6] - 26.25 0.0 342.3 115.547 0 CBAS.IN+ "QEPTH (FEET) = . 8.53 26.33 ` • 0.0 341.7 116.192 0 . • [BAS = 8.53 26.42 0.0 341.1 113.841 0 - I , [BASIN DEPTH(FEET) = 3.43 26.50 0.0 340.5 111.4 0 . [BASIN_.OEPTH(FEET) = 8.43 26.58 0.0 339.9 109.152 0 . • [BASIN :DEPTH(FEET)= 8.33 26.67 0.0 339._2 106.813 0 . . . [BASIN DEPTH(FEET) = 8.2] I _____ 26.75 0.0 338.6 104.479 0 • CBASIN DEPTH(FEET) = 8.23 _ -_- - -- -- 26 0.0 338.0 102.149 0 . . ' [BASIN DEPTH(FEET) = 8.13 26.92 0.0 337.4 99.823 0 . • [BASIN DEPTH(FEET) = 8.03 i 27.00 0.0 335.8 9 7.50 4 3 - CBASIN.:DEPTH(FEET) = 8.0] '1 27.08 0.0 331.4 95.207 0 . :F _ • _ CBASIN DEPTH(FEET) .= 7.93 _ _ __ -_ -_. .___ ._._ ' 27.17 0.0 327.2 92.939 0 . . • • C3ASIN DEPTH(FEET) = 7.83 27.25 0.0 322.9 90.700 0 I C3ASIN DEPTH(FEET) = 7.7J M 1 27.33 0.0 318.8 88.4 0 • , I CBASIN DEPTH(FEET) = 7.63 i 27.42 0.0 314.7 86.30 0 • � CBASIN DEPTH(FEET) = 7.53 2 7.50 0.0 310.6 34.156 0 . . • fr ' CBASIN DEPTH(FEET) 7.4] 27.58 0.0 306.6 82.031 0 . . • _____ _........ CBASIN DEPTH(FEET) = 7.33 • 27.67 .........._. 30.2_..6.__ 0 . . CBASIN DEPTH(FEET) = 7.2] 27.75 0.0 299.7 77.862 0 - C3ASIN DEPTH(FEET) = 7.717 � ___.; 27.83 0.0 294.9 75.818 0 4r CBASIN DEPTH(FEET) = 7.03 `� ' 27.92 0.0 291.1 73.300 0 . . . * CBASIN DEPTH(FEET) = 6.93 , -: 28.00 0.0 237.3 71.809 0 . . . CBASIN DEPTH(FEET) = 6.8] 28.08 0.0 233.6 69. 0 . . . - . -- CBASIN DEPTH(FEET) = 6.7] MIN 111111111111111111.11111111111111111111111111111" LtiAsINEitP 6.6.1 28.33 0.0 272.7 64.096 0 . . . . [BASIN DEPTH(FEET) = 6.53 23.42 0.0 269.2 62.233 0 . . . . :BASIN DEPTH(FEET) = 6.4] - 0.0 265.8 69.33 0 . "- *- 1 - EBASINDEPTH(FEET) = 6.3] 28.58 0.0 262.3 58.569 0 . . re. CBASIN DEPTH(FEET) = 6.23 _ 28.67 0.0 258.9 56.774 0 . . . . CBASIN DEPTH(FEET) = 6.2] 28.75 0.0 255.6 55.303 0 . . . . [BASIN DEPTH(FEET) = 6.1] » e ,I 28.83 0.0 252.3 53.254 0 kr • a • • P CBASIN DEPTH(FEET) = 6.0] 28.92 0.0 249.0 51.527 0 . . . . [BASIN DEPTH(FEET) = 5.92 29.00 0.0 245.8 49.323 0 . . . . CBAS/WTEPTH(FEET) = 5.9] 29.08 ''' 0 242.6 48.141 0 . . . . CBASTODEPTH(FEET) = 5.83 29.17 0.0 239.5 46.481 0 . . . . CBASIN DEPTH(FEET) = 5.73 29.25 0.0 236.4 44.342 0 . . . . CBASIN DEPTH(FEET) = -- 5:62 29.33 0.0 233.4 43.224 0 . . . . EBASIN DEPTH(FEET) = 5.6] 29.42 0.0 230.4 41.623 0 . . • • [BASIN DEPTH(FEET) = 5.5] 29.50 0.0 227.4 40.C51 0 . . . . [BASIN DEPTH = 5.4] ,A. 29.58 , 0.0 224.4 38.495 0 . . • • (-1___ [BASIN DEPTH(FEET) = 5.42 - s 29.67 0.6 221.5 36. 0 . . . . IT CBASIN DEPTH(FEET) = 5.33 )' 29.75 0.0 213.7 35.444 0 . . . . [BASIN DEPTH(FEET) = 5.23 , 29.83 , 0.0 215.9 33.947 0 . • • - qi [BASIN DEPTH(FEET) = 5.23 __ 29.92 0.0 213.1 32.470 0 . . • • CBASIN DEPTH(FEET) = 5.1] 30.0J 0.0 210.3 31.012 0 . . . . ii CBASIN DEPTH(FEET) = 5.0] 30.08 0.0 204.3 29.534 0 . . CBASIN DEPTH(FEET) = 4.9] 30.17 0.0 196.2 25.205 0 . . . CBASIN OEPTH(FEET) = 4.83 30.25 0.0 183.4 26.331 0 . . • _ • _ CBASIN DEPTH(FEET) = 4.63 30.33 0.0 180.9 25.509 0 . . CBASIN DEPTH(FEET) = 4.5] 30.42 0.0 173.7 24.39 0 . . . . - CBASIN DEPTH(FEET) = 4.43 30.50 0.0 166.8 23.215 0 . . . . [BASIN OEPTH(FEET) = 4.2] 30.58 0.0 150.2 22.089 0 . • • pv; • ) [BASIN DEFTH(FEET) = 4.1] A - , , ... _ 30.67 0.0 153.8 21.007 0 . . . . [BASIN DEPTH(FEET) = 4.03 30.75 0.0 147.7 19.969 0 . . . . [BASIN DEPTH(FEET) = 3.93 - 4 30.83 0.0 141.9 18.972 0 . , . . . ' _ ._' -'- _ - -_' ' - - . ~ _ , LBASIm utplH(rET./) = 3.5j ----- - 31.08 0.0 125.8 18.212 0 . ~ ~ ~ [SA �IN DEPTMCF��T� = 3.5] » ]1.17 O.O 1�O.8 15.364 0 . . ~ ~ ~ [BASIN DEPTH(FEET) = 3.4] • 31.25 0.0 115.8 14.550 0 . . ° ~__ » \K --- --- ' --'------' --- ' CG�3IN DEPTH(FEET) � �.3] -' 31.33 0°0 111.2 13.768 0 . . ° OT �____[B��IN DEPTH(FEET) = 3.23 /�«�� 31.42 0.0 106.8 13.017 0 ~ . ~ ~ -'- i; i E8A3IN OEPTH(FEET) = 3.2] �___ 0.0 102.6 12.296 0 . . ___� ° � g [BASIN DEPTH(FEET) = 3.13 - -��----'- - � �1°5� 0.0 93.5 11.604 0 . . ° ' �° _ BASDEPTH(FEET) � "O] ' � 31.67 0.0 94.6 10.939 0 . ~ ~ ~ [BASIN DEPTH(FEET) = 2.93 31.75 0.0 90.8 10.301 C . . ~ ° [BASIN DEPTH(FEET) � � � . q] --------' '-- ^ .- ' --- ^��.` " �� 0 31.83 � O 87 2 8 O8S 0 . . ° � ° ° ° . �'° �~ [8AS%N DEPTH(FEET) ) = 2.83 31 9 Z O � �� 5 ---' O �3D J - ------ - - '-'-- -- ��. ~ ~ ~ . . . . ~ ` EBASIN DEPTH(FEET) = 2.8] ^ _- _______� � � --_'-_- __--____ H � ' ` �� ^ N' 0 - -----' - -- - __-- - ' ` __� __' _ -- V ' _ � �' 'm� ��� ^ . � � r ''�/. ' � � _-_- -__ '/- ' ^ � � . .``, '� , __' __' _-__ ____-_-_-_' ' _---_ --___- ______��` `. ` • -_'- __-- _-__'' - U '^� I --._- ------- ' --_-__,_^_._ --' -_'' . _- ' �-__'-_--_--- --_'____-' .. ' _- -_ _ _ '___ 'F -, , . SAN SEVAINE CHANNEL HYDRAULICS BELOW JURUPA BASIN OUTLET FIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIMIIMMIMIIIIIIIIIMIIIIMIII =====_____==== ========= I HYDRAULIC ELEMENTS - I PROGRAM PACKAGE = ===== ___==========__ ====== ` � � (<<<<�<<<<<<<�<<{�{<<��<<<<��{<<�<>>>}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> . ~ ' (C) Copyright 1982,1986 Advanced Engineering Software [AES] I Especially prepared for: BILL MANN & ASSOCIATES 1 <<<<<<<<<“<<<<<<<<“<<<<{<<<<<<<<{<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>}>>>>>>>> 1 � . <^<<<<<<<<<<<<<<<<“<<“{<<<<<<<<{“<<}>>}>>>>>>>>>>}>>>>>>>>>>>}>>>}>>>>>>> Advanced Engineering Software [AES] SERIAL No. I06431 , VER. 2.3C RELEASE DATE: 2/20/86 t <<<{<<<{{<<<<<<<<<<<<<<<<<<<<“{<<<<>>>>>>>>>>>>>>>>>>>>})>>>>}}}}>>>>>>>> [ ********DESCRIPTION OF RESULTS******************************************** * SAN SEVAINE CHANNEL BELOW JURUPA BASIN *' . Q = 12100 CFS (100) * B= 20' D = 13' * ( ."************************************************************************ . .**************************************************************************. t >>CHANNEL INPUT INFORMATION<<<< , . �7 CHANNEL ��HORIZONTAL��ERTICAL� = 1 50 � � � . BASEWIDTH(FEET) = 2 �� 0.00 �� ~� ~~�p ~~ ���� ��� ~^"-~ r CONSTANT CHANNEL SLOPE(FEET/FEET) = .011000 ' UNIFORM FLOW(CFS) = 12100.00 � MANNINGS FRICTION FACTO' = .0140 ' L ====== ======" NORMAL-DEPTH FLOW INFORMATION: | >>�>} NORMAL DEPTH(FEET) = 9 58 J *�'� � � » ���� . , �� z� ^p~~ �� �� °��"~�' � FLOW TOP- WIDTH(FEET) = 48.67 . FLOW AREA(SQUARE FEET) = 328.18 � ~_� ' | HYDRAULIC DEPTH(FEET) = 6.74 ^ � thin � Of-e- �� ^Jr2�� , FLOW AVERAGE VELOCIT~y(FEET/SEC.) = 36.87 UNIFORM FROUDE NUMBER = 2.502 . / PRESSURE + MOMENTUM(POUNDS) = 948788.60 I AVERAGED VELOCITY HEAD(FEET) lig 21.109 • SPECIFIC ENERGY(FEET) 30.666 = = == _ _ __________===== =_===== CRITICAL-DEPTH FLOW %NFORMATION: - - - CRITICAL FLOW TOP-WIDTH(FEET) = 66.55 . CRITICAL FLOW AREA(SQUARE FEET) = 671.38 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 10.09 ' CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 18.02 , ~ CRITICAL DEPTH(FEET) = 15.52 ,. � CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 689334.90 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 5.044 ------'' -- -------- ---- ---- - _-_-^_ �== . - -_' ' '-_-__ -■ _ ======= HYDRAULIC ELEMENTS - I PROGRAM PACKAGE __ _ ________====_____========= ============= i� -- <<<<<<<<<<{<<<<<<<<<<<<{{<<<<<<<<<<{{>>>>>>>>>>>>>>>>>>>>>}>>>>>>>>>}>>>>>> (C) Copyright 1982,1986 Advanced Engineering Software [AES] '' Especially prepared for: BILL MANN & ASSOCIATES <<<<<<<<<{<<<<<<“{<<<<{<<<<<<<<<<<<<>>>>>>>>>>>>>>>>}>>>>>}>>>>>>>>>}>>>>> i l l '<<<<<<<<<{<<<<<<<<<<<<<<{<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>}>>>>> Advanced Engineering Software [AES] SERIAL No. 10643I VER. 2.3C RELEASE DATE: 2/20/86 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<{{<<>>>>>>>>>>>>>>>>>>>>)>>>>>>>>>}>>>>>>> *********DESCRIPTION OF RESULTS******************************************** Q = 12570 CFS *, * 8 = 20 D = 13 FB = 3.25 470 CFS = .20 FB * *************************************A************** ` ************************************************************************ >—.CHANNEL INPUT INFORMATION<<<< CHANNEL Z(HORIZONTAL/VERTICAL) = 1.50 BASEWIDTH (FEET) L 00 T�FEET� = 01 1000 �� &�w ~� ��� �� �� �°�� CONSTANT � CHANNEL SLOPE(FEET/FEET) ~ q �� *�� . ~nu= ,��_ , - ' 4100-0,0" S UNIFORM FLOW (CFS) = MANNINGS FRICTION FACTOR .0140 _ = ===== '--- NORMAL-DEPTH FLOW INFORMATION: / - _ - 7 �- � _� 't >>>>> NORMAL DEPTH(FEET) = 9.75 e��� �� 75 � �� � � 47~�S. FLOW TOP- WIDTH(FEET) = 49.25 ' '� v x � �~ � FLOW AREA (SQUARE FEET) = 737.52 x��� 3-7 � ���� K���� ��� ! HYDRAULIC DEPTH(FEET) = 6.85 ^� FLOW AVERAGE VELOCITY(FEET/SEC.) = 37.24 / . UNIFORM FROUDE NUMBER = 2.507 ' PRESSURE + MOMENTUM (POUNDS) = 995403' 50 AVERAGED VELOCITY HEAD(FEET) = 21.577 . & SPECIFIC ENERGY (FEET) = 31.286 ==_ =================-----======================-------= =m"=*mom CRITICAL-DEPTH FLOW INFORMATION: ` CRITICAL FLOW TOP-WIDTH(FEET) = 67.46 CRITICAL FLOW AREA(SQUARE FEET) = 691.83 7RITICAL FLOW HYDRAULIC DEPTH(FEET) = 10.26 • CRITICAL FLOW AVERAGE VELOCITY (FEET/SEC. ) = 18.17 CRITICAL DEPTH(FEET) = 15.82 CRITICAL FLOW PRESSURE + MOMENTUM (POUNDS) = 722302. 40 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 5.126