Loading...
HomeMy WebLinkAboutCity of Fontana MPSD Phase II INFRASTRUCTURE DRAINAGE REPORT Now, FOR CITY OF FONTANA MPSD LINE A -PHASE II DUNCAN CANYON STORM DRAIN FONTANA, CALIFORNIA PREPARED FOR: ilitt AN ) riild CITY of FONTANA 8353 SIERRA, Avg rornue., CA 92335 (909) 350 -7600 PREPARED BY: rr E I ��, � C r__ �' ^ _ � c_8! 7 'a1 rR IfJ 937 SOUTH VIA LATA • SUITE 500 COLTON, CA 92324 (909) 783 -3636 • Fax (909) 783 -0108 FEBRUARY 19, 2008 DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA This report has been prepared by or under the direction of the following registered civil engineer who attests to the technical information contained herein. The registered civil engineer has also judged the qualifications of any technical specialists providing engineering data upon which recommendations, conclusions, and decisions are based. CD rn rn 1 C No. 66068 =3 t ' * EXP e * `` CIVIL ���/ WM/6 CA�.w Aric Torreyson R 166068 Date Seal Registered Civil gineer State of Califo is 4/25/2008 AEI•CASC ENGINEERING O: \word processing \job related \1041 - City of Fontana\ 1 041-104 Duncan Canyon Street Storm Line Montana MPSD Line A - Rev 022108.doc DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA TABLE OF CONTENTS PAGE I. PURPOSE AND SCOPE 1 II. PROJECT SITE AND DRAINAGE AREA OVERVIEW 1 III. HYDROLOGY 1 IV. HYDRAULIC ANALYSIS 2 V. EXISTING FACILITIES /CITY'S MASTER PLAN OF DRAINAGE FACILITY 2 VI. RECOMMENDED IMPROVEMENTS 3 VII. CONCLUSIONS AND RECOMMENDATIONS 3 VIII. REFERENCES 3 APPENDIX "A ": SAN SEVAINE HYDROLOGY STUDY EXCERPT APPENDIX "B ": WSPG HYDRAULIC ANALSIS FOR LINE "A" APPENDIX "C ": STRUCTURAL CALCULATIONS EXHIBIT "A ": HYDROLOGY MAP (SCALE 1 "= 1000') EXHIBIT "B ": MPSD LINE A PHASE I LAN ENGINEERING REFERENCE PLAN EXHIBIT "C ": CITY OF FONTANA MASTER STORM DRAINAGE PLAN 4/24/2008 AEI•CASC ENGINEERING O: \word processing \job related \1041 - City of Fontana \1041 -104 Duncan Canyon Street Storm Line Montana MPSD Line A - Rev 022108.doc DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA I. PURPOSE AND SCOPE The purpose of this report is to investigate and evaluate the drainage problems of the MPSD LINE "A" of City of Fontana and to develop a drainage plan that would provide this 1289 -acre project area with improved drainage and flood protection from the once -in -a- hundred -year flood. Implementation of this plan in conjunction with the construction of the regional drainage facilities, namely the Hawker Crawford Channel, will achieve this goal. The plan will also act as a planning guide for locating and sizing drainage facilities to be constructed by developers and others within the project area. The extent of the studies establishing this plan includes the following: A. Review of available drainage reports for the project site. B. Determination of the quantities of 100 -year storm runoff based on the available hydrology report. C. Determination of the location and size of the proposed drainage facilities. D. Preparation of the drainage report. II. PROJECT SITE AND DRAINAGE AREA OVERVIEW The MPSD LINE "A" is located in the City of Fontana, San Bernardino County. The project is roughly bounded by Hawker Crawford Channel to the west, Duncan Canyon Road to the south, and Sierra Avenue to the east. Highway I -15 bisects the project site in a southwesterly direction. The Phase II segment of this facility will extend from east of Interstate 15 to Citrus Avenue. The drainage area covered by this plan consists of approximately 1289 -acres undeveloped open space. Based on existing topography, the project site drains in a southwesterly direction. In the near future a proposed development directly north and south of the phase II segment will be constructed. A Road Alignment Study by Hall and Foreman was prepared and proposed the possibility for MPSD Line A-4 to be rerouted along Citrus Avenue. To allow for the maximum flexibility with future developments, the design flow rate for this segment was increased from 1837.8 CFS to 3095.6 CFS for the 100 -yr storm event. This option was discussed and recommended by the City of Fontana. III. HYDROLOGY A number of hydrological and flood control studies have been performed for the project site and surrounding areas. These studies have been reviewed and used for reference in the preparation of this report. A list of references is included in Section VIII. The report having a direct impact to the proposed project is the San Sevaine Water Project, dated May 1995 (Reference 3) prepared by Boyle Engineering Corporation. This report was used to evaluate the ultimate hydrological data for Hawker Crawford Channel and the Rich Detention s February 21, 2008 1 AEI CASC ENGINEERING O: \word processing \job related\1041 - City of Fontana \1041 -104 Duncan Canyon Street Storm Line A\Fontana MPSD Line A - Rev 022108.doc DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA Basin. Additionally, Boyle's study was used as the basis for the rational and hydrograph calculations for the existing condition. In 2002, revisions to Boyle Engineering's hydrology study tributary to the City of Fontana Master Drainage Line "A" were made to reflect the current land use plan for the City of Fontana. These modifications were performed by the County of San Bernardino Flood Control District. The revised hydrology study served as the basis of Line "A" facility design. In the modified hydrology study, 100 -year 1 -hour rainfall value of 1.56 inches was used with slope of intensity duration curves equal to 0.6. Hydrologic Soil Groups "A" and `B" were used for the study area. Antecedent Moisture Condition (AMC) 2 was used to determine the peak storm flows (see Appendix "A" and Exhibit "A "). The 100 -yr design flow for phase II of the project is 3,095.6 cfs. This flow rate is consistent with the San Sevaine Water Project hydrology analysis at the confluence point of MPSD Line "A" and Line "A-4" (see Exhibit "C "). IV. HYDRAULIC ANALYSES The Los Angeles County Water Surface Pressure Gradient (WSPG) software Program is utilized to evaluate the water surface profile gradient for the proposed storm drain facilities (see Appendix "B"). Wino V. "EXISTING" FACILITIES /CITY'S MASTER PLAN OF DRAINAGE FACILITY There will be two drainage facilities near the study area before the construction of MPSD Line "A ". These are the Hawker Crawford Channel and the Rich Detention Basin. A brief description of these existing facilities follows: MPSD Line "A" Phase I The MPSD Line "A" phase I extends in a easterly direction from the existing Hawker Crawford Channel to e/o Interstate 15 and the Duncan Canyon Interchange. Phase I will be design and constructed as part of the Duncan Canyon Interchange Project as will be design to convey the 100 - yr flow rate of 3095.6 cfs (see Exhibit `B "). Hawker Crawford Channel The Hawker Crawford Channel extends in a southwesterly direction to the west of the project site. It drains a watershed of approximately 2,488 acres in size with a maximum ultimate 100 -year storm runoff of 4,823 11 The slope is steep ranging from 3 to 4.5 percent. In existing condition, the channel sides are protected with small cobbles and rocks for the most part. At the downstream terminus of this creek is the existing Hawker Crawford Channel (part of the Coyote Canyon Project) and Rich Detention Basin. The facility is owned and maintained by SBCFCD. February 21, 2008 2 AEI CASC ENGINEERING O: \word processing\job related\1041 - City of Fontana \1041 -104 Duncan Canyon Street Storm Line A\Fontana MPSD Line A - Rev 022108.doc DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA The future reach of the Hawker Crawford Channel located adjacent to I -15, is proposed to begin as a concrete -lined trapezoidal channel with a bottom width of 10 feet, depth of 6 feet, and 1.5 to 1 side slopes. Single cell 12' W X 7' H RCB culvert is proposed at the roadway crossing of Lytle Creek Road. After the confluence with City of Fontana MPSD Line "A ", 16' W X 12' H RCB will be used for the Hawker Crawford Channel until it joins the existing section constructed with the Coyote Canyon development. With the construction of the channel the interim training levees will be removed. A debris basin will be provided at the upstream terminus to trap approximately 11.8 acre -feet of debris. The proposed debris basin and channel is proposed to be maintained by San Bernardino County Flood Control. This segment of the Hawker Crawford Channel (upstream of Duncan Canyon Road) will not be constructed with this project. The future facility will be constructed by the future developer in the near future. Rich Detention Basin The Rich Detention Basin is a major flood control facility and it drains a 3,234 -acre watershed. The basin is owned and maintained by SBCFCD. This facility is a major component of SBCFCD's San Sevaine Water Project. Currently, the basin is under construction to its estimated ultimate size. Until the operation of the City of Fontana MSDP Line "A ", Rich Basin will be 1, 4w oversized for the 100 -yr flood event. Rich Basin will mitigate the increase in storm flows from the development of the tributary watershed. It should be noted that as the watershed tributary to MPSD Line "A" is developed that the ultimate outlet for Rich Basin will need to be modified. At this time, there is an interim outlet structure which restricts the existing basin flow. For the Ultimate condition, this restrictor needs to be removed to allow the larger ultimate flow to be safely conveyed through the basin. VI. RECOMMENDED IMPROVEMENTS The following is a brief description of the recommended drainage improvements: The City's `North Fontana Master Plan of Drainage Line "A "' Line "A" is an underground RCB storm drain system with a total length of approximately 8200 feet. It starts near the intersection of Sierra Avenue and Duncan Canyon Road, extends westerly along Duncan Canyon Road for about 6950 feet, and takes a northwesterly direction to cross Highway I -15 and join the Hawker Crawford Channel. Line "A" is proposes to intercept storm flows emanating from a drainage area of 1289 acres with a 100 -year peak flow of 3,096 ft /sec (Reference 3), and conveys them into the Hawker Crawford Channel. The slope of Line "A" varies between 0.003 and 0.0256. For the most part, 12' W X 8' H RCB is proposed, and it will be increased to 12' W X 10' H RCB before connected to the Hawker Crawford Channel. In a 100 -year storm event, Line "A" will experience a maximum flow velocity of 32.7 ft/sec. February 21, 2008 3 AEI -CASC ENGINEERING O: \word processing \job related\1041 - City of Fontana \1041 -104 Duncan Canyon Street Storm Line A\Fontana MPSD Line A - Rev 022108.doc • Mhel.! DRAINAGE PLAN MPSD LINE "A" - FONTANA, CALIFORNIA WI. CONCLUSIONS AND RECOMMENDATIONS Based on the studies and investigations made for this report, it is concluded that: • A drainage system is needed to safely convey storm runoff through the project area with the least interruption to public services. The MPSD Line "A", which is presented in this report, in conjunction with the City's master plan of drainage and improvement plan for the regional facilities (Hawker Crawford Channel and Debris Basin), are such systems. This report recommends that: • The drainage plan, as set forth herein, be used as a guide for all future developments within the north area in the city of Fontana and that such developments be required to conform to the plan insofar as possible. • With the future development a detailed drainage analysis and report be performed to support the proposed construction for the intract, rough grading, street, and drainage improvement plans. WIL REFERENCES 1. County of San Bernardino; Hydrology Manual, August 1986. 2. Bill Mann & Associates in association with Hall & Foreman, Inc.; Hawker-Crawford Channel and Rich Basin (Volume IA), City of Fontana, County of San Bernardino, August 1991. 3. Boyle Engineering Corporation; San Sevaine Water Project, May 1995. Now February 21, 2008 4 AEI-CASC ENGINEERING O:\word processing\job related11041 - City of Fontana\1041-104 Duncan Canyon Street Storm Line Montana MPSD Line A - Rev 022108.doc LL1 z <c o w >- o z z z 0 0 / o 0 'A V va 3 I S Q I. s ,, b � /1 d S S3 e1 dl 0 m m ; AV Sn8J1I o 1 H 1 >- Q .G I )133 D . LL,&7 U c) W O -7 ;6- O ct s'v> >- O ,z& U DEPARTMENT OF PUBLIC WORKS COUNTY OF SAN BERNARDINO DEPARTMENT ECONOMIC DEVELOPMENT OOQ CONTROL - G1MS • REGIONAL PARKS • SURVEYOR • TRANSPORTATION • WASTE SYSTEM Z AND PUBLIC SERVICES GROUP _st Third Street - San Bernardino, CA 92415 -0835 • (909) 387 -8104 KEN A- MILLER Fax (909) 387 -8130 - _ Director of Public Works ci nq.-rl October 16, 2002 ;4 ? dv +s� AEI -CASC ENGINEERING • 937 S. Via Lata, Suite 500 File: 108.0108 - Colton, CA 92324 1- 807/1.00 Attn: Ceazar V. Aguilar, P.E., Principal RE: ZONE 1 - COYOTE CANYON HYDROLOGY - BOYLE'S SUBAREAS 3 & 4 REVISION • Dear Ceazar, Reference is made to your letter of transmittal dated August 29, 2002, with the City of Fontana (Alternative 4) Land Use Map dated May 1999, requesting recalculation of Boyle Engineering's hydrology for Sub -areas 3 & 4 to reflect the City's Land Use Map. Attached, please find Boyle Engineering's revised hydrology calculations for Sub -areas 3 & 4. Please note, San Sevaine Channel has already been designed and in many areas constructed based on the previously approved, study by Boyle Engineering. Therefore; the revision has to be accommodated within Rich Basin. In other words, the outflow from Rich Basin should not exceed 3,994 cfs. If you hay- .. y questions, please call Hany Peters or me at (909) 387-8213. Sincer= • t : _ . FOX, :E., Chief Water Resources Division MJF: 1LP :RTS :bf D18538 Attachments: as noted above. • • ************************************************************************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. FYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1224 Analysis prepared by: SAN BERNARDINO COUNTY TRANSPORTATION / FLOOD CONTROL DEPARTMENT WATER RESOURCES DIVISION * * * * * * * * * * * * * * * * * * * * * * ** ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * San Sevaine Channel Hydrology- Ultimate Conditions * * 100 yr Return Frequency * * Revised Elevations and Land Use per City's Alternative 4 Land Use ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • FILE NAME : A: \ 03R. DAT :-TIME /DATE OF STUDY: 09:01 10/15/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------- -- *TIME -OF - CONCENTRATION MODEL*- ' DER SPECIFIED STORM EVENT (YEAR) = 100.00 ?ECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0 .95 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE (LOG (I ; IN /HR) vs. LOG (Tc ;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY (INCH /HOUR) = 1 . 5600 • *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* UNIT- HYDROGRAPH MODEL SELECTIONS /PARAMETERS : WATERSHED LAG = 0 . 80 * Tc FOOTHILL S -GRAPH USED . PREC I P I TAT I ON DATA ENTERED ON SUBAREA BASIS . SIERRA MADRE DEPTH -AREA FACTORS USED. *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR UNIT HYDROGRAPH METHOD* *********************************************** * * * * * * * * * * * * * * * * *. * * * * * * * * - * * ** FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21 » »»RATIONAL METHOD INITIAL SUBAREA ANALYSIS <«< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« , 4 0160 .. I TIAL SUBAREA FLOW- LENGTH ( FEET) = 844 .4 0 EVATI ON DATA : IIPSTREAM (FEET) = 2000 . 00 DOWNSTREAM ( FEET) = 1611.5 8 To = K* [ (LENGTH** 3 . 00 ) / (ELEVATION CHANGE) ] * * 0 . 20 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 12 . 214 * 100 YEAR. PAI. FALL INTENSITY (INCH/HR) = 4.054 SUBAREA Tc AND LOSS RATE DATA (AMC II): - - - °*^ _ LAND USE GROUP (ACRES) (INCH/ER) (DECIMAL) CN (MIN.) 42TURAL FAIR COVER MEADOWS B 10.98 0.55 1.00 70 12.21 :F jR REA AVERAGE PERVIOUS LOSS RATE, Fp (INCH / ) = 0.55 S UBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA R JNOFF (CFS) = 34.64 . TOTAL AREA(ACRES) = 10.98 PEAK FLOW RATE(CFS) = 34.6A SUBAREA AREA - AVERAGED RAINFALL DEPTE (INCH) : 5M = 0.61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24 =13.49 --- **k * **- *- * -** * * *= * * * *-*a- **-*-* ax 3c_***_**.**-***_******** ** *_?t ** * * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 311.00 TO NODE' 312.00 IS CODE = 51 . » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1611.58 DOWNSTREAM(FEET) = 1454.32 CHANNEL LENGTH THRU SUBAREA(FEET) = 851.90 CHANNEL SLOPE = 0.1846 • CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH(FEET) = 30.00 - CHANNEL FLOW THRU SUBAREA (CFS) = 34.64 FLOW VELOCITY(FEET /SEC) = 15.21 FLOW DEPTH(FEET) = 0.46 TRAVEL TIME (MIN.) = 0.93 Tc(MIN.) = 13.15 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 1696.30 FEET. -***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -LOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 81 • » »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc (MIN) = 13 .15 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.879 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 10.62 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 10.62 SUBAREA RUNOFF(CFS) = 31.83 EFFECTIVE AREA(ACRES) = 21.61 AREA - AVERAGED Fm(INCH /HR) = 0.55 AREA- AVERAGED Fp(INCH /HR) = 0.55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = - 21.61 PEAK FLOW RATE(CFS) = 64.73 SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : 5M = 0.61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR = 13.00- • - ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 312:00 TO NODE 313.00 IS CODE = 51 > »COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< ' > »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< . ELEVATION DATA: UPSTREAM (FEET) = 1454.32 DOWNSTREAM (FEET) = 1305.68 CHANNEL LENGTH THRU SUBAREA (FEET) = 650.20 CHAT 1 EL SLOPE = 0.2286 CHANNEL BASE(FEET) = 4.00 " Z " FACTOR = 2.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH (FEET) = - ;0.00 r TATNTk. T . '7.1)w ThTRTT .4TTR (CF.4) = n4 7� -RAVEL TIME (MIN.) = 0.55 Tc(MIN.) = 13.70 NGEST FLOWPATH FROM NODE 310.00 TO NODE 313.00 = 2346_50 FEET. �'T .********** *********************: F********** ** * * * * *** ** ** * * **** * * ** * ****** FLOW PROCESS FROM NODE 313.00 TO NODE 313.00 IS CODE = 81 » »»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 13.70 - * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 3.785 SUBAREA LOSS RATE DATA(AMC II): �RVDL�PMEN2 TYPE/ Ses- -- AREA' - - --Fp -- - - -- - Ap -- -- SCS- - - - - - - - - - LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER • "MEADOWS" B 22.76 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 22.76 SUBAREA RUNOFF(CFS) = 66.27 EFFECTIVE AREA(ACRES) = 44.37 AREA - AVERAGED Frn(INCH /HR) = 0.55 AREA - AVERAGED Fp(INCH /HR) = 0.55 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 44.37 PEAK FLOW RATE(CFS) = 129.18 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =13.00 4******** ************************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** OW PROCESS FROM NODE 313.00 TO NODE 314.00 IS CODE = 51 » »COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1305.68 DOWNSTREAM(FEET) = 1240.04 CHANNEL LENGTH THRU SUBAREA (FEET) = 547.00 CHANNEL SLOPE = 0.1200 CHANNEL BASE(FEET) = 7.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 129.18 FLOW VELOCITY(FEET /SEC) = 16.34 FLOW DEPTH(FEET) = 0.78 TRAVEL TIME (MIN.) = 0.56 Tc(MIN.). = 14.25 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 314.00 = 2893.50 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 314.00 TO NODE 314.00 IS CODE = 81 » » »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc (MIN) = 14 .2 5 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.695 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER `EADOWS " B 36.22 0. 5 5 1.00 70 £AREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.55 JBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 .D JBAREA AREA (ACRES) = 36.22 SUBAREA RUNOFF(CFS) = 102.53 EFFECTIVE AREA(ACRES) = 80.59 AREA-AVERAGED Fp(INCH/FR) = 0.55 AREA-AVERAGED Fp(INCH /HR) = 0.55 AREA- AVERAGED Ap = 1.00 TOTAL, AREA(ACRES) = 80.59 PEAK FLOW RATE(CFS) = 228.14 = 0.60; 30M = 1.23; 1`_R. = 1.63; 3ER = 3.43; 6HR = 5.50; 24HR =13.00 *** k'***************** ** ** * *k ** * * * ** * * * * ******* * * *** * ** ** * * * * * * * *,,** SLOW PROCESS FROM NODE 314.00 TO NODE 315.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME TERU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM (FEET) = 1240.04 DOWNSTREAM (FEET) = 1063.51 CHANNEL LENGTH THRU SUBAREA (FEET) = 1562 .2 0 CHANNEL SLOPE = 0.1130 CHANNEL BASE(FEET) = 9.00 "Z" FACTOR = 5.000 - -- INNING' - S - FACTOR = DEPTH-{ -FF. T -) -_- - 3-0- - -G0- - - CHANNEL FLOW THRU SUBAREA(CFS) = 228.14 FLOW VELOCITY(FEET /SEC) = 17.83 FLOW DEPTH(FEET) = 0.94 TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 15.71 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 315.00 = 4455.70 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 15.71 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.485 SUBAREA LOSS RATE DATA(AMC II): ,...- DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ' FAIR COVER MEADOWS" B 37.85 0.55 1.00 70 SUBAREA AVERAGE . PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 37.85 SUBAREA RUNOFF(CFS) = 100.00 EFFECTIVE AREA(ACRES) = 118.44 AREA- AVERAGED Fm, (INCH /HR) = 0.55 AREA- AVERAGED Fp(INCH /HR) = 0.55 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 118.44 PEAK FLOW RATE(CFS) = 312.89 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.57; 30M = 1.18; 1HR = 1.55; 3HR = 3.25; 6HR = 5.18; 24HR =13.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PRO('FSS FROM NODE 315.00 TO NODE 309.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM (FEET) = 1063.51 DOWNSTREAM (FEET) = 801.54 CHANNEL LENGTH THRU SUBAREA (FEET) = 2318.30 CHANNEL SLOPE = 0.1130' CHANNEL BASE (FEET) = 9.00 " Z " FACTOR = 5.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 312.89 FLOW VELOCITY(FEET/SEC) = 19.39 FLOW DEPTH(FEET) = 1.11 'AFL TIME(MIN.) = 1.99 Tc(MIN.) = 17.71 440 INGEST FLOWPATH FROM NODE 310.00 TO NODE 309.00 = 6774.00 FEET. .:****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 309.00 TO NODE 309:00 IS CODE = 1 » >DESIGNATE INDEPENDENT ST _'-`N FOR COIN? .'ENCE « «< '°" ^ ONFLUENCE VALUE'S USED FOR INDEPENDENT STREAM 1 ARE: _NEE OF CONCENTRATION (MIN.) = 17.71 R INFAT,L INTENSITY (INCH /ER) = 3.24 AREA- AVERAGED FTn (INCH /i t) = 0.55 AREA- AVERAGED Fp (INCH /HR) = 0.55 AREA - AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA (ACRES) = 118.44 TOTAL STREAM AREA(ACRES) = 118.44 PEAK FLOW RATE (CFS) AT CONFLUENCE = 312.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** --- FLOW - PROCESS FROM N YD 301 T NODE- - 3- 02 -0 -0- IS- EODr - 21 .--- - - - - - - - - -- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME-OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 601.00 ELEVATION DATA: UPSTREAM(FEET) = 2000.00 DOWNSTREAM(FEET) = 1759.60 Tc = K* I (LENGTH* * 3.00)/(ELEVATION CHANGE) ] * * 0 .2 0 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.963 - 100 YEAR RAINFALL INTENSITY (INCH /HR) = 4.326 SUBAREA Tc AND LOSS RATE DATA (AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER EADOWS" B 4.45 0.55 1.00 70 10.96 7JBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.55 UBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF (CFS) = 15.13 TOTAL AREA(ACRES) = 4.45 PEAK FLOW RATE(CFS) = 15.13 SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : 5M = 0:61,; 30M = 1.25; 1HR = 1.65; 3HR = 3.4.5; 6HR = 5.50; 24HR =13.00 ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TR.AVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1759.60 DOWNSTREAM(FEET) = 1604.03 CHANNEL LENGTH THRU SUBAREA(FEET) = 583.30 CHANNEL SLOPE = 0.2667 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 4.000 MANNING' S FACTOR = 0.022 MAXIMUM DEPTH(FEET) 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 15.13 FLOW VELOCITY(FEET /SEC) = 11.45 FLOW DEPTH(FEET) = 0.22 TRAVEL TIME (MIN.) = 0.85 Tc(MIN.) = 11.81 LONGEST FLDWPATH FROM NODE 301.00 TO NODE 303.00 = 1184.30 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** OW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 > »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.81 - * 100 YEAR RAINFALL ALL INTENSITY (INCH /HR) = 4.136 5=,1 A REA LOSS RATE DA'T'A (AMC TT) : T C 1 rt+��; nnt�*T,?'i' R- ,: / - - C('C C!lTT, ARRA Ten S�_� "" "- - ''d - ITRAL FAIR COVER ,. ,.E1.00 7 0 ADOWS " B 6.46 0.55 _ BAR "•A AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.55 JJBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 3i BAREA AREA(ACRES) = 6.46 SUBAREA RUNOFF (CFS) = 20.85 EFFECTIVE AREA(ACRES) = " 10.91 AREA-AVERAGED F^: (INCH /R) = 0.55 AREA-AVERAGED Fp (INCH /HR) = 0.55 AREA-AVERAGED Ap = 1.00 TOTAL AREA (ACRES) = 10.91 PEAK FLOW RATE (CFS) = 35.23 -SUBAREA AREA- RAINFALL DEPTH ( INCH) : 5M = 0.61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24ER =13.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1604.03 DOWNSTREAM(FEET) = 1438.30 CHANNEL LENGTH THRU SUBAREA (FEET) = 621.40 CHANNEL SLOPE = 0.2667 CHANNEL BASE (FEET) = 5.00 "Z" FACTOR = 4.000 -- MANNING' S FACTOR = 0.022 MAXIMUM DEPTH (FEET) = 30.00 CHANNEL FLOW THRU SUBAREA (CFS) = 35.23 FLOW VELOCITY(FEET/SEC) = 15.42 FLOW DEPTH (FEET) = 0.36 TRAVEL TIME(MIN.) = 0.67 Tc(MIN.) = 12.48 - ,,- T.ONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1805.70 FEET. ' - ** * * * * * ** ********************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** _JOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< _ MAINLINE Tc(MIN) = 12.48 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.001 SUBAREA LOSS RATE DATA (AMC II) : • DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 10.41 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 10.41 SUBAREA RUNOFF(CFS) = 32.33 EFFECTIVE AREA(ACRES) = 21.32 AREA - AVERAGED Fm (INCH /HR) = 0.55 AREA - AVERAGED Fp (INCH /HR) = 0.55 AREA AVERAGED Ap = 1.00 . TOTAL AREA(ACRES) = 21.32 PEAK FLOW RATE(CFS) = 66.23 SUBAREA AREA - AVERAGED RAINFALL DEPTH ( INCH) : 5M = 0.61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =13.00 ********************************************* * * * * * * * * * * ** * * * * * * * * ** * * * * * * * ** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51 '''a"' » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 1438.30 DOWNSTREAM(FEET) = 1283.52 CHANNEL LENGTH TIi S u. AR RA (FEET) = 1062.30 CHANNEL SLOPE = 0.1457_ CE41\TNEL ASE (FEET) = 5 pp "7" FACTOR = 4.000 ..r.,,TTwTTT77 --Tnmr - n n')7 MMTMTTM WODTTT(F ,PT) = 30_00 "JOW VELOCITY(FEET/SEC) = 14.98 FLOW DEPTH(FEET) = 0.50 RAVEL TI (MIN.) = 1.18 - Tc(MIN.) = 13.67 _ _ FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 2868.00 FEET. ************ * * * * * * * * * * * * * * * * * * * ** * **** * * ** *:Fick k** * ** ** * *** * * * * * *k *** *k *k ** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< == MAINLINE Tc (MIN) = 13.67 • - * - -10 -0 -YEAR_ 13AINFALI4_ INTENSITY ( INCH /HR ) = 3 . 790 SUBAREA LOSS RATE DATA (AMC II) : - - - DEVELOPMENT- W-PEJ SCS- S.O -I-L AREA ---F4)---__. -AP - -SCS- - --- - - -- LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER „MEADOWS" B 60.62 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.55 SUBAR.EA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 60.62 • SUBAREA RUNOFF (CFS) = 176.77 EFFECTIVE AREA(ACRES) = 81.94 AREA- AVERAGED Fm(INCH /HR) = 0.55 AREA - AVERAGED Fp(INCH /HR) = 0.55 AREA- AVERAGED Ap = 1.00 .- AREA (ACRES) = 81.94 PEAK FLOW RATE (CFS) = 238.94 SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : 5M = 0.58; 30M = 1.18; 1HR = 1.56; 3HR = 3.38; 6HR = 5.50; 24HR =13.00 0., k***************************************** * * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** LOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51 » » > COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA (EXISTING. ELEMENT) « «< . ELEVATION D ATA : UPSTREAM (FEET) = 1283.52 DOWNSTREAM(FEET) = 1183.40 CHANNEL LENGTH THRU SUBAREA (FEET) = 1356.70 CHANNEL SLOPE = 0.0738 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.021 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 238.94 FLOW VELOCITY(FEET /SEC) = 15.84 FLOW DEPTH(FEET) = 1.00 TRAVEL TIME (MIN.) = 1.43 Tc(MIN.) = 15.09 LONGEST FLOWPATH FROM NODE 301.00 TO NODE' 306.00 = 4224.70 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 I S CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 15.09 * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 3.571 SUBAREA LOSS RATE DATA (AMC I I) : A SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp 0 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN Iwrwr ITURAL FAIR COVER "MEADOWS" A 2.78 0.81 1.00 51 _ NTURAL FAIR COVER "MEADOWS" B 16.21 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) 0.59 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 51.00 crhP"P'L ApA ( AC_RES) = 19.00 SUBAREA RUNOFF(CFS) = - - TAL ARC A (ACRES) = 100. 94 PEAK FLOW RATE (CFS) = 273.76 OBAREA AREA- AVERAGED RAINFALL DEPTH (INCL') : 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3='R = 3.15; 6HR = 4.94 24HR =13.00 *************** * ** * * * * * * * * * * * * * * * * * * * * * * * * * * ** *iris * * * ** - * ** ** **** * *k FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 I S CODE = 51 - » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME TFLRU SUBAREA (EXISTING ELEMENT) ««< ---- --- - - - - -- - -- ELEVATION DATA: UPSTREAM(FEET) = 1183.40 DOWNSTREAM (FEET) - -=-. _ - - - rl 1 --- -- -- - - - - 1 - LENGTH - -THRU -5- U-B- -A A- (- FBET -)- =- 174- 8- -8-0 -- CAANNEL_�L 0RE- - - -0_. 0225 . - -- CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.021 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 273.76 FLOW VELOCITY(FEET/SEC) = 11.58 FLOW DEPTH(FEET) = 1.39 TRAVEL TIME(MIN.) _ - 2.52 Tc(MIN.) = 17.61 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 5973.50 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** _---FLOW PROCESS FROM NODE 307.00 TO NODE 307.00 I S CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< " IINLINE Tc(MIN) = 17.61 `..- 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.255 UBAREA LOSS RATE DATA (AMC II) : Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 9.30 0.81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 66.59 0.55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.58 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 75.89 SUBAREA RUNOFF(CFS) = 182.61 EFFECTIVE AREA(ACRES) = 176.83 AREA- AVERAGED Fm(INCH /HR) = 0.57 AREA. - AVERAGED Fp (INCH /HR) = 0.57 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 176.83 PEAK FLOW RATE(CFS) = 427.70 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3I = 3.13; 6HR = 4.87; 24HR =13.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ' - LEVATI ON DATA: UPSTREAM (FEET) = 1135.31 DOWNSTREAM (FEET) = .1089.76 N _4AN"NEL LENGTH THRU SUBAREA (FEET) = 1836.60 CHANNEL SLOPE = 0.0248 7H.ANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 _PLANNING' S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUFZAREA (CFS) = 427.70 FLOW VELOCITY(FEET/SEC) = 20.40 FLOW DEPTH(FEET) = 2.24 TRAVEL TIME(MIN.) = 1 . 50 Tc(MIN.) = 79,11 i.nN;,EST FLOWPATH FROM NODE 301.00 TO NODE 308.00 = 7810.10 FEET. , 900.-- . 10W PROCESS FROM NODE 308.00 TO NODE 308.00 _ S CODE = 81 » »ADDITION OF SUBAREA TO MAINLINE P "-AK FLOW « «< MAINLINE Tc(MIN) = 19.11 * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 3.099 SUBAREA LOSS RATE DATA (AMC II): A n SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp - - LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A - 28.73 0.98 0.10 32 - - -- RES-ME-NTIAL - - -- - - - -- --- - - -- -- " 2 DWELLINGS /ACRE" A 11.07 0 .98 - -- - -- -- 0 - - - I E Ikb - -- - - -- - -- - -- -- - - "2 DWELLINGS /ACRE" B 2.92 0.75 0.70 56 NATURAL FAIR COVER "MEADOWS" A 0.54 0.81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 20.46 0.55 1.00 70 • SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.70 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.53 SUBAREA AREA(ACRES) = 63.72 SUBAREA RUNOFF(CFS) = 156.52 .--EFFECTIVE AREA (ACRES) = 240.55 AREA - AVERAGED Fm (INCH /HR) = 0.52 AREA- AVERAGED 'Fp (INCH /kit) = 0.59 AREA- AVERAGED Ap = 0.88 TOTAL AREA(ACRES) = 240.55 PEAK FLOW RATE(CFS) = 559.41 '*°*"'' 7BARE.A AREA - AVERAGED RAINFALL DEPTH (INCH) : 'rr.. _A = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =12.84 ;. ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ( FLOW PROCESS FROM NODE 308.00 TO NODE 309.00 I S CODE = 51 » »>COMPU"TE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMEN 1) ««< ELEVATION DATA: UPSTREAM (FEET) = 1089.76 2 ST = 0008. DOWNSTREAM DOWNSTREAM(FEET) 106 CHANNEL LENGTH THRU SUBAREA(FEET) = 9 CHANNEL BASE (FEET) = 6.00 " Z " FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA (CFS) = 559.41 FLOW VELOCITY (FEET /SEC) = 21.93 FLOW DEPTH (FEET) = 2.58 TRAVEL TIME (MIN.) = 2.50 Tc(MIN.) = 21.61 LONGEST FLOWPATH FROM NODE 301.00 TO NODE -- 309.00 = 11104.30 FEET. *******,,,,,,,,,,,,******************************* * ** * * * * * * * * * ** * *'* * * * * * * *** * * ** FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 81 » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 21.61 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.879 '^ QUBAREA LOSS RATE DATA (AMC II): ,,, 3EVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN OMMERCIAL A 31.73 0.98 0.10 32 . RESIDENTIAL "2 DWELLINGS /ACRE" A 59.60 0:98 0.70 32 RESIDENTIAL �^ 56 "2 DWELLINGS /ACRE" B 5.96 0.75 0 . i v '.TURAL FAIR COVER 63.62 0.55 1.00 70 _,EADOWS" B ;UBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.73 SUBAREA-AVERAGE PERVIOUS AREA FRACTION, Ap = 0.70 SUBAREA AREA (ACRES) = 161.90 SUBAREA RUNOFF (CFS) = 345.01 EFFECTIVE AREA(ACRES) = 402.45 AREA - AVERAGED Fm (INC /HR) = 0.51 AREA- AVERAGED Fp (INCH /Na) = 0.64 AREA - AVERAGED Ap = 0.81 TOTAL AREA(ACRES) = 402.45 PEAK FLOW RATE(CFS) = 856.64 SUBAREA AREA- AVERAGED RAINFALL DEPTH (INCH) _ = 4 79 . 241112. =12.15 5M = 0.57; 30M = 1.17; 1 = 1.55; 3HR = 3.09; 6HR , ..... .*-*. * - **-* _* . .± Ott _ ** **************_*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .-- -- FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.61 --RAINFALL INTENSITY (INCH /HR) = 2.88 AREA- AVERAGED Fm(INCH /HR) = 0.51 AREA - AVERAGED Fp(INCH /HR) = 0.64 AREA- AVERAGED Ap = 0.81 :°"'°''vFECTIVE STREAM AREA(ACRES) = 402.45 ,,, TAL STREAM AREA (ACRES) = 402.45 -EAK FLOW RATE(CFS) AT CONFLUENCE = 856.64 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /PAR) (ACRES) NODE 1 312.89 17.71 3.245 0.55( 0.55) 1.00 402.5 301.00 2 856.64 21.61 '2.879 0.64( 0.51) 0.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Ae HEADWATER STREAM Q Tc Intensity Fp(Fm) Ap NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) 448.1 NOD E0. 00 1 1123.21 17.71 3.245 0.61( 0.52) .0.86 2 1127.04 21.61 2.879 0.61( 0.52) 0.85 520.9 301.00 COMPUTED CONFLUENCE ESTIMATES OARE AS FOLLOWS: 21.61 PEAK FLOW RATE (CFS) = EFFECTIVE AREA(ACRES) = 520.89 AREA- AVERAGED Fm(INCH /HR) = 0.52 • AREA - AVERAGED Fp(INCH /HR) = 0.61 AREA - AVERAGED Ap = 0.85 . TOTAL AREA(ACRES) = 520.89 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 309.00 = 11104.30 FEET. *************************.************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** uOW PROCESS FROM NODE 309.00 TO NODE 316.00 IS CODE = 51 »» > COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « < ____ ��,- ,- ,�,,., 969.0{ ELEVATION DATA: UPSTREAM(FEET) M(FEET) _ 1008.06 ^ ^ DOWNS._R AM(:- 969.0{ __- __ -__. -. .- i -, „-,.,, \ /ITT T 1.'TTT C 7 ('1L` t� !'; (? z f p .„. 30.00 '' jN-NING' S FACTOR = 0.015 MAXIMU DEPTH(FEET) = - "SAN EL FLOW TE U SUBAREA(CFS) = 1T27.04�T�rFN��) = 3.50 r = 28.63 FLOW DE_ H (F - -- _ LOW VELOCITY (FEE!' /SEC) = TRAVEL TIME (MIN.) = 0.74 Tc(MIN.) = 22.35 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 316.00 = 12371.50 FEET. ********************************************** *** *** *** * **** ** * **** * * * * * * * * ** FLOW PROCESS FROM NODE 316.00 TO NODE 316.00 IS CODE = 81 - - - » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< - - - -- MAINLINE Tc(MIN) = 22.35 - - -*-1-0-0- -YE RANT =ztL ANTE - (INeE/ HR ) = -2 - 8a1 - - - - SUBAREA LOSS RATE DATA (AMC 1 1 ) : Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA FP LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "2 DWELLINGS /ACRE" A 23.92 0.98 0.70 32 RESIDENTIAL "2. DWELLINGS /ACRE" B 2.59 0.75 0.70 56 COMMERCIAL B 6.77 0.75 0.10 56 - - -NATURAL FAIR COVER "MEADOWS" B - 16.60 0.55 1.00 .70 COMMERCIAL A 6.21 0.98 0.10 32 . ',,.. SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR)) = 0.77 "JBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .-, OBAREA AREA (ACRES) = 5 6.0 9 SUBAREA RUNOFF (CFS) = 117.28 .FFECTIVE AREA(ACRES) = 576.98 AREA - AVERAGED Fm(INCH /HR) = 0.52 • AREA- AVERAGED Fp (INCH /HR) = 0.63 AREA- AVERAGED Ap = 0.83 TOTAL AREA(ACRES) = 576.98 PEAK FLOW RATE(CFS) = 1195.23 SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.09; 61-IR = 4.78; 24HR =11.88 y * * PEAK FLOW RAPE TABLE * * Ae HEADWATER STREAM Q Tc Intensity Fp(FmY Ap NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1200.-56 195.23 22.35 2.821 0.63( 0.52) 0.83 7 1 2 11 577.0 301.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 1200.56 Tc(MIN.) = 18.44 AREA - AVERAGED Fm (INCH /HR) = 0.52 AREA- AVERAGED Fp (INCH /HR) = 0.62 AREA-AVERAGED Ap = 0.83 EFFECTIVE AREA(ACRES) = 504.20 ********************************************* * * * * ** * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 316.00 TO NODE 331.00 I S CODE = 51 > > > > > COMPUTE TRAPEZOIDAL CHANNEL FLOW < < < < < » » >TRAVEL TIME TI- U SUBAREA (EXISTING ELEMENT) ««< - __ - LEVATION DATA: UPSTREAM (FEET) = 969.03 9 SLOPE = 0. 03 88.. DOWNSTREAM(FEET) EL 838.41 "" "' AANNEL LENGTH THRU SUBAREA (FEET) = - 'HANNEL BASE (FEET) = 6.00 "Z" FACTOR = 1.500 LANN ING' S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1200.56 3.57 • ''LOW VELOCITY(FEET/SEC) = 29.64 FLOW DEPTH(FEET) = T� T ti i TIKE (MIN..) = 2 .2 7 Tc(MIN.) = 20.72 _ - - -� _iZ�aV � 11N = 64 i 40 FEET. . -rr r'N'17MT nm NnnR 301.00 TO NODE 331.00 - 1 5 ,OW PROCRS S FROM NODE 331.00 TO NODE 331.00 I S CODE = 10 ,» »MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ********** ************** * * * * * * * * ** ** ** * * * * * * * ** * * ****** * CODE X * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 317.00 TO NODE 318.00 IS -- » » >RATIONAL METHOD INITIAL 7 A SUBAREA ANALYSIS ««< SUBAREA« »USE TIME-OF-CONCENTRATION NOMOGR H OR = INITIAL SUBAREA FLOW-LENGTH(FEET) - -0 O DOWNS EET4- 72.34 -- - E - DA'TA :: UP"STR E ms) - Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.405 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.742 SUBAREA Tc AND LOSS RATE SDATA(AMC II): Fp Ap SCS Tc N DEVELOPMENT TYPE/ GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) LAND USE 13.60 0.98 0.10 32 9.41 COMMERCIAL A - SL7BAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF (CFS) = 56.85 - ''"" TOTAL AREA (ACRES) = 13.60 PEAK FLOW RATE(CFS) = 56.85 SL7BAREA AREA- AVERAGED RAINFALL DEPTH(INCH) : 3M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 31 -- » » >COMPU'I'E PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER- ESTIMAATED PIPESIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM ,(FEET) = 100.00 DOWNSTREAM (FEET) = 74.19 FLOW LENGTH (FEET) = 601.70 MANNING' S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.82 ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 1 PIPE -FLOW (CFS) = 56.85 PIPE TRAVEL TIME (MIN.) = 0.56 Tc(MIN.) = 9.97 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 319.00 = 1523.80 FEET. ********* *************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * CODE * * * * 81 * * * * * * * * ** FLOW PROCESS FROM NODE 319.00 TO NODE 319.00 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <« _- Aim,. MAINLINE Tc (MIN) = 9.97 * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 4.580 , UBAREA LOSS RATE DATA (AMC II) : Fp Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA p LAND USE GROUP (ACRES) (INCH /THR) (DECIMAL) CN COMMERCIAL A 10.53 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) - 0.38 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0 - 2 ^ 8 _ - _ , ,, ,<-, -� 01 _ l n r, � SUBAREA RUNOFF (CFS) - - �, JT_AL AREA(ACRES) _ 24.13 PEAK FLOW RATE (CFS) _ 97.34 u3A_REA AREA - AVERAGED RAINFALL _ALL DEPTH (INCH) : 4.75; 2 a RR =11.0' 0 5M = 0.-57; 30M = 1.17; 11i. = 1.55; 3HR = 3.08; 6E - - ******************* ******************: E******** ** * * * * * ** * ' * * ** ******** *** ** *** FLOW PROCESS FROM NODE 319.00 TO NODE 320.00 IS CODE = 31 . » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU -SUBAREA ««< » >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< • ELEVATION DATA: UPSTREAM (FEET) _ 100.00 DOWNSTREAM(FEET) = 94.44 -- - FLOW LENGTH (.E.E.E T1 = - 4-4 - - T - N - - - - -0 - 013 - - - - - DE PTH OF FLOW IN 42:0 INCH PIPE IS 30.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.87 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES = 1 PIPE -FLOW (CFS) = 97.34 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.)_= 10.54 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 320.00 = 1968.70 FEET. ********************************************** * * * * * * * *•* * * * * * * * * * * * * * * * * * * * ** - FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< '1.INLINE Tc(MIN) .= 10.54 -• 100 YEAR RAINFALL INTENSITY (INCH /ER) = 4.428 'UBAREA LOSS RATE DATA (AMC II) : Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA FP LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 10.96 0.98 0.10 32 RESIDENTIAL �, 1 .19 0.98 0.60 32 "3 -4 DWELLINGS /ACRE A SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0 97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = SUBAREA. AREA (ACRE S) = 12.15 SUBAREA RUNOFF (CFS) = 46.83 EFFECTIVE AREA(ACRES) _ 36.28 87 AREA- AVERAGED Fm(IN / ) = 0.11 AREA-.AVERAGED - VERAGED Fp(INCH /HR) - 140.88 TOTAL AREA(ACRES) = 36.28 PEAK FLOW RATE(CFS) = SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) = 4.75; 24ILR =11.0 0 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< - » »>USING COMPUTER - ESTIMATED - PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 74.76 - LOW LENGTH (FEET) = 707.00 MANNING' S N = 0.013 EPTH OF FLOW IN 39.0 INCH PIPE IS 29.7 INCHES ' I PE -FLOW VELOCITY (FEET /SEC .) = 20.81 2STIMATED -PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 ?IPE- FLOW(CFS) = 140.88 11.11 PIPE TRAVEL TIME(MIN.) = 0.57. Tc(MIN.) = LONGEST FLOWPATH FROM NODE 317.00 TO NODE 321.00 = 2675.70 FEET. » »»ADDITION OF SITS.AR •A TO MAIN! PEAK FLOW ««< MAINLINE Tc (MIN) = 11.11 * 100 YEAR RAINFALL I 1ENSiTY(INCTri /HR) = 4.291 S DBA .A LOSS RATE DATA (AMC II) : Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /NR) (DECIMAL) CN COMMERCIAL A 48.82 0.98 0.10 32 RESIDENTIAL 12.69 0.98 0.60 32 - -- - -" 3- -4SWEL Z iNGSIACP E " - - -A -- - - 16 9 - - - 6 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.98 A �E- US- At A- FR�,'� °' -- --0---2-0 - -- - - ______ -- SU B� A AREA ARAR (ACAC ) = 61.51 SUBAREA RUNOFF(CFS) = 226.60 EFFECTIVE AREA (ACRRES) _ EU 97.79 AREA- AVERAGED Fm (INCH /HR) = 0.17 n R.EA- AVERAGED Fp (INCH/HR) = 0.98 AREA-AVERAGED VERAGED Ap = 0.17 363.01 TOTAL AREA (ACRES) = 97.79 PEAK FLOW RATE(CFS) = • SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 31 »» »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ««< _ - -- LEVAT I ON DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) - 59.86 ' r'LOW LENGTH (FEET) = 1303.40 MANNING' S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.7 INCHES ' PIPE -FLOW VELOCITY (FEET /SEC .) = 24.9 ESTIMATED PIPE DIAMETER (INCH) = 57.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 363.01 PIPE TRAVEL TIME (MIN.) = 0.87 Tc (MIN.) = 11.98 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 322.00 = 3979.10 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 322.00 TO NODE 322.00 I S CODE = 81 »» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< --- __ -- MAINLINE Tc (MIN) = 11_.98 * 100 YEAR RAINFALL INTENSITY (INCH /HR ) = 4.101 SUBAREA_ LOSS RATE DATA (AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 0 60 32 "3 -4 DWELLINGS /ACRE" A 38.02 0.9 SUBAREA AVERAGE PERVIOUS LOSS RATE; Fp (INCH /HR) 0.60 J0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = ^ UBAREA AREA(ACRES) = 38.02 SUBAREA RUNOFF (CFS) = 120.31 0 28 `mow► . FECTIVE AREA(ACRES) = 135.81 AREA - AVERAGED Fm (INCH /HR) = RE_A- AVERAGED Fp(INCH/HR) = 0.98 AREA- AVERAGED Ap = 0. 2 9 466.58 - AREA (ACRES) = 135.81 PEAK FLOW RATE (CFS) = S LTBARr A AREA-AVERAGED RAINFALL DEPTH ( INCH) : - = 3 08; ERR = 4.75; 24HR =11.00 Stv; = �� 57• 30M = 1.17; 1HK = 1.55; 3HR , »>COMPUTE PIPE- `LOW TRAVEL TIME T RU Su3AREA « «< » »USING COMPUTER-ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (Fr ET) _ 59.87 FLOW LENGTH(FEET) = 1337.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 26.28 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 466.58 PIPE TRAVEL TIME (MIN.) =. 0.85 Tc (MIN.) = 12.83 - L NGEE'T FLOWPATH FROM NODE -- 31 - TES' NOBS -3-2300 -5316.-70 - F'E'D'-.. - - - -- ************-********************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc (MIN) = 12.83 * 100 YEAR RAINFALL INTENSITY(INCH /HR) _. 3.936 SUBAREA LOSS RATE DATA(AMC II): - "DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 39.29 0.98 0.60 32 r""`,FUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = s BAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.60 'UBAREA .AREA(ACRES) = 39.29 SUBAREA RUNOFF(CFS) = 118.50 , FECTIVE AREA(ACRES) = 175.10 AREA - AVERAGED Fm(INCH/HR) = 0.35 ' yREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.36 TOTAL AREA(ACRES) = 175.10 PEAK FLOW RATE(CFS) = 564.93 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.00 TO NODE 409.00 IS CODE = 15.1 » » >DEFINE MEMORY BANK # 3 « «< • PEAK FLOWRATE TABLE FILE NAME: A: \0409.pft . MEMORY BANK # 3 DEFINED AS FOLLOWS: STREAM Q Tc Flo(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (ACRES) NODE 1 910.72 16.55 0.98( 0.23) 0.24 309.2 401.00 TOTAL AREA(ACRES) = 309.17 _JNGEST FLOWPATH FROM NODE 401.00 TO NODE 409.00 = 7359.20 FEET. - ,:***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SLOW PROCESS FROM NODE 409.00 TO NODE 409:00 IS CODE = 14.0 » »>MEM ORY BANK # 3 COPIED ONTO MAIN-STREAM MEMORY « «< L 'UN-STREAM MEMORY DEFINED AS FOLLOWS: STREAM 4 Tc Flo (Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (ACRES) NODE GO 1 910.72 16.55 0.98( 0.23) 0.24 309.2 TOTAL AREA (ACRES) = 309.17 LONGEST FLOWPATE FROM NODE 401.00 TO NODE 409.00 = 7359.20 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** -FLOW PROCESS FROM NODE 409.00 TO NODE 323.00 IS CODE = 31 - -- _ » »> COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE F'LO► inC <crc _ __ ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 96.17 FLOW LENGTH(FEET) = 1236.00 MANNING'S N = 0.013 DEPTH OF FLOW IN'126.0 INCH PIPE IS 92.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 13.34 ESTIMATED PIPE DI_AMETER(INCH) = 126.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 910.72 PIPE TRAVEL TIME (MIN.) = 1.54 Tc(MIN.) = 18.09 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 323.00 = 8595.20 FEET. ********.************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 11 - -- » »CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY ««< =* MAIN STREAM CONFLUENCE DATA ** STREAM 4 Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 910.72 18.09 3.203 0.98( 0.23) 0.24 309.2 401.00 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 323.00 = 8595.20 FEET. * * MEMORY BANK # 2 CONFLUENCE DATA * * STREAM Q Tc Int en Y_ -Fp (Fm) AP Ae -- HE 3WA-ER -. - - -- NUMBER (CFS) WIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 564.93 12.83 3.936 0.98( 0.35) 0.36 175.1 317.00 LONGEST FLOWPATH FROM NODE 317.00 TO NODE 323.00 = 53166.70 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1370.28 12.83 3.936 0.98( 0.29) 0.29 394.3 317.00 401.00 2 1360.05 18.09 3.203 0.98( 0.28) 0.28 TOTAL AREA(ACRES) = 484.27 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 1370.28 Tc(MIN.) _ -12.830 EFFECTIVE AREA(ACRES) = 394.34 AREA - AVERAGED Fm (INCH /HR) = 0.29 " AREA - AVERAGED Fp (INCH / HR) = 0.98 AREA-AVERAGED Ap = 0.28 GTAL AREA (ACRES) = 484.27 •,ONGEST FLOWPATH FROM NODE • 401.00 TO NODE 323.00 = 8595.20 FEET. -******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 323.00 TO NODE 324,00 IS CODE = 31 »» > COMPUTE PIPE - FLOW TRAVEL TIME THR 3 SUBAREA« « < . ....� , , * M , ry. ... ,...,., �,,. _ ...... �ri R. _ ... ,... ,� . 'O M,, E3.72 ,EVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = • rLOW LENGTH(FEET) = 1511.80 MANNING'S N = 0.013 EPTH OF FLOW HE _* IN 96.0 INCH PIPE IS 78.2 INCS P IPE -FLOW VELOCITY (FEET /SEC.) = 31.24 E STIMATED PIPE DIAMETER(INCH) = 96.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1370.28 0 81 Tc(MIN.) = 13.64 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 401.00 TO NODE 324.00 = 10107.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW - _PROCESS FROM NODE 324. TO NODE 324.00 IS CODE = 81 » »> ADDITION OF SUt3AREA TO MAINLINE PEAK FLOW « «< • MAINLINE Tc(MIN) = 13.64 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.795 SUBAREA LOSS RATE DATA(AMC II): Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL 0.60 32 "3 -4 DWELLINGS /ACRE" A 39.38 0.98 - SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) 6 0 = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap SUBAREA AREA(ACRES) = 39.38 SUBAREA RUNOFF(CFS) = 113.77 0 .31 EFFECTIVE AREA(ACRES) = 433.72 AREA - AVERAGED Fm(IN 0 /HR) REA- AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 1370.28 '` JTAL AREA(ACRES) = 523.65 PEAK FLOW RATE(CFS) = - OTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE : SUBAREA AREA- AVERAGED RAINFALL DEPTH(INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.55; 37�R = 3.08; 6HR = 4.75; 24HR =11.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 324.00 TO NODE 325.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPTJTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = • 100.00 DOWNSTREAM(FEET) = 85.29 FLOW LENGTH(FEET) = 1131.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 108.0 INCH PIPE IS 87.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.87 ESTIMATED PIPE DIAMETER(INCH) = 108.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 1370.28 PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 14.40 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 325.00 = 11238.80 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 81 !°"" -.» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< ‘*sere = - TAINLINE Tc (MIN) = 14.40 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.674 SUBAREA LOSS RATE DATA(AMC II) : A SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp- ^ � GROUP (ACRES) (TNr7H /T- ) (DECTM_AL) CN LAND USE �� �."_ � � ��_..0, 0.98 0 .10 32 A �- 5, - rnnmvrypr'T '~` 0.60 32 1_ 4 �`'""' - 4 DWELLINGS /ACRE" A . 70 0.98 - L , p,REA AVERAGE PERVIOUS LOSS RATE, Fp ( INCH /I .) = 0.97 JBAREA AVERAGE PERVIOUS AAA FRACTION, Ap = 0.18 c AREA. T (ACRES) = 90.77 SUBAREA RUNOFF (CFS) = 285.73 EF'F� AREA (ACRES ES) = 524.50 AREA - AVERAGED Fm ( INCH /H_-c) = 0. o P. 29 REA- AVERAGED Fp ( INCH /HT.) = 0 .97 AREA- AVERAGED Ap = 0 .3 0 TOTAL AREA (ACRES) = 614.42 PEAK FLOW RATE: (CF = 1597.52 SUBAREA AREA- AVERAGED RAINFALL DEPTH ( INCH) : = 4.75; 2 �I =11.0 0 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « < -_- TOTAL NTJMMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION ( MIN .) = 14.4 0 RAINFALL INTENSITY ( INCH /HR) = 3 . 67 AREA- AVERAGED Fm ( INCH /HR) = 0.29 -AREA- AVERAGED Fp (INCH /HR) = 0 .97 AREA- AVERAGED Ap = 0.30 EFFECTIVE STREAM AREA (ACRES) = 524 .50 TOTAL STREAM AREA (ACRES) = 614.42 - 7AK FLOW RATE ( CFS) AT CONFLUENCE = 1597 . 52 Noisee *- ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ' LOW PROCESS FROM NODE 326.00 TO NODE 327.00 IS CODE = 21 » »>P.ATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW- LENGTH (FEET) = 382.60 ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM(FEET) = 88.33 Tc = K* [ (LENGTH ** 3.00) / (ELEVATION CHANGE) ] * *0 .20 SUBAREA ANALYSIS USED MINIMUM Tc (MIN .) = 6.593 * 100 YEAR RAINFALL_ INTENSITY (INCH /HR) = 5 . 869 SUBAREA Tc AND LOSS RATE DATA (AMC II) : Ap SCS Tc DEVELO TYPE/ S GROUP IL (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) LAND COMMERCIAL A 10.19. 0.98 0.10 32 6.59 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /} ) = 0 98 SUBAREA AVERAGE PERVIOUS AREA FRACT ION , Ap = SUBAREA RUNOFF(CFS) = 52.93 TOTAL AREA(ACRES) = 10.19 PEAK FLOW RATE(CFS) = 52.93 SUBAREA AREA - AVERAGED RAINF L T, DEPTH ( INCH) : _ a . 75 24HR =11.0 0 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3I-i. = 3.08; 6H - R 1 c444010, ********************-********************* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * ** LOW PROCESS FROM NODE 327.00 TO NODE 328.00 IS CODE = 31 - - - - -- » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU_ SUBAREA « «< » »»USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) < «< -- ELEVATION DATA: UPSTREAM ( FEET ) = 100.00 DOWNSTREAM( FEET) = 86.94 -PE -FLOW VELOCITY(FEET /SEC.) = 14.07 1 �,. PIPE �' I = 30.00 NUMBER OF PIPES = �STI�LATED i E DIAMETER(INCH) _ IP E- FLOW(CFS) = 52.93 PIPE TRAVEL TIME (MIN.) = 0.66 Tc(MIN.) = 7,.25 LONGEST FLOWPATH FROM NODE 326.00 TO NODE 328.00 = 935.80 FEET. ***** * * * * * * * * * * * * * * * * * * *:r * * * * * * * * ** : ** :******** * * ** * * * * * * * * * * * * * * *** *** * * *** FLOW PROCESS FROM NODE 328.00 TO NODE 328.00 IS CODE = 81 ~ » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< . MAINLINE Tc (MIN) = 7.25 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 5.545 SUBAREA LOSS RATE DATA (AMC II) : SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 11.68 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.9 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA E.A AREA (ACRES) = 11.68 SUBAREA RUNOFF (CFS) = 57.26 EFFECTIVE AREA(ACRES) = 21.87 AREA - AVERAGED Fm(INCH /HR) = 0.10 -- AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.10 107.21 TOTAL AREA(ACRES) = 21.87 PEAK FLOW RATE (CFS) = SUBAREA AREA - AVERAGED RAINFALL DEPTH (INCH) : ,006.„ -M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 * ****************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** .LOW PROCESS FROM NODE 328.00 TO NODE 329.00 IS CODE = 31 t � »» COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELRVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 70.86 FLOW LENGTH(FEET) = 971.20 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.13 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 107.21 PIPE TRAVEL TIME (MIN.) = 0.89 Tc(MIN.) = 8.14 LONGEST FLOWPATH FROM NODE 326.00 TO NODE 329.00 = 1907.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 329.00 TO NODE 329.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN) = 8.14 - * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 5 .171 SUBAREA LOSS RATE DATA(AMC II): (. DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS ;441kar. LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 'OMMERCIAL A 11.97 0.98 0.10 32 .)MMERCIAL B 10.00 0.75 0.10 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.87 ' SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0:10 ,-� _ 97 SUBAREA RUNOFF(CFS) = 100.53 SUBAREA AREA (ACRES) = -- L ,, C. T j V M AURA (ACRES) = 4 3.84 AREA - AVERAGED Fm (INCH /HR) = 0.09 CYBARE A AREA-AVERAGED RAINFALL DEPTH ( INCH) : A = 0.57; 30M = 1.17; 1HR = 1.55;' 3HR = 3.08; 6H. = 4.75; 24=-R =11.00 irk*******: F*** ************ k*** ** * * * * *** * ** *** * ** **** * * **** * ** *fir * * ** * * * ** *** FLOW PROCESS FROM NODE 329.00 TO NODE 330.00 IS CODE =_ 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< . •» » >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)« «< _- _ ELE_V ,TIDN_D TA: UPSTREAM (FEET) = 100.00 DOWNSTREAM(FEET) = 91.14 FLOW LENGTH (FEET) = 506.50 MANNING' S N = - O -1 __ -- - - DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 17.41 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 200.40 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 8.63 LONGEST FLOWPATH FROM NODE 326.00 TO NODE 330.00 = 2413.50 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 330.00 TO NODE 330.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 8.63 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.995 `` "' ..TBAREA LOSS RATE DATA (AMC II) : Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.63 0.98 0.10 32 1 COMMERCIAL B 19.23 0.75 0.10 ` 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, - Fp (INCH /P.) = 0.76 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 19.86 SUBAREA RUNOFF(CFS) = 87.93 EFFECTIVE AREA(ACRES) = 63.70 AREA - AVERAGED Fm(INCH /HR) = 0.09 AREA - AVERAGED Fp(INCH /HR) = 0.87 AREA- AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 63.70 PEAK FLOW RATE(CFS) = 281.36 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 330.00 TO NODE 325.00 IS CODE = 31 » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « < » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)« «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM(FEET) = 89.89 FLOW LENGTH(FEET) = 552.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.9 INCHES DIPE -FLOW VELOCITY(FEET /SEC.) = 19.22 `fir► ;TIMATED PIPE DIAMETER (INCH) = 57.00 NUMBER OF PIPES = 1 PIPE -FLOW (CFS) = 281.36 IPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = - 9.11 LONGEST FLOWPATH FROM NODE 326.00 TO NODE 325.00 = 2966.00 FEET. PLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 > » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< _ OTAL NUMBER OF STREAMS = 2 CONFLUENCE E VALTJES USED FOR INDEPENDENT EPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.11 . 11 RA INFALL IN-TENSITY(INCH /HR) = AREA - AVERAGED Fm(INCH /HR) = 0.09 AREA- AVERAGED Fp (INCH /HR) = 0.87 ' -AREA- AVERAGED Ap = 0.10 - EFFECTIVE STREAM AREA(ACRES) = . 63.70 -__.TOTAL__ STREAM AREA(ACRES) = 63.70 PF.A K FLOW RATE ( CFS) AT CONFLUENCE = 2 $1.36 - -- - ** CONFLUENCE DATA ** A HEADWATER STREAM Q Tc Intensity Fp(Fm) Ap NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1597.52 14.40 3.674 0.97( 0.29) 0.30 524.5 317.00 1 1529.57 19.66 3.047 0.97( 0.28) 0.29 614.4 401.00 , 2 281.36 . 9.11 4.835 0.87( 0.09) 0.10 63.7 326.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO -- CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1638.76 9.11 ' 4.835 0.97( 0.26) 0.27 395.5 326.00 2 1810.04 14.40 3.674 0.97( 0.27) 0.28 588.2 317.00 • 3 1704.97 19.66 3.047 0.97( 0,26) 0.27 678.1 401.00 ( COMPUTED CONFLUENCE ESTIMATES ARE. AS FOLLOWS: PEAK FLOW RATE(CFS) = 1810.04 Tc(MIN.) = 1 4.40 EFFECTIVE AREA(ACRES) = 588.20 AREA - AVERAGED Fm(INCH /HR) = 0.27 AREA- AVERAGED Fp(INCH /HR) = 0.97 AREA- AVERAGED Ap = 0.28 TOTAL AREA(ACRES) = 678.12 325.00 = 11238.80 FEET. LONGEST FLOWPATH FROM NODE 401.00 TO NODE .********************************.************** * * * * * * * * * * * * * * * * * * * * * * * * * *_ * * ** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 71 » »>PEAK FLOW RATE ESTIMATOR CHANGED TO UNIT- HYDROGRAPH METHOD «« < » » >USING TIME-OF- CONCENTRATION OF LONGEST FLOWPATH< «< UNIT- HYDROGRAPH DATA: RAINFALL(INCH): 5M= 0.56;30M= 1.16;1H= 1.53;3H= 3.06;6H= 4.74;24H =11.00 S -GRAPH : VALLEY (DEV .) = 45. 6 0 ;VALLEY (UNDEV .) /DESERT= 0.0 MOUNTAIN= 0.0% 54.4o;DESERT(UNDEV.)= 0.09b- Tc(ha) = 0.33; LAG(HR) = 0.26; Fm(INCH /HR) = 0.21; Ybar = 0.17. USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.97; 30M = 0.97; 1HR = 0.97; HR = 1.00; 6HR = 1.00; 2 4 HR= 1.00 *41 1rrr. TIT-INTERVAL(MIN) =. 2.50 TOTAL AREA(ACRES) = 678.12 '-ONGEST FLOWPATH FROM NODE 401.00 TO NODE 325.00 = 11238.80 FEET. 4 QUIVALENT BASIN FACTOR APPROXIMATIONS: Lca /L= 0.3,n= .0131; Lca /L= 0.4,n= .0117; Lca /L= 0.5,n= .0108;Lca /L =0.6,n =.0100 - _ TIME OF PEAK FLOW (HR) = 16.33 RUNOFF VOLUME (AF) = 538.01 = _�T�7�TT u -� H METHOD PEAK FT OW T� T TE ( ✓) 1637.79 1.11V- -H Y�D KOG �r]N =1 1Y1L 117GD FLOW 11L"1 / D 70n nv u r, M TP0D PEAK FLOW RATE (CFS) = 1810.04 ftimw x+-**'* ic***, F******** 9;*'**** icdr***** ix********* ** ** ***** * ** * * *** ***** *�i ** xxxxx LOW PROCESS FROM NODE 325.00 TO NODE 331.00 IS CODE = »> »COMPUTE PIPE -FLOW TRAVEL TIME "ITRU SUBAREA ««< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) = 54.31 FLOW LENGTH (FEET) = 2367.50 MANNING' S N= 0.013 DEPTH OF FLOW IN 114.0 INCH PIPE IS 87.9 INCHES -- - -P3 PE- --LOW - tiELO-CITY (.FEET /SEC .) = 31.33 _ ESTIMATED PIPE DIAMETER (INCH) = 114-00 NUMBER OF PIPES _ - I PIPE -FLOW (CFS) = 1837.79 PIPE TRAVEL TIME (MIN:) = 1.26 Tc(MIN.) = 20.92 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 331.00 = 13606.30 FEET. *** *** * * * * * * * * * * * * * * * * * * * * * * * * * * ** *** * NODE * * * **** *** * IS * CODE * * * * 81 * * * * * * * * ** FLOW PROCESS FROM NODE 331.00 TO >» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< :MAINLINE Tc (MIN) = 20.92 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.936 SUBAREA LOSS RATE DATA (AMC II) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /BR) (DECIMAL) CN "",- JMMERCIAL A 8.54 0.98 0.10 32 'OMMERCIAL B 25.43 0.75 0.10 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0 .10 0.81 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = UNIT- H-YDROGRAPH DATA: 3H= 3.05; 6H= 4 . 7d;2 ^_H =11.00 RAINFALL(INCH): 5M= 0.57;30M= 1.16;1H= 1.53; S- GRAPH: VALLEY (DEV.) = 43 .4 0 ;VALLEY (UNDEV.) /DESERT= 0.0% MOUNTAIN= 0.0o;FOOTHILL= 54.4o;DESERT(UNDEV.)= 2.20 Tc(HR) = 0.35; LAG(HR) = 0.28; Fm(INCH /HR) = 0.21; Ybar = 0.17 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.97; 30M = 0.97; 1HR = 0.97; 3HR = 1.00; 6HR = 1.00; 24HR= 1.00 UNIT- INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 712.09 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 331.00 = 13606.30 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS:. Lca /L =0.3,n= .0154; Lca /L= 0.4,n= .0138; Lca /L= 0.5,n= .0127;Lca /L =0.6,n =.0119 TIME OF PEAK FLOW (HR) = 16.08 RUNOFF VOLUME (AF) = 646.43 UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) S) PEAK FLOW RATE (CFS) = 1843.08 TOTAL AREA(ACRES) = SUBAREA AREA - AVERAGED RAINFA DEPTH (INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.55; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 * * * ** * * * ** * * * * * * * ** ************************** ** * * * * * * * * * * * * * * * *** * ** * * * * **** LOW PROCESS FROM NODE 331.00 TO NODE 331.00 IS CODE = 11 ..» »CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY« «< _ ** MAIN STREAM CONFLUENCE DATA ** ` ? RATE(CFS) 1843.08 Tc(MIN.) = 20.92 PEAK FLOW R__TE tC 5� = ,-,-T T17-7.-D77.77) Fm (TNcM /THR) = 0.21 Ybar = 0.17 s MEMORY BANK * 1 CONFLUENCE DATA ** __ STREAM Q Tc Intensity Fp (Fm) Ap Ae HE' D WA_ER NUMBER. (CFS) (MIN .) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1200.56 20.72 2.953 0.62( 0.52) 0.83 504.2 310.00 2 FLOWPATH 2.662 0.83 331.007 = 016415.40 FEET. LONGEST . - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: UNIT- HYDROGRAPH DATA: RAINFALL (INCH)_ 5M= 0.57;30M= 1.17 ; 1H= 1.55;3H= 3.12;6H. 4.87 ; 2 4H =11.74 S -GRAPH : VALLEY (DEV . T = 271-- -01 VALLEY DEV . DE E T-= -- -0-A %— MOUNTAIN= 0.0%; FOOTHILL= 76.0%; DESERT (UNDEV.) = 0.0% Tc (HR) = 0.41; LAG (HR) = 0.33; Fm (INCH /HR) = 0.24; Ybar = 0.17 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. DEPTH -AREA FACTORS: 5M = 0.94; 30M = 0.94; 1HR = 0.94; 3HR = 0.99; 6HR = 1.00; 24HR= 1.00 UNIT- INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 1289.07 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 331.00 = 16415.40 FEET. EQUIVALENT BASIN FACTOR APPROXIMATIONS: ' Lca /L =O PEAK FLOW( HR) ca/ 16�42,n ; a RUNOFFVOLUME (AF),n_'021085358L 0.6,n =.0238 TIME OF PEAK FLOW RATE(CFS) = 3095.57 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** '""' - LOW PROCESS FROM NODE 331.00 TO NODE 331.00 IS CODE = 152 • ,» »STORE PEAK FLOWRATE TABLE TO A FILE « «c PEAK FLOWRATE TABLE FILE NAME: A:\0331.pft END OF STUDY StJ1w1 fARY : TOTAL AREA (ACRES) = 1289.07 TC(MIN.) = 24.63 AREA- AVERAGED Fm (INCH /IR) = 0.24 Ybar = 0.17 PEAK FLOW RATE(CFS) = 3095.57 END OF INTEGRATED RATIONAL /UNIT- HYDROGRAPH METHOD ANALYSIS 1 • • Oe • * * * * ** icy:********i.***** ** ** * * **x* * * ** * *** * * ** **** * **** *icy: *** **** * * ** ** * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1224 Analysis prepared by: SAN BERNARDINO COUNTY __ _ __TRANSPORTATION_1 _FLOOD CONTROL DEPARTMENT WATER RESOURCES DIVISION * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * * San Sevaine Channel Hydrology - Ultimate Conditions * * 100 yr Return Frequency * * Revised Land Use per City's Alt. 4 Land Use Map FILE NAME: A: \SSO4R.DAT -'TIME /DATE OF STUDY: 09:18 10/15/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME-OF- CONCENTRATION MODEL*- - 'SER SPECIFIED STORM EVENT (YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER - DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE (LOG(I; IN /HR) vs. LOG (Tc;MIN)) = 0.6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.4970 . *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* UNIT- HYDROGRAPH MODEL SELECTIONS /PARAMETERS: WATERSHED LAG = 0.80 * Tc VALLEY(DEVELOPED) S -GRAPH USED. PRECIPITATION DATA ENTERED ON SUBAREA BASIS. SIERRA MADRE DEPTH-AREA FACTORS USED. *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR UNIT HYDROGRAPH METHOD* ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * *- * *** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 » »> RATIONAL METHOD INITIAL. SUBAREA ANALYSIS « «< `''- FUSE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« - NITIAL SUBAREA FLOW - LENGTH(FEET) = 1432.30 LEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) = 57.03 T c = K* [ (LENGTH* * 3 . 0 0) / (ELEVATION CHANGE) ] * * 0 . 2 0 SUBAREA ANALYSIS USED MINIMUM Tc (To IN.) = 11.217 * nn 7177%-,R RAINFALL INTENSITY(INCH/HR) = 4.094 ..- GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) ?SAND USE ^OMME- RCIA?� A 17.09 0.98 0.10 32 11.22 UJBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INC /HR) = 0_98 SUBAREA: AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF (CFS) = 61.47 TOTAL AREA. (ACRES) = 17.09 PEAK FLOW PATE (CFS) = 61.47 SUBAREA AREA- AVERAGED RAINFALL DEPTH(INCH) : 24HR =11.01 5M = 0.56; 30M = 1.15; 1HR = 1.52; 3HR = 3.05; 6HR = 4.75; • FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = -- -- - -.._- » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »> USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « < - _ _ ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) = 83. 68 FLOW LENGTH (FEET) = 444.60 MANNING' S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.3 INCHES PIPE -FLOW VELOCITY (FEET /SEC.) = 1 ESTIMATED PIPE DIAMETER ( INCH) = 3 0 .00 NUMBER OF PIPES = 1 _PIPE- FLOW(CFS) = 61.47 PIPE TRAVEL TIME (MIN_) = 0.43 01 . O ( I 1 1 . 640 0 = 1876.90 FEET. LONGEST FLOWPATH FROM NODE **************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 81 > » »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< t MAINLINE Tc (MIN) = 11.64 * 100 YEAR RAINFALL INTENSITY (INCH /HR) = 4.004 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COI ERCIAL A 11.63 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 11.63 SUBAREA RUNOFF (CFS) = 40.89 EFFECTIVE AREA(ACRES) = 28.72 AREA-AVERAGED Fm (INCH /HR) = 0.10 AREA AVERAGED Fp (INCH /HR) = 0.98 AREA- AVERAGED Ap 100.96 TOTAL AREA (ACRES) = 28.72 PEAK FLOW RATE(CFS) = SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.54; 3HR = 3.07; 6HR = 4.75; 24HR =11.00 ********************************************** * * * * * * * * * * * * * * * * * * * * * * * * * *- * * ** FLOW PROCESS FROM NODE 403:00 TO NODE 404.00 IS CODE = 31 » » >COMPUI'E PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< . » »USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< - tissre 'ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (EET') F = 86.62 !LOW LRNGTH (FEET) = 514.70 MANNING' S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.4 INC_HIES _ PIPE -FLOW VELOC i TY (FEET /SEC.) = 16.89 - -, r,r, n PIPES = 1 ESTIMATED PIPE DIAMETER (INCH) = 36.00 NUMBER OF 1 n n C: LOW PROCESS FROM NODE 404.00 TO NODE 4 04.00 IS CODE = 81 » » >ADDITION OF SUBP.REA TO MAINLINE PEAK FLOW« «< MAINLINE Tc (MIN) = 12.15 * 100 YEAR RAINFALL INTENSITY (INCH /i'R) = 3.902 ' -SUBAREA LOSS RATE DATA (AMC -II): Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA FP _.------ -- _,,AND- USE - -- GROUP - - -- (ACRES) (INCH /RR) (DECIMAL) CN COMMERCIAL A 21.23 0.98 -- ----- U.1 -- RESIDENTIAL 0.60 32 "3 -4- DWELLINGS /ACRE" A 3.54 0.98 • SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR)) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = SUBAREA AREA(ACRES). = 24.78 SUBAREA RUNOFF(CFS) =' 83.29 EFFECTIVE AR-EA(ACRES) = 53.50 AREA- AVERAGED Fm(INCH /HR) = 0.13 • AREA- AVERAGED Fp(INCH/HR) = 0.98 AREA- AVERAGED Ap = 0.13 TOTAL AREA(ACRES) = 53.50 PEAK FLOW RATE(CFS) = 181.64 -_SUBAREA AREA- AVERAGED RAINFALL DEPTH (INCH) : 5M = 0.57; 30M = 1.17; 1HR = 1.54; 3HR = 3.08; 6HR = 4.75; 24HR =11.00 ******************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** cop., ",OW PROCESS FROM NODE 404.00 TO NODE 405.00 I S CODE = 31 cop., • .» »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< .,» »USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) = 91.23 FLOW LENGTH(FEET) = 328.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 19.83 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 181.64 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 12. 4 3 00 = 2720.20 FEET. LONGEST FLOWPATH FROM NODE 401.00 TO NODE ************************************-********* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.43 * 100 YEAR RAINFALL INTENSITY (INCH /ER) = 3.850 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Pp. Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 37.48 0. 9 8 0.10 32 ' ^'JBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH /HR) = 0.98 I low AREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 37.48 SUBAREA RUNOFF(CFS) = 126.58 _EFFECTIVE AREA(ACRES) = • 90.98 AREA - AVERAGED Fm(INCH/HR) = 0.12 AREA- AVERAGED Fp (INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.12 TOTAL AREA(ACRES) = 90.98 PEAK FLOW RATE (CFS) = 305.71 c --mz, R A ,77',74-AVERAGED RAINFALL DEPTH (INCH) : __ _ . - , _ Ammer. k************: F***** ic********************** ** * *** ** ** * * ** ** ** ** *k **** *** ** r r yY PROCESS FROM NODE 405.00 TO NODE 406.00 I S CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM(FEET) = 76.02 FLOW LENGTH(FEET) = 781.10 MANNING'S N = 0.013 -DEPTH OF FLOW IN 54.0 INCH-PIPE IS 40.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 23.93 __ RaTINATED PIPE DIAMETER (INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 305.71 PIPE TRAVEL TIME (MIN.) = 0.54 Tc (MIN.) = 12.97 = 3501.30 FEET. LONGEST FLOWPATH FROM NODE 401.00 TO NODE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc (MIN) = 12.9 ,---* YEAR RAINFALL INTENSITY(INCH/HR) = 3.752 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS r'^ LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN _OMMERC IAL A 29.99 . 0. 9 8 0.10 32 " ySIDENTIAL '3 -4 DWELLINGS /ACRE° A 24.91 0.98 0.60 32 jUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.33 SUBAREA D, EA (ACRES) = 54.90 SUBAREA RUNOFF (CFS) = 169.66 EFFECTItiE AREA(ACRES) = 145.88 AREA - AVERAGED Fm(INCH /HR) = 0.19 AREA- AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 145.88 PEAK FLOW RATE(CFS) = 467.37 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = 0.56; 30M = 1.14; 1HR = 1.50; 3HR = 3.04; 6HR = 4.75; 24HR =11.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 56.78 FLOW LENGTH (FEET) = 1305.60 MANNING' S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.2 INCHES . PIPE -FLOW VELOCITY(FEET /SEC.) = 27.45 ESTIMATED PIPE DIAMETER (INCH) = 63.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 467.37 - PIPE TRAVEL TIME (MIN.) = 0.79 Tc(MIN.) = 13.76 `fi )NGEST FLOWPATH FROM NODE 401.00 TO NODE 407.00 = 4806.90 FEET . *************** t.************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 407.00 TO NODE 407.00 IS CODE = 81 I OF T E TO MAINLINE PEAK FLOW« «< » » >_ADD� � ��N OF SUB�R�A �O - - A"'"" - UBARRA LOSS RATE DATA (AMC II) : „ DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN _ .E S IDENT I AL "3 -4 DWELLINGS /ACRE" A 38.21 0.98 0.60 32 COMMERCIAL A 42.31 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.34 SUBAREA AREA(ACRES) = 80.52 SUBAREA RUNOFF(CFS) = 238.59 EFFECTIVE AREA(ACRES) = 226.40 AREA- AVERAGED Fm(INCH /HR) = 0.24 AREA - AVERAGED Fp (INCH; KR) = 0.98 AREA - AVERA GE.D Ap = 0.25 - TOT:AIT AREA (ACRES - ) - _ - - -2 -2 -6 . - 4o- - - -- - -- - PEA FLOW- } - -- = -- _ -- - -68 8 :74 - - SUBAREA AREA - AVERAGED RAINFALL DEPTH ( INCH): 5M = 0.55; 30M = 1.13; 1HR = 1.49; 3HR = 3.03; 6HR = 4.74; 24HR =11.00 ***********.********************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< >.» »USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 100.00 DOWNSTREAM (FEET) = 60.04 FLOW LENGTH(FEET) = 1318.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.5 INCHES -- PIPE - FLOW VELOCITY(FEET /SEC.) = 28.94 TIMATED PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 .IPE- FLOW(CFS) = 688.74 IPE TRAVEL TIME (MIN.) = 0.76 Tc(MIN.) = 14.52 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 408.00 = 6125.70 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 14.52 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.506 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 63.28 0.98 0.10 32 RESIDENTIAL "3 -4 DWELLINGS /ACRE" A 19.49 0.98 0.60 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.22 SUBAREA AREA (ACRES) = 82.77 SUBAREA RUNOFF (CFS) = 245.39 EFFECTIVE AREA (ACRES) = 309.17 AREA - AVERAGED Fm(INCH/HR) = 0.23 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA- AVERAGED Ap = 0.24 TOTAL AREA(ACRES) = 309.17 PEAK FLOW RATE(CFS) = 910.72 BAREA AREA - AVERAGED RAINFALL DEPTH (INCH): ' = 0.55; 30M = 1.13; 1HR = 1.50; 3HR = 3.00; 6HR = 4.66; 24HR =11.00 SLOW PROCESS FROM NODE 408.00 TO NODE 409:00 IS CODE = 31 » »>COMPU E PIPE-FLOW TRAVEL TIME iHRU SUS_ K7_ «< cTn -r -r+ n�nr-n -7m 7?� T nm r77Tv1 DTD CC77w (M(ThT_DP 'Q`TTPP 7e ,nwl .-c - i — LEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 98.15 SOW LENGTH (FEET) = 1233.50 MANN ING' S N = 0.013 EPTH OF FLOW IN 144.0 INCH PIPE IS 106.5 INCHES �Iau. -FLOW VELOCITY(FEET/SEC.) = 10.15 ESTIMATED PIPE DIAMETER(INCH) = 144.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 910.72 PIPE TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 16.55 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 409.00 = 7359.20 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 409.00 TO NODE 409.00 IS CODE = 152 » » >STORE PEAK FLOWRATE TABLE TO A FILE « «< • PEAK FLOWR.ATE TABLE FIT.R NAME: A:\0409.pft • END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 309.17 TC(MIN.) = 16.55 EFFECTIVE AREA(ACRES) = 309.17 AREA - AVERAGED Fm(INCH /HR)= 0.23 AREA AVERAGED Fp(INCH /HR) = 0.98 AREA AVERAGED Ap = 0.24 PEAK FLOW RATE (CFS) = 910..72 END OF RATIONAL METHOD ANALYSIS • • • • T1 1041 -105 CITY OF FONTANA '�,,,. T2 MPD LINE "A" LYTLE CREEK TO CITRUS T3 FN: MPDLINEA.WSW SO .0001692.290 1 1692.290 TS 79.9701693.460 2 .014 18.328 R 305.0301696.750 2 .014 .000 .000 1 R 824.9901706.570 2 .014 .000 .000 0 R 1521.0201727.610 2 .014 .000 .000 0 R 1904.9601732.180 2 .014 .000 .000 1 A R 2181.8001736.300 6 .014 .000 .000 0 0 pg 2386.6101739.500 6 .014 .000 .000 0 TS 2396.6101739.670 38 .014 .000 ti r R 2426.6101740.190 38 .014 .000 .000 0 TS 2436.6101740.360 40 .014 .000 R 2496.8901741.400 6 .014 - 13.815 .000 0 R 2557.1801742.450 6 .014 13.817 .000 0 R 3600.1701760.520 6 .014 .000 .000 0 R 3661.1701761.570 6 .014 .000 .000 0 ( Pig JX 3701.1701765.020 26 27 .014 1370.300 1762.880 4.014 .000 41..... �J /� "..' R 3751.1701766.270 26 .014 .000 .000 0 Ile 4397.8001783.410 26 .014 .000 .000 0 1-10E.. SH 4397.8001783.410 26 1790.070 CD 1 3 0 .000 8.000 14.000 .000 .000 -.020 A■••ii LAPS. CD 2 3 0 .000 10.000 12.000 .000 .000 -.02 CD 3 3 0 .000 8.000 12.000 .000 .000 .00 t• � . . . - 3 CD 4 3 0 .000 7.000 12.000 .000 .000 .00 `! M Yr,- I� CD 5 4 1 .000 5.000 .000 .000 .000 .00 ' 7 CD 6 3 0 .000 10.000 12.000 .000 .000 .00 CD 7 4 1 .000 5.000 .000 .000 .000 .00 CD 8 3 0 .000 8.000 12.000 .000 .000 .00 CD 9 4 1 .000 5.500 .000 .000 .000 .00 CD 24 2 0 .000 8.000 14.000 .000 .000 .00 CD 25 3 0 .000 8.000 14.000 .000 .000 .00 ,*°- CD 26 3 0 .000 8.000 8.000 .000 .000 .00 CD 27 3 0 .000 8.000 10.000 .000 .000 .00 `r..- CD 28 3 0 1.000 10.000 14.000 .000 .000 .00 CD 29 3 0 .000 8.000 14.000 .000 .000 .00 CD 30 3 0 .000 10.000 12.000 .000 .000 .00 CD 31 3 0 .000 8.000 10.000 .000 .000 .00 CD 33 3 0 .000 8.000 12.000 .000 .000 .00 CD 35 3 0 .000 10.000 14.000 .000 .000 .00 CD 37 3 0 .000 8.670 12.000 .000 .000 .00 CD 38 3 0 .000 8.000 14.000 .000 .000 .00 CD 39 3 0 .000 10.000 12.000 .000 .000 .00 CD 40 3 0 .000 10.000 12.000 .000 .000 .00 Q 1725.300 .0 Fc,o w �R- -- ... t P 6v ^ 4.10,4 of S `S 51 OE LIPNE - -3 LAI .11l )54:- 19211'trf(. 1411 141110 . HI * a .0 * o O O O o O o 0 O N. * .0 -HI U M * 4-1 a * * 3 '''- d 4, ID * 0) a* X X x x x x X k x W V' * O N •I * O 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 C7 * z a E* 1 W 1 Ca 1 W 1 G1 1 0) 1 W 1 CA 1 CA 1 al 4 r * a I * * o 0 0 0 0 o O o O o 0 0 0 0 0 0 0 0 (1/ * 0-7 a4 * o o O o 0 0 o O o 0 0 0 0 0 0 0 o O 4 N N -•-I * * E * I * 1 1 1 I 1 I 1 1 I * * J..1 • 1 r - I * O 1 N O 1 N 0 1 (V O I N O 1 N O I N O I N O I N O 1 N CD *$❑ HI * O O O O O O O O O O O O O O O O O O O * • Ia * O • O O • O • O • o • O • o • O O * a) H W* 1 1 I I I I I 1 • I N * (6 I * V' N N N N N N N N 1 * (0 )-I X* H HI Hi •-I HI ri HI •--I Ha Hi 4 GO O I * I 1 1 1 I 1 1 1 I N * 1 *\ E I 4 1 I I I I 1 1 I 1 Hi * -4 C. * O O O O O O O O O * .C) 1 0 * O V' O V' O d' O a' O d' O V' O V' O V' O V' 44 01 • Z* O ri C) • 0 H I O •--I 0 1 0 • O . 0 •--1 O H I 1)) * - , 1 Ca 0 * O • O O • o • O • O • O • O • o 4 - 4 4 a) - * 0 • O • O • 0 • o • O • O • O • O as * z a l * 1 H1 1 Hi I Hi 1 •-1 1 Hi I r -1 1 Hi 1 .--1 1 ❑ * * a 1 - 1 1 1 1 1 1 I 1 I * 0 � 0* * E 1 - 1 O* O o II) o m o 1'') O V• O V O V' o a' o V. * y * O O ID O CO O CO O 11) O Ill O If) O u) O u * 3'0 5 4 0 •HI SI * V' N 07 N r N r N ID N ID N 1 N ID N ID * HI .' 0* HI H-I ri HI Hi r I HI .-1 HI * la 1 z* 1 I 1 1 I 1 1 I I 4 H1 1 z* 1 1 1 1 I 4 1 1 I 4. * Id * m m ri 00 m ID HI ID * U .0 U) * O CO O O O N O M O V' O V O N O HI O 01 * •HI + '0 * O m O • O • O • o • O • O • O • O * 11 0, 0* • N • N • N • N • N • N • N • HI * •r1 a) 0* CO N O O 0 O 0 O O O * 1- ❑ 4-1 * HI Hi r-I HI HI HI H HI 4. U 1 W* 1 I 1 1 I 1 I 4 1 * * 1 .C, * 1 1 0 I ID 1 Ol 1 ) 1 V• I 01 1 N I m ID 44 11 > 44 O O O CO O V• O N 0 0 01 O O O M O r O Hi O C7 * a) a) a* O O O O • O • O • O • O • O • O • • Z * 04 H ❑* • r • N • r - • ID • h • h • r • m V• H * 0 W * 0) a) Hi E * (n W * U) * 1 Cf) * 1 I 1 1 1 1 4 1 1 O H * O I-7 * • 1 * 1 1 1 1 I 1 1 1 1 ••1 * >1 HI * O ID u) ID O ID r r V N ID O ID V O Hi HI CO CO W * 01 W * ID If) N 11) CO 00 ID N 01 If) V' M r 01 r 0) N Hi 1 II a * u • (44 a) H * a) '0 .'i1 * ID Hi m V' N V' r r V' N r 11) N N Ill H4 r H • [a.1 4 C 11 * HI HI N N M M V' V' V' ,• O 4 W C7 4 r r r N N r r r r Z a * 4 Hi Hi Hi Hi Hi Hi H .--I CD 0 a * I * 1 I 1 4 1 1 1 1 I H N * CI) V' W * 1 a) * r I 11) 0) 1 N O 1 Hi r 1 CO N 1 m m 1 V' V' I r N 1 M M 1 N W Hi U 4 '0 . * r 01 ON O ID N V' V' V' u1 CO M 01 O N W ID ID ❑ 1) * .--1 al KC * • Hi • (V • IV • N • N • (NI • (`1 • • • • --1 . - 1 •• 44 u) * a) O) * r 0 ID O C 0 O 01 O Hi O O O 0 ) O r O Ill O H 14 Z z 4 > ) 1:4 * HI • Hi • Hi • HI • N • N • HI • HI • 4-4 1--i • ,Q (n E 4 I .1 U I 1 1 I 1 1 1 I I H * — — — — — — — — — — — • Cy. U * I * M I r 1 H I HI 1 V' 1 1'l I N 1 O 1 N I 1 Z W I. ^ * 00 O ID V' Hi ID Ol M r E O * H-1 CO * • HI 4 E * (I) a * M M V' u r ID V 1 ri C7 1'il W x V 1 * 4 1 1 I 1 1 I 1 I 1) 0) z a -) 1 * 0 1 O 1 0 1 0 1 0 1 O I o 1 0 1 0 1 CO o1 U 4 * ID ID ID I.D I.D I.D ID ID ID a) E * --- * .3 01 Z W .'16 4 U) * If) 41) 1!) I!) 1!) 1f) 11) In V7 It 0 a (A * 01 hI * al 01 01 01 01 01 01 01 01 ?G C. E 3* 0 * O O O O O o O O O C) 71 •* * M M M Cr) M M M M M (1/ 44 1 -1 a'* * a o W* 1 * 1 1 1 1 I 1 1 I 1 - z* • T' FC H* 1 * ID 1 0 1 If) 4 If) 1 ID 1 ri 1 M 1 V 1 CO 1 Cd E - 4 - 7 * 4 N ID O 01 HI Cr) N 0) ID 44 H C] * 1-1 * OD N N HI In ID O V• co 01 00)0.4 N D * o z z 3 Ll CD 4' a) H-1 C 0) /'' ID CO CO HI 14 u) 1-4 * CO H-1 * 01 O O O HI HI N N CO a 01-1 •• * S W * ID r r r r r r r r H - / $ * 4 H-4 HI HI HI HI HI HI -4 HI I❑ k1 * I * I I 1 I I 1 1 1 1 1-1 a * — — — V' 0 * I 4 ID I O I u) 1 If) 1 ID I V• 1 m 1 CO I ID 1 0 * .[ * m co ul m V c OD c N HI * yJ — * u) 0) a' N 0) O M r HI * 04 F. * * a) C.0 * ID r- r- r- ID r r- r- co * ❑ — 4 * * 4 1 44 I 1 I I 1 4 I I I * $ * I * 0 1 0 1 0 1 0 1 0 1 r 1 Ill 1 ID I r 1 (f) i. a.) * O) ID ID If) 0) Hi 01 r N OD N CO N m N M N 3 * + a* N ID V' V' r OD O) co If) O If) O V' O r O r co * 11 'J 0 * • V' • ri • Hi • Hi • M • M • M • co • M Hi * a) a) •-1 * N HI M O ID O O O ID O 01 O ID O O O M O 111 * 'J HI 10 * 01 O 0) • 01 • 0 • O • 0 • r I • N • N a / ) 1 *0 W * ID • ID ID r r r r r r . * H .0 * HI H-I HI 4-4 H H Hi .-I ri -HI * I U* I 1 1 1 I 1 1 1 1 HI * — — — '0 * I * 0 I C.4 O l 0 0 1 a) 0) 1 N 0 1 01 CO 1 ri 01 1 r-1 0 1 HI HI 1 1-1 .440.11• a * C. * O E r - ID m V' r - Hi 0) O 0) V' M 0) M ID Ol OD * 0 * O CO 0) O O N N r 0) CO r N M N ID N OD 0) 4 -HI (1) 7 * 11 H-1 4 ( Ol u1 N O U1 01 V' Ol V' ID ri N M 01 N N W * b W* 'Ty r N O N N 01 N 01 N N 10 V' 0) 01 al r- , - 1 * 4 1 \* F O C I N CO N If) N CO 01 N H I .- I N M H 4 (/) a * Hi Hi ri • kl 4' * E r ti"r„.' N * 0, .r: * 0 0 0 0 0 0 0 0 0 r * .4 - H1 0 * ED 5 3 m 0 4 5 X X X X X X X X X W d' * o u >, 5 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 * z a E* I al 1 Oa I [U 1 0 1 PO 10 I W 1 0 1 0 .) r- * - - a 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U) 5 1-7 0 5 O O O O O 0 0 0 o O 0 o 0 0 o 0 O O • 5 N N HI * 5 E. 5 1 * 1 1 1 1 1 1 4 1 I 5 * 1) • I . - 1 * 0 1 0 / 1 0 1 4 ') 0 ( 4" ) 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 CO 5 '3 0 .-1 4 O O O O O O O O O O O o 0 0 O O O 0 0 * • ro* 0 • 0 0 • 0 • 0 • o • 0 • 0 • 0 O 5 N H W* 1 1 1 N 5 y 1* N N N N N N Cr V N 1 5 Ili 34 X 5 ' H-1 H-1 Hi r i 1 H Hi 1-1 Hi . * W 0 1 * 1 I 1 1 1 1 1 1 I N 5 I *\ E I 5 1 1 1 I I 1 1 1 I Hi 5 14 [u 5 O co O O O O O O O 5 .4 1 C 5 O d' 0 d' 0 V' 0 ' O d' 0 ' 0 ' 0 •• 0 ' 5 01 • z* 0 . 0 H 0 Hi 0 H I 0 '- 4 0 .-1 0 1-1 0 e-4 0 ,-.I a) * - b e* o • 0 • O • 0 • O • O • O • 0 • o .5 0 i-5 ) /1 4' I 0 • o • o • o • o • o • co • co • o IO /5 0 A 1 5 H 1 ' 1 f 1 H 1 .--1 1 • I 1 1 r1 1 O 5 - - - * 0, 1 "* 1 1 I 1 1 1 1 1 I 5 o 0, * 5 E .0 0* 0 ' 0 CO o CO 0 0) 0 (,) 0 0 0 0 0 H1 * 1) 5 0 tr) 0 (`1 0 M O Ir) O Tr o 0 01 0 0 .--I * 3'O E * 0 •HI (I 5 N ED N 01 N 0) N 00 N ao N V' ED d' N 00 5 .-I 3 F 0 f * H I .-1 H I H-1 H I .--I .-1 H I H I 5 k1 1 Z* 1 I 1 1 I 1 1 1 1 * * .--1 I z* 1 I I 1 1 1 1 1 I 5 Id * M o '--I d' 1/40 (V ('1 5 U F.' a) * O W O r O r O co 0 0) O 'o O N 0 N 0 01 5 -H1 1.1 '0 5 0 • 0 • 0 • 0 • 0 • 0 CO 0 • 0 N 0 * •Hi 0) 0* O 0 0 0 O 0 HI CO CO N 0 5 (-1 A 14 5 HI Hi 1-1 HI 4'-1 HI 'I * 0 I GI * 1 1 I I 1 1 1 1 1 5 5 1 .0 * 1 N I ' I H I 1 0 1 CO 4 I lD 1 I CO ED * 1-I > 1) * 0 U) 0 01 0 0) 0 0 0 dr 0 M 0 r 0 tr) r l0 O U' 5 0) 0) 0, * o • O • O O • 0 • o d' o • o r Tr • Z * 0. .- -I A 5 • a) • a • o • W • CO • 1D • 01 ✓ H * 0 W 5 CO lD HI .-1 E * CO W * U) 5 1 U) * 1 1 4 1 I I I 4 I C. H 5 o I-1 5 • 1 5 4 I 1 1 1 1 1 1 I - 5 >, Hi 5 01 01 CO 0 f•) 1/40 01 CO r 0 r r l0 .f) Hi CO N r-1 W [4) 5 0) (.) 5 ED r V' Q' 0) O 01 (V N N V' '-1 0 N ED Hi 01 0 05/55. 1 a 5 1 • [V 0) H 5 0) V X 5 03 01 01 tf) V' d' 01 CO N r) M r) HI > [4 5 1'-. 1-1 5 d' d' TI LC) tr) ED ED ED 0 \, 0 5 W t7 5 r r r r r r r r r �c z P4 4, * .-I .-1 '-1 . 1 . r1 '-1 . '-I U' O a 5 I 5 1 1 1 4 I 1 1 1 I H N 5 U) V' W * 1 0) 5 0 1 r) M 1 U) (V 1 d' N 1 LC) d' 1 ED V' 1 0 r) 1 f+) r 1 ED U) 1 r W '--1 0 5 - o > 5 N d' 0) 0) 0 d' r) lf) tf) III u) r 0 OD lD r CO ED A r0 5 HI 0 KC * Hi I • Hi • H I • H-1 • .-I • H I • .1 • Hi 1..7 • • 44 U) 5 a) • 0 . � ) . * d' o (V H O r) o a d ' ' o ' 0 0 l to 0 0 ED 0 0 H 1-1 00 p 5 •7 4.1 * Hi H .-I • I • HI • HI • ."1 • H I • H I • H1 > 0) p 00 5 CO * H U] E * I 5 1 I 1 I I I 1 1 1 O H 5 - - - - - - - - - - - H � r 00 4) 5 1 5 r 1 ED I t() I X.0 1 0 1 0 1 01 1 ED 1 I-() 1 1 0 W 5 5 N CO 01 CO lD 0 r r d' E 0 5 .-1 U) $ HI a' E 5 0) a * o 0) m O O O N N H (0 3 5 > [1/41 * (7 N N 1") M r) in M ('') O 1-I W 5 - 1 * I 1 4 I 4 I I I 1 a a) KC X * - - CO Z 0 5 1 * 0 1 0 1 0 I 0 1 0 I 0 l 0 1 0 1 0 1 CO Q. 0 * * 1/40 VD l0 lfl ED ED '9 ED lD a) E 5 5 • 01 Z W g 5 fn 5 u) If) In to tl) u) to Ir) Ir) (O 0 Fa U) 5 0 Gi 5 0) 0) O) 0) 0l 01 0) 0) 0) .X GI E '3 5 0 4' 0 0 0 0 0 0 0 O O U .4." • 5 - * c' r) CO 01 CO 0) (") 01 (") (O 4 a 4 * 5 a 0 w* I - 1 I 1 1 1 1 1 I 1 z* E 7, 5 H* 1 * lD 1 01 I I() I ED 1 0 1 '-I 1 0 1 CO 1 d' 1 N E e I - 1 5 5 ED Cr Hi r CO CO N r) t..0 1i H A 5 H * d' N 01 lD r 01 Cr. 01 tf) 01 U W > * 0 * !. 0) o `I+ Fa 5 1.) 0 5 d' 0 '.0 o d' r - 0 ED O (-1 LO H • N HI 5 r) r) CO d' d' d' d' d' d' a 0 I-0 •• * 3 W * r r r r r r r r r Hi 'y * 5 ri ri '-1 Hi .-1 .-4 Hi 1-1 Hi I A [HI * I 5 1 I I 1 1 1 1 I I HI a 5 c 0 5 1 * r) 1 0) 1 .-1 1 lD 1 0 1 . 1 0 1 al I V' 1 0 5 F'. * N r) Hi 01 r) CO to d' 0 .-I 5 1) 5 t() 0) 01 'Cr d' V' r r N 5 0. E * 5 0) [.1 5 CO CO OD CO OD o tD ED CO * A - * 5 5 - 5 I 5 I 4 1 1 1 I 1 1 1 * - - - "�r 5 1 * 01 1 0 1 V' 1 0 1 0 1 0 1 0 1 0 1 0 1 CO 5 0) 5 d' N .--I 01 0 01 m 01 0 ED 0 r M 0) l0 r) "$ * 1) CI, * 0) 0 l0 '--1 0 1-1 H 1 d' (") l() If) 0 l0 r Hi o CO r * 1-1 > o * • CO • H-1 • H • HI • ,_1 • r • '-I • r • H - i Hi * 0) a) H* in O r O Co O N o 19 co 0l Hi 0) 0 0 Hi 0 0 CO 5 > H U) * N • N • N • CO • M • M O M • 0' O d' 0) 5 0 W 5 r r r r r r • r r • r (1 5 H 4 5 Hi Hi Hi Hi Hi Hi H-1 , 1 Hi -Hi * I U* 1 1 1 5 1 I 1 1 I H * '0 5 1 5 0 4 4' - 0 1 ED lD 1 0 1 0 1 0 0 1 0 0 1 00 0 1 0 O 1 0 0 1 0 0. 5 0 * r V' (NI N d' HI l0 d' 0 H-1 Hi E Hi 0 Hi E ' O 1 .5 5 0 E. * CO Hi 0 HI HI CO 01 CO CO CO ED U) ED 0 1/40 U) l0 N 5 -HI 0) 5 1) Hi 5 tf) to Hi CO d' 0 d' EC) .-I d' l0 U) ED 0 ED CO ED 0 ' 0 5 b W 5 l0 If) N CO If) 11) 0 r CO 0 CO Z 01 M N Z ('1 ED I - a 5 1) \ 5 d' LC) 0 r) 0) N Hi N r) . r) V' 100 d' H 5 U) 1/4 5 HI Hi HI HI N N 0 N N 00 N 61 5 * E E. '..**01100 (*) * 0. 4* 0 0 0 0 0 0 0 ✓ * .0 - . - I 0 * '.o * 3 m a« x x x x x x x C.1 'O' # O 14 ?. # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O * Z 0) E* I MI 1 M 1 W 1 R) 1 (0 4 (0 1 al ,1 r * - - - - a * 1 * 0 0 0 0 0 0 0 0 0 0 o O o 0 cu • # ,4 a * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 * CO N # -.1 # * E # 1 # 1 1 I I 1 1 1 * * 4) • 1 .-I * 0 4 0 0 4 0 0 l 0 0 4 0 0 4 0 0 4 0 0 1 0 CO * 3 q .i * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o * • ro* o • O • o • o • o o o 0 * 0) H W * N * W 1* N N N N N N N * (0 1. X * • ,- I . .-I .-1 HI .-1 H1 4 44 0 1 4 1 1 1 4 1 1 1 N * - - - - 1 * E 1 * 1 4 1 1 4 I I Hl * .0 ...1 [s,. * O O O O O O o ' it 4 1 It 4 0 V' 0 t' 0 Cr 0 C' 0 d' o cr O H1 * tT • Z* O .-I O ,'4 0 .--1 0 H 0 .--I O N O O a) * -.i as : * 0 • 0 • 0 • 0 • 0 • 0 • * a) -.1 * 0 • 0 • 0 • o • o o o (0 4 0 I * .--1 I HI 1 HI 1 HI 1 , 1 I H 1 . 1 q k a 1 -k 4 4 1 I 1 1 * 0 a* * E .0 q* O m 0 01 0 01 0 m 0 01 0 HI 0 * 4) * 0 0 0 0 0 0 0 0 0 0 0 HI 0 * 3ro 0# * 0 -.1 31 * N m N m N m (V m N m N CO N * .-4 3 0 * .1 .-1 ,-1 ,-1 H1 .-I H * Ga I .Z, * 1 1 1 1 1 I I 4 - - * Hi I Z* 1 1 4 i 1 1 I * (0 * in N m If r) •--I V' * 0 .0 0) * O 0) O 0) 0 CO o r- O l0 O .n o v * -.4u '0* 0 • 0 • 0 • 0 • 0 •+) o •4.) o •.4 * l) a '.7 * • •-I • ,-1 • HI • Hi • .-1 •1-1 • H1 •,4 • HI .,4 * •.1 (1) O* 0 0 0 o o 0 0 7 0 7 * 44 0 1.4 * H-I •-I •-I H HI 'd HI 'O H - x 0 1 G. * I 1 1 I 1 CJ 1 (0 I C. * O - - O - - 0 * 1 .0 * i 0) 1 ('I I r I m 1 .H U I 4.0 0 1 0 0 lO * 1 '.> 1 * r - 10 0 N 0 M 0 r O N 0 .0 0 0 0 0 * (1) v 0. c • o • o • o • O • X o • X o • X • Z * p,.1 q* • m • CO • m • CO • 01 0 • 0) O • o � O C' H 4.044 .1, .i .R .-I E * (1) w * CO # 1 CO 4 I 4 1 1 I 4-1 1 'H 1 W O H it 0- - O - 0 0 a # 1 * 1 I I 1 1 I 1 . -.4 * >I .-I * (V 0 r) r - O r r 0) lO 0 01. 10 .n a 0 a N w * (T W * Ol 0 01 01 01 01 N u) m C' 0 N l0 0 01 0 ,003•••••• S-1 ,a # 3-I • k. * • y) • y) y) () H * 0) '0 .7'. * G' .-I .r) )r) ,H .I) r N 0) •-1 .- H 0 * W 0 # r r r r- ,-4 r ro r al r 0) Z C4 0 o a * 4 * 1 1 I I 1 G 1 C 1 0- H N * - - - - U) C' Cr) * 4 0) * . - 1 1 '.0 V' 1 N .n 1 O .1 1 r) 01 1 CO .0 0) 1 lO 4 4') 1 f., w .I 0 * '(7 > * r) Mr (V 3.0 r u cr r) . - I . - I .4) o o 4• r) r) O A'. * '--I (0 FI', * • H • .i • .i • - • HI a • HI a a 4 •• 41 0 * 0) 0) * .n o .n 0 C' 0 CO 0 N 0 (1) . 0 0) 0 0) 1-444 a D * ›M 444 HH • H-4 • H-I • 4-1 • H1 • 'C) H • 10 H '5 H m E # 1 m * 4 1 4 I I O 1 O I O M 0 * I * 0 1 r) 1 N I CO 1 N 1 ,-1 H I 1-1 0 I H1 1 Z 1) * # c r) m 01 O Ix, r 1-s m 44 • E 0 * .-4m 3 . - 1 , E * 0) a 4 -4 . . 0 0) m 1 l0 I .n 1 Q (0 $ * > 4. * r) ('7 CO N N N N a 0) . 1- 1 � 41 x - CO Z a 41 1 * 0 1 0 1 0 1 0 1 0 1 0 Z 0 1 H 1 m 40 * 4, M 31) 3D ur, COI CD a (.0 �a • 0 ' z W 3 * CO 1 m .n .n .n .r) 3 .n 3 •r) 3 10 0 a U) * a [s. * 0) 0) 0) 0) 0) Ol 01 x 4.. E 3 * 0 * 0 0 0 0 0 0 0 U 74 • it - * 1•) el M 1') M /n (.1 a 0 w* 1 41 1 1 4 1 1 1 I E D 0 1 * 1 * l0 I Cr) 1 01 1 C') I r) 1 (•-• 1 0 1 0 E : 4-1 * * .a m d' cc r r r- )4 H 0 * T-1 * lO lO .n m 10 ,-i .n 4' 0wa* 0) D * O Z Z * t-' 0) * al o 4.o rl N o .-1 1-1 .r) H * 10 • * Q' N .r) 10 lO r - r- aw 0 .-7 ••* 3 w * r r r r r r r . - 1 Z * * H HI .-I .-1 .H .--f HI 1 q &. * I * 1 1 I 1 1 I I 11 a * - - - - - - - C' Z 4 1 * '.0 1 1) 1 0 4 CO I CO 1 r 1 0 1 0 * 4 4' HI r) r r o m o H 1 it }) * N N r) r N l0 O * 04 * * 0) k. * CO m m m 01 0) 0 * q , * H * * * I 4 1 1 I 1 1 4 1 3 * 4 * 0 1 O 4 0) 1 r) 1 10 1 0 1 0 I CO * a) * 0 d' N 1') r 1') m 1') '.0 r) N N r- 3 * y) 0. * G' (-- d' r r1 r O r v' r .n r .n CO * S-1 .7 O # • ■-I • •-1 • 11 • 1-4 • .-1 • .-1 • lO H--I * 0) 0) .4 * .1 0 N 0 m 0 .r) 0 m 0 0 0 .-I CO (0 * • J .--1 (r) * d' • d' • G' • in • .r) lO '.0 0 (v * 0 w * r r r r r r r O 4' H .0 * HI H1 .-1 .--I .4 .-i H -.1 * 1 0 I I 1 1 1 I I H * - - - - - - 'O * 1 * 0 1 0 O 1 10 WO I N m I r 0) ) 1 .n 0 1 0 O 1 a /^� l o * * 0 * d1 01 CO .n r) v' r H1 0 r r 0 r E O * m N .--I 10 m m ('1 N m .n Hi O H (n * -.1 0) # .. # .1 4 10 0 r o r m 3 3) .r) . m 0 H0 . E W * b w * O) lO .r) 1•) m 01 m d> m .'4 0 W l0 Z 0 a * 4 - , 4. C7' .n r) CO C•1 (V HI C H-1 .D lO 7.. I--I * U) .-1 * N N N CO M (Y) 01 3') c * CL .4 * 0 0 ✓ * .0 -r1 C) * .• '` .. a) * t0 * 0 0.* x w a * 0 >a >,* 0 0 0 C7 * Z 0 . 4 F* I 0 I Ft 4- * a I * .14 0 0 0 a) * ,a a* o 0 0 * N N -el * * F * 1 * I 1 * * 1) • 1 H* 0 I O 0 I OD * 3 0 •-1 * o 0 0 o * • (0 * o • o o * a)H 1.1* . N 4 a) I * m Co I * (CS H X H * 0 0 1 * 1 1 N * I * • E+ 1 * I I H * 1 k, * 0 O * .0 I c * 0 d' 0 * b) • 2 41 0 H 0 0) • -r1 ro . * 0 1) 41 0) -r1 * 0 ) • 0) ro * 0 C) 1 * 1 1 o * * 0, 1 * 1 1 * 0 a* * F Ca * 0 (.0 0 * 1) * 0 r o * 3'0 E * 0 -ri )-1 * m '.0 CO * H $ 0 * * w I z* 1 I * * H I z* I I * ro * 1,1) * 0 0 0)* o H 0 * -r1 1) '0 * 0 0 * 1) 04 0 * • ry * •r1 0) 0 4 m CO * 1-1 0 14 * * U I G, * I I * * 1 4 * 1 '.0 1 4.0 * )-1 ,7 N * O r- O o U' * 0) 0) 04 * 0 • 0 • Z * 0, H C] * • i0 V' H * 0 w * H F * 0) w * O U) * I co 4, 1 I 0 H * O 4 * • 1 * I I -r1 * >, H * m r u) () w * b) w * ,n r- r) u a * u Iw* a) 4-4 * a) 'd x * CO 10 > W * 0 N * m H o O * 00 * r m Z O * * H H ( 0 a * 1 * 1 I H N * U) a' w * 1 a)* 0 1 01 CO I 1H0 * 'O >* CO '.0 N '3 F) * H (0 Q', * • N 1-1 •• G, U I a 4 N ) ) a) 0 l0 H $-1 0.4 ' J " 4 > 0 k, * H • H > 1D a * co * 4-4 r H U) F * 1 * 1 1 O H * I z W U * 1 * 0 1 M 1 F 0 * H m * • H F * W0 ■ * , N ro 3 * > G+ * co r) • ( w * 1 * 1 1 a (1) 2 C4 * I * 0 1 0 1 C.1) 4 U * * r') CO a) F * * 3 b) zw3* m * ,n v) x U 4., E a U * r r U >-' • * --- • .i H a 0 w * 1 * 1 1 z* Y. H* 1 * O I O 1 F (4 0 * * CO 0 S-I H C. * W O * r 0 01 U Z 0* W W F l-, 0 4 1 ) a) * rl 0 S-I , In H 4 10 H * r r- a 4 - 4 ••* 3 w * r r H z * * H H 1 0w* 1 * 1 I H a * yr ", * I * 0 1 0 1 H 3 4.) —. * I" 10 * 0. * * a) Cv * l0 '.0 * Ca -- * * * * 1 * 4 1 * 3 * 1 * 0 1 0 1 U) * 0) * N V' H 3 * 1 Q, * 0 (.0 v' 3 )9 J 0 * • N H * a) a) H * U) 0 r) ro * > H U) * 1 .0 • m a) * 0 w * r r- * H .0 * H H •r1 * 1 0 * 1 I H * '0 3 1 * 0 1 0 0 1 E 1 C; * r r) 0 * 0 E * H 0 CO * .- 0) ,�i 4 , 1 ) H 41 0 10 r w 3 (a w * o rn m 4 - 4 4 3 0 ) \ * r LO r') H m a * ch a C=.1 * * T1 1041 -105 CITY OF FONTANA i f OP 4-3 4. r+ T2 MPD LINE "A" CITRUS to Sierra Lateral Analysis / . T3 FN: MPDLINEA2.WSW 10 T SO 3701.1701765.020 31 1771.880 R 4397.8001772.090 31 .014 .000 .000 0 R 4696.8001780.270 31 .014 .000 .000 0 R 6580.0001801.830 31 .013 .000 .000 0 TS 6600.0001802.060 33 .014 .000 .000 0 Wilt JX 6610.3901802.080 33 9 .014 459.600 1803.340 30.0 .000 R 9201.7701809.870 33 .014 .000 .000 0 # A y SH 9201.7701809.870 33 1809.870 CD 1 3 0 .000 8.000 14.000 .000 .000 -.02 CD 2 3 0 .000 10.000 12.000 .000 .000 -.02 CD 3 3 0 .000 8.000 12.000 .000 .000 .00 CD 4 3 0 .000 7.000 12.000 .000 .000 .00 CD 5 4 1 .000 5.000 .000 .000 .000 .00 CD 6 3 0 .000 8.000 8.000 .000 .000 .00 CD 7 4 1 .000 5.000 .000 .000 .000 .00 CD 8 3 0 .000 8.000 12.000 .000 .000 .00 CD 9 4 1 .000 5.500 .000 .000 .000 .00 CD 24 2 0 .000 8.000 14.000 .000 .000 .00 CD 25 3 0 .000 8.000 14.000 .000 .000 .00 CD 26 3 0 .000 7.000 8.000 .000 .000 .00 CD 27 3 0 .000 10.000 14.000 .000 .000 .00 CD 28 3 0 1.000 10.000 14.000 .000 .000 .00 CD 29 3 0 .000 8.000 14.000 .000 .000 .00 CD 30 3 0 .000 10.000 12.000 .000 .000 .00 CD 31 3 0 .000 8.000 10.000 .000 .000 .00 CD 33 3 0 .000 8.000 12.000 .000 .000 .00 CD 35 3 0 .000 10.000 14.000 .000 .000 .00 CD 37 3 0 .000 8.670 12.000 .000 .000 .00 CD 38 3 0 .000 8.000 14.000 .000 .000 .00 CD 39 3 0 .000 10.000 12.000 .000 .000 .00 CD 40 3 0 .000 10.000 12.000 .000 .000 .00 1 Q 910.700 .0 Am'. " I.. - r1 * LL .0 * o 0 0 0 0 0 0 0 0 01 * 4 -'4 0 * 'n * N a * 0- * ) a* X X X X X X x X X M kr, * o )1 >, * 0 0 0 0 0 0 O 0 (0 0 o 0 o 0 O 0 0 0 0 * Z a E* I X) 1 (0 1 al 1 W t 44 1 al 1 0.l 1 co I PO 41: r * a 1 * * 0 0 0 o O O o O o 0 0 0 o O o 0 0 0 0) * .-1 rz * 0 ID 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 5 * N N -,1 * * H * I * I 1 I 1 I 1 1 1 I * x 1) • I • * 0 1 0 ID I ID ID I ID O 1 0 0 1 0 0 1 C ) 0 1 0 0 1 0 0 1 0 O * $ 0 r-I * O O O O O O O O O O O O O O O O o O 0 * • to * o • o • o • o • O o • 0 • o • O O * (1) I-1 ( N * 10 I * o O O O O O O O O 1 * CO I-I X* r 4 .--1 r-I .-1 r-1 4-1 r1 4-1 1-4 .-.1 * RI 0 I * 1 1 I 1 1 1 1 1 I N * I x\ E I * I t 1 1 I 1 I 1 t .--I * 1) &1 * O O O O O O O O o * .0 1 * O d' O d' O d• o V' O d' O d' O V' O d O V' * 0 • Z* O .-1 O r-I O ri O H O r-1 O .--I O .-4 O ri O ri 0) * -r1 CO :* o • O • O • O • O • O O • O • O -P * 0 -r1 4' 0) • co • co Co • co • co • co • co ID ro * ac 0 1 4' 1 1 1 1 1 1 1 I 0 * * 01 1 * I I I I 1 t t t I * • H .0 O* O 01 O Cl O 01 O 01 O CO O N O N O N O N * y) * O d' O d O d' O d' O d' O d' O d' O d' O V' * 3 v 5 * 0 - .I s+ * O to o Io O to o Io O Io O d' O d' O d' O d' * .-1 0) 0 * r-1 .-1 r-1 .-1 1-1 r1 ri r-I ri 1 (10 I Z* 1 1 1 I I I 1 1 i x 4 r-1 I Z* 1 1 1 1 1 t 1 I 1 * IV x 0) o 01 r .-I r d' 0) to * 0.0 a) * O N O r O CO O 01 O 1-1 O N 0 ri O 01 O CO * -ri +) • 0 * O • o • 0 • 0 • o • O • O • O • O * 1) 0, * • ri • .-1 • r-1 • ri • N • N • N • ri • ri * -.4 a) 0 * co ID or co co op co co co * 3-101 N* * U I Fr, * 1 1 I 1 1 1 1 1 1 x - * I .0* I M I( I CO I N 1 CO t d' 1 co I r 1 I•l ID * 41 'J J-) * O ri O co O tf) O co o O O m O O O N O tf1 o 0 * a) a) P. * o • O • o o • o o • O • o • o • Z x 01 H 0 * • ID • t o • 1f, • to • II • d • tf) • 'f) • to d• H 44 0 W * . E * Cr) W ID * I U) .K I 1 I I 1 1 1 1 1 O H * O a * • I * 1 1 1 1 I 1 i 1 I -ri y 1. ?i . * 1-1 d' 'f) CO 01 N tf) N CO O CO 01 1-1 O ri 01 O d' (0 W -r1 * 0 W * 01 r ID r-1 0) 0l r CO 'f) CO 01 •-1 tf) ID ri 01 •-I ID ,'^ u a m * u• w x 0) H >, * a) 70 0 * OD N 4-1 N (V) ri U) ri r •1 01 N r1 .-I 01 V' • 44 r-1 * C fJ x r co co Co ao fD 0) 0) 01 k. 0 )0 * W () x r r r r r r r r r �rrrr Z D: 0 * x .-1 .-I .-1 .-1 .-1 .-1 .-I .-1 r-1 O O a 4 * 1 1 1 1 1 4 I 1 1 1 1 H N * ID d' W .--I * 1 a) * r 1 N O I aD ')) I r 01 1 CO N 1 N N 1 d' d' 1 N 0) 1 .-1 d' 4 N W 4 U It * TS .7 * r N 'f) t") (r) 'r) N r Cl O d' O tf) Co d' Io N V' O r1 4. * r-1 CO 4) * • 4--1 • ri • ri • .-I • N • N • .-I • r-1 • r1 F] •• w a) * a) a) * r O co O 01 O O O r-I O N co ri O O O 0) O H 44 174 JJ * 'J 0 (o * • ri • ri • ri • ri • r-I • UD Ia .1 rn* H U] .-1 * I * 1 1 1 I 1 1 1 1 1 U * - - - - - - - - - - - i x ro * 1 * ,O 1 O I d' I d' I O I .-4 1 to I 0' 1 01 1 1 2 43 N * * 01 c tf) r O M N at r H 44 * r1 U) 111 3 - .1 * › E..4 * N N N N N N N N N C9 •r1 (D 4 * 11 44 1 -1) 1 4 1 1 1 I 1 1 I at 0 µ 0 * co ,Z N 4 I * co 1 O I 01 1 01 1 0 1 O I 01 1 01 1 0 1 T. .1 U) I * 0) CO 01 01 CO CO CO M (`) a) H ID Z * -� 40 01 0 co * In * Z O O O O O O O O O (a 0 P4 Z* 01 [4 * r r- r- r- r- r- r r r .k a E • * 0 * co 0) co co M co co C) Cl O H N * * ri ri •--1 •1 •-.1 •-.1 r4 r ri ri It w U 4 1. * a O W* 1 4 1 1 4 1 4 1 1 1 I z* - -+ r i + 1-I * 1 * r ) r I r 1 0 1 0o I O, t 01 I 01 1 N I RI E r• ' * * d' V' r to U) N to .1 to 4-I H O * 44 * .--1 ri d' V' N 0, 0, 10 to * o U 2 Z * 1J 0) 4 r-1 C) d' 41) '.o to 0l N V' N N H * ro .-1 S r r r r r r r co co a o a •• x g W * r r r r r r r r r .-1 Z * * ri ri ri r-I r1 .-1 •■ ri r - 1 1 0 (G4 * 1 3 1 t 1 1 1 t I 1 1 r1 a * ` (0 3 I d * r- 1 co 1 (r) 1 0) 1 ,D 1 0 1 r- I N I O 4 O * .0 x N tf1 co N r d' N r Cl ri * 4-) .-. 1' r•I CO tf) 01 O Co O (V tf) * C3. E * * a) 4I 3 lD N 1n to to T N in to 4, (0 �- * * * * 1 x I 1 1 1 1 1 1 I t * Z * 1 * O I N 1 d' l 0 1 N t O t N 1 r 1 N I In * a) * N H IT ,-1 0) .-1 d' .-1 co r-1 01 d• d' d' d' d' C) d' 4 y) a* O O N O ID O ri O ri O O r 0) r C) r O r- 3 1.1 'J O * • ri • .1 • ri • ri • .1 • N • N • N • N N * a) a) H* 'n or- O co O O O Ho N o d' O r O 0) O ro 3 H U) * ID l0 • to • r • r • r • r • r • r or x 0 W 4 r r r r r r r r r O * H .0 * .-1 ,-1 ri r-1 ri r♦ H ri ri -.1 1, I U* 1 I 1 1 1 I 1 1 I r-1 * '0 * 4 * O I U) d' I d' c o l a ,D I r- m 1 r 0) I co r 1 ID to 1 d' 01 1 1-1 a 3 0 * r .-I co 0 oD d' t• ao N r 01 d' d' O tf) 0 t[) d' * 0 * r1 CO 01 01 CO 0 1D ,D CO d' r N 0 01 01 ,D N N * - ri a) 4 .)J rt * r1 4') d' r N (.1 tt) N co 0l r d' N r 01 •1 ri tf) 14/1.110° () * ro W * O N N 1r) ID N O O O ID 0) O O co co ,D to V' 1-1 * y) \ * r N 01 r-I O r1 N ri fh C7 .-3 N N , D H * U) 1-1 * 01 01 d' d' d' d' d' V' c 1r.. * * CV * 0. .0 11 0 0 0 0 0 0 0 0 O) * ,A -.1 U -14 0) * 1-1 a * * 3 a) * N * N 0 * X x X k x x x X GI N * 0 31 T4 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 1 0 Z r - * a F * 101 1 03 101 I CO 03 1 03 1 CO 1 — 03 M 1 * * 0 0 0 0 0 0 0 o O 0 0 0 o o O o 0) * a 124* 0 0 O O 0 O 0 0 O 0 O O o 0 o O * N to 4 •.1 4 * E * 1 * 1 1 1 1 1 I 1 I * — 4 J-1 • I '-I 4 0 1 0 0 1 0 0 1 0 0 1 0 0 ) 0 0 1 0 0 1 0 0 1 0 CO 4 3: 0 HI * 0 0 0 0 0 0 0 0 0 O O O O 0 0 0 0 * • CO * o • o • o • o • o • o • o 0 0 4 a) H 144 4 - CV 4 1a 1* 0 0 0 0 0 0 O O 1 * 0 31 )< * H1 ."I .-1 HH 4 HI .--1 H Hi 4 03 0 1 * 1 1 1 1 1 1 I 1 co * — 1 *\ F I 4 1 1 1 1 1 1 1 1 HH * 4.3 G. 4 0 O O O O O O O 4 .0. 1 4 * O M O M 0 M 0 M O M 0 M 0 M 0 M 3 0 • Z* 0 HI 0 .--I 0 H 0 •-I o .--I O Hi o ,-I O .--1 (L) * -H1 (0 : * • 0 • 0 • O • O • O • o • O • 0 1.3 * a) -.I * m • m • m • m • m • m • m • m 4 * 03 0 1 4 1 1 1 1 1 1 I — I O 4 L). 1 "* 1 1 1 1 1 1 1 1 4 0 0.* * E 4 0 * o 0 0 O o 0 o O 0 O o O O 0 O 0 * 3 4 o m O CO o CO o m O CO O m 0 CO o m . . . . . . . . . . . . . • . . 4 0 •.-3 1-1 4 O t(l O 33) O 41 O t() O a) O to o 3!) O to * H-) '$ 0 * HI HI .-1 .--1 .4 4-1 HI HI * 0.. 1 Z* 1 1 1 1 1 I 1 1 4 4 . I Z* 1 1 1 1 1 1 1 I 4 14 4 M M V' M (V CV M t() 4 (3 .313 a) * 0 3- 0 r - 0 10 O t3) o V' 0 M O (V O HI 4 -.i 1) '17 4 0 0 • O • O • O 0 • 0 • 4.4 0 • 4) LL * 4) 0 4 • Ha • H-+ • 4-1 H H-i • H1 • H-I • HI -ri • HI -r+ 4 -.1 a) 0 4 m m m CO m CO 0) 1 m '.y * 34 0 34 4 '0 b 4 0 I G. 4 I 1 I 1 1 1 1 0 1 G 4 0 — 0 * I .0 4 1 0 10 1 H1 10 I HH I M 1 r O I M O 10 4 14 .'4 4) 4 O m O m O O o M O 10 O a) O CV 0 10 O C7 4 41 0) Q.* O • O • O • 0 • O • o • o • X O • X • Z * 0. HI 0 4 • to • to • 30 • 10 • VD • 10 • r 0 • r o V• H 4 7 04 * A A HI F * CO W 4 CO 4 1 CO * I I I I I 1 I 4-4 I 4-I O H 4 0— 0 O a * • 1 3 1 1 1 1 1 1 1 1 -.1 II) 4 >1 HI * V M r 0 r 1` M M 10 CO V H1 t!) t0 R. H1 1 a U) Cd •.I * b) Cd 4 1 - V' HI M V 10 HI HI C1 Cr) CO M HI HI 0 M 0 0 3-1 a V) 4 $1 • (y * • 4,1 • 1) /' a) H >. 4 at '0 03 * V' )0 HH m as N N HH M M V' V' 'J (H. •H * 34 1-1 * a) O O HI 4 HI HI 31 HH 34 {. 0 10 4" W 0 * r- m m m m m m (0 m 1a * r z Qom. ('.. 4 * .-1 H1 HI HI H HH HI a) HH a) O O a y' * 1 * I 1 I I 1 1 I I 0 H CV CO V' (3 . 4 1 a) * r 1 d' r 1 0) 3 1 m V• 1 h 1 r r m Hi 1 O .0 ■H 1 M A 41 HH 0 (0 4 '17 5 4 10 HI 10 0 O 0) M m 10 t` 0 10 to 30 1) O CO 4) O A,' 11 * .H (0 (f, 4 • HI • HI • 0 • 0 • O • 0 • 0 0, • O 0. a • • (L a) * a) at * CO O CO 0 m 0 3 - 0 10 0 10 0 t() 0 a) to O a) .7 a) U 30 * 0) * H .0 a * 1 * 1 3 1 I 3 1 1 3 3 3 0 * — — — — — — — — — 0 — 0 d. 4 4 1 * co 1 M ) 0 I V' 1 M I 10 I V I H1 ( 1 HH 1 Z (s] 31 4 * ■0 10 m 3 - l- r m C*. a) (3 F 31 * Hi CO 4 3 .H 0) a) 4 4) a * M M CV H1 0 0) m I r 1 CO 3 -Hi * > (H. 4 CV N CV N N HI HI HI (7 •.I 0) 4 * C9 (. 1-1 * 1 * 1 3 1 I 1 1 1 Z I Z • a) 4 0 * H — 3-1 0) ,z 4-I * 1 4 0 0 1 0 0 1 0 1 0 1 0 I 03 O I 0) m * * M M M M M M M M m 0 E3 3 o Z') ()) 4 0) 4 0 0 o O O O O 3 0 3 (0 0 0434 0 04 4 1--- r r- 1- r 1- r r .-)G Cv F • 4 U * M co M M co M M M U H (V 4 4 HI •i HI Hi HI HI HI HI a 0 W 4 3 4 1 3 I 1 3 1 1 I z* 9 5 9' 4 1-I 4 I 4 0 1 10 I M 1 N 1 0) I V' I r- I o 1 (0 F : a * * 1 a) a) a) m r (•l o 1-1 H 0 * 31 * 0 a' ('3 r to r )0 M O U W at * a) .> 4 O Z .3-. 4 1) a) * 10 (V HI V' )0 r - a ) 31 LC) H * it HI 4 m a) o O O O O o a o a y •• 4 3 W * r 3-- m m m m m m .-1 03 * * .--I Hi Hi .-H Hi Hi HH •H 1 0 Ca* 3 4 1 1 1 1 1 1 1 1 HH a * V X 4 1 4 O I 0 I 0) M 1 HI ) M I N) e- 1 0 4 .0 * O O Hi 0 H M e- N H-1 * 14 4 CO CO O M 10 0) (V 10 4 P. F 4 a) 3. * tf) a) 10 10 10 10 3- r- * 0 * * * * 3 * 3 3 3 3 1 1 3 1 * 3 4 1 * 0 1 N 1 M 1 0) m 1 O 1 u) ) V' 1 U) 4 a) * r V' a) d' m V' m V' N V' V' V' 10 V I` V' 3 * 41 33. * (V r♦ 10 HH M HI C HI a) Hi m HH M H 10 HI 4 31 'J 0 * • ■H • H • ■H • HH • HH • HH • HH • H N * a) 0) HI * 0 0 10 O Ill 0 CO 0 0) 0 0 0 H( 0 HH 0 it * 'J HI C0 * m • m • a) • a) • a) • o • O 0 at * 0 W * . r r r r m m m 00 * H 0 * HI HI HI HH ' HI H H - .1 4 1 0* 1 1 1 1 1 1 I I HI 4 — '0 * 1 * 0 1 M M 1 t` O I t!) to 1 HH )0 1 3. N 1 01 HH I HH N 1 CO 0 4 G 4 0 V' V. CV 1 O r V' HI V' 10 0 0 r C' It) — 5 4 0 �.. * m M . 3 m M Hi 0 CV co tf) m M a) M 10 .A^^ * -.1 a) * * y1 HI 4 10 HI m CO 10 HI m O m to M to 0) 10 10 M W 4 r0 41 4 0) 10 to 34) HI s m M HI f a) V' M (V 10 HI a * 1) -. 4 10 31) CV t` O CV CV HI V' V' to 1n H 4 m a 4 V' LC) 10 10 30 10 10 10 3.( 4 * fir+ M # a .0 # 0 0 0 0 01 * .0 -.i U * u) * w a # * 3\ a) * W ,n * O N >14' 0 0 0 0 0 0 o r * 0 F CO 2. # 1 0] 1 140 1 0, 1 • k * 0 0 O 0 0 O O 0) * a a# 0 0 0 0 0 0 0 E # N N * -1i # * F 4 I * 1 1 I * # 4- • I , --1 * 0 I 0 0 1 0 0 1 0 0 1 CO 1 3 0 .1 * 0 o 0 0 0 0 0 0 * • RI •• 0 0 • 0 • 0 0 * 0 H 4- * N # 0 1* 0 N N N I * O N X* H . 11 •-1 '1 4. W O 1 * 1 1 1 I N * I #\ F I * I I 1 I ■1 * w W * 0 O o O * .0 I = * 0 V. 0 a' o a' 0 * 0' • Z 4 0 ,-- 0 ,1 0 .1 0 a) * -.i a) c # • 0 • 0 • 0 -1 * a) - 4 CO CO • OD • N A * x D I # I 1 4 I * a I # - 1 4 4 1 .1 O a* * F .0 0* o 0 0 0 0 # 1) 4 0 0 0 N 0 i 3 4-. * * 0 -r1 N* 0 N N 1.0 N # H 3 O • ,1 r ,1 ,1 * G., 1 z# 1 I 1 I * * ,1 1 z# I I 1 I * b 3 01 * U .0 N* O 1 0 01 M u) M * -.i 4. '0 * 0 0 4- V• OD l0 • l0 1 4-1 ry * .r1 4, ., I 0 0 O # OD ,1 0 N ,n ,n * U 4 rr, * 1 C.' 1 1 I * 0 * I ,C 4 I U 1 1 0 I 10 * 1-1 'J 4.. * O O 0 N 0 N 0 0 0 * w a) a * 0 0 X 0 c 0 • 0 • Z * a 11 0 * • o d' H 1 0 W - W R al .i ,1 F * U) W * CO * I U ] .1 I w 1 1 I 0 O H * 0 O 1 - a 41 • 1 # I i I I •.i a) * >, .1 * 01 ,1 a •• In CO C N a) W -1 * bl W # co .-1 0 1.0 0 1.0 v .1 •-e 1-1 .a a) * 44 • Ix, * • 4-1 0 0 1-1 ?, 4 a) 44 x l• CI' C C' l0 r-I 0 PI * W 0 * OD 0 OD CO OD ' Slippy , Z . 0. F) - 1 1 1 1-1 a) ,1 1-1 ,--1 U' O W t I< I # 1 0 I 1 1 H N * CO ' 1 I W r1 4 I a) * 1/40 1 ,G 1.0 1 u) 0 1 u) 0 I 41 41 , U N # '0 ,7 4 Lc) N A- r-1 N C• N d' ca r 44 * .1 m 4 * C 0 a • 0 • 0 1- • • a) * a) a) * ' o a--1 l CO (n 0 0 .•i H 14 174 4-1 * > x * • 0 (4) 1 -4- 4 a U a * I 4 I 3 1 1 I U 4 - - - 0 - - - 0: CO 1 1 * (` 1 H N 1 01 1 01 1 1 2 W Ia * • 1-1 k, N r v' F N 1 .1 CO # • .1 *4 a) * a) 01 * r I a 0■ rn al 3 •d * •7 Iv * ,1 H • N 1 1 * 1 Z I 1 I 0, a) 4 O * H Cr) Z 4 * I * 0 I 7. 0 1 0 1 0 I co 4 a) FU)3* ^ * 4 3 0l 2D(1) (n * 0 3 0 0 0 , a 0 x 3 # 01 rs, * (-- 0- r - 1 .1 X E. F • * 0 * 1+) M 01 01 0 H N * # ,--1 ,--1 a 0 w+ 1 4, I 1 i 1 2* p } 41 H* I * 0 1 l0 I C I 10 1 al F = . * # (n 1 - O N 1-1 H 0 # 1-1 # CO V N I 0) U W 0, * a) ›. # O z Z # w a) * 01 r( (n co 41 4.() H * 10 .1 * 0 •1 1-1 11 CV 0 1-1 •• * 3 W * OD OD w O •1 z * * .1 .1 r1 11 1 0 W- I * I 1 I I .1 0. * a' 40 * 4 * 0 l 40 1 •• 1 lO 1 0 * .0 * 0 ,1 0 u1 .-1 # 4- * O C' N co * O. E. * 3 a) Cu 4 co 0) ,1 0) * 0 - * ,1 * * 4 * I 4 I 1 * 3 * 1 * 0 1 0 I 0 I 0 1 U) * 0) * M lO aD 0 I . 4. a# m u) O 01 0 M CO * lI •J O # • ri • .-1 • O N * a) a) r1 * '-1 .1 N 0 N 0 01 b * } .1 CO * 0 0 0 0 0 • 0 a) * 0 Cr) * m CO • CO CO O * H ..• * .1 .1 r-1 1-1 •.i # I U* I I 1 I r1 * O * I * 0 1 44 0 1 C, O I O1 O I * 0 4 0 F 0 F 0) 0- 0- * 0 0 * 0 U) O U) 4') M 1- * -r1 a) * * 4 4 41 O 1/) 0 F O 40 0 a * ro W* m z O 0 .1 m o ,- * 4) \ * u) 10 2 10 tl) N H * CO a * VD 1.0 D l0 N 01 O * * F n • ,0111.144. *4 111460e DUNCAN CANYON ROAD STORM DRAIN Line "A" Reinforced Concrete Box Design City of Fontana STRUCTURAL CALCULATIONS January 2008 Prepared for: AEI-CASC Consulting. 5053 La Mart Drive, Suite 205 Riverside, CA 92507 Prepared by: TIFLIN INTERNATIONAL 3550 Vine Street, Suite 120 Riverside, CA 92507 • Phone (951) 788-4688 • Fax (951) 788-4988 Slaw, Contents Page General Notes 1 Design Values 2 Line "A" RCB Design 5 Box Culvert Details 13 Estimate 15 yyy y„ Reinforced Concrete Box Design A culvert is proposed in the City of Fontana within the right -of -way of Duncan Canyon Road. The preliminary storm drain improvement plans, prepared by AEI CASC, show a 12'w X 10'h and 14'w X 8'h box culverts for Line "A ". The 14'w X 8'h box culvert will be built using the Caltrans' Standard Plan. The 12'w X 10'h box culvert is designed in the following calculations. The total length of the 12'w X 10'h box culvert section is 1440 linear feet and the cover varies from 5' to 12' over the reinforced concrete box. The box culvert is designed by using the Los Angeles County Flood Control District computer program, LA BOX. This program designed the initial member thicknesses and steel layout based on the given loads. This program uses the working stress design method. Design is based on Los Angeles County Flood Control District Design Manual, Structural, April 1982 (Working Stress Design). The program was used to check the stresses from the various case loads. One cross section is designed for the culvert which will be used for the full length of the culvert. TYLIN INTERNATIONAL Project:UW(443 Cr) ISIbeft,t, OM it' Job No. Sheet: 2- of Item: DES161Ls v-AuJes Designer: F' Date: 3 (51 Checker: Date: Grid: 1/10" • 1 it it LiKir hi 12-Cf 1 • . i, . , C2, W Kt E VESV.91■): I4CR-D - S - R-Uk/a4-0.4.. 9E MAIJ-tPi..- LANA., icii2) i 1 - 1 i . . z 36009St 1 I 1 , i 1 . . .AU, Sk SiitESS r- 1.07 1 ,(::. ? S' . ',...... 1 , 1 - i 1 sak..2 $ 1,k6 f ,v,e-ptazi s bl LS I N Mt I 40M1 (>4 . I . . , clUkg-PcNi C-4X PAO SI 0 12-iltY . cildr- CA1- - 1 6 ,■ ' VE, T tzr LYTLe Grz-e PC4J1ItiNN 1 , CA 1 • OCC, 157-, I 1 L C,-EtrrEt4ti..) (CAC c..ne.ot.a. .,_ -. IIS-PcF c Ii4A)). 1 i , , _ ____ .______________ • . MI PLA 5— 12, COVE - 1 1 1 A„....... i Now, 0.1fc L-OPO: i ! . . . TP-U-Lk(- loiNC> - 3 - 2...- . V.E 1 i .• 3 Sym. About a #4918 " , 2 Bars Min: _ . G. _ Bar Optional Coast. Joint int * nil" -I N • • • Cr.B • - 1 B - , B -Bar . " ais r` .ti. • 2 • Z T�.. ec)u-afiy space . C . - • . For cover under :3` • . D -Bar Lon itudinol. Bars . • 4'4* l8 equally r .. a spaced - . • . \‘‘,.....) C -Bar . • Coast. Joint • • C2 . . !11. F - Bar =. ::, 1 .6. Fi-Bar At ••• hill #4?I8 ", 2 Bars Min. i�s • — ,IMIll r (Typ.) 1 ibi ms s } • T29 Pa: � � H -Bar � ' w T2 • . SCHEMATIC OF • SIN-GLE• BOX • Aglow - . : • .... ...._ , . • , ...,, ,..... .., .... ft, . .4.4., an r ,.... n■ a ,..., I , „ n .,,, a, n n .,..,, L I • . , • , . # 07 00.-- - 4 1-• lai t"- vl i 7=.01 t.v~.4, . . e ;Ix - • z 0 ..:71 . g . g • Z , Z lu 4 . • - 4c ..... -.4 g iti. u 0 • - --- -4- sfaaiu vi vi t gal: i t 41 Aw 11 4 4 4 +4 Ct... a 4g 1 4 8. § • z -- 2 .' 41) ckR c) • 0 — § • . — . - --- . ii , .. • .... ac bC. -td : _ , . . 2 1 la ,... • ~,* . z• _ .._ . k S . ' • . : 4#,•"/Da °XV - ' 0 it ir D 4cu. . . . •-• 1. .. 4 - . . . • iseit/f2Milifi • - - ---'--7 --------------- IIPPoe . Pwold - - a • :.„i 0 I • . e — • . *! a • • < . . . . • • z , g . 1 1 e t• • • ,:c• i .... . .. • . . I . . yv t ..... . • 11"1 . ut _ti I * - . • • la A . kr .11...44.1. ., ai . t - 5 . • • - li : " c • > - . -. . , a i , mg ) • az • : z ..- . . .. • • , r) ..... . - t • ‘ 11. ..-40) . • . _._ 0a t.11 ,0111%, ie • 1 . 1.. • • t.' • • 3i o - a , 4.......... 1 • . < . .' • . 3 \„....) • . =___ w - ..1.0. 7 . • ep . . &civet, zwoio 1 " .A 4) -... b tri rt Q • . 1 " Z; 4 t • ... ' VI • - 1 • . • • e o . t • . ...: ....— ,.... v; 4... . . ■.1 . ti. S.: in . ..i c i 1■., ta ti. ct) ,..kti• • in 1/4/ ../r 0) .-----' .12 2p .-- 1,f7 . 4 11 4C N. 74 11 J . • 1 i ';T: -7 7:137.11 i .roj 2 .s• . -1914w • i •' E • • i • g • • • s • ...... ••Ilt 'at • • ti V 1 7 :4 . i tt Z 21 --.4%.0 • to:3 ic -4.•,, t 4.4 4 i 116 4. ic . • • ;e4. 1 • I • 3 4 43 ti e% la I. 03 ° . , It , p t F iii a 9 . • . 0 0 2 • 7a - 1 • L. t - 4 ir) :. e. • ,z14" {I: A 3 ,......6" . v 8 z z v • hi fa 1. • 1. ct • 2 z t t 2.1 • 0,.. . 1 1%4 • • rft " '••''''" ' , • 2 41C • ..1 1 • . .. 1#.L____,......prs. I c7h 44 „...... Now- 2 2 7 . . , . . . ' . . • • . . . • • . • - c kt V UC' \ GM Rt.. iL- F c w3--- 0.0. 12X10C14 °+r,,,. 1 1 - - 2008 LICENSED TO: WILLDAN AND ASSOCIATES PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0501A DESIGN DIVISION DESIGN OF SINGLE BARREL REINFORCED CONCRETE BOX BARREL # 1 DUNCAN CANYON 12 x 10 SINGLE RCB 12.00 WIDE BY 10.00 HIGH DESIGN COVER 14.0 FT 'C ----- TYPE INSTALLATION TRENCH PROJECTION RATIO .00 SOIL DENSITY .125 KCF LIVE LOAD TRUCK AXLE LOAD 32.0 KIPS TOTAL DESIGN VERTICAL LOAD TOP 26.91 KIPS INVERT 29.66 KIPS PRESSURE HEAD .0 FT DESIGN STRESSES FC = 1440. PSI FS = 24000. PSI THICKNESSES (IN) TOP 15.25 INV(C.L.) 17.25 LW 12.00 RW 12.00 STEEL LAYOUT BAR BAR BAR HORIZONTAL VERTICAL DESIGNATION SIZE SPACING LENGTH LENGTH (IN) (FT) (IN) (Fr) (IN) B 9. 13.0 13. 9.0 0. .0 B1 5. 13.0 7. 10.0 0. .0 ,,.., C 4. 14.0 5. .5 10. 8.5 C1 6. 14.0 2. 9.5 3. 5.0 ° - C2 4. 14.0 5. .5 2. 10.0 C3 5. 14.0 2. 10.0 2. 11.0 D 4. 18.0 0. .0 12. 5.5 F 9. 11.0 13. 9.0 0. .0 Fl 5. 11.0 8. 2.5 0. .0 G 4. 14.0 6. .0 0. .0 H 4. 14.0 6. .0 0. .0 0 LONGITUDINAL BARS 66. NO. 4 BARS IN TOP SLAB 21. IN INVERT SLAB 21. IN WALLS 24. 0 QUANTITIES CONCRETE 2.17 Cu. YDS. /FT. REINFORCING STEEL 225.6 LBS. /FT. 0 INPUT DATA & DESIGN CRITERIA: 14.00000 14.00000 32.00000 .00000 12.00000 10.00000 6.50000 8.00000 7.00000 2.00000 3.00000 2.00000 2.00000 3.00000 2.00000 3.00000 .70000 - .50000 .15000 3600.00000 1440.00000 60000.00000 24000.00000 8.00000 500.00000 66.00000 .12500 350.00000 .05000 0 CoNLV-Elt Th(X- SS C. -c-'Nt 1..S , oa W Z i, S& "1C- 10cL.. C.. c: &ATO ' $1rkr Page 1 Zb'�C -hL G u2zTE -- = 2, t "J - + o. l -) i X 12 x- ■ i� Z . Z .`l 01 x 7 c- x i' IN 111 - E C ) Faz_ -3( u A-- i Z 12X1003 1 1 - - 2008 LICENSED TO: WILLDAN AND ASSOCIATES PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0501A DESIGN DIVISION DESIGN OF SINGLE BARREL REINFORCED CONCRETE BOX BARREL # 1 DUNCAN CANYON 12 x 10 SINGLE RCB 12.00 WIDE BY 10.00 HIGH DESIGN COVER 3.0 FT TYPE INSTALLATION TRENCH PROJECTION RATIO .00 SOIL DENSITY .125 KCF LIVE LOAD TRUCK AXLE LOAD 32.0 KIPS TOTAL DESIGN VERTICAL LOAD TOP 12.17 KIPS INVERT 10.58 KIPS PRESSURE HEAD .0 FT DESIGN STRESSES FC = 1440. PSI FS = 24000. PSI THICKNESSES (IN) TOP 10.00 INV(C.L.) 10.75 LW 8.50 RW 8.50 STEEL LAYOUT BAR BAR BAR HORIZONTAL VERTICAL DESIGNATION SIZE SPACING LENGTH LENGTH (IN) (FT)(IN) (FT)(IN) B 9. 20.0 13. 1.5 0. .0 B1 7. 20.0 8. .0 0. .0 C 4. 11.0 4. 9.0 10. 3.0 C1 5. 11.0 2. 1.0 4. 2.5 C2 4. 11.0 4. 10.5 2. 3.5 C3 4. 11.0 2. 1.0 2. 1.5 D 4. 16.0 0. .0 11. 5.5 F 8. 16.0 13. 1.5 0. .0 F1 6. 16.0 8. 9.0 0. .0 G 4. 11.0 6. .0 0. .0 O LONGITUDINAL BARS 64. NO. 4 BARS IN TOP SLAB 20. IN INVERT SLAB 20. IN WALLS 24. O QUANTITIES CONCRETE 1.41 CU. YDS. /FT. REINFORCING STEEL 183.7 LBS. /FT. O INPUT DATA & DESIGN CRITERIA: 3.00000 3.00000 32.00000 .00000 12.00000 10.00000 6.50000 8.00000 7.00000 2.00000 3.00000 2.00000 2.00000 3.00000 2.00000 3.00000 .70000 - .50000 .15000 3600.00000 1440.00000 60000.00000 24000.00000 8.00000 500.00000 66.00000 .12500 350.00000 .05000 0 Page 1 1 C tE0. - -- Sl s s AT 14 ce-r-., DUNCAN 1 `"�.. 1 DUNCAN CANYON 12x10 SINGLE RCB CHECK CASE NUMBER 1 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB 0 CORNER 552. 16758. 63.9 294.6 0 MIDSPAN 1206. 23347. --- + WALL O TOP 681. 17639. 27.1 122.2 0 CENTERLINE 0. 0. 0 BOTTOM 514. 15218. 24.4 123.7 0 INVERT SLAB 0 CORNER 415. 14950. 64.4--- 332.6 0 MIDSPAN 1226.4'-- 22464. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 2 RESULTANT STRESSES (P.S.I.) \... 0 CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB O CORNER 645. 19553. 63.9 294.6 0 MIDSPAN 1138. 22035. + WALL O TOP 770. 19933. 34.6 152.2 O CENTERLINE 0. 0. O BOTTOM 623. 18456. 35.8 185.8 0 INVERT SLAB O CORNER 559. 20137. 64.4 332.6 O MIDSPAN 1136. 20816. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 3 RESULTANT STRESSES (P.S.I.) 0 CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB O CORNER 645. 19553. 63.9 294.6 O MIDSPAN 1138. 22035. + WALL 0 TOP 770. 19933. 34.6 152.2 Page 1 c DUNCAN 1 Nifty' 0 CENTERLINE 0. 0. O BOTTOM 623. 18456. 35.8 185.8 0 INVERT SLAB 0 CORNER 559. 20137. 64.4 332.6 0 MIDSPAN 1136. 20816. - 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 4 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB 0 CORNER 430. 13035. 42.6 196.4 0 MIDSPAN 759. 14690. + WALL 0 TOP 513. 13289. 23.1 101.5 0 CENTERLINE 0. 0. O BOTTOM 416. 12304. 23.9 123.9 0 INVERT SLAB O CORNER 373. 13425. 43.0 221.7 - 0 MIDSPAN 758. 13877. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 5 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB 0 CORNER 106. 3224. 3.9 18.0 O MIDSPAN 21. 398. + WALL O TOP 110. 2860. 7.7 31.0 O CENTERLINE 189. 10705. O BOTTOM 165. 4898. 13.1 70.7 0 INVERT SLAB 0 CORNER 182. 6540. 7.6 39.2 0 MIDSPAN 62. 1131. O QUANTITIES PER LINEAL FOOT 0 REINFORCING STEEL 226.9 LBS. ,, 0 CONCRETE 2.17 CU. YDS. 1DPTH TO FINISH GRADE= 14.00 Page 2 DUNCAN 1 DPTH TO NATURAL GRADE= 14.00 AXLE LOAD= 32. PRESS. HEAD= .00 WIDTH= 12.00 HEIGHT= 10.00 THICKNESSES T.S.= 15.25 I.S.= 17.25 WALL= 12.00 LONG. BARS= 66. BAR SIZE SPACE H. LENG. V. LENG B 9.00 13.00 13.8FT. .OFT. B1 5.00 13.00 7.8FT. .OFT. C 4.00 14.00 5.4FT. 10.7FT. C1 6.00 14.00 2.8FT. 3.4FT. C2 4.00 14.00 5.4FT. 2.8FT. C3 5.00 14.00 2.8FT. 2.9FT. D 4.00 18.00 . OFT. 12.5FT. F 9.00 11.00 13.8FT. .OFT. Fl 5.00 11.00 8.2FT. .OFT. G 4.00 14.00 6.0FT. . OFT. H 4.00 14.00 6.0FT. . OFT. 0 INPUT DATA & DESIGN CRITERIA: 14.00000 14.00000 32.00000 .00000 12.00000 10.00000 6.50000 7.00000 8.00000 2.00000 3.00000 2.00000 2.00000 3.00000 2.00000 3.00000 .70000 - .50000 .15000 3600.00000 1440.00000 60000.00000 24000.00000 8.00000 500.00000 66.00000 .12500 350.00000 .05000 b 0 C( u.4 t C. S , ' 17iW psi !L'-0 pi; t1'4-. tax ST(LeSS = � 34") p4; ? -�! ,u - Fpr a4 - mAy_ s ._ ST,C,ESS = 61 IL( Pc,; C 6 e; ©K- Page 3 10 °AEU- S11-e AT 3 ` C ) - 12x1003 ''ftw. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 1 RESULTANT STRESSES (P.S.I.) 0 CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB O CORNER 222. 6745. 32.0 147.5 0 MIDSPAN 644.x- 12461.E + WALL 0 TOP 308. 7965. 8.3 36.4 0 CENTERLINE 0. 0. 0 BOTTOM 137. 4068. 4.9 26.4 0 INVERT SLAB 0 CORNER 99. 3559. 27.5 141.7 O MIDSPAN 571. 10463. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 2 - RESULTANT STRESSES (P.S.I.) 0 CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB O CORNER 343. 10413. 32.3 148.5 O MIDSPAN 566. 10965. + WALL 0 TOP 421. 10903. 18.1 76.9 0 CENTERLINE 0. 0. O BOTTOM 279. 8259. 18.7 100.3 0 INVERT SLAB 0 CORNER 276. 9946. 27.7 142.9 O MIDSPAN 471. 8635. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 3 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB 0 CORNER 254. 7702. 18.3 84.4 0 MIDSPAN 275. 5325. '440,0 + WALL O TOP 279. 7236. 16.0 68.8 Page 1 11 12X10C3 0 CENTERLINE 0. 0. O BOTTOM 315. 9311. 20.9 109.3 0 INVERT SLAB 0 CORNER 307. 11051. 22.8 117.5 0 MIDSPAN 333. 6102. - 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 4 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND O TOP SLAB O CORNER 152. 4613. 12.2 56.3 0 - MIDSPAN 196. 3795. O WALL O TOP 173. 4479. 9.1 38.9 O CENTERLINE 0. 0. 0 BOTTOM 191. 5644. 12.3 64.9 0 INVERT SLAB O CORNER 184. 6613. 15.2 78.3 `--- 0 MIDSPAN 235. 4308. 1 DUNCAN CANYON 12X10 SINGLE RCB CHECK CASE NUMBER 5 RESULTANT STRESSES (P.S.I.) O CONCRETE RE -STEEL UNIT SHEAR BOND 0 TOP SLAB O CORNER 106. 3224. 3.9 18.0 0 MIDSPAN 21. 398. + WALL 0 TOP 110. 2860. 7.7 31.0 0 CENTERLINE 189. 10705. O BOTTOM 165. 4898. 13.1 70.7 0 INVERT SLAB 0 CORNER 182. 6540. 7.6 39.2 0 MIDSPAN 62. 1131. O QUANTITIES PER LINEAL FOOT 0 REINFORCING STEEL 226.9 LBS. ^„ 0 CONCRETE 2.17 CU. YDS. 1DPTH TO FINISH GRADE= 3.00 Page 2 tL 12x10c3 r'prrr DPTH TO NATURAL GRADE= 3.00 AXLE LOAD= 32. PRESS. HEAD= .00 WIDTH= 12.00 HEIGHT= 10.00 THICKNESSES T.S.= 15.25 i.s.= 17.25 WALL= 12.00 - LONG. BARS= 66. BAR SIZE SPACE H. LENG. V. LENG B 9.00 13.00 13.8FT. .OFT. Bi 5.00 13.00 7.8FT. .OFT. c 4.00 14.00 5.4FT. 10.7FT. c1 6.00 14.00 2.8FT. 3.4FT. c2 4.00 14.00 5.4FT. 2.8FT. C3 5.00 14.00 2.8FT. 2.9FT. D 4.00 18.00 .OFT. 12.5FT. F 9.00 11.00 13.8FT. .OFT. F1 5.00 11.00 8.2FT. .OFT. G 4.00 14.00 6.OFT. .OFT. H 4.00 14.00 6.OFT. .OFT. 0 INPUT DATA & DESIGN CRITERIA: 3.00000 3.00000 32.00000 .00000 12.00000 10.00000 6.50000 7.00000 8.00000 2.00000 3.00000 2.00000 2.00000 3.00000 2.00000 3.00000 .70000 - .50000 .15000 3600.00000 1440.00000 60000.00000 24000.00000 8.00000 500.00000 66.00000 .12500 350.00000 .05000 0 NOV. Cats -E-rc sMess = Gt4L1 es; 4. tyt-0 ) otc_ Y STEL- 1 ZXSS 4 12. ps L 2L, (>01) {2i CIL 114AX S` K-A6 S -ESS = ' Z..3 PSG L 4.6,?g; 01(..... Page 3 Duncan Canyon 12' X 10' RCB ‘)-- D ) ' ' 2/4/2008 Design Data MAX. DESIGN COVER 12' WIDTH W 12' - 0" HEIGHT H 10' - 0" TOP SLAB THICKNESS T1 15.25" SIDE WALL THICKNESS T2 12.00" BOTTOM SLAB THICKNESS T3 17.25" • B BARS BAR NO. & SPACING #9 @ 13" LENGTH, H 13' - 9" B1 BAR NO. & SPACING #5 @ 13" BARS LENGTH, H 7' - 10" C BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 5' - 5" LENGTH, V 10' - 8.5" C1 BAR NO. & SPACING #6 @ 14" BARS LENGTH, H 2' - 9.5" LENGTH, V 3' - 5" C2 BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 5' - 5" LENGTH, V 2' - 10" C3 BAR NO. & SPACING #5 @ 14" BARS LENGTH, H 2' -10" LENGTH, V 2' -11" D BAR NO. &SPACING #4 @18" BARS LENGTH, V 12' - 5.5" ►- BAR NO. & SPACING #9 @ 11 F BARS LENGTH, H 13' - 9" F1 BAR NO. & SPACING #5 @ 11" BARS LENGTH, H 8' - 2.5" G BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 6' - 0" H BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 6' - 0" NUMBER OF LONGITUDINAL REINFORCEMENT TOP SLAB (INCLUDE DIST. REINF.) 21 NO. 4 BOTTOM SLAB 21 BARS SIDE WALLS 24 TOTAL 66 QUANTITIES CONCRETE (CU.YDS./LIN.FT.) 2.17 STEEL (LBS. /LIN.FT.) 226 DESIGN DATA LIVE LOAD = AASHTO HS20 -44 TRUCK SOIL DENSITY = 125 pcf ALLOWABLE STRESSES: fc = 3600 psi fc = 1440 psi fy = 60,000 psi .- fs = 24,000 psi Duncan Canyon 12' X 10' RCB ElJ � SAC 2/4/2008 . - Design Data MAX. DESIGN COVER 12' WIDTH W 12' - 0" HEIGHT H 10' - 0" TOP SLAB THICKNESS T1 15.25" SIDE WALL THICKNESS T2 12.00" BOTTOM SLAB THICKNESS T3 17.25" B BARS BAR NO. & SPACING #9 @ 13" LENGTH, H 14' - 1" B1 BAR NO. & SPACING #5 @ 13" BARS LENGTH, H 7' - 10" BAR NO. & SPACING #4 @ 14" C BARS LENGTH, H 5' - 7" LENGTH, V 10' - 8.5" C1 BAR NO. & SPACING #6 @ 14" BARS LENGTH, H 2' - 11.5" LENGTH, V 3' - 5" C2 BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 5' - 7" LENGTH, V 3' - 0" C3 BAR NO. & SPACING #5 @ 14" BARS LENGTH, H 3' - 0" LENGTH, V 3' - 1" D BARS BAR NO. & SPACING #4 @ 18" LENGTH, V 12' - 7.5" F BARS BAR NO. & SPACING #9 @ 11 LENGTH, H 14' - 1" F1 BAR NO. & SPACING #5 @ 11" BARS LENGTH, H 8' - 2.5" G BAR NO. & SPACING #4 @ 14" BARS LENGTH, H 6' - 0" H BARS BAR NO. & SPACING #4 @ 14" LENGTH, H 6' - 0" NUMBER OF LONGITUDINAL REINFORCEMENT TOP SLAB (INCLUDE DIST. REINF.) 21 NO. 4 BOTTOM SLAB 21 BARS SIDE WALLS 24 TOTAL 66 QUANTITIES CONCRETE (CU.YDS. /LIN.FT.) 2.17 STEEL (LBS. /LIN.FT.) 229 DESIGN DATA LIVE LOAD = AASHTO HS20 -44 TRUCK SOIL DENSITY = 125 pcf ALLOWABLE STRESSES: f'c = 3600 psi fc = 1440 psi ,.�►. fy = 60,000 psi fs = 24,000 psi LOOZ /L l/6 <- 031101d 311 I Noisi 3m isv ! I-W sc,\NEER Il OFN o ii Wo V Q Q 2Z u�i >_ p in W II O 8O 0 - �,2 (/ .. Q v � � < J W W Ce RUC j W ti � 6 � O N ¢ w , w n W 5 t,,„1 CC J an O W w ! j j . z co s o ` ~ ^ mW S tow'''. + ...1.-, I j ' ' ' ,i ! t � � II .1 \ \ '' y. - -� -. ' 6> F "\ ° o c to ��� ��S 7;;'• \ nl 11 1 1 1 , i \k1 1__ , \ \ O., 6 Z,0 1� / \'11 \ 1 • I \ \I \I,,,,, - „ Ii 6 S '`, , U 1 t , 1 \ I \ 1U 1I I i 1 / l i l { j l ll 1, 1 II ` -\ -- - \ '' �` 't \ ._. � , ' 1 1 1 1 ,'I 1 it I �i�ll I II " �. • \, \_ `\, �\, , ^ h 4 \ 1 1 1 U ICI ri,--i_olk.,,ill'iliiiii,il I III' , '�., \ y \, 1 1 1 ! \ li � a -- i , 1 1 \ ! � n . \ , \ \ � 1, \ ' � J ` \ �, \ 1 11 'll. \ \ I I ! ' i A i y , I I I /if! I I � r .__ . � \ ^ , "`-...............:,----\.4 r 'j r T1 \ \ \C,y ! +'' \ i 1\ \0 +I l l il . "\ `\ V �,\,' pp I II. ��_ —_ —__ __— ---'- -. \ ! `�+.a —_ \ _ � _ — � ' , '`II'� \� 'I \ 111;1';} I iN ! I jl Ilili l!j I / � , � __� \. __"" -_ \ _�- ` ,t9 .. • \ -, „1, ' \ ' e i f \ \ { tD��1 q ' ! llll ' il I' T \ I` I \` ` \ • \ 1', ~, Z _ 0 ` 1 I r \ \� \ \ � I i III l I' , • �yl " �� (`rte art\ -r": ,'` .\\\ , ''.;`C_;':J , \ k •11 \ l' Il l llill �!! /; , � ,\ a i i _, % 1 �\ l \1 . ¢ / 1 ' 6.. \'! fl\ t' -1 1'l Tyr + .-} - "` c ' ; } '. \ p •1\\\' \ ,, y \.,V - ./ O I,' I \ 1 \ d l \ I\ tI " II \ II. I _. V,= 1 � � ii I I ' \\ 00 rn \`,I M i ( ! \i'1 ,\ l jI III II'; 1 ,I , . /, I ' I ill ' , k �• \ -- j \W ),�' \'o� \ '\ �„r'"'f r r' , , ' 1'1 '1', I 11! ;, 1;. ' d -- ' - _ _ ` `\ I AN ✓ ✓\ T + \}�.'' ' \ \♦ 4 % ) . r • \ \ \ ,t \,' \ \' ' .II I' II III' J 0 y� ! °ti' ii y'1'\ ��K 1 \ \ \I\vv. y.1' , ! ( ? i � . \ m \h !, ` II Il I,;! ! ♦( -' \-1-,\%A, / y � ' ,, \ _ � I\ i a' • ‘ • `t \ I ' ` \l1 '1� i! ! �' 11i1111' r . `,/ d .° \ % � - -- I \ � r !..t.''''' '�; \` I; I t ry i ; - ! ``\ }, 1 ■ 1 1 , 1 1 M j� jlll! ' y / y \ � \ , j -, / '�"`��,� ,\ `1 \ , \I\ I I I I II 1 1 >c \� -- - \' \ '\ \ ,��'�:., \ i \ ! \11 ! ,III I � ...- '" \+ CA 19 \ \ \ \ ,! , \ \ ,\ \ \ i ! , t -)` Ri \-- 1 I ' I I l I N m " \ ♦ , t > y \ \ V ?. a 1- ., pk d , \U�, a i \ \ �� ! \r' O a j -\ l l i \ . � I 1 � .- w O 1 Q y 1 I 1,,.,\ 1 J : Z . y ` ■ , \.\ \ , Z '`,1 I!i al i1, \ \',;\ 'Y- . f: U II II �y \ .c. ` N •1 \ \ ` ` \` ,� . O i` ' ,', , 1 ..� ill' Il , 'y ,k. l ~y I , \ N U \ \ y Q I q 4 \ I \ ¢QQ¢?? I 'k 1 I I 4 � ' T ,, - z IT i?k\ i 1 f 4f1' . ..', " -, :'";=‘:: , ,.k.„,, ,, ; \ < , y,, \ f - ---- ♦ 1 ., ,- r-- -,‘ rr--...-..,._, 4 ' ' ... ' '''.''' ' , N , r ''X --.., ,., „ ; , . .._,,N,...„ "..,„ 's , \ i - p - : , 1 ' ,,, .,,, f I /` 1 L' a ' l rill \� J al { ' I / 1 ' f �\♦ \ V' V � . UI '.A / , , N 1 m 1 \ I J 1 1 ! s/ / • ,1 o W I` . I ,_ .. - - r \ \ ' \ \ \ \ °� \� ♦ I`R' - i --- J — -- - j p 11 I 1 ,,-', , ¢w _ <1 ,, 1 \, •1.„..11/ i .0 M M .- g e / \ l� 1, II r � r ____ .. [ '4 ,','' - ,''''- --- ‘,,,, \ '':`,""''',;, '\'‘,,\ \ 'S,'", v. .s % ', \ ( ,,', ''-* i c .. (CO ,,' , f , \ \ \ \\ \\ \ •\ 11. / I \ W ..---')/ \ a I a . t '' ��,`. ■,�. ` R \ I . 1` / 1 II Q W N ,I - ,,\ -' , \.\ �, 1 1 , , \ , \,\ \ y \ , � N In rn IIQ�1, \\n' b \ \\ - j '' t 4' - O O - - - - - - t ''' ‘ -‘: \ V' ° l • ,' - \ 1 \V. , \ .....,‘,,, , ‘, , ,, \ ,,..„ \,,,t ., . -,- , - li 0 I [ 411' \C -.. '• \ ♦ \'.. \\ 1 , ,,N " \ S , ,, , ,\\,\,\, \ , \ .. ,,o lt ,/, ,. \,,,,s, ____ . / , ' ,, , , / s. , ,_ \ - ,,,,,; : \ JI:,,. 1 f '_' J i II : 'I . -- -,\ , „ \ .r 1�,'�� 1 /'•' '` �1 •, ,�/1 • • j • W !Y 1— N a J 03SIn38 31VG AO 03)103HO 4, E AB 03SIn38 A9 03NOIS30 a3lvinolvo 80slna3dns 1VNOI10Nn3 NOI1V1a0dSNVa1 3O IN3MIlatld30 - VIN8OJI1V3 d0 31VIS x x x x x LOOZ/L 1/6 C. 03.L/Old 31:40 I No1S1A3ti isv, In ..J.. .. .... 4 1- 0 ,5 tNEER , !VI ow Z 1 ,_. 1 ■;%, in 4 ,... ■•-• .2 < 0 w • wi . „, 1; .- Li =, t: ....I ., – • u 1.- ,,- • S' Om . 8 0 S Ow U1 -)4 S/ 03n • I: 't % II 0 . `al • w 40 L , ,, ; !i --;','N',;,• ;; '., 0 w a. occ r• F- -J 1•-• og 0 g ,- • 0 1- � W ,, sg$: < —I t w ia :')k Z 8 w w z o -..',,,, `i G w 1- A 5 7', gr...7, ay.,. ,.,,,,..`<.. . ,, / ,, 1. . . , / '' l 1 : lo,f 1 ', .: l i . .. --../ 0 ... ... ... ..: , r'" 1/" 1 ... ' "'" ' •• - : ; . - - -t-' 0 . 0 W CC . - . . j . - 1 1 :„ '. . 1 1 ' , . . . . ,fr Ei.. -- : , ,,,,, , , , . -- ,, • ....• 0 3 v) 1.- „„ 0 z , -..... ', 1 i' , . 1. "•-, • t 11 1 ' ' n / I 1 1 I I .1 3 - c.) to ..... m O. U ..-1.I. —1.-V1 ,, ,,, , Z •••*• /',..• i j • , ,' , ; -• ,; 1 'I ; 1 I I , i / ' ( -1\ 4•-• ',P I ,-. 11.0 1 11 ' ..,•-• , I ' , / . / • .':;, ) 11-Y) 1 11• C '/ .(4 (;)/ 1 I V ' ‘ , 1 0 \ 1 ,1 ' 11 -,....--.,,. „, . . ., . : u„... • .,. ,, ,.....,,, • , , , .„.• „ „...„, .. . .. . .„ . _, ._ ... . . • ,CL >- '' 'i I 1 Y- ';; ' ; l e ' 11 I ' _ ,,,._...., ,, , , / , - . r- / .* ''''''' , 1 ,. , r 11 ,,,C- 1 Hil • C. •: (NJ,/ -•-, I e / 0; . 1.. _: . , , i ) ) 1 GI •-1 - , , , , - •.: . ' C . _ •g . . I t ' ./' ../ I / rr) 1 1 • r k.„ , ,, / Z/I-- II) LI 1 1 , .. .'' . ” 0_ 0'.r ' ' .• • le' / a_ o f, ,,,. , 1 1 H ' G., ,, i , ' ,I Iil I I I 1 I \ 1 1 Ill ' ''' ' i ' ' . < ,t.... ,. , --(--- . . .' ,,' ,' ,-' '1i i 1 1 i i ' \ k''' ' ' CD .) -, , . , ro ,,," 1 , ) 1 ri .. • ,, 1 , ).. . ) ‘,,, ,. ..„/` , (y,' ----; , .,.., ,,,, ; ,n; tu,41 , 1 „ ‘ s ,. .,... , . /, -,: , (\ ,,- ,.,.- ..,,, iv , ' ., i ri y 1 , ,, 1 , .. r - \,., •,.,, qa ,-•_. \ , ,r • .. , , , , ',,, ,,I.I., ,• 1 . ,•••_•,- ._ .. -,- .. . ..:. ,.., ,, 1 , ;. ,,....• . 1,•ii, J 1 ,1 1 i i ,• ••,,., .. , ,„_, _._ , , , . 1•,t . '8 / -.,!, b. ;I!!! t i \ . ,-,.„ t , ,,, ,. , , , 7 , - - - -,t..-,.."••-:,t -. ' - - - -H-TT-- ., - ;,..-/ i ' '---- ---- -' 'I, ,, -, • ,---; i .,i, ,i:il t 't , , 1 / C) ., . - - - - " - I .. .._ •.,..- .•- ,/ - I , 41 •••I `•;1, ...., . , , .14 • i+. WI I l0 T ' ', , • ' '' '>.. ic ' 9 ... „ ; • ' ..,' , . . .. , . ;7' 1 ' ' \ ., 1 , . ''.')..',;-'''-' ; •-, .`" . . .. '. ''''-:'..".,: - - -.,.. , - - , , -- , ,; ' ' • ;,, A., ) , , . ,, ...„.„. ,..,:,. .„ / . . . . „... - i, p, t it l. 1, „.• ,•,. ,,,,.,:•;__-__- -,,,,,,,,,.. / - , - --, , , • 9 , -• L •. • , , , • / m , , 1„, , li • 1 •_, .,,,,,,,,,,,,,,,,_____._-,,, , . _ _ ..., ... : , ....,...._.,,,„ •••,_ .} i \•-;;••,--' . . . , , ; 1 , '• h , > , , --_-- .. -- / ,/ri .-,,..--._., .,, , . , _ , 1 .., , ,„ 1 1 ,.,,,,,,-,.., ., ,-,,,,,, -,.„, , ,\„:,,, ___,:___,...„.;.,....___.____ . ..,"...,_ .., ... . ,,,,, , . J ..,,,,, . , , . cn .13 ,,,- '''. - — - 1 \\ s ' , .,, . ' . ..... • . ., ; 2 -•...-- - _ __ __ - .. _.:.:),,_ .. ,;, — ,„ il .) 4 . , ._.. ----.. \, \ , .,,,, . ,,- . ; ; ' .„...„.,„-.„_--,--_—,.._ to ,,__ --" ---'_. cv "1 f l! j 1 I Ii. g : , • ' ' ' .. ca ...,,,,, ...... .. . . i - ,; , ''' : ,„;; , ' \ s \, ,\:',\ -- .>- • - ._ . .,- .. , . .. ,/ ii 1) .*•1. 1 ; \ s:'- ‘ ,.•:. : . • (..) „.. „ ' ./ . , - ' 1/1 '2 ' ■I' - ; - 7 L-;-\-.._ - - . •;„„1, \ i •:.,,z---\_ \ / --' ; , 4\ 1, ,, ', ..' ;1,.., . .. , . / Z • . . •>. " ' \ -i ../ 0 / / i I ; I ; ' C; '' ' I I I r ; e ; ' •. • 1" - '::. ,' '•• Cr 1 i 1 , e , i , e ' ; 1 ' . :,..,',..... . . 1,, 1, , ..,% • ' / . ' \ i ll !Hi ...;_ ,..,_ I \ ; , --.......... /' %., d .;\ s .• . . ., - o • / '0 LI-I •• ,, IIIIIiII I 1,, , 1,1,. , , ,,,. ,„,, .,__,... W L - 1 . ' ../ o ; ' •A ' ' 1 " i ' NI — 1, ■Y;;',''.• , - .. , „ ., s.› s .), :, - z t , co - , ,,,, , s ; ., . , • 'a 1 .., c •• R 7 1 1 41 ollv, , r., ,,, • .. :_ z, L '-. 1) s , . .. . o ,,, / I.', w , i...1 . , p 1 ' ' 7 , . CO w • CO 1 '' ; ' ..T.I ' r I 1.'.'....r.t . ! . . \ ..,‘ , i z .41.1 , .. . s - I , ,,, , NI'.,1 ' '11'', ' • -, . ' . . N -J : / W,,,„ii:IL ' • ; .2 ' . ... ... 3 , ' •••v ,;, :1' • ;;', Iv irl i ' . . • . . . .,. ., . . . . . o z w - / l'' . . , . •, , ,,,,,k . • , . o / . • 'LILA I i','0,4,''','"::' ' : ).; r." _. • , ,r o '' . ... _ ' ., 6, ,,,, , , • _J . ; ‘--. r.. / ; .? / 1 Ij ihi li i (1,0 61 ; 1 .■ . ,,,, _ ,,,1 1 r a) '7, ■ 111, „I III, I.,._ pw,„0,, 11', rn , 0,- ', : l'el I rli i •-•-I•'— ,''' ." • ',' _ , . ( • , . ' '• • i . ' + 4 • ''; i ; 11E' 'D ! ll' I ' I ' Il ' I:1 '. 1\11 Ill 1 / i ' ., - ,.....-•,, ; ' . --,. 7'0 ' • . \ . ,N / • •4•• ( X , ' ' 1 .!!I, e■:' IL; i i‘.0 i111,11'1 ' . .. . f NI— ' '..•"11, 1 '; .. . , , Of, • 4 6 '.,, i . \; ' ' 7 a a . • • : I t IZ • 1 111 ' ' ' ' '" . ' "I r 1 ■ 1 ' ' ,,,,-„ -•• . . ' • ' 0 a) • 1 1 i i i ort - .1 1 1 ' i IIIi id ; , ,, ',,, • ; c4,019,9 i N '. • ,./ . •1 , • . ....... 11 E',' I.' . 0 0 ,' ■ ' 1 II III,Ij _ _ ,,... , . . •,, : ti _ 1— . , - -. , , 1,•,,; :rii ',1_,_ •,, , t!il;',H i.0, 1 '• '„, ',"; i ..,, „....,/,' :. • ---,: . i ,,\,D 1 - 1 lir, "oh, : i , . , . ---- . • . t : • , / • 1 Jr ;:Ho, 1 ( C:g .. ;, '' ;; 1 ' !' 11 (3';;1,, li 1; \ \ I ; 1 ' ;)' 11 ,, ,, . . ' o - . . . 3 . . . . ; . . , . / ,',;' ' .. . .., 1 . ' • a / .. ., ... \ , ::; ', \ , j' iiH I , 1 : 1 . 1 , , 4 1 4 4 1 11 1 ! '1 ' 1 :1 , 1 , 1 ' \ \ ' ,9 - t-- ' . '`,„ 1 r (7 , 1 , 1 ,1 1 , \ , i-4' `,.,. ' • ',",,j...' 1 -;1-; •. ' ' ;, ;; ' . — co .: , . . ',, ; ; , ..., ••••I N r- v „ . . , — wi / --. \,. `',...,• l'• '.4. 'r lin '.1i I'M :ill liff 1111 0, I :': 1,'. ....... ‘. .c: ,,.., ...,, , ,_ 0. . . 4 , , i „.. i i 1 i I s , ,. .,, . ., ,.., . .. .', . ,/ ' .‘\ ''-' d r '))') -()-- 'i - .„ ., . . 0.. .„.... ,...., - . ,,,oii,,, ,, . - /- - ' -! -. N, 6),..,---\ : ,,,. \ -, ..,.,, I , '■ -- ' '; \\ ,.,.\\ ,'.., r ',;,1 4 , '1 , 1, 1 f ..),/, . I, , i , ,, ,r , r;l 1 - ' - ' 4. - ' .. . . ,. , t., ' :, .. ‘ \ ,, - . . f -, , - ,..., to 7 .-., :, ': I: . ,, .....,- ...,,. , , ,,,, . . ,,. , . , - , ,, , . ,. ' \--: i 1 ; t-7-_' :--_-- - ” / co . / . , i • ko I-- .- • . , • Y3 I 1 r ' :- A ' ,''' o 01 1 1 ‘' 1 '----- — - , ' ., . , . , , .. ,, . . , . ', ' ' / - - '' - i • ° "4 , - L '- ' ' l'', I 1 1 . ' ' ' , , ' • ' • , / • , \ • .. z . . ,_ s .,,, . . 1 ,,, 1 , i t ' . ' , ./ 1- U I •' o . , '''./ ' - - '' , ,. 1 i 1 , ' ' i. . . . a \ 2 „ 4. • ' , ,? / s Od, 1- W , t 0 1 1 , •-• ..,„.., . . co _ --. ' ' . - . I . 43. so "t • . . , tx I , - ." ' •,. . 1; - f . i, ,,' :,,,, , , , •:,) . ., m 4 — 01 . . . . ,x • ,— 0 0 \ ' A l i - ' '' ci cr 01 I • \• 'A • . 1 --- \ ,..%., -...\:„•,. : 0 . iti , 0 i , ••.-. ' ' '''' 1 I 1 1 -' 't • ' c '+''' 4- • ' / ..,. . --,.„„ 1 ' N • `';' I : ,' c', ....• • , \ -,' \ • (.)•,' . , -\\ ' • ‘I • '''' . , . ■ ; 0 V) + .- .; . . . I 0 -1- .— . \ . . , ...JA I 1 • ' \I, i '; •• ' 0 0 • t•I ' '-' , r 1 , ..„ re • • \ r 0 0 0 L ! !' I --, I 1 . I 1 I r . \ rn .- ,.., , ' ,, . ' I . - , • . . . s. : _ - .I'l 1 1 _ ,,.. , . \ '. . ' 1 `7„. o I 1 ' , , , .... ,.. _ ' ' '""--'-' 1 " i I • . , - ‘-!. . „.„. • , . . . .. , 1 . 0 c \---',)i;' .. ' . oNis . N • 0- I-- C\J .-.. , 0 o ,. ' 001(Z‘' o cv 0 • 3. • ' w 1-- 0 < 03SIA38 ILVO A9 03)103H3 5tn241/sin a ,. - A9 03NOIS3C1 ce AB USIA 38 -cnivinolvo 80S1A83a15 1vN0110N113 NOLLVIAJOcENVUI JO IN71111 - VINHO3I1V3 JO 31V1S 2 x x x x x ., r - LOOZ/L L/6 (= _ _ _ _ _ - - - - - alLi° 31Y 1 NocsiA3c isv, _1 0 1 i t o o 0 o 1- o ,_ o o o < in v r) N o o) co 1-La ,..‘ %NEER , r- CO ID 0 0 I.- .- 1- r.- I,. .— .— 1- I-M * ii k — — — — . „.,,, .„ . ? . , ..1 . ",,,,, . "-,,•• .. ,:. , , , . .., . ,.. Li s . . .... 7.■ > 6' 4 ,';, : ;.,;;;•;:, :: :: • :, , :. !,,,, . ., . ; ., , , . . , , , ,. . , , . : ...11—; . , - •,., & , ', '' 'I'l ,, ; ;:,: . ,' ..; • . „..H ,,H ;11 i ;;;' l. ! ; ' 1",;H : H ; 1-1 , 1 ,t, ' HILIW , 11,, 1- 2■`'. 1 I 1: 11 r; ,, ,,,' ,; ;HI ,1, ,,,,,', , : , 11,11 , :iIILILI•11; ,P, 1 1 - .., :,,; IL I I 1 1 , :;' ■,, 0 ._;H: :1,,, ,•,1 ..:,,,,_,_,:.:,_,_ , 1 _ . ';-:.: - ! 1-,-i ',-H ■11,11 ' . 1 , :U. h. 0 O3t1 • 0 Jo 7 SI Q :,!'1' i l'il .' !i .. ' 'L ' fl '.•'' 1 H :d! ' l l 'H I ll I CIIH ' !' I '' ' •':!h! H 1. 1 ■ 1 i ' ! H i' . ' , H MM'' 1: i!li I , 0 .„ . N W "' ,,, !!!!!';', ' ,IWIIII ' l ' it, " I '''' U ' !; irl' ',I ,i1111 ,1 ' 1,.: 1 , 1 ,.H: , 1 , I, ',,,11 ,1..1,I,Fr,111■41,4117.1:; o 0- ,- ■- 0 W ,c,.1,' ' 1 ' 1 1;'" 1 1 1 1':.::: :1; ;L.' 1 : 1 IIH 1 1: 1 H: :: 1:: : 1:':!: 1111!1:1:,•::; . 111,: 1 ::::::. 1 :::;::1: 1 11 1 ■■•■' 11 " 0, 10 ,-. :111 1,1:1;,11, :1,1;:11;1;i: :111111 !HI 1 .1 11 : 1 1::::!11:11:1 1 ,E1, 1 1 , 11‘,111:0!j1j1 ..Z 0. VC ,'';', - 1 - 4 - i - j j ' - '-j - 1 - - 11 r -1- -1;- - 1 1 1: . :: :1- 111:11"14,11,,11:.14,1;:i;j1.]:j.:,:j....1_,:j11:41.-4-,11;:j1:-.:1;f+ '1 1.,, . 0 ■- m - ,:.;;;Iji1.1 ,. ..!:: 1 1 :1, 1 1" 1 111;',1; 1,1,1,;H:1.:1:i1::111 1 w w EY...--`^,°-, t; ttlititttlItt:„Itit.t•Hi.;";!t:!;„:;! ;:.:;: 1 :::1;1 ;; ;;;Tt,:;;;"; ; :;,;,:ttit";:t 1111,1111:' ;11 •;:: 11.1:11.1dtd..:•,;,1 w (s' p• Ws::: %*,'-;_ 1 11111HHIHI.'1111 1 ::11 1 1111 1111:1 1• 11'11 1 111 11 :1 : 1 '," 11 1 11 11 111 1 1 1 : 1 1 "1 1 ;,' p , p480 L1 INIII'l 1 H311VY , ! ' 1 : 1 : 11 I : ; ,111j11; : : I I ' j 1 1 : 1 : j : ' ! 1 , ' "I I " 1 ! ; 11 1 , • 1: 1' : 1: ; I.:1 H __ ; , 41 .: ; _ c , i ..,,, .,.,, - , - i„',,: . ,' 1 ! . -',...1-;:,--11..11:1 , ,i1: H 1 r1 11,1,1' oilC‘I 1,r';1 , 11j1r:, 1. 1 JJ.1111.11 i 1'111, ;11 :11'1111j;HT111j.1•111 , j' 1j j 1 1 1 1;"; j ' 1 11 7C1;h r- ,E.,,H:1 ,I,, , ,t , .,,:, •,,.. 1: , ,p,,, , , , ,I, , 1,,L , ,: , •:,. ,:,,,,, 1 1,.1(11 ..,.;,, 41 .,,,i ,4 : : , , ;,„':,,,-.. ii•H., ', LH,' . F.: !;, „, 0 up, titz , g...r.gi -,., ,,,,,:,,,,,,,,. ,,,:,,,, . - , ;11,:;,-., ,;,,i, ,} 1 1 ; 1 1 ., ,,,,,, .!!,,,,,,.; ,,,,, , , ,„,,,,,,,,, ,,..,;,1 10:4!,1 1'11 ':1 11 rj1;61 1 ' 1 11 ' ; ";' 1 11 11 r rj , ' ■ 11'11. 1,; : I 1' '' 1 _4(jr:1 8 Z co M $ L' , v ,' - ' , -•, • I ', - ' I ', ' ' , . H , ., • • . : . ' I : ,-, , I ; : - - i . -; ; 1- -; 1 • 1; • 1-;1 • ;I' ' ! ” - ' - i • ; ' - r ;-! : : • • : :-' : ' • 1: ' -; : ' i ' - ! • 1 ' I: ! : ! • • ' : ! ' ' "' ' ' : :7 0 in W ?.5. 1 i!!! !!!!! I;; ,,,..!! ! !. !. ,,!,,,,,. , , ! Iffm• 1 .5) ) 0 0 0 0 ii' ....), eV 1 `Z ,- 4 - j ' , , j : j ' ' 1111 11, 1.:; rj I: . , 1, , i !: :;„. 1 ;; •• 1 ;1 :;,; ::, , :: •; ,: i . • 0 5 m - 4 1 m mii; zzi :pH H ; I: . ;::: P, ` ' 1' .: ' ::" 1 : ::: I .1•;,:1; I 1 ":: 1"1 .::;". 1 :: . :. 1, ; ,!' ; ii;C: , : . o 1- w :;°?, ,' ,',:',', !„:;,',, . ' ','', 1 :,i_IL', , , 1 1",, 1 1,''!::, ':'1,1' I I ' „'•,. H 11, :6E : , ,I,,:i:.:',;,. , , , :: ,,,,,...., ;'. .: 1,,. 2 c):• = .' 1 , . , , r 1.... :. . __, 1 l , , , ,„,1-... ,,,,,,; H ,,,,., 0 .. .:-..]: .1,4 H ,, i :. ;•. , ..'EI, 7, -i,11 : 1 .11 -1 , -1 ,11,F , ,100167Y10) - 11', 1.1TY.1S, , 1 ,, ,..,: . , 1WT'', ', !,- _ 1 i 1 , . , 1 1,11 1 11- 1111„,1 1 ,. , j'.; 1 I'' 11': I11:','1,1111111il i1,11,111 l 11•11 1 w 11 11,!''.:'• ,1,,, 1 ,, , 1 ,, hi:, :, !, 1 :1 'r.,: , ; ' :'11 .'„' . ,1.iLliiIIIIii 1:1; 1i H ,,1.;' l'., ,1 , 1 ;HE iI H , , 11 1111 , : 11 I'I'' '; :Hu; : :' ':1 1 \ ' H 1.1:: ::: ::11,11.1, ;. ;,:W:::: : :: !;11 :: 11 1,1,,,j, .;,-.1 : j 111 :11:111 H: 1 :1: 11: 1:11 H . 11 11 1 1 1 1.H;;i. 1 1 : -11.1111 1111:1 1 H: i.::::::::-.:: :-.1:,: L;L: 111 . ' 11 ::11: :1: 1 :1 1 : , , : 111 : 1 11 , i. '' 1 ". H11"11: . . H "I,: 1 1:1,..4 : ::1:: . 6 HI 'HI III 11: Hi : 11111:1 ;I c?1i 1 ' 1 :1 : ;1: 1 11 1,HH ;: , ::", 1,, :, :1. ,.,,,. H ,1', ; H I , . ,,,: H I: !lii) , 1H1,:lpIL r , 1111i1111I1 1 111;1 1 11: 11 1: 11:;: 1 1 1 1 1 1 1 1 'ILI 7 T 11 11 1 1 1 1 1 1 1 .. 1 1 1,111 .11 H. 1 ,: 'H 1 T'HJ:1 1 H, : :1'11:11 1 1 1 :1,111! . ;:1;:: j I": 111::11 1 11 Ii 1 :11.1 11 1 11 I11M i :11, L;1111 1 1:11' 1 :1111 III : !: 1 H g= 1 H 1111:1,1 " 11 .1 1 ' 11, 1 11 11. 111 1111'111:11 'L 11 1111 111 11 1 1 .1 " 1 111:111i 1 1:1 1 1 11 \1 1, 1 1 111111 111 !III: 1 1 1 111 111 1 1 11 11111,11"11 111 111 :111 1 11 ,1 1 ', I :•!-"1 1: 1 -;, - .I -- - - , - 7;;11 - 11" -- r - H - , 1 - 1:: -- ;:, ; •, • r o D.. ,, 1 ,,,!,,,, ; . ;,. •; ,,,,11:11',,,,,,I, i.„_, ',.-- r i,.; .i ;1.: r.!,c,!!!.., . :::' : ;N:1!;;! ! !!!! ! !!!! !:! r!:1! 1 : :!! !,,,!! M . .. „ 1::, :''. 1.!!!!! :::' r':r.!!!: .! ,':.',, ':!„1:!'„;r!:,!!!!!, l':!!11:1!!:1 !,1 4 ' 1 : , .`: - ' 1 11; 11 ‘ l ' A 1 : 0. keli1 :.;„::1:,: , ,t C2 . '! ' '.' i' , ! iil'i,•, ,,1,1 , ,....H . : ;11,[1:i HiHH:k1)• '.1 1: i,111L!1.1i,lil ; 92 i(4.pltfrir , vi..pppli , 1, 91 ; , 1.. , li i•, , ,-;,-.,• 1.,..,„-d Hii'ilic,-;-; .,-,,,-,,-! ,-i-n-H-„,-;:,!':,.,.,,,,,i,...'n. iii-111-1''1:::.-'1';;;If-r?-1'.-1 , 1i, ii.,11 .., 1-.,,:,, , ,....,H,„ m " 1: IHI 0 . I 1 :1 1 1 1 : 111 1 ' 11 1 : 1 1 ,;' H : 11: :0; .1: 1 1:E1: 1 11i1 "H :1 IIIIIII 1 1 :1 HI::: II H11,111,11 Hu: ;11,1111H,H,H1, 1 1 H: ,1„,:r1 : 1! :: I: :: 1" 0 : I ::::1:1;: H. :! 1: 1" :::11! ;.: :;11:11;::: IL: 1 11,1111111111111 111:1,' ;: 11,11 1:,::::;;;I:1 , ! . N , . ,:: .. :•, : : : ;!: : :;:• :' :::':: ;!1,1 :, ': '■:: 1:1 ! II: 11 : •, :: ::: 1 1 :::' 1 :1 ,, 1 . 1, ,: j1;11. !o • o l :0 1 • . ::::::::'; .1Ii ' ::: : 1•:;:':: : :::•: ::: 1 11,1, : ,,:: :: .,,,,,, : ; , . 1-:-1 li 1 :". 11 ,1:100 1 IT11,1 ! '111 T - i - '::::: - !:' ,+ . 1.1 ' : 111:1 1 1! , , , , , , i!,!:!; , '' :11 .; ! ; ;'', 1::,• •; 11'; ■; ,:;; :: ;;■,!:;: ::, I 1:1,1;1:: :;.:!-1 '1 1:,,,,..:: 1;: 1. 1, :;;11 . 1111 :1H 1 1: 11111111111 1 1 1 1: :101 1 11 1111 ; 1 1111 1 11' 1 11:1 1 ':1:1:11 :::::"1"1 1 9 1 1 L. ;11: :: ': ', ' :: I :1-1: Hi: : : -1111 1 11 1 1 1 1,11111111: 1 •1::,1":111H1:1111, H 11;1 1 1 11 1, 11 : 1 :11,1H,H, IL 11 I: ,11 :111,1. III :11 1' I 1: 11: 1j !.., •11 :, 1 ::1:':W,11 1 1111:111:11 1 .1 1 1111 11:1 1111 11:1 11 111111j1,11_: 11:;;1',. 11 11 1: 1 0 . , •1:;-111 I' 1: ": i--it-1-1:1 - H1 -1 : - '1 ,11 ,11 11 ,1'1 ,1 '. -1 - 1 : 1 1 1 -11.::1 1, -1 1 1:1 1 .-1-11 1 1 1 ,1- 1 -1 , -;$-"ILLIj11, . -L-1-1.- , - 11 ' 1 , , 1,- : - 1 -- 1 - 17 -11- 1 - j - h ,H-.-!,--1--,--,--; .H -:;-!-!:', , ILII ilill; t 1 1 1 1 II ;:i,1 r 1 1 1 . ...-- il !, IJ!Ill!witii 1.! . 1';!'1..: 1, i1.1 , ! '1 : 1 1,'':: .L1,1i1 ::,,,;, : H.:i!! w': •LII!II 11 HI. ri-: -:'.11 IANI !,,i,11 • :' ; 1 11,: 1,1,1'::' 11.1,11,111,1;,j,I,111il11,1, 111,1j1j111,111! Hj'., , 1 'HI 1111 1111 1 11 ,, 1 1 1111 €1,111:16ri..:,1/ :191■1.1.S.1, H1,:111111111Hil,I:11,:ii,■11,10 1 1'111'11'!' 11111:1'''111 '! 11•'' 1 11 !'11!" 1 j: j :4 11 .1j ' ' '. 1 11 .1 . 4 , 1 ' 11,11 :1 H; j ,..1 1 , 1 1 11 •1' 11,11.,j.:11114° • '1.1 ; ' 1.11'' II 11 '1l141 /.j.ti'1'1,111,i1.1,14‘,.' 1-11-1..1 "...,11-1 11 :i;"1+ 111,;H: , 1 , .: , ■:1,ii . l,1: 1: 1: 1: :1 0 ' . .0 ' '• c , 1 ,1 , 1 I LL ''.. 1 , 'I ' r,' , 1 ,, , , C ,, • , , .. . . • , •—.0 ' I '' ' ' '• '''\ l ., [, ' ,,: 1' ;' 1 ; ,: 1: !I 1 1, , ' ,, • ' , I 85 11,;1: 1 11,1:,::'1:11 1 :1,:,1::1:11.1:11, ::,jj11:11■01;; , I :: II:H:1HW, 11111:111 1,:i.: jl : H III 1 1 1 0,0 1 , ., : , • .1,,1 1',:, J , :111;.LH111.H.:,11: 1 ' . 1 ..;, , .., _ : :: ,.:1, cr11- c . . ' 114 11H ' ' 1, 11 14 1 .11; 1'':11 1H1111P1 1;1'1111.: 699041 1 i*- ; 1 : : ; :1 ' : : H 1 : L . ; 1 . ;: ::.1::': 11 ::::::: 11 '.:,::: ::: 1 :!..,: ::::1,1:::,:::::: : :, ,,/, , , : „ . :: ,,,,I 1 1 : :i J:. ,, j. ;.: ; i i:;: 1 ; , 11 ;H.,' ; :: w 0 m% , ,, , :.: :, : j ,, ,:,: 1 11.,.:: ,, ;:;. !: : 1 1 1 " .1:111: ir , r ,:(;),„.-1., ,v,,,..s , : , , : 1 ■......, ,;.T, : . :, :,, , • : : :„:: ,1 H;1111"111:,11:1:1H1,1;::: 1: I i : f;_;_;,..,,;;_1.,... ii I, j 1 ;.:11y414'0,+4i_yl jj: , , 1.--1,H 1: 1 :::::1 1 ;,-1-1.11 , ,11 , ,,: 1 ,-''1,--;-1 : 111, 1,11::::;; :: iHH,1 ;1::::: Hi' ,:::1 i '.. 11 1111:1 111111 , ■:1 1 ::11 I j1 II ;III,' i 11:11:, 111 . 1 : . H :;"1 H . 1: ,! 11. 1 ,;;;;1"1 ,:11::::,:j1ili . . : .J1: ; : ' , H :,,H1111 11,1;:::: ': 1 ::::! 1,111 ,1:11 HI:1 : !,," 1- ;HI: 11-1: 11 ":" ji ,1 L 1 :::1 1j:1 :: ::::1:1:1:::: 1 : : :: ::::1 :: ;'.., 1 I:\E j : . 11 :: : j. : : i . 11:: : ilI j : ; grti igOL1.1. 1 'Li; 1; . ' J: 1:111 111 ' 111:1 1801'66`ti,94-.91Vi,S11 : 11: 1 4, 1 1 1 11 '1: ' i' :; E 11[;11 L' 11 11:1" 1 11:11: 1.111 ' \ 1 ::1 11 1 1 1.1111;1111111 1:1111ri : 11:1:-1 :;1'11:11-i11111d 114i1'111141'1111-11" 1 1 1. 1::: 1 /1 1 ,: 1 1 : '; 1' :111 .•: •; 1..1 ' 1 1 ' :• 1 :1 111 , 1 1, 11 1 1 11 1:1 :1; 11 1 111 1 1: 11 1 ' 1 , 11 1 . , 1 1 11 1 1 1 :. 1 : 1 , .1,:,■,1 1, 11 ,1 1 11 1 11;1111111,,11„111 11;11\,111.111.11. 1 , 11 ,,,• 1 H1, • 11 1 1 1 1;, 1 11 1 1 11 HI 11:1111 1 1: 1 1 i 111,111111:11 ' , 1 11.• III 1 11 1111 1 '111111 1 1 :1 11 111 1 ; 1 1 1 1 1 1: 1 1 11 I i\j 1 11 ' H1W1111111!111111111 1 11111: 1:1101111111111!11:',1'1'''.;;,1!.! 1 ' 1"• " , 1 ;1 ' ' 1,. ;t : !! !! !!!:;,!!"I'Ll 1 ;!'i:!t'll": 0 ! il,:t ::::" ;!:Liittitir,; : 1 .1, 1 1 1 1'1H;;IL I'llitt'll'i'll: Hi Lill:t!!! ,, : 1-!-,i . ,;-! : !;, , , , -- 1 ::,-;:i -,-;:',....,;-;;;;I:,-, ;!--:: ;-!---,! • ' \ -! :.-'-''' , 4 1111''.111'11 l l'11::: 11 111 1 .111 :1 111 11 1 11 1 1 1 : 1 :: , : , , , , , , , : I , ; I • I 11. , 1 11•H! : 11,1 jilli ! !: 4 : 1 11:1 j:1 11 • ;: : : ::''.;;;::. Hl , : 1 L I :H I III: III .: ,1 1L;11 1 • : : : I; ::• : ; : II ; ■• I :: . H .,, ::i1 I i „ • ; IL n l I I i i ; ; ,I , •, , HI,,IIILLH Li I: H I H H HILJ:11 hI , ' I :: , : .1 : : •::': I I: II IL :::::::• III 1 , ,:::,.; r .,III; ; ' , I ,: I •;•;.' IIIII!II II:1 111,;11IIIII LI ;I ; II '1,1817117U11:=IANI ; 11,I :: . ' I :•:!: I I I.I, , i.IL 1 . IIII , ,:,; ;,;:i1 , C ,,,I:LI ; , , ,,, III:i , 1 II ll I II;,1 T I rr : , , ..,; Lil II I IiI ' I;'!!-,;,;11III1J.,III.ILL:•1HILLI 11:11;-111.j13.9 111r111§1-91F11-$1;1-11-:.1-11-;'{. N- ,, 1 ' r 11 ! : H ,,. I: :'1 :,!!.1;;;; .: ., .1 . .1,!: 1 1 1 '1) , ! !; , : : H ,i1:• !,:,1! h,1 1 1 , ,:: :! :: ; 1: : !: , : : '!1: 1 1:1 :: 1!1'1'1 1'''1',1111111;;1; 1H1,11,111111'111 11L1Li, 1 11 11, 1 1 ; : r .1" ,11111 11,\, , 1 lH' ,4,;1 i1."; , :1 ,: , ,,,,, 1 1 14 11 ! 1; 1 1 HE 1 : 11 ;': ; 1 111111i 1 1 1H 1 1,1;;11 11111 1 1 , 1 1 HI:j'1 ' 1 ) HI 1 111 II 11, 1 11!: 1:1111111111 11,1111i 11 : 1 1 11 ' 1 1111' 6 • , , , i ii . ,1 j ,,,,,,,,,H.,,Iji ,11:i1,4000 j; j , , , ' , , j l: , ji1j1:1,1i1_,1:,,: 1,!1j1,1H,i 1 r i ll!'1.14.14 1 , 1 ' . 11 1 ! : ,!.1.1 H. ,, ,,14- 4, 1 1 41,1 ''1 41 1 1I111'11'11119:j 1111111111•HT1i;;!11'1111111111,1,'1111111!1\c1!11111'1 '1!1111 11!111' '1 1 :! 1111111:11'1 il OW 111111111!!'11,:111.1!11;:1•11'1!"(' _ ." ! 1 ■,11 [LH:LI H .'. , 1 1; IIICIHI ,!!'.: '1 . 1 1 , 11 1 . 11d1!...1 t . 1 . 1111W ILi L 1.11 I '., . i.: : . :•''.. 1 . 1,.1 1 1 1; 1 , :1:111 11,,:111,1'1 ::1.: Hi' 1 11111:1 ;IN: i: ": LH ,1 1111111 11 1 111 11!1 ,1 1 : 1 11 I111 111': 1 :11 : 1 1 :1"1: H,..,,; !: 1 ' 11111 1 1 :1 ';" 11;1 :1 1 .111"1, 1 11:1 ' . ! 1 ; 1 11 1 : 11 .1: 11\ 11 1 : 1: : 1 1 1 .1':1 1 11 1 . 1 111111 ' 11 1,1 111111 ]" , 0- : "!1,": :: 1 1, L :I::: 1 1 , -. - .1H1H1 ::::11:":",-;",-:1 1 -: ILH- -I 111'1111,1:1,11 :1111 .11::1-m-Hi.,11--11-:Hr?. 111, 1 h : 111-11 1 1 , -. 1: :: 1 .! :114 . .. . 1: ' Il 1 ■ ., , ;I r'' ii'l I , :.' ', .i r • •, ■,' ,,' , I ill 'II I :, , '• ' r l ! ': l ' ' '' '. ' ' 1"',. ' ' ' .1 .' 1 .' 1 1C1 0 :':'" .r, '', ' H 1 '' : ' i r' ' ', : :, Li.• ! , '! ' . . , . . ' , ■ ', ' ' '1! • :: , • I :.■ 0 . ., . ' . I 1 , ,,\ , , , . 1 1 1 i ,, . , 0 " . ; "; 1 . ' ' • 1i 1,' : :, -11; ' 11- 1 . 111 '111 111. , • 1 1 . ,. . ::: 1 : + W . , I ; 4 4 : • ' 1 1.1; 1 : I ': : 1 , 1 : 1 ' 1 . V • • I ' 1 :, : , 11 Lo.., ,... ,, . 1 11. ;:;!;• , : : ,,;,:., E . !: ,, '\;., ;' ! . , H i ,,!!;,1 !, . : .. , . . ;.,,, • '.:., , :1117 , ., ! ,,,,,,; :;;,,,, .. ,,,,,:, .,;.,', 111, . 1 1 1, 1 : , . Ii. 1—. :1 1 ;L ir ;ft, • ., ,, ,1;F: II , I . ,, ,,,., HI , , ,,11 , 11 , , 1 . H. I, , I,1;: , 11 '1' 1 1"1 ,1 : , ,11' , il 1•Ii.1-1 1111iH , . . , . ., I;, ! ; l 1: , J. J 1 , ,. _[ , _j r 4; ; .),... , H. j .,. ; ; 1 , ; ,-, L ; . 11 ' 4 - 11 , 1 I illr;!.1 t f 1 -1.-- ,: i jjrj CCZ j j1 ill' 1 11;. 1 11 r j1.1; 1',1' 11 Hirri ,, 1111 LI1111 I i .'' 1 . .1' r 1 1 1 . ' . , .. , . ; ' , ■ \ , j ' jr j 1 . , ' ; j 1 j 11 r 1 j j I I : j j j I ..1 . j 1 ' H , . . , • ; , , , j . , . , , j ; 1 j , ' , 1 j : , j . j . ' . . 1 j 1 7 1 I LO II : ' , . , , ' 11' . , • i . , : j. 1:. ,.j ij.. . ' j:r.. 1 ,•', , j;,,,:1, '1,,j;j1j:11 1 1 1111.111dileieflOijr111'irAltSirli1j;,j11. 11 1',, jj .; ' ; tii"-;:"1 :,:::.;: ,H4.1 id ,;:i:-.i!Lii E ,1 - 1 1 , 1 , 1 1 - I - I! 4 , 114- 1I { IIII3P - I11 1- '1 1 'j 1 :;:I' 1 11 1 '1,„,+ 1111:,:j,1;11 t ,H, ,H,H1:11,1 1111„!1,: j, .1; "H.:H:1111H : 1: , ,'::: :101\1 ,j: II !I 11 11 1 11 1 1j 111111;l 1 - w 1 1 : 1 ::: L. ,, 1: ::::: 1 ":11",1 1.11111 11111::111111,11i 1!1!''"1 '11'11Xi 111 11 1 !1 111!1' HjiL11111:11111:ill111.'HI H l!ij1 '1'111111;1411.1,11.1' 1,1: 11 1 1 1 1 1' 1 1 1 j', 11 1 ! 'il''11,•j11.111 11 111 1 11: 1 1,: !H 1 : 111 11 1 111.11.,'!;j:1 1 1i1 1 11 11111111 11'1111111,'!,1111,11!1;,11:',!;:!: 1,1H11:, H 11, 1111:11:1,1:',,11 .1j11:1 11j1!'14,11:1', 1 I ;111111j 11 :11k1 1 1 1 1 H 111j ' 1 , I 1;11111111'1111''11'11 1- -,L..- ;;--11.-ii. ,- .1.-11.,-1.-4-- ,ii- ---1,--Ili f 117 '-', j r h j1-1-1 1 .1 , 11 1! 111!1'1;!•1! I 1 ,1:,1,1'',1111,11111,, 1141;10111111 !j11!11111111111'1111141111, 1,111!1111111'1'111111 111!11111111;11 1 1 11111 1111 111 l' Hi,!..1w.H,ii:;', , ; , ..' ., ' , ! . .', ,,, I " !... : 1 , , , .;., ,,,:',,, :,,. ,,,i :i •,,,, ,:,, , :,11,•w11::111,1;li 1:1! i; 11,:l..,.w.lic ; 1.111:;:41 1 1, 1, 1 „;,,,i 1,„„,,,: „,::: 1,,,:,,,,,,,,„,, „„,„,1,:::,„,,,:.„11„,,„1.: 11,,,,I,„,„,:„1„,,,,,,:,.:„, : 1,,„:: „.,„:„:„,,,:.,1 i , , 11 , ,.....11,„ , 1 , , ...„,,„„:„, :H... :1: : 11.1: 1 , , • ..... .. . . , . . i". : .1, •.''•;: : :1 • . . . . 6.1."601VII!!''' ';.; • 1!;.! ;;;; ' 11 r 1:: ::: .1. ' 1 :: :• : , : ' . , „ . , . : . :• :.; — 1: I :::: ,,:: 1 .§ ,6 L*1- 1 .v.1.5 : . ' : ' : . , : , 1 ' : : : I :1111 1,1 I L ' .1;;„!! . , . . , . •L . • ,• 1., :-H'i!I I :it- ::!•!' •: : ,, .(..!,..t, ._ , ._.. :. :, 1 /r!,!:'.•: :1 !!•,: ! : : r ic!:•!miko 1, „ , , , ' ' ■ . • . ' • , , , . ' . . . , . • , , , ' : ' : ' ' ' ' ' ': ' 1 . : • '' 1 - ' : 1 .1 !, 1 ' D I ? Iy:.1 :I I : : . . . . , : . , : . : :, H .. , : , I. - \: : : '.. •:.•: .: HE3 . ,, : ,:, :, •• . . . . , ,:.. :,..1. : :. . ; ,_:, .._, ...,., .,,• .: ._• , .,. : ,:,, ,: ;•; , ,, ., :,_,,,_:;_i_, ,,,, 4 . , . ., : . , , ., • 1 , • . ;:101-1,tp,91L,1---11,Ni'll . • %/46,.— .. . ; ,... • . . :. .„, i. 1 1 .h.ljr.jr H 1 r1r11 I HI Hi jr1 1. 11111 1 1'11'jt4..j 1 14 ■ . 117 , 1 ,,•,, , , ,,, , ,.,H ,: ,,.11 1 1 I ;H11' Hr'Ll 1. HI THIllr1 I 1 1rj Ill' 1 1r 1 i I 1 j' j IrThi 1 ,9111 li... iii „. 1 ,, ; ,,,,:;,4 ,,,-1. : 1::11 1, 1,11 li 11 - 1; -1 , -- ;•11' 1 1' , Ir 1 111 i ! r'1 !0_ iHili i ,, - •• ,,, ;: . ,,, ,• ,,,.., ' • ,,, „: : : ,, „. :, . : . ,,, 1 „,: ,„,,,,,,,,, „„,,I, 1 : 11 ,,I, 1 ,, ,,„1, „,,,,,,,,,,,,,,,,,,,,:,•, J.I!,,,, ! 1 t7).1 !,.., ,.,,,, !I , 1 il el , ,I!,11! , , ,m, ! ,.,,,, ',,,I.1. !H,H '',6!, :,1: , :: ,,,,,w,„,!:,,,witl,,,,H,„:„ ,,,::,,,,,,,,,:.:;,„:,1:,, „,, I!!!11,1i ''', , '-'04=ii 4 <3 i ls rl '' , , 1 : ' , . 1 : 1 2 1 „,„„„, :,, , ,,,,:7„A, :: ,:„,,.,:,, ,,,::,,,,, „:„„1,1u 11,1 1 ,H. „,: : , , ,,...„ ,.,i,,:._,. ,..,. ,.....,..,:_,„,,:::, 4ri'j'1 4 H- : , ' : . , 1 - , -1-I-4- rla: 11',-% .., y, , , 1-1- '+ il!!!! i 1 1 ,1 kk1;1'1;;;. 1 11!!!‘M,Ylisl'p ,c 1 ), : , . , f . :1 -- , , ,,:, :,, • : , , , :,:, ,, ,, :1:: ,,,,,, 1, ,:::•,, :, , .:,,,. , .. :,,, ,„ : •: 1 :1, , ,,,,,, ,,:„,,„,„,„,:,,,„: , , ,,,,,,,,.,,:•: ,,,,, :,:, : • . . : . • , : . : : : -- I ' ' : : :: . ; : ' : • : L : : : 1 : : . ; : : :1, :-. : ; . . : • : : : - , : : ; - . ..- . ,. , : , : - I: : "-; ' : : -. :-•,-- -: ---.. - ;--, -- IT , ;---:-: . . . , ,' . , . ,! ; , :. I.x . , r 11:!11, ': ; '1 1 : 1 1 1 C ,1 ‘:; 111 1 I' 1' •• •I'11 . ' ' ,, 1 , ' 1 , . ■ . . 1 1 ' 1, ! i 1,': 1;11:111;1 1 :1:.‘Ik1 1 1i1 .11 ;, i ;' 1'1” :,'1•, , . : 1 .., . i ,,.• .. : ' 1: 1 . 1 : 1 ', : :14 ! 1 V. ''''' ; 1. 1 ,1 1 1■0■Ni 1,,i , ' i : ',, '.. ',. ' • 0 . , . . 0 , .. ., .. . . : . , . : , . . .• . • : , :. , . , ! 1 ; . ' • , 1 : 1 : ; : ; ' : ; : : ' • I 1 I 1” 1 1 : 1 \ ‘ ' . 1 1 1 : : 1 : : : ; ' : 1 '; : I : • . ; N ; : : , • , . ' L , L I : • . . ; ; - I - ; . -; ; ,, ; r ; ' ; L ; 1 . - ', ; L L , -.- 1 ; • - . L ' ! 1 ; : -, 1 ' I ; L ; : L ' ; : ; ' '' , ;; 1 ' N , . . 1 ; I I I • , 1 ; : ; ; ; , ! ! : ! 1 ' ; , ; • : , , , ' , ; , , , ; I I , ' ! . ' , 1 1 ; , ; ; ' ; . : ; , : ; n • ; ; ; : I : I ' 1 : : ; " 1 1 " ; • : 1 1 1 1 : I ' 1 " 1 ' 1 , 1 ; ; ' ' ; : 1 1 , 1 1 , '1 , „ . ! , , ; , ! ' ' ' 1 , ' : : ' ' ' ' , , ' 1 • " , ' I : ; " 1 ' I : I ' I 1 ; , I : 1 I I , ' , ; ! ; 1 ' ' 1 1 ; 1 1 1 1 ! 1 , 1 1 1 1 1 , 1 : , ! 0 , III' 1_'1, 1 , 1. 11 1;E'' '1'1E,I; , 1 '. 1 111 , 11 1 1I 1 11.: 111 :, 1 . 1 : LH 1 i : 1 : 11 : : ; ::: .• :, ;; : ; I 0 0 0 0 0 0 0 0 IL, In V p") N 0 cn oD c' rs- N •-- '- •-• '- •"" '-' . '- L/) . .4 03SIA38 31V0 A8 03)13390 Si 82 4i i i, a ic_c, A9 03NOIS30 cc A9 03SIA38 -a3ivinolvo 8051A83dOS 1VN0110N113 NOIIVI8OdSNV81 JO IN3111UVd30 - VINUOJI1V3 JO 31VIS c cp, x x x x x _. _ LaOZ /LV6 �� p�,lpld 31tp I umsln�>, isn ' FW / /� H �INEER * _ _ _ � � _ .. � _ _ � N O ' V) / 2 P O w I � I � : � ���I �I, '� I � i ' �I �lli I I '� ��, Il'j:�l '�'�, I' �, ';;I� , W g � � jlj, I. I��I '! I ! ' I li I' I II I. j: � I '' I' I I � �' � w u � h j I ' I I ', � ' I � I � I' I l il I II I I I II I I �I � I' i, il,l �� A',j� F ' � U � 2 � '.I i ,�I � � I � I j � , I I I � .� ',, i ''I, i �' I I '�: ,1`i, �� r �� Si � � � y � � � I - � � � - ' - -, �� I I �I i I � �; 'I I I i � I I i , I I I I � _ . , . I I 1 _ . _ i � � O a , ' � F , • O v � O N r Q � ��W I �I II i ' � II .I I' I III I il' I I, V I III l I ,�, II. Il i I' I I i II O r ° v ��� ;II: I � I � li. ,'I I ,j', �� ' i',i''''�I I �i I II I I I ,� I� I it ' l II �j j� "�Q a0 3i �Q I. II ,. � I I ''I:_I .I i � -I: �'I {II� iII %" I I_I ._ � : -1, -I I ._�1 1 - I °If!• II Q t' � �_ ��e I I �'j � � , j �, I II I II:I' I I I II I�' I I I I :I i Ii li I, 'I I I,I I �� I��III4(11; LJ Z z >_o Le I. I . �, ,'ll 11 I � I l l ll �� II I I ll,l I �I I ' !' I' I �,'I '� �I I'rr: W o � I I I � I II ��,III�I ' I li I '�, � � ! I , rl' W o w �e '!'�� �2? I; i ,�', i � �,1 '�I'. � 4 i t I I '�, I I I I I � IIII ' I I� l I N � N �. I C I : I I I I , I I I j � w < zm Q II I , I, I I;I 1 �� IIIj I II � I I .'I II �I I i I I � IL ' + O r O � � t ��� ' {', ! {:-1� .l I '.I, t __ � -�' i f '1 - , { I._ - i L�, I, it l L .�. - t " , - i - I' +1 -- * 'i r � I I 1 a � J �» o�� �W� I I I I III I 11 I i , I . II I I I ; I j � -} I � ��` I j �' I -I �s >-i . ��i a i$� � �� I I�I I I� I ,' � I. 'I ' I I �' ' I ': � I I I Q I � I Z ° ' a �� �m� 11 1 Ij 1 1 i I I I I I I I w, ! � I I I � ' ° a �" v u�' �1� I , I lid '�'.) I i, I I I ;; II ,�I; I , ;� �'. I W I O N � t � s �� � �,� i 1 f �il �: I I I , IJ I'. (� o ~ N ��m�i .Y�� tihv � I .1' .1. 1j 11 1 � ' I ; I , : ' I i � I ' �� '• V) , N W ':, Ii � � I I � I 'I. I � I :I I I I � O _ z �Jm� �� �� I 111 4 1 I I I o o + w .`� �� =o Wes`" ,k I I I I I I I I I t I. m ap z a v w J..,� �g� I' l ' I I '�� 1 1 1, � ! I I',I I ;.I I I I Ali �. I ,I I�I I I, � I _ � I III: _' ,' ' _ ! il �F j.l N I 1. � � '. f o j i� � 1' I I ��MI I', I L:. I -1 Iil, hl �II'I -' I II . J - �J i I �•Trl� I'l llll , �� -. � U : I I I I I. I I 'II�L I , '1 ''1'I'I I' I. I I 1 I I 'I I I I i I ' i ! � i I�Ij 11 l i I I I, ,1 1' I i j � Il i III I IIII i'f I I I I it i I ': ,1 i I�I I I, I I, I I I ii', I. li I I I'' I i! I � I ;III II , II llil I II I III i I jil ' � I I I� I I I I I: I I it l I, I, , 1 ;1 1 1 , I !I ,' 1 i�' I', I I;� I II'� -i .,I i I ! III - I� � III' I I I l ilij, � II� li. i i':�, li�'�,I!, I I { -; I I I i �, � I� I I I � r� I' r I i, i I �- a If l I- r - t �i I � I -: r +y -, ' � I' I j'. ;� ',I.I; I ;�' II, 1'';1`1 'I � � '' ii �II I 1 71 - I ,,1 1 1 11 I I I, { II I !II II I ! � iI I j: , I II I �, � � � � I I i, I I I � ," ! I 11` 1 I I,I ' I I I I� I I1 .. I I I ' l i I�I i I ' � I ! i � � I ! 1 I ��' I i' 1 I 1 1 I I '� '� I�� I I I I I I I � I I I I I I • I :: �' I I 1 1 1' 1;11, : _ �i I �' I II I �i y' II! I .{ A f I. l _,1_...- : II � � l - - � : I � 1 I ;_ I I _ I _ 1_ '_ r �_ � .. � I I I I',�,�I"1i j J .1 -a � _�.� i � - ,- i II t l'I I i t 1 11 I li I �` f I I I' I I ' I �j l��i'iI l �� I ! r l��� ' I i � !1. II X9 �12•f" �Qbl IaN31 i I I ! I !, . I �, I ' I I' I I �'! � � 1'I��I'I y5 `�'I I I I ' r - r1- r± I - I I I I I: I I ',, I I � I 'I I j' ' I 'II�I� I' I'I��' I II �' �''I '' i l l +�� I �Ij' I � Iii I � I •� 19 �i1'f Z l 11 tl� ;III I i �'�II'I III! l �i�'� I,I�I� jl,�. is c 'll 'I` II I,III'j I .I I I'. I I I ' I I I I I I ':!I I ' II III ! I. I,�I , I'.iI p, I L1 - ' I I' l • -� I . � �I �� I L1 � � 1 �II -i -,1 :_I {I I I -I I . { 'j�7 'I� l��l .J. I{ I -I -� I 1- _ la i! -IJ,!I �'.j_I- i l+ -,�, 1_I Ills i.�l I '.I. .I; N I 'b �' '.•r W �A 1 I :III II�' I I:II , I '.I I $ R III I I' 'i ' o I I $ b�k I H �I: i � t,l1l ���141 I I I I I , I' I.' o I I � i �� I I I I �� ' 'SII' I I i' I I I I l i ,I I c j I i I ; I �i41l� +iki�, p� I � I I I I' I I I I I j I I III I ��I �. � �'� I I I I I I � i I I •- ' I I � I IIII I I I. II I;i II I' lll1, I I I �',il,l I: II ��I I III I ', !,I III I Ij' l I' I I ! i � o �� �, � I I I'. I �I! I I � I � I I',�, III ' ! jl II �I'' ' '� II I' I ��II I I ii ' I I I I! Y I j l I I I ; I ,I n i t I I ,I II II I I I I + - : ' { I I '� � , I -I 4 :. - t J I I - -� I I I I-'. { - I I ' 1 , a { , I ��-I ` � � I - I -� - i {-I � o ' - I 11 I I i 1 I 11" I "�l I cp I I 'I 1� I I' II ! I I I I I I!;, 'II II I'I I I Z ' , �I I , i i ' I ', II 'I� i I i ' I �' I j''� II I II II. I ' ,I',i I 'II I I !I', ', u I I I I , I lil I I ; ICI' ;,I '' III 'i:l I II'I!IIII �.I I I l I �i IIIIIi I I Illjll! I I i ° I' I '�i ':i I II I 'I I� '11,11 II , I I �,I I 'I, I I li� , O - _ I �i I I II �I II i 1' I II I I I I I I ,�I I II I I I' II I I _ I I I II I I IIjI I i i :i _ I_ _ - 1. _ � .I I i 1 1 1 y — 1 111 �. ' �_ _fl T 1 uJ l_.� 1�. J J -� I .I_ I' I� III, I � I. t �, -' .II II'. -' � 1 'I I I 't ,�.� 1ii` r: {.F : ' II '1 i .: 1 'I.I l I I i i �' I i : I 1 1 g I I I' _ '�. I , I I. I I I I I I III I .: I I � :il I. �\ I .I I i � l i , I I II I�: �I, � III i '1, I I I � � � I I i � �I'. I i'' I �I I�� I II I' I, l i I. II', I �: �I , ,� `' II ;I I , I.I I I . ', I II, ��'I I I II 1 1 I; 'i I p e I I ! I I I I. v I I II. I. I. iI, l I I 1111 „I '�I Z ISL InN�I � ,I 'I I, I > '� �I I II I ,I I ll ' I � � I ��I, I I� ', � � ^ f ,� 7 � ' I .II I�'I i I - I I I i '� ��� ' I I I � �' � 1 1' �' I ' � I I � I � I I I' i I r7� �� I �I F +(1 Y' Id•'.'S � I' i I I I I I � I I I I� i�' I, I' I � � I, I I I I I I I _ I � I I I,I I I I C I �- I -. �, _� I' I I 1 ,� i L�.i � I I i.. lI I I i' I I � x I'.I ..!I ':I' 1, I � 'I I I i II' II I II, I,I I I I I I o i ! I I I ' 1 'I, i I i � I i i I i III I I I ' I I I I I I I � o , I. i i �i i' I I il;l i I I II n I' I I I �' I I I � I'il,l. I '� �, �I '11 II �IIi ! �'Il � I 'I l' I ., II I,.I I .I'I �, I', � � I I I 1 � � I I , I I' I ' �I I I II I I I�''�I ' I I I I' I I �I� I � � ' 'i I I li I I i t . , � _ _, I �- ' I ' I � , - I �. �- i _ 1 _ ' I I I I , , 'L � � I J I I ' I � ' i I I -L _ 1 � _ -� � I �. { ' I { _ _- j.' � I - ' - o : - + f � 'I' � - ! � 1� I' f' I,I - ' I I rn I I I �! f: I � 1 i i i I I� I : I I I I I i c� I : I ', I I, i i I I I I ' � I j I I � I I I I �I '' I w o � �� i I I I' � I 1 ' 'Ili ��i i I � �j II ,� y� � I II ! I 'I ' I III I Z % I i� I � I�� II I i' � Pf�r I �'I II :I I I! '. • a I I I I ' i rn , � � � � I I� T I' I I I j i 1 � j �� I I I ! I I l I I� U, I =� I /1NI I I ' �I I I I ! I m i I ��I �I ^ 1'� I. W ;� i' � + n u , � - II ' - I_ 'III II I a I. I _.L' I t_. 'I j, I {11 I { I - { r I ' Q I p I 'F W I � � : II : Ii II I I I it i '' . I I I i I I I I I I � I I 1 , r ' I I i I I I I I I I I I I I ''' I� I I I' I Q I I I I I I I I j'i I. � I I I I � II I II I I ' I' I �II I i I 'I' it I'. ,III ,i I �' I I I jl I: I j' Z 4 : i I. I I I I I I I I� II II I II III I I I I I z I I I I I i I I 'I ' I I , :I I, i, � �; I I I�'I I I I I I. � o I 'I I ' I I' I � ! 'I I I I ,I I .I. � o I I I I�'I I !I;�I '' !I ' I O I' I �li I I II ' _I ''_ '�' III I!I '�' II I!I, l i,�I ' , I I I ' „ ', I 1It I I a I :I I _. �Ir I', ;{ II"C i i _, D I I I I - _ 7 , � i _ ' j U� I - . I I ' � a I � � �_ I � - , _ � N ` .1_ - a i '� : - � - I - � - � , I II II ' I' III I I ' I I�'�I I l I I '' i' I I I ' ill I II, 'I I , I ;,I i I 'I I ! I j ' I I � ', I � I I I �iI I I I I III�I'i�� I I. I,I,� I�I 'I.I�I ; I I. I i '' II.I :I�I II��I ' I I'I ' � �I I �I I I j III I' I' , i I. II I. I II!II �j� I I: I ', I II' I 'I jl IIII I ” II I I II' I ' I Ji I I I � , I I' I� i�� I:I��''Il I II I I I I I, I I bb'84L41�IHwl:, I I .I. I, I I : l I �I, 'ao: 'I. :I. - I' I i ' , I I I i I I - I + M '6 b0 �I V I ' I t . I : I ',I `i :, I� I I I It I'f' I I I. 1 i s I .I' : 1'' I I . , I � 'I I. I' 'I I Ij �II,I I . I : � I I :I I 'I i I ti;I l ;', II I i' I I 't01 i'I �i I : I I I I ,: I. I 'i I I' I I. I I : " ' ' ' I: I' I :I I : i ' _ .I �I I I{ I �1 �i l ��.l � I.'_'il 4I_ _ �i' i ,, I ill' J�': -i l_ li'I I:� 1,_;i I!'i. .li I.- i ..- _ _ n' _ : -I , I : _I �I � I -4 I , I , I I I 4 I ' 4 : � h -, I � ; � a la i -I a ' � : ' I I I i, £ll l �k d I I I �'$b�hll Si,'I ,i it I I i I I I I I'II 'll I I� Ill�i ,''' `i �''I I !I� T .'I! 'I:�I II II " I II I ! �I I I I i I I II I I I I I Ij II I' II�. I II ill I ;�I�I tilt � i' r l I; I ( li � , I I I III II, •,I I' II i I ;I II I I'. II j j'I I i I it III';I I •i I I:'Il 11' I I I I' I I II II '':I� ;!I I '�:EI :' I � �', I I I ' i II! I II I I ' II I I '' ' I i I ���I� I '' I ' I I 'I I 1 11 I I' I !I I ' 111.1 I,I 'I', II � II I it II,I ', II I I I . I i I it I i, I, I I � I', { ,il I I - I, I i III III i I I , 4111 1. 1 I ,a ;L,I��J li 'I II I 1 �I,T ! Ij � I it ,ICI � a:. � I � _ I',+ -- I i. I, I' I I I I I: I I ',I ':i,, II , ' ' i - I I �' I' i I I I !� ;I I I I li l I I � I, ,,II I � I I ', � � I I I �I I i I I I i ' I I I II I I I I' I �� : I II I II I i I, I\ I I I� I C I I I{ 11 II , II I II,II I I I - I I � I : � o ', � � � I I I � I ',�Iki Lb�'�'k, b�Si !\ I . I L: i I � I- ' I I. i I I t . I - �, I I .I , I 1'- �1�: ' I I . I' I I l i, � $ � / I i '� 'I I II I ' I , II. I' I I I I I ' I I II' I' I II• 'I I I , I I, I it ' ' it '' ., I I I ' I mo:' I I I '', I I I I I , 'I., ', I '' I' " � _ '! I ,I _:_ � ii,l I. I�;i, I � I�� I I' it I,,'l � I II;I I "i I illlli� j'' .I�. .. .. + �, � -I : I -, -'I - I 1 � I I .; I I � i I i1 � I :: � I . � � -' } I { i -� -' + -� r• �TI � i '_ I _. -� ' w I ' , I ' '. I, I ' I ,III, j , I I, I I I" I '' ��i I �� I I ' I I I I I ' ' I �� I I' I li,,�l, � II:I I a i 1 I I I � , I U I I I I I I II' I' I I II�� II I' I I I I � I I I I II I i �y� \ I i 'i I I — I I �:i I I w : I : :. N i : , � I i7,V IWLI ��'.T A � III ' I ' : i , � I � � wx ' I I I I Y I� l i , _ I '1• 1 I I _. i I , : II' �I ` I o I , I �� 1 1 , I .I . -�F, I I _ li_:.- I I- 1� -.� _ 4 '�!�� ! J i � - -I -� v . -. I I.. I , i I - !HIV j4b;ii §ikl IV1is i l I I I ' � ,�' �. �r I ��-.. II I I �z I � I I I I I- �� i I. I i I I : J I I I I I o- I I : .I' II' III, !II II �: II � ��il �:I , I !I '�I'I I! �I' �'Il � I I I I, ', I:I I S,l; II 311N I I ,I I, I I' III I I; I, I I.. I� I I ;: I:II II ;� I II ' I `° � '! II � j T � I �' �; I I I' ii I I I j j I ! I', '�i I :I I ,I� I I � 'Il ,i' I� I. � Ili I. I .I, ,�, � � w. : I � '. '' X I I I � I '1 II I' II ' ! I I I' I 'I l 'ICI I � I I I� > I i I� I I � I II:! I ''' I;' I � I "j'� I i Ij! i''il L;816��IkiIT!�/1NII!i II : , I ,': �n : � �, � �� I I ,' �' l I - I i I ' - i I ' -! I I I: ', I �i ` I' I �- i j '. .' i I I 4 I i- � i i_ I I I. I I' 6� ba S �- b I i -i I{ f �i I- � I � -, j ,; j ', + a - la� - i -���:- I I 1 1 1' � I 11 I I I� It I I t. I I . I i i l l 1111' I I I ' i ' 'I I I il I! I I I � II !I '! II i I, ! II w I I I I I I I 'i 1 I I I I I I '�i I � ' i I I I I IIII' ,,I !II II I I I ¢ I I I I ' I I I i t li I I I i I I I l i l I I I I 11 'I I I II i I 1 111 1 1 � I I i I I � I I ' I I, � :I I I 'I i' I � I I V III .I, i l I 'I I I I 'Il ,, I I i!I, Ii I II I " I I it ' I ! !I I II I II' I! I l l 'i I, li I I' I I I I' I 'i -I I� 1 - -'J - -1 i; '�i -! � ;�i-- I- I + -I -{ � ,:,. �. �. �I,I_, II- I Ia I . I {t �I��!1 I I � � .. :.I �, .I � �- r „ I I i' I' I I � I i I� �I I I. I'. I. � '' Il i V II � I I jl I I�' i r'I!Cp \' l I �l it �il, I i l, l ,, :��, I li �IT I 'l l ,, I �, �i:i '� il� �, Il i' I I I , I ' ,il'I I'II''I I il', ' I OII\ II I I Ilill.illl I li I,I 'I''i I�,� .III I I', Im j i , I ;i: i j � II � I I I I I, I I I I I I II I � I j ' I I ' I ' j I �' I:c�' ' � � I I� l ',� II I ,'I.I . I I i I I ,', Ili i I I III' I I '.I , I I I ' ',, � � � � II I jil III: � I . Ilj �, I � I'I, ! j'� L, � '!I �I ' II� :I I I'! I ' �'' Il�jl '� I, I I �� I I_ I Ij ' III I I , I II I _ + _ I I I _ _ _ .I- D _ t�' : _ , : -I - �I� I'' I. .I I V�r� II I- I - I - I'I II I r �, l il. - li - ���1 �' '�I I �I� �I : ��!I ” I II I II li ''li ' i �' ' :Ili II ,1 I) I' I I i T i t I . II � I I II.. V III � I � � I I. �� I ' II I' I I� :\ I', I I I' �I � I � 'Il 'X'' , : �.. I , I i I I II I I II,I�'',il i I I'I I. II III I j I Ili ,l I;II'' II 'I I :li I I'. I: I I I �I I I I i I I jl II I ' i I I II I :�'i I �I I ' I I �'I' I I ;II I I I t I i II III i I I I,I � I�I 'I l I II II I Ii I' cV � I I I ' I �" I I it i '�' II 111 ,1111 j 11 11111 'I 'I' I !I I I I'll I I II ' II IIII� I IJ� I I I� I fill I h II I � ! II',Ij �I . I - ' �_. � I � - �-j i .�-: J � �!- '� I -I I-{-I I � -t - f � - ' ' ' - j +�- -! I ` � ' I I --I - + ' - 11 i - i � I �. 111. ,- 1-� -i� I -1 �i I-1 -{ I I I f� - -- , .� I - I I I �� ` - �I ' I I ' I �-� - � - � - I - 1 � I j� I I � �'� - I - I ' - II I T I I ', I � j I' I! I I 'P' II I I 1 i''l I ,I _ II 'i I I� IIII I ,�; ' I ! ' I '' I i l I i '' � .I I I I I I I i' 16Q'SZ�'I� - AMIj I I I I' I I I ' I I I! I 'I i ! I � I l � l , l j ', �; I l : i l' I l l l i l l i I I I I I ' I l l',\ Ill s j i l l I j l I I � Q8 I �� ��'£ �� S I � ICI I j� I i t ', ! ' I j I I i I i t I _ � I I I I I I I � I: i I 1 104 I I I I I ' I I II I I � � 6�� �E�.:4 r; , �IWl I I I � I I I I ! i I i I j I j�' I Ilv�l, I I I I 'I '+ � I� I � I � I J I , I I 1 � +- I I r l _ I. � � � I I - �i l - 1 -i'r. I -r �I {:II IF'�1 I - .f, I I { I �ti� L' b0 k d' � I f 1 I ,,,. i 1 £ S� i II i I � J. I I 'I, � I I I; I I I 1 I I I I I i Ii I # I I f I �, I I I I I �w I i I I' I�' i I I l i I :I I I I !� II I I I ',� \, ! I I I lj I II I I ill I I ' I i I I I I I I j I I , , : 'i I� II i' II I !III I ,�li II. II I I I I it I! I I I �, I. \ I I I I I I �i I I I II I' I I i I I i I �I I �, : I � �, I I I I I i I I �, I , , I I I , I I I � i I I I I I I I I � ' ', � 'I I„ I ' I I II , ' I I I T I I i : I I I � I I _� i I : , a : - L, I 1 I 't' I ' - � iP" 1 , \ I l i l i I i ', I .;N' I :I : I I I I I \ ;" II I I I I I I I I I' �I' II I :I. I. ` �i I , I I i : I I I � I' �I : I' , I„ '�' I'' II :I : I I I 'I' , : I : 1 I I ' I � ��j I �ii l i � li I" �I I�� Ijll \' III! I' i', I I !'I I �Ilj I,'i �i' I� ` i + �, �! ' �I I . I i I i i : I � I I I 1 I I I I i! I I I �I I I I I I � I I ! � I i s I I � I , i - �' - � - - � I - I I I _ _ - i a I I L' J-J� 1 +;. � J I - I I - - - -- ' II ,' I , I I � i I I Il�Td � + �33,H5 3 9 : di i$ 13NjIl - 1 I Ij3�I�iWI I I� �' I � ' j I i I! I I ' ��� I� „ �' I I��' ' I' I 'II III I:I III ��II i i IIII,,� II I I'��I i ''�:j I �, I ll �� � � I I I �� I III �I I': � � I .,'�I II'� I I I' lll; % ' I � ! I I I II I�I:I I �'l l;l IC I I I Il i' �' II I � i'' I 'I �I i I� I I 'I l li' I 'Il i � I I I� j:, l' ,1111'I I:!I I' I 'I j II I I 11 I _ _ .: ��I. I I. I i' I' � '' III' � � I, I� � �I'� . _ I '�l� I, � I I : I I I !I: _ -� ,1 1 11.1 I -. ._1._ I, I �i �N II. i I � �� � I I ;I 11 i!I- a I I I �I�I - - I� '., � Itl� I�' ' I I: : I I I I� I I I f I i'.1 f: � i I � I li I i I I i iI Ii : � i I '. j, �I!I I i I ' 'I I! �i' I I III 11! I I I I : I III II���I ' '� II 1 ', I'', l il'�I ' � �, llli �'I'- � I' I II, I I I II I I II�' III !I I I ' I i I'� � I I . I I I,I, �I, II I 11 ''l l �jl I III III {I III I , I I is O ' I � I ., I ''.I III I � �i i, III, I II I �il I ii III I I ,', I , � � ,� I I, I I ' I' I it I I II I, II I I I' I III. V III II',,I I I I ,I I I �I�� I � I I � I � O I I I' I I I I'. I''' 4 I�'I' �L:' �.I_I I' - J-a I -'I' -1J-. - a II I I .I - i, .'i t. II I ' j, - I,, I' i I:'�II' !III �� .II i 'ii. I I I' I I. II � I I: II I� I ill' 'il it I I I� I I. 'I I.I. 'I I' I , I. I ' I I I I I' � I' I II I' I I. I, :I'I I' I i I ,I, ' I :I �i' I I I I I' I' I , i M i II. I'. I I� 'Ili ' � I I I �,I . I ! I I ! i I III I II I II I I I � : I I I,I ' 'I � I Ij ii ',II 111 I I i I I III I o : III I'll II :I' .I : II i I I'i I I! I I i I I I I ��I I I I i i I I I . II I ' I�I I I I I , I w �� I I I I ' III I �I �i 1, I I I I I I' I ', 'I I �, I j Il�jj j I II, III '� I � �� I.i II I I i _ V1 I I I t , : . , - - I - � O - O O I O O O w t0 1f1 V' M N � N N N N r r r � r •�- r N - _ Q 03S(�32i 31VQ A8 a3N�3H3 � a 0 .�e a3stn3a '�o3�vin�iv� aosina3dns lVNO[1JNf13 NOIlVlaOdSNV�l j0 1N3Mllatld3� - VINa0�I1V� �0 31d1S m x x x x x '''■....1■01.11W - y - Si`j 111/101/%1U 6/6.818001811 eUelliod ito I Z • 0/7 • N - r z 6-2Z-9 % c?-01 9.109 ,.e i r .06 01 ,.re L-1 ,.96 01 ,,E6 B -SS •A38 IV - WIZ O N - l a - • , . R . ,,,,, -I, -.-..,.,, ME , . 1 I" 818143A214' F a.s■x. p.i.o.N 02cgo ...: 1 • ' , • ..s.- 't . ,, Ic 1 coc.a .1.22g. L - ir • • _ • C.;'.' Altallitiairt taliVerigaikr li -•-- • . i' • ' V • , tY-4 5; ,6 '', ' 1 , ''' - E N •L OZITNVII , W ' - 1 7 . 1 . -1•'• 4, , . : Y , 1_ :.. , Wig leinsw., g 27141 11 • ..- :., , . , 3. , I ,.. • ( A 1D3gi100 1841314139 '01 . ,T.i - ,......r- tifift ,IMINia ' 3 14 1 , y -Z a • 11(iF019 -1-• el '61.-' 1VA0.841r SNOI S18 N7 c111 :Tt dV61 SV3111111J3N30 39VNIVila VilHOIS 113.1.SVRI •t. t -,-,,,,,, PUU NVicg 30t/Niknit 111111p_LS kg3ISVEW . . .- . .. ; I;:': :: , . .A.I.NC l K4 atfiSke.Alk9 Alio l ' ' ' '' ' 8,1391'13 88101SC/43U , t' ' Z ..• ' l e*. ' 8 4 •• •'‘ Z.' • . 4 vg. . i '.• . ,, . • tt : • i: • -- ' • O' .' i .o 8 I • ?g • 1 , 4ge, I 8, , .1 1 •mt,„„ ee•■•••`.11,4t484e. , ,4 414. • , 18 e ''''P ._ 1 VNV1NOA AO AID . •i . ' 4, -.42, . '-- re ......4-e... - . „.,-eri • 9 1, 2 „,..,-r :• L. ,•° -4;t. •• ' r.,.. 1.1. • n . i.c . , li ,,,,,,,::,14.44:14.,.,... .oniArtAV IIV t ' • .l • AIN1103:aalsbom : -;.:.•., ,•.. to ,..414,21 t .. 'i _ ‘ , •, - All -SS ' . . ,, i s.., .. ... r S 1 wavo a a rau - . ...1.. , . - sllon,,...1.1.5 ' ''''''", .„' it "i Tt l.,31., Li' - I 014VINO . "'„,./ tiA,...;..,... .. - o, ..at 801281111 .1/1•40:8118:88•0:1 g i • , . • , , , s , -, ‘, ' AO ALIO I ... '""""4 t g. '''' a , .4 ,...„ 1 ..... ;.., ....,„ ., . ' --• .2 ' ., / k ... _pi ..„,..... a' - '• 7 rd0314{411): . .j- -- " ' 7 .----• - --, '' ,•,, ....,,...,.....1..............te,el . ••'!..' l ! ....,.. ,....."''' ...''''''':'"'"•-,. / . 8-ft It 4 :et • 8 •:_1444g..11 i. . _ 7 7 •'• Alfinoo .....• ,, A., __,...:-.. •••..,, 1 -,,,,„,,,, . ‚. t. 1 i ,, ,e1" •,- :. /41;n:10 . ' i . ... . g • - ' • % .. .1 ll . . ,.. eamtla.:ler , 1 ..1 ■ • .,••■ .. . ,:r.." --.. :"."" \Y .• 2 3 . '''''.' .-' ' \:.=,..,...' . .: la . i , • - _,:. ..;/••-•ik;,.: ,..:, : _ 1 -•-•'-' .v-- £ '4 i - ._. ---,- . - k_ i .1? ..1 1 • - ' •• •.-• '.4.M'CI ', 1 ff-mtalv 1 . -. - % r f., ,-. ........, 1 ., ..., = ."--=, I l i Ft. <WU 0..14 ., % isviA t.4.+. ..,' •si, •,.....,... ,.., . . r 7, " t V z :-.. - , EAV venial '49"A , , r•• '' - - - ----,-, , 7;..7.1:41,a rr r - ii • ' ',.. a 1 ,' Iii,----r- 7 , . .. • 4. i Al.•••••;" : ". 1.- 1 .• '5..• '', s gt"..-,.... tc ,... , ,..,, - 4,.....4 . 0 I t 0 , i i 1 v i a .,--- V. ,. '" ` i i t • ,. - ___CZIlli ' . I .ge2 :.,;. f ,s 1 201 t r.i - , Qk _ c vt ' tali ,.., a - i 2. i ' - ■ ! ;.. :- ■ . ! .r. t R - 883.001 Vi ;VI M_I i i ai 2, ..,i 7, i 4 . ' . .,_ . ,, , t V , . , i , -, ..: . 2 - ; :.- ---- "4 - 1 • :: WM WV V. 1 ' ' -,.:, • 1101 848i 4tativs 1 4 ,,.., , - , ....,, ,,,,,,.. ,41 . i . .' .i.tiee.. , 1. ; . !.., ':' 0 a ; t, . - ,-, --,,,,, ; i , . i v ,... _,..., --:- . - .:-:",..:-. .. : :-; :- - ' -.:'. .....,1+ 16 3 vi i i - I . ‘}. P''''2 ' \ \."... IC '... 1 , •\.i ; a it ? e ; 41 'i i l ! P. tt II : :It ' . e t' i I i '' i it t -- I 1 i - ! 1 .,.., ...1 1 , • % I.11: k ; _ „-? i ,-- ' I ' a,,o .. -'10' ,'• . I ,. -: : i , i :2 - - . 2 '. '=!‘ OliiVit4c •• i ; ''' . 'I • - . AiN1100 ' 1 s2.**.,st i -1-9i 1 .. 1 1..., I l 'P r ' "=="0. ''..-•: i a , .‘ AO A i ' I .I.13 - • • . ..,..: , • •••••• ,•-•: 4i....• ' -.....1 , ''I .. '''' .i i 4 , . ",..i...v,..., .2 -- --. ..... .0 • 1 3AV V3/101 II .. . '4• •',. L . ! Yl g .e:-. k.- - -. e'• .• , t , c " • 4 I r _ • '--: .... . ' ., -..------ . -;'• •.,... . :r; i 1 . i ..' --- - - - -'-.- _.---.''-, -,--- -, r • ' , '''....' . : !1 ' .- , • -••- ..,..-- 1691116111 .. ,,,, • -t: Vs;;Vs.' s - UV AA Oqi . .....•• • . • s' -_ -.44■0■18: I ' 'Zer" . , • • • ' ' A■ menu 48.4 '''''''''''- e . t • • i 1:4..... .. • ......, 11 - 1 1 4. ••• ,t - Aymivi'dol• ,,,1„ , T.., - - t.,_: * "wi n A1.0 • • ' ' "' - ' " •■ -•• ..1C ,, ' ''' .- -.'010.4'.41 • 7- . f t , • ( t -- --4ft • % mikir7-4 ' - 9 --, ' .;.......,... , 1 1, ...; • , . . 4., .1. ,-) L. ,-; 3 , ....#., :c. .., 1 • tiV0/. um Q.,..0.4 1.1 II ay 4A (491 • 1 1 21 ' g1 71C il. X i i ' • ,.•• 4 , • 2 1 . , • • .. 4Cf, .1 a 1 . 13* . .,. • i 101494? .13dati .Itea. , 4 Ya • di. 1 , e 8 -, . $1 4881 80 4 . : „ 481; • ....611:A•4110 E.. ¶ . , : • •,-.....-:,„ ,.,, . 61 -sn-ii. f. '; ' Vz10 A/13 1' ': g at --,1 '7' - I' ' ,..-: ri • .•":. ' \*:;•,. , .9 ... _„,..--..: - . SIE1111 A110- . 0 onsatil 80.444417 .4.0448044•008.084,481818884g0tssenemnamar. ,,g..111/ 81101.14/188 s .. 881 Nit 2■/74 .,, . , ,.., . ••"" , 1,, i 'vzirt e . 4 '"",""• -°4- 11r 1 - 1 4 - 1 ONICRIVNI4180 IV • 888 4.8.8 31144 _ 0 i; OU,. iti 154.- NI ' Liki# 00 -Ct.,. • 87-SS 9 ; 2 1 ,, , _ od • / f); i'e * 6 6 . 1 .a0NODIVOI , . J. - .:. a a OHONVE ir •-,---.2.:-.2- .....- 2 ,,-ay. .§.' u. g' ire-s AiNno.• 6 st . ,g AO A1110 ateei0OleiltHn "i... ' . * . 1 2.1 , " IP - t" . f" 9. .. 't . . . • . . mv......, . ... c., 1 ... , ;e24"°."' _A ti g g i ---,-• ----_-_, marmainonliVIIM ifinr0848188.4.44.08084.44,84711 6V2 cti Pig ainvm I ,••'. T.... 17./•;,„..;7; 1 ,1„,,,■-...••••........--........ 8... , ...........-... •,...-8.,-.,,....,-... .”. 4.1...0.40 • C 8 - '' • 0 I 1 Slliffl A187 • - 1- : 13 - ITI/1A Q0i V2 -SS 1; AO. AIII3 ' .2... 82-04 ' - .1 1/9 VI _ Gil.- IN i 3 Um AO attaktob C :-.7.: .-=.. i 8 -•,344118 081111 4181/1.N0.4 844 i Ur) . lb, i b• • .......- :: 4 1 p. z . Ei 88.0elgi 213401 WAN t'', 0 .. \ -7 ..; ',.• : -‘. N' ..e, ,•••■ I.: - N.. , :I ..'„ t g el 11 5 . \ - -- - ----.-- --- - • , . ; -L-------f-- -- - d r, • , 1 • : • , •• . ., ":".4....888.,8888e. , . ir.'-'-: - . intik 00k • . / . t : ck C. ...t" • Sisill 4.1.10: f"."."."1 I -.. i 11 e g I. ;e4 l \ , p u4:0:117:... . . . imelell t , , , : I ' ,.3did.c,rnk ‘ va <mu , • 'lie I ' ■ I 1 NH'S* • VANOAISia‘sisiainvonsitemmi lingligIUM • 2 I ...1. 4 :. I l i velik 1 __ • 8 _.• _ _ ' #4': •• -- 3" • . 4Pr 7' A ii ton . 1 1. 1 VON0413 OHONV: -- ......„ __ ,,,..-2., 0 ca ne - - ufli I .0 / ...a' 9 . _ _ _ :i fl ?MIA •.11,411 e r atir84:8=8111 . 01 8 44 4- 170 / 441_ . 1 , Ail0 ..,... 47-2* 1 at ■ -1 . • ' c \‘'3C-1 - 1 ) •31F - 4. • kJ I NOIS !gttkz • - -" ' ; -,_ ,....- ,.. 01 •••[.4. ' 8838 .9 ;.. ' 5 . , ,5 '•:"../ ' g 8838 18. 844?4 % ; • ' r 0 , 7 1 1 A 7 ...• ,. • • :oi. g, • . 4, . . - _ V. • 9. g a 7 • OM a 9 -i • g ,, . ,,.2 ,..,...,‘"" z i. , . ,t. . 1 . is ,, . ,-- ;:,p A.21.13 1-: 4 - ■ - ° 1 • _ ,. ., 14.. &i i. " ' . H ,.. & A" . , . ■ I , . - - - ....t a.:„.r .... I ' : . - ''' V .4-44. - • ' •• - • - •• - • t . ' --....i ',Tr - "-- , TrIlgAS _ - 0A moo PI i a ak ' s.uvaiy. ti..) . '" , ..,„ 4 l •ti .. ..iis. )1 'I, , . 1 ,,, L ,,.. .4'.• i LI .v.a... - g ,„_,./ ! LH , _ _ , , ' .• ■ 9 0 0 , 4 I . ..„, ,,,,,t 8.03181 A MI 1 41 9H 1. ..,,,, ,,,,,,„8 ....4 .7..,,- O O 8 ' a 144 - , - .-f: g - „.„ '.,.....,' 7.-• e i F. ,.1 , i, ' EL tt _ r ij ak .„,„,3 , kl4 I, ,,,%z• ., .:... 1 ,..e ._ - , -.--t --;: ..11.1ia■■ ip...41 •,...._,,,„..3 ....."•••Imit, 4 . ..,, N,,,f` 8.• .., L„ 4 ,7 • • i , . - OVOillittll 31417V4 tiliililli00 , •-• • o ; i 014 ,,,...or.P -- 9H ' ) . q r - - ,.. i ..ft s; - .. a.,.. viki s : 4 ; ....,..■ ...f HH i • . • 4. 1 c311,10... Arc 141,..4i 1 .. ' ;1'7 .. ..... . ':4,.; , • 1 • LI aka..116] • .. -.- ___i7-7,.. - 84180400 t • •••••';' `,. > •• • . . '3/111 31411135103' , , a/3 Jo' ' al a a C, • • dAv 3N11 ; g , I a 'A . a . iii !II 8 I g ' .....,..„,4_,.. • , t,v,._ • .8. ii 1 e il v..,,,,.., ,„, A a) .;t:r ..., • .. ,. . , a ..a ia P. v • i ■ ' %Lt ! 4 I 4 i ' AZO p f_ /ea i . ., 'Li :,.,ti II . .A9(1 g A 10 • 1 Li , ..T......411.........4..4 ftwammill.a 4 ,...... 0 .,..,A 14.2.....mt.a. ......4.6.,..4 ....,..p.,......p......., • * O_LiVld 8 .. .1 411 w 1 ■ 1 .1 s ' • . .' 1 .-. ,1 . g , . - 811S1/81 V11101.018 -'• . AO )■1. l 10 11,7, Li n la-va_lapc...t4 . a) a.- ..i..14.41.0... . # : " FT • -. - / • ' s I .. ..,, _ av3A 00i . . AWA3:110 OC &mod iniO4 , s.k li. , . 0 ,0111 1 r ‘ Ap l:2 .0 4, aninfAm oVS boa,. . -. •-•- _ ImAi el4F11-113Wr .,,,,, ope - /- - ••: r's A lamodvtio umvit-1044 -- - 388 '0 w r2 a ' . 0 5 S 18 g g II 6 1 -k t-P •6 E i , g i 3e0v 31£0*10 e ..5 . g 6.4fflimaintapAgsweinite'- ' NON i L....v. •In1,1111/01.081.1)4.1,10.11510Z.E.1 , ...... , 1a , ...... 11. ‘ 401/11•118.1.11 1, 110.1. 1 P......0 ,2 ...9, .,,,, a li . . . . • • . .. . ' / ::::, vuNbifimono OHONVEI 2 ilig9111M111110111111111111MMM 9ZZV .. - " loN)Poso•soldczeleseedeNfRoiri 3NON [I c- , . '-gtisynainneyggeigigh SZZVZZ99€Ze 1,F.1 AJNafilifil Au caki,44 vivvitg).4 xi ,,,K) - 1.....„1„.., 1-22 GZZI7ZZ98£Ze . " .• . ,2 ,:,,... 31..11VADIV.,f ,- .1.11N11 A.1.10 (.1 5' 1-11 • . 1 9ZZYZZ9LCZ£ Li , tie 3., ..I 3oNan AO atf3P-IdS Z901E i ng.-....-.-TT-gre----r---,990-34-. . . .‘ eriG60Rogo'fikit0)0iftligiaNiGiiii 9ZZYZZ91.17Ze 3fINBAV 0vdvanS tk• 4115 ........ ..,................ ...- •,... ,,,,,- er---- VNIV.LPIDA AO A110 5111V6SbaalagilW/IrATIMOViNnar,0 9ZZVZ7Z 4 9 ..g. S; : '''''''' "'""7"', 42 I / t',1 1 22- --, ..- -‹ 6 = - ‘ - '-r-r c) ' a a ..-- c 2-2-2- ...... Acols aoymonace 9ZI7'ZZ96CZE a a ..,...4,......... ' .{,-' . , 2- 41 9NINIOrOV NI SV9EIV - -- -- Z - . 6 1 .4. .,;," . -,:! '-•., 1:2 I, C ' OPPRFAMMINNOPRINNIEWOOR " gZZ177Z917-MC ii, ••'• • GB • t ... 1 .- ' I 1 - '''' '-' ' 1 rit 41 J.ON 3901 ) 2:1 St:13 1 114M NON li V3EIV Acinis i .■'■ .; 71 9 ZZY ZZ9EVZE - . . 0 , i . . 976 .. . ea 2, 4 ,.... afi - 4 , , -5 - ' - -.;--, - ... - J -- - - - ' -.- - ---- -_,' - z, --"C 31010A. 31.0 orm Preld k,13ISVNI t 961 i 0 i re L 3 0 : 0H OAAI ANI V I 3 38 1101 gZZ17 '''''''''4/ g Li i .l " ' t% ,,), ,,,,,,,- -,,,, ''.•? V- 'm i' , ,,,,;,,Al 4; -. - g 470 NOIIVOIALINBOI 31\111 - 3hatIcati 01 .811e111,111/“1111,011re • , ... l''':. - ON3p 33A 'ON imnopov 11 8 ...,;•,. UN 10 itfilidS - mommmmict 3dId 03S0c108d , 4/ . 04•:,. ,e •71---' _ : 3..! , i 1/141/041 JO A Liz) 0511111.11101:0213D E1DU O3SOdOkid /•\.. ,_ , \ S., r W A OVOU NOAPIVO NVONno 1 ., r• .... • • . , ..- ....,....,- „.. ...., h s,.. L ( a IA ogounK 1 V S g • g ,,,,v o •.,,, -.'‘ -, , / ^•:. \ 1. A •Ab, / --' ,??.., \ ' - " - •• 'y ONICRIAVI 1.?„MPY1 71:17i 1VOIOZAdVE1103S0d0Eid 3dId NIV8O ; 11 ..6, '''‘ig:‘ ■'1 . v g- 1] ,r2 4 N. .iir . \ .. •. . .:" . C \ , r , . MAO'S ONISSIX Id' ' ( ".! • 4e0 O 0"i! if -- 1 , ; It.. __ tt.' I, at. i[1 L1.10.3111Cletl SOH DNIISIX3 ," . • 4 et l ' i'.. , t ,,,, ■Y■,. ,, 1 \ r i, '1 - .111,..., 1 ' IIIIIIIIIIIIII/M11111 1ANNVH9 9NI.I.SIX3 , ) . '..........1/.........' ......r......:, „,... ' . #..,,.....„,„ " lit : - t.„ I 6. ..... •11.- V -.,._, 4 .:-' 1k 1 aNaeri : , - •- •:....•„444. • - •-...•,-,...••. 4:-t.....04.4 ‘‘,,,, - •••- k 1r-1 . 9 :.,-. '.3 r AVAA33ti.i 830N0 . ,..”. 0 NOli 30VNIV8a 1V00 310NYH 01 " • ;in It 1.,, . .- ...Nrdki3ti 11IM S.0'01! 51-4 9NLIST .„.. „,.. e N s,, ,.„, ,, , , , ' ' :: • 2 'I - ,:-..- il T / . •- 1;0 ..0°' • ,. • .,... ,, C661 '9Z 8380100 03SIAR24 t 1 dvIAT svalry ,LidaNag Nivwci iAllio,Ls waLLsvw 1 CINV NVqd NIVIICI wwois waisvw . , . • IlL 11_11 ( -,_ j I l l 1 11.• _ > _Ii (.. - 1. :::-• 1 in: 1 15,;; - iri.... c 1 il 7'. 1 it 1 4.. io . i V( 1 rc 1 4 - _ . -4 I) • . ,.-- ( 1:. L0R GEOTECHNICAL GROUP, INC. Soil Engineering • Geology • Environmental SUBSURFACE SOILS INVESTIGATION DUNCAN CANYON ROAD STORM DRAIN FROM CITRUS AVENUE TO LYTLE CREEK ROAD, EAST OF 1 -15 FONTANA, CALIFORNIA PROJECT NO.: 62475C.1 OCTOBER 15, 2007 Prepared for: AEI -CASC Consulting 5053 La Mart Drive, Suite 205 Riverside, California 92507 Attention: Mr. Aric Torreyson 6121 Quail Valley Court • Riverside, CA 92507 • (951) 653 -1760 • (951) 653 -1741 (Fax) • www.lorgeo.com 1Q - d'tR Rimnart Straat • P 0 Pox 580799 • N. Palm Sorinas. CA 92258 • (760) 329 -2727 • (760) 329 -2626 (Fax) Lo R GEOTECHNICAL GROUP, INC. Soil Engineering A Geology A Environmental October 1 5, 2007 AEI -CASC Consulting Project No. 62475C.1 5053 La Mart Drive, Suite 205 Riverside, California 92507 Attention: Mr. Aric Torreyson Subject: Subsurface Soils Investigation, Duncan Canyon Road Storm Drain, Citrus Avenue to Lytle Creek Road, City of Fontana, California. Transmitted with this letter is our report entitled Subsurface Soils Investigation, Duncan Canyon Road Storm Drain, Citrus Avenue to Lytle Creek Road, in the city of Fontana, California, Project No. 62475C.1. This report was based upon a scope of services generally outlined in our work authorization agreement, dated September 11, 2007, and other written and verbal communications with you. In summary, it is our opinion that the site can be developed from a soil engineering perspective, provided the recommendations presented in the attached report are incorporated into design and construction. The following executive summary reviews some of the important elements of the project. However this summary should not be solely relied upon. Our field investigation found that the project alignment is generally underlain by relatively cohesionless, coarse - grained to very coarse - grained, alluvial materials which can be subject to caving during the excavation of the storm drain. Thus, proper construction techniques such as safe sloped excavations should be used. We do not recommend the use of soldier piles or sheet wall retention systems for the excavations due to the presence of cobbles and large boulders up to 4 feet within the alluvium which can prevent the driving of the steel sheet /soldier pile elements in the ground. In addition, the use of a trench box (shield) for support of the excavation may not be feasible due to the poor capability of the soils to support themselves prior to the placement of the box in the trench. Additional recommendations for storm drain construction are provided within the attached report. LOR Geotechnical Group, Inc. 6121 Quail Valley Court • Riverside, CA 92507 • (951) 653 -1760 • (951) 653 -1741 (Fax) • www.lorgeo:com 1Q -d' Ri,nnart StrpAt • P.O . Box 580799 • N. Palm Springs, CA 92258 • (760) 329 -2727 • (760) 329 -2626 (Fax) • Table of Contents Page No. INTRODUCTION 1 PROJECT DESCRIPTION 1 FIELD INVESTIGATION 2 LABORATORY TESTING PROGRAM 2 SUBSURFACE CONDITIONS 3 CONCLUSIONS 3 RECOMMENDATIONS 4 Short -Term Excavations 4 Preparation of the RCB Areas 5 -�- RCB Design 5 Engineered Compacted Fill 6 Sulfate Protection 7 LIMITATIONS 7 TIME LIMITATIONS 8 CLOSURE 8 APPENDICES Appendix A - Index Map and Boring /Trench Location Map Appendix B - Field Investigation and Boring /Trench Logs Appendix C - Laboratory Testing Program and Results LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 INTRODUCTION During September and October of 2007, a Subsurface Soils Investigation was conducted by LOR Geotechnical Group, Inc., for the proposed Duncan Canyon Road Storm Drain alignment, extending from Citrus Avenue west, approximately 1,400 feet to Lytle Creek Road, east of the 1 -15 freeway, in the city of Fontana, California. The purpose of this investigation was to evaluate the subsurface conditions encountered in our exploratory borings and trenches to provide soil engineering design recommendations for the proposed storm drain improvements. The scope of our services included: 1) Review of available data; 2) A subsurface field investigation; 3) Laboratory testing of selected soil samples obtained during the field investigation; 4) Development of soil engineering recommendations for reinforced concrete box installation and the excavation backfill; and 5) Preparation of this report. The findings of our investigation, as well as our conclusions and recommendations, are presented in the following sections of this report. PROJECT DESCRIPTION The project consists of the installation of approximately 1,400 ± feet of reinforced concrete box (RCB) storm drain and the associated joint structures, transitions, and inlets at various locations along the alignment. The subject storm drain will be installed beneath the right of way of Duncan Canyon Road, approximately between Lytle Creek Road and Citrus Avenue, east of the 1 -15 freeway. The proposed RCB is anticipated to consist of a single cell, approximately 12 feet in width and 10 feet in height, to be placed 15 to 20 feet below the existing ground surface. Conventional trenching is anticipated to be used for its placement. The location of the project area within its regional setting is indicated on Enclosure A- 1, within Appendix A. To orient our investigation at the site, a 40 -scale Duncan Canyon Road Storm Drain plan, prepared by AEI -CASC Consulting, undated, was furnished for our use. The area of the storm drain is shown on a reduced copy of this map attached as Boring /Trench Location Map, Enclosure A -2, within Appendix A. 1 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 FIELD INVESTIGATION Our field exploration program was conducted on September 24 and 26, 2007 and consisted of drilling six exploratory borings with a truck - mounted CME 55 drill rig equipped with a 8 -inch diameter hollow stem augers and excavating three exploratory trenches with a rubber -tire backhoe equipped with an 18 -inch wide bucket. The borings were drilled to refusal on rocks at depths that ranged from 4 to 23 feet below the existing ground surface and the trenches were excavated to approximately 15 feet below the existing ground surface, without experiencing refusal. It should be noted that the exploratory trenches were added to supplement the subsurface data where refusal of the drilling preparation was experienced. The approximate locations of the borings and trenches are presented on the attached Boring /Trench Location Map, Enclosure A -2, within Appendix A. Logs of the subsurface conditions encountered in the exploratory borings and trenches were maintained by an engineering geologist from this firm. Bulk samples were obtained at selected levels within the borings and trenches. In -place sampling was severely hampered by the coarse grained materials. However, a total of three in -place density tests were taken in accordance with ASTM D 2922, the Nuclear Density Method within the trenches. Bulk samples of the encountered materials were obtained and returned to our geotechnical laboratory in sealed containers for further testing and evaluation. A detailed description of the field exploration program and the boring and trench cogs are presented within Appendix B. LABORATORY TESTING PROGRAM Selected soil samples obtained during the field investigation were subjected to laboratory testing to evaluate their physical and engineering properties. Laboratory testing included moisture content, dry density, compaction characteristics, direct shear, sieve analysis, percent passing No. 200 sieve, sand equivalent, and soluble sulfate content. A detailed description of the laboratory testing program and the test results are presented within Appendix C. 2 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 SUBSURFACE CONDITIONS Data from our borings and trenches indicate that the project area is covered by a relatively thin layer of coarse grained materials of silty sand, most likely associated with past agricultural activities. This units was approximately 1 to 3 feet thick and is underlain by much coarser - grained alluvial materials. The alluvial materials noted in our borings and trenches were composed of well graded gravels with sand, poorly graded gravels with sand, well- graded sands with gravel, poorly graded sands with gravel, and some silty sand with gravel. These units contained variable amounts of cobbles ranging from 5 to 30 percent and trace of boulders up to 4 -feet in diameter. Due to the presence of these coarse -sized particles within the alluvium, all borings encountered difficult drilling conditions which slowed progress and caused early termination of the explorations. The borings were halted at depths ranging from 4 to 23 feet below the existing ground surface. The trenches were advanced to the maximum reach of the backhoe, 15 feet below the ground surface. However, significant caving was experienced due to the lack of cohesion of the soils forming the trench walls. The alluvial units tended to be brown to grayish brown in color, and dry to damp. Based on our in -place density determinations and equivalent Standard Penetration Test (SPT) data, it was found that the alluvial materials were generally in a medium dense to dense condition below depths of about 2 to 3 feet from the existing ground surface. Neither bedrock nor groundwater was encountered in any of our exploratory borings and trenches. A detailed description of the subsurface soil conditions, as encountered within our exploratory borings and trenches, is presented on the attached Boring and Trench Logs within Appendix B. CONCLUSIONS Based upon our field investigation and testing program, it is our opinion that the proposed improvement is feasible from a geotechnical standpoint, provided the recommendations presented in this report are incorporated into design and ,�•. implemented during construction. 3 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 As noted by our explorations at the site, the native materials should provide adequate support for the subject improvements within the project alignment. However, due to the coarse - grained composition of the native soils, caving of the site excavations should be anticipated. Thus, proper construction techniques such as safe sloped excavations should be used. The use of soldier piles or sheet wall retention systems for the excavations of the storm drain are not recommended due to the presence of cobbles and large boulders up to 4 feet within the alluvium which can prevent the driving of the steel, soldier /sheet pile elements in the ground. In addition, the use of a trench box (shield) for support of the excavation may not be feasible due to the poor capability of the soils to support themselves prior to the placement of the box in the trench. The site soils should provide adequate quality fill material, provided they are free from organic matter and other deleterious materials. However, they will require the removal of rocks or similar irreducible materials with a maximum dimension greater than 6 inches from the fills in order to facilitate the compaction of the backfill for the RCB drain. The site soils were encountered to be relatively dry to damp and therefore they will require some moisture conditioning in order to achieve the desired optimum moisture content prior to their usage as backfill and fill. The subsurface conditions encountered in our exploratory borings and trenches are indicative of the locations explored. They are not to be construed that these conditions are present the same throughout the project alignment. RECOMMENDATIONS Short -Term Excavations Standard heavy duty trenching equipment should be suitable for the proposed excavations of the RCB drain. Excavation safety and precautions, including safe slope excavation inclinations, should be implemented and are the responsibility of the contractor. Following the California Occupational Safety and Health Act (CAL -OSHA) requirements, excavations deeper than 5 feet should be sloped or shored. All excavations should conform to CAL -OSHA requirements, unless a Registered 4 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 624750.1 October 15, 2007 Professional Engineer provides alternative short term slopes based on a site - specific analysis (Section 1541.1). Short -term excavations greater than 5 -feet deep shall conform to Title 8 of the California Code of Regulations, Construction Safety Orders, Section 1504 and 1539 through 1547. Based on our exploratory borings and trenches, it appears that Type C soil is the predominant type of soil on the project and all short-term excavations should be based on this type of soil. In accordance to Title 8 of the California Code of Regulations, all simple slope excavations up to 20 feet in depth made in Type C soil should have maximum allowable slopes of 1.5:1 (horizontal to vertical). Short -term excavation construction and maintenance are the responsibility of the contractor and should be a consideration of his methods of operation and the actual soil conditions encountered. Preparation of the RCB Areas Upon excavation of the proposed RCB areas to the planned line and grade, observations and in -place density testing should be conducted to ensure that loose materials are present. Where feasible, the bottom of the excavation should be scarified to a depth of 6 inches. The scarified soil should be brought to near optimum moisture content and recompacted to a minimum of 90 percent of the maximum dry density as determined by ASTM D 1557. After construction of the cast -in -place RCB drain, backfill materials should then be up to placed around the box in accordance with the recommendations given in the Engineered Compacted Fill section of this report. RCB Design Provided that the RCB areas are prepared as recommended, the proposed cast -in -place concrete box may be designed using a maximum soil bearing pressure of 6,000 pounds per square foot (psf). NOW 5 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 624750.1 October 15, 2007 The vertical walls of the RCB, retaining compacted native soil backfill, should be designed to resist a lateral earth pressure between active and at -rest conditions. For this condition, we recommend an equivalent fluid density of 50 pounds pounds per cubic foot (pcf) be used. Engineered Compacted Fill The majority of the soils along the project alignment are clean, free - draining, granular soils (well graded to poorly graded gravels with sand and well graded to poorly graded sands with gravel) with lesser units of slightly finer to finer grained, Tess draining materials (silty sands). The site soils are generally suitable for use as trench backfills. However, all rocks or similar irreducible materials with a maximum dimension greater than 6 inches should not be buried or placed in fills without prior approval by the geotechnical engineer. Materials with a maximum dimension greater than 6 inches are anticipated to be up to 15 percent. In addition, prior to the mechanical compaction of backfills, the soils will need to be moisture conditioned in order to achieve the desired optimum moisture content. The site soils are also considered adequate for jetted backfill due to their relatively good drainage characteristics. Suitable backfill materials to be jetted should have a sand equivalent of 15 or greater. In addition, the materials of the trench walls should have a minimum sand equivalent of 15. It should be noted that compaction of the backfill by jetting alone may not be sufficient to reach the desired level of densification, and thus supplemental mechanical compaction may be needed. Jetting operations should follow guidelines of Greenbook 2006. Import fill, if required, should be inorganic, non - expansive, granular soils free from rocks or lumps greater than 6 inches in maximum dimension. Sources for import fill should be approved by the geotechnical engineer prior to their use. Backfill materials should be free from organic material, trash, debris, and other objectionable materials. Backfill should be mechanically compacted to at least 90 percent relative compaction (ASTM D 1557) to at or near optimum moisture content. The upper 12 inches of subgrade materials that are to be paved should be compacted 6 LOR GEOTECHNICAL GROUP, INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 to at least 95 percent relative compaction (ASTM D 1557). Other compaction standards established by the agency having jurisdiction may apply. Sulfate Protection The results of the sulfate tests conducted on selected subgrade soils are presented in Appendix C. Based on the test results the sulfate exposures of on -site soils is considered negligible by the California Building Code. Therefore, no specific recommendations are given for concrete elements to be in contact with the site soils. LIMITATIONS This report contains geotechnical conclusions and recommendations developed solely for use by AEI -CASC Consulting and their designates, for the purposes described earlier. It may not contain sufficient information for other uses or the purposes of other parties. The contents should not be extrapolated to other areas or used for other facilities without consulting LOR Geotechnical Group, Inc. The recommendations are based on interpretations of the subsurface conditions concluded from information gained from subsurface explorations. The interpretations may differ from actual subsurface conditions, which can vary horizontally and vertically across the site. If conditions are encountered during the construction of the project, which differ significantly from those presented in this report, this firm should be notified immediately so we may assess the impact to the recommendations provided. Due to possible subsurface variations, all aspects of field construction addressed in this report should be observed and tested by the project geotechnical consultant. The report was prepared using generally accepted geotechnical engineering practices under the direction of a state licensed geotechnical engineer. No warranty, expressed or implied, is made as to conclusions and professional advice included in this report. Any persons using this report for bidding or construction purposes should perform such independent investigations as deemed necessary to satisfy themselves as to the surface and subsurface conditions to be encountered and the procedures to be used in the performance of work on this project. 7 LOR GEOTECHNICAL GROUP. INC. AEI -CASC Consulting Project No. 62475C.1 October 15, 2007 TIME LIMITATIONS The findings of this report are valid as of this date. Changes in the condition of a property can, however, occur with the passage of time, whether they be due to natural processes or the work of man on this or adjacent properties. In addition, changes in the Standards -of- Practice and /or Governmental Codes may occur. Due to such changes, the findings of this report may be invalidated wholly or in part by changes beyond our control. Therefore, this report should not be relied upon after a significant amount of time without a review by LOR Geotechnical Group, Inc. verifying the suitability of the conclusions and recommendations. CLOSURE It has been a pleasure to assist you with this project. We look forward to being of further assistance to you as construction begins. Should conditions be encountered during construction that appear to be different than indicated by this report, please contact this office immediately in order that we might evaluate their effect. Should you have any questions regarding this report, please do not hesitate to contact this office at your convenience. Respectfully submitted, LOR Geotechnical Group, Inc. ' cgsoFEss,04, q Alf' A y Q R` • i 4 No. C66619 co m cc Gab' M antes ,CE 66619 Sta .L •Weer 4 EX sT c/vt∎- gT FOF cAg' • ohn '. Leuer, GE 2030 • es'. ent (<,0 0koFESS /o, JJJ:GMC:JPL /mmm NO. 2030 m fL EXPIRATION DATE rn 09/30/ 09 Distribution: Addressee (6) * 4D`o4 �•.- 1 4 - of cMg 8 ■ 40R GEOTECHNICAL GROUP, INC. APPENDIX A Index Map and Boring /Trench Location Maps T .012 r_GnTGruMIcei (Rnu we 'c- °y� t :} t: .' \\! i�L- `- '`!.7; ... ... = ' lA - =% �'i'�. ;_- .%.-?! R`Lr" r F. . - - :tip 'i : .J' - _- _ �. N34-19567°* i %-- ?r ♦r: •- ±`_..•" •/. - 1'( _ 1: _ : .� . ^ ` - . r c � .�'` ` - �, . - l'{-%.;-'..='-.-: - -:. ` sY w � %'�;; j� 8 >` ` ..� _ alp_ '•Y'A- %"= - _`.A ''',.-'--s' - / - 1 ' t - 1_-- -•r^- d -G . .f .. f i "' �`..:..: _p. ` - " .l39e L ' f , l . +�-;: ! - �'tKrn' - } -� - - .:4 .o ?: -1 - - i : _rn_ -- L:, • 'o'.- • -.. •!,,. . ' !-730°..1r,‘ _:.mr: iC. ' ` ' y�?y , ' J am- • d -- r0 !j am. \'r:r1 +; It . ' `- \ � L _ :•'":,%., . (. - : 3 . . • _ \i � i l . .at ;'a ri (•1 = a 1 'c ' _. ... -o '\. . Neal ld _ - ' , f , l '- : • ) iii. =�1 :I l° i v. .� `! \. �'� n - /: . •i c. -- 1 . - ,.. _- • i l! -:�tl - J:t. ``� .. 1 �i`: �:"r fi� _ _ r• ikv. .11 " - _ .},�. _� J . C, ; • q. �i . / w 1� •�: / : - _ � 'a . .. ! .i��'`l y =; �( 't'_ � :C'� ^ ,.1! S\ �., �.1:�,1 • t '� '` s - '� . :-'r'':/ Z - 7'4 1 41 +i: -' = :' - - ; ti .- ; "--2.<,--,•,- . t �, . • . �� .., l 's` • \v`- ' - - r:. - ! -r /s-' '••. 1 Y •'i•.. � / Ulke • '.Y� , {. 'i 1f• ` r i' _ - • - _ 1• - =6 p ' ��_ '+�--:� o f til e _ z6'` / f ' I r ' - �: j, ..l .' ; �' i l" - i . �r - " -yc --Z--------.:=7::•:.... O� , 'i ^�•- • :: 'i- � - _ - 4,:--. - - �, - - - - X _ . 1 . 1 1 . tr. _� i1 K�+ •* - • . .1: N -4 , '', `J _ ' ,, - -_• 1: 1 1; ,4 . i e ' ' l am . - 1-' _ - _ � .. -' J i i. - -�' , +�~` %.ifr`'_' i '` .s � r- i /- • Pvii%' i i• 7C;7.1..:•),,•,'-',2)1.`;:::,1'-,......,,....5.:1 `.� :fv `_ "1 . o_ r 1 v/ t J - '• t l • � .'. ' +� /: :', ;;=!1J.' r: � - _- •:� � . -.----•;7"-f---=-: / �A - _ it l ` - • �; -ta il ::�: %� � w � r 'i , .rl'.\ Jr- L-.... _ r , • . / ; ' f` f ? _ ? ,`� " = _ - - -_f = > • — f ah — .i•._ __ c cr = < :, %896 V !/� a ' -` 4VuLer well ' Pro Dppeap Canyon R oad Storm Dra -- - -- - - -- " _Y.:". ? ` t )E -: \. % -.--, ,'t, • ; ,, I mo' �' � 1 1' li f '- .1 ■ o 1- N34,15833 _- - -- - -- d c _--. T, 1 1 • ■ It t I .. -- 1 AVE -'- -- -- - I - = --- -_ -- _ -_ - -_- 1666 - =- -_ - N Reservoir • i M -- - • ■ INDEX MAP PROJECT: DUNCAN CANYON ROAD STORM DRAIN, FONTANA, CALIFORNIA PROJECT NO.: 62475C.1 _TENT: AEI -CASC CONSULTING ENCLOSURE: A -1 Nemo. I DATE: OCTOBER 2007 l.OR Geotechnical Group, Inc. I SCALE: 1" = 2,000' [ , r• ( L. 1111 /- —. / > 1 1 co -- _(' j ) - (N h 1 0 L. Lizosx . L i J. c .:0 5 • :5 , , :: _. U00/_," 9 J + _ _ -- ■ ? "a r ---- ' '). _.._. -„ .__(-- _ '17 1 . 7, _ r_ c_ 4 o _ ) --_--, ' ;) ,t ___.---,s.:---r - - — 7 0 c --- - !- --3 '77----- - i s‘ -\ — - - - •—• ....:-. — ..„, ____. 1.__.,.._,......,_ 8 3 E° cl -- ---____..,_ -=. .. CD Ir _1 --I la.. = 6 n 0 ,_. --I . i ? (.) < ,,,,,, <L, 1 ,.. / - ( l ) g ,„ ,_ c 0 -c 0 0 . 0 0 (-) 1 i ------ - ' i f ! , C E 2 2 Lo i . 7 . i 2 o ,, ( CD ' 1 0 0 1_. 9 irj + i+ C ii s- 8 I— --I .1 . --) ( ,,( . cc, c.4 2 ( ( . i c '-' 4 755-) < 0, : , 1:\ ) [: . ' . () ,.. +-O- w ._ Lu r 61mnd / E /-\_.) ,. 0 c, ......, co m Ca m cn i r / r . ( -J ( i r„..../ / 00 9 9 L c.g 13 + -... ) • .- ) - r-['--:, v- ----- 1 1 I a .., 1 . /---- / . ./ r---' i ....- . / .f ' : cz , . ,--- ,i - /_ k , J / )7 / - Y . (f) C) 0 t/ 9 T.', / 9 ] - f4„,- , c 4 i a---''' t• ( Cj f ■..1 / .g ,.---• tr) \ _ j 0 ry o . .---' L c -L--) / .: ,. Z L, 2 cr) . < a) ,_ Li-,:,)&) -`' <- .) — . _, ' V Q--- ' ,. i l i 7. llill 9 7) -1- ± /,...._, : + — Z fc....] LL1 0 c)-- ..._ ..,/ - 0 - (1) a, 7 >-• < i. r:'"_ ) F s _7 .---Th ' , .-- -------, ------- -- U 0 ± b i . 1 ,J I '. . CI . e i . 0 _ oc,„:37„.9 -, + ovo, )p49, 11117 • / Jr- CC \ 4 ) / :: .--"--■ Z ----"' -j ,., r-/ c --- . I I / 1 i I I °- --' . III 1 i, ., f I / I i i . ( . .. ,, C.)0.;':( 'll / 9 + ) /0 4. „.__)----- \...) i . ; 9z . l i \--, 11 l c-3 R i ql, + (.- • ' , / - ? s ) "4 ,..., a MO 1 fti) V Ilij • q , , ,,---,-- ..„--- ......_ , , , ......) cc,9,,, -1+ ... . -:,.,--,---/ milf 1 ,:_=.._. ,_ (,____ 4 .. ,, A 0 ,\ 4 ,1111li .5 i= .2 il r ------ 03 41 9 A 1 il ....... 1 IIIM 1 111. - 1 0 1 L ' i ---i L,T r .. 'S I ' IP 1 i L,, p / / , z - , d z , .._. „, . r ,,,....- .- . #1 1 l' ' .1 4 1 . . . . a .' i i — --- -- IMMIIIIIMIO NINIMM APPENDIX B Field Investigation and Boring /Trench Logs LOR GEOTECHNICAL GROUP, INC. APPENDIX B FIELD INVESTIGATION Subsurface Exploration The site was investigated on September 24 and 26, 2007 and consisted of drilling six exploratory borings ranging from depths of 4 to 23 ± feet below the existing ground surface and excavating three exploratory trenches to depths of 15 feet below the existing ground surface. The approximate locations of the borings and trenches are shown on attached Boring and Trench Location Map, Enclosure A -2, within Appendix A. The drilling exploration was conducted using a CME -55 drill rig equipped with an 8- inch diameter hollow stem auger. The soils were continuously logged by an engineering geologist from this firm who inspected the site, maintained detailed logs of the borings, obtained undisturbed, as well as disturbed, soil samples for evaluation and testing, and classified the soils by visual examination in accordance with the Unified Soil Classification System. Relatively undisturbed samples of the subsoils were obtained at a maximum interval of 5 feet. The samples were recovered by using a California split barrel sampler of 2.50 inch inside diameter and 3.25 inch outside diameter. The samplers were driven by a 140 pound automatic trip hammer dropped from a height of 30 inches. The number of hammer blows required to drive the sampler into the ground the final 12 inches were recorded and further converted to an equivalent SPT N- value. Factors such as efficiency of the automatic trip hammer used during this investigation (80 percent), inner diameter of the hollow stem auger (3.75 inches), and rod length at the test depth were considered for further computing of equivalent SPT N- values corrected for field procedures (zN6o) which are included in the boring logs. The soil samples were retained in brass sample rings of 2.41 inches in diameter and 1.00 inch in height, and placed in sealed plastic containers. Disturbed soil samples were obtained at selected levels within the borings and placed in sealed containers for transport to our geotechnical laboratory. The exploration was conducted using a New Holland LB 75B backhoe with an 18 -inch bucket. The soil encountered were continuously logged by an engineering geologist from this firm who visually observed the site, maintained detailed logs of the trenches, obtained disturbed soil samples for laboratory evaluation and testing, and classified the soils encountered by visual examination in accordance with the Unified Soil Classification System. In -place density determinations were conducted at selected levels within the trenches utilizing the Nuclear Gauge Method (ASTM D 2922). Disturbed soil samples were obtained at soil changes and other selected levels within the trenches. The samples were placed in sealed containers for transport to our geotechnical laboratory. All samples obtained were taken to our geotechnical laboratory for storage and testing. Detailed Togs of the borings and trenches are presented on the enclosed Boring and Trench Logs, Enclosures B -1 through B -9. A Boring /Trench Log Key and Soil Classification Chart are presented as Enclosures B -I and B -II. CONSISTENCY OF SOIL SAMPLE KEY SANDS Symbol Description SPT BLOWS CONSISTENCY INDICATES CALIFORNIA 0 -4 Very Loose SPLIT SPOON SOIL SAMPLE 4 -10 Loose 10-30 Medium Dense / INDICATES BULK SAMPLE 30 -50 Dense Over 50 Very Dense INDICATES SAND CONE OR NUCLEAR DENSITY TEST COHESIVE SOILS INDICATES STANDARD PENETRATION TEST ISPTI SPT BLOWS CONSISTENCY SOIL SAMPLE 0 -2 Very Soft 2 -4 Soft 4 -8 Medium TYPES OF LABORATORY TESTS 8 -15 Stiff 1 Atterberg Limits 15 -30 Very Stiff 30-60 Hard 2 Consolidation Over 60 Very Hard 3 Direct Shear (undisturbed or remolded) 4 Expansion Index 5 Hydrometer 6 Organic Content 7 Proctor (4 ", 6 ", or Ca1216) 8 R -value 9 Sand Equivalent 10 Sieve Analysis 11 Soluble Sulfate Content 12 Swell 13 Wash 200 Sieve BORING /TRENCH LOG LEGEND PROJECT: DUNCAN CANYON ROAD STORM DRAIN, FONTANA, CALIFORNIA PROJECT NO.: 62475C.1 CLIENT: AEI -CASC CONSULTING ENCLOSURE: B-i DATE: OCTOBER 2007 LOR Geotechnical Group, Inc. ......,....____ • _. . SOIL CLASSIFICATION CHART • SYMBOLS TYPICAL MAJOR DIVISIONS „...... GRAPH :LETTER DESCRIPTIONS -...- : %.6.D.- . CLEAN ----_--- WELL-GRADED - GRAVELS, GRAVEL • 1 GW SAND 11: LITTI F OR NO -..,,..-- _ , GRAVEL - GRAVELS FINES AND ._ _ : GRAVELLY (LITTLE OR NO FINES) 1-111.-:,-....p. i POORLY-GRADED GRAVELS, GRAVE!. : SOILS . .L.,•-..7 GP : .....- i - SAND MIXTURES, u r ILE OR NO FINES ■ COARSE . : GRAVELS . Gm SILTY GRAVELS, GRAVEL - SAND - GRAINED MORE THAN 50% i WITH FINES : •-..m-j SILT MIXTURES SOILS OF COARSE . FRACTION : 1 RETAINED ON NO. 1 (APPRECIABLE : ' .-;,- -,.,,,,.,.. CLAYEY GRAVELS, GRAVEL - SAND 4 SIEVE 1 AMOUNT OF FINES! „,„....---.....-.:. GC CLAY MIXTURES 1 :444 sw WELL-GRADED SANDS, GRAVELLY CLEAN SANDS : -----7- -. ._... SANDS, LITTLE OR NO FINES SAND MORE THAN 50% ----- ERIAL IS AND (L/TT! E OR NO FINES) OF MA7 LARGER THAN No. SANDY SP POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES 200 SIEVE SIZE SOILS _ • — • - MORE THAIV 50% SANDS WITH 1 1 SM SILTY SANDS, SAND - SILT OF COARSE FINES r: ; MIXTURES FRACTION r i 7' , _ .---- -- PASSING 061 610. 4 "..-' /_'. / SIEVE LAPPRECIAB1E 1 ,. S" ' C CLAYEY SANDS. SAND CLAY AMOUNT OF FINES; r / ',", ,, MIXTURES r / ' / , , , , ,C/.._ I I INORGANIC SILTS AND VERY FINE . I I M 1 SANDS, ROCK FLOUR, SILTY OR L . 1 CLAYEY FINE SANDS OR CLAYEY s I SILTS WITH SLIGHT PLASM( rY SILTS /' ,',/ . .. tlNORGANIC CLAYS OF LOW TO s I MEDIUM PLASTICITY, GRAVELLY FINE AND LESS THAN 1101.11D IIIVIIT / ,.,../ 7.1 CL CLAYS, SANDY CLAYS, Sli TY 1 CLAYS. LEAN CLAYS GRAINED CLAYS 50 SOILS ; ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY \ lissio,' - .• - 1 1 INORGANIC SILTS, MICACEOUS OR MORE THAN 50% MH DIATOMACEOUS FINE SAND OR SIC] Y SOILS OF MATERIAL IS SMALLER THAN NO 200 SIEVE SILTS LIQUID LIMIT • CH INORGANIC CLA YS OF HIGH SCE AND GREATER THAN ' PLASTICITY CLAYS 50 1 : OF I ORGANIC CLAYS OF MEDIUM TO , I I HIGH PLASTICITY, ORGANIC SILTS 1 i."8'.■.'"' .."1 PEAT, HUMUS, SWAMP SOILS WITH HIGHLY ORGANIC SOILS t--ie'±'-'-^-;;,.- -'-'4 PT HIGH ORGANIC CONTENTS ,.......,.,1 NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE 50!! CLASSIEICA DONS PARTICLE SIZE LIMITS ■ GRAVEL SAND BOULDERS 1 COBBLES SILT OR CLAY I COARSE I FINE COARSE I MEDIUM I FINE 12" 3" 3/4" No. 4 No. 10 No. 40 200 (U.S. STANDARD SIEVE SIZE) SOIL CLASSIFICATION CHART , PROJECT: DUNCAN CANYON ROAD STORM DRAIN, FONTANA, CALIFORNIA PROJECT NO.: 62475C.1 'Nate CLIENT: AEI-CASC CONSULTING ENCLOSURE: B-ii DATE: OCTOBER 2007 ',OR Geotechnical Group, Inc. TEST DATA f- z G] c , F- F W- f- > G CU r z- H o N LOG OF BORING B -1 Z F" OU O o, c w v - O i Q f- �. ci G yi i✓ O 2 H D Lt7 J 0 � Q J O m m O 2 DESCRIPTION 0 11 r ~ sna \@ 0 feet ASPHALT CONCRETEapproximately 1 inch thick. C medium grained approximately sand, nd, 45°! fi e grained sand, 20% silty fines, brown damp, some cobbles, difficult drilling. r @ 4 feet color change to Tight gray. 5 29 -6" 1.3 @ 5 feet large percentage of cobbles or boulders, very difficult drilling. END OF BORING DUE TO REFUSAL No fill No groundwater No bedrock 10 . PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1784' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" 1 ENCLOSURE: B -1 / 1 ,,.... TEST DATA � F- z w ,- z z - >- LI. ° 0 8 Z I- o LOG OF BORING B -2 Z ¢ o . c o • o m m 0 N -J - 2 DESCRIPTION 0 NIM @ 0 feet ASPHALT CONCRETE:approximately 4 inches in 9, 10, 11 j SM 1 thickness. r O @ 0.33 feetTOPSOIL: SILTY SAND, 5% gravel, 10% coarse SP 1 grained sand, 15% medium grained sand, 45% fine grained : SM I sand, 25% silty fines, dark brown, damp. I 29-4" @ 1.5 feet ALLUVIUM: POORLY GRADED SAND with silt and gravel, approximately 25% gravel, 15% coarse grained sand, 30% medium grained sand, 20% fine grained sand, 10% silty fines, tan, damp, moderately dense, some cobbles. 5 @ 5 feet difficult to drill due to high percentage of cobbles. 3,7,11 r • 10 29 -6" 3 0.9 124.1 ' !""-' 3, 7, 11 7 z — SW @ 12 feet WELL GRADED SAND with SILT and GRAVEL, approximately 15% cobbles, 20% gravel, 10% coarse grained w ..r = = sand, 15% medium grained sand, 30% fine grained sand, 10% -- silty fines, gray, damp, very difficult to drill due to cobbles. 15 — _ _ ___,, 29-6" 1.7 1 20 29 -3" 1.1 1 _ — F END OF BORING DUE TO REFUSAL ON COBBLES No fill 25 No groundwater No bedrock •» PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 *ow. CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1779' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" ENCLOSURE: B -2 1 , ,,... TEST DATA C F- ,. E- z Lii w z z LOG OF BORING B -3 E� 3 ¢ G) 0., c z 0 vi >- 2 1-- O� O vii Cn Q n m co Q v) 2 DESCRIPTION 0 • @ 0 feet ASPHALT CONCRETE:approximately 5 inches thick. 11 C 10% coarse ar grai damp. 0 approximately d gravel, grained grained sand, 25% silty SM l f A @ 1 footALLUVIUM: SILTY SAND, approximately 2% gravel, 3% coarse grained sand, 10% medium grained sand, 60% fine grained sand, 25% silty fines, brown, damp. 7 5 A 29 -6" 1.5 1 @ 6 feet very difficult drilling. END OF BORING DUE TO REFUSAL ON COBBLES. No fill No groundwater No bedrock 10 PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 Nalkwe CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1776' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" ENCLOSURE: B -3 ,.,,. TEST DATA V) F- 1 z w z z >- 0 N LOG OF BORING B -4 z LL. w o Lu- z� U O � � Lu v O j F. ¢ 5— 0 E2 H En LE-) m °m v) 0 -' 2 DESCRIPTION _ 0 1111 @ 0 feet ASPHALT CONCRETE:approximately 4 inches in 8, 9, 10 7 S \ thickness. f C' 1 8% coarse O grained d sand, 10°o medium SAND, r gra d sand, gravel, 0% finT grained sand, 20% silty fines, dark 60% IC 1 footALLUVIUM SILTY SAND brown, with gravel, approximately 15% gravel, 5% coarse grained sand, 20% medium grained sand, 45% fine grained sand, 15% silty fines. END OF BORING DUE TO REFUSAL ON BOULDERS No fill 5 No groundwater No bedrock '''4.r 10 ,..'"" PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 Noopo CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1763' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" ENCLOSURE: B - J r p 4,.. TEST DATA ,,-, H 14 40o0 , cn Li-1 Z ° >- o LOG OF BORING B -5 z fa- u, o ce u z� w E- U 0 w ' v -J 0 vi La C E— < E— ° m 0 v ° cn Q DESCRIPTION 0 11 SM @ c barse grain sand, 10 % medium grained t sand, 5 gravel, % fine g grained sand, 25% silty fines, tan, damp, loose. SM @ 1'footALLUVIUM: SILTY SAND with gravel, approximately' 15% gravel, 10% coarse grained sand, 15% medium grained sand, 40% fine grained sand, 20% silty fines, tan, damp. @ 4 feet high percentage of cobbles, difficult drilling. 5 41 'wow - END OF BORING DUE TO REFUSAL No fill No groundwater No bedrock 10 PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 '411610 CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1758' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" ENCLOSURE: B -5 _ ._ , . „_,........_,. • e N TEST DATA V) E .'4 440.. e E- v) Z uJ 1- >- w al Z f- Z f- a. >- >- 0 o vi LOG OF BORING B-6 --) 0 v i . >- ■- 2 H 0 E-- < :I 1.1.1 f .__) cn in (ID C E co co < 5 --1 DESCRIPTION 0 il @ 0 feet ASPHALT CONCRETE:approximately 4 inches in 11 7 \ thickness. f SIN1 \ thickness. 1 ,@, 0.33 feetAGGREGATE BASE:approximately 5.5 inches in - . A q,i) 0.8 feet ALLUVIUM: SILTY SAND, approximately 5% gravel, 10% medium grained sand, 60% fine grained sand, 25% silty fines, brown, damp. • 9 r . 5 49 1.2 I • @ 5.5 feet SILTY SAND, high percentage of cobbles (?) noted by extra difficulty in drilling. ,,......• END OF BORING No fill No groundwater - No caving 10 tow-- PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 • 'tiumw CLIENT: AEI-CASC Consulting, Inc. ELEVATION: 1657' DATE DRILLED: September 24, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: CME 55 HOLE DIA.: 8" ENCLOSURE: B-6 i 0 , TEST DATA ;, z 1 0 o H. o Vi LOG OF TRENCH T -1 w i O 2c, 0` c 4 vi H• < N c- D >- 2 F- w p w v) 0 < o CO ° 0 2 DESCRIPTION 0 13 7 SM C' grained TOPSOIL: sand, 10 % SILTY med um grained sand65 approximately 5% coarse fine grained sand, 20% silty fines, brown, dry, loose. 2.1 112.2 -° GW @ 3 feet ALLUVIUM: WELL GRADED GRAVEL with boulders, cobbles, and sand, varies in composition with avera I, of approximately 5% small boulders to 14" in diameter, 30% cobbles, 20% gravel, 10% coarse grained sand, 15% medium grained sand, 15% fine grained sand, 5% silty fines, tan, 5 — moderately dense, dry, in thick layers or lenses, caving. 1.1 125.0 9, 10 t = GP @ 6 feet POORLY GRADED GRAVEL with sand, approximatel sand, gravel, grained sand, 5 % silty 20% medium grained fines. c 10 @ 10 feet one large boulder approximately 4 feet in diameter encountered heavy caving. 10 % = GW C 5% cobbles, 60% GRADED GRAVEL with sand, coarse grained sand, 10"�o approximately 15 4 _ ., medium grained sand, 5% fine grained sand, 5% silty fines. END OF TRENCH No fill Caving @ 3 - 15 feet No groundwater No bedrock 9 PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 Nu CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1781' DATE EXCAVATED: September 26, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: New Holland LB 75B BUCKET W.: 18" ENCLOSURE: B -7 ,,,,., TEST DATA 1- Ui LU o o F. c F o LOG OF TRENCH T -2 w p u i 7 f 0 0 m 0 O 7 DESCRIPTION 0 13 SM @ g 20 % s fines, brown, brown, grained o s end, 65% fine grained 1.0 120.8 1 '----- ----- GW C! 3 feet ALLUVIUM: WELL GRADED GRAVEL with cobbles and sand, approximately 5% small boulders, 30% cobbles, 30% gravel, 35% sand, tan, dry, some caving. 5 @ 6 feet some boulders up to 2 feet in diameter, approximately 10 %. Some found in "nests ". t MI/ .+ - 10 10 V GP C 14 feet POORLY GRADED GRAVEL with sand, A sand, 20% medium grained sand, fine 0 grai grained coarse 15 \ silty fines. END OF TRENCH No fill Caving @ 3 - 15 feet No groundwater No bedrock PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 Ivasir CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1769' DATE EXCAVATED: September 26, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: New Holland LB 75B BUCKET W.: 18" ENCLOSURE: B -8 J 1 r .00... TEST DATA ,. _ z vi LOG OF TRENCH T -3 w H ° z z H r C z Ll- ¢ � _., z� L- o u Lu O 2 u- °& Pp O v H ¢ P. D >- H" a. o m � o ° EA U O 2 DESCRIPTION 0 13 Sn1 C grained sand, led nd, 70% fine grained , sand, 20 %silty fines, brown l SW @, : 1 footALLUVIUM: WELL GRADED SAND with gravel. — ° GP @ 3 feet becomes coarser grained to a POORLY GRADED _ = GRAVEL with cobbles and sand, approximately 5% small _= boulders, 30% cobbles, 20% gravel, 40% sand, predominantly coarse to medium, 5% silty fines, tan to grayish tan, dry, moderate caving. 5 10 2. A _ @ 6 feet large boulder approximately 3 feet in diameter. 10 GW @ 10 feet WELL GRADED GRAVEL with SAND, approximate!' =- 5% cobbles, 60% gravel, 15% coarse grained sand, 5% medium grained sand, 10% fine grained sand, 5% silty fines. __ 9,10 0 15 A END OF TRENCH No fill Caving @ 3 - 15 feet No groundwater No bedrock s ow. PROJECT: Duncan Canyon Road Storm Drain PROJECT NUMBER: 62475C.1 CLIENT: AEI -CASC Consulting, Inc. ELEVATION: 1761' DATE EXCAVATED: September 26, 2007 LOR GEOTECHNICAL GROUP INC. EQUIPMENT: New Holland LB 75B BUCKET W.: 18" ENCLOSURE: B -9 APPENDIX C Laboratory Testing Program and Results LOR GEOTECHNICAL GROUP, INC. APPENDIX C LABORATORY TESTING General Selected soil samples obtained from the borings and trenches were tested in our laboratory to evaluate their physical and engineering properties. The laboratory testing program performed in conjunction with our investigation included moisture content, dry density, laboratory compaction, direct shear, sieve analysis, percent passing No. 200 sieve, sand equivalent, and soluble sulfate. Descriptions of the laboratory tests are presented in the following paragraphs: Moisture - Density Tests The moisture content and dry density information provides an indirect measure of soil consistency for each stratum, and can also provide a correlation between soils on this site. The dry unit weight and field moisture content were determined for selected undisturbed samples, and the results are shown on the boring and trench logs, Enclosures B -1 through B -9, within Appendix B, for convenient correlation with the soil profile. Laboratory Compaction Selected soil samples were tested in the laboratory to determine compaction characteristics using the ASTM D 1557 compaction test method. The results are presented in the following table: LABORATORY COMPACTION Maximum Optimum Boring Sample Depth Soil Description Dry Density Moisture Content Number (feet) (U.S.C.S.) (pcf) (percent) B 2 6 (SP -SM) Poorly Graded Sand 139.5 6.5 with Silt and Gravel B 2 12 (SW -SM) Well Graded Sand 139.6 6.5 with Silt and Gravel B -3 3 ISM) Silty Sand 132.0 9.0 """"' Direct Shear Tests Shear tests are performed with a direct shear machine at a constant rate -of- strain (usually 0.04 inches /minute). The machine is designed to test a sample partially extruded from a sample ring in single shear. Samples are tested at varying normal Toads in order to evaluate the shear strength parameters, angle of internal friction and cohesion. Samples are tested in a remolded (r) state and soaked, to represent the worst case condition expected in the field. The results of the direct shear tests are presented in the following table: DIRECT SHEAR TEST Boring Sample Depth Soil Description Angle of Apparent Number (feet) (U.S.C.S.) Internal Friction Cohesion (degrees) (psf) B 2 6 (r) (SP) Poorly Graded Sand 34 50 with Silt and Gravel Sieve Analysis '.. A quantitative determination of the grain size distribution was performed for selected samples in accordance with the ASTM D 422 laboratory test procedure. The determination is performed by passing the soil through a series of sieves, and recording the weights of retained particles on each screen. The results of the sieve analyses are presented graphically on Enclosures C -1 and C -2. Percent Passing No. 200 Sieve Tests A quantitative determination of the percentage of soil passing the No. 200 sieve was performed for selected samples. The results indicate the percentage of fines in the soil. The results are presented in the following table: PERCENT PASSING NO. 200 SIEVE TESTS Percent by Weight Trench Sample Depth Soil Description Passing No. 200 Sieve Number (feet) (U.S.C.S.) ( %) T - 0 (SM) Silty Sand 19 Nam,- T -2 0 (SM) Silty Sand 22 T -3 0 (SM) Silty Sand 20 Sand Equivalent The sand equivalent of selected subgrade soils were evaluated using the California Sand Equivalent Test Method, Caltrans Number 217. The results of the sand equivalent tests are presented with the grain size distribution analyses and in the following table: SAND EQUIVALENT Boring/ Trench Sample Depth Soil Description Sand Equivalent Number (ft) (U.S.C.S.) (SE) B 2 1 3 (SP -SM) Poorly Graded Sand 60 with Silt and Gravel B -4 1 -3 (SM) Silty Sand with Gravel 36 B -6 3 (SM) Silty Sand 23 T -1 6 (GP) Poorly Graded Gravel with Sand 71 T -3 10 (GW) Well Graded Gravel with Sand 40 Soluble Sulfate Content Tests The soluble sulfate content of selected subgrade soils were evaluated. The concentration of soluble sulfates in the soils was determined by measuring the optical density of a barium sulfate precipitate. The precipitate results from a reaction of barium chloride with water extractions from the soil samples. The measured optical density is correlated with readings on precipitates of known sulfate concentrations. The test results are presented on the following table: SOLUBLE SULFATE CONTENT TESTS Boring Sample Depth Soil Description Sulfate Content Number (feet) (U.S.C.S.) (% by weight) B -1 0.5 (SM) Silty Sand with Gravel < 0.005 B -2 0.4 ISM) Silty Sand < 0.005 B 2 6 (SP -SM) Poorly Graded Sand with Silt and < 0.005 Gravel B -3 0.5 (SM) Silty Sand < 0.005 B -4 0.5 (SM) Silty Sand < 0.005 B -5 0 (SM) Silty Sand < 0.005 / \ U.S. SIEVE OPENING IN 1NCHE$ U.S. SIEVE NUMBERS 1 HYDROMETER 6 4 2 1.5 1 3/4 1/2 3/8 3 4 6 810 14 16 20 30 40 50 7 0100 14 0200 100 I r 4I I I I I I I I II I I 1 1 I I _.r.. 90 . • 80 P R70 C 0 E N T F ` � I \ N o E50 R .1. B ,. \ \ \i Y W 0 \ \ I \\ E \ \ \ I H 30 T N 20 \ \ 1 I \ \ �E - ice,, 10 ` \ - \ , 0 t 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COBBLES GRAVEL SAND SILT OR CLAY coarse fine coarse medium fine Specimen Identification Classification SE RV Cc Cu • B -02 © 1 - 3 ft POORLY GRADED SAND with SILT /GRAVEL 60 - 0.89 25.3 1 8 -04 @ 1 - 3 ft SILTY SAND SM 36 - • T -01 @ 6 ft POORLY GRADED GRAVEL with SAND GP - - 0.52 36.7 * T -01 @ 15 ft WELL- GRADED GRAVEL with SAND GW - - 2.28 85.2 ® T -02 @ 15 ft POORLY GRADED GRAVEL with SAND GP - - 0.76 61.2 Specimen Identification D100 D60 D30 D10 %Gravel %Sand %Silt %Clay • B -02 @ 1 - 3 ft 75.00 2.18 0.408 0.0859 25.1 66.3 8.6 1 B -04 @ 1 - 3 ft 50.00 0.42 0.136 13.7 69.8 16.6 A T -01 @ 6 ft 75.00 10.76 1.285 0.2931 51.5 45.4 3.1 * T -01 @ 15 ft 100.00 45.79 7.492 0.5374 60.8 24.7 1.6 '''.- 0 T -02 @ 15 ft 100.00 18.70 2.087 0.3056 56.1 35.6 3.1 PROJECT Duncan Canyon Road Storm Drain - Fontana, PROJECT NO. 62475C.1 California DATE 10/5/07 GRADATION CURVES LOR Geotechnical Group Inc. Enclosure C -1 Riverside, CA