Loading...
HomeMy WebLinkAboutSouth Highland Widening Project PH 1 SOUTH HIGHLAND AVE WIDENING PROJECT - PHASE I SAN SEVAINE RD. TO CITRUS AVE. DRAINAGE REPORT PREPARED FOR CITY OF FONTANA PREPARED BY PARSONS BRINCKERHOFF 685 East Carnegie Drive, Suite 210 San Bernardino CA. 909 - 888 -1106 Revised DATE: 11/16/06 METHODOLOGY This drainage study is based on the current S.B.C.F.C.D. Hydrology Manual utilizing an AMC II and soil types A & B (see hydrology maps). A copy of the appropriate soils and isohyetal maps are included in this report. Although the current City's General Plan and Zoning Maps indicate that the drainage areas for the easterly storm drain system are proposed to be single family, this study assumes that these areas will be developed with commercial development instead of single family. This assumption has been approved by the City's project manager. EXISTING CONDITION An existing 36 "RCP is located in San Sevaine Road and terminates at the intersection of South Highland Ave. This system was designed to accept for flows from South Highland north to the southerly R/W of the S.R. 210 freeway from San Sevaine Road to Hemlock Ave. Runoff generated by the area between South Highland Avenue and S.R. 210 from Hemlock Ave east to Knox Avenue is intercepted by the existing system storm drain constructed by the Landings Development. This system is located in Beech Avenue, at t""—* South Highland Avenue it branches east and west. In Citrus Avenue, an existing storm drain system intercepts flows in Citrus Avenue just north of Highland Avenue intersection. PROPOSED SYSTEMS Two systems are proposed in Phase I. Both systems will be designed to convey Q100 flows. The proposed westerly storm drain system will continue from the existing storm drain in South Highland Avenue at San Sevaine Road easterly to approximately east of Hemlock Avenue. The existing laterals located at the intersection will be constructed to ultimate catch basin locations. This drainage study predicates that all on -site private development generated flows will be intercepted and the conveyed to this storm drain system by pipe. No surface flows onto South Highland Avenue will be allowed except for minor landscape areas abutting South Highland Avenue. The proposed easterly storm drain system is designed for Q100 flows generated from the drainage area of Knox Avenue to Citrus Avenue. In the interim condition, the proposed easterly storm drain system will not have an existing system to join, therefore an interim catch (burp) basin on Knox Avenue is proposed for out - letting undeveloped flows. As a result of the interim outlet, development within the drainage area will be restricted because of the out - letting velocity from the burp basin. With the entire drainage area undeveloped, the Q100 rate is 33 cfs. Utilizing a 10' catch "burp" basin with a standard 1' opening, the out - letting velocity would be 3 fps. Therefore any increased flow rate will have a higher unacceptable velocity. Proposed developments within the drainage area will be required to either modify the burp basin or extend the outlet of the storm drain southerly on Knox Ave. This system also predicates that proposed development will be required to contain most (refer to the Easterly Storm Drain Hydrology Map) of the on -site flows and connect to the proposed storm drain system. c ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SO. HIGHLAND AVE STREET WIDENING PROJECT * * Q100 HYDROLOGY - KNOX AVE TO CITRUS AVE * * FN - SHIEAST * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: SHIEAST.DAT TIME /DATE OF STUDY: 16:51 04/11/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 (:: SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.050 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.550 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 33.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.60 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 10.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 900.00 ELEVATION DATA: UPSTREAM(FEET) = 1512.00 DOWNSTREAM(FEET) = 1495.00 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.217 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.484 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 6.90 0.98 0.10 32 10.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 27.24 TOTAL AREA(ACRES) = 6.90 PEAK FLOW RATE(CFS) = 27.24 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< MAINLINE Tc(MIN) = 10.22 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.484 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 1.00 0.98 0.10 32 Naar SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.95 EFFECTIVE AREA(ACRES) = 7.90 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 7.90 PEAK FLOW RATE(CFS) = 31.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1485.00 DOWNSTREAM(FEET) = 1483.00 FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.41 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 31.19 PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 10.96 1 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 1230.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< «« MAINLINE Tc(MIN) = 10.96 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.29945.8 3 /. Z _ / (o C f s (:: SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN, COMMERCIAL A 0.30 0.98 0.10 32 (0.3 /¢ 2)•/¢ 6 r /.acFJ COMMERCIAL A 3.40 0.98 0.10 32(14 /¢.Z)•/ 6 3 GY< COMMERCIAL A 0.50 0.98 0.10 32k.S/4 :?)•/4 ;A, /, 84F SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 15.88 EFFECTIVE AREA(ACRES) = 12.10 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 12.10 PEAK FLOW RATE(CFS) = 45.75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1483.00 DOWNSTREAM(FEET) = 1478.70 FLOW LENGTH(FEET) = 520.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.21 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 45.75 PIPE TRAVEL TIME(MIN.) = 0.94 Tc(MIN.) = 11.90 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 40.00 = 1750.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.092 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.40 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 15.82 EFFECTIVE AREA(ACRES) = 16.50 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.98 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 16.50 PEAK FLOW RATE(CFS) = 59.31 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1478.70 DOWNSTREAM(FEET) = 1474.80 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 10.54 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 59.31 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 12.53 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 50.00 = 2150.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 12.53 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.967 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 4.20 0.98 0.10 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 14.63 EFFECTIVE AREA(ACRES) = 20.70 AREA - AVERAGED Fm(INCH /HR) = 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 20.70 PEAK FLOW RATE(CFS) = 72.08 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«<« » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1474.80 DOWNSTREAM(FEET) = 1470.00 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.38 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 72.08 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 13.02 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 60.00 = 2510.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.02 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.877 SUBAREA LOSS RATE DATA(AMC II): 93.9 - 7e./ = 2/ S 6fiLf DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL A 0.60 0.98 0.10 32( 63)• = /9C FS COMMERCIAL A 4.60 0.98 0.10 326/6,9) • 2/.$.= /4.5CA COMMERCIAL A 1.70 0.98 0.10 32 2/.8 =S.¢Cf; SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 23.47 EFFECTIVE AREA(ACRES) = 27.60 AREA - AVERAGED Fm(INCH /HR) = 0.10 (:: AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 27.60 PEAK FLOW RATE(CFS) = 93.89 (:: END OF STUDY SUMMARY: - TOTAL AREA(ACRES) = 27.60 TC(MIN.) = 13.02 EFFECTIVE AREA(ACRES) = 27.60 AREA - AVERAGED Fm(INCH /HR)= 0.10 AREA - AVERAGED Fp(INCH /HR) = 0.97 AREA - AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 93.89 END OF RATIONAL METHOD ANALYSIS c c t„" ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * SO. HIGHLAND AVE STREET WIDENING PROJECT * Q100 HYDROLOGY - SAN SEVAINE EAST TO HEMLOCK AVE. * FN - SHIWEST * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: SHIWEST.DAT TIME /DATE OF STUDY: 12:54 04/18/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- *TIME -OF- CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.050 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.550 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.5500 SLOPE OF INTENSITY DURATION CURVE = 0.6000 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER - DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET - CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.67 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER- SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 • » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME - OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 880.00 ELEVATION DATA: UPSTREAM(FEET) = 1446.00 DOWNSTREAM(FEET) = 1424.60 Tc = K *[(LENGTH ** 3.00) /(ELEVATION CHANGE)]* *0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.627 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.647 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) COMMERCIAL A 9.00 0.98 0.10 32 9.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 36.85 TOTAL AREA(ACRES) = 9.00 PEAK FLOW RATE(CFS) = 36.85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » »>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1417.00 DOWNSTREAM(FEET) = 1414.00 FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.62 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 36.85 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 10.27 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 1210.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« < MAINLINE Tc(MIN) = 10.27 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.471 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL B 4.60 0.75 0.10 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.75 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 18.20 EFFECTIVE AREA(ACRES) = 13.60 AREA- AVERAGED Fm(INCH /HR) = 0.09 AREA - AVERAGED Fp(INCH /HR) = 0.90 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 13.60 PEAK FLOW RATE(CFS) = 53.63 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« < ELEVATION DATA: UPSTREAM(FEET) = 1414.00 DOWNSTREAM(FEET) = 1411.50 FLOW LENGTH(FEET) = 320.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 9.01 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 53.63 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 10.86 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 40.00 = 1530.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 81 > »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 10.86 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.323 78- lc" 25 42 c:/;Z SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN, COMMERCIAL B 0.50 0.75 0.10 56( 5/76) • 25 /. 8GF,f COMMERCIAL B 3.90 0.75 0.10 56f V26) ZS = /8.'9 CA: COMMERCIAL B 2.60 0.75 0.10 562, 6/7. 2S 9 iG SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.75 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 26.76 EFFECTIVE AREA(ACRES) = 20.60 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.85 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 20.60 PEAK FLOW RATE(CFS) = 78.58 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 31 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 1411.50 DOWNSTREAM(FEET) = 1409.90 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 15.11 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE - FLOW(CFS) = 78.58 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.93 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 50.00 = 1600.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW «« < MAINLINE Tc(MIN) = 10.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.305 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN COMMERCIAL B 2.10 0.75 0.10 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = 0.75 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 �"' SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 7.99 EFFECTIVE AREA(ACRES) = 22.70 AREA - AVERAGED Fm(INCH /HR) = 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.84 AREA - AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 22.70 PEAK FLOW RATE(CFS) = 86.23 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 22.70 TC(MIN.) = 10.93 EFFECTIVE AREA(ACRES) = 22.70 AREA - AVERAGED Fm(INCH/HR)= 0.08 AREA - AVERAGED Fp(INCH /HR) = 0.84 AREA - AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 86.23 END OF RATIONAL METHOD ANALYSIS c • SHIEAST.WSW T1 SOUTH HIGHLAND AVE WIDENING 0 " EASTERLY STORM DRAIN - KNOW EAST TO 400' EAST OF CATAWABA T3 FN - SHIEAST SO 700.0001466.000 1 1470.000 R 922.4801469.000 1 .013 .000 .000 0 7X 927.1401469.050 1 2 .014 1.900 1469.800 80.0 .000 R 984.8001469.720 1 .013 .000 .000 0 7x 986.3001469.740 1 2 .013 19.900 1470.490 70.0 .000 R 1321.6701473.670 1 .013 .000 .000 0 7X 1326.3301473.720 1 3 .013 12.800 1474.220 70.0 .000 R 1721.6701477.670 1 .013 .000 .000 0 JX 1726.3301477.720 1 3 .014 13.500 1478.220 70.0 .000 R 1949.3301479.920 1 .013 .000 .000 1 R 2169.4701481.570 1 .013 .000 .000 0 JX 2170.9701481.580 1 2 .013 1.000 1482.330 80.0 .000 R 2227.0901482.000 1 .013 .000 .000 0 7X 2231.7501482.530 4 3 .014 19.200 1482.780 70.0 .000 R 2530.8301484.200 4 .013 .000 .000 0 t olomiksH 2530.8301484.200 4 1484.200 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 co 3 4 1 .000 2.000 .000 .000 .000 .00 CD 4 4 1 .000 2.500 .000 .000 .000 .00 Q 25.600 .0 Oak Page 1 H # r . al 4 * o O o O o O o 0 0 La * * ••4 a * * 3- a)* W W W W W W W W W • * U2 * P4 a a a a a a P4 a W * O $4 * H H r-I H r-I H H H H H .- I H .--I H .--I H ri H * Z a * 1 a 1 a 1 a 1 a I a 1 a I a 1 a I a a H * * o o O o O o 0 0 0 0 0 0 o O o 0 0 0 * N N* O co O O O O O O co O O O O O O O O O -H * * E * 1 * 1 1 1 1 1 1 I 1 I * * 4 - 1 • 1 r1 * O 1 0 0 1 0 0 1 0 0 I 0 0 I 0 0 I 0 0 1 0 0 I 0 0 I 0 VD * 3 A r-1 * O O O O O O O O O O O O O O O O O O 0 * r0 * 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 O * a) H G4 * N * Ia f-i P4' * 01 * 0.1 0 1 # I I I I I 1 1 I I H * I *\ E 1 * 1 1 1 1 1 1 1 1 I d * •-1 (z, * O O O O O O O O O * 4 1 - * 0 M 0 d 0 M 0 M 0 M 0 M 0 M 0 d' 0 M * C D • Z * O . 4 O .-4 0 r4 0 ` 4 O H O H I O H O H OH 0) * •r-I (6 e * • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 1) * • 0 . ) . •. * m • M • M • M • M • M • M • M • M A * • a., A 1 * 1 1 I 1 I 1 1 1 1 * (1, 1 * 1 I 1 1 1 I 4 1 I * 0 a* * E 4 A* o o O 0 0 0 0 l0 0 0 0 0 O M * .4) * O O O O O 0 O <' O O N 0 0 0) * 3� E * . • . # 0 _H # CO M N N r-) * ,-1 3 O * * (i, I z, * I 1 1 4 1 1 1 1 I * * H I • 7.. * 1 1 1 1 1 I 1 4 1 * IO * O O O O O * U ,y' a) # C- O N O 10 O 10 0 00 0 CO 0 01 O 01 O 0 0 * • -I J-1 '0 # CO • CO 0 CO • CO 0 l0 • 10 0 d' • d• 0 N *• I 0) 0 A * N N N N N N N N N a', * o I Ora # 1 1 1 1 1 1 1 I 1 # I j: * 1 0 1 I CO 1 I H 1 1 l0 1 I H (n 3 * $-1 1) * 0 0 0 H 0 l0 0 r-) 0 0) 0 01 O h O M O h o z F * 0) 0) Q * 0 • d• 0 dI 0 • 0 H 0 • 0 h 0 • 0 01 0 • w • m -4-1 E 0 * Cl) 1 W W * h h G CO 04 * I U) * 1 I I I 1 I 1 I I O ,-1 0 * • I * I I I I I I I I I HI # ,>1 r-I * d' H (n 0 10 0 l0 N l0 N 00 (n h N al M 00 to (/) W E * 01 W * h d' r-1 HI M H d' 0 HI 01 0 0 (n 1-1 CO 0 0 0 S a e-1 0) # N • G4 a) H 0 * 0)'0 .T. * N d h h H 0) 01 M m m m l0 h r - 1 .7 W 41 * Ci ?a # h r- h h h co oO 00 0) O * W (7 * d' d' d d' d4 d' .40 d' d' f' Z a - * * r1 r-1 H •-1 r1 H r-1 r•1 r H C a 0 * 1 0 1 I 1 I I I I I I i ' � j ° CO d W d' * 1 0) * 4 I CO d' I (n M 10 M I d' N I r- N I CO 01 I 01 01 I M LO I h W ri 0 * '0 5 * r- 01 r- N l0 01 10 (n l0 rl l0 01 0 h 0 h l0 d' 0 Q 0 # H (0 a,' * • H • N • H • H • ,-I • 0 • 0 • 0 • 0 - r 4 E * a" O , * N 0 N 0 N 0 N 0 HI 0 r-4 0 r-1 0 r-I 0 0 v 0 E * u) * H I Cr) Cr) * 1 * I I 1 I I I I I I U * — — — — — — — — — — — M M * 1 # CO I CO 1 N I N I O I O 1 01 I 01 I CO I 1 Z W * * N N 0 0 N N M M d E 3 * ri cn # • H ) 0 * a) a * r) r4 r 1 rd 0 0 CO CO to 40 C7 3 Z Z * > W * H H ,- l H r-1 r-1 a 4-1 H 1 * 1 * 1 1 1 4 1 1 1 1 I (1) W * 1 * 0 1 0 I 0 I 0 I 0 I 0 I 0 I 0 1 0 I 01 0 Z * * 01 01 O O H rl M M CO a) H H * * • 01 �$ r a * V) * M m N N N N 01 01 (n . 10 WW ( * 01 U * 01 01 0) Cr) h h LO ul .4 U p * * (0 4 E * * a U) * 1 * 1 1 1 1 4 1 4 1 1 o 0 * E # 1 * 0 1 0 I N I 01 I l) I 10 1 h I N I H I Cr) H* * 0 H M N l0 r- 0 M t:41 x 7 to * a) * 0 d' h 00 N d d' l0 .4 O (7 ,- l * 4 1 a) * 0 d' d' 10 h r-I N (n l0 Si H 1:4 1 * (0 H * N N h h h 00 OD 00 00 a ]C W * 3 W * d' cP d• d' d1 d' d d' d E Z* * H r4 ri r•1 H H H ■1 ri M V] 44 # 1 * 1 4 1 I 1 1 1 1 1 * * 1 * 0 1 0 1 N 1 01 I In 1 d' 4 h 1 N I H I O # ,() * O r OD 0 0 01 in M H (- * E, * 0 d' 10 H 00 h h 0) h — # p * a) W * d' In In l0 h h 00 h 00 * A-- * * * * 1 * 1 1 1 1 1 1 1 1 1 * * 1 * 0 1 0 1 0 1 0 1 0 1 0 1 0 I 0 1 0 I * a) # O (n O to l0 N d' r h N O h N 01 3 * JJ (1, * 0 M 0 h 0 r-4 h M h H 10 h h 0 1/40 h h 0) (/) * S-1 > O* • H • 0 • ri • M • rI • O • H • 0 • 0 * a) a) -1 * l0 0 01 H 0) 0 01 r-1 0) 0 M H M 0 h r-1 h 0 * > r-1 U) * 1.0 • 10 0 1.0 • 10 0 10 • h 0 N • r- 0 h 4) * 0 W * rzli dV • .4 V. • dV d • d' d' • d co * H 4 * r-1 H H H H H HI ri H C N * 1 0* 1 1 1 1 1 I 1 1 I -rl * 1 * 0 1 0 0 I pC 0 1 0 0 1 µ, 0 1 0 0 I 01 0 1 0 0 1 a' 0 1 0 ,[ * 0 * 0 CO OD E d' to O E O r- r- E M d' h E M 0 U) # 0 E * O d' .4 u) H 10 00 U) M M l0 Cr) M M l0 u) M 0 * •r1 0) * # 4-) r1 * 0 N N E h N d• E l0 to H E 10 (f1 H E l0 M W * r0 W* 0 N N 0 N (n CO 0 CO M N 0 N 01 N 0 N N H * U -* h N T 0 41 dl 0 01 M r-4 0 -4-I m '-4 0 H N (z, * * N * a U* 0 0 0 0 o O * 4-) a 9 a) * 3 ) "A * w a a w a M * 0 k >1 * c H ri H ri H ri H r-I H r-I 0 • •• * z a E* 1 a 1 a 1 a 1 a 1 a I a H 1 * * 0 0 0 0 0 0 CD 0 0 0 0 +' 0) * 11 1% * 0 0 0 0 0 o 0 0 0 0 0 E * N N * •r1 * * E * I * 1 1 1 1 1 I * • * .0 • 1 H* 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 10 * 3 A ri * O O O O O O O O O O O o * 0 l 0 • O • O • O • O • O O 4' (i) H C4 * N * CO 1 * 1 * ro S-1 X * O\ * PI 0 1 * 1 1 I 1 1 I ri * 1 * \ E 1 * 1 1 1 1 1 1 .4 * 4-) k. * 0 0 0 0 (D 0 * 4 I - F � * 0 M 0 M 0 M 0 VV O M O * la) • Z * O r I 0 r-I 0 r-1 0 ri Lfl r-I Lfl W * •r1 CO = 4' • 0 • 0 • 0 • 0 • 0 J-1 * N •.i * M • M • M • M • N • N Q * x Q 1 * 1 1 1 1 1 I * 0 I a* 1 I 1 1 1 I * E .0 A* o N 0 0 01 0 0 LC/ 0 * J-1 * 0 O 0 0 01 0 0 N O * g 'C * 4 0 •r1 * N r-1 H * H 3 0 * * C4 1 z* 1 1 1 1 1 I * * ri I Z* 1 1 1 1 1 I * al * 0 0 0 * 0 .' (1) * 0 0 0 0 CO 0 00 0 N 0 N * •rl .11 'C3 * N • N 0 ri • rI 0 N • N * 11 a * * •ri Ill 0* N N N N H H * li A $4 * 4 * U I W* I 1 I 1 1 1 1 j * I 01 1 I V 1 I M I L 3 * Si 5 )) * O in O 00 O O O h O 01 0 0 U Q * a) N 0. * O • O 0) O • O 0 O • O VI Z 4 4' a Q Fri * h lfl l0 ri E U * 0) w * 0 H H * I C/) * 1 1 1 1 1 1 0 1-1 0 * • I * I I I I I I •r1 * >1 H * h .4 O r-4 .4 141 Ol N 01 N In 0 • (z1 1 � * b r.1.1 r.1.1 * r-1 0 Cl 0 N N ' 0 00 ri u) H M * (1) '0 x 4 ' CO ri 01 0) 0) Ol ri r-I > C4 * [: 44 * 00 0) CO CO Co 01 0 * w C 4 V V4 V' v ' V ,I� Z a , * * •-4 ri r-, ri ri ri 0 O a O * 1 * 1 1 1 1 1 1 err.. H to 0 * C1) c!' w VI * 1 N* Lfl 1 N N I 10 N 1 1.11 N 1 01 N 1 01 N 1 F.1 H U * '0 > * '0 V (0 d• 10 V' (0 d' d• M C4 ., 0 * H IIS 4 * • 0 • 0 • 0 • 0 • 0 H •• W E-I * (1) * 0 0 0 O 0 H 0 CO CO * 1 * 1 1 1 1 1 I — U a M * 1 * 00 I 00 1 d' 1 d• 1 N 1 N 1 1 z E 3 * H En 4, .4 M M N N C7 (0 3 0 Z * > I * 1O 10 10 10 Ln In a N HHy I * 1 * I 1 I I I I CO W * 1 * 0 I 0 1 O I 0 I 0 1 0 1 C1) A Zi 4 ' * CO CO CO CO 10 10 N H H * * 3 to 3 ! �j f) V V' * !n * Ln L 10 In Pp * aw V VI Cr N N 1 m E * * P4 Cn * 1 4, 1 1 1 1 1 I qo�* 2 E * I * 111 M 1 lfl 1 ON 1 d' 1 O) 1 LO b4 CI ����� > m 4' 0) > * LO LO w CO 1O d L.10 0 0 1-1 * J) (1) * N Co Co CO 01 0 Si H (Y, 1 * ro r-1 * CO 00 CO CO CO O) a x H Z * 3 w * � H � H X Cn C4 * 1 * 1 1 I 1 1 1 " 11 * 1 * Lf) 1 /+1 1 10 1 01 1 VV 1 01 1 O 4 ' ..0 * 0) 00 CO 10 CO N C1) * .l. — * l0 01 O 00 al d• 1, R, E * * 11) C4 * h 10 N 10 10 10 * n * , * 4' * 1 * 1 1 1 I- 1 I * * 1 * 0 1 0 1 0 1 0 1 0 I 0 1 * N * N Ln h 00 In O M 10 0 * J-) a* O\ h LC/ h La h 0 N lf) In N 3 * 1.1 > 0 * • 0 • 10 • 0 • M • 0 * 0 0) ri * of O r-1 O ri O N ,-9 (NI O V' * > H C/) * N • 00 0 co • 00 r-I co • co J-) * 0 w * .4 .4 • d' V' • 4 V' Cn * H .0 * ri . -I ri H I-1 ri N * I U* 1 I I 1 I 1 •-1 -It I * 0 1 0 0 1 14 0 1 0 0 I H ,L.' * 0 * M VV h E h N Ol in 010 01 0) * 0 E * I•) ri 'Cil En 01 r-1 0 C1) h 0 00 * •H N * lc 4-) H* 01 0 O1 E 0 l0 h E H 0■ o 4 * ro w* •V' N 10 U h to N U M of M 1-7 * .1) \ 4' 01 N 1_, Z ri N Z N N Lfl H * C1) ■.a * ri N N N N N 44 * * X x x x ,--I O H H N i O O O O O O O M X O >+ F ,--• w 0 0 E F E E 0 •• W M 4.1 w 0 0 H 0 H 0 H 0 H 0 0 0 0 0 0 7ry 0 0 0 0 0 a 0 0 0 0 0 0 N a a O ' M o 0. • o iQ; O • 0 • a 0 _ M • M M • * O * O * O * 0 co H CO H N H t H N o� a a a a 0 w O w w O w W o w w o w N a 0 0 a 0 a 0 0 a o a 0 0 a 0 a 0 0 a 0 00 `V 0 0 00 <r0 0 00 •�0 0 00 V 0 00 01 r O I O O I O O I • • 'y O O I • z O El. a a E x • w0 U) H U) 0 U) 1-4 Co o CO H CO o CO H CO o 4J --- 00 o po 0o 0 00 00 O po 00 0 00 N ,7 H O M O H • O H O M 0\ H • O H O M N H • O H O 0 N H 0 0 O O* I W O* 1 O* 1 N O * I N • Wo E. ao a . ao 5 ,4 U1 cr H H H H ,1 3 O O O O O O O O O O O O H 01 a 01 a E-- 4 lfl H o a›. 4 0 0 0 0 sr z F o 0 0 0 11 O N U * 0 * Ol * 0 * U) H 0 F" 0 ,1 0 0) O N M 0 0 H •� O 0 0 f 01 .-1 01 ,1 � w - , 0 a) w .-1 m < > 0— 4 0 d. M 0 M M 0 d. 1 .] >4 w 0 •1 •1 .-1 .1 4-1 H 0 1 0 H H o z o z o z o z o z o z o z z 0 H 4 a 0 H N N N CO N Fx1 0 CO a 10 10 l 0 a 10 H " 3a 0 3 4 4 4 3P. / a 1 a 0 0 E 0 * a -14 * a . ] C7 H a N P4 a,' 0 U I IN c I N ' I M P4 U I 0 F E E F w 00a CO w 0 3 �r4 a a a m a 3 a z 0 3 * * * * * * * * 3 * P4 N 0 H x a 0 0 0 F 0 0 0 E w E 0.1 U.1 U.1 U,1 U.1 0,1 U,1 0,1 a U'-1 w 0 w w w w w w w w w w w w 0 C7 x 0 1 0 U) U) co U) U) U) U) 0 w 0 Z * * * * * * * * * w CO fa w H w Fo F0 E0 Fo 0o E0 Fo E0 w 0o a' H a a a o a o a ,n a N a .4 a r a [V a r a pa N co co Pa 3 H 0 W 0 0 0 r r- 10 i.' 10 H N 3 a 0 0 z u a; al o, a; r n Z N • 0 Z N w,1 (1' 0 P4' H10 H10 H4.0 H10 H10 HN HN H M H F w 0 , P: 0 sr sr sr 44. sr sr .4. sr 0 sr S a w w a 0 0 w H H H H H H '-1 H H O 0 0 0 0 0 x l 0* o* o* O * 0 * o 4 0* o 4 o 0 * 0 H < 0 0 000 g 0 w 4 zo zao z Z Z Z Z Z 4 Z W H O in 0lf) C... H ,'N H 0 0 0 0 a 0,1 0 co O M 010 0 0 0 10 0 0 M x Pa x a x H • H • H • H • H • H • H • H • p; H • E o E N F N E <r F 10 E ,1 E 10 E H 0 F lo M ,1 N N 0 x W U) r.4 0 4 N 4 N a,' CO 4 OD µ' N 4 N 4 N U) 4 N a E 0 1 F F r` Ern Ern Ern E 0 E M E M E- E N H x W 0 0) Z W a U) U) U) U) U) U) ,1 CO , CO ,1 0 CO ,1 0 0 0 0) w 0 F 0 E-, 0 3 30 4 z FC Z Z 4 3 z� F E O F 0 O E F O F E 0 E a' Z 4 a' H ry' a' H µ' K4 H µ' a' H 4 a. H 0 Q A U 0 00 U Q U Q U Q U Q U Q Q 0 r.., .N mm 41u) ZO 4o Zu 41m Z o 41m m O 0 0 w 0 - w 0 41 w 0 � w 0 --0. O C01 1 1 1 CO a ti ti a 0 O W ti PC 0 Z H 0) 0) 0) a' rf 4 KC RC 4 4 4 4 0, H H H U) U) U) U) U) CO CO CO CO 3 zz a H N CO H H H H H H H H H 3 • u F <r VI 0 0 0 r4 N M sr In 10 N CO rn C u) 2 z 2 0 0 0 0 0 0 0 0 0 • U 0 z �"' H H 1-4 � z z � E z z z z z z N 0 U 0 2 E 2 Z E E E E 2 z z z w w w w � -1 w w w w q R ; w H H H +' Z .'S'-� X z " Z J.' Z a RC 0000 a Q Q a s a a s a s a a H UU 000U 41 x x w w w w w w w 01 w ... .... -.,,, ............... w., ..w..>+.Wrou+ *u.�mn +.•YMVC...... .. :� : Y..'.. \.. .. �....s .:Jre.+ - r.� .. -- ....,... ,......xw.a..xu: +•w,..... - :A.. 3. "• . ...«. -..., . r- .- .- .�+�arn.�av«.uxnPmen ,. .- w.w...:�w*w - "20. M x x x 0 0 .i io o io o I a' <r 0 E. s 1-1 a H a z 0 o x o x o W 0 0 o a 0 0 p' 0 Zo 0 RC o FC o RC w M • CO • * 0 * 0 H CO H r x a a . a o al al o 4o a o 00 00 '0 C7o 00 .4 0o Oo o o E • o o E• o o • M x E 0 ' H 0,70 ' O H 0 0 ] O • • 0 O * H O HO O M M H CO 0 H O H O* H O M CO H O 1 O H O W Pi N W W 124 N ( 1', W O CO W CO 0 o 4r Z � WN H H H H U) ‘M O O 0 $ d 0 O .-i 0 0 a a 0 0 o 0 * o * N M ci M C1 * a a M M M m d. M \........ zo Zo Zo z zo zo z H E V) N N H 1 o 1 0 0 E E * a a * C7 .-i .-i U I N I M a, a a (I) 01 * * * * * * * 3 z 0.-i 0H 0i 4 0r4 0*V E. 0 ' a C U) U U) U) U) CW/) W * * * * * * E0 E0 Eo EEO E-E0 E. 0 E0 W PG N C4 r (Z W C4 0 p' M p.' o p' 0 a O1 H H N N . 2 N i .4 O H N H OO H 0 H CO H CO H CO H CO C4 .a <r w W * 0* 0* 0 * 0* y 0 * 0 0 U Z Z M Zr z N z a\ 171 Z M ,Z M a' OM 0ct. 0o1 00 ON ow Om VI H • H • H • H • H • H • CO H • Ern Eat Eo EN E - E . - 1 E- 0 X Eo RCS µ•e 4:r 4 4M 4 r IX 4 e U) Ern E. E.-4 E N EN E1nO E.Ln V) .-I V) N V) N U) N U) N U1 N U) N a. rrr��Q W E 4 4 z 4 RC z 4 4: X 4 3 xA x0 FA x0 FA x A wA 4 • V) RC Cr) U U) µ• V) U V) 4 CO C V) C.) "--• W� -- W� - W- >+-- a] a X a] O a] U) 0' 4 4 4 4 4 4 4 U) m m m a) a) cri H H H H H H H 0 r-1 N M d III ■O .--1 . . ci . HI H 0 OW SOW 0 ° ° ° ° ° ° Z z z z z z z �Z 0 Z 01 �Z 0 Z 01 01 01 Z X X 01 01 01 • 01 a 01 01 01 a 01 ▪ W 01 01 01 01 01 SHIWEST.WSW T1 SOUTH HIGHLAND AVE WIDENING 0 T2 WESTERLY STORM DRAIN HYDRAULICS T3 FN - SHIWEST SO 5500.0001408.230 1 1411.230 R 5566.6901409.780 1 .013 .000 .000 0 JX 5571.3501409.900 1 2 .014 7.600 1410.440 90.0 .000 R 5603.1801410.640 1 .013 .000 .000 0 JX 5605.1801410.690 1 2 .013 1.800 1411.260 70.0 .000 R 5632.9801411.350 1 .013 .000 .000 0 JX 5634.9801411.400 1 2 .013 23.200 1412.540 70.0 .000 R 5639.9501411.500 1 .013 .000 .000 0 R 5914.3101414.000 1 .013 .000 .000 0 JX 5918.9701414.540 4 3 .014 16.700 1415.040 70.0 .000 R 6329.1601417.660 4 .013 .000 .000 0 SH 6329.1601417.660 4 1417.660 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 2.000 .000 .000 .000 .00 CD 3 4 1 .000 1.500 .000 .000 .000 .00 !"` CD 4 4 1 .000 2.500 .000 .000 .000 .00 Q 36.900 .0 c Page 1 r+ * CL V* o o O o 0 0 0 0 0 co m * 1.) a * * 3 v* W W W W w W W W W cv * ift, a a a a a a a a a W M * O 11 T1 * rl H r-1 H r-I H r-1 H r-1 H r-1 H i-4 H .--I H ri H ems. 0 * z a E * I W l a I W 1 a 1 a l a I W 1 a 1 a /1111W a * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E ) * N N * O O O O O O 00 00 O O O O O O O O -rl * * E * 1 * 1 I I 1 1 I 1 I I * * 1-1 • 1 H * 0 1 0 0 1 0 0 1 0 o 1 0 O 1 0 0 1 O O 1 0 0 1 0 0 1 O ID * 3 p r1 * o O O o o O O o 0 0 0 0 0 0 0 0 o O o * rd * o • o o • o • o • o • o • o • o O * N H (:.. * N * CI) 1 * 1 * Id 11 bC * O) * a 0 1 * 1 1 1 1 1 1 1 I I .--I * 1 * \ E 1 * 1 1 1 1 1 I 1 1 I d * 4 (IA * O O o O O O O o O * ,0 1 - * O M o m O r'1 O M O d' O M O M O (id O M * CT • z * o r-I O r-I OH OH OH O ri O r-1 OH O rl I1) * -rl (d e * • O • O • O • O • o • O • O • O • O 1) * O) -rl * Cr) • M • M • M • m • M • m • M • M rd * x A 1 * 1 I 1 1 1 1 1 1 I Q * * p1 1 * 1 1 1 1 1 1 1 1 I * O CL * * E ,C 0* H N u) N )40 N C- N N O CO O O M O * U * In r-1 d r4 N H O) ri d O O) O O 01 O * 3 'Ti E * 0 - * N N N N N N r-I N r I i-9 r-1 * r1 O * * (x1 1 Z* 1 1 1 1 1 1 1 1 1 * * H 1 z* I I I 1 I 1 I I 1 * Id * 01 M to 10 O O * U 4 0) * N 1 40 N ID N d N N N 0 10 O 10 O d' O d 0 * -r1 1) 'd * CO • CO • 00 0o • CO o r • t` o N o * 1-) p, p * • 9-1 • 9-1 • ,-♦ • r-1 *• -4 1) O* N N N N N r-I N N N N * 11 121 11 * * U I w* 1 1 1 1 1 1 1 1 I * * I ,0 * I N 1 10 1 01 1 M I I CO 1 I M 1 to * 1.1 > 1J * O M O m o O 10 O N O 10 O 01 O to O d o C7 * 4) 11) (], * o • O • O • O • o CO O • O M O • o N • zi * a rl 0* • N • N • N • N • M • M ' H * W * N M M ri E * (1) W * � CO * I C/) * 1 1 1 I I 1 1 I I }y H * 0 t * • 1 * 1 1 1 1 1 1 1 1 1 - * } H * O O) O 0) 00 If) ( ID M CO O d d m 10 N M N CA W * b) W * O) N N d 10 N 0) ri O O to d• O) O o M d' O • ■-• * 1-I • w 0) H * (1) 'd x * M .4 d •1 in I!) In 10 t0 mo • J 04 9 C S-I 4 ' H < - 1 H ,--I 9-1 r-I H P 0 * W U' * d d d• d' d' V d d g z 1 49 H 9-1 9I r-I r-1 9-1 91 9-1 H ,YW' 0) O a * I * I I I I 1 I I I I H 10 * U) d1 W * 1 N* to 1 d1 M 1 N d• I C 0- 1 CO M 1 d Cl I 01 N 1 10 M I M M 1 0) 01 r 0 * '0 > * M 00 N r- O) LO to d d• 10 O) M O) M 00 M 00 O) O FC * rl rd a * • ,- I • ,' r-I • .-1 • 9•9 • , -I • 9-1 • r-I • O 1-7 •• w * 0) 0) * m O m O N O N O N r O 4 O H O '-1 O .--1 O N ,7 * U)* H 1 CO (1) * 1 * 1 1 1 1 1 1 1 1 I U U * — — — — — — — — — — — (>~ H * 1 * 01 1 N 1 In 1 ri 1 0 1 (V 1 N 1 10 1 to 1 1 z W I - ] * * 10 •* N H IO ri H CO 0) • ri FC 9 0) a * d' d r) c') N 9-1 r-) 0 0 U • 3 0 g * > w * ,-1 9-1 H 9-I 9-1 9-41 r1 9-1 H )-1 H * v 1 * 1 1 1 1 1 1 1 1 I a (1 Z * Cn * 1 * 0 1 0 1 0 1 o I o I o I o 1 0 1 0 1 (1) 0 Z * * N N N N N 10 10 CO 01 11) H H * * • b) 3 * En * 10 t0 10 10 t0 00 CO 10 t0 ro * 01 w * m eo cc) 00 00 t� � 1 - r- ..- 0 * U r FCZE * a C!1 * 1 * 1 1 1 1 1 1 1 1 1 o * E * 1 * O 1 If) 1 O) 1 O 1 L - 4 1 N 1 d I 1 N 1 CO H * * to 10 M 10 L - 4 00 N N 0) $-1 1-1 x * 1-1 * to 0) r - N t0 tO O N If) rn x > CO * ID > * O 0) 1 * 1) 0 * co O r N N M d d cr. 14 H (X I * (1 H * 9 9 9 9 I H 9 9 r a x W * 3 W * d1 d1 d1 d d d1 d1 d d E Z * * 1-1 r-1 ,-d r-1 r-1 r-1 ri H r-1 • 0 1 r . , * 1 * 1 1 1 1 1 1 1 1 I 1 a 6 * 1 * 0 1 d 1 00 1 M 1 ,-1 1 N 1 d 1 d 1 N 1 O * 4 * N 10 CO M N CO 00 M d U) * 1-) * M M d t0 00 10 M in N * C)1 E * 0) w * N N N N N M m M m * 0 * * * 91 I * 1 I 1 1 1 1 1 1 I * * 1 * O I r1 1 -4 I t` 1 O 1 0 1 O I , O 1 O 1 * (1) * M N o N 11) N N N 00 O N d T 09 to * J-) a * N M 10 m Cl ("1 10 M C 1 0) M 1.0 O 10 M m O CO * 1-) > O* • N • N • N • N • to • N • In • N • Cn * N 11) r1 * 00 O CO O O) O O) O 01 N 01 O o N 0 O r-1 N * > rl C!) * O • O • O • O •O O O • r-I 0 ri 44. r-I O C E - 1 * 0 W � * d d 'Cr • 4 1 d • d' d1 • d1 . (1) lc H ,0 * .--I c-I 9-41 ,-1 H 9-I c-I r-I c-I 1 * I U* I I I I I I I I * H * I 99 O I M M 1 0 M 1 N to 1 to O 1 (Y. O 1 0 O 1 (Y, O 1 0 O 1 (Y. X * 0 * o N r 10 in rn N to al E 1n m w E o 0 co E (1) * 0 E * o o) 0) 0) o) ri rl to 10 CO M 03 ri CO ,-1 0) a) m * •r1 0 * 1.) rl * 0 in in C M 10 0 10 10 E r♦ ri m E In h N E W * 1d W* O H N d , 10 10 U h M O 0 o N M U 4 * 1J \ * lf) in to In In In t0 10 10 H * CO 1 * in tf) tf 1 N In to lf) in to w * N * 0 ,E * 0 0 0 0 0 CO * A .r.1 0 * CO * 4J W * N * * a a a a W CO * 0 $1 > * r-1 H H H r-I H r-I H H 0 * z a E* I a I w I a 1 p4 1 ice, W ,--1 -1, ' 1Mr" •• * * 0 0 o O o 0 0 o O * N N* O O O O O O O O O •rl * * E * 1 * 1 1 1 1 1 * * 1J • 1 H* 0 1 0 0 1 0 O 1 0 0 1 0 0 1 LO * '3 0 ri * 0 0 0 0 0 0 0 0 0 0 0 * Q) • W * 0 0 • 0 • 0 • 0 N * 0) 1 * 1 * ICI 1-1 < * 01 - IL 021 0 1 * 1 1 1 1 I ri * 1 *\ E 1 * 1 1 I 1 I •1 * 4-�) [ * O O O O O * ,E 1 - * O M O M O v O M O * bl • Z * O c-1 0 H 0 r-1 to H tf) Q) * •r-1 fa r- * • 0 • 0 • 0 • 0 J-) * Q) •rI * CO • CO • M • N • N 0 as * x Q 1 * 1 1 1 1 I - IL a I * 1 1 1 1 I * 0 04* * E ,0 Q* O N 0 r-4 CD 0 CO 0 4 1J * 0 L.O 0 H 0 0 ri 0 * 3d E* * • H 3 0* H N N * G4 l z* 1 1 1 I 1 * * ri 1 1 7. E * 1 1 1 1 I * Its * o 0 0 * U A (1) * co O co o co o L.0 0 LD * -r1 Y) '[j * CO • CO • M 0 0 • 0 * 1J 04 * * -r1 (1) 0 4 N N N N N * N A )-I * * 0 1 fr. * 1 1 1 1 I * * 1 ,C: * 1 M 1 r 1 1 M I LI > 1J * 0 CO 0 I. 0 . 4 0 al O o U * Q) Q) P* 0 • O • O O 0 • O • H -lc r-1 A 4, • d1 • - 4 • M d •1 E * d) W * U) * 1 U) * 1 1 1 1 1 r., H 4 0 ■-1 * I 11 1 1 1 1 •rl * H * CO CO tO I. CO '0 '4 N 1O tq W * ri) * H 0 r-1 L� O) O M CO 1O 1.1 a * r4 * + ,7 W * 0 'O f.1 x - lc H e-1 co H H ol M N 01 0 * W Cry * .0 .0 .0 .0 .0 CV Z IX 14 * H H H r-1 e-1 *44111111e 0 H 0 W * 1 * 1 1 1 I 1 H tO * (1) .4 G:] * 1 Q) * 0) 1 if/ O) 1 LC) Ol 1 .4 00 1 r-1 CO I W r-1 U * r 0 y * 00 io CO LO 00 CO CO CO CO A FC * r fa 4* • o • o • o • o H 7.1 FT g + + * > 0) p4 * 0 O O O a) 0 * U) * H V] M * 1 * I 1 1 I I 0 0 * — — — — — — IX H * 1 * 00 1 00 1 00 1 N 1 N 1 1 Z C * , -1 co * to t11 to In LL N HH , 1f * 1 * 1 1 1 1 1 u) W T * 1 * O 1 0 1 0 1 0 1 0 1 M (=I 721 * * 4.O '.O \O Ol fT Q) H H * 3 3 d * 01 * ) * In fn fn )o to x A * 04 U 14 to to tf) M M (4 4 Z E * * W U) * 1 * 1 1 1 1 I * E * 1 * In 1 h 1 01 1 N 1 1 V) H * * m M CO * b1 x y1 0) * Q) 1J N N 0 <1 N 0 0 , - * 1J Q) * L.0 1 .0 CO CO H k H 0 1* IQ H * r e , r N a xw * 3w * .0 .4 .4 d1 E z * * , , • , •--I M CA p4 * 1 * 1 1 1 1 I * 1 01 1 r 1 1 A W * * to 1 1 0 * ,0 * CO \O M N N v) * .1-1 * CO r 0 Ol r•1 * 01 E * * Q) p4 * .4 .4 .4 m d1 * 0 — * * * * 1 * 1 1 1 1 I * * 1 * O 1 0 1 0 1 0 1 0 1 * 0 * O r-1 0 ,-1 0 '.O '.O U) * S-1 > 0 * d• N to 0 0 to In • O • 3 * 0 Q) H -IL ,-I 0 r-1 0 d H .4 0 C E * 0 W * di d1 d1 c- .4 di C!) * H W * I U* H 1 H I H 1 H 1 H I H * 1 * 0 1 0 0 1 0 0 1 pC, O I O O 1 X * 0 * CO r to to ,-1 E N rn to * . 0 a * Ol O) 0) M M fl) 01 c-1 1 44 iJ H * d .4 al . 4 d E co O Ol W * Ia W* M M l4 ri 0 ,-I ■-I N (1) a 1 to LO N H * to to l0 4.4 * r d x 0 x 0 x x x M cs, H 0 H N O O o O O O !y 0 M I O O rn >• H 0 Z Z O H L4 H Cl, H Ra Z W E. H •• 4 a 0 al w 0 O o p o o x o x o w o tc77o aO 0 a 0o O 0o N o y y E a 0 M O �ti O M 0 • m o W O a W O o * 0 . 0 * 0 * 0 ao°l x xr Ht` w >. R, p x w 0 w w o w w a o w w w a o (`) a o O a o a 0 0 a 0 a 0 0 a o a 0 a 0 0 1 Oo sro Oo 0o sr 000 Oo .4 co 00 .4. ° 20 • Zo °.• • Zoo o o o >. RCC FCC �RCC FCC F 04 04 a. x a N )O U] H U) 0 U) H U1 0 U) H U) 0 U) U) H ) O 0 O o p o o p o ) o O P o p o p 0 0 • ( d >, H O M H 0 H O M lO H 0 H O M V H o H O H 0 M VI A w N .* �. 0 W O* I N Q Q O* I lfl O O 1 0 0) FY. H N p In >... � cr. � .4, HI Hi H H H H O 0 O 0 _ o 0 0 0 z'' o 0 0 �r F a a a 0 1 U) M 0) H o a >. d Z 0 O 0 0 O 0 0 0 H 0 * CO * CO * N * N H N CO (� M c-1 CO CO CO CO mow., 0 H >' 01 01 01 N 01 ,1 N w r 0 —, 0 . -I . . . . -I .-4 rM-1 m .4. Z Z o Z 0 Z o Z o Z o Z o Z o Z Z o Z o 0 R. 0 H 0 E H R: E H N U) U) U H Q H a I 0 ( I 0 (1 0 a ( I 0 a H 1 3 a 3 A a a a 3 A 4 E. C.) C7 O * .1, * a 0 H a R, 0 W I N ' I N I N W U I M E. 0 a a H U H W 0 a 3 a 0 3 Z* * * a * * * P. t.4 F H w E F F E F E E E 3 w E 44 F H Z 0 a OH 0,-) 0,-. CJ ri U 4-1 U 4-1 U 4-1 O 4-1 a O .--I U w 0 W >. w w w w w w w W w W w w 0 O x I 0 x I C1) U) U) U) U) U) U) U) U) U) w w 3 Z * * * * * * * * * * 0.I U) (a w H w F0 F Eo F0 Eo P E o FO w Eo Fo ]P H a 04 re) 0x 00 04 , J . a a) a Lrl 01 0 g a 0 0 ac U) U) (p 3 1 > H N I'-. a) 0 \O M Ul H 0 Lfl R: I 0 0 0 co 2 a) 2 a) O O H i r i O 2 sr cr w .-I R : 9 R H O H O H O H l H H H H H .-1 H --I C:4 H c-I H .--1 E w a w d c -4 d• d d d a d d 3 7 E w a OE• F M w .-1 r-1 r-I Hi 1 .-I r i .� w H .HI 0 0000 0 0 S 0 * Z 0 0 * Z 0* Z 0 * 0* 0 * 0* 0 * 0 U* 0* 0 w H o0tnEn G H ›. H W 00 00 OM O� o .-I 0a) Oa) 0a) 04 OM Om x 0 5 x a x g H • H • H • H • H • 1-4 • H • H • R; H • H • MN. --1N 0 CO F F VD EH FM F In EN E .4. E D F F ao CO x w U) •Co 4 )o 4r 40 4o 4 m 4M 4 rn (n 4 .-I 4 -4 (x F F 1 E E Ifl E 1n F in F 10 E. VD F io E 1/40 E 10 E a) E a) (1) In H x W O 0 W Z W a U ) m (n Li) U) 1.t) CO ul U) Irl U) u) (n ul g u) If) a) ul a E. E. (n 3 0... E E H �w7 3 o a 4 Z4 Z a Z4 3 Z a 3 F F O E E O F E O E E E O E � , Z 4 4 H 4 4 H 4 4 H 4 A 4 H 4 te 00-. 0 0 vi 0( Um UCa U UA C 0 J Q UA H O rZ RC U) U) 4 Cl) < CO 70) CO o W `""I r-1 .-4 .--I I 1 1 CO C 0 a 0 0 a 0 7; a 0 o R. 0 Z RI H H H 4 a, 4 4 RC 4 4 < 4 a U) U) U) U) U) CO U) U) to U) 3 zz w r-1 N M , H H H H H H H H H H CO U E c sr 0 Z 0 .-1 N M d In � N co a) 0 • F ��77 RR�7 WW W E z Z 2 0 0 0 0 0 0 0 0 0 0 H Z H N ~) � H H H 0) Z Z Z ) Z Z Z z Z • • 001 H H H k 'w + w , , w -, a S a o 0000 a a a a a a a a a H U 0 0000 01 01 x w w w 01 W w 01 W w w P ask E • 0 O 0 Z o W W a o ao U o 0 0 Zo o m o o H jo rH O HH O 2 • is O W O a ko io to 411 1111110 v rn 3a' z E E U U W W U] to E o E o a4 io a io r N H I H 4, k O O z o z � ° H O H • Crl H • µ'N • Oa'N va ',3 to 10 0. 4 x 4 E. 4 x 0 W U E to H H N C ° z : • w a a w w view * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 17:21 04/06/2006 Problem Descriptions: SOUTH HIGHLAND AVE STREET WIDENING /EASTERLY STORM DRAIN SYSTEM DEPTH OF FLOW CALC - ST STATION 106 +65 FN - CB1 DEPTH ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.005800 CONSTANT STREET FLOW(CFS) = 20.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 33.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.03125 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.54 •+( HALFSTREET FLOOD WIDTH(FEET) = 25.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.00 PRODUCT OF DEPTH &VELOCITY = 1.61 Mrn =___ it ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 17:23 04/06/2006 Problem Descriptions: SOUTH HIGHLAND AVE STREET WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO 1 SIZING CALC - ST STATION 106 +65 FN - CB1 SIZING ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 20.00 GUTTER FLOWDEPTH(FEET) = 0.54 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 3.81 3.21 4.00 3.36 4.50 3.75 5.00 4.14 5.50 4.53 6.00 4.91 6.50 5.30 7.00 5.68 ;' 7.50 6.05 Nrr 8.00 6.43 8.50 6.81 rte` 9.00 7 .18 r 9.50 7.55 10.00 7.92 10.50 8.29 11.00 8.66 11.50 9.02 12.00 9.33 12.50 9.63 13.00 9.93 13.50 10.23 14.00 10.52 14.50 10.81 15.00 11.10 15.50 11.39 16.00 11.68 16.50 11.96 17.00 12.24 17.50 12.52 18.00 12.80 18.50 13.08 19.00 13.35 19.50 13.62 20.00 13.87 20.50 14.13 1 21.00 14.37 • /S 6 5. t c`4 fIegt, f 21.50 14.61 re, CQ 14 22.00 14.85 22.50 15.08 23.00 15.30 C"' 23.50 15.52 24.00 15.73 24.50 15.94 25.00 16.14 25.50 16.34 26.00 16.53 26.50 16.72 27.00 16.90 27.50 17.08 28.00 17.25 28.50 17.42 29.00 17.59 29.50 17.75 30.00 17.91 30.50 18.06 31.00 18.21 31.50 18.36 32.00 18.51 32.50 18.65 33.00 18.78 33.50 18.92 34.00 19.05 34.50 19.17 35.00 19.30 35.50 19.42 36.00 19.54 36.50 19.65 37.00 19.76 37.50 19.87 (:: 38.00 19.98 38.09 20.00 c ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 11:40 04/11/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO. 2 - DEPTH OF FLOW CALC FN - CB2_DEPTH ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** » » STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.005800 CONSTANT STREET FLOW(CFS) = 14.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF- WIDTH(FEET) = 33.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 22.83 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.74 PRODUCT OF DEPTH &VELOCITY = 1.68 r✓ ____ ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 11:44 04/11/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO. 2 - SIZING CALC FN - CB2_SIZING ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** m..• * * ** No »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 14.80 GUTTER FLOWDEPTH(FEET) = 0.61 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 2.48 2.46 2.50 2.48 3.00 2.94 3.50 3.39 4.00 3.84 4.50 4.28 5.00 4.72 5.50 5.16 6.00 5.59 6.50 6.02 7.00 6.43 (:: 7.50 6.84 8.00 7.19 8.50 7.54 9.00 7.88 9.50 8.22 10.00 8.56 10.50 8.89 11.00 9.22 11.50 9.54 12.00 9.86 12.50 10.17 13.00 10.46 13.50 10.75 14.00 11.02 14.50 11.28 15.00 11.53 15.50 11.77 16.00 12.00 16.50 12.22 17.00 12.43 17.50 12.64 18.00 12.83 18.50 13.02 19.00 13.20 19.50 13.37 20.00 13.53 20.50 13.69 21.00 13.84 21.50 13.99 22.00 14.13 22.50 14.26 23.00 14.39 23.50 14.51 24.00 14.63 24.50 14.74 24.79 14.80 USE 25' CB rr ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 16:01 04/07/2006 Problem Descriptions: SOUTH HIGHLAND AVE WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO 3 - DEPTH OF FLOW CALC FN - CB3 DEPTH ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.025000 CONSTANT STREET FLOW(CFS) = 1.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 3.97 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.88 PRODUCT OF DEPTH &VELOCITY = 0.68 ' ____ ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 16:37 04/07/2006 Problem Descriptions: SOUTH HIGHLAND AVE WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO 3 - SIZING CALC FN - CB3 SIZING ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** pnw^ * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.00 GUTTER FLOWDEPTH(FEET) = 0.24 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 0.45 0.13 0.50 0.15 1.00 0.29 1.50 0.43 2.00 0.55 2.50 0.67 3.00 0.76 3.50 0.85 omw 4.00 0.93 '%iftw 4.48 1.00 Z. /SIT / C.5. .5. c ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 18:57 04/11/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO 4 - DEPTH OF FLOW CALC. FN - CB4 DEPTH ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** WOO' » »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET /FEET) = 0.015800 CONSTANT STREET FLOW(CFS) = 5.40 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.013000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 33.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.38 ....-4.------ HALFSTREET FLOOD WIDTH(FEET) = 11.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.74 PRODUCT OF DEPTH &VELOCITY = 1.43 a Aww 4 Skturr =___ ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 18:55 04/11/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EATERLY STORM DRAIN SYSTEM CB NO 4 - SIZING CALC. FN - CB4_SIZING ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.40 GUTTER FLOWDEPTH(FEET) = 0.38 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.49 0.80 1.50 0.80 2.00 1.06 2.50 1.31 3.00 1.55 3.50 1.80 4.00 2.04 4.50 2.28 A 5.00 2.51 Nom,► 5.50 2.72 6.00 2.91 6.50 3.10 ‘ 7.00 3.29 7.50 3.47 8.00 3.65 8.50 3.82 9.00 3.98 9.50 4.12 10.00 4.26 10.50 4.39 11.00 4.52 11.50 4.65 12.00 4.77 12.50 4.88 13.00 5.00 13.50 5.11 14.00 5.21 14.50 5.32 14.89 5.40 e1_S _4. • ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 16:43 04/16/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO. 5 - DEPTH OF FLOW CALCS. FN - CB5_DEPTH ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** Y.- » »STREETFLOW MODEL INPUT INFORMATION «« CONSTANT STREET GRADE(FEET /FEET) = 0.016000 CONSTANT STREET FLOW(CFS) = 1.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF - WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.67 CONSTANT SYMMETRICAL GUTTER - WIDTH(FEET) = 2.00 CONSTANT SYMMETRICAL GUTTER - LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER - HIKE(FEET) = 0.16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.31 -(--- HALFSTREET FLOOD WIDTH(FEET) = 7.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.61 PRODUCT OF DEPTH &VELOCITY = 0.80 u \rr =___ 0 * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1501 Analysis prepared by: Parsons Brinckerhoff Quade & Douglas, Inc. 685 East Carnegie Drive Suite 210 San Bernardino CA. 92408 TIME /DATE OF STUDY: 16:45 04/16/2006 Problem Descriptions: SOUTH HIGHLAND AVE. WIDENING /EASTERLY STORM DRAIN SYSTEM CB NO. 5 - SIZING CALCS. FN - CB5 SIZING ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** `y.. » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« < Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.90 GUTTER FLOWDEPTH(FEET) = 0.31 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 0.65 0.27 1.00 0.40 1.50 0.59 2.00 0.78 2.50 0.96 3.00 1.11 3.50 1.25 4.00 1.39 '""°'' 4.50 1.50 'y 5.00 1.60 5.50 1.71 6.00 1.80 6.49 1.90 ::',- 7 'C 3 _ . .., ._ ,____ .1._, .1 ,,,,v i_ 1 . - i - --. 1 j 44; , „ . I _ .‘ • c t • 1 „,,, 7.;,..,4,.,4zt.... --- , I 1 . I ii I _ I 1 i 11 : -%-z-__ -- I V i h 6 0 a t-- -4 4 4! 4- - - .. ''' - I, - - it • .....3-- .4,_.,.. _ - I - - - . --t-- --- - r - 1 -> l'• .2 '. ' - Fr , 0 KJ _ x 1 g T vt,,,_ I L ( t i j _ I •---%•., _.1. ._ _ l_ __I : =___ _i_ [.. *V • _ f ,' .J ••• __".- DJ 1 . . \ _ - • CC gal g Cr 1 Li CC • 1 I • I A 1E, 1 -0 I. - 1-, ,i it,[_-_ / •_ --. . • - 4 -'- '•,-.. -.--- -,/ F 7" - .- - - -* • . - )" rd I - , Pt 17 *. --•• . - - ' 404, I . iiR I l I F, • 1 *i. f .f ..,.)./ I i , • I I i " • • x ui x I - - -I -- + --- I-- -- •r -r V 7 A 05 1 -M- 1 - ` . - LL - - ---. -- - - lg 'j S I tq !1 ! _ 7 -- ixu g 4 z e 1 i Adr■C\ I IZ" rt, . '.. /1/ .. t io.44__ t. r .am - -', > T kg ° t - : , 7 _:‘. ,.. 1 I: r 17 ,,,,,‘_ ., __ }., : ,,,,,,,„_,_ ; ._i_ 4 _ __, j___, . . - - 7 -;•'. * - 'N ..., 0.. 1 1 a _ , H -- 4__ i_ / _ :: -.A-: 1 N '4 I .\'" t.:„ ± 5 1 k _ 4 ' A \ I • ' , \ \ .„, - -I_ - 4 - • - I k■ \ 1 11 5 - I Cr VA ..,, - Ilk ';a 1 1. 1 4 ., - t-- ---4 iiiiiikailliaL ' 1/ -174 ou- 1 - -- "'""•=1E - ,- -- , ,,,, .,.. '''( • 1 4: 1 8 1 i " g : x • ' r.? 'i - -- - r-kpr.,4 1 1 ,1 3 • ,71' I - ff i - 1,;:"'.; -.: 74 .1 I . !- -'. 1 ---g- 1 Y lkiil .,;' I 4) . • I \ ''' ' ‘-'-' 2 2 P g • NV, i - _, ; \ -I I. -1- f__ 1 1.,1". 1 : Tit_ ---1 1 1 ,_ • : ,,,, --2: 4 1 : :, ../ ii i _ i _. 1 .. ±, - ,-. i ,, . -±1. __ ',I' 1-::•....;•--i •Ai;iml fil .1111-‘5- , • I , ii - git . : ' - : -'' ., -. ti • cz -. 2 .- -- ----- w ----- et cr rc a " L*. _ • ---1,,, ■ ° k . ' 'i ) ; 0 :___ : ---T4_ =.I _ f-- , ---■ I- i _i ).: , 1 I • , .4 I i • 4 LLI 8 I I • I 1 , I , .4. i• 41'4 ' . l q; : A \ \ ..;:( (..) uj -I 0 2 • _1 - 4 .... ... 1.1 D 1 _ . .,. .* j r/ i e l r I \t ... i i_•', ;‘, I 1 . liN 1 0 0 .1 w (f) 11 ±-1 i -..,- ' T i 11 : 111 I . t iip ' . ''''''_ ' -, : , ' .: :1' \„ . : 1 : • - • ::?: :' c . . 1----‘‘ r :--- 1 1 c C1 1 - - t; • * k , - t ., - 1 , 4 1 , 1 ii 1941F1 fill. r11:111.101:11-::...11.'. 111;'!.-;;', r.1111111111/111a.ilFir4iiii; :II -''.:-..' f Ijcc- - >" Z j -, .‘• '..." " g ., .. : § i . ‘.' ,., 414 i ," 0 '., , i ,... _ I l it i , 1 , ,0,3 „4, :t!.. , NT1 ■ el rille,. ■ l , - ,.• ,1- 1 - ra. fr -ti lin I it, lirell 0 -J 7i ! .:,......Th .; .., I 4'•frif''''' JilliP1 - . • , :.• , z < •„,,,,,_, voo N wir 4, I., g • • ' 40,, 1‘ 111110iiiiPAIMInier .1* '{'• . + ■INI MI -. - 'I I N W .,,45 __,Ii ti ,i 1 tr :4•,:cs-3!:::L ' l ihi k 4 . wiiii'k4rj/ ile,1,,,II71 3/417.--1:7'.11--A-!131:1111:::1111.1kE-;iri7-All;,f,,f'11:4..": I.-I Tii . .rL1- 11 .,:--- t ----- T c ow I ... ... > -2<z _, Al\ ... 4 . ,,,,,,L2.\,,,.; , _ ir _ l■ ■: '' a ' ' 11 . '"" e'=' ' ., ..,_i' _ . ! agigifillENOM -s 4- - 1 A --1 t--- . 1. ill _I- _ 4 - . I-- oura ...- --.., __I__ . _, 14. - • a .1-c. - - , .----'' 4 :aft .4., i .; kit; 11 ■1111Mitit- . -- w -;. ' , ,,, • 1 :: ,..4 , .,.2 r i I_ ; ..I" .41 [ ._., 1 , ,- 4 >- ....\ - --- '.., 4 21r4t\.i.1..,1,4111 irAmtwa ' [ (,) = , T - - i • , A -- -.-f" . ,, --0.--- , 4 me - illy.,.. , ..; `,. i _ ., -- ,,,.1 _ _, I Z. . - -- i- i t. i 1,411•.,..._. P 4 i .0., ,.....--_, -.i. \ 1 il • - , `; , - - 1:,..,.. b,. : It," ta. . • I , 1 irk : tt ----- -1--- • ••-., A V ti --- r` 7 "4:1° ir 4 ;,, ;:-,- , 4 i 1 I .7,1 ■11111r-hilliP'144-141111111-' 1.11111111.1 cl iniiiiiilk illitik . 441--- - fl ,- 1 -, . is . , - .H. 'i. - - ,i t ' 4 - 4 7 - I f i g. - ;,,, _ y . '-att fi . . s:_ 1 L 1 _ -71 r : : - - a - N 4 6 tn I 1 I ' 1 N A, „,,.,, . . ,, maw Illiilh MOM ilE air 1,40, NIIIIII I NI i . inn-, la= i , , , 41,(vmm g r. :4 „kw." icy __. ,. t.... i :.. pp ikiiiel;- _ --1 _ 1 1_-___.,..7(Aanw. 1 451 I A . • :.. 1 2 1 ( w rAtir i lt•t rIr ap . 7 4 ■.; i liallar rill 1 ,--, .( ,.. _ .1 _ . 0 , _ _ _ • _ ___.1 • Crt r 1 ' I ' I ,-,- • I t v, Ai rr :. -i lieli • Lji ifitiliii - . . . . : L A d of ,-, • 1/40Afil f-c,, n ,,,mg. , --1-‘ c - --- . 1 4.. _10_211_4,40 L_ i 0;41 .. __ , a __ L. - -- A k il . I s ' ' ■',A ° ,1 . ) ' I 3. I V . 7 ' I 4 I jrn . . ' 0 - : I . ::: h im iim minn w •.- 1 • ! • ..,:. ," ---••■//7.4 • • . . .1 . . ' ;lay r 7 1i7 7.) if/ g f ,: 1 - i. / 1 -- _7,/, . ))11 _1 1. 11 MIMEO • .1111111111111111MEMSZ , . i 1-- • I - = I A -.4-7. ,, , A ir -; o -iq ! Ii) .. A AF - II IIIMAVACHL . ` \ • t '' 2.) I tr ir Tr 1 az -a1 ., - ---,..__,, .." ,_ __ . ., 4 -: ,..,. : LH i, -,,--- -c-fs.,-: • I --alyill;001101.....:miefiA Alt ' 1 • ,, C- 1 . 1 . C ,1 ' - -4 :-• 1 r .._ i i 'I - I a. 1 - 1, 1 t I •-• '-:. I Eh c-D- r .■ \ c 4 , , ■ c , _ •"' : ..• :* : _____....._., - -'. 4,.,- __........" 't i Jew* liffira 1 ; 11 Migiiiiii. .MICAlipi.A-au• , ': - ik 0 mgill -*_ rot..w. , d ••• , ., • 11/111 OmIrilinir r -- • -- t - I -- - 2 , A IN __ _.L.._._i_._,__.„- _ cc I I I 1 4 ,1 1 % 1 1 I al I _MNpigifit 4 1 ' .... , I - . T 1 . // t 1 f 1 • j - ---1 lei. . - 1 -r- r - - .,_• wp :,,_".. , % .. 12 . - - - - -1 _1 _ .4 ___ _ j_ __ ; _111111 '1111111116_ I, ,. , I__,,,. . _ill .._ _. 4 _ i__.... .01...• 1 , r . ,-- --1 1 I I I 1 I - I - 1 i I I ; I I . r r !, qb...., • 4 ' A ... , , 1 . 1 i r .,,, z , , , . , , : , . . 1, - - --- 1-- - t- - • • - - f - . 7j - 1- - 17. -t-- • 1 --- --- • •••i-- ■--- 1 • +-- :4-- +- -4 1- :-,--- --, -- -. ....---. T - ...: .. :. . -... -- - -I - - 4- : /-4 '-• ± : H j -4 - H - -• I - I -I 4 -- I - -4 - I 1 k 1- --1 - - - 4 ul -- h 1 - - L 1 - V. - / N - , N \__ I cn ; I . I z 1 z ••• , 1 z • 4- ' •= I : 1 , - A , • , , , ,I IINUR II 1 1 I I g 1 • -i- , . i I to - , - .°I - , :AP t •I 'S --- • IAT A.' :* ma A ___ r • I - , . 4r v;* 1 , mi I 11 -- ,- 1 -=; t - t1 t- h - 1 • -- •-r- 4 _ 1 J . _ _ ..•:' le IlkM •.; 1 ; . . pug Cma WEL 11 4 r 1 '- --',, --- _ _ _1 1 . 4 _ ____ b._ 1 ,,,_ * 1 ": ' I ' : • .1 0, - t . 2 , _ ; , T t 4 !molar) -4- , t ' 1 . A -, \, 4, . -- ' g i . 11111.1‘ \ 1 1 / • / 1 - - ) - ■_ •• • ' ,01M- 3111. ill =1 It ° „...._.4.,... . e...,„., A ,..„ .........,. ; Amallark.., ..; mnliwotr, wom ....._ . iniii maw 1 , • . Los 44 -...1• 01111111 , 1111 11 Liar. ., A , \-N ''It'Le MIBTiarijtllP•grllWMMwwA.44- III III — 7 i + , • ( .I1, ,",*,.,;- •; I, . ,-'N • .. _ In • 11,7? .:7 -3 Ilill • 1 !: . l ,- ifr 1 e , ;;1 ■ 1. — T -- F• ' ,,,' I. : ''•,,,; 21 ' y } : G) - .C, _ : ,.. il 7 , 1 , -.-- -L r-1- mm . inkm ,Imaimmi irmin . I 1 • 1 1 • .4,-;•,,.. , '-''\ MillitiMENEWARMI11111 r :-_- , ,- .___ ' 4'4.- ■ ' _ •-f . , _ 11 H , I .4,4 I . APC. Illp ,, WOW .... is it, . pir .. II Dr E1,...CP : ' i II illa 11 L : 17 ! I ,... I , . 1 r Cd 1 , , ...' a' all 11 . ' 11111111 ■,- ,r, III 1111 — - -- - T-. : l ''' r_ _ .. .„ ,,,,,_, 5 : 11 ,..- i i, ,i,....,i„,, /I L • i i I, IlL _,, ., 4 .. . ■_24M11.1 P El I -AN ... . : I _ I 6 [ 4 --;. --- 1 - 7 1 1 mow. - , Ada illal i A giiii ri i ok .., ,, 0, _ ,.,+ -1 ,„„- - __ If 4.0ftio ,.. , ir. ,,.. , 4414 ..,„, ,....„ 4, i f, _, -4 - --- A % MEI _ ,, PPM „, -'-' 1 i .„........,,_ ..„.........:,„..._,, , , 2 IMAM . --4 '111111111111111111111W4 - - i - i _ 1 _ , No v i li 4 ,•_... 1 • . 1 . \I = -- :7, 4- '•T. ' ;- . --- • -,-- -1•..„ -• • ,4r ,_ / / -- . , , 1 , y c. __ „ , II .: • . . . . ti SI I I I . .. 1 1:zi, • • • ' "L” ' F, - ' 2 Ul 1111 re,_' 1 _ _,,,rj ._ - - -7 7 ` - 1 - 7 I 1 , N , I , . - _,., __ i ,-, , t, K , ,. 1 ,L ,,,,.,,,, , 1 ; 7 iii .__ ,, : 0 L _ _ _ i u) ,-. -,,,,,, ... g ., p. ,„ ..,:„; ob. , r • - i . H e: ---y I ,,, _ . c.o. e i -- 1- • - - -- - - --• - • -- 3C:. 111 ,::,;,,... 1 L I' --- 1— _f__,. __ . :- - • - • 4 , ° Z ti 11111M1 . ....,:, , 1 1 ,.. Alib ..,, --_-, J Lc':••___ p111.---.7 ,-, 1 0 co , 40 mc rdh, _ ....4_- . . ,-_ - ,A6--. 1 4 . 0 ,, , : -. :- I _ •r\- „7. ‘-,__ . A, 4 1 0 rn i 4 r.,,, _!...v,_ 0 73 0 z ! III in .. mi. "--,.,,-, h – '---- 4, 1 _ i._ L__ -‹ z x m 1 MEN El 1 -,,-,.. rGyr -_, . ,,,, , , , D * INgarigintin 3 [ a t . -7 --- 3> XI , ,-. --:-.:,.. sr- . _ , , ,-.>,, '-) i ,--„, ; k * ii r i :', • t t '''*, ' ,. \, -,, l-I ifori_Likia I ? #1 r. 4:-1 .,=' 4-- -I - --- Z Milab... 1 - lin ^ , IMM1Frii4IM 1 \ ; ''''' ''''' N' : c^^,, A '' I ' ...kl is' - — Jim,* _ • r- 0 ,,,....., va t - _____- ,_ , _ p .., , _ 1 i\ _,_„,r_•i. i a i , p 0 _ we .• mil • , ,. Am r li .,, - - . _ c. i , _ , )!1__ • _ _i_ __ lifj 11111,11/11 p ,. ,,... .,•, t .4 ' g g : , • ; .! ; ,- I r-f .1 , 4 / . 1111 • . ; ,..- - 1 1 ' -• 1 ; i. 1 I -''-Ls- •-< ',., : ,;„ __ 1 ii. 1 , I ' -4 ---- 1- I 1 1 ° di . Hj --- 1 ' .. ' • III I : ■ : -- r' - , . .. , 41 ), 1 • 7 r :,,,,, 711: aft '`• '4 4- . 7 - - OP mr . 1 11 , 11 . 1 , - 1 • ; 4; ; . \ ,,,, 6, , - 6 , , 1,.- \_ ....._ 1 - ,,...., . ; ; ..,. j ._ Ill 1 I ( I , I , , - ' ; 4 1 r ■-.' _ -_ i I , , - I ' is - -_ t- 1 ,- , A - . IL E '., -1 ', r - - I III \ lb,r ' ) I ' 1 1 I .4, . - , t it 13__ -- _ . , :°, \ 1 „ , , , 't... 1 - I " •+ 7 RI , , 1 i 01A : sT_ ,;, . ._,._,, s, ; --- i i ,,,, „ D. ' ' 1 . ,--,,T, u) o m 3> 0 r C m RE :1) , Fr i - \ pimi....,..... ,,,A6 A ____,, _( .J, - 1: , ti„ „.4 , ,T, . , --i :, , , .„..:, pp.:_, _,, 1 , . ,. --, - . 1: -', - ,r 7 - _-;.., , 1 _,, - - , , ' 1 ',.. - ' , , - __ i-_ . r‘. I : r r t., — -f- - ) f• _o_ _ _ i \ _, ,_ , _ ' , ,,,,\ ,*,_ III _1 _ _ . • . 0 , , __ 11 -- ._ t _ \ _,,,:_. I r 1 . , . _ , , m - _i ,-,,,, _ _ _ _ i 2 Tif 1 ir - '-- _ , ,: ,,i„, . 1 p \ _____-_,____, • 1 I " . ' - 13 ' I '__ ' )1 ,,,,, _, H I . x 0 1 c ;-.) , z I * .. ,, i .. - 1 i 1 ' , , . . .. ' I I -, • --; 1- : 1 4 4 . - 4 \ ' -- ,--,-*., , .;.;--- i - ---I • --1 11 , _ 6 ' ' I i ^ P AilL1 -1 / - _ - _. i_ , -'-- z . k ; , . j i , , , , ., _, , 2 _,,, , z , 1 , , 1 „ , s , , AR 1 — 1 4 Fq , .2., ... ,.. '2 .. , 0 - • ir ' '. 7, A En _ - -- - A ; ----- L ___, ' ,•-• J , ' I I -'" • , -_, m , • 1 4 , - 1 '' -- 1-1 '•_, __,__ ,. _ -•_ _ I ‘.1 , . 1 --,. i , -'-•,'" , , 1 - IF ' • - - - 1 1 - - I - ,.•-• '0 ) ; ,- - , r 1 -; • I ..• I 5 N . , „,,,, J_ , _ I_ I ,,, ,-, 1 ' I -1 -;•• 1 .•• ,,cH,soh, , c ° 0 4 0 ALL , • . - . .); % •-: ) ,-, z ••, : c _ _ 1_ _ .__ ;, 11 j 0 „, ;. w, - 2 -C r zy> P m . rn -Ix - • • .. .:c c , I t4 7 ):• A -‹ X ° --- • •,-- - " - - \ , ''. / 1 1 l`t I .> . \ I • , rs -. -•,., ---i \ 2 ' . • - t rn i -- • ) I f I- / `\ ,TH °^) --r- --,` _, - - \ , L ' 1 1 1 ' \ I M I P i; i rn (7)8 - 1 • I ";■ ., --. tor,. k CO .• rs, 0 > ili - 4- - ' = 1 __ , • , •,■. , I ; _ 1 14 ___, -4 - -T -°,,, •',,„ . y ; -_. c - 6---1 `•", ' I ' (7-.. ,.. 1 -t.:7-. .., Vt I '4,4 , '''' t --- . "4 ri,- 1 - I - ) 447 a - \ _.-- -. .„. ,•••.,..„,; r 6 • • .1•.. ,