Loading...
HomeMy WebLinkAboutAppendix K - Prelim WQMPPRELIMINARY  Water Quality Management Plan  For:  Mountain View Industrial Park 13  14970 Jurupa Avenue  APN NO’S. 0237‐122‐07, 0237‐121‐03  WQMPPC24‐00028      Prepared for:  Duke Realty Limited Partnership  c/o Prologis  3546 Concours St., Suite 100  Ontario | California | 91764  Tel. No. (909) 673‐8723    Prepared by:  PBLA Engineering, Inc.   1809 E Dyer Rd, #301  Santa Ana, CA 92705  Tel. (888) 714‐9642    Submittal Date: April, 2024  Revision Date: July, 2024  Revision Date: December, 2024    Preliminary for Entitlements Complete Date:        Construction WQMP Complete Date:        Final WQMP Approved Date:                MCN No.    WQMP No.     WQMP – Mtn View Ind Park 13        Owner’s Certification   Project Owner’s Certification    This Water Quality Management Plan (WQMP) has been prepared for Prologis by PBLA Engineering, Inc.  The WQMP is intended to comply with the requirements of the City of Fontana, Ca. and the NPDES  Areawide Stormwater Program requiring the preparation of a WQMP. The undersigned, while it owns the  subject property, is responsible for the implementation of the provisions of this plan and will ensure that  this plan is amended as appropriate to reflect up‐to‐date conditions on the site consistent with San  Bernardino County’s Municipal Storm Water Management Program and the intent of the NPDES Permit for  San Bernardino County and the incorporated cities of San Bernardino County within the Santa Ana Region.  Once the undersigned transfers its interest in the property, its successors in interest and the city/county  shall be notified of the transfer. The new owner will be informed of its responsibility under this WQMP. A  copy of the approved WQMP shall be available on the subject site in perpetuity.    “I certify under a penalty of law that the provisions (implementation, operation, maintenance, and funding)  of the WQMP have been accepted and that the plan will be transferred to future successors.”    Project Data  Permit/Application  Number(s): WQMPPC24‐00028 Grading Permit Number(s): Pending  Tract/Parcel Map  Number(s): N/A Building Permit Number(s): Pending  CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract): 0237‐121‐03, 0237‐122‐07  Owner’s Signature  Owner Name: D.J. Arellano  Title VP, Development ‐ Entitlements  Company PROLOGIS, LP  Address 3546 Concours St., Suite 100 Ontario | California | 91764  Email darellano@prologis.com  Telephone # (562) 376‐9233  Signature  Date       WQMP – Mtn View Ind Park 13         Contents       Preparer’s Certification    Project Data  Permit/Application  Number(s): WQMPPC24‐00028 Grading Permit Number(s): Pending  Tract/Parcel Map  Number(s): N/A Building Permit Number(s): Pending  CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract): 0237‐121‐03, 0237‐122‐07    “The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control  measures in this plan were prepared under my oversight and meet the requirements of Regional Water Quality  Control Board Order No. R8‐2010‐0036.”    Engineer:     Title Principal  Company PBLA Engineering, Inc.  Address 1809 E Dyer Rd #301, Santa Ana, California  Email stevel@pbla.biz  Telephone # (888)714‐9642  Signature   Date 12/06/24          Water Quality Management Plan (WQMP)        Contents ii  Table of Contents  Section 1 Discretionary Permits .........................................................................................  1‐1  Section 2 Project Description ...............................................................................................  2‐1  2.1 Project Information ........................................................................................  2‐1  2.2 Property Ownership / Management ..............................................................  2‐2  2.3 Potential Stormwater Pollutants ...................................................................  2‐3  2.4 Water Quality Credits ........…………………………………………………………………………….  2‐4  Section 3 Site and Watershed Description .........................................................................  3‐1  Section 4 Best Management Practices ................................................................................  4‐1   4.1 Source Control BMP .......................................................................................  4‐1   4.1.1 Pollution Prevention ...................................................................................  4‐1   4.1.2 Preventative LID Site Design Practices .......................................................  4‐6   4.2 Project Performance Criteria .........................................................................  4‐7   4.3 Project Conformance Analysis .......................................................................  4‐12   4.3.1 Site Design Hydrologic Source Control BMP ..............................................  4‐14   4.3.2 Infiltration BMP ..........................................................................................  4‐16   4.3.3 Harvest and Use BMP ..................................................................................  4‐18   4.3.4 Biotreatment BMP .......................................................................................  4.19   4.3.5 Conformance Summary ...............................................................................  4‐23   4.3.6 Hydromodification Control BMP ...............................................................  4‐24   4.4 Alternative Compliance Plan (if applicable) .................................................  4‐25  Section 5 Inspection & Maintenance Responsibility Post Construction BMPs .................  5‐1  Section 6 Site Plan and Drainage Plan ................................................................................  6‐1   6.1. Site Plan and Drainage Plan ..........................................................................  6‐1   6.2 Electronic Data Submittal .............................................................................  6‐1    Forms  Form 1‐1 Project Information ...............................................................................................  1‐1  Form 2.1‐1 Description of Proposed Project .........................................................................  2‐1    Form 2.2‐1 Property Ownership/Management .....................................................................  2‐2   Form 2.3‐1 Pollutants of Concern .........................................................................................  2‐3  Form 2.4‐1 Water Quality Credits .........................................................................................  2‐4  Form 3‐1 Site Location and Hydrologic Features .................................................................  3‐1  Form 3‐2 Hydrologic Characteristics ....................................................................................  3‐2  Form 3‐3 Watershed Description ..........................................................................................  3‐3  Form 4.1‐1 Non‐Structural Source Control BMP ...................................................................  4‐2   Form 4.1‐2 Structural Source Control BMP ..........................................................................  4‐4  Form 4.1‐3 Site Design Practices Checklist ...........................................................................  4‐6  Form 4.2‐1 LID BMP Performance Criteria for Design Capture Volume .............................  4‐7  Form 4.2‐2 Summary of HCOC Assessment ..........................................................................  4‐8  Form 4.2‐3 HCOC Assessment for Runoff Volume ...............................................................  4‐9  Form 4.2‐4 HCOC Assessment for Time of Concentration ..................................................  4‐10  Water Quality Management Plan (WQMP)        Contents iii  Form 4.2‐5 HCOC Assessment for Peak Runoff ....................................................................  4‐11  Form 4.3‐1 Infiltration BMP Feasibility ................................................................................  4‐13  Form 4.3‐2 Site Design Hydrologic Source Control BMP .....................................................  4‐14  Form 4.3‐3 Infiltration LID BMP ...........................................................................................  4‐17  Form 4.3‐4 Harvest and Use BMP .........................................................................................  4‐18  Form 4.3‐5 Selection and Evaluation of Biotreatment BMP ................................................  4‐19  Form 4.3‐6 Volume Based Biotreatment – Bioretention and Planter Boxes w/Underdrains 4‐20  Form 4.3‐7 Volume Based Biotreatment‐ Constructed Wetlands and Extended Detention 4‐21  Form 4.3‐8 Flow Based Biotreatment ...................................................................................  4‐22  Form 4.3‐9 Conformance Summary and Alternative Compliance Volume Estimate ..........  4‐23  Form 4.3‐10 Hydromodification Control BMP .....................................................................  4‐24  Form 5‐1 BMP Inspection and Maintenance ........................................................................  5‐1    Attachments  Attachment 1 – Vicinity Map Attachment 2 – WQMP Site Plan Attachment 3 – Design Capture Volume Attachment 4 – StormTech Storage Systems Attachment 5 – Stormwater Watershed Mapping Tool Report Attachment 6 – BMP Fact Sheets Attachment 7 – NOAA Information Attachment 8 – Soils Report dated March 28, 2024 Attachment 9 – Infiltration Report Attachment 10 - Worksheet H – Infiltration Factor of Safety     Water Quality Management Plan (WQMP)         2‐1  Section 1 Discretionary Permit(s)  Form 1‐1 Project Information  Project Name    Mountain View Industrial Park 13  Project Owner Contact Name: Annie Chen  Mailing  Address:    3546 Concours St., Suite 100  Ontario | California | 91764 E‐mail Address:   Achen3@prologis.com Telephone:   909‐673‐8723    Permit/Application Number(s):   WQMPPC24‐00028 Tract/Parcel Map  Number(s):   N/A  Additional Information/  Comments: Site Coordinates: Latitude: 34‐02‐57.8 (34.04939°),   Longitude: ‐117‐28‐40.1 (‐117.47781°)  Description of Project:  Prologis is proposing to develop approximately 22.24 acres of land in the City of Fontana,  County of San Bernardino.  The property is located on the north side of Jurupa Avenue  between Live Oak Avenue and Hemlock Avenue.  The property is currently developed and is  being used as a steel manufacturer’s lay down yard.  The existing drainage pattern is generally from the northeast toward the southwest to  existing infrastructure in Jurupa Ave.  Master Planned drainage facilities are available on 3  sides of the site in the existing rights of way.  The proposed development improvements include a 492,130 square foot industrial logistics  building with associated paved parking, landscaped areas and underground infiltration  systems.  The proposed design will include conveying surface storm water runoff as sheet  flow, into gutters, then into catch basins and then underground pipe to the proposed  infiltration systems in three of the four corners of the site.  The underground storage/infiltration systems will be sized to detain and infiltrate the  required WQMP Design Capture Volume, and any additional volume will be directed to the  outlets to the existing storm drain systems.  The proposed system is comprised of plastic arch pipes sections and gravel bedding.  The  StormTech product is a proprietary system designed and provided by ADS.  The system will  be designed to capture and infiltrate the required DCV calculations.  The outlet for this  system will be a standard outlet manhole and outlet pipe with the invert of the outlet pipe  set to the soffit elevation of the storage system.  This ensures the DCV is captured before  any stormwater is allowed to bypass the system and overflow to the existing Public Systems.  The proposed improvements consists of approximately 19.86 acres of impervious area  (DMA‐1 = 693,311 ft2, DMA‐2 = 82,911 ft2, DMA‐3 = 88,774 ft2) and is comprised of 11.06  acres of roof area (DMA‐1 = 346,471 ft2, DMA‐2 = 62,414 ft2, DMA‐3 = 62,404 ft2) and 8.79  acres of paved asphalt and concrete (DMA‐1 = 336,471 ft2, DMA‐2 = 20,497 ft2, DMA‐3 =  26,370 ft2). The onsite landscaping makes up approximately 1.10 acres of pervious area  (DMA‐1 = 34,147 ft2, DMA‐2 = 3,509 ft2, DMA‐3 = 110,232 ft2), as well as 55,756 sf (1.28 ac)  Self Treating perimeter landscaping.  See the WQMP Site Plan for additional information  regarding the Drainage, Building, Asphalt/Concrete, and Landscape Areas for each DMA.  Water Quality Management Plan (WQMP)         2‐2  Provide summary of Conceptual  WQMP conditions (if previously  submitted and approved). Attach  complete copy.  Not Applicable.      Water Quality Management Plan (WQMP)         2‐3  Section 2 Project Description  2.1 Project Information  This section of the WQMP should provide the information listed below. The information provided for  Conceptual/ Preliminary WQMP should give sufficient detail to identify the major proposed site design and LID  BMPs and other anticipated water quality features that impact site planning. Final Project WQMP must  specifically identify all BMP incorporated into the final site design and provide other detailed information as  described herein.    The purpose of this information is to help determine the applicable development category, pollutants of  concern, watershed description, and long‐term maintenance responsibilities for the project, and any applicable  water quality credits. This information will be used in conjunction with the information in Section 3, Site  Description, to establish the performance criteria and to select the LID BMP or other BMP for the project or  other alternative programs that the project will participate in, which are described in Section 4.   Form 2.1‐1  Description of Proposed Project  1 Development Category (Select all that apply):   Significant re‐development  involving the addition or  replacement of 5,000 ft2 or  more of impervious surface on  an already developed site  New development involving  the creation of 10,000 ft2 or  more of impervious surface  collectively over entire site   Automotive repair  shops with standard  industrial classification (SIC)  codes 5013, 5014, 5541,  7532‐ 7534, 7536‐7539  Restaurants (with SIC  code 5812) where the land  area of development is  5,000 ft2 or more    Hillside developments of  5,000 ft2 or more which are  located on areas with known  erosive soil conditions or  where the natural slope is  25 percent or more    Developments of 2,500 ft2  of impervious surface or more  adjacent to (within 200 ft) or  discharging directly into  environmentally sensitive areas  or waterbodies listed on the  CWA Section 303(d) list of  impaired waters.    Parking lots of 5,000 ft2  or more exposed to storm  water    Retail gasoline outlets  that are either 5,000 ft2 or  more, or have a projected  average daily traffic of 100  or more vehicles per day    Non‐Priority / Non‐Category Project   May require source control LID BMPs and other LIP requirements. Please consult with local  jurisdiction on specific requirements.  2 Project Area (ft2):    912,884 sf‐Trib to BMP  55,9386 not Trib to  BMP  3 Number of Dwelling  Units:  n/a 4 SIC Code:    4225 – General  Warehousing &  Storage  5 Is Project going to be phased?  Yes    No    If yes, ensure that the WQMP evaluates each phase as a distinct DA, requiring LID  BMPs to address runoff at time of completion.    6 Does Project include roads?  Yes  No   If yes, ensure that applicable requirements for transportation projects are addressed (see  Appendix A of TGD for WQMP)    Water Quality Management Plan (WQMP)         2‐4  2.2 Property Ownership/Management  Describe the ownership/management of all portions of the project and site.  State whether any infrastructure  will transfer to public agencies (City, County, Caltrans, etc.) after project completion. State if a homeowners or  property owners association will be formed and be responsible for the long‐term maintenance of project  stormwater facilities. Describe any lot‐level stormwater features that will be the responsibility of individual  property owners.  Form 2.2‐1 Property Ownership/Management  Describe property ownership/management responsible for long‐term maintenance of WQMP stormwater facilities:  Prologis will be responsible to build the Site and will maintain the post‐developed BMP upon completion of the Construction.   There is no intent to transfer any infrastructure to a public agency.  Contact for long‐term maintenance is:  DJ Arellano, VP  Prologis, LP  3546 Concours St  Suite 100  Ontario, CA 91764  darellano@prologis.com   (562) 376‐9233                                             Water Quality Management Plan (WQMP)         2‐5  2.3 Potential Stormwater Pollutants  Determine and describe expected stormwater pollutants of concern based on land uses and site activities (refer  to Table 3‐3 in the TGD for WQMP).    Form 2.3‐1 Pollutants of Concern  Pollutant  Please check:    E=Expected, N=Not  Expected  Additional Information and Comments  Pathogens (Bacterial / Virus) E  N   Bacteria and viruses are a potential pollutant for Industrial/Commercial  developments if the land use involves animal waste.  Due to the nature  of the development, there will be no animal waste associated with this  land use, and the site will be treated using site and source control.  Bacteria and virus can also be detected in pavement runoff; therefore,  the site has incorporated treatment control throughout.  All paved and  hardened surfaces will be treated through a bioretention basin part of  Low Impact Design (LID).   Nutrients ‐ Phosphorous E  N  Phosphorous is an expected pollutant where landscaping exists.  Nutrients are typically found in runoff from fertilizers and eroded soils.  Nutrients ‐ Nitrogen E  N  Nitrogen is an expected pollutant where landscaping exists. Nutrients  are typically found in runoff from fertilizers and eroded soils.  Noxious Aquatic Plants E  N   Noxious Aquatic Plants may be present where landscaping exists. The  project site may experience Noxious Aquatic Plant pollutants from the  basin.  Sediment E  N  Sediment is an expected pollutant where landscaping exists.  Metals E  N   Metal pollution typically results from commercially available metals  and metal products, vehicle brake pad and tire tread wear emissions,  it’s use as corrosion inhibitors in primer coatings and cooling tower  systems, and as raw material components in non‐metal products. The  project site expects metal pollutants from vehicles in the parking lots  and drive aisles.  Oil and Grease E  N   Oil and grease pollutants are products of petroleum hydrocarbon,  motors of leaking vehicles, esters, oils, fats, waxes and high molecular‐ weight fatty acids.  The project site expects oil and grease pollutants  from vehicles in the parking lots and drive aisles.  Trash/Debris E  N   Trash and debris can result from human activities and landscaping.  Trash and debris are typically in the form of paper, plastic, polystyrene  packing foam, and aluminum materials as well as biodegradable  organic matter in the form of leaves, grass cuttings, and food waste.  Pesticides / Herbicides E  N  Pesticides/herbicides are present wherever insects, rodents, fungi,  weeds, and other undesirable pests   Organic Compounds E  N   Organic Compounds can results from waste handling and vehicle or  landscape maintenance. Solvents and cleaning compounds, as well as  dirt, grease, and grime from cleaning fluids or rinse water can absorb  harmful or hazardous organic compounds.  Other:  E  N    Other:  E  N          Water Quality Management Plan (WQMP)         2‐6  2.4 Water Quality Credits  A water quality credit program is applicable for certain types of development projects if it is not feasible to meet  the requirements for on‐site LID. Proponents for eligible projects, as described below, can apply for water  quality credits that would reduce project obligations for selecting and sizing other treatment BMP or  participating in other alternative compliance programs. Refer to Section 6.2 in the TGD for WQMP to  determine if water quality credits are applicable for the project.  Form 2.4‐1 Water Quality Credits  1 Project Types that Qualify for Water Quality Credits: Select all that apply   Redevelopment projects that  reduce the overall impervious  footprint of the project site.  [Credit = % impervious reduced]  Higher density  development projects   Vertical density [20%]  7 units/ acre [5%]   Mixed use development,  (combination of residential,  commercial, industrial, office,  institutional, or other land uses  which incorporate design principles  that demonstrate environmental  benefits not realized through single  use projects) [20%]  Brownfield  redevelopment  (redevelop real property  complicated by presence  or potential of hazardous  contaminants) [25%]    Redevelopment projects in  established historic district,  historic preservation area, or  similar significant core city center  areas [10%]    Transit‐oriented  developments (mixed use  residential or commercial  area designed to maximize  access to public  transportation) [20%]   In‐fill projects (conversion of  empty lots & other underused  spaces < 5 acres, substantially  surrounded by urban land uses, into  more beneficially used spaces, such  as residential or commercial areas)  [10%]    Live‐Work  developments (variety of  developments designed  to support residential and  vocational needs) [20%]  2 Total Credit  0%   (Total all credit percentages up to a maximum allowable credit of 50 percent)  Description of Water Quality  Credit Eligibility (if applicable)    None  Water Quality Management Plan (WQMP)         3‐1  Section 3 Site and Watershed Description  Describe the project site conditions that will facilitate the selection of BMP through an analysis of the physical  conditions and limitations of the site and its receiving waters. Identify distinct drainage areas (DA) that collect  flow from a portion of the site and describe how runoff from each DA (and sub‐watershed DMAs) is conveyed  to the site outlet(s). Refer to Section 3.2 in the TGD for WQMP. The form below is provided as an example.  Then complete Forms 3.2 and 3.3 for each DA on the project site. If the project has more than one  drainage area for stormwater management, then complete additional versions of  these forms for each DA / outlet.    Form 3‐1  Site Location and Hydrologic Features  Site coordinates take GPS  measurement at  approximate  center of site  Latitude  33.9740° Longitude  ‐117.6155° Thomas Bros Map page    1 San Bernardino County climatic region:      Valley    Mountain  2 Does the site have more than one drainage area (DA):  Yes     No  If no, proceed to Form 3‐2. If yes, then use this form to show a  conceptual schematic describing DMAs and hydrologic feature connecting DMAs to the site outlet(s). An example is provided below that can be  modified for proposed project or a drawing clearly showing DMA and flow routing may be attached                    Conveyance All DMAs Onsite storm drain  begins with inlet filters and conveys runoff to underground storage & infiltration  Underground Storage    Underground storage is the Stomtech chamber system sized to capture and infiltrate the required  treatment volume   Basin outlet pipe  Outlet pie conveys flows exceeding WQMP treatment volume requirements     Outlet Pipe  Storage & Infiltration  DMA‐1   Outlet Pipe  Storage & Infiltration  DMA‐2  Outlet Pipe  Storage & Infiltration  DMA‐3  Water Quality Management Plan (WQMP)         3‐2  Form 3‐2 Existing Hydrologic Characteristics for Drainage Area 1   For Drainage Area 1’s sub‐watershed DMA,  provide the following characteristics DMA 1 DMA 2 DMA 3 DMA 4  1 DMA drainage area (ft2) 749,934 74,813 94,899   2 Existing site impervious area (ft2) 442,471 32,394 47,436   3 Antecedent moisture condition For desert  areas, use  http://www.sbcounty.gov/dpw/floodcontrol/pdf/2 0100412_map.pdf  II II II   4 Hydrologic soil group  Refer to Watershed  Mapping Tool –   http://permitrack.sbcounty.gov/wap/  A A A   5 Longest flowpath length (ft) 1,450 728 720   6 Longest flowpath slope (ft/ft) 0.01 0.007 0.008   7 Current land cover type(s)  Select from Fig C‐3  of Hydrology Manual  AC pavement,  roof, some  landscape area  AC pavement,  roof, some  landscape area  AC pavement,  roof, some  landscape area    8 Pre‐developed pervious area condition:  Based on the extent of wet season vegetated cover  good >75%; Fair 50‐75%; Poor  <50% Attach photos  of site to support rating  Poor – see site  photo below  Poor – see site  photo below  Poor – see site  photo below       Water Quality Management Plan (WQMP)         3‐3  Form 3‐3 Watershed Description for Drainage Area        Receiving waters  Refer to Watershed Mapping Tool ‐  http://permitrack.sbcounty.gov/wap/  See ‘Drainage Facilities” link at this website  Declez Channel  Santa Ana River Reach 3  Prado Basin  Santa Ana River Reach 2  Santa Ana River Reach 1  Pacific Ocean  Applicable TMDLs  Refer to Local Implementation Plan  Santa Ana River Reach 3:  Pathogens “Bacterial Indicator TMLDs for Middle Santa Ana River Watershed  Waterbodies (Bill Rice)  Nitrate : Santa Ana River Reach 3Nitrate TMDL (Hope Smythe)  Prado Flood Control basin  Pathogens “Bacterial Indicator TMLDs for Middle Santa Ana River Watershed  Waterbodies (Bill Rice)  Santa Ana River Reach 2  NONE  Santa Ana River Reach 1  NONE  Tidal Prism, Santa Ana River NONE  303(d) listed impairments   Refer to Local Implementation Plan and Watershed  Mapping Tool –   http://permitrack.sbcounty.gov/wap/ and State  Water Resources Control Board website –   Expected pollutants of concern include heavy metals, organic compounds,  trash/debris and oil/grease. Potential pollutants of concern include bacteria  virus, nutrients, pesticides, sediments, and oxygen demanding substances.  There is no evidence to suggest that any other pollutants will be produced  from the project site other than these  303(d) listed impairment  Santa Ana River Reach 3:  Pathogens, Metals (copper & lead)  Prado Flood Control Basin:  Pathogens and Nutrients  Santa Ana River Reach 2: Indicator Bacteria  Santa Ana River Reach 1 and Tidal prism Santa Ana River: NONE        Environmentally Sensitive Areas (ESA)  Refer to Watershed Mapping Tool –   http://permitrack.sbcounty.gov/wap/  NONE  Unlined Downstream Water Bodies  Refer to Watershed Mapping Tool –   http://permitrack.sbcounty.gov/wap/  Santa Ana River  Hydrologic Conditions of Concern    Yes Complete Hydrologic Conditions of Concern (HCOC) Assessment. Include Forms  4.2‐2 through Form 4.2‐5 and Hydromodification BMP Form 4.3‐10 in submittal     No  Watershed–based BMP included in a RWQCB  approved WAP    Yes Attach verification of regional BMP evaluation criteria in WAP   •  More Effective than On‐site LID  •  Remaining Capacity for Project DCV   •  Upstream of any Water of the US  •  Operational at Project Completion  •  Long‐Term Maintenance Plan    No  Water Quality Management Plan (WQMP)         4‐1  Section 4 Best Management Practices (BMP)  4.1 Source Control BMP  4.1.1 Pollution Prevention   Non‐structural and structural source control BMP are required to be incorporated into all new development  and significant redevelopment projects. Form 4.1‐1 and 4.1‐2 are used to describe specific source control BMPs  used in the WQMP or to explain why a certain BMP is not applicable. Table 7‐3 of the TGD for WQMP provides  a list of applicable source control BMP for projects with specific types of potential pollutant sources or activities.  The source control BMP in this table must be implemented for projects with these specific types of potential  pollutant sources or activities.  The preparers of this WQMP have reviewed the source control BMP requirements for new development and  significant redevelopment projects. The preparers have also reviewed the specific BMP required for project as  specified in Forms 4.1‐1 and 4.1‐2. All applicable non‐structural and structural source control BMP shall be  implemented in the project. Water Quality Management Plan (WQMP)          4‐2    Form 4.1‐1 Non‐Structural Source Control BMPs  Identifier Name  Check One Describe BMP Implementation OR,  if not applicable, state reason Included Not  Applicable  N1 Education of Property Owners, Tenants  and Occupants on Stormwater BMPs    Practical education materials will be provided to property owner and warehouse  Maintenance staffs covering various water quality issues that will need to be addressed  on their specific site. These materials will include general practices that contribute to  the protection of storm water quality and BMP’s that eliminate or reduce pollution  during property improvements. The developer will request these materials in writing at  least 30 days prior to intended distribution and will then be responsible for publication  and distribution.  N2 Activity Restrictions    Restrictions may be developed by property owner or other mechanisms. Pesticide  applications will be performed by an applicator certified by the California Department of  Pesticide Regulation. Vehicle washing will be prohibited.  N3 Landscape Management BMPs    According to the California Stormwater Quality Associations Stormwater Best  Management Practice Handbook, landscape planning is implemented to reduce  groundwater and storm water contamination. This will be accomplished through an Bio‐ Retention basin, and landscape areas  N4 BMP Maintenance    Responsibility for implementation, inspection and maintenance of all BMPs (structural  and non‐structural) shall be consistent with the BMP Inspection and Maintenance  Responsibilities Matrix provided in Section V of this WQMP, with documented records of  inspections and maintenance activities completed. Cleaning of all structural BMP  Facilities is scheduled by Owner  N5 Title 22 CCR Compliance   (How development will comply)    The proposed commercial development will not generate waste subject to Title 22 CCR  Compliance.  N6 Local Water Quality Ordinances   The local water quality ordinances shall be complied with through the implementation  of this WQMP  N7 Spill Contingency Plan    The spill Contingency Plan shall be provided in accordance with Section 6.95 of the  California Health Safety Code. Parking lots must have absorbent materials on site for  potential vehicle leaks.   Water Quality Management Plan (WQMP)          4‐3  Form 4.1‐1 Non‐Structural Source Control BMPs  N8 Underground Storage Tank Compliance   No underground storage tank on the site.  N9 Hazardous Materials Disclosure  Compliance    No hazardous materials on the Site..    Water Quality Management Plan (WQMP)          4‐4  Form 4.1‐1 Non‐Structural Source Control BMPs  Identifier Name  Check One  Describe BMP Implementation OR,  if not applicable, state reason Included Not  Applicable  N10 Uniform Fire Code Implementation   The proposed Commercial project will not store toxic or highly toxic compressed gases  N11 Litter/Debris Control Program    Litter control onsite will include the use of litter controls, violation reporting and clean  up during landscaping maintenance activities and as needed to ensure good  housekeeping of the project’s common areas  N12 Employee Training    All employees, contractors and subcontractors of the property management shall be  trained on the proper use and staging of landscaping and other materials with the  potential to impact runoff and proper clean‐up of spills and materials.  N13 Housekeeping of Loading Docks   Trucking maintenance staffs/Operators will be instructed to keep all areas of loading  docks clean and free of Trash / debris at all the time  N14 Catch Basin Inspection Program    As required by the TGD, at least 80% of the project’s private drainage facilities shall be  inspected, cleaned/maintained annually, with 100% of facilities inspected and  maintained within a two‐year period. Drainage facilities include catch basins (storm  drain inlets), detention basins, Bio‐Retention Basin, open drainage channel.  N15 Vacuum Sweeping of Private Streets and  Parking Lots    The project’s private streets drive isles and  parking lots shall be swept, at minimum,  prior to the start of the traditional rainy season and as needed.  N16 Other Non‐structural Measures for Public  Agency Projects    No other Non‐Structural Measures for Public Agency Projects required.  N17 Comply with all other applicable NPDES  permits    Project will file a SWPPP w/ the State Waterboards and obtain a WDID number  Water Quality Management Plan (WQMP)          4‐5  Form 4.1‐2 Structural Source Control BMPs  Identifier Name  Check One Describe BMP Implementation OR,  If not applicable, state reason Included Not  Applicable  S1 Provide storm drain system stencilling and signage  (CASQA New Development BMP Handbook SD‐13)        Storm drain stencils or signage prohibiting dumping and discharge of materials  (“No Dumping – Drains to Ocean”) shall be provided adjacent to each of the  project’s proposed inlets. The stencils shall be inspected and re‐stenciled as  needed to maintain legibility.     S2  Design and construct outdoor material storage  areas to reduce pollution introduction (CASQA  New Development BMP Handbook SD‐34)    Project does not propose outdoor storage areas.  S3  Design and construct trash and waste storage  areas to reduce pollution introduction (CASQA  New Development BMP Handbook SD‐32)    Garbage bin storage areas provided.  S4  Use efficient irrigation systems & landscape  design, water conservation, smart controllers, and  source control (State‐wide Model Landscape  Ordinance; CASQA New Development BMP  Handbook SD‐12)     In conjunction with routine landscaping maintenance activities, inspect irrigation  for signs of leaks, overspray and repair or adjust accordingly. Adjust system cycle  to accommodate seasonal fluctuations in water demand and temperatures. Ensure  use of native or drought tolerant/non‐invasive plant species to minimize water  consumption       S5  Finish grade of landscaped areas at a minimum of  1‐2 inches below top of curb, sidewalk, or  pavement    New landscaped areas will be constructed at a minimum of 1 inch below existing  paved areas   S6  Protect slopes and channels and provide energy  dissipation (CASQA New Development BMP  Handbook SD‐10)    Sloped areas designed with grade that protects from erosion.  S7 Covered dock areas (CASQA New Development  BMP Handbook SD‐31)     In the design of maintenance bays & loading docks, containment is encouraged  preventive measures including overflow containment structures & dead‐end  Sumps. However, in the case of loading dock from warehouse, engineered  infiltration Systems may be considered      S8  Covered maintenance bays with spill containment  plans (CASQA New Development BMP Handbook  SD‐31)    No Bays, Not applicable  Water Quality Management Plan (WQMP)          4‐6  S9 Vehicle wash areas with spill containment plans  (CASQA New Development BMP Handbook SD‐33)    No Vehicle Wash at the site, Not applicable  S10 Covered outdoor processing areas (CASQA New  Development BMP Handbook SD‐36)    No outdoor Processing, Not applicable  Form 4.1‐2 Structural Source Control BMPs  Identifier Name  Check One Describe BMP Implementation OR,  If not applicable, state reason Included Not  Applicable  S11  Equipment wash areas with spill containment  plans (CASQA New Development BMP Handbook  SD‐33)    No equipment wash areas, Not applicable  S12 Fueling areas (CASQA New Development BMP  Handbook SD‐30)    No Fueling Areas, Not applicable  S13 Hillside landscaping (CASQA New Development  BMP Handbook SD‐10)    No Hillside Landscaping, Not applicable  S14 Wash water control for food preparation areas   No food Preparation, Not applicable  S15 Community car wash racks (CASQA New  Development BMP Handbook SD‐33)    No Community Car Wash, Not applicable  Water Quality Management Plan (WQMP)          4‐7  4.1.2 Preventative LID Site Design Practices  Site design practices associated with new LID requirements in the MS4 Permit should be considered in the earliest  phases of a project. Preventative site design practices can result in smaller DCV for LID BMP and hydromodification  control BMP by reducing runoff generation. Describe site design and drainage plan including:  Refer to Section 5.2 of the TGD for WQMP for more details.  Form 4.1‐3 Preventative LID Site Design Practices Checklist  Site Design Practices  If yes, explain how preventative site design practice is addressed in project site plan. If no, other LID BMPs must be selected to meet targets  Minimize impervious areas: Yes     No   Explanation: The Site has landscaped area, multiple planters area in additional to our infiltration/Bio‐Retention Basin.  Maximize natural infiltration capacity: Yes  No   Explanation: Runoff from impervious surfaces will be conveyed to the underground infiltration chambers. The basin will not be  lined to allow for infiltration to occur, but is not the primary BMP.  Preserve existing drainage patterns and time of concentration: Yes  No   Explanation: The site currently drains Southwest. Post developed flow will also drain Southwest this is consistent with existing  and Master Planned flow patterns; however, the concentration time will be increased.   Disconnect impervious areas: Yes  No   Explanation: The site drains underground infiltration chambers for infiltration.   Protect existing vegetation and sensitive areas: Yes  No   Explanation: There are no environmentally sensitive portions onsite.  Re‐vegetate disturbed areas: Yes  No   Explanation: Part of the disturbed areas will be revegeated,. Including planting and preservation of drought tolerant  vegetation.  Minimize unnecessary compaction in stormwater retention/infiltration basin/trench areas: Yes  No   Explanation: No compaction will be performed within the areas where the underground infiltration chambers are proposed.  Utilize vegetated drainage swales in place of underground piping or imperviously lined swales: Yes  No   Explanation: Runoff will be intercepted by the underground infiltration chambers and multiple landscaped  areas/planters  Stake off areas that will be used for landscaping to minimize compaction during construction: Yes  No  Explanation: No compaction will be performed within the area where landscape areas are proposed.   A narrative of site design practices utilized or rationale for not using practices   A narrative of how site plan incorporates preventive site design practices   Include an attached Site Plan layout which shows how preventative site design practices are included in  WQMP  Water Quality Management Plan (WQMP)          4‐8  4.2 Project Performance Criteria  The purpose of this section of the Project WQMP is to establish targets for post‐development hydrology based on  performance criteria specified in the MS4 Permit. These targets include runoff volume for water quality control  (referred to as LID design capture volume), and runoff volume, time of concentration, and peak runoff for  protection of any downstream waterbody segments with a HCOC. If the project has more than one  outlet for stormwater runoff, then complete additional versions of these forms for each  DA / outlet.  Methods applied in the following forms include:   For LID BMP Design Capture Volume (DCV), the San Bernardino County Stormwater Program requires use of  the P6 method (MS4 Permit Section XI.D.6a.ii) – Form 4.2‐1   For HCOC pre‐ and post‐development hydrologic calculation, the San Bernardino County Stormwater Program  requires the use of the Rational Method (San Bernardino County Hydrology Manual Section D). Forms 4.2‐2  through Form 4.2‐5 calculate hydrologic variables including runoff volume, time of concentration, and peak  runoff from the project site pre‐ and post‐development using the Hydrology Manual Rational Method approach.  For projects greater than 640 acres (1.0 mi2), the Rational Method and these forms should not be used. For such  projects, the Unit Hydrograph Method (San Bernardino County Hydrology Manual Section E) shall be applied  for hydrologic calculations for HCOC performance criteria.  Refer to Section 4 in the TGD for WQMP for detailed guidance and instructions.  Form 4.2‐1  LID BMP Performance Criteria for Design Capture Volume  (DMA 1)  1 Project area DA 1 (ft2):  727,458  2 Imperviousness after applying preventative  site design practices (Imp%): 95.3  3 Runoff Coefficient (Rc):  _0.81  Rc = 0.858(Imp%)^3‐0.78(Imp%)^2+0.774(Imp%)+0.04  4 Determine 1‐hour rainfall depth for a 2‐year return period P2yr‐1hr (in):  0.518   http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html  5 Compute P6, Mean 6‐hr Precipitation (inches):  0.7670  P6 = Item 4 *C1, where C1 is a function of site climatic region specified in Form 3‐1 Item 1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)    6 Drawdown Rate   Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval  by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times  reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also  reduced.   24‐hrs             48‐hrs   7 Compute design capture volume, DCV (ft3):  74,099  DCV = 1/12 * [Item 1* Item 3 *Item 5 * C2], where C2 is a function of drawdown rate (24‐hr  = 1.582; 48‐hr = 1.963)   Compute separate DCV for each outlet from the project site per schematic drawn in Form 3‐1 Item 2       Water Quality Management Plan (WQMP)          4‐9  Form 4.2‐1  LID BMP Performance Criteria for Design Capture Volume  (DMA 2)  1 Project area DA 2 (ft2):  86,420  2 Imperviousness after applying preventative  site design practices (Imp%): 96.0  3 Runoff Coefficient (Rc):  _0.82  Rc = 0.858(Imp%)^3‐0.78(Imp%)^2+0.774(Imp%)+0.04  4 Determine 1‐hour rainfall depth for a 2‐year return period P2yr‐1hr (in):  0.518   http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html  5 Compute P6, Mean 6‐hr Precipitation (inches):  0.7670  P6 = Item 4 *C1, where C1 is a function of site climatic region specified in Form 3‐1 Item 1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)    6 Drawdown Rate   Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval  by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times  reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also  reduced.   24‐hrs             48‐hrs   7 Compute design capture volume, DCV (ft3):  8,909  DCV = 1/12 * [Item 1* Item 3 *Item 5 * C2], where C2 is a function of drawdown rate (24‐hr  = 1.582; 48‐hr = 1.963)   Compute separate DCV for each outlet from the project site per schematic drawn in Form 3‐1 Item 2    Form 4.2‐1  LID BMP Performance Criteria for Design Capture Volume  (DMA 3)  1 Project area DA 3 (ft2):  99,006  2 Imperviousness after applying preventative  site design practices (Imp%): 89.7  3 Runoff Coefficient (Rc):  _0.73  Rc = 0.858(Imp%)^3‐0.78(Imp%)^2+0.774(Imp%)+0.04  4 Determine 1‐hour rainfall depth for a 2‐year return period P2yr‐1hr (in):  0.518   http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html  5 Compute P6, Mean 6‐hr Precipitation (inches):  0.7670  P6 = Item 4 *C1, where C1 is a function of site climatic region specified in Form 3‐1 Item 1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)    6 Drawdown Rate   Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval  by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times  reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also  reduced.   24‐hrs             48‐hrs   7 Compute design capture volume, DCV (ft3):  9,006  DCV = 1/12 * [Item 1* Item 3 *Item 5 * C2], where C2 is a function of drawdown rate (24‐hr  = 1.582; 48‐hr = 1.963)   Compute separate DCV for each outlet from the project site per schematic drawn in Form 3‐1 Item 2    Water Quality Management Plan (WQMP)         4‐10  *The Site is with in HCOC exempt area for WQMP per the San Bernardino County WQMP Project report (WAP Report).                              Form 4.2‐2  Summary of HCOC Assessment (DMA 1)  Does project have the potential to cause or contribute to an HCOC in a downstream channel:  Yes     No   Go to:  http://permitrack.sbcounty.gov/wap/   If “Yes”, then complete HCOC assessment of site hydrology for 2yr storm event using Forms 4.2‐3 through 4.2‐5 and insert results below  (Forms 4.2‐3 through 4.2‐5 may be replaced by computer software analysis based on the San Bernardino County Hydrology Manual)  If “No,” then proceed to Section 4.3 Project Conformance Analysis  Condition Runoff Volume (ft3) Time of Concentration (min) Peak Runoff (cfs)  Pre‐developed  1        Form 4.2‐3 Item 12  2        Form 4.2‐4 Item 13  3        Form 4.2‐5 Item 10  Post‐developed  4        Form 4.2‐3 Item 13  5        Form 4.2‐4 Item 14  6        Form 4.2‐5 Item 14  Difference  7         Item 4 – Item 1  8         Item 2 – Item 5  9         Item 6 – Item 3  Difference   (as % of pre‐developed)  10      %  Item 7 / Item 1  11      %  Item 8 / Item 2  12      %  Item 9 / Item 3  Water Quality Management Plan (WQMP)         4‐11  Form 4.2‐3  HCOC Assessment for Runoff Volume (DA 1)  Weighted Curve Number  Determination for:  Pre‐developed DA  DMA A DMA B DMA C DMA D DMA E DMA F DMA G DMA H  1a Land Cover type                                                  2a Hydrologic Soil Group (HSG)                                                  3a DMA Area, ft2 sum of areas of  DMA should equal area of DA                                                   4a Curve Number (CN) use Items  1 and 2 to select the appropriate CN  from Appendix C‐2 of the TGD for  WQMP                                                   Weighted Curve Number  Determination for:  Post‐developed DA  DMA A DMA B DMA C DMA D DMA E DMA F DMA G DMA H  1b Land Cover type                                                  2b Hydrologic Soil Group (HSG)                                                  3b DMA Area, ft2 sum of areas of  DMA should equal area of DA                                                   4b Curve Number (CN) use Items  5 and 6 to select the appropriate CN  from Appendix C‐2 of the TGD for  WQMP                                                   5 Pre‐Developed area‐weighted CN:        7 Pre‐developed soil storage capacity, S (in):            S = (1000 / Item 5) ‐ 10  9 Initial abstraction, Ia (in):           Ia = 0.2 * Item 7  6 Post‐Developed area‐weighted CN:        8 Post‐developed soil storage capacity, S (in):           S = (1000 / Item 6) ‐ 10  10 Initial abstraction, Ia (in):           Ia = 0.2 * Item 8  11 Precipitation for 2 yr, 24 hr storm (in):            Go to: http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html  12 Pre‐developed Volume (ft3):            Vpre =(1 / 12) * (Item sum of Item 3) * [(Item 11 – Item 9)^2 / ((Item 11 – Item 9 + Item 7)  13 Post‐developed Volume (ft3):            Vpre =(1 / 12) * (Item sum of Item 3) * [(Item 11 – Item 10)^2 / ((Item 11 – Item 10 + Item 8)  14 Volume Reduction needed to meet HCOC Requirement, (ft3):            VHCOC = (Item 13 * 0.95) – Item 12    Water Quality Management Plan (WQMP)         4‐12    Form 4.2‐4 HCOC Assessment for Time of Concentration (DA 1)  Compute time of concentration for pre and post developed conditions for each DA (For projects using the Hydrology Manual complete the  form below)  Variables  Pre‐developed DA1   Use additional forms if there are more than 4 DMA  Post‐developed DA1   Use additional forms if there are more than 4 DMA  DMA A DMA B DMA C DMA D DMA A DMA B DMA C DMA D  1 Length of flowpath (ft)  Use Form 3‐2  Item 5 for pre‐developed condition                                                   2 Change in elevation (ft)                                                  3 Slope (ft/ft), So = Item 2 / Item 1                                                  4 Land cover                                                  5 Initial DMA Time of Concentration  (min) Appendix C‐1 of the TGD for WQMP                                                   6 Length of conveyance from DMA  outlet to project site outlet (ft)    May be zero if DMA outlet is at project  site outlet                                                   7 Cross‐sectional area of channel (ft2)                                                  8 Wetted perimeter of channel (ft)                                                  9 Manning’s roughness of channel (n)                                                  10 Channel flow velocity (ft/sec)    Vfps = (1.49 / Item 9) * (Item 7/Item 8)^0.67  * (Item 3)^0.5                                                   11 Travel time to outlet (min)   Tt = Item 6 / (Item 10 * 60)                                                   12 Total time of concentration (min)  Tc = Item 5 + Item 11                                                   13 Pre‐developed time of concentration (min):            Minimum of Item 12 pre‐developed DMA   14 Post‐developed time of concentration (min):           Minimum of Item 12 post‐developed DMA  15 Additional time of concentration needed to meet HCOC requirement (min):         TC‐HCOC = (Item 13 * 0.95) – Item 14  Water Quality Management Plan (WQMP)         4‐13  Form 4.2‐5 HCOC Assessment for Peak Runoff (DA 1)  Compute peak runoff for pre‐ and post‐developed conditions  Variables  Pre‐developed DA to Project  Outlet (Use additional forms if  more than 3 DMA)  Post‐developed DA to Project  Outlet (Use additional forms if  more than 3 DMA)  DMA A DMA B DMA C DMA A DMA B DMA C  1 Rainfall Intensity for storm duration equal to time of concentration    Ipeak = 10^(LOG Form 4.2‐1 Item 4 ‐ 0.6 LOG Form 4.2‐4 Item 5 /60)                                       2 Drainage Area of each DMA (Acres)   For DMA with outlet at project site outlet, include upstream DMA (Using example  schematic in Form 3‐1, DMA A will include drainage from DMA C)                                       3 Ratio of pervious area to total area  For DMA with outlet at project site outlet, include upstream DMA (Using example  schematic in Form 3‐1, DMA A will include drainage from DMA C)                                       4 Pervious area infiltration rate (in/hr)   Use pervious area CN and antecedent moisture condition with Appendix C‐3 of the TGD  for WQMP                                       5 Maximum loss rate (in/hr)     Fm = Item 3 * Item 4   Use area‐weighted Fm from DMA with outlet at project site outlet, include upstream  DMA (Using example schematic in Form 3‐1, DMA A will include drainage from DMA C)                                       6 Peak Flow from DMA (cfs)    Qp =Item 2 * 0.9 * (Item 1 ‐ Item 5)                                       7 Time of concentration adjustment factor for other DMA to  site discharge point   Form 4.2‐4 Item 12 DMA / Other DMA upstream of site discharge  point (If ratio is greater than 1.0, then use maximum value of 1.0)  DMA A n/a             n/a              DMA B       n/a             n/a        DMA C             n/a             n/a  8 Pre‐developed Qp at Tc for DMA A:          Qp = Item 6DMAA + [Item 6DMAB * (Item 1DMAA ‐ Item  5DMAB)/(Item 1DMAB ‐ Item 5DMAB)* Item 7DMAA/2] +  [Item 6DMAC * (Item 1DMAA ‐ Item 5DMAC)/(Item 1DMAC ‐  Item 5DMAC)* Item 7DMAA/3]  9 Pre‐developed Qp at Tc for DMA B:          Qp = Item 6DMAB + [Item 6DMAA * (Item 1DMAB ‐ Item  5DMAA)/(Item 1DMAA ‐ Item 5DMAA)* Item 7DMAB/1] +  [Item 6DMAC * (Item 1DMAB ‐ Item 5DMAC)/(Item 1DMAC ‐  Item 5DMAC)* Item 7DMAB/3]  10 Pre‐developed Qp at Tc for DMA C:          Qp = Item 6DMAC + [Item 6DMAA * (Item 1DMAC ‐ Item  5DMAA)/(Item 1DMAA ‐ Item 5DMAA)* Item 7DMAC/1] +  [Item 6DMAB * (Item 1DMAC ‐ Item 5DMAB)/(Item 1DMAB  ‐ Item 5DMAB)* Item 7DMAC/2]  10 Peak runoff from pre‐developed condition confluence analysis (cfs):         Maximum of Item 8, 9, and 10 (including additional forms as needed)  11  Post‐developed Qp at Tc for DMA A:         Same as Item 8 for post‐developed values  12  Post‐developed Qp at Tc for DMA B:        Same as Item 9 for post‐developed values  13 Post‐developed Qp at Tc for DMA C:         Same as Item 10 for post‐developed  values  14 Peak runoff from post‐developed condition confluence analysis (cfs):         Maximum of Item 11, 12, and 13 (including additional forms as  needed)  15 Peak runoff reduction needed to meet HCOC Requirement (cfs):          Qp‐HCOC = (Item 14 * 0.95) – Item 10  Water Quality Management Plan (WQMP)         4‐14  4.3 Project Conformance Analysis  Complete the following forms for each project site DA to document that the proposed LID BMPs conform to the  project DCV developed to meet performance criteria specified in the MS4 Permit (WQMP Template Section  4.2). For the LID DCV, the forms are ordered according to hierarchy of BMP selection as required by the MS4  Permit (see Section 5.3.1 in the TGD for WQMP). The forms compute the following for on‐site LID BMP:    Site Design and Hydrologic Source Controls (Form 4.3‐2)   Retention and Infiltration (Form 4.3‐3)    Harvested and Use (Form 4.3‐4) or    Biotreatment (Form 4.3‐5).   At the end of each form, additional fields facilitate the determination of the extent of mitigation provided by  the specific BMP category, allowing for use of the next category of BMP in the hierarchy, if necessary.  The first step in the analysis, using Section 5.3.2.1 of the TGD for WQMP, is to complete Forms 4.3‐1 and 4.3‐3)  to determine if retention and infiltration BMPs are infeasible for the project. For each feasibility criterion in  Form 4.3‐1, if the answer is “Yes,” provide all study findings that includes relevant calculations, maps, data  sources, etc. used to make the determination of infeasibility.  Next, complete Forms 4.3‐2 and 4.3‐4 to determine the feasibility of applicable HSC and harvest and use BMPs,  and, if their implementation is feasible, the extent of mitigation of the DCV.  If no site constraints exist that would limit the type of BMP to be implemented in a DA, evaluate the use of  combinations of LID BMPs, including all applicable HSC BMPs to maximize on‐site retention of the DCV. If no  combination of BMP can mitigate the entire DCV, implement the single BMP type, or combination of BMP  types, that maximizes on‐site retention of the DCV within the minimum effective area.   If the combination of LID HSC, retention and infiltration, and harvest and use BMPs are unable to mitigate the  entire DCV, then biotreatment BMPs may be implemented by the project proponent. If biotreatment BMPs are  used, then they must be sized to provide sufficient capacity for effective treatment of the remainder of the  volume‐based performance criteria that cannot be achieved with LID BMPs (TGD for WQMP Section 5.4.4.2).  Under no circumstances shall any portion of the DCV be released from the site without effective  mitigation and/or treatment.       Water Quality Management Plan (WQMP)         4‐15  Form 4.3‐1 Infiltration BMP Feasibility (DA 1)  Feasibility Criterion – Complete evaluation for each DA on the Project Site  1 Would infiltration BMP pose significant risk for groundwater related concerns?                                                           Yes    No   Refer to Section 5.3.2.1 of the TGD for WQMP   If Yes, Provide basis: (attach) Due to low infiltration rate on Site.  2 Would installation of infiltration BMP significantly increase the risk of geotechnical hazards?                                   Yes  No   (Yes, if the answer to any of the following questions is yes, as established by a geotechnical expert):    The location is less than 50 feet away from slopes steeper than 15 percent   The location is less than eight feet from building foundations or an alternative setback.   A study certified by a geotechnical professional or an available watershed study determines that stormwater infiltration  would result in significantly increased risks of geotechnical hazards.  If Yes, Provide basis: (attach)    3 Would infiltration of runoff on a Project site violate downstream water rights?                                                             Yes  No   If Yes, Provide basis: (attach)  4 Is proposed infiltration facility located on hydrologic soil group (HSG) D soils or does the site geotechnical investigation indicate  presence of soil characteristics, which support categorization as D soils?                                                                            Yes  No   If Yes, Provide basis: (attach)  5 Is the design infiltration rate, after accounting for safety factor of 2.0, below proposed facility less than 0.3 in/hr (accounting for  soil amendments)?                                                                                                                                                                            Yes  No   If Yes, Provide basis: (attach) See attached Soils Report which includes infiltration testing results  6 Would on‐site infiltration or reduction of runoff over pre‐developed conditions be partially or fully inconsistent with watershed  management strategies as defined in the WAP, or impair beneficial uses?                                                                           Yes  No   See Section 3.5 of the TGD for WQMP and WAP  If Yes, Provide basis: (attach)  7 Any answer from Item 1 through Item 3 is “Yes”:                                                                                                                     Yes  No     If yes, infiltration of any volume is not feasible onsite. Proceed to Form 4.3‐4, Harvest and Use BMP. If no, then proceed to Item 8  below.  8 Any answer from Item 4 through Item 6 is “Yes”:                                                                                                                      Yes  No     If yes, infiltration is permissible but is not required to be considered. Proceed to Form 4.3‐2, Hydrologic Source Control BMP.   If no, then proceed to Item 9, below.  9 All answers to Item 1 through Item 6 are “No”:    Infiltration of the full DCV is potentially feasible, LID infiltration BMP must be designed to infiltrate the full DCV to the MEP.  Proceed to Form 4.3‐2, Hydrologic Source Control BMP.  Water Quality Management Plan (WQMP)         4‐16  4.3.1 Site Design Hydrologic Source Control BMP  Section XI.E. of the Permit emphasizes the use of LID preventative measures; and the use of LID HSC BMPs  reduces the portion of the DCV that must be addressed in downstream BMPs. Therefore, all applicable HSC  shall be provided except where they are mutually exclusive with each other, or with other BMPs. Mutual  exclusivity may result from overlapping BMP footprints such that either would be potentially feasible by itself,  but both could not be implemented. Please note that while there are no numeric standards regarding the use of  HSC, if a project cannot feasibly meet BMP sizing requirements or cannot fully address HCOCs, feasibility of all  applicable HSC must be part of demonstrating that the BMP system has been designed to retain the maximum  feasible portion of the DCV. Complete Form 4.3‐2 to identify and calculate estimated retention volume from  implementing site design HSC BMP. Refer to Section 5.4.1 in the TGD for more detailed guidance.   Form 4.3‐2  Site Design Hydrologic Source Control BMPs (DA 1)  1 Implementation of Impervious Area Dispersion  BMP (i.e. routing runoff from impervious to pervious  areas), excluding impervious areas planned for  routing to on‐lot infiltration BMP:  Yes    No    If  yes, complete Items 2‐5; If no, proceed to Item 6  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL  DA 1  DMA 4  BMP Type  INFIL     2 Total impervious area draining to pervious area                     3 Ratio of pervious area receiving runoff to                     4 Retention volume achieved from impervious area  dispersion (ft3)   V = Item2 * Item 3 * (0.5/12), assuming  retention of 0.5 inches of runoff                         5 Sum of retention volume achieved from impervious area dispersion (ft3):  0      Vretention =Sum of Item 4 for all BMPs  6 Implementation of Localized On‐lot Infiltration  BMPs (e.g. on‐lot rain gardens):  Yes    No    If  yes, complete Items 7‐13 for aggregate of all on‐lot  infiltration BMP in each DA; If no, proceed to Item 14  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL  DA 1  DMA 4  BMP Type  INFIL     7 Ponding surface area (ft2)                     8 Ponding depth (ft)                     9 Surface area of amended soil/gravel (ft2)                     10 Average depth of amended soil/gravel (ft)                     11 Average porosity of amended soil/gravel                     12 Retention volume achieved from on‐lot  infiltration (ft3)  Vretention = (Item 7 *Item 8) + (Item 9 * Item 10 * Item 11)                          13 Runoff volume retention from on‐lot infiltration (ft3):  0      Vretention =Sum of Item 12 for all BMPs  Water Quality Management Plan (WQMP)         4‐17       Form 4.3‐2  Site Design Hydrologic Source Control BMPs (DA 1)  14 Implementation of evapotranspiration BMP  (green, brown, or blue roofs):   Yes     No      If yes, complete Items 15‐20.  If no, proceed to Item 21  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL  DA 1  DMA 4  BMP Type  INFIL     15 Rooftop area planned for ET BMP (ft2)                        16 Average wet season ET demand (in/day)    Use local values, typical ~ 0.1                      17 Daily ET demand (ft3/day)    Item 15 * (Item 16 / 12)                      18 Drawdown time (hrs)    Copy Item 6 in Form 4.2‐1                      19 Retention Volume (ft3)    Vretention = Item 17 * (Item 18 / 24)                       20 Runoff volume retention from evapotranspiration BMPs (ft3):  0        Vretention =Sum of Item 19 for all BMPs  21 Implementation of Street Trees:   Yes       No       If yes, complete Items 22‐25.  If no, proceed to Item 26  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL  DA 1  DMA 4  BMP Type  INFIL     22 Number of Street Trees                      23 Average canopy cover over impervious area (ft2)                      24 Runoff volume retention from street trees (ft3)   Vretention = Item 22 * Item 23 * (0.05/12) assume runoff  retention of 0.05 inches                         25 Runoff volume retention from street tree BMPs (ft3):  0       Vretention = Sum of Item 24 for all BMPs  26 Implementation of residential rain barrel/cisterns:  Yes    No   If yes, complete Items 27‐29; If no,  proceed to Item 30  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL  DA 1  DMA 4  BMP Type  INFIL     27 Number of rain barrels/cisterns                      28 Runoff volume retention from rain  barrels/cisterns  (ft3)   Vretention = Item 27 * 3                         29 Runoff volume retention from residential rain barrels/Cisterns  (ft3):  0       Vretention =Sum of Item 28 for all BMPs   30 Total Retention Volume from Site Design Hydrologic Source Control BMPs:  0  Sum of Items 5, 13, 20, 25 and 29  Water Quality Management Plan (WQMP)         4‐18  4.3.2 Infiltration BMPs  Use Form 4.3‐3 to compute on‐site retention of runoff from proposed retention and infiltration BMPs. Volume  retention estimates are sensitive to the percolation rate used, which determines the amount of runoff that can  be infiltrated within the specified drawdown time. The infiltration safety factor reduces field measured  percolation to account for potential inaccuracy associated with field measurements, declining BMP  performance over time, and compaction during construction. Appendix D of the TGD for WQMP provides  guidance on estimating an appropriate safety factor to use in Form 4.3‐3.   If site constraints limit the use of BMPs to a single type and implementation of retention and infiltration BMPs  mitigate no more than 40% of the DCV, then they are considered infeasible and the Project Proponent may  evaluate the effectiveness of BMPs lower in the LID hierarchy of use (Section 5.5.1 of the TGD for WQMP)  If implementation of infiltrations BMPs is feasible as determined using Form 4.3‐1, then LID infiltration BMPs  shall be implemented to the MEP (section 4.1 of the TGD for WQMP).     . Water Quality Management Plan (WQMP)         4‐19   Form 4.3‐3  Infiltration LID BMP ‐ including underground BMPs (DA 1)   1 Remaining LID DCV not met by site design HSC BMP (ft3):  90,222   Vunmet = Form 4.2‐1 Item 7 ‐ Form 4.3‐2 Item 30  BMP Type  Use columns to the right to compute runoff volume retention from  proposed infiltration BMP (select BMP from Table 5‐4 in TGD for WQMP) ‐  Use  additional forms for more BMPs  DA 1  DMA 1  BMP Type INFIL  DA 1  DMA 2  BMP Type  INFIL  DA 1  DMA 3  BMP Type  INFIL NOTES     2 Infiltration rate of underlying soils (in/hr) See Section 5.4.2 and Appendix  D of the TGD for WQMP for minimum requirements for assessment methods  11.27 (AVE) 11.27 (AVE) 11.27 (AVE) From Old Soils  Report  3 Infiltration safety factor  See TGD Section 5.4.2 and Appendix D 2.75 2.75 2.75 Worksheet  H  4 Design percolation rate (in/hr)  Pdesign = Item 2 / Item 3 2.8 2.8 2.8  Used less than  calc’d for prelim  5 Ponded water drawdown time (hr) Copy Item 6 in Form 4.2‐1 48 48 48   6 Maximum ponding depth (ft)  BMP specific, see Table 5‐4 of the TGD for  WQMP for BMP design details  7.5 6.75 7   7 Ponding Depth (ft)  dBMP = Minimum of (1/12*Item 4*Item 5) or Item 6 7.5 6.75 7   8 Infiltrating surface area, SABMP (ft2) the lesser of the area needed for  infiltration of full DCV or minimum space requirements from Table 5.7 of the TGD  for WQMP  15,846 2210 2324   9 Amended soil depth, dmedia (ft)  Only included in certain BMP types, see   Table 5‐4 in the TGD for WQMP for reference to BMP design details  N/A N/A N/A        10 Amended soil porosity N/A N/A N/A        11 Gravel depth, dmedia (ft) Only included in certain BMP types,  see Table 5‐4  of the TGD for WQMP for BMP design details  2’ below, 1’ above  chambers  2’ below, 1’ above  chambers  2’ below, 1’ above  chambers   12 Gravel porosity 0.4 0.4 0.4   13 Duration of storm as basin is filling (hrs)  Typical ~ 3hrs 3 3 3   14 Above Ground Retention Volume (ft3)  Vretention = Item 8 * [Item7 + (Item  9 * Item 10) + (Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]  0 0 0   15 Underground Retention Volume (ft3)  Volume determined using  manufacturer’s specifications and calculations  80,624 9,956 8,962    16 Total Retention Volume from LID Infiltration BMPs:  92,220 (Sum of Items 14 and 15 for all infiltration BMP included in plan)   17  Fraction of DCV achieved with infiltration BMP: 102%   Retention% = Item 16 / Form 4.2‐1 Item 7   18 Is full LID DCV retained onsite with combination of hydrologic source control and LID retention/infiltration BMPs? Yes   No     If yes, demonstrate conformance using Form 4.3‐10; If no, then reduce Item 3, Factor of Safety to 2.0 and increase Item 8, Infiltrating Surface Area, such that the portion of the  site area used for retention and infiltration BMPs equals or exceeds the minimum effective area thresholds (Table 5‐7 of the TGD for WQMP) for the applicable category of  development and repeat all above calculations.  Water Quality Management Plan (WQMP)         4‐20    4.3.3 Harvest and Use BMP  Harvest and use BMP may be considered if the full LID DCV cannot be met by maximizing infiltration BMPs.  Use Form 4.3‐4 to compute on‐site retention of runoff from proposed harvest and use BMPs.   Volume retention estimates for harvest and use BMPs are sensitive to the on‐site demand for captured  stormwater. Since irrigation water demand is low in the wet season, when most rainfall events occur in San  Bernardino County, the volume of water that can be used within a specified drawdown period is relatively low.  The bottom portion of Form 4.3‐4 facilitates the necessary computations to show infeasibility if a minimum  incremental benefit of 40 percent of the LID DCV would not be achievable with MEP implementation of on‐site  harvest and use of stormwater (Section 5.5.4 of the TGD for WQMP).    Form 4.3‐4  Harvest and Use BMPs (DA 1)  1 Remaining LID DCV not met by site design HSC or infiltration BMP (ft3):  0  Vunmet = Form 4.2‐1 Item 7 ‐ Form 4.3‐2 Item 30 – Form 4.3‐3 Item 16  BMP Type(s)  Compute runoff volume retention from proposed  harvest and use BMP (Select BMPs from Table 5‐4 of the TGD for  WQMP) ‐  Use additional forms for more BMPs  DA      DMA         BMP Type        DA      DMA         BMP Type        DA      DMA         BMP Type          (Use additional forms  for more BMPs)  2 Describe cistern or runoff detention facility                    3 Storage volume for proposed detention type (ft3) Volume of  cistern                     4 Landscaped area planned for use of harvested stormwater  (ft2)                      5 Average wet season daily irrigation demand (in/day)   Use local values, typical ~ 0.1 in/day                     6 Daily water demand (ft3/day) Item 4 * (Item 5 / 12)                    7 Drawdown time (hrs)  Copy Item 6 from Form 4.2‐1                    8Retention Volume (ft3)  Vretention = Minimum of (Item 3) or (Item 6 * (Item 7 / 24))                      9 Total Retention Volume (ft3) from Harvest and Use BMP      Sum of Item 8 for all harvest and use BMP included in plan  10 Is the full DCV retained with a combination of LID HSC, retention and infiltration, and harvest & use BMPs? Yes  No     If yes, demonstrate conformance using Form 4.3‐10.  If no, then re‐evaluate combinations of all LID BMP and optimize their implementation  such that the maximum portion of the DCV is retained on‐site (using a single BMP type or combination of BMP types). If the full DCV cannot  be mitigated after this optimization process, proceed to Section 4.3.4.  Water Quality Management Plan (WQMP)         4‐21  4.3.4 Biotreatment BMP  Biotreatment BMPs may be considered if the full LID DCV cannot be met by maximizing retention and  infiltration, and harvest and use BMPs. A key consideration when using biotreatment BMP is the effectiveness  of the proposed BMP in addressing the pollutants of concern for the project (see Table 5‐5 of the TGD for  WQMP).  Use Form 4.3‐5 to summarize the potential for volume based and/or flow based biotreatment options to  biotreat the remaining unmet LID DCV w. Biotreatment computations are included as follows:   Use Form 4.3‐6 to compute biotreatment in small volume based biotreatment BMP (e.g. bioretention w/underdrains);    Use Form 4.3‐7 to compute biotreatment in large volume based biotreatment BMP (e.g. constructed wetlands);   Use Form 4.3‐8 to compute sizing criteria for flow‐based biotreatment BMP (e.g. bioswales)    Form 4.3‐5 Selection and Evaluation of Biotreatment BMP (DMA 1)  1 Remaining LID DCV not met by site design HSC,  infiltration, or harvest and use BMP for potential  biotreatment (ft3):  0   Form 4.2‐1 Item 7 ‐ Form 4.3‐2 Item  30 – Form 4.3‐3 Item 16‐ Form 4.3‐4 Item 9  Bacteria and viruses are a potential pollutant for Industrial/Commercial  developments if the land use involves animal waste.  Due to the nature  of the development, there will be no animal waste associated with this  land use, and the site will be treated using site and source control.  Bacteria and virus can also be detected in pavement runoff; therefore,  the site has incorporated treatment control throughout.  All paved and  hardened surfaces will be treated through a bioretention basin part of  Low Impact Design (LID).      2 Biotreatment BMP Selected   (Select biotreatment BMP(s)  necessary to ensure all pollutants of  concern are addressed through Unit  Operations and Processes, described  in Table 5‐5 of the TGD for WQMP)  Volume‐based biotreatment   Use Forms 4.3‐6 and 4.3‐7 to compute treated volume  Flow‐based biotreatment    Use Form 4.3‐8 to compute treated volume   Bioretention with underdrain   Planter box with underdrain   Constructed wetlands  Wet extended detention   Dry extended detention   Vegetated swale  Vegetated filter strip   Proprietary biotreatment  3 Volume biotreated in volume based  biotreatment BMP (ft3):  0 Form 4.3‐6  Item 15 + Form 4.3‐7 Item 13  4 Compute remaining LID DCV with  implementation of volume based biotreatment  BMP (ft3):  0   Item 1 – Item 3  5 Remaining fraction of LID DCV for  sizing flow based biotreatment BMP:  0  Item 4  / Item 1  6 Flow‐based biotreatment BMP capacity provided (cfs):    Use Figure 5‐2 of the TGD for WQMP to determine flow capacity required to  provide biotreatment of remaining percentage of unmet LID DCV (Item 5), for the project’s precipitation zone (Form 3‐1 Item 1)  7 Metrics for MEP determination:    Provided a WQMP with the portion of site area used for suite of LID BMP equal to minimum thresholds in Table 5‐7 of the  TGD for WQMP for the proposed category of development:    If maximized on‐site retention BMPs is feasible for partial capture,  then LID BMP implementation must be optimized to retain and infiltrate the maximum portion of the DCV possible within the prescribed  minimum effective area. The remaining portion of the DCV shall then be mitigated using biotreatment BMP.   Water Quality Management Plan (WQMP)         4‐22     Form 4.3‐6 Volume Based Biotreatment (DA 1) –   Bioretention and Planter Boxes with Underdrains  Biotreatment BMP Type   (Bioretention w/underdrain, planter box w/underdrain, other  comparable BMP)  DA 1  DMA      BMP Type        DA      DMA         BMP Type        DA      DMA         BMP Type          (Use additional forms  for more BMPs)  1 Pollutants addressed with BMP    List all pollutant of concern that  will be effectively reduced through specific Unit Operations and  Processes described in Table 5‐5 of the TGD for WQMP   Pathogens,  metals, nutrients,  sediment, organic  compounds,  pesticides, trash,  oil and grease               2 Amended soil infiltration rate Typical ~ 5.0               3 Amended soil infiltration safety factor Typical ~ 2.0               4 Amended soil design percolation rate (in/hr) Pdesign = Item 2 /  Item 3                5 Ponded water drawdown time (hr) Copy Item 6 from Form 4.2‐1               6 Maximum ponding depth (ft)  see Table 5‐6 of the TGD for WQMP  for reference to BMP design details                7 Ponding Depth (ft)  dBMP = Minimum of (1/12 * Item 4 * Item 5) or  Item 6                8 Amended soil surface area (ft2)               9 Amended soil depth (ft)  see Table 5‐6 of the TGD for WQMP for  reference to BMP design details                10 Amended soil porosity, n               11 Gravel depth (ft)  see Table 5‐6 of the TGD for WQMP for reference  to BMP design details                12 Gravel porosity, n               13  Duration of storm as basin is filling (hrs)  Typical ~ 3hrs               14 Biotreated Volume (ft3)     Vbiotreated = Item 8 * [(Item 7/2) + (Item 9  * Item 10) +(Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]                15 Total biotreated  volume from bioretention and/or planter box  with underdrains BMP:    Sum of Item 14 for all volume‐based BMPs included in this form  Water Quality Management Plan (WQMP)         4‐23       Form 4.3‐7 Volume Based Biotreatment (DA 1) –   Constructed Wetlands and Extended Detention  Biotreatment BMP Type   Constructed wetlands, extended wet detention, extended dry detention,  or other comparable proprietary BMP. If BMP includes multiple modules   (e.g. forebay and main basin), provide separate estimates for storage  and pollutants treated in each module.  DA      DMA         BMP Type        DA      DMA         BMP Type        (Use additional forms   for more BMPs)  Forebay Basin Forebay Basin  1 Pollutants addressed with BMP forebay and basin  List all pollutant of concern that will be effectively reduced through  specific Unit Operations and Processes described in Table 5‐5 of the TGD  for WQMP                           2 Bottom width (ft)                          3 Bottom length (ft)                          4 Bottom area (ft2) Abottom = Item 2 * Item 3                          5 Side slope (ft/ft)                            6 Depth of storage (ft)                            7 Water surface area (ft2)   Asurface =(Item 2 + (2 * Item 5 * Item 6)) * (Item 3 + (2 * Item 5 * Item 6))                           8 Storage volume (ft3) For BMP with a forebay, ensure fraction of  total storage is within ranges specified in BMP specific fact sheets, see  Table 5‐6 of the TGD for WQMP for reference to BMP design details  V =Item 6 / 3 * [Item 4 + Item 7 + (Item 4 * Item 7)^0.5]                            9 Drawdown Time (hrs)  Copy Item 6 from Form 2.1              10 Outflow rate (cfs) QBMP = (Item 8forebay + Item 8basin) / (Item 9 * 3600)              11 Duration of design storm event (hrs)              12 Biotreated Volume (ft3)   Vbiotreated = (Item 8forebay + Item 8basin) +( Item 10 * Item 11 * 3600)               13 Total biotreated volume from constructed wetlands, extended dry detention, or extended wet detention :            (Sum of Item 12 for all BMP included in plan)  Water Quality Management Plan (WQMP)         4‐24  Form 4.3‐8 Flow Based Biotreatment (DA 1)  Biotreatment BMP Type  Vegetated swale, vegetated filter strip, or other comparable proprietary  BMP  DA      DMA         BMP Type        DA      DMA         BMP Type        DA      DMA         BMP Type          (Use additional forms  for more BMPs)  1 Pollutants addressed with BMP  List all pollutant of concern that will be effectively reduced through  specific Unit Operations and Processes described in TGD Table 5‐5                     2 Flow depth for water quality treatment (ft)   BMP specific, see Table 5‐6 of the TGD for WQMP for reference to BMP  design details                     3 Bed slope (ft/ft)   BMP specific, see Table 5‐6 of the TGD for WQMP for reference to BMP  design details                     4 Manning's roughness coefficient                    5 Bottom width (ft)   bw = (Form 4.3‐5 Item 6 * Item 4) / (1.49 * Item 2^1.67 * Item 3^0.5)                     6 Side Slope (ft/ft)   BMP specific, see Table 5‐6 of the TGD for WQMP for reference to BMP  design details                     7 Cross sectional area (ft2)   A = (Item 5 * Item 2) + (Item 6 * Item 2^2)                     8 Water quality flow velocity (ft/sec)  V =  Form 4.3‐5 Item 6 / Item 7                     9 Hydraulic residence time (min)   Pollutant specific, see Table 5‐6 of the TGD for WQMP for reference to  BMP design details                     10 Length of flow based BMP (ft)  L = Item 8 * Item 9 * 60                     11 Water surface area at water quality flow depth (ft2)   SAtop = (Item 5 + (2 * Item 2 * Item 6)) * Item 10                     Water Quality Management Plan (WQMP)         4‐25  4.3.5 Conformance Summary  Complete Form 4.3‐9 to demonstrate how on‐site LID DCV is met with proposed site design hydrologic source  control, infiltration, harvest and use, and/or biotreatment BMP. The bottom line of the form is used to describe  the basis for infeasibility determination for on‐site LID BMP to achieve full LID DCV, and provides methods for  computing remaining volume to be addressed in an alternative compliance plan. If the project has more than  one outlet, then complete additional versions of this form for each outlet.    Form 4.3‐9 Conformance Summary and Alternative   Compliance Volume Estimate (DA 1)  1 Total LID DCV for the Project DA‐1 (ft3):   73,543    2 On‐site retention with site design hydrologic source control LID BMP (ft3):   0  3 On‐site retention with LID infiltration BMP (ft3):    80,624    4 On‐site retention with LID harvest and use BMP (ft3):    0  5 On‐site biotreatment with volume based biotreatment BMP (ft3): 0  6 Flow capacity provided by flow based biotreatment BMP (cfs):   0  7 LID BMP performance criteria are achieved if answer to any of the following is “Yes”:   Full retention of LID DCV with site design HSC, infiltration, or harvest and use BMP:   Yes   No    If yes, sum of Items 2, 3, and 4 is greater than Item 1   Combination of on‐site retention BMPs for a portion of the LID DCV and volume‐based biotreatment BMP that  address all pollutants of concern for the remaining LID DCV:  Yes  No   If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form  4.3‐‐5 Item 6 and Items 2, 3 and 4 are maximized   On‐site retention and infiltration is determined to be infeasible and biotreatment BMP provide biotreatment for all  pollutants of concern for full LID DCV:  Yes   No    If yes, Form 4.3‐1 Items 7 and 8 were both checked yes  8 If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative  compliance plan. Check box that describes the scenario which caused the need for alternative compliance:   Combination of HSC, retention and infiltration, harvest and use, and biotreatment BMPs provide less than full LID DCV  capture:     Checked yes for Form 4.3‐5 Item 7, Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits  and calculate volume for alternative compliance,  Valt = (Item 1 – Item 2 – Item 3 – Item 4 – Item 5) * (100 ‐ Form 2.4‐1 Item 2)%   An approved Watershed Action Plan (WAP) demonstrates that water quality and hydrologic impacts of urbanization  are more effective when managed in at an off‐site facility:     Attach appropriate WAP section, including technical documentation, showing effectiveness comparisons for the project site and  regional watershed  Water Quality Management Plan (WQMP)         4‐26        Form 4.3‐9 Conformance Summary and Alternative   Compliance Volume Estimate (DA 2)  1 Total LID DCV for the Project DA‐2 (ft3):   9,020    2 On‐site retention with site design hydrologic source control LID BMP (ft3):   0  3 On‐site retention with LID infiltration BMP (ft3):    9,956     4 On‐site retention with LID harvest and use BMP (ft3):    0  5 On‐site biotreatment with volume based biotreatment BMP (ft3): 0  6 Flow capacity provided by flow based biotreatment BMP (cfs):   0  7 LID BMP performance criteria are achieved if answer to any of the following is “Yes”:   Full retention of LID DCV with site design HSC, infiltration, or harvest and use BMP:   Yes   No    If yes, sum of Items 2, 3, and 4 is greater than Item 1   Combination of on‐site retention BMPs for a portion of the LID DCV and volume‐based biotreatment BMP that  address all pollutants of concern for the remaining LID DCV:  Yes  No   If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form  4.3‐‐5 Item 6 and Items 2, 3 and 4 are maximized   On‐site retention and infiltration is determined to be infeasible and biotreatment BMP provide biotreatment for all  pollutants of concern for full LID DCV:  Yes   No    If yes, Form 4.3‐1 Items 7 and 8 were both checked yes  8 If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative  compliance plan. Check box that describes the scenario which caused the need for alternative compliance:   Combination of HSC, retention and infiltration, harvest and use, and biotreatment BMPs provide less than full LID DCV  capture:     Checked yes for Form 4.3‐5 Item 7, Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits  and calculate volume for alternative compliance,  Valt = (Item 1 – Item 2 – Item 3 – Item 4 – Item 5) * (100 ‐ Form 2.4‐1 Item 2)%   An approved Watershed Action Plan (WAP) demonstrates that water quality and hydrologic impacts of urbanization  are more effective when managed in at an off‐site facility:     Attach appropriate WAP section, including technical documentation, showing effectiveness comparisons for the project site and  regional watershed  Water Quality Management Plan (WQMP)         4‐27  Form 4.3‐9 Conformance Summary and Alternative   Compliance Volume Estimate (DA 3)  1 Total LID DCV for the Project DA‐3 (ft3):   8,132    2 On‐site retention with site design hydrologic source control LID BMP (ft3):   0  3 On‐site retention with LID infiltration BMP (ft3):    8,962     4 On‐site retention with LID harvest and use BMP (ft3):    0  5 On‐site biotreatment with volume based biotreatment BMP (ft3): 0  6 Flow capacity provided by flow based biotreatment BMP (cfs):   0  7 LID BMP performance criteria are achieved if answer to any of the following is “Yes”:   Full retention of LID DCV with site design HSC, infiltration, or harvest and use BMP:   Yes   No    If yes, sum of Items 2, 3, and 4 is greater than Item 1   Combination of on‐site retention BMPs for a portion of the LID DCV and volume‐based biotreatment BMP that  address all pollutants of concern for the remaining LID DCV:  Yes  No   If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form  4.3‐‐5 Item 6 and Items 2, 3 and 4 are maximized   On‐site retention and infiltration is determined to be infeasible and biotreatment BMP provide biotreatment for all  pollutants of concern for full LID DCV:  Yes   No    If yes, Form 4.3‐1 Items 7 and 8 were both checked yes  8 If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative  compliance plan. Check box that describes the scenario which caused the need for alternative compliance:   Combination of HSC, retention and infiltration, harvest and use, and biotreatment BMPs provide less than full LID DCV  capture:     Checked yes for Form 4.3‐5 Item 7, Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits  and calculate volume for alternative compliance,  Valt = (Item 1 – Item 2 – Item 3 – Item 4 – Item 5) * (100 ‐ Form 2.4‐1 Item 2)%   An approved Watershed Action Plan (WAP) demonstrates that water quality and hydrologic impacts of urbanization  are more effective when managed in at an off‐site facility:     Attach appropriate WAP section, including technical documentation, showing effectiveness comparisons for the project site and  regional watershed  Water Quality Management Plan (WQMP)         4‐28  4.3.6 Hydromodification Control BMP  Use Form 4.3‐10 to compute the remaining runoff volume retention, after LID BMP are implemented, needed to  address HCOC, and the increase in time of concentration and decrease in peak runoff necessary to meet targets  for protection of waterbodies with a potential HCOC. Describe hydromodification control BMP that address  HCOC, which may include off‐site BMP and/or in‐stream controls. Section 5.6 of the TGD for WQMP provides  additional details on selection and evaluation of hydromodification control BMP.         Form 4.3‐10 Hydromodification Control BMPs (DA 1)  1 Volume reduction needed for HCOC  performance criteria (ft3):  0  (Form 4.2‐2 Item 4 * 0.95) – Form 4.2‐2 Item 1  2 On‐site retention with site design hydrologic source control, infiltration, and  harvest and use LID BMP (ft3):              Sum of Form 4.3‐9 Items 2, 3, and 4 Evaluate  option to increase implementation of on‐site retention in Forms 4.3‐2, 4.3‐3, and 4.3‐4 in  excess of LID DCV toward achieving HCOC volume reduction  3 Remaining volume for HCOC  volume capture (ft3):        Item 1 –  Item 2  4 Volume capture provided by incorporating additional on‐site or off‐site retention BMPs  (ft3):         Existing downstream BMP may be used to demonstrate additional volume capture (if  so, attach to this WQMP a hydrologic analysis showing how the additional volume would be retained  during a 2‐yr storm event for the regional watershed)  5 If Item 4 is less than Item 3, incorporate in‐stream controls on downstream waterbody segment to prevent impacts due to  hydromodification    Attach in‐stream control BMP selection and evaluation to this WQMP  6 Is Form 4.2‐2 Item 11 less than or equal to 5%:   Yes   No   If yes, HCOC performance criteria is achieved. If no, select one or more mitigation options below:   Demonstrate increase in time of concentration achieved by proposed LID site design, LID BMP, and additional on‐site  or off‐site retention BMP    BMP upstream of a waterbody segment with a potential HCOC may be used to demonstrate increased time of concentration through  hydrograph attenuation (if so, show that the hydraulic residence time provided in BMP for a 2‐year storm event is equal or greater  than the addition time of concentration requirement in Form 4.2‐4 Item 15)   Increase time of concentration by preserving pre‐developed flow path and/or increase travel time by reducing slope  and increasing cross‐sectional area and roughness for proposed on‐site conveyance facilities    Incorporate appropriate in‐stream controls for downstream waterbody segment to prevent impacts due to  hydromodification, in a plan approved and signed by a licensed engineer in the State of California    7 Form 4.2‐2 Item 12 less than or equal to 5%:   Yes   No   If yes, HCOC performance criteria is achieved. If no, select one or more mitigation options below:   Demonstrate reduction in peak runoff achieved by proposed LID site design, LID BMPs, and additional on‐site or off‐ site retention BMPs    BMPs upstream of a waterbody segment with a potential HCOC may be used to demonstrate additional peak runoff reduction  through hydrograph attenuation (if so, attach to this WQMP, a hydrograph analysis showing how the peak runoff would be reduced  during a 2‐yr storm event)   Incorporate appropriate in‐stream controls for downstream waterbody segment to prevent impacts due to  hydromodification, in a plan approved and signed by a licensed engineer in the State of California    Water Quality Management Plan (WQMP)         4‐29  4.4 Alternative Compliance Plan (if applicable)  Describe an alternative compliance plan (if applicable) for projects not fully able to infiltrate, harvest and use,  or biotreat the DCV via on‐site LID practices. A project proponent must develop an alternative compliance plan  to address the remainder of the LID DCV. Depending on project type some projects may qualify for water  quality credits that can be applied to reduce the DCV that must be treated prior to development of an  alternative compliance plan (see Form 2.4‐1, Water Quality Credits). Form 4.3‐9 Item 8 includes instructions on  how to apply water quality credits when computing the DCV that must be met through alternative compliance.  Alternative compliance plans may include one or more of the following elements:   On‐site structural treatment control BMP ‐ All treatment control BMP should be located as close to  possible to the pollutant sources and should not be located within receiving waters;   Off‐site structural treatment control BMP ‐ Pollutant removal should occur prior to discharge of runoff to  receiving waters;   Urban runoff fund or In‐lieu program, if available  Depending upon the proposed alternative compliance plan, approval by the executive officer may or may not be  required (see Section 6 of the TGD for WQMP). Water Quality Management Plan (WQMP)         5‐1  Section 5 Inspection and Maintenance Responsibility   for Post Construction BMP    All BMP included as part of the project WQMP are required to be maintained through regular scheduled  inspection and maintenance (refer to Section 8, Post Construction BMP Requirements, in the TGD for WQMP).  Fully complete Form 5‐1 summarizing all BMP included in the WQMP. Attach additional forms as needed. The  WQMP shall also include a detailed Operation and Maintenance Plan for all BMP and may require a  Maintenance Agreement (consult the jurisdiction’s LIP). If a Maintenance Agreement is required, it must also  be attached to the WQMP.   Form 5‐1 BMP Inspection and Maintenance  (use additional forms as necessary)  BMP Reponsible Party(s) Inspection/ Maintenance  Activities Required  Minimum Frequency  of Activities  Infiltration /  Underground  Storage  Prologis    Maintain System per Manufacturer Specifications.  Manufacturer recommends annual inspections. Sites with  high trash load may need more frequent inspections. A  record of each inspection is to be maintained for life of  the system.   Systems should be cleaned when an inspection reveals  accumulated sediment or trash is clogging the discharge  orifice. Manhole covers should be securely seated  following cleaning activities.     Once a year or as  Needed    Education of  Property  Owners,  Tenants and  Occupants  on  Stormwater  BMPs (N1)    Prologis    Practical education materials will be provided to property  owners covering various water quality issues that will  need to be addressed on their specific site. These  materials will include general good house keeping  practices that contribute to the protection of storm  water quality and BMP’s that eliminate or reduce  pollution during property improvements.     At C of O    Activity  Restrictions  (N2)    Prologis    Restrictions may be developed by Owner    Ongoing by Code  Enforcement    Water Quality Management Plan (WQMP)         5‐2  Landscape  maintenance  (N3)    Prologis    Landscape planning is implemented to reduce  groundwater and storm water contamination. This will be  accomplished through an infiltration basin, and  landscape areas.       Monthly    BMP  maintenance  (N4  Prologis  See details hereon      Ongoing with every  visit    Spill  contingency  plan (N7)    Prologis  The spill contingency plan shall be provided in  accordance with Section 6.95 of the California Health and  Safety Code  Ongoing with every  visit    Litter debris  control  program (N11  Prologis Litter debris control program may be developed by the  Owner    Ongoing with every  visit      Employee  training  (N12)    Prologis Employee training may be developed by the Owner      As stated        Housekeepin g of loading  dock (N13)    Prologis  Members of the warehouse/gardeners/maintenance  staff will be provided instruction to clean dock area free  of debris/trash all the time by the owner    Ongoing      Catch basin  inspection  program  (N14)  Prologis  Catch basins will be inspected a minimum of once every  three months during the dry season and a minimum of  once every two months during the rainy season  Inspect once a year    Vacuum  Sweeping of  Private  Streets and  Parking lot  (N15)  Prologis Vacuum of parking lot and driveways will be done by  warehouse employees  Once a month  minimum    Water Quality Management Plan (WQMP)         5‐3  Provide  storm drain  system  stencilling   and signage  (N16)    Prologis  Signs will be placed above storm drain inlets to warn  the public of prohibitions against waste disposal    Once a year or  according to  Manufacturer  Manuals    Use efficient  irrigation  systems &  landscape  design,  water  conservatio n, smart  controllers,  and source  control (N3  Prologis  Rain sensors will be incorporated into the onsite  sprinkler system so that no unnecessary watering of  landscaped areas occurs after storm events.    Once a year    Finish grade  of  landscaped  areas at a  minimum of  1‐2 inches  below top of  curb,  sidewalk, or  pavement    Prologis    New landscaped areas will be constructed at a  minimum of 1 inch below existing paved areas  Once a year    Catch Basin  Triton Inlet  Filter  Prologis  To ensure proper operation, the manufacturer  recommends filter media be replaced when the  outer surface is no more than 50 percent coated with  contaminants. It is recommended that the media be  replaced a minimum of one time per seasonal cycle  year. Sites with higher pollutant loading  concentrations may require more frequent service  and media replacement.   The manufacturer  recommends that  filters are inspected  and serviced at a  minimum of three  times per seasonal  cycle year.  Frequency may  fluctuate based on  specific site  conditions.         6‐1    Section 6 WQMP Attachments    6.1. Site Plan and Drainage Plan   Include a site plan and drainage plan sheet set containing the following minimum information:  6.2 Electronic Data Submittal  Minimum requirements include submittal of PDF exhibits in addition to hard copies. Format must not require  specialized software to open. If the local jurisdiction requires specialized electronic document formats (as  described in their Local Implementation Plan), this section will describe the contents (e.g., layering,  nomenclature, geo‐referencing, etc.) of these documents so that they may be interpreted efficiently and  accurately.  6.3 Post Construction   Attach all O&M Plans and Maintenance Agreements for BMP to the WQMP.  6.4 Other Supporting Documentation   BMP Educational Materials   Activity Restriction – C, C&R’s & Lease Agreements    Project location   Site boundary   Land uses and land covers, as applicable   Suitability/feasibility constraints   Structural Source Control BMP locations   Site Design Hydrologic Source Control BMP locations   LID BMP details   Drainage delineations and flow information   Drainage connections  Attachment 1 - Vicinity Map P B L A AL M O B D A V E NTS CH E R R Y A V E RE D W O O D A V E LI V E O A K A V E HE M L O C K A V E BE E C H A V E EL M A V E PO P L A R A V E SLOVER AVE SANTA ANA AVE JURUPA AVE VALLEY BLVD I-10 Attachment 2 - WQMP Site Plan EX. 66" SD EX. 66" SD EX. 66" SD EX. SD CB TO REMAIN EX. 48" SD EX. 48" SD EX. 66" SD EX. GUTTER EX. GUTTER EX. CATCH BASIN EX. CATCH BASINUNDERGROUND CHAMBERS OVERFLOW PIPE. DRAIN TO EX. 48" SD IN LIVE OAK AVE. UNDERGROUND CHAMBERS OVERFLOW PIPE. DRAIN TO EX. SD CB AND EX. 48" SD IN LIVE OAK AVE. UNDERGROUND CHAMBERS OVERFLOW PIPE. DRAIN TO EX. 66" SD IN HEMLOCK AVE. SD P B L A B A L P P B L A AL M O B D A V E NTS CH E R R Y A V E RE D W O O D A V E LI V E O A K A V E HE M L O C K A V E BE E C H A V E EL M A V E PO P L A R A V E SLOVER AVE SANTA ANA AVE JURUPA AVE VALLEY BLVD I-10 Attachment 3 - Design Capture Volume VOLUME BASED DESIGN FROM FORM 4.2-1 LID BMP PERFORMANCE CRITERIA DCV: RUNOFF COEFFICIENT = RC=0.858i3 - 0.78i2 + 0.774i + 0.04 WHERE i = IMPERVIOUS RATIO 2 YR, 1 HR RAINFALL DEPTH = 0.518 P6 = MEAN 6 HR PRECIPITAION = C1*2yr, 1hr C1 = 1.4807 for Valley Region 0.77 C2 = 48 HR DRAWDOWN TIME FACTOR (1.963) DCV = (1/12)* Area*Rc*P6*C2 DESIGN CAPTURE VOLUMES: DMA-1 A=16.70 i=0.953 Rc=0.81 DCV = 1.70 ac-ft DCV = 74,099 c.f.92,014 2.11 DMA-2 A=1.98 i=0.960 Rc=0.82 DCV = 0.20 ac-ft DCV = 8,909 c.f. DMA-3 A=2.27 i=0.897 Rc=0.73 DCV = 0.21 ac-ft DCV = 9,006 c.f. DESIGN CAPTURE VOLUME CALCULATIONS MOUNTAIN VIEW - 13 P6 = 0.518 * 1.4807 = Attachment 4 - StormTech Storage Systems ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS PLEASE NOTE: 1.THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 2.STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3.WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4.ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5.WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". NOTES: 1.CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 2.MC-7200 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3.THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4.PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5.REQUIREMENTS FOR HANDLING AND INSTALLATION: ·TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. ·TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3”. ·TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL CLASSIFICATIONS COMPACTION / DENSITY REQUIREMENT D FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.N/A PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. C INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER. AASHTO M145¹ A-1, A-2-4, A-3 OR AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 A FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.2,3 NO COMPACTION REQUIRED. 24" (600 mm) MIN* 7.0' (2.1 m) MAX 12" (300 mm) MIN100" (2540 mm) 12" (300 mm) MIN 12" (300 mm) MIN 9" (230 mm) MIN D C B A *TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30" (750 mm). 60" (1525 mm) DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) MC-7200 END CAP PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) SUBGRADE SOILS (SEE NOTE 3) **THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS MC-7200 TECHNICAL SPECIFICATION NTS PART #STUB B C MC7200IEPP06T 6" (150 mm)42.54" (1081 mm)--- MC7200IEPP06B ---0.86" (22 mm) MC7200IEPP08T 8" (200 mm)40.50" (1029 mm)--- MC7200IEPP08B ---1.01" (26 mm) MC7200IEPP10T 10" (250 mm)38.37" (975 mm)--- MC7200IEPP10B ---1.33" (34 mm) MC7200IEPP12T 12" (300 mm)35.69" (907 mm)--- MC7200IEPP12B ---1.55" (39 mm) MC7200IEPP15T 15" (375 mm)32.72" (831 mm)--- MC7200IEPP15B ---1.70" (43 mm) MC7200IEPP18T 18" (450 mm) 29.36" (746 mm)---MC7200IEPP18TW MC7200IEPP18B ---1.97" (50 mm) MC7200IEPP18BW MC7200IEPP24T 24" (600 mm) 23.05" (585 mm)---MC7200IEPP24TW MC7200IEPP24B ---2.26" (57 mm) MC7200IEPP24BW MC7200IEPP30BW 30" (750 mm)---2.95" (75 mm) MC7200IEPP36BW 36" (900 mm)---3.25" (83 mm) MC7200IEPP42BW 42" (1050 mm)---3.55" (90 mm) NOTE: ALL DIMENSIONS ARE NOMINAL NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)100.0" X 60.0" X 79.1" (2540 mm X 1524 mm X 2010 mm) CHAMBER STORAGE 175.9 CUBIC FEET (4.98 m³) MINIMUM INSTALLED STORAGE*267.3 CUBIC FEET (7.56 m³) WEIGHT (NOMINAL)205 lbs.(92.9 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)90.0" X 61.0" X 32.8" (2286 mm X 1549 mm X 833 mm) END CAP STORAGE 39.5 CUBIC FEET (1.12 m³) MINIMUM INSTALLED STORAGE*115.3 CUBIC FEET (3.26 m³) WEIGHT (NOMINAL)90 lbs.(40.8 kg) *ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY. PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" CUSTOM PREFABRICATED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-7200 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. UPPER JOINT CORRUGATION WEB CREST CREST STIFFENING RIB VALLEY STIFFENING RIB BUILD ROW IN THIS DIRECTION LOWER JOINT CORRUGATION FOOT 83.4" (2120 mm) 79.1" (2010 mm) INSTALLED 60.0" (1524 mm) 100.0" (2540 mm)90.0" (2286 mm) 61.0" (1549 mm) 32.8" (833 mm) INSTALLED 38.0" (965 mm) B C INSPECTION & MAINTENANCE STEP 1)INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A.INSPECTION PORTS (IF PRESENT) A.1.REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2.REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3.USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4.LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.ALL ISOLATOR PLUS ROWS B.1.REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS B.2.USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i)MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii)FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2)CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A.A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B.APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C.VACUUM STRUCTURE SUMP AS REQUIRED STEP 3)REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4)INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1.INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2.CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. MC-7200 ISOLATOR ROW PLUS DETAIL NTS STORMTECH HIGHLY RECOMMENDS FLEXSTORM INSERTS IN ANY UPSTREAM STRUCTURES WITH OPEN GRATES COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE MC-7200 CHAMBER OPTIONAL INSPECTION PORT MC-7200 END CAP 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PARTIAL CUT END CAP PART #: MC7200IEPP24B OR MC7200IEPP24BW ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 10.3' (3.1 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP UNDERDRAIN DETAIL NTS A A B B SECTION A-A SECTION B-B NUMBER AND SIZE OF UNDERDRAINS PER SITE DESIGN ENGINEER 4" (100 mm) TYP FOR SC-310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS OUTLET MANIFOLD STORMTECH END CAP STORMTECH CHAMBERS STORMTECH END CAP DUAL WALL PERFORATED HDPE UNDERDRAIN ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE FOUNDATION STONE BENEATH CHAMBERS FOUNDATION STONE BENEATH CHAMBERS STORMTECH CHAMBER MC-SERIES END CAP INSERTION DETAIL NTS NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. MANIFOLD HEADER MANIFOLD STUB STORMTECH END CAP MANIFOLD HEADER MANIFOLD STUB 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION St o r m T e c h 88 8 - 8 9 2 - 2 6 9 4 | WW W . S T O R M T E C H . C O M ® Ch a m b e r S y s t e m 46 4 0 T R U E M A N B L V D HI L L I A R D , O H 4 3 0 2 6 1- 8 0 0 - 7 3 3 - 7 4 7 3 DA T E : DR A W N : S L PR O J E C T # : CH E C K E D : N / A RE V : TH I S D R A W I N G H A S B E E N P R E P A R E D B A S E D O N I N F O R M A T I O N P R O V I D E D T O A D S U N D E R T H E D I R E C T I O N O F T H E S I T E D E S I G N E N G I N E E R O R O T H E R P R O J E C T R E P R E S E N T A T I V E . T H E S I T E D E S I G N E N G I N E E R S H A L L R E V I E W T H I S D R A W I N G P R I O R T O C O N S T R U C T I O N . I T I S T H E U L T I M A T E R E S P O N S I B I L I T Y O F T H E S I T E D E S I G N EN G I N E E R T O E N S U R E T H A T T H E P R O D U C T ( S ) D E P I C T E D A N D A L L A S S O C I A T E D D E T A I L S M E E T A L L A P P L I C A B L E L A W S , R E G U L A T I O N S , A N D P R O J E C T R E Q U I R E M E N T S . FO N T A N A - D M A 1 FO N T A N A , C A , U S A SHEET 1 1OF NO T T O S C A L E ISOLATOR ROW PLUS (SEE DETAIL) PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS BED LIMITS PROPOSED ELEVATIONS: MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):966.00 MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):961.50 MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):961.00 MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):961.00 MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):961.00 TOP OF STONE:960.00 TOP OF MC-7200 CHAMBER:959.00 24" x 24" BOTTOM MANIFOLD INVERT:954.19 24" ISOLATOR ROW PLUS INVERT:954.19 18" x 18" BOTTOM MANIFOLD INVERT:954.16 18" BOTTOM CONNECTION INVERT:954.16 BOTTOM OF MC-7200 CHAMBER:954.00 UNDERDRAIN INVERT:952.00 BOTTOM OF STONE:952.00 PROPOSED LAYOUT 252 STORMTECH MC-7200 CHAMBERS 26 STORMTECH MC-7200 END CAPS 12 STONE ABOVE (in) 24 STONE BELOW (in) 40 STONE VOID 80624 INSTALLED SYSTEM VOLUME (CF) (PERIMETER STONE INCLUDED) (COVER STONE INCLUDED) (BASE STONE INCLUDED) 16691 SYSTEM AREA (SF) 535.7 SYSTEM PERIMETER (ft) MAX FLOWINVERT*DESCRIPTIONITEM ON LAYOUTPART TYPE 2.26"24" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP24B / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWSAPREFABRICATED END CAP 1.97"18" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP18B / TYP OF ALL 18" BOTTOM CONNECTIONSBPREFABRICATED END CAP INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMPCFLAMP 2.26"24" x 24" BOTTOM MANIFOLD, ADS N-12DMANIFOLD 1.97"18" x 18" BOTTOM MANIFOLD, ADS N-12EMANIFOLD 1.97"18" BOTTOM CONNECTIONFPIPE CONNECTION 8.0 CFS OUTOCS (DESIGN BY ENGINEER / PROVIDED BY OTHERS)GCONCRETE STRUCTURE 41.5 CFS IN(DESIGN BY ENGINEER / PROVIDED BY OTHERS)HCONCRETE STRUCTURE W/WEIR 6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAINIUNDERDRAIN G H E D A F B C I 11 7 . 3 3 ' 137.30' 11 9 . 9 3 ' 143.79' 1 MC-7200 CROSS SECTION DETAIL 2 MC-7200 TECHNICAL SPECIFICATION 3 MC-7200 ISOLATOR ROW PLUS DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 4 UNDERDRAIN DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 5 MC-SERIES END CAP INSERTION DETAIL NOTES •MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. •DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. •THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. •THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. •NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. *INVERT ABOVE BASE OF CHAMBER ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS PLEASE NOTE: 1.THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 2.STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3.WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4.ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5.WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". NOTES: 1.CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 2.MC-7200 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3.THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4.PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5.REQUIREMENTS FOR HANDLING AND INSTALLATION: ·TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. ·TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3”. ·TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL CLASSIFICATIONS COMPACTION / DENSITY REQUIREMENT D FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.N/A PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. C INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER. AASHTO M145¹ A-1, A-2-4, A-3 OR AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 A FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.2,3 NO COMPACTION REQUIRED. 24" (600 mm) MIN* 7.0' (2.1 m) MAX 12" (300 mm) MIN100" (2540 mm) 12" (300 mm) MIN 12" (300 mm) MIN 9" (230 mm) MIN D C B A *TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30" (750 mm). 60" (1525 mm) DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) MC-7200 END CAP PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) SUBGRADE SOILS (SEE NOTE 3) **THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS MC-7200 TECHNICAL SPECIFICATION NTS PART #STUB B C MC7200IEPP06T 6" (150 mm)42.54" (1081 mm)--- MC7200IEPP06B ---0.86" (22 mm) MC7200IEPP08T 8" (200 mm)40.50" (1029 mm)--- MC7200IEPP08B ---1.01" (26 mm) MC7200IEPP10T 10" (250 mm)38.37" (975 mm)--- MC7200IEPP10B ---1.33" (34 mm) MC7200IEPP12T 12" (300 mm)35.69" (907 mm)--- MC7200IEPP12B ---1.55" (39 mm) MC7200IEPP15T 15" (375 mm)32.72" (831 mm)--- MC7200IEPP15B ---1.70" (43 mm) MC7200IEPP18T 18" (450 mm) 29.36" (746 mm)---MC7200IEPP18TW MC7200IEPP18B ---1.97" (50 mm) MC7200IEPP18BW MC7200IEPP24T 24" (600 mm) 23.05" (585 mm)---MC7200IEPP24TW MC7200IEPP24B ---2.26" (57 mm) MC7200IEPP24BW MC7200IEPP30BW 30" (750 mm)---2.95" (75 mm) MC7200IEPP36BW 36" (900 mm)---3.25" (83 mm) MC7200IEPP42BW 42" (1050 mm)---3.55" (90 mm) NOTE: ALL DIMENSIONS ARE NOMINAL NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)100.0" X 60.0" X 79.1" (2540 mm X 1524 mm X 2010 mm) CHAMBER STORAGE 175.9 CUBIC FEET (4.98 m³) MINIMUM INSTALLED STORAGE*267.3 CUBIC FEET (7.56 m³) WEIGHT (NOMINAL)205 lbs.(92.9 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)90.0" X 61.0" X 32.8" (2286 mm X 1549 mm X 833 mm) END CAP STORAGE 39.5 CUBIC FEET (1.12 m³) MINIMUM INSTALLED STORAGE*115.3 CUBIC FEET (3.26 m³) WEIGHT (NOMINAL)90 lbs.(40.8 kg) *ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY. PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" CUSTOM PREFABRICATED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-7200 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. UPPER JOINT CORRUGATION WEB CREST CREST STIFFENING RIB VALLEY STIFFENING RIB BUILD ROW IN THIS DIRECTION LOWER JOINT CORRUGATION FOOT 83.4" (2120 mm) 79.1" (2010 mm) INSTALLED 60.0" (1524 mm) 100.0" (2540 mm)90.0" (2286 mm) 61.0" (1549 mm) 32.8" (833 mm) INSTALLED 38.0" (965 mm) B C INSPECTION & MAINTENANCE STEP 1)INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A.INSPECTION PORTS (IF PRESENT) A.1.REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2.REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3.USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4.LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.ALL ISOLATOR PLUS ROWS B.1.REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS B.2.USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i)MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii)FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2)CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A.A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B.APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C.VACUUM STRUCTURE SUMP AS REQUIRED STEP 3)REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4)INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1.INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2.CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. MC-7200 ISOLATOR ROW PLUS DETAIL NTS STORMTECH HIGHLY RECOMMENDS FLEXSTORM INSERTS IN ANY UPSTREAM STRUCTURES WITH OPEN GRATES COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE MC-7200 CHAMBER OPTIONAL INSPECTION PORT MC-7200 END CAP 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PARTIAL CUT END CAP PART #: MC7200IEPP24B OR MC7200IEPP24BW ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 10.3' (3.1 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP UNDERDRAIN DETAIL NTS A A B B SECTION A-A SECTION B-B NUMBER AND SIZE OF UNDERDRAINS PER SITE DESIGN ENGINEER 4" (100 mm) TYP FOR SC-310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS OUTLET MANIFOLD STORMTECH END CAP STORMTECH CHAMBERS STORMTECH END CAP DUAL WALL PERFORATED HDPE UNDERDRAIN ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE FOUNDATION STONE BENEATH CHAMBERS FOUNDATION STONE BENEATH CHAMBERS STORMTECH CHAMBER MC-SERIES END CAP INSERTION DETAIL NTS NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. MANIFOLD HEADER MANIFOLD STUB STORMTECH END CAP MANIFOLD HEADER MANIFOLD STUB 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION St o r m T e c h 88 8 - 8 9 2 - 2 6 9 4 | WW W . S T O R M T E C H . C O M ® Ch a m b e r S y s t e m 46 4 0 T R U E M A N B L V D HI L L I A R D , O H 4 3 0 2 6 1- 8 0 0 - 7 3 3 - 7 4 7 3 DA T E : DR A W N : S L PR O J E C T # : CH E C K E D : N / A RE V : TH I S D R A W I N G H A S B E E N P R E P A R E D B A S E D O N I N F O R M A T I O N P R O V I D E D T O A D S U N D E R T H E D I R E C T I O N O F T H E S I T E D E S I G N E N G I N E E R O R O T H E R P R O J E C T R E P R E S E N T A T I V E . T H E S I T E D E S I G N E N G I N E E R S H A L L R E V I E W T H I S D R A W I N G P R I O R T O C O N S T R U C T I O N . I T I S T H E U L T I M A T E R E S P O N S I B I L I T Y O F T H E S I T E D E S I G N EN G I N E E R T O E N S U R E T H A T T H E P R O D U C T ( S ) D E P I C T E D A N D A L L A S S O C I A T E D D E T A I L S M E E T A L L A P P L I C A B L E L A W S , R E G U L A T I O N S , A N D P R O J E C T R E Q U I R E M E N T S . 15 2 - 1 F O N T A N A - D M A - 2 FO N T A N A , C A , U S A SHEET 1 1OF NO T T O S C A L E ISOLATOR ROW PLUS (SEE DETAIL) PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS BED LIMITS CONCEPTUAL ELEVATIONS: MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):12.75 MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):8.25 MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):7.75 MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):7.75 MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):7.75 TOP OF STONE:6.75 TOP OF MC-7200 CHAMBER:5.75 24" ISOLATOR ROW PLUS INVERT:0.94 18" x 18" BOTTOM MANIFOLD INVERT:0.91 18" BOTTOM CONNECTION INVERT:0.91 BOTTOM OF MC-7200 CHAMBER:0.75 UNDERDRAIN INVERT:0.00 BOTTOM OF STONE:0.00 PROPOSED LAYOUT 32 STORMTECH MC-7200 CHAMBERS 6 STORMTECH MC-7200 END CAPS 12 STONE ABOVE (in) 9 STONE BELOW (in) 40 STONE VOID 9956 INSTALLED SYSTEM VOLUME (CF) (PERIMETER STONE INCLUDED) (COVER STONE INCLUDED) (BASE STONE INCLUDED) 2384 SYSTEM AREA (SF) 226.4 SYSTEM PERIMETER (ft) MAX FLOWINVERT*DESCRIPTIONITEM ON LAYOUTPART TYPE 1.97"18" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP18B / TYP OF ALL 18" BOTTOM CONNECTIONSAPREFABRICATED END CAP 2.26"24" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP24B / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWSBPREFABRICATED END CAP INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMPCFLAMP 1.97"18" x 18" BOTTOM MANIFOLD, ADS N-12DMANIFOLD 1.97"18" BOTTOM CONNECTIONEPIPE CONNECTION 4.0 CFS OUTOCS (DESIGN BY ENGINEER / PROVIDED BY OTHERS)FCONCRETE STRUCTURE 11.0 CFS IN(DESIGN BY ENGINEER / PROVIDED BY OTHERS)GCONCRETE STRUCTURE W/WEIR 6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAINHUNDERDRAIN F G B E C H A D 26 . 5 0 ' 77.98' 29 . 1 0 ' 84.11' 1 MC-7200 CROSS SECTION DETAIL 2 MC-7200 TECHNICAL SPECIFICATION 3 MC-7200 ISOLATOR ROW PLUS DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 4 UNDERDRAIN DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 5 MC-SERIES END CAP INSERTION DETAIL NOTES •MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. •DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. •THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. •THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. •NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. *INVERT ABOVE BASE OF CHAMBER ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS PLEASE NOTE: 1.THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 2.STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3.WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4.ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5.WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". NOTES: 1.CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 2.MC-7200 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3.THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4.PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5.REQUIREMENTS FOR HANDLING AND INSTALLATION: ·TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. ·TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3”. ·TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL CLASSIFICATIONS COMPACTION / DENSITY REQUIREMENT D FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.N/A PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. C INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER. AASHTO M145¹ A-1, A-2-4, A-3 OR AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 A FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER. CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5 AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.2,3 NO COMPACTION REQUIRED. 24" (600 mm) MIN* 7.0' (2.1 m) MAX 12" (300 mm) MIN100" (2540 mm) 12" (300 mm) MIN 12" (300 mm) MIN 9" (230 mm) MIN D C B A *TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30" (750 mm). 60" (1525 mm) DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) MC-7200 END CAP PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) SUBGRADE SOILS (SEE NOTE 3) **THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS MC-7200 TECHNICAL SPECIFICATION NTS PART #STUB B C MC7200IEPP06T 6" (150 mm)42.54" (1081 mm)--- MC7200IEPP06B ---0.86" (22 mm) MC7200IEPP08T 8" (200 mm)40.50" (1029 mm)--- MC7200IEPP08B ---1.01" (26 mm) MC7200IEPP10T 10" (250 mm)38.37" (975 mm)--- MC7200IEPP10B ---1.33" (34 mm) MC7200IEPP12T 12" (300 mm)35.69" (907 mm)--- MC7200IEPP12B ---1.55" (39 mm) MC7200IEPP15T 15" (375 mm)32.72" (831 mm)--- MC7200IEPP15B ---1.70" (43 mm) MC7200IEPP18T 18" (450 mm) 29.36" (746 mm)---MC7200IEPP18TW MC7200IEPP18B ---1.97" (50 mm) MC7200IEPP18BW MC7200IEPP24T 24" (600 mm) 23.05" (585 mm)---MC7200IEPP24TW MC7200IEPP24B ---2.26" (57 mm) MC7200IEPP24BW MC7200IEPP30BW 30" (750 mm)---2.95" (75 mm) MC7200IEPP36BW 36" (900 mm)---3.25" (83 mm) MC7200IEPP42BW 42" (1050 mm)---3.55" (90 mm) NOTE: ALL DIMENSIONS ARE NOMINAL NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)100.0" X 60.0" X 79.1" (2540 mm X 1524 mm X 2010 mm) CHAMBER STORAGE 175.9 CUBIC FEET (4.98 m³) MINIMUM INSTALLED STORAGE*267.3 CUBIC FEET (7.56 m³) WEIGHT (NOMINAL)205 lbs.(92.9 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH)90.0" X 61.0" X 32.8" (2286 mm X 1549 mm X 833 mm) END CAP STORAGE 39.5 CUBIC FEET (1.12 m³) MINIMUM INSTALLED STORAGE*115.3 CUBIC FEET (3.26 m³) WEIGHT (NOMINAL)90 lbs.(40.8 kg) *ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY. PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" CUSTOM PREFABRICATED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-7200 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. UPPER JOINT CORRUGATION WEB CREST CREST STIFFENING RIB VALLEY STIFFENING RIB BUILD ROW IN THIS DIRECTION LOWER JOINT CORRUGATION FOOT 83.4" (2120 mm) 79.1" (2010 mm) INSTALLED 60.0" (1524 mm) 100.0" (2540 mm)90.0" (2286 mm) 61.0" (1549 mm) 32.8" (833 mm) INSTALLED 38.0" (965 mm) B C INSPECTION & MAINTENANCE STEP 1)INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A.INSPECTION PORTS (IF PRESENT) A.1.REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2.REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3.USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4.LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.ALL ISOLATOR PLUS ROWS B.1.REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS B.2.USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i)MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii)FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3.IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2)CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A.A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B.APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C.VACUUM STRUCTURE SUMP AS REQUIRED STEP 3)REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4)INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1.INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2.CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. MC-7200 ISOLATOR ROW PLUS DETAIL NTS STORMTECH HIGHLY RECOMMENDS FLEXSTORM INSERTS IN ANY UPSTREAM STRUCTURES WITH OPEN GRATES COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE MC-7200 CHAMBER OPTIONAL INSPECTION PORT MC-7200 END CAP 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PARTIAL CUT END CAP PART #: MC7200IEPP24B OR MC7200IEPP24BW ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 10.3' (3.1 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP UNDERDRAIN DETAIL NTS A A B B SECTION A-A SECTION B-B NUMBER AND SIZE OF UNDERDRAINS PER SITE DESIGN ENGINEER 4" (100 mm) TYP FOR SC-310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS OUTLET MANIFOLD STORMTECH END CAP STORMTECH CHAMBERS STORMTECH END CAP DUAL WALL PERFORATED HDPE UNDERDRAIN ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE FOUNDATION STONE BENEATH CHAMBERS FOUNDATION STONE BENEATH CHAMBERS STORMTECH CHAMBER MC-SERIES END CAP INSERTION DETAIL NTS NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. MANIFOLD HEADER MANIFOLD STUB STORMTECH END CAP MANIFOLD HEADER MANIFOLD STUB 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION St o r m T e c h 88 8 - 8 9 2 - 2 6 9 4 | WW W . S T O R M T E C H . C O M ® Ch a m b e r S y s t e m 46 4 0 T R U E M A N B L V D HI L L I A R D , O H 4 3 0 2 6 1- 8 0 0 - 7 3 3 - 7 4 7 3 DA T E : DR A W N : S L PR O J E C T # : CH E C K E D : N / A RE V : TH I S D R A W I N G H A S B E E N P R E P A R E D B A S E D O N I N F O R M A T I O N P R O V I D E D T O A D S U N D E R T H E D I R E C T I O N O F T H E S I T E D E S I G N E N G I N E E R O R O T H E R P R O J E C T R E P R E S E N T A T I V E . T H E S I T E D E S I G N E N G I N E E R S H A L L R E V I E W T H I S D R A W I N G P R I O R T O C O N S T R U C T I O N . I T I S T H E U L T I M A T E R E S P O N S I B I L I T Y O F T H E S I T E D E S I G N EN G I N E E R T O E N S U R E T H A T T H E P R O D U C T ( S ) D E P I C T E D A N D A L L A S S O C I A T E D D E T A I L S M E E T A L L A P P L I C A B L E L A W S , R E G U L A T I O N S , A N D P R O J E C T R E Q U I R E M E N T S . 15 2 - 1 F O N T A N A - D M A - 3 FO N T A N A , C A , U S A SHEET 1 1OF NO T T O S C A L E ISOLATOR ROW PLUS (SEE DETAIL) PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS BED LIMITS CONCEPTUAL ELEVATIONS: MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):13.00 MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):8.50 MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):8.00 MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):8.00 MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):8.00 TOP OF STONE:7.00 TOP OF MC-7200 CHAMBER:6.00 24" ISOLATOR ROW PLUS INVERT:1.19 18" x 18" BOTTOM MANIFOLD INVERT:1.16 18" x 18" BOTTOM MANIFOLD INVERT:1.16 18" BOTTOM CONNECTION INVERT:1.16 BOTTOM OF MC-7200 CHAMBER:1.00 UNDERDRAIN INVERT:0.00 BOTTOM OF STONE:0.00 PROPOSED LAYOUT 27 STORMTECH MC-7200 CHAMBERS 6 STORMTECH MC-7200 END CAPS 12 STONE ABOVE (in) 12 STONE BELOW (in) 40 STONE VOID 8962 INSTALLED SYSTEM VOLUME (CF) (PERIMETER STONE INCLUDED) (COVER STONE INCLUDED) (BASE STONE INCLUDED) 2132 SYSTEM AREA (SF) 208.3 SYSTEM PERIMETER (ft) MAX FLOWINVERT*DESCRIPTIONITEM ON LAYOUTPART TYPE 1.97"18" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP18B / TYP OF ALL 18" BOTTOM CONNECTIONSAPREFABRICATED END CAP 2.26"24" BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP24B / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWSBPREFABRICATED END CAP INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMPCFLAMP 1.97"18" x 18" BOTTOM MANIFOLD, ADS N-12DMANIFOLD 1.97"18" x 18" BOTTOM MANIFOLD, ADS N-12EMANIFOLD 1.97"18" BOTTOM CONNECTIONFPIPE CONNECTION 8.0 CFS OUTOCS (DESIGN BY ENGINEER / PROVIDED BY OTHERS)GCONCRETE STRUCTURE 11.0 CFS IN(DESIGN BY ENGINEER / PROVIDED BY OTHERS)HCONCRETE STRUCTURE W/WEIR 6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAINIUNDERDRAIN G H B F C I E A D 26 . 5 0 ' 64.79' 29 . 1 0 ' 75.06' 1 MC-7200 CROSS SECTION DETAIL 2 MC-7200 TECHNICAL SPECIFICATION 3 MC-7200 ISOLATOR ROW PLUS DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 4 UNDERDRAIN DETAIL SPA C E I N T E N T I O N A L L Y L E F T B L A N K 5 MC-SERIES END CAP INSERTION DETAIL NOTES •MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. •DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. •THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. •THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. •NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. *INVERT ABOVE BASE OF CHAMBER Attachment 5 - Stormwater Watershed Mapping Tool Report 3/8/24, 9:00 AM about:blank about:blank 1/3 WQMP Project Report - San Bernardino Co. Stormwater Program Area of Interest (AOI) Information Area : 916,327.28 ft² Mar 8 2024 8:58:08 Pacific Standard Time 3/8/24, 9:00 AM about:blank about:blank 2/3 Project Site Parcel Numbers #ParcelNumber Acreage Area(ft²) 1 023712207 20.95 916,327.28 HCOC Exempt Area #Type Status Area(ft²) 1 HCOC Exempt Areas Yes 916,327.19 Drainage Segment Details #System Number Facility Name Closest channel segment’s susceptibility to Hydromodification Highest downstream hydromodification susceptibility Is this drainage segment subject to TMDLs? 1 1-813-1B Declez Channel EHM EHM No # Are there downstream drainage segments subject to TMDLs? Is this drainage segment a 303d listed stream? Are there 303d listed streams downstream?Area(ft²) 1 No No No 916,327.28 Onsite Soil Groups #Onsite Soils Group Soil Type Soil Type Abbreviation Area(ft²) 1 Soils - Hydro Group A TvC TUJUNGA GRAVELLY LOAMY SAND, 0 TO 9 PERCENT S* TUJUNGA GRAVELLY LOAMY SAND 44,552.41 2 Soils - Hydro Group A TuB TUJUNGA LOAMY SAND, 0 TO 5 PERCENT SLOPES A TUJUNGA LOAMY SAND 871,774.87 Studies and Reports Related to Project Site 3/8/24, 9:00 AM about:blank about:blank 3/3 #Report Link Source Date Area(ft²) 1 Chino_Basin_Water_Master_32 nd_Annual_Report Chino Basin Watermaster 2008-2009 916,327.19 2 Chino_Basin_Recharge_Master _Plan WE, Inc August 2001 916,327.19 3 Summary_Report_Master_Stor m_Drainage_Plan_Study Hall & Foreman June 1992 916,327.19 4 Summary_Report_Master_Stor m_Drainage_Plan_Map Hall & Foreman, Inc June 1992 916,327.19 5 FONTANA_MPD_FEE_STUDY Flory, Olson & Van Osdel June 1992 916,327.19 6 San_Sevaine_- _Boyle_Map_0001 Boyle Engineering June 1997 916,327.19 7 San_Sevaine_- _Boyle_Map_0002 Boyle Engineering June 1997 916,327.19 8 San_Sevaine_- _Boyle_Map_0003 Boyle Engineering June 1997 916,327.19 9 SBCounty_CSDP_Project_No.2 _Volume_1 Moffatt & Nichol March 1969 916,327.19 10 SBCounty_CSDP_Project_No.2 _Volume_2 Moffatt & Nichol March 1969 916,327.19 11 Volume_2_Map Moffatt & Nichol March 1969 916,327.19 12 SBCounty_CSDP_Project_No.3 _Volume_I Verpet Engineering Company May 1973 916,327.19 13 SBCounty_CSDP_Project_No.3 _Volume_II Verpet Engineering Company May 1973 916,327.19 14 Master_SD_Hydrology_Calcs_f or_Fontana_Vol_III Hall & Foreman, Inc May 1992 916,327.19 15 Master_SD_Hydrology_Calcs_ For_Fontana_Vol_II Hall & Foreman, Inc May 1992 916,327.19 16 Master_SD_Hydrology_Calcs_f or_Fontana_Vol_V Hall & Foreman, Inc May 1992 916,327.19 17 Master_SD_Hydrology_Calcs_f or_Fontana_Vol_IV Hall & Foreman, Inc May 1992 916,327.19 18 West_Fontana_Channel_Prelim inary_Basin_Study San Bernardino County Flood Control District October 1986 916,327.19 Note: The information provided in this report and on the Stormwater Geodatabase for the County of San Bernardino Stormwater Program is intended to provide basic guidance in the preparation of the applicant’s Water Quality Management Plan (WQMP) and should not be relied upon without independent verification. without independent verification. Attachment 6 - BMP Fact Sheets Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 1 3.5 Bioretention Facility      Description  Bioretention Facilities are shallow, vegetated basins underlain by an engineered soil media.  Healthy plant and biological activity in the root zone maintain and renew the macro‐pore space  in the soil and maximize plant uptake of pollutants and runoff. This keeps the Best  Management Practice (BMP) from becoming clogged and allows more of the soil column to  function as both a sponge (retaining water) and a highly effective and self‐maintaining biofilter.  In most cases, the bottom of a Bioretention Facility is unlined, which also provides an  opportunity for infiltration to the extent the underlying onsite soil can accommodate. When the  infiltration rate of the underlying soil is exceeded, fully biotreated flows are discharged via  underdrains. Bioretention Facilities therefore will inherently achieve the maximum feasible  level of infiltration and evapotranspiration and achieve the minimum feasible (but highly  biotreated) discharge to the storm drain system.    Siting Considerations  These facilities work best when they are designed in a relatively level area. Unlike other BMPs,  Bioretention Facilities can be used in smaller landscaped spaces on the site, such as:   Parking islands    Medians   Site entrances  Landscaped areas on the site (such as may otherwise be required through minimum  landscaping ordinances), can often be designed as Bioretention Facilities. This can be  accomplished by:     Depressing landscaped areas below adjacent impervious surfaces, rather than elevating  those areas   Grading the site to direct runoff from those impervious surfaces into the Bioretention  Facility, rather than away from the landscaping   Sizing and designing the depressed landscaped area as a Bioretention Facility as  described in this Fact Sheet    Type of BMP LID – Bioretention Treatment Mechanisms Infiltration, Evapotranspiration, Evaporation, Biofiltration  Maximum Drainage Area This BMP is intended to be integrated into a project’s landscaped area in a  distributed manner. Typically, contributing drainage areas to Bioretention  Facilities range from less than 1 acre to a maximum of around 10 acres.  Other Names Rain Garden, Bioretention Cell, Bioretention Basin, Biofiltration Basin,  Landscaped Filter Basin, Porous Landscape Detention  Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 2 Bioretention Facilities should however not be used downstream of areas where large amounts  of sediment can clog the system. Placing a Bioretention Facility at the toe of a steep slope  should also be avoided due to the potential for clogging the engineered soil media with erosion  from the slope, as well as the potential for damaging the vegetation.     Design and Sizing Criteria   The recommended cross section necessary for a Bioretention Facility includes:      Vegetated area    18' minimum depth of engineered soil media     12' minimum gravel layer depth with 6' perforated pipes (added flow control features  such as orifice plates may be required to mitigate for HCOC conditions)      While the 18‐inch minimum engineered soil media depth can be used in some cases, it is  recommended to use 24 inches or a preferred 36 inches to provide an adequate root zone for  the chosen plant palate. Such a design also provides for improved removal effectiveness for  nutrients. The recommended ponding depth inside of a Bioretention Facility is 6 inches;  measured from the flat bottom surface to the top of the water surface as shown in Figure 1.     Because this BMP is filled with an engineered soil media, pore space in the soil and gravel layer  is assumed to provide storage volume. However, several considerations must be noted:     Surcharge storage above the soil surface (6 inches) is important to assure that design  flows do not bypass the BMP when runoff exceeds the soil’s absorption rate.    In cases where the Bioretention Facility contains engineered soil media deeper than 36  inches, the pore space within the engineered soil media can only be counted to the 36‐ inch depth.    A maximum of 30 percent pore space can be used for the soil media whereas a  maximum of 40 percent pore space can be use for the gravel layer.    Figure 1: Standard Layout for a Bioretention Facility BIORETENTION FACILITY BMP FACT SHEET Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 3 Engineered Soil Media Requirements  The engineered soil media shall be comprised of 85 percent mineral component and 15 percent  organic component, by volume, drum mixed prior to placement. The mineral component shall  be a Class A sandy loam topsoil that meets the range specified in Table 1 below. The organic  component shall be nitrogen stabilized compost1, such that nitrogen does not leach from the  media.  Table 1: Mineral Component Range Requirements  Percent Range Component  70‐80 Sand  15‐20 Silt  5‐10 Clay  The trip ticket, or certificate of compliance, shall be made available to the inspector to prove  the engineered mix meets this specification.    Vegetation Requirements   Vegetative cover is important to minimize erosion and ensure that treatment occurs in the  Bioretention Facility. The area should be designed for at least 70 percent mature coverage  throughout the Bioretention Facility. To prevent the BMP from being used as walkways,  Bioretention Facilities shall be planted with a combination of small trees, densely planted  shrubs, and natural grasses. Grasses shall be native or ornamental; preferably ones that do not  need to be mowed. The application of fertilizers and pesticides should be minimal. To maintain  oxygen levels for the vegetation and promote biodegradation, it is important that vegetation  not be completely submerged for any extended period of time. Therefore, a maximum of 6  inches of ponded water shall be used in the design to ensure that plants within the Bioretention  Facility remain healthy.     A 2 to 3‐inch layer of standard shredded aged hardwood mulch shall be placed as the top layer  inside the Bioretention Facility. The 6‐inch ponding depth shown in Figure 1 above shall be  measured from the top surface of the 2 to 3‐inch mulch layer.    Curb Cuts  To allow water to flow into the Bioretention Facility, 1‐foot‐wide (minimum) curb cuts should  be placed approximately every 10 feet around the perimeter of the Bioretention Facility. Figure  2 shows a curb cut in a Bioretention Facility. Curb cut flow lines must be at or above the VBMP  water surface level.     1 For more information on compost, visit the US Composting Council website at: http://compostingcouncil.org/ BIORETENTION FACILITY BMP FACT SHEET Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 4   Figure 2: Curb Cut located in a Bioretention Facility    To reduce erosion, a gravel pad shall be placed  at each inlet point to the Bioretention Facility.  The gravel should be 1‐ to 1.5‐inch diameter in  size. The gravel should overlap the curb cut  opening a minimum of 6 inches. The gravel pad  inside the Bioretention Facility should be flush  with the finished surface at the curb cut and  extend to the bottom of the slope.     In addition, place an apron of stone or concrete,  a foot square or larger, inside each inlet to  prevent vegetation from growing up and  blocking the inlet.  See Figure 3.      Terracing the Landscaped Filter Basin  It is recommended that Bioretention Facilities be level. In the event the facility site slopes and  lacks proper design, water would fill the lowest point of the BMP and then discharge from the  basin without being treated. To ensure that the water will be held within the Bioretention  Facility on sloped sites, the BMP must be terraced with nonporous check dams to provide the  required storage and treatment capacity.   The terraced version of this BMP shall be used on non‐flat sites with no more than a 3 percent  slope. The surcharge depth cannot exceed 0.5 feet, and side slopes shall not exceed 4:1. Table 2  below shows the spacing of the check dams, and slopes shall be rounded up (i.e., 2.5 percent  slope shall use 10' spacing for check dams).    Table 2: Check Dam Spacing  6” Check Dam Spacing  Slope Spacing  1% 25'  2% 15'  3% 10'  Figure 3: Apron located in a Bioretention Facility BIORETENTION FACILITY BMP FACT SHEET Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 5   Roof Runoff  Roof downspouts may be directed towards Bioretention Facilities. However, the downspouts  must discharge onto a concrete splash block to protect the Bioretention Facility from erosion.  Retaining Walls  It is recommended that Retaining Wall Type 1A, per Caltrans Standard B3‐3 or equivalent, be  constructed around the entire perimeter of the Bioretention Facility. This practice will protect  the sides of the Bioretention Facility from collapsing during construction and maintenance or  from high service loads adjacent to the BMP. Where such service loads would not exist adjacent  to the BMP, an engineered alternative may be used if signed by a licensed civil engineer.    Side Slope Requirements    Bioretention Facilities Requiring Side Slopes  The design should assure that the Bioretention Facility does not present a tripping hazard.  Bioretention Facilities proposed near pedestrian areas, such as areas parallel to parking spaces  or along a walkway, must have a gentle slope to the bottom of the facility. Side slopes inside of  a Bioretention Facility shall be 4:1. A typical cross section for the Bioretention Facility is shown  in Figure 1.    Bioretention Facilities Not Requiring Side Slopes  Where cars park perpendicular to the Bioretention Facility, side slopes are not required. A 6‐ inch maximum drop may be used, and the Bioretention Facility must be planted with trees and  shrubs to prevent pedestrian access. In this case, a curb is not placed around the Bioretention  Facility,   but wheel stops shall be used to prevent vehicles from entering the Bioretention Facility, as  shown in Figure 4.       Figure 4: Bioretention Facility Layout without Side Slopes BIORETENTION FACILITY BMP FACT SHEET Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 6 Planter Boxes  Bioretention Facilities can also be placed above ground as planter boxes. Planter boxes must  have a minimum width of 2 feet, a maximum surcharge depth of 6 inches, and no side slopes  are necessary. Planter boxes must be constructed so as to ensure that the top surface of the  engineered soil media will remain level. This option may be constructed of concrete, brick,  stone or other stable materials that will not warp or bend. Chemically treated wood or  galvanized steel, which has the ability to contaminate stormwater, should not be used. Planter  boxes must be lined with an impermeable liner on all sides, including the bottom. Due to the  impermeable liner, the inside bottom of the planter box shall be designed and constructed with  a cross fall, directing treated flows within the subdrain layer toward the point where subdrain  exits the planter box, and subdrains shall be oriented with drain holes oriented down. These  provisions will help avoid excessive stagnant water within the gravel underdrain layer. Similar  to the in‐ground Bioretention Facility versions, this BMP benefits from healthy plants and  biological activity in the root zone. Planter boxes should be planted with appropriately selected  vegetation.    Figure 5: Planter Box  Source: LA Team Effort  Overflow  An overflow route is needed in the Bioretention Facility design to bypass stored runoff from  storm events larger than VBMP or in the event of facility or subdrain clogging. Overflow systems  must connect to an acceptable discharge point, such as a downstream conveyance system as  shown in Figure 1 and Figure 4. The inlet to the overflow structure shall be elevated inside the  Bioretention Facility to be flush with the ponding surface for the design capture volume (VBMP)  as shown in Figure 4. This will allow the design capture volume to be fully treated by the  Bioretention Facility, and for larger events to safely be conveyed to downstream systems. The  overflow inlet shall not be located in the entrance of a Bioretention Facility, as shown in Figure  6.     BIORETENTION FACILITY BMP FACT SHEET Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 7 Underdrain Gravel and Pipes  An underdrain gravel layer and pipes shall be provided in accordance with Appendix B –  Underdrains.  Figure 6: Incorrect Placement of an Overflow Inlet.  Inspection and Maintenance Schedule  The Bioretention Facility area shall be inspected for erosion, dead vegetation, soggy soils, or  standing water. The use of fertilizers and pesticides on the plants inside the Bioretention  Facility should be minimized.  Schedule Activity  Ongoing  Keep adjacent landscape areas maintained. Remove clippings from landscape maintenance activities. Remove trash and debris Replace damaged grass and/or plants Replace surface mulch layer as needed to maintain a 2‐3 inch soil cover. After storm events Inspect areas for ponding Annually Inspect/clean inlets and outlets Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 8 Bioretention Facility Design Procedure  1)Enter the area tributary, AT, to the Bioretention Facility. 2)Enter the Design Volume, VBMP, determined from Section 2.1 of this Handbook. 3)Select the type of design used. There are two types of Bioretention Facility designs: the standard design used for most project sites that include side slopes, and the modified design used when the BMP is located perpendicular to the parking spaces or with planter boxes that do not use side slopes. 4)Enter the depth of the engineered soil media, dS. The minimum depth for the engineered soil media can be 18' in limited cases, but it is recommended to use 24' or a preferred 36' to provide an adequate root zone for the chosen plant palette. Engineered soil media deeper than 36' will only get credit for the pore space in the first 36'. 5)Enter the top width of the Bioretention Facility. 6)Calculate the total effective depth, dE, within the Bioretention Facility. The maximum allowable pore space of the soil media is 30% while the maximum allowable pore space for the gravel layer is 40%.  Gravel layer deeper than 12' will only get credit for the pore space in the first 12'. a.For the design with side slopes the following equation shall be used to determine the total effective depth. Where, dP is the depth of ponding within the basin. d୉ ሺftሻ ൌ 0.3 ൈ ቂ൫w୘ ሺftሻ ൈdୗ ሺftሻ൯൅4൫d୔ ሺftሻ൯ଶ ቃ ൅ 0.4 ൈ 1 ሺftሻ ൅d୔ ሺftሻൣ4d୔ ሺftሻ ൅൫w୘ ሺftሻ െ8d୔ ሺftሻ൯൧ w୘ ሺftሻ This above equation can be simplified if the maximum ponding depth of 0.5’ is  used. The equation below is used on the worksheet to find the minimum area  required for the Bioretention Facility:  d୉ ሺftሻ ൌ ሺ0.3 ൈ dୗ ሺftሻ ൅ 0.4 x 1ሺftሻ ሻ െቆ0.7 ሺft ଶ ሻ w୘ ሺftሻ ቇ൅0.5ሺftሻ Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 9   b. For the design without side slopes the following equation shall be used to  determine the total effective depth:  d୉ ሺftሻ ൌd୔ ሺftሻ ൅ ሾሺ0.3ሻ ൈdୗ ሺftሻ ൅ ሺ0.4ሻ ൈ1ሺftሻሿ    The equation below, using the maximum ponding depth of 0.5', is used on the  worksheet to find the minimum area required for the Bioretention Facility:    d୉ ሺftሻ ൌ0.5 ሺftሻ ൅ ሾሺ0.3ሻ ൈdୗ ሺftሻ ൅ ሺ0.4ሻ ൈ1ሺftሻሿ    7) Calculate the minimum surface area, AM, required for the Bioretention Facility. This does  not include the curb surrounding the Bioretention Facility or side slopes.    A୑ ሺft ଶ ሻ ൌ V୆୑୔ሺftଷ ሻ d୉ ሺftሻ     8) Enter the proposed surface area.  This area shall not be less than the minimum required  surface area.    9) Verify that side slopes are no steeper than 4:1 in the standard design, and are not  required in the modified design.    10) Provide the diameter, minimum 6 inches, of the perforated underdrain used in the  Bioretention Facility. See Appendix B for specific information regarding perforated  pipes.    11) Provide the slope of the site around the Bioretention Facility, if used. The maximum  slope is 3 percent for a standard design.     12) Provide the check dam spacing, if the site around the Bioretention Facility is sloped.     13) Describe the vegetation used within the Bioretention Facility.        Riverside County - Low Impact Development BMP Design Handbook rev. 2/2012 Page 10 References Used to Develop this Fact Sheet  Anderson, Dale V. "Landscaped Filter Basin Soil Requirements." Riverside, May 2010.    California Department of Transportation. CalTrans Standard Plans. 15 September 2005. May  2010 <http://www.dot.ca.gov/hq/esc/oe/project_plans/HTM/stdplns‐met‐new99.htm>.    Camp Dresser and McKee Inc.; Larry Walker Associates. California Stormwater Best  Management Practice Handbook for New Development and Redevelopment. California  Stormwater Quality Association (CASQA), 2004.    Contra Costa Clean Water Program. Stormwater Quality Requirements for Development  Applications. 3rd Edition. Contra Costa, 2006.    County of Los Angeles Public Works. Stormwater Best Management Practice Design and  Maintenance Manual. Los Angeles, 2009.    Kim, Hunho, Eric A. Seagren and Allen P. Davis. "Engineered Bioretention for Removal of Nitrate  from Stormwater Runoff." Water Environment Research 75.4 (2003): 355‐366.    LA Team Effort. LA Team Effort: FREE Planter Boxes for Businesses. 2 November 2009. May  2010 <http://lateameffort.blogspot.com/2009/11/free‐planter‐boxes‐for‐businesses‐est.html>.    Montgomery County Maryland Department of Permitting Services Water Resources Section.  Biofiltration (BF). Montgomery County, 2005.    Program, Ventura Countywide Stormwater Quality Management. Technical Guidance Manual  for Stormwater Quality Control Measures. Ventura, 2002.    United States Environmental Protection Agency. Storm Water Technology Fact Sheet  Bioretention. Washington D.C, 1999.    Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3 ‐  Best Management Practices. Vol. 3. Denver, 2008. 3 vols.    Urbonas, Ben R. Stormwater Sand Filter Sizing and Design: A Unit Operations Approach. Denver:  Urban Drainage and Flood Control District, 2002.            Attachment 7 - NOAA Information Attachment 8 - Soils Report GEOTECHNICAL INVESTIGATION PROPOSED INDUSTRIAL BUILDING 14970 Jurupa Avenue Fontana, California for Prologis 22885 Savi Ranch Parkway  Suite E  Yorba Linda  California  92887 voice: (714) 685-1115  fax: (714) 685-1118  www.socalgeo.com March 28, 2024 Prologis 3546 Concours Street, Suite 100 Ontario, CA 91764 Attention: Ms. Annie Chen Development Manager Project No.: 24G111-1 Subject: Geotechnical Investigation Proposed Industrial Building 14970 Jurupa Avenue Fontana, California Ms. Chen: In accordance with your request, we have conducted a geotechnical investigation at the subject site. We are pleased to present this report summarizing the conclusions and recommendations developed from our investigation. We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office. Respectfully Submitted, SOUTHERN CALIFORNIA GEOTECHNICAL, INC. Joseph Lozano Leon Staff Engineer Robert G. Trazo, GE 2655 Principal Engineer Distribution: (1) Addressee Proposed Industrial Building – Fontana, CA Project No. 24G111-1 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY 1 2.0 SCOPE OF SERVICES 3 3.0 SITE AND PROJECT DESCRIPTION 4 3.1 Site Conditions 4 3.2 Proposed Development 4 4.0 SUBSURFACE EXPLORATION 5 4.1 Scope of Exploration/Sampling Methods 5 4.2 Geotechnical Conditions 5 5.0 LABORATORY TESTING 7 6.0 CONCLUSIONS AND RECOMMENDATIONS 9 6.1 Seismic Design Considerations 9 6.2 Geotechnical Design Considerations 11 6.3 Site Grading Recommendations 13 6.4 Construction Considerations 16 6.5 Foundation Design and Construction 17 6.6 Floor Slab Design and Construction 18 6.7 Retaining Wall Design and Construction 19 6.8 Pavement Design Parameters 21 7.0 GENERAL COMMENTS 24 APPENDICES A Plate 1: Site Location Map Plate 2: Boring Location Plan B Boring Logs C Laboratory Test Results D Grading Guide Specifications E Seismic Design Parameters Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 1 1.0 EXECUTIVE SUMMARY Presented below is a brief summary of the conclusions and recommendations of this investigation. Since this summary is not all inclusive, it should be read in complete context with the entire report. Geotechnical Design Considerations • Artificial fill soils were encountered at all of the boring locations, extending from the ground surface to depths of 1½ to 5½± feet. • The fill soils possess varying strengths. The existing fill soils are considered to represent undocumented fill. These soils, in their present condition, are not considered suitable for support of the foundation loads of the new structure. • The near-surface native alluvial soils generally consist of sands, silty sands and gravelly sands which possess variable strength. These soils, in their present condition, are not considered suitable for support of the foundation loads of the new structure. The deeper alluvium generally possesses higher strengths and densities and more favorable consolidation/collapse characteristics. Site Preparation Recommendations • Demolition of the existing structures and pavements will be required in order to facilitate construction of the new building. Demolition should also include all utilities and any other subsurface improvements that will not remain in place for use with the new development. Debris resultant from demolition should be disposed of off-site. Alternatively, concrete and asphalt debris may be pulverized to a maximum 1-inch particle size, well mixed with the on- site sands, and incorporated into new structural fills. • Initial site preparation should include removal of all vegetation, including tree root masses and any organic topsoil. • Remedial grading is recommended within the proposed building pad area to remove the undocumented fill soils, which extend to depths of 1½ to 5½± feet at the boring locations, in their entirety. The building pad area should also be overexcavated to a depth of at least 4 feet below existing grade and to a depth of at least 3 feet below proposed pad grade, whichever is greater. Overexcavation within the foundation areas is recommended to extend to a depth of at least 3 feet below proposed foundation bearing grade. • Following completion of the overexcavation, the exposed soils should be scarified to a depth of at least 12 inches, and thoroughly flooded to raise the moisture content of the underlying soils to at least 0 to 4 percent above optimum moisture content, extending to a depth of at least 24 inches. The overexcavation subgrade soils should then be recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. The previously excavated soils may then be replaced as compacted structural fill. • The new pavement and flatwork subgrade soils are recommended to be scarified to a depth of 12± inches, moisture conditioned and recompacted to at least 90 percent of the ASTM D- 1557 maximum dry density. Building Foundation Recommendations • Conventional shallow foundations, supported in newly placed compacted fill. • Maximum, net allowable soil bearing pressure: 2,500 lbs/ft2. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 2 • Reinforcement consisting of at least two (2) No. 5 rebars (1 top and 1 bottom) in strip footings. Additional reinforcement may be necessary for structural considerations. Building Floor Slab Design Recommendations • Conventional Slab-on-Grade: minimum 6 inches thick. • Modulus of Subgrade Reaction: k = 150 psi/in. • Reinforcement is not expected to be necessary for geotechnical considerations. The actual thickness and reinforcement of the floor slab should be determined by the structural engineer. Pavement Design Recommendations ASPHALT PAVEMENTS (R = 50) Materials Thickness (inches) Auto Parking and Auto Drive Lanes (TI = 4.0 to 5.0) Truck Traffic TI = 6.0 TI = 7.0 TI = 8.0 TI = 9.0 Asphaltic Concrete 3 3½ 4 5 5½ Aggregate Base 3 4 5 5 7 Compacted Subgrade 12 12 12 12 12 PORTLAND CEMENT CONCRETE PAVEMENTS (R = 50) Materials Thickness (inches) Autos and Light Truck Traffic (TI = 6.0) Truck Traffic TI = 7.0 TI = 8.0 TI = 9.0 PCC 5 5½ 6½ 8 Compacted Subgrade (95% minimum compaction) 12 12 12 12 Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 3 2.0 SCOPE OF SERVICES The scope of services performed for this project was in general accordance with our Proposal No. 24P112R, dated January 29, 2024, and revised on February 16, 2024. The scope of services included a visual site reconnaissance, subsurface exploration, field and laboratory testing, and geotechnical engineering analysis to provide criteria for preparing the design of the building foundations, building floor slab, and parking lot pavements along with site preparation recommendations and construction considerations for the proposed development. The evaluation of the environmental aspects of this site was beyond the scope of services for this geotechnical investigation. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 4 3.0 SITE AND PROJECT DESCRIPTION 3.1 Site Conditions The subject site is located at 14970 Jurupa Avenue in Fontana, California. The site is bounded to the north by existing commercial/industrial development, to the west by railroad tracks and Live Oak Avenue, to the south by Jurupa Avenue, and to the east by Hemlock Avenue. A railroad spur is located in the western portion of the site. The general location of the site is illustrated on the Site Location Map, enclosed as Plate 1 in Appendix A of this report. The subject site consists of a rectangular-shaped parcel, 22.83± acres in size. The site is currently occupied by the Brown-Strauss Steel facility and is developed with two buildings, 6,600± ft² and 20,000±ft² in size, located in the southern area of the site. One building consists of a single-story structure of steel-frame and metal panel construction, and the other building is of wood-frame and stucco construction. Both buildings are assumed to be supported on conventional shallow foundations with concrete slab-on-grade floors. The site is currently utilized as a steel storage yard, with numerous stockpiles of steel beams. An existing concrete masonry unit (CMU) screen wall is present along the southern site boundary, and CMU retaining walls are present along the eastern and northern site boundaries. The ground surface cover throughout the site generally consists of asphaltic concrete (AC) pavements in moderate to poor condition, with localized severe cracking throughout, and isolated areas of exposed soils. Detailed topographic information was obtained from a concept grading plan prepared by PBLA Engineering, Inc. Based on this plan, the overall site topography slopes downward to the south- southwest with an average gradient of 1± percent. 3.2 Proposed Development Based on the concept grading plan, the site will be developed with one (1) industrial building, 492,130± ft² in size, located in the southern area of the site. Dock-high doors will be constructed on the north side of the proposed building. The building is expected to be surrounded by AC pavements in the parking and drive lanes, Portland cement concrete (PCC) pavements in the loading dock area, and concrete flatwork with limited areas of landscape planters throughout. Detailed structural information was not available at the time of this proposal. It is assumed that the proposed building will be a single-story structure of tilt-up concrete construction, typically supported on conventional shallow foundations with a concrete slab-on-grade floor. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 100 kips and 4 to 7 kips per linear foot, respectively. No significant amounts of below-grade construction, such as basements or crawl spaces, are expected to be included in the proposed development. Based on the concept grading plan, cuts and fills of up to 7± feet will be necessary to achieve the proposed site grades. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 5 4.0 SUBSURFACE EXPLORATION 4.1 Scope of Exploration/Sampling Methods The subsurface exploration conducted for this project consisted of six (6) borings (identified as Boring Nos. B-1 through B-6) advanced to depths of 10 to 25± feet below the existing site grades. All of the borings were logged during drilling by a member of our staff. The borings were advanced with hollow-stem augers, by a conventional truck-mounted drilling rig. Representative bulk and relatively undisturbed soil samples were taken during drilling. Relatively undisturbed soil samples were taken with a split barrel “California Sampler” containing a series of one inch long, 2.416± inch diameter brass rings. This sampling method is described in ASTM Test Method D-3550. Standard penetration test (SPT) samples were also taken using a 1.4± inch inside diameter split spoon sampler, in general accordance with ASTM D-1586. Both of these samplers are driven into the ground with successive blows of a 140-pound weight falling 30 inches. The blow counts obtained during driving are recorded for further analysis. Bulk samples were collected in plastic bags to retain their original moisture content. The relatively undisturbed ring samples were placed in molded plastic sleeves that were then sealed and transported to our laboratory. The approximate locations of the borings are indicated on the Boring Location Plan, included as Plate 2 in Appendix A of this report. The Boring Logs, which illustrate the conditions encountered at the boring locations, as well as the results of some of the laboratory testing, are included in Appendix B. 4.2 Geotechnical Conditions Pavements Boring No. B-1 was drilled through asphalt that consisted of 6¼± inches of AC with no discernible aggregate base. The remaining borings were drilled through pavements that consisted of 3 to 6± inches of AC, underlain by 6 to 8± inches of aggregate base. Artificial Fill Artificial fill soils were encountered beneath the pavements at all of the boring locations, extending to depths of 1½ to 5½± feet below the existing site grades. The artificial fill soils generally consist of medium dense to very dense silty sands and gravelly sands, with occasional loose silty sands. Occasional cobbles were encountered at Boring No. B-3 as shallow as 1± foot from the ground surface. The fill soils possess a mottled and disturbed appearance resulting in their classification as artificial fill. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 6 Alluvium Native alluvium was encountered beneath the artificial fill soils at all of the boring locations, extending to at least the maximum depth explored of 25± feet below the existing site grades. The alluvial soils within the upper 8 to 12± feet generally consist of medium dense to dense sands, silty sands and gravelly sands. At greater depths and extending to the maximum depth explored of 25± feet, the alluvium generally consists of dense to very dense gravelly sands, with occasional medium dense silty sands. The alluvium at Boring No. B-3 generally consists of very dense gravelly sands with occasional cobbles. Groundwater Groundwater was not encountered at any of the borings. Based on the lack of any water within the borings, and the moisture contents of the recovered soil samples, the static groundwater table is considered to have existed at a depth in excess of 25± feet below existing site grades, at the time of the subsurface investigation. As part of our research, we reviewed readily available groundwater data in order to determine regional groundwater depths. Recent water level data was obtained from the California Department of Water Resources, Water Data Library Station Map, website, https://wdl.water.ca.gov/waterdatalibrary/. One monitoring well on record (identified as Local Well: CHINO-1207068) is located as close as 4,130± feet southwest of the site. Water level readings within this monitoring well indicate a high groundwater level of 225± feet below the ground surface in January 2000. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 7 5.0 LABORATORY TESTING The soil samples recovered from the subsurface exploration were returned to our laboratory for further testing to determine selected physical and engineering properties of the soils. The tests are briefly discussed below. It should be noted that the test results are specific to the actual samples tested, and variations could be expected at other locations and depths. Classification Recovered soil samples were classified using the Unified Soil Classification System (USCS), in accordance with ASTM D-2488. Field identifications were then supplemented with additional visual classifications and/or by laboratory testing. The USCS classifications are shown on the Boring Logs and are periodically referenced throughout this report. Density and Moisture Content The density has been determined for selected relatively undisturbed ring samples. These densities were determined in general accordance with the method presented in ASTM D-2937. The results are recorded as dry unit weight in pounds per cubic foot. The moisture contents are determined in accordance with ASTM D-2216, and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs. Consolidation Selected soil samples have been tested to determine their consolidation potential, in accordance with ASTM D-2435. The testing apparatus is designed to accept either natural or remolded samples in a one-inch high ring, approximately 2.416 inches in diameter. Each sample is then loaded incrementally in a geometric progression and the resulting deflection is recorded at selected time intervals. Porous stones are in contact with the top and bottom of the sample to permit the addition or release of pore water. The samples are typically inundated with water at an intermediate load to determine their potential for collapse or heave. The results of the consolidation testing are plotted on Plates C-1, C-2 and C-3 in Appendix C of this report. Maximum Dry Density and Optimum Moisture Content Representative soil samples have been tested to determine their maximum dry density and optimum moisture content. The results have been obtained using the Modified Proctor procedure, per ASTM D-1557 and are presented on Plates C-4 and C-5 in Appendix C of this report. These tests are generally used for comparison with the densities of undisturbed field samples, and for later compaction testing. Additional testing of other soil types or soil mixes may be necessary at a later date. Soluble Sulfates Representative samples of the near-surface soils were submitted to a subcontracted analytical laboratory for determination of soluble sulfate content. Soluble sulfates are naturally present in soils, and if the concentration is high enough, can result in degradation of concrete which comes Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 8 into contact with these soils. The results of the soluble sulfate testing are presented below, and are discussed further in a subsequent section of this report. Sample Identification Soluble Sulfates (%) Severity Class B-1 @ 1 to 5 feet 0.011 Not Applicable S0 B-5 @ 1 to 5 feet 0.005 Not Applicable S0 Corrosivity Testing Representative samples of the near-surface soils were submitted to a subcontracted corrosion engineering laboratory for determination of electrical resistivity, pH, and chloride concentrations. The resistivity of the soils is a measure of their potential to attack buried metal improvements such as utility lines. The results of some of these tests are presented below. Sample Identification Saturated Resistivity (ohm-cm) pH Chlorides (mg/kg) Nitrates (mg/kg) Sulfides (mg/kg) Redox Potential (mV) B-1 @ 1 to 5 feet 2,747 7.0 16.7 98.6 0.3 122 B-5 @ 1 to 5 feet 9,380 7.5 21.3 16.2 0.2 123 Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 9 6.0 CONCLUSIONS AND RECOMMENDATIONS Based on the results of our review, field exploration, laboratory testing and geotechnical analysis, the proposed development is considered feasible from a geotechnical standpoint. The recommendations contained in this report should be taken into the design, construction, and grading considerations. The recommendations are contingent upon all grading and foundation construction activities being monitored by the geotechnical engineer of record. The recommendations are provided with the assumption that an adequate program of client consultation, construction monitoring, and testing will be performed during the final design and construction phases to verify compliance with these recommendations. Maintaining Southern California Geotechnical, Inc., (SCG) as the geotechnical consultant from the beginning to the end of the project will provide continuity of services. The geotechnical engineering firm providing testing and observation services shall assume the responsibility of Geotechnical Engineer of Record. The Grading Guide Specifications, included as Appendix D, should be considered part of this report, and should be incorporated into the project specifications. The contractor and/or owner of the development should bring to the attention of the geotechnical engineer any conditions that differ from those stated in this report, or which may be detrimental for the development. 6.1 Seismic Design Considerations The subject site is located in an area which is subject to strong ground motions due to earthquakes. The performance of a site specific seismic hazards analysis was beyond the scope of this investigation. However, numerous faults capable of producing significant ground motions are located near the subject site. Due to economic considerations, it is not generally considered reasonable to design a structure that is not susceptible to earthquake damage. Therefore, significant damage to structures may be unavoidable during large earthquakes. The proposed structure should, however, be designed to resist structural collapse and thereby provide reasonable protection from serious injury, catastrophic property damage and loss of life. Faulting and Seismicity Research of available maps indicates that the subject site is not located within an Alquist-Priolo Earthquake Fault Zone. Furthermore, SCG did not identify any evidence of faulting during the geotechnical investigation. Therefore, the possibility of significant fault rupture on the site is considered to be low. The potential for other geologic hazards such as seismically induced settlement, lateral spreading, tsunamis, inundation, seiches, flooding, and subsidence affecting the site is considered low. Seismic Design Parameters The 2022 California Building Code (CBC) provides procedures for earthquake resistant structural design that include considerations for on-site soil conditions, occupancy, and the configuration of Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 10 the structure including the structural system and height. The seismic design parameters presented below are based on the soil profile and the proximity of known faults with respect to the subject site. The 2022 CBC Seismic Design Parameters have been generated using the SEAOC/OSHPD Seismic Design Maps Tool, a web-based software application available at the website www.seismicmaps.org. This software application calculates seismic design parameters in accordance with several building code reference documents, including ASCE 7-16, upon which the 2022 CBC is based. The application utilizes a database of risk-targeted maximum considered earthquake (MCER) site accelerations at 0.01-degree intervals for each of the code documents. The table below was created using data obtained from the application. The output generated from this program is included as Plate E-1 in Appendix E of this report. 2022 CBC SEISMIC DESIGN PARAMETERS Parameter Value Mapped Spectral Acceleration at 0.2 sec Period SS 1.726 Mapped Spectral Acceleration at 1.0 sec Period S1 0.640 Site Class --- C Site Modified Spectral Acceleration at 0.2 sec Period SMS 2.071 Site Modified Spectral Acceleration at 1.0 sec Period SM1 0.897 Design Spectral Acceleration at 0.2 sec Period SDS 1.381 Design Spectral Acceleration at 1.0 sec Period SD1 0.598 Liquefaction Liquefaction is the loss of strength in generally cohesionless, saturated soils when the pore-water pressure induced in the soil by a seismic event becomes equal to or exceeds the overburden pressure. The primary factors which influence the potential for liquefaction include groundwater table elevation, soil type and grain size characteristics, relative density of the soil, initial confining pressure, and intensity and duration of ground shaking. The depth within which the occurrence of liquefaction may impact surface improvements is generally identified as the upper 50 feet below the existing ground surface. Liquefaction potential is greater in saturated, loose, poorly graded fine sands with a mean (d50) grain size in the range of 0.075 to 0.2 mm (Seed and Idriss, 1971). Clayey (cohesive) soils or soils which possess clay particles (d<0.005mm) in excess of 20 percent (Seed and Idriss, 1982) are generally not considered to be susceptible to liquefaction, nor are those soils which are above the historic static groundwater table. The California Geological Survey (CGS) has not yet conducted detailed seismic hazards mapping in the area of the subject site. The general liquefaction susceptibility of the site was determined by research of the San Bernardino County Land Use Plan, General Plan, Geologic Hazard Overlays. Map FH29C for the Fontana 7.5-Minute Quadrangle indicates that the subject site is not located within an area of liquefaction susceptibility. Based on the mapping performed by the county of San Bernardino and the lack of a historic high ground water table within the upper 50± feet of the ground surface, liquefaction is not considered to be a design concern for this project. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 11 6.2 Geotechnical Design Considerations General Artificial fill soils were encountered at all of the boring locations, extending from the ground surface to depths of 1½ to 5½± feet. These soils possess a mottled and disturbed appearance. Additionally, no documentation regarding the placement and compaction of these soils has been provided. The fill soils are therefore considered to be undocumented fill. The artificial fill soils are underlain by native alluvium which possesses relatively favorable strengths and consolidation/collapse characteristics. Additionally, it is anticipated that demolition of the existing structures and associated improvements will cause disturbance of the upper 3 to 4± feet of soil. Therefore, remedial grading is considered warranted within the proposed building area in order to remove all of the undocumented fill soils in their entirety and any soils disturbed during the demolition process, and replace these materials as compacted structural fill soils. Settlement The recommended remedial grading will remove the existing undocumented fill soils and a portion of the near-surface native alluvial soils and replace these materials as compacted structural fill. The native soils that will remain in place below the recommended depth of overexcavation will not be subject to significant stress increases from the foundations of the new structure. Therefore, following completion of the recommended grading, post-construction settlements are expected to be within tolerable limits. Expansion The near-surface soils consist of gravelly sands, sands, and silty sands with no appreciable clay content. These materials have been visually classified as non-expansive. Therefore, no design considerations related to expansive soils are considered warranted for this site. Soluble Sulfates The results of the soluble sulfate testing, discussed in Section 5.0 of this report, indicate soluble sulfate concentrations less than 0.011 percent. These concentrations are considered to be negligible or “not applicable” with respect to the American Concrete Institute (ACI) Publication 318-05 Building Code Requirements for Structural Concrete and Commentary, Section 4.3. Therefore, specialized concrete mix designs are not considered to be necessary, with regard to sulfate protection purposes. It is, however, recommended that additional soluble sulfate testing be conducted at the completion of rough grading to verify the soluble sulfate concentrations of the soils which are present at pad grade within the building areas. Corrosion Potential The results of laboratory testing indicate that the tested samples of the near-surface soils possess saturated resistivities ranging from 2,747 to 9,380 ohm-cm, and pH values of 7.0 and 7.5. The soils possess redox potentials of up to 123 mV and sulfide concentrations of up to 0.3 mg/kg. These test results have been evaluated in accordance with guidelines published by the Ductile Iron Pipe Research Association (DIPRA). The DIPRA guidelines consist of a point system by which Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 12 characteristics of the soils are used to quantify the corrosivity characteristics of the site. Resistivity, pH, sulfide concentration, redox potential, and moisture content are the five factors that enter into the evaluation procedure. Based on these factors, and utilizing the DIPRA procedure, the on-site soils are considered to be slightly corrosive to ductile iron pipe. Therefore, polyethylene protection may be required for cast iron or ductile iron pipes. Based on American Concrete Institute (ACI) Publication 318 Building Code Requirements for Structural Concrete and Commentary, reinforced concrete that is exposed to external sources of chlorides requires corrosion protection for the steel reinforcement contained within the concrete. ACI 318 defines concrete exposed to moisture and an external source of chlorides as “severe” or exposure category C2. ACI 318 does not clearly define a specific chloride concentration at which contact with the adjacent soil will constitute a “C2” or severe exposure. However, the Caltrans Memo to Designers 10-5, Protection of Reinforcement Against Corrosion Due to Chlorides, Acids and Sulfates, dated June 2010, indicates that soils possessing chloride concentrations greater than 500 mg/kg are considered to be corrosive to reinforced concrete. The results of the laboratory testing indicate chloride concentrations ranging from 16.7 to 21.3 mg/kg. Although the soils contain some chlorides, we do not expect that the chloride concentrations of the tested soils are high enough to constitute a “severe” or C2 chloride exposure. Therefore, a chloride exposure category of C1 is considered appropriate for this site. Nitrates present in soil can be corrosive to copper tubing at concentrations greater than 50 mg/kg. The tested samples possess nitrate concentrations ranging from 16.2 to 98.6 mg/kg. Based on this test result, the on-site soils are considered to be corrosive to copper pipe. Since SCG does not practice in the area of corrosion engineering, we recommend that the client contact a corrosion engineer to provide a more thorough evaluation of these test results. Shrinkage/Subsidence Based on the results of the laboratory testing, removal and recompaction of the near-surface fill and native alluvium will result in an average shrinkage of 5 to 15 percent. Shrinkage estimates for the individual samples range between 2 and 19 percent based on the results of density testing and the assumption that the on-site soils will be compacted to about 92 percent of the ASTM D- 1557 maximum dry density. It should be noted that the shrinkage estimate is based on the results of dry density testing performed on small-diameter samples of the existing soils taken at the boring locations. If a more accurate and precise shrinkage estimate is desired, SCG can perform a shrinkage study involving several excavated test-pits where in-place densities are determined using in-situ testing methods instead of laboratory density testing on small-diameter samples. Please contact SCG for details and a cost estimate regarding a shrinkage study, if desired. Minor ground subsidence is expected to occur in the soils below the zone of removal, due to settlement and machinery working. The subsidence is estimated to be 0.1 feet. This estimate may be used for grading in areas that are underlain by native alluvial soils. These estimates are based on previous experience and the subsurface conditions encountered at the boring locations. The actual amount of subsidence is expected to be variable and will be Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 13 dependent on the type of machinery used, repetitions of use, and dynamic effects, all of which are difficult to assess precisely. Grading and Foundation Plan Review Grading and foundation plans were unavailable at the time of this report. It is therefore recommended that we be provided with copies of the preliminary grading and foundation plans, when they become available, for review with regard to the conclusions, recommendations, and assumptions contained within this report. 6.3 Site Grading Recommendations The grading recommendations presented below are based on the subsurface conditions encountered at the boring locations and our understanding of the proposed development. We recommend that all grading activities be completed in accordance with the Grading Guide Specifications included as Appendix D of this report, unless superseded by site-specific recommendations presented below. Site Stripping and Demolition Demolition of the existing structures including pavements and any associated improvements will be necessary to facilitate the construction of the proposed development. Demolition should include any foundations, floor slabs, and any associated utilities. Any septic systems encountered during demolition and/or grading (if present) should be removed in their entirety. Any associated leach fields or other existing underground improvements should also be removed in their entirety. Debris resultant from demolition should be disposed of off-site in accordance with local regulations. Alternatively, concrete and asphalt debris may be crushed to a maximum 1-inch particle size, well-mixed with the on-site sands, and incorporated into new structural fills or it may be crushed and made into crushed miscellaneous base (CMB), if desired. Furthermore, the contractor should take necessary precautions to protect the adjacent improvements during demolition. Detailed structural information regarding the existing buildings has not been provided to our office. Therefore, the foundation systems supporting the existing buildings are generally unknown by SCG. We expect that the existing buildings are supported on conventional shallow foundations. However, if the buildings are supported on deep foundations, any existing piles or drilled piers located within the proposed building areas should be cut off at a depth of at least 3 feet below the bottom of the planned overexcavation. Where drilled pier or pile foundations are encountered within proposed pavement areas, they should be cut off at a depth of at least 2 feet below the proposed pavement subgrade elevation or at a depth of at least 1 foot below the bottom of any planned utilities. Initial site stripping should also include removal of any surficial vegetation from the unpaved areas of the site. This should include any weeds, grasses, shrubs, and trees. Root systems associated with the trees should be removed in their entirety, and the resultant excavations should be backfilled with compacted structural fill soils. Any organic materials should be removed and disposed of off-site, or in non-structural areas of the property. The actual extent of site Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 14 stripping should be determined in the field by the geotechnical engineer, based on the organic content and stability of the materials encountered. Treatment of Existing Soils: Building Pad Remedial grading will be necessary within the proposed building pad area to remove the existing undocumented fill soils and a portion of the variable strength native alluvium. The fill soils extend to depths of 1½ to 5½± feet at the boring locations. In addition, the overexcavation is also recommended to extend to a depth of at least 4 feet below existing grade and 3 feet below proposed building pad subgrade elevation, whichever is greater. Within the influence zones of the new foundations, the overexcavation should extend to a depth of at least 3 feet below proposed foundation bearing grade. The overexcavation areas should extend at least 5 feet beyond the building and foundation perimeters, and to an extent equal to the depth of fill placed below the foundation bearing grade, whichever is greater. If the proposed structure incorporates any exterior columns (such as for a canopy or overhang) the area of overexcavation should also encompass these areas. The overexcavation should also encompass the proposed fill slope located along the south side of the proposed building. Following completion of the overexcavation, the subgrade soils within the overexcavation areas should be evaluated by the geotechnical engineer to verify their suitability to serve as the structural fill subgrade, as well as to support the foundation loads of the new structure. This evaluation should include proofrolling and probing to identify any soft, loose or otherwise unstable soils that must be removed. Some localized areas of deeper excavation may be required if additional fill materials or loose, porous, or low-density native soils are encountered at the base of the overexcavation. After a suitable overexcavation subgrade has been achieved, the exposed soils should be scarified to a depth of at least 12 inches thoroughly flooded to achieve a moisture content of 0 to 4 percent above optimum moisture content to a depth of at least 24 inches. The subgrade soils should then be recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. The previously excavated soils may then be replaced as compacted structural fill. Treatment of Existing Soils: Retaining Walls and Site Walls The existing soils within the areas of any proposed retaining walls and site walls should be overexcavated to a depth of 3 feet below foundation bearing grade and replaced as compacted structural fill as discussed above for the proposed building pad. Any undocumented fill soils or disturbed native alluvium within any of these foundation areas should be removed in their entirety. The overexcavation areas should extend at least 3 feet beyond the foundation perimeters, and to an extent equal to the depth of fill below the new foundations. Any erection pads for tilt-up concrete walls are considered to be part of the foundation system. Therefore, these overexcavation recommendations are applicable to erection pads. The overexcavation subgrade soils should be evaluated by the geotechnical engineer prior to scarifying, moisture conditioning to within 0 to 4 percent above the optimum moisture content, and recompacting the upper 12 inches of exposed subgrade soils. The previously excavated soils may then be replaced as compacted structural fill. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 15 If the full lateral extent of overexcavation is not achievable for the proposed walls, foundation elements must be redesigned using a lower bearing pressure. The geotechnical engineer of record should be contacted for recommendations pertaining to this type of condition. Treatment of Existing Soils: Flatwork, Parking and Drive Areas Based on economic considerations, overexcavation of the existing near-surface soils in the new flatwork, parking and drive areas is not considered warranted, with the exception of areas where lower strength or unstable soils are identified by the geotechnical engineer during grading. Subgrade preparation in the new flatwork, parking and drive areas should initially consist of removal of all soils disturbed during stripping and demolition operations. The geotechnical engineer should then evaluate the subgrade to identify any areas of additional unsuitable soils. Any such materials should be removed to a level of firm and unyielding soil. The exposed subgrade soils should then be scarified to a depth of 12± inches, moisture conditioned or air dried to 0 to 4 percent above the optimum moisture content, and recompacted to at least 90 percent of the ASTM D-1557 maximum dry density. Based on the presence of variable strength surficial soils throughout the site, it is expected that some isolated areas of additional overexcavation may be required to remove zones of lower strength, unsuitable soils. The grading recommendations presented above for the proposed flatwork, parking and drive areas assume that the owner and/or developer can tolerate minor amounts of settlement within these areas. The grading recommendations presented above do not mitigate the extent of undocumented fill or lower strength native alluvium in the flatwork, parking and drive areas. As such, some settlement and associated pavement distress could occur. Typically, repair of such distressed areas involves significantly lower costs than completely mitigating these soils at the time of construction. If the owner cannot tolerate the risk of such settlements, the flatwork, parking and drive areas should be overexcavated to a depth of 2 feet below proposed pavement subgrade elevation, with the resulting soils replaced as compacted structural fill. Fill Placement • Fill soils should be placed in thin (6± inches), near-horizontal lifts, moisture conditioned to 0 to 4 percent above the optimum moisture content, and compacted. • On-site soils may be used for fill provided they are cleaned of any debris to the satisfaction of the geotechnical engineer. • All grading and fill placement activities should be completed in accordance with the requirements of the current CBC and the grading code of the city of Fontana and/or the county of San Bernardino. • All fill soils should be compacted to at least 90 percent of the ASTM D-1557 maximum dry density. • Compaction tests should be performed periodically by the geotechnical engineer as random verification of compaction and moisture content. These tests are intended to aid the contractor. Since the tests are taken at discrete locations and depths, they may not be indicative of the entire fill and therefore should not relieve the contractor of his responsibility to meet the job specifications. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 16 Imported Structural Fill Imported structural fill should consist of very low expansive (EI < 20), well graded soils possessing at least 10 percent fines (that portion of the sample passing the No. 200 sieve). Additional specifications for structural fill are presented in the Grading Guide Specifications, included as Appendix D. Utility Trench Backfill In general, utility trench backfill should be compacted to at least 90 percent of the ASTM D-1557 maximum dry density. Compacted trench backfill should conform to the requirements of the local grading code, and more restrictive requirements may be indicated by the city of Fontana. Utility trench backfills should be witnessed by the geotechnical engineer. The trench backfill soils should be compaction tested where possible; probed and visually evaluated elsewhere. Utility trenches which parallel a footing, and extending below a 1h:1v (horizontal to vertical) plane projected from the outside edge of the footing should be backfilled with structural fill soils, compacted to at least 90 percent of the ASTM D-1557 standard. Pea gravel backfill should not be used for these trenches. Any soils used to backfill voids around subsurface utility structures, such as manholes or vaults, should be placed as compacted structural fill. If it is not practical to place compacted fill in these areas, then such void spaces may be backfilled with lean concrete slurry. Uncompacted pea gravel or sand is not recommended for backfilling these voids since these materials have a potential to settle and thereby cause distress of pavements placed around these subterranean structures. 6.4 Construction Considerations Excavation Considerations The near-surface soils are predominately granular in nature. These materials will likely be subject to caving within shallow excavations. Where caving occurs within shallow excavations, flattened excavation slopes may be sufficient to provide excavation stability. On a preliminary basis, the inclination of temporary slopes should not exceed 2h:1v. Maintaining adequate moisture content within the near-surface soils will improve excavation stability. All excavation activities on this site should be conducted in accordance with Cal-OSHA regulations. Moisture Sensitive Subgrade Soils Based on their granular composition, the on-site soils are susceptible to erosion. The site should, therefore, be graded to prevent ponding of surface water and to prevent water from running into excavations. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 17 Groundwater The static groundwater table at this site is considered to exist at a depth in excess of 25± feet at the time of the subsurface exploration. Therefore, groundwater is not expected to impact the grading or foundation construction activities. 6.5 Foundation Design and Construction Based on the preceding grading recommendations, it is assumed that the new building pad will be underlain by structural fill soils used to replace existing undocumented fill soils and a portion of the near-surface alluvial soils. These new structural fill soils are expected to extend to a depth of at least 3 feet below proposed foundation bearing grade, underlain by 1± foot of additional soil that has been densified and moisture conditioned in place. Based on this subsurface profile, the proposed structure may be supported on conventional shallow foundations. Foundation Design Parameters New square and rectangular footings may be designed as follows: • Maximum, net allowable soil bearing pressure: 2,500 lbs/ft2. • Minimum wall/column footing width: 14 inches/24 inches. • Minimum longitudinal steel reinforcement within strip footings: Two (2) No. 5 rebars (1 top and 1 bottom). • Minimum foundation embedment: 12 inches into suitable structural fill soils, and at least 18 inches below adjacent exterior grade. Interior column footings may be placed immediately beneath the floor slab. • It is recommended that the perimeter building foundations be continuous across all exterior doorways. Any flatwork adjacent to the exterior doors should be doweled into the perimeter foundations in a manner determined by the structural engineer. The allowable bearing pressure presented above may be increased by one-third when considering short duration wind or seismic loads. The minimum steel reinforcement recommended above is based on geotechnical considerations; additional reinforcement may be necessary for structural considerations. The actual design of the foundations should be determined by the structural engineer. Foundation Construction The foundation subgrade soils should be evaluated at the time of overexcavation, as discussed in Section 6.3 of this report. It is further recommended that the foundation subgrade soils be evaluated by the geotechnical engineer immediately prior to steel or concrete placement. Soils suitable for direct foundation support should consist of newly placed structural fill, compacted to at least 90 percent of the ASTM D-1557 maximum dry density. Any unsuitable materials should be removed to a depth of suitable bearing compacted structural fill or suitable native alluvium Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 18 (where reduced bearing pressures are utilized), with the resulting excavations backfilled with compacted fill soils. As an alternative, lean concrete slurry (500 to 1,500 psi) may be used to backfill such isolated overexcavations. The foundation subgrade soils should also be properly moisture conditioned to 0 to 4 percent above the Modified Proctor optimum, to a depth of at least 12 inches below bearing grade. Since it is typically not feasible to increase the moisture content of the floor slab and foundation subgrade soils once rough grading has been completed, care should be taken to maintain the moisture content of the building pad subgrade soils throughout the construction process. Estimated Foundation Settlements Post-construction total and differential settlements of shallow foundations designed and constructed in accordance with the previously presented recommendations are estimated to be less than 1.0 and 0.5 inches, respectively. Differential movements are expected to occur over a 50-foot span, thereby resulting in an angular distortion of less than 0.002 inches per inch. Lateral Load Resistance Lateral load resistance will be developed by a combination of friction acting at the base of foundations and slabs and the passive earth pressure developed by footings below grade. The following friction and passive pressure may be used to resist lateral forces: • Passive Earth Pressure: 300 lbs/ft3 • Friction Coefficient: 0.30 These are allowable values, and include a factor of safety. When combining friction and passive resistance, the passive pressure component should be reduced by one-third. These values assume that footings will be poured directly against compacted structural fill. The maximum allowable passive pressure is 3,000 lbs/ft2. 6.6 Floor Slab Design and Construction Subgrades which will support new floor slab should be prepared in accordance with the recommendations contained in the Site Grading Recommendations section of this report. Based on the anticipated grading which will occur at this site, the floor of the new structure may be constructed as a conventional slab-on-grade supported on newly placed structural fill soils. These fill soils are expected to extend to a depth of at least 3 feet below finished pad grade. Based on geotechnical considerations, the floor slab may be designed as follows: • Minimum slab thickness: 6 inches. • Minimum slab reinforcement: Reinforcement is not expected to be required for geotechnical conditions. The actual floor slab reinforcement should be determined by the structural engineer, based upon the imposed loading. • Modulus of subgrade reaction, k =150 psi/in. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 19 • Slab underlayment: If moisture sensitive floor coverings will be used the minimum slab underlayment should consist of a moisture vapor barrier constructed below the entire area of the proposed slab. The moisture vapor barrier should meet or exceed the Class A rating as defined by ASTM E 1745-97 and have a permeance rating less than 0.01 perms as described in ASTM E 96-95 and ASTM E 154-88. A polyolefin material such as Stego® Wrap Vapor Barrier or equivalent will meet these specifications. The moisture vapor barrier should be properly constructed in accordance with all applicable manufacturer specifications. Given that a rock free subgrade is anticipated and that a capillary break is not required, sand below the barrier is not required. The need for sand and/or the amount of sand above the moisture vapor barrier should be specified by the structural engineer or concrete contractor. The selection of sand above the barrier is not a geotechnical engineering issue and hence outside our purview. Where moisture sensitive floor coverings are not anticipated, the vapor barrier may be eliminated. • Moisture condition the floor slab subgrade soils to 0 to 4 percent above the Modified Proctor optimum moisture content, to a depth of 12 inches. The moisture content of the floor slab subgrade soils should be verified by the geotechnical engineer within 24 hours prior to concrete placement. • Proper concrete curing techniques should be utilized to reduce the potential for slab curling or the formation of excessive shrinkage cracks. The actual design of the floor slab should be completed by the structural engineer to verify adequate thickness and reinforcement. 6.7 Retaining Wall Design and Construction Small retaining walls are expected to be necessary in the truck dock areas and may also be required to facilitate the new site grades. The parameters recommended for use in the design of these walls are presented below. Retaining Wall Design Parameters Based on the soil conditions encountered at the boring locations, the following parameters may be used in the design of new retaining walls for this site. We have provided parameters assuming the use of on-site soils for retaining wall backfill. The on-site soils generally consist of sands, silty sands, and gravelly sands. Based on their classification, these materials are expected to possess a friction angle of at least 32 degrees when compacted to at least 90 percent of the ASTM D- 1557 maximum dry density. If desired, SCG could provide design parameters for an alternative select backfill material behind the retaining walls. The use of select backfill material could result in lower lateral earth pressures. In order to use the design parameters for the imported select fill, this material must be placed within the entire active failure wedge. This wedge is defined as extending from the heel of the retaining wall upwards at an angle of approximately 60° from horizontal. If select backfill material behind the retaining wall is desired, SCG should be contacted for supplementary recommendations. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 20 RETAINING WALL DESIGN PARAMETERS Design Parameter Soil Type On-site Sands and Silty Sands Internal Friction Angle () 32 Unit Weight 134 lbs/ft3 Equivalent Fluid Pressure: Active Condition (level backfill) 42 lbs/ft3 Active Condition (2h:1v backfill) 63 lbs/ft3 At-Rest Condition (level backfill) 63 lbs/ft3 The walls should be designed using a soil-footing coefficient of friction of 0.30 and an equivalent passive pressure of 300 lbs/ft3. The structural engineer should incorporate appropriate factors of safety in the design of the retaining walls. The active earth pressure may be used for the design of retaining walls that do not directly support structures or support soils that in turn support structures and which will be allowed to deflect. The at-rest earth pressure should be used for walls that will not be allowed to deflect such as those which will support foundation bearing soils, or which will support foundation loads directly. Where the soils on the toe side of the retaining wall are not covered by a "hard" surface such as a structure or pavement, the upper 1 foot of soil should be neglected when calculating passive resistance due to the potential for the material to become disturbed or degraded during the life of the structure. Retaining Wall Foundation Design The retaining wall foundations should be underlain by at least 2 feet of newly placed structural fill. Foundations to support new retaining walls should be designed in accordance with the general Foundation Design Parameters presented in a previous section of this report. Seismic Lateral Earth Pressures In accordance with the 2022 CBC, any retaining walls more than 6 feet in height must be designed for seismic lateral earth pressures. If walls 6 feet or more are required for this site, the geotechnical engineer should be contacted for supplementary seismic lateral earth pressure recommendations. Backfill Material On-site soils may be used to backfill the retaining walls. However, all backfill material placed within 3 feet of the back wall face should have a particle size no greater than 3 inches. The retaining wall backfill materials should be well graded. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 21 It is recommended that a minimum 1-foot thick layer of free-draining granular material (less than 5 percent passing the No. 200 sieve) be placed against the face of the retaining walls. This material should extend from the top of the retaining wall footing to within 1 foot of the ground surface on the back side of the retaining wall. This material should be approved by the geotechnical engineer. In lieu of the 1-foot thick layer of free-draining material, a properly installed prefabricated drainage composite such as the MiraDRAIN 6000XL (or approved equivalent), which is specifically designed for use behind retaining walls, may be used. If the layer of free-draining material is not covered by an impermeable surface, such as a structure or pavement, a 12-inch thick layer of a low permeability soil should be placed over the backfill to reduce surface water migration to the underlying soils. The layer of free draining granular material should be separated from the backfill soils by a suitable geotextile, approved by the geotechnical engineer. All retaining wall backfill should be placed and compacted under engineering controlled conditions in the necessary layer thicknesses to ensure an in-place density between 90 and 93 percent of the maximum dry density as determined by the Modified Proctor test (ASTM D1557-91). Care should be taken to avoid over-compaction of the soils behind the retaining walls, and the use of heavy compaction equipment should be avoided. Subsurface Drainage As previously indicated, the retaining wall design parameters are based upon drained backfill conditions. Consequently, some form of permanent drainage system will be necessary in conjunction with the appropriate backfill material. Subsurface drainage may consist of either: • A weep hole drainage system typically consisting of a series of 2-inch diameter holes in the wall situated slightly above the ground surface elevation on the exposed side of the wall and at an approximate 10-foot on-center spacing. Alternatively, 4-inch diameter holes at an approximate 20-foot on-center spacing can be used for this type of drainage system. In addition, the weep holes should include a 2 cubic foot pocket of open graded gravel, surrounded by an approved geotextile fabric, at each weep hole location. • A 4-inch diameter perforated pipe surrounded by 2 cubic feet of gravel per linear foot of drain placed behind the wall, above the retaining wall footing. The gravel layer should be wrapped in a suitable geotextile fabric to reduce the potential for migration of fines. The footing drain should be extended to daylight or tied into a storm drainage system. The actual design of this type of system should be determined by the civil engineer to verify that the drainage system possesses the adequate capacity and slope for its intended use. Weep holes or a footing drain will not be required for building stem walls. 6.8 Pavement Design Parameters Site preparation in the pavement area should be completed as previously recommended in the Site Grading Recommendations section of this report. The subsequent pavement recommendations assume proper drainage and construction monitoring, and are based on either PCA or CALTRANS design parameters for a twenty (20) year design period. However, these Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 22 designs also assume a routine pavement maintenance program to obtain the anticipated 20-year pavement service life. Pavement Subgrades It is anticipated that the new pavements will be primarily supported on a layer of compacted structural fill, consisting of scarified, thoroughly moisture conditioned and recompacted existing soils. The near-surface soils generally consist of silty sands, sands, and gravelly sands. Based on their classification, these materials are expected to possess excellent pavement support characteristics, with R-values in the range of 50 to 60. Since R-value testing was not included in the scope of services for this project, the subsequent pavement design is based upon an assumed R-value of 50. Fill material imported to the site should have support characteristics equal to or greater than that of the on-site soils and be placed and compacted under engineering observed and tested conditions. It is recommended that R-value testing be performed after completion of rough grading to verify that the pavement design recommendations presented herein are valid. Asphaltic Concrete Presented below are the recommended thicknesses for new flexible pavement structures consisting of asphaltic concrete over a granular base. The pavement designs are based on the traffic indices (TI’s) indicated. The client and/or civil engineer should verify that these TI’s are representative of the anticipated traffic volumes. If the client and/or civil engineer determine that the expected traffic volume will exceed the applicable traffic index, we should be contacted for supplementary recommendations. The design traffic indices equate to the following approximate daily traffic volumes over a 20-year design life, assuming six operational traffic days per week. Traffic Index No. of Heavy Trucks per Day 4.0 0 5.0 1 6.0 3 7.0 11 8.0 35 9.0 93 For the purpose of the traffic volumes indicated above, a truck is defined as a 5-axle tractor trailer unit with one 8-kip axle and two 32-kip tandem axles. All of the traffic indices allow for 1,000 automobiles per day. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 23 ASPHALT PAVEMENTS (R = 50) Materials Thickness (inches) Auto Parking and Auto Drive Lanes (TI = 4.0 to 5.0) Truck Traffic TI = 6.0 TI = 7.0 TI = 8.0 TI = 9.0 Asphaltic Concrete 3 3½ 4 5 5½ Aggregate Base 3 4 5 5 7 Compacted Subgrade 12 12 12 12 12 The aggregate base course should be compacted to at least 95 percent of the ASTM D-1557 maximum dry density. The asphaltic concrete should be compacted to at least 95 percent of the batch plant-reported maximum density. The aggregate base course may consist of crushed aggregate base (CAB) or crushed miscellaneous base (CMB), which is a recycled gravel, asphalt and concrete material. The gradation, R-Value, Sand Equivalent, and Percentage Wear of the CAB or CMB should comply with appropriate specifications contained in the current edition of the “Greenbook” Standard Specifications for Public Works Construction. Portland Cement Concrete The preparation of the subgrade soils and aggregate base course within concrete pavement areas should be performed as previously described for proposed asphalt pavement areas. The minimum recommended thicknesses for the Portland Cement Concrete pavement sections are as follows: PORTLAND CEMENT CONCRETE PAVEMENTS (R = 50) Materials Thickness (inches) Autos and Light Truck Traffic (TI = 6.0) Truck Traffic TI = 7.0 TI = 8.0 TI = 9.0 PCC 5 5½ 6½ 8 Compacted Subgrade (95% minimum compaction) 12 12 12 12 The concrete should have a 28-day compressive strength of at least 3,000 psi. Reinforcing within all pavements should be designed by the structural engineer. The maximum joint spacing within all of the PCC pavements is recommended to be equal to or less than 30 times the pavement thickness. The actual joint spacing and reinforcing of the Portland cement concrete pavements should be determined by the structural engineer. Proposed Industrial Building – Fontana, CA Project No. 24G111-1 Page 24 7.0 GENERAL COMMENTS This report has been prepared as an instrument of service for use by the client, in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, civil engineer, and/or structural engineer. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party’s sole risk, and we accept no responsibility for damage or loss which may occur. The client(s)’ reliance upon this report is subject to the Engineering Services Agreement, incorporated into our proposal for this project. The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and sample depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein. This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed. SITE PROPOSED INDUSTRIAL BUILDING SCALE: 1" = 2000' DRAWN: MK CHKD: RGT SCG PROJECT 24G111-1 PLATE 1 SITE LOCATION MAP FONTANA, CALIFORNIA SOURCE: USGS TOPOGRAPHIC MAP OF THE FONTANA QUADRANGLE, SAN BERNARDINO COUNTY, CALIFORNIA, 2021. 55 DOCK HI DOORS 5,000 SFOFFICE5,000 SFMEZZ. 5,000 SFOFFICE5,000 SFMEZZ. JURUPA AVE. HEMLOCK AVE. PROPOSED BUILDING 492,130 SF JURUPA AVENUE HE M L O C K A V E N U E LI V E O A K A V E N U E B-1 B-2 B-3 B-4 B-5 B-6 SCALE: 1" = 100' DRAWN: JAH CHKD: RGT PLATE 2 SCG PROJECT 24G111-1 FONTANA, CALIFORNIA PROPOSED INDUSTRIAL BUILDING BORING LOCATION PLAN NO R T H So C a l G e o APPROXIMATE BORING LOCATION GEOTECHNICAL LEGEND NOTE: CONCEPTUAL SITE PLAN PREPARED BY PBLA ENGINEERING, INC.EXISTING STRUCTURE BORING LOG LEGEND SAMPLE TYPE GRAPHICAL SYMBOL SAMPLE DESCRIPTION AUGER SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED) CORE ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK. GRAB 1 SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED) CS CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED) NSR NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL. SPT STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED) SH SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED) VANE VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED. COLUMN DESCRIPTIONS DEPTH: Distance in feet below the ground surface. SAMPLE: Sample Type as depicted above. BLOW COUNT: Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3” indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more. POCKET PEN.: Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer. GRAPHIC LOG: Graphic Soil Symbol as depicted on the following page. DRY DENSITY: Dry density of an undisturbed or relatively undisturbed sample in lbs/ft3. MOISTURE CONTENT: Moisture content of a soil sample, expressed as a percentage of the dry weight. LIQUID LIMIT: The moisture content above which a soil behaves as a liquid. PLASTIC LIMIT: The moisture content above which a soil behaves as a plastic. PASSING #200 SIEVE: The percentage of the sample finer than the #200 standard sieve. UNCONFINED SHEAR: The shear strength of a cohesive soil sample, as measured in the unconfined state. SM SP COARSE GRAINED SOILS SW TYPICAL DESCRIPTIONS WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES LETTERGRAPH POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES GC GM GP GW POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES SILTS AND CLAYS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES FINE GRAINED SOILS SYMBOLSMAJOR DIVISIONS SOIL CLASSIFICATION CHART PT OH CH MH OL CL ML CLEAN SANDS SC SILTY SANDS, SAND - SILT MIXTURES CLAYEY SANDS, SAND - CLAY MIXTURES INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS INORGANIC CLAYS OF HIGH PLASTICITY ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS SILTS AND CLAYS GRAVELS WITH FINES SAND AND SANDY SOILS (LITTLE OR NO FINES) SANDS WITH FINES LIQUID LIMIT LESS THAN 50 LIQUID LIMIT GREATER THAN 50 HIGHLY ORGANIC SOILS NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS GRAVEL AND GRAVELLY SOILS (APPRECIABLE AMOUNT OF FINES) (APPRECIABLE AMOUNT OF FINES) (LITTLE OR NO FINES) WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES CLEAN GRAVELS 112 110 106 6 3 3 3 4 4 2 3 6¼± inches Asphaltic concrete with no discernible underlying Aggregate base FILL: Black Silty fine Sand, trace medium Sand, trace fine to coarse Gravel, mottled, medium dense-damp ALLUVIUM: Light Brown fine to coarse Sand, trace Silt, trace fine Gravel, medium dense-damp Light Brown to Brown Gravelly fine to coarse Sand, trace Silt, medium dense to dense-dry to damp Brown fine to coarse Sand, trace fine Gravel, medium dense-damp Brown Gravelly fine to coarse Sand, trace to little Silt, very dense-dry to damp Boring Terminated @ 25 feet @ 3 feet, Disturbed Sample @ 7 feet, Disturbed Sample 36 34 38 65 36 59/10" 81 56 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 18 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-1 5 10 15 20 25 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 962.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-1 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 3 5 6 3 3 3 4± inches Asphaltic concrete with 6± inches of underlying Aggregate Base FILL: Brown Gravelly fine to coarse Sand, little Silt, very dense-damp ALLUVIUM: Brown Silty fine to coarse Sand, trace to little fine to coarse Gravel, medium dense to dense-damp Brown to Gray Gravelly fine to coarse Sand, trace Silt, dense to very dense-damp Boring Terminated @ 20 feet 50/5" 34 13 31 36 64/8" FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 14 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-2 5 10 15 20 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 958 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-2 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 2 3 3 3± inches Asphaltic concrete with 8± inches of underlying Aggregate base FILL: Light Brown Gravelly fine to coarse Sand, little Silt, occasional Cobbles, very dense-dry to damp ALLUVIUM: Light Brown Gravelly fine to coarse Sand, little Silt, occasional Cobbles, medium dense to very dense-dry to damp @ 9 feet, medium dense Boring Terminated @ 15 feet @ 1 foot, No Sample Recovery @ 3 feet, Disturbed Sample @ 5 feet, No Sample Recovery @ 7 feet, No Sample Recovery @ 9 feet, Disturbed Sample 50/5" 50/5" 50/5" 50/3" 39 50/5" FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 11 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-3 5 10 15 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 962 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-3 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 4 7 2 2 6 2 6± inches Asphaltic concrete with 8± inches of underlying Aggregate base FILL: Brown Silty fine to medium Sand, trace coarse Sand, trace fine Gravel, loose to medium dense-damp ALLUVIUM: Brown fine to coarse Sand, trace fine to coarse Gravel, medium dense-dry to damp Gray Gravelly fine to coarse Sand, trace Silt, dense-dry to damp Light Brown Silty fine Sand, trace medium Sand, medium dense-damp Gray Gravelly fine to coarse Sand, little Silt, very dense-dry to damp Boring Terminated @ 20 feet 29 7 16 30 22 67/11" FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 13 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-4 5 10 15 20 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 967 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-4 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 107 8 6 4 4 9 4 5± inches Asphaltic concrete with 8± inches of underlying Aggregate base FILL: Brown Silty fine to coarse Sand, trace to little fine to coarse Gravel, mottled, dense to very dense-moist ALLUVIUM: Brown Gravelly fine to coarse Sand, trace to little Silt, medium dense to dense-damp to moist Brown Silty fine Sand, trace medium to coarse Sand, trace Iron Oxide staining, medium dense-moist Dark Brown Gravelly fine to coarse Sand, trace Silt, very dense-damp Boring Terminated @ 25 feet @ 1 foot, No Sample Recovery @ 3 feet, Disturbed Sample @ 7 feet, Disturbed Sample @ 9 feet, No Sample Recovery 50/5" 50 57 41 34 45 26 58 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 12 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-5 5 10 15 20 25 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 963 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-5 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 5 7 9 3 4± inches Asphaltic concrete with 6± inches of underlying Aggregate base FILL: Gray Brown Silty fine Sand, loose to medium dense-damp ALLUVIUM: Light Gray Brown Silty fine to medium Sand, trace coarse Sand, trace fine to coarse Gravel, medium dense-damp to moist Brown Silty fine to coarse Sand, trace fine to coarse Gravel, trace Iron Oxide staining, medium dense-moist Light Brown Gravelly fine to coarse Sand, trace Silt, dense-damp Boring Terminated @ 10 feet 10 14 17 34 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: 8 feet READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Ryan Bremer OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-1 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-6 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 967 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. B-6 TEST BORING LOG TB L 2 4 G 1 1 1 - 1 B O R I N G L O G S . G P J S O C A L G E O . G D T 3 / 2 8 / 2 4 Classification: Light Brown to Brown Gravelly fine to coarse Sand, trace Silt Boring Number:B-1 Initial Moisture Content (%)3 Sample Number:---Final Moisture Content (%)14 Depth (ft) 5 to 6 Initial Dry Density (pcf)109.7 Specimen Diameter (in)2.4 Final Dry Density (pcf)114.1 Specimen Thickness (in)1.0 Percent Collapse (%)0.35 Proposed Industrial Building Fontana, California Project No. 24G111-1 PLATE C- 1 0 2 4 6 8 10 12 14 16 18 20 0.1 1 10 100 Co n s o l i d a t i o n S t r a i n ( % ) Load (ksf) Consolidation/Collapse Test Results Water Added at 1600 psf Classification: Brown fine to coarse Sand, trace fine Gravel Boring Number:B-1 Initial Moisture Content (%)4 Sample Number:---Final Moisture Content (%)17 Depth (ft) 9 to 10 Initial Dry Density (pcf)106.2 Specimen Diameter (in)2.4 Final Dry Density (pcf)111.4 Specimen Thickness (in)1.0 Percent Collapse (%)1.17 Proposed Industrial Building Fontana, California Project No. 24G111-1 PLATE C- 2 0 2 4 6 8 10 12 14 16 18 20 0.1 1 10 100 Co n s o l i d a t i o n S t r a i n ( % ) Load (ksf) Consolidation/Collapse Test Results Water Added at 1600 psf Classification: Brown Gravelly fine to coarse Sand, trace to little Silt Boring Number:B-5 Initial Moisture Content (%)6 Sample Number:---Final Moisture Content (%)16 Depth (ft) 5 to 6 Initial Dry Density (pcf)107.5 Specimen Diameter (in)2.4 Final Dry Density (pcf)115.0 Specimen Thickness (in)1.0 Percent Collapse (%)1.09 Proposed Industrial Building Fontana, California Project No. 24G111-1 PLATE C- 3 0 2 4 6 8 10 12 14 16 18 20 0.1 1 10 100 Co n s o l i d a t i o n S t r a i n ( % ) Load (ksf) Consolidation/Collapse Test Results Water Added at 1600 psf Proposed Industrial Building Fontana, California Project No. 24G111-1 PLATE C- 4 118 120 122 124 126 128 130 132 134 136 138 140 2 4 6 8 10 12 14 16 Dr y D e n s i t y ( l b s / f t 3) Moisture Content (%) Moisture/Density Relationship ASTM D-1557 Soil ID Number B-1 @ 1-5' Optimum Moisture (%)9 Maximum Dry Density (pcf)131 Soil Classification Brown fine to coarse Sand, some fine to coarse Gravel, some Silt Zero Air Voids Curve: Specific Gravity = 2.7 Proposed Industrial Building Fontana, California Project No. 24G111-1 PLATE C- 5 122 124 126 128 130 132 134 136 138 140 142 144 0 2 4 6 8 10 12 14 Dr y D e n s i t y ( l b s / f t 3) Moisture Content (%) Moisture/Density Relationship ASTM D-1557 Soil ID Number B-5 @ 1-5' Optimum Moisture (%)6.5 Maximum Dry Density (pcf)136 Soil Classification Brown Silty fine to coarse Sand, some fine to coarse Gravel Zero Air Voids Curve: Specific Gravity = 2.7 Grading Guide Specifications Page 1 GRADING GUIDE SPECIFICATIONS These grading guide specifications are intended to provide typical procedures for grading operations. They are intended to supplement the recommendations contained in the geotechnical investigation report for this project. Should the recommendations in the geotechnical investigation report conflict with the grading guide specifications, the more site specific recommendations in the geotechnical investigation report will govern. General • The Earthwork Contractor is responsible for the satisfactory completion of all earthwork in accordance with the plans and geotechnical reports, and in accordance with city, county, and applicable building codes. • The Geotechnical Engineer is the representative of the Owner/Builder for the purpose of implementing the report recommendations and guidelines. These duties are not intended to relieve the Earthwork Contractor of any responsibility to perform in a workman -like manner, nor is the Geotechnical Engineer to direct the grading equipment or personnel employed by the Contractor. • The Earthwork Contractor is required to notify the Geotechnical Engineer of the anticipated work and schedule so that testing and inspections can be provided. If necessary, work may be stopped and redone if personnel have not been scheduled in advance. • The Earthwork Contractor is required to have suitable and sufficient equipment on the job - site to process, moisture condition, mix and compact the amount of fill being placed to the approved compaction. In addition, suitable support equipment should be available to conform with recommendations and guidelines in this report. • Canyon cleanouts, overexcavation areas, processed ground to receive fill, key excavations, subdrains and benches should be observed by the Geotechnical Engineer prior to placement of any fill. It is the Earthwork Contractor's responsibility to notify the Geotechnical Engineer of areas that are ready for inspection. • Excavation, filling, and subgrade preparation should be performed in a manner and sequence that will provide drainage at all times and proper control of erosion. Precipitation, springs, and seepage water encountered shall be pumped or drained to provide a suitable working surface. The Geotechnical Engineer must be informed of springs or water seepage encountered during grading or foundation construction for possible revision to the recommended construction procedures and/or installation of subdrains. Site Preparation • The Earthwork Contractor is responsible for all clearing, grubbing, stripping and site preparation for the project in accordance with the recommendations of the Geotechnical Engineer. • If any materials or areas are encountered by the Earthwork Contractor which are suspected of having toxic or environmentally sensitive contamination, the Geotechnical Engineer and Owner/Builder should be notified immediately. Grading Guide Specifications Page 2 • Major vegetation should be stripped and disposed of off-site. This includes trees, brush, heavy grasses and any materials considered unsuitable by the Geotechnical E ngineer. • Underground structures such as basements, cesspools or septic disposal systems, mining shafts, tunnels, wells and pipelines should be removed under the inspection of the Geotechnical Engineer and recommendations provided by the Geotechnical Engineer and/or city, county or state agencies. If such structures are known or found, the Geotechnical Engineer should be notified as soon as possible so that recommendations can be formulated. • Any topsoil, slopewash, colluvium, alluvium and rock materials which are considered unsuitable by the Geotechnical Engineer should be removed prior to fill placement. • Remaining voids created during site clearing caused by removal of trees, foundations basements, irrigation facilities, etc., should be excavated and filled with compacted fill. • Subsequent to clearing and removals, areas to receive fill should be scarified to a depth of 10 to 12 inches, moisture conditioned and compacted • The moisture condition of the processed ground should be at or slightly above the optimum moisture content as determined by the Geotechnical Engineer. Depending upon field conditions, this may require air drying or watering together with mixing and/or discing. Compacted Fills • Soil materials imported to or excavated on the property may be utilized in the fill, provided each material has been determined to be suitable in the opinion of the Geotechnical Engineer. Unless otherwise approved by the Geotechnical Engineer, all fill materials shall be free of deleterious, organic, or frozen matter, shall contain no chemicals that may result in the material being classified as “contaminated,” and shall be very low to non-expansive with a maximum expansion index (EI) of 20. The top 12 inches of the compacted fill should have a maximum particle size of 3 inches, and all underlying compacted fill material a maximum 6-inch particle size, except as noted below. • All soils should be evaluated and tested by the Geotechnical Engineer. Materials with high expansion potential, low strength, poor gradation or containing organic materials may require removal from the site or selective placement and/or mixing to the satisfaction of the Geotechnical Engineer. • Rock fragments or rocks less than 6 inches in their largest dimensions, or as otherwise determined by the Geotechnical Engineer, may be used in compacted fill, provided the distribution and placement is satisfactory in the opinion of the Geotechnical Engineer. • Rock fragments or rocks greater than 12 inches should be taken off-site or placed in accordance with recommendations and in areas designated as suitable by the Geotechnical Engineer. These materials should be placed in accordance with Plate D-8 of these Grading Guide Specifications and in accordance with the following recommendations: • Rocks 12 inches or more in diameter should be placed in rows at least 15 feet apart, 15 feet from the edge of the fill, and 10 feet or more below subgrade. Spaces should be left between each rock fragment to provide for placement and compaction of soil around the fragments. • Fill materials consisting of soil meeting the minimum moisture content requirements and free of oversize material should be placed between and over the rows of rock or Grading Guide Specifications Page 3 concrete. Ample water and compactive effort should be applied to the fill materials as they are placed in order that all of the voids between each of the fragments are filled and compacted to the specified density. • Subsequent rows of rocks should be placed such that they are not directly above a row placed in the previous lift of fill. A minimum 5-foot offset between rows is recommended. • To facilitate future trenching, oversized material should not be placed within the range of foundation excavations, future utilities or other underground construction unless specifically approved by the soil engineer and the developer/owner representative. • Fill materials approved by the Geotechnical Engineer should be placed in areas previously prepared to receive fill and in evenly placed, near horizontal layers at about 6 to 8 inches in loose thickness, or as otherwise determined by the Geotechnical Engineer for the project. • Each layer should be moisture conditioned to optimum moisture content, or slightly above, as directed by the Geotechnical Engineer. After proper mixing and/or drying, to evenly distribute the moisture, the layers should be compacted to at least 90 percent of the maximum dry density in compliance with ASTM D-1557-78 unless otherwise indicated. • Density and moisture content testing should be performed by the Geotechnical Engineer at random intervals and locations as determined by the Geotechnical Engineer. These tests are intended as an aid to the Earthwork Contractor, so he can evaluate his workma nship, equipment effectiveness and site conditions. The Earthwork Contractor is responsible for compaction as required by the Geotechnical Report(s) and governmental agencies. • Fill areas unused for a period of time may require moisture conditioning, processing and recompaction prior to the start of additional filling. The Earthwork Contractor should notify the Geotechnical Engineer of his intent so that an evaluation can be made. • Fill placed on ground sloping at a 5-to-1 inclination (horizontal-to-vertical) or steeper should be benched into bedrock or other suitable materials, as directed by the Geotechnical Engineer. Typical details of benching are illustrated on Plates D-2, D-4, and D-5. • Cut/fill transition lots should have the cut portion overexcavated to a depth of at least 3 feet and rebuilt with fill (see Plate D-1), as determined by the Geotechnical Engineer. • All cut lots should be inspected by the Geotechnical Engineer for fracturing and other bedrock conditions. If necessary, the pads should be overexcavated to a depth of 3 feet and rebuilt with a uniform, more cohesive soil type to impede moisture penetration. • Cut portions of pad areas above buttresses or stabilizations should be overexcavated to a depth of 3 feet and rebuilt with uniform, more cohesive compacted fill to impede moisture penetration. • Non-structural fill adjacent to structural fill should typically be placed in unison to provide lateral support. Backfill along walls must be placed and compacted with care to ensure that excessive unbalanced lateral pressures do not develop. The type of fill material placed adjacent to below grade walls must be properly tested and approved by the Geotechnical Engineer with consideration of the lateral earth pressure used in the design. Grading Guide Specifications Page 4 Foundations • The foundation influence zone is defined as extending one foot horizontally from the outside edge of a footing, and proceeding downward at a ½ horizontal to 1 vertical (0.5:1) inclination. • Where overexcavation beneath a footing subgrade is necessary, it should be conducted so as to encompass the entire foundation influence zone, as described above. • Compacted fill adjacent to exterior footings should extend at least 12 inches above foundation bearing grade. Compacted fill within the interior of structures should extend to the floor subgrade elevation. Fill Slopes • The placement and compaction of fill described above applies to all fill slopes. Slope compaction should be accomplished by overfilling the slope, adequately compacting the fill in even layers, including the overfilled zone and cutting the slope back to expose the compacted core • Slope compaction may also be achieved by backrolling the slope adequately every 2 to 4 vertical feet during the filling process as well as requiring the earth moving and compaction equipment to work close to the top of the slope. Upon completion of slope construction, the slope face should be compacted with a sheepsfoot connected to a sideboom and then grid rolled. This method of slope compaction should only be used if approved by the Geotechnical Engineer. • Sandy soils lacking in adequate cohesion may be unstable for a finished slope condition and therefore should not be placed within 15 horizontal feet of the slope face. • All fill slopes should be keyed into bedrock or other suitable material. Fill keys should be at least 15 feet wide and inclined at 2 percent into the slope. For slopes higher than 30 feet, the fill key width should be equal to one-half the height of the slope (see Plate D-5). • All fill keys should be cleared of loose slough material prior to geotechnical inspection and should be approved by the Geotechnical Engineer and governmental agencies prior to filling. • The cut portion of fill over cut slopes should be made first and inspected by the Geotechnical Engineer for possible stabilization requirements. The fill portion should be adequately keyed through all surficial soils and into bedrock or suitable material. Soils should be removed from the transition zone between the cut and fill port ions (see Plate D- 2). Cut Slopes • All cut slopes should be inspected by the Geotechnical Engineer to determine the need for stabilization. The Earthwork Contractor should notify the Geotechnical Engineer when slope cutting is in progress at intervals of 10 vertical feet. Failure to notify may result in a delay in recommendations. • Cut slopes exposing loose, cohesionless sands should be reported to the Geotechnical Engineer for possible stabilization recommendations. Grading Guide Specifications Page 5 • All stabilization excavations should be cleared of loose slough material prior to geotechnical inspection. Stakes should be provided by the Civil Engineer to verify the location and dimensions of the key. A typical stabilization fill detail is shown on Plate D-5. • Stabilization key excavations should be provided with subdrains. Typical subdrain details are shown on Plates D-6. Subdrains • Subdrains may be required in canyons and swales where fill placement is proposed. Typical subdrain details for canyons are shown on Plate D-3. Subdrains should be installed after approval of removals and before filling, as determined by the Soils Engineer. • Plastic pipe may be used for subdrains provided it is Schedule 40 or SDR 35 or equivalent. Pipe should be protected against breakage, typically by placement in a square -cut (backhoe) trench or as recommended by the manufacturer. • Filter material for subdrains should conform to CALTRANS Specification 68 -1.025 or as approved by the Geotechnical Engineer for the specific site conditions. Clean ¾-inch crushed rock may be used provided it is wrapped in an acceptable filter cloth and approved by the Geotechnical Engineer. Pipe diameters should be 6 inches for runs up to 500 feet and 8 inches for the downstream continuations of longer runs. Four -inch diameter pipe may be used in buttress and stabilization fills. GRADING GUIDE SPECIFICATIONS NOT TO SCALE DRAWN: JAS CHKD: GKM PLATE D-2 FILL ABOVE CUT SLOPE DETAIL 9' MIN. 4' TYP. MINIMUM 1' TILT BACK OR 2% SLOPE (WHICHEVER IS GREATER) REMOVE U N S U I T A B L E M A T E R I A L BENCHING DIMENSIONS IN ACCORDANCE WITH PLAN OR AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER CUT SLOPE TO BE CONSTRUCTED PRIOR TO PLACEMENT OF FILL BEDROCK OR APPROVED COMPETENT MATERIAL CUT SLOPE NATURAL GRADE CUT/FILL CONTACT TO BE SHOWN ON "AS-BUILT" COMPETENT MATERIAL CUT/FILL CONTACT SHOWN ON GRADING PLAN NEW COMPACTED FILL 10' TYP. KEYWAY IN COMPETENT MATERIAL MINIMUM WIDTH OF 15 FEET OR AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER. KEYWAY MAY NOT BE REQUIRED IF FILL SLOPE IS LESS THAN 5 FEET IN HEIGHT AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER. GRADING GUIDE SPECIFICATIONS NOT TO SCALE DRAWN: JAS CHKD: GKM PLATE D-4 FILL ABOVE NATURAL SLOPE DETAIL 10' TYP. 4' TYP. (WHICHEVER IS GREATER) OR 2% SLOPE MINIMUM 1' TILT BACK REMOVE U N S U I T A B L E M A T E R I A L NEW COMPACTED FILL COMPETENT MATERIAL KEYWAY IN COMPETENT MATERIAL. RECOMMENDED BY THE GEOTECHNIAL ENGINEER. KEYWAY MAY NOT BE REQUIRED IF FILL SLOPE IS LESS THAN 5' IN HEIGHT AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER. 2' MINIMUM KEY DEPTH OVERFILL REQUIREMENTS PER GRADING GUIDE SPECIFICATIONS TOE OF SLOPE SHOWN ON GRADING PLAN BACKCUT - VARIES PLACE COMPACTED BACKFILL TO ORIGINAL GRADE PROJECT SLOPE GRADIENT (1:1 MAX.) NOTE: BENCHING SHALL BE REQUIRED WHEN NATURAL SLOPES ARE EQUAL TO OR STEEPER THAN 5:1 OR WHEN RECOMMENDED BY THE GEOTECHNICAL ENGINEER. FINISHED SLOPE FACE MINIMUM WIDTH OF 15 FEET OR AS BENCHING DIMENSIONS IN ACCORDANCE WITH PLAN OR AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER GRADING GUIDE SPECIFICATIONS NOT TO SCALE DRAWN: JAS CHKD: GKM PLATE D-5 STABILIZATION FILL DETAIL FACE OF FINISHED SLOPE COMPACTED FILL MINIMUM 1' TILT BACK OR 2% SLOPE (WHICHEVER IS GREATER) 10' TYP. 2' MINIMUM KEY DEPTH 3' TYPICAL BLANKET FILL IF RECOMMENDED BY THE GEOTECHNICAL ENGINEER COMPETENT MATERIAL ACCEPTABLE TO THE SOIL ENGINEER KEYWAY WIDTH, AS SPECIFIED BY THE GEOTECHNICAL ENGINEER TOP WIDTH OF FILL AS SPECIFIED BY THE GEOTECHNICAL ENGINEER BENCHING DIMENSIONS IN ACCORDANCE WITH PLAN OR AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER 4' TYP. GRADING GUIDE SPECIFICATIONS NOT TO SCALE DRAWN: JAS CHKD: GKM PLATE D-6 SLOPE FILL SUBDRAINS BLANKET FILL IF RECOMMENDED BY THE GEOTECHNICAL ENGINEER DESIGN FINISH SLOPE 2' CLEAR 15' MAX. OUTLETS TO BE SPACED EXTEND 12 INCHES AT 100' MAXIMUM INTERVALS. BEYOND FACE OF SLOPE AT TIME OF ROUGH GRADING CONSTRUCTION. BUTTRESS OR SIDEHILL FILL 2% 4-INCH DIAMETER NON-PERFORATED OUTLET PIPE TO BE LOCATED IN FIELD BY THE SOIL ENGINEER. 10' MIN. 25' MAX. "FILTER MATERIAL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: (CONFORMS TO EMA STD. PLAN 323) NO. 8 NO. 4 3/8" 3/4" 1" SIEVE SIZE NO. 30 NO. 50 NO. 200 18-33 5-15 0-7 0-3 PERCENTAGE PASSING 100 40-100 90-100 25-40 "GRAVEL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: SIEVE SIZE PERCENTAGE PASSING 1 1/2" NO. 4 NO. 200 100 50 8 MAXIMUM SAND EQUIVALENT = MINIMUM OF 50 FILTER MATERIAL - MINIMUM OF FIVE CUBIC FEET PER FOOT OF PIPE. SEE ABOVE FOR FILTER MATERIAL SPECIFICATION. ALTERNATIVE: IN LIEU OF FILTER MATERIAL FIVE CUBIC FEET OF GRAVEL IN FILTER FABRIC. SEE ABOVE FOR PER FOOT OF PIPE MAY BE ENCASED GRAVEL SPECIFICATION. FILTER FABRIC SHALL BE MIRAFI 140 OR EQUIVALENT. FILTER FABRIC SHALL BE LAPPED A MINIMUM OF 12 INCHES ON ALL JOINTS. END OF PIPE. SLOPE AT 2 PERCENT TO OUTLET PIPE. WITH PERFORATIONS ON BOTTOM OF PIPE. PROVIDE CAP AT UPSTREAM OF 8 UNIFORMLY SPACED PERFORATIONS PER FOOT OF PIPE INSTALLED A CRUSHING STRENGTH OF AT LEAST 1,000 POUNDS, WITH A MINIMUM MINIMUM 4-INCH DIAMETER PVC SCH 40 OR ABS CLASS SDR 35 WITH OUTLET PIPE TO BE CON- NECTED TO SUBDRAIN PIPE WITH TEE OR ELBOW NOTES: 1. TRENCH FOR OUTLET PIPES TO BE BACKFILLED WITH ON-SITE SOIL. DETAIL "A" DETAIL "A" GRADING GUIDE SPECIFICATIONS NOT TO SCALE DRAWN: JAS CHKD: GKM PLATE D-7 RETAINING WALL BACKDRAINS "FILTER MATERIAL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: (CONFORMS TO EMA STD. PLAN 323) NO. 8 NO. 4 3/8" 3/4" 1" SIEVE SIZE NO. 30 NO. 50 NO. 200 18-33 5-15 0-7 0-3 PERCENTAGE PASSING 100 40-100 90-100 25-40 "GRAVEL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT: SIEVE SIZE PERCENTAGE PASSING 1 1/2" NO. 4 NO. 200 100 50 8 MAXIMUM SAND EQUIVALENT = MINIMUM OF 50 FILTER MATERIAL - MINIMUM OF TWO CUBIC FEET PER FOOT OF PIPE. SEE BELOW FOR FILTER MATERIAL SPECIFICATION. ALTERNATIVE: IN LIEU OF FILTER MATERIAL TWO CUBIC FEET OF GRAVEL IN FILTER FABRIC. SEE BELOW FOR PER FOOT OF PIPE MAY BE ENCASED GRAVEL SPECIFICATION. FILTER FABRIC SHALL BE MIRAFI 140 OR EQUIVALENT. FILTER FABRIC SHALL BE LAPPED A MINIMUM OF 6 INCHES ON ALL JOINTS. END OF PIPE. SLOPE AT 2 PERCENT TO OUTLET PIPE. WITH PERFORATIONS ON BOTTOM OF PIPE. PROVIDE CAP AT UPSTREAM OF 8 UNIFORMLY SPACED PERFORATIONS PER FOOT OF PIPE INSTALLED A CRUSHING STRENGTH OF AT LEAST 1,000 POUNDS, WITH A MINIMUM MINIMUM 4-INCH DIAMETER PVC SCH 40 OR ABS CLASS SDR 35 WITH FREE DRAINING MATERIAL MINIMUM ONE FOOT WIDE LAYER OF (LESS THAN 5% PASSING THE #200 SIEVE)COVERED WITH AN IMPERMEABLE SURFACE LOW PERMEABLILITY SOIL IF NOT MINIMUM ONE FOOT THICK LAYER OF PROPERLY INSTALLED PREFABRICATED DRAINAGE COMPOSITE OR (MiraDRAIN 6000 OR APPROVED EQUIVALENT). WATERPROOFING AT FACE OF WALL IN ACCORDANCE WITH ARCHITECTURAL AND/OR STRUCTURAL DETAILS PROPOSED INDUSTRIAL BUILDING DRAWN: JLL CHKD: RGT SCG PROJECT 24G111-1 PLATE E-1 SEISMIC DESIGN PARAMETERS - 2022 CBC FONTANA, CALIFORNIA SOURCE: SEAOC/OSHPD Seismic Design Maps Tool <https://seismicmaps.org/> Attachment 9 - Infiltration Report 22885 Savi Ranch Parkway  Suite E  Yorba Linda  California  92887 voice: (714) 685-1115  www.socalgeo.com July 1, 2024 Prologis 3546 Concours Street, Suite 100 Ontario, California 91764 Attention: Ms. Annie Chen Development Manager Project No.: 24G111-2 Subject: Results of Infiltration Testing Proposed Industrial Building 14970 Jurupa Avenue Fontana, California Reference: Geotechnical Investigation, Proposed Industrial Building, 14970 Jurupa Avenue, Fontana, California, prepared by Southern California Geotechnical, Inc. (SCG) for Prologis, SCG Project No. 24G111-1. Ms. Chen: In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations. Scope of Services The scope of services performed for this project was in general accordance with our Proposal No. 24P122R, dated January 29, 2024 and revised on February 16, 2024, and our Change Order No. 24G111-CO2, dated April 16, 2024, based on a new infiltration test location plan. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the on-site soils. The infiltration testing was performed in general accordance with the guidelines published in the Riverside County – Low Impact Development BMP Design Handbook – Section 2.3 of Appendix A, prepared for the Riverside County Department of Environmental Health (RCDEH), dated December, 2013. The San Bernardino County standards defer to the guidelines published by the RCDEH. Site and Project Description The subject site is located at 14970 Jurupa Avenue in Fontana, California. The site is bounded to the north by existing commercial/industrial development, to the west by railroad tracks and Live Oak Avenue, to the south by Jurupa Avenue, and to the east by Hemlock Avenue. A railroad spur is located in the western portion of the site. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report. The subject site consists of a rectangular-shaped parcel, 22.83± acres in size. The site is currently occupied by the Brown-Strauss Steel facility and is developed with two buildings, 6,600± ft² and 20,000±ft² in size, located in the southern area of the site. One building consists of a single-story Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 2 structure of steel-frame and metal panel construction, and the other building is of wood-frame and stucco construction. Both buildings are assumed to be supported on conventional shallow foundations with concrete slab-on-grade floors. The site is currently utilized as a steel storage yard, with numerous stockpiles of steel beams. An existing concrete masonry unit (CMU) screen wall is present along the southern site boundary, and CMU retaining walls are present along the eastern and northern site boundaries. The ground surface cover throughout the site generally consists of asphaltic concrete (AC) pavements in moderate to poor condition, with localized severe cracking throughout, and isolated areas of exposed soils. Detailed topographic information was obtained from a conceptual grading plan prepared by PBLA Engineering, Inc. Based on this plan, the overall site topography slopes downward to the south- southwest with an average gradient of 1± percent. 3.2 Proposed Development Based on the conceptual grading plan, the site will be developed with one (1) industrial building, 482,240± ft² in size, located in the southern area of the site. Dock-high doors will be constructed on the north side of the proposed building. The building is expected to be surrounded by AC pavements in the parking and drive lanes, Portland cement concrete (PCC) pavements in the loading dock area, and concrete flatwork with limited areas of landscape planters throughout. Based on the conceptual grading plan, the site will utilize on-site stormwater disposal. The proposed infiltration systems will consist of infiltration chamber systems located to the southwest, northwest and southeast from the proposed building. Further infiltration system information is presented below: Infiltration System Infiltration System Type Infiltration System Location Bottom of Infiltration System Elevation MSL (feet) “A” Below-Grade Chamber Northwest 952.0 “B” Below-Grade Chamber Southwest 952.0 “C” Below-Grade Chamber Southeast 952.0 Concurrent Study SCG concurrently conducted a geotechnical investigation at the subject site, referenced above. As a part of this study, six (6) borings (identified as Boring Nos. B-1 through B-6) were advanced to depths of 10 to 25± feet below the existing site grades. Each boring was logged during drilling by a member of our staff. Boring No. B-1 was drilled through asphalt that consisted of 6¼± inches of AC with no discernible aggregate base. The remaining borings were drilled through pavements that consisted of 3 to 6± inches of AC, underlain by 6 to 8± inches of aggregate base. Artificial fill soils were encountered beneath the pavements at all of the boring locations, extending to depths of 1½ to 5½± feet below the existing site grades. The artificial fill soils generally consist of medium dense to very dense silty sands and gravelly sands, with occasional loose silty sands. Occasional cobbles were encountered at Boring No. B-3 as shallow as 1± foot from the ground surface. Native alluvium was encountered beneath the artificial fill soils at all of the boring locations, extending to at least the maximum depth explored of 25± feet. The alluvial soils within the upper 8 to 12± feet Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 3 generally consist of medium dense to dense sands, silty sands and gravelly sands. At greater depths and extending to the maximum depth explored of 25± feet, the alluvium generally consists of dense to very dense gravelly sands, with occasional medium dense silty sands. The alluvium at Boring No. B-3 generally consists of very dense gravelly sands with occasional cobbles. Subsurface Exploration Scope of Exploration The subsurface exploration conducted for the infiltration testing consisted of eleven (11) infiltration test borings, advanced to depths of 6½ to 12± feet below the existing site grades. The infiltration borings were advanced using a truck-mounted drilling rig, equipped with 8-inch- diameter hollow-stem augers, and were logged during drilling by a member of our staff. The approximate locations of the infiltration test borings (identified as I-1 through I-11) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report. Upon the completion of the infiltration borings, the bottom of each test boring was covered with 2± inches of clean ¾-inch gravel. A sufficient length of 3-inch-diameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean ¾-inch gravel was then installed in the annulus surrounding the PVC casing. Geotechnical Conditions Asphaltic concrete pavements were encountered at the ground surface at all of the infiltration boring locations. The pavements measured 3 to 7± inches in thickness, underlain by 0 to 8± inches of aggregate base. Artificial fill soils were encountered beneath the pavements at all infiltration boring locations, with the exception of Infiltration Test No. I-11, extending to depths of 2½ to 5¼± feet below ground surface. The fill soils generally consist of loose to medium dense silty fine sands, silty fine to medium sands, and silty fine to coarse sands. The fill soils possess varying amounts of gravel. The fill soils possess a disturbed and mottled appearance, with some samples containing trash fragments, resulting in their classification as artificial fill. Native alluvium was encountered beneath the fill at all infiltration boring locations and beneath the pavement at Infiltration Test No. I-11, extending to at least the maximum depth explored of 12± feet below ground surface. The alluvial soils generally consist of medium dense to dense fine to coarse sands, gravelly fine to coarse sands, silty fine to coarse sands, silty fine sands, and fine sandy silts. Occasional samples possess trace to little iron oxide staining and calcareous veining. Groundwater Free water was not encountered during the drilling of any of the geotechnical or infiltration borings. Based on the lack of any water within the geotechnical and infiltration borings, and the moisture contents of the recovered soil samples, the static groundwater table is considered to have existed at a depth in excess of 25± feet at the time of the subsurface exploration. As part of our research, we reviewed readily available groundwater data in order to determine regional groundwater depths. Recent water level data was obtained from the California Department of Water Resources, Water Data Library Station Map, website, https://wdl.water.ca.gov/waterdatalibrary/. One monitoring well on record (identified as Local Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 4 Well: CHINO-1207068) is located as close as 4,130± feet southwest of the site. Water level readings within this monitoring well indicate a high groundwater level of 225± feet below the ground surface in January 2000. Infiltration Testing The infiltration testing was performed in general accordance with the guidelines published in Riverside County – Low Impact Development BMP Design Handbook – Section 2.3 of Appendix A, which apply to San Bernardino County. Pre-soaking In accordance with the county infiltration standards for sandy soils, the infiltration test borings were pre-soaked 2 hours prior to the infiltration testing or until all of the water had percolated through the test holes. The pre-soaking process consisted of filling test borings by inverting a full 5-gallon bottle of clear water supported over each hole so that the water flow into the hole holds constant at a level at least 5 times the hole’s radius above the gravel at the bottom of each hole. Pre-soaking was completed after all of the water had percolated through the test holes. Infiltration Testing Following the pre-soaking process of the infiltration test borings, SCG performed the infiltration testing. Each test hole was filled with water to a depth of at least 5 times the hole’s radius above the gravel at the bottom of the test holes. In accordance with the San Bernardino County guidelines, since “sandy soils” (where 6 inches of water infiltrated into the surrounding soils in less than 25 minutes for two consecutive readings) were encountered at the bottom of the infiltration test borings, readings were taken at 10-minute intervals for a total of 1 hour at all boring locations. After each reading, water was added to the borings so that the depth of the water was at least 5 times the radius of the hole. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets. The infiltration rates from the tests are tabulated in inches per hour. In accordance with the typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration tests be used as the design infiltration rate. The rates are summarized below: Infiltration Test No. Approximate Test Depth MSL (feet) Soil Description Measured Infiltration Rate (inches/hour) I-1 954.5 Gray Brown Silty fine to medium Sand, trace coarse Sand 13.0 I-2 950.5 Gray Brown Gravelly fine to coarse Sand, trace Silt 14.4 I-3 948 Gray Brown fine to coarse Sand, little fine Gravel, trace Silt 12.6 I-4 960 Gray Brown fine Sandy Silt, trace medium to coarse Sand 7.2 Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 5 Infiltration Test No. Approximate Test Depth (msl) Soil Description Measured Infiltration Rate (inches/hour) I-5 956 Gray Brown Silty fine to medium Sand, trace coarse Sand, little fine Gravel 1.4 I-6 952 Gray Brown Gravelly fine to coarse Sand, trace Silt 3.1 I-7 957.5 Gray Brown fine Sandy Silt, trace medium to coarse Sand, trace fine Gravel 0.4 I-8 952.5 Gray Brown Gravelly fine to coarse Sand, trace Silt 10.4 I-9 952 Gray Brown Gravelly fine to coarse Sand, trace to little Silt 22.4 I-10 951 Gray Brown fine to coarse Sand, little Silt, little fine Gravel 7.3 I-11 951.5 Gray Brown fine to coarse Sand, little Silt, little fine Gravel 13.0 Laboratory Testing Moisture Content The moisture contents for the recovered soil samples within the borings were determined in accordance with ASTM D-2216 and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs. Grain Size Analysis The grain size distribution of selected soils collected from the base of each infiltration test boring have been determined using a range of wire mesh screens. These tests were performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of these tests are presented on Plates C-1 through C-11 of this report. Design Recommendations Eleven (11) infiltration tests were performed for this project. As noted above, the infiltration rates at these locations range from 0.4 to 22.4 inches per hour. Please note that due to the changes in locations and depths of the proposed infiltration systems after the first nine (9) infiltration tests were performed, most of these tests were no longer considered relevant and have been excluded from the design recommendations. Based on the results of Infiltration Test Nos. I-1, I-9, I-10 and I-11, we recommend the following measured infiltration rates for the proposed infiltration systems: Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 6 Infiltration System Infiltration Test No. Infiltration System Location Bottom of Infiltration System MSL (feet) Measured Infiltration Rate (Inches per Hour) “A” I-1 and I-9 Northwest 952.0 13.0 “B” I-10 Southwest 952.0 7.3 “C” I-11 Southeast 952.0 13.0 The design of the storm water infiltration systems should be performed by the project civil engineer, in accordance with the County of San Bernardino guidelines. It is recommended that the systems be constructed so as to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the systems. The presence of such materials would decrease the effective infiltration rates. It is recommended that the project civil engineer apply an appropriate factor of safety. The infiltration rates recommended above are based on the assumption that only clean water will be introduced to the subsurface profile. Any fines, debris, or organic materials could significantly impact the infiltration rate. It should be noted that the recommended infiltration rates are based on infiltration testing at eight (4) discrete locations and that the overall infiltration rates of the proposed infiltration systems could vary considerably. Infiltration Rate Considerations The infiltration rates presented herein were determined in accordance with the San Bernardino County guidelines and is considered valid only for the time and place of the actual test. Varying subsurface conditions will exist in other areas of the site, which could alter the recommended infiltration rate presented above. The infiltration rate will decline over time between maintenance cycles as silt or clay particles accumulate on the BMP surface. The infiltration rate is highly dependent upon a number of factors, including density, silt and clay content, grainsize distribution throughout the range of particle sizes, and particle shape. Small changes in these factors can cause large changes in the infiltration rate. Infiltration rates are based on unsaturated flow. As water is introduced into soils by infiltration, the soils become saturated and the wetting front advances from the unsaturated zone to the saturated zone. Once the soils become saturated, infiltration rates become zero, and water can only move through soils by hydraulic conductivity at a rate determined by pressure head and soil permeability. Changes in soil moisture content will affect the infiltration rate. Infiltration rates should be expected to decrease until the soils become saturated. Soil permeability values will then govern groundwater movement. Permeability values may be on the order of 10 to 20 times less than infiltration rates. The system designer should incorporate adequate factors of safety and allow for overflow design into appropriate traditional storm drain systems, which would transport storm water off-site. Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 7 Construction Considerations The infiltration rates presented in this report are specific to the tested locations and tested depths. Infiltration rates can be significantly reduced if the soils are exposed to excessive disturbance or compaction during construction. Compaction of the soils at the bottom of the infiltration system can significantly reduce the infiltration ability of the chambers. Therefore, the subgrade soils within proposed infiltration system areas should not be over-excavated, undercut or compacted in any significant manner. It is recommended that a note to this effect be added to the project plans and/or specifications. We recommend that a representative from the geotechnical engineer be on-site during the construction of the proposed infiltration system to identify the soil classification at the base of the system. It should be confirmed that the soils at the base of the proposed infiltration systems correspond with those presented in this report to ensure that the performance of the systems will be consistent with the rate reported herein. We recommend that scrapers and other rubber-tired heavy equipment not be operated on the infiltration system bottom, or at levels lower than 2 feet above the bottom of the system. As such, the bottom 24 inches of the infiltration system should be excavated with non-rubber-tired equipment, such as excavators. Chamber Maintenance The proposed project will include infiltration chambers. Water flowing into these chambers will carry some level of sediment. This layer has the potential to significantly reduce the infiltration rate of the chamber subgrade soils. Therefore, a formal chamber maintenance program should be established to ensure that these silt and clay deposits are removed from the chamber on a regular basis. Location of Infiltration Systems The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of the subgrade soils. The proposed infiltration system for this site should be located at least 25 feet away from any structures, including retaining walls. Even with this provision of locating the infiltration system at least 25 feet from the building(s), it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to collect storm water can also serve as conduits to transmit storm water toward the structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system. The infiltration system designer should also give special consideration to the effect that the proposed infiltration systems may have on nearby subterranean structures, open excavations, or descending slopes. In particular, infiltration systems should not be located near the crest of Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 8 descending slopes, particularly where the slopes are comprised of granular soils. Such systems will require specialized design and analysis to evaluate the potential for slope instability, piping failures and other phenomena that typically apply to earthen dam design. This type of analysis is beyond the scope of this infiltration test report, but these factors should be considered by the infiltration system designer when locating the infiltration systems. General Comments This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. SCG assumes no responsibility for the design or performance of the proposed stormwater infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party’s sole risk, and we accept no responsibility for damage or loss which may occur. The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein. This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed. Proposed Industrial Building – Fontana, CA Project No. 24G111-2 Page 9 Closure We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office. Respectfully Submitted, SOUTHERN CALIFORNIA GEOTECHNICAL, INC. Joseph Lozano Leon Robert G. Trazo, GE 2655 Staff Engineer Principal Engineer Distribution: (1) Addressee Enclosures: Plate 1 - Site Location Map Plate 2 - Infiltration Test Location Plan Boring Log Legend and Logs (13 pages) Infiltration Test Results Spreadsheets (11 pages) Grain Size Distribution Graphs (11 pages) SITE PROPOSED INDUSTRIAL BUILDING SCALE: 1" = 2000' DRAWN: MK CHKD: RGT SCG PROJECT 24G111-2 PLATE 1 SITE LOCATION MAP FONTANA, CALIFORNIA SOURCE: USGS TOPOGRAPHIC MAP OF THE FONTANA QUADRANGLE, SAN BERNARDINO COUNTY, CALIFORNIA, 2021. I-3 N.A.P.N.A.P. BUILDING 472,240 SF FOOTPRINT 482,240 SF TOTAL I-1 I-9 B-1 I-2 I-10 I-6 I-5 I-4I-7 I-8 B-2 B-3 B-4 B-5 B-6 I-11 INFILTRATION SYSTEM "B" INFILTRATION SYSTEM "A" INFILTRATION SYSTEM "C" SCALE: 1" = 100' DRAWN: JLL CHKD: RGT PLATE 2 SCG PROJECT 24G111-2 FONTANA, CALIFORNIA PROPOSED INDUSTRIAL BUILDING INFILTRATION TEST LOCATION PLAN NO R T H So C a l G e o APPROXIMATE BORING LOCATION GEOTECHNICAL LEGEND NOTE: CONCEPTUAL UTILITY PLAN PREPARED BY PBLA ENGINEERING, INC.(SCG PROJECT NO. 24G111-1) APPROXIMATE INFILTRATION TEST LOCATION EXISTING STRUCTURE TO BE DEMOLISHED BORING LOG LEGEND SAMPLE TYPE GRAPHICAL SYMBOL SAMPLE DESCRIPTION AUGER SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED) CORE ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK. GRAB 1 SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED) CS CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED) NSR NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL. SPT STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED) SH SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED) VANE VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED. COLUMN DESCRIPTIONS DEPTH: Distance in feet below the ground surface. SAMPLE: Sample Type as depicted above. BLOW COUNT: Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3” indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more. POCKET PEN.: Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer. GRAPHIC LOG: Graphic Soil Symbol as depicted on the following page. DRY DENSITY: Dry density of an undisturbed or relatively undisturbed sample in lbs/ft3. MOISTURE CONTENT: Moisture content of a soil sample, expressed as a percentage of the dry weight. LIQUID LIMIT: The moisture content above which a soil behaves as a liquid. PLASTIC LIMIT: The moisture content above which a soil behaves as a plastic. PASSING #200 SIEVE: The percentage of the sample finer than the #200 standard sieve. UNCONFINED SHEAR: The shear strength of a cohesive soil sample, as measured in the unconfined state. SM SP COARSE GRAINED SOILS SW TYPICAL DESCRIPTIONS WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES LETTERGRAPH POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES GC GM GP GW POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES SILTS AND CLAYS MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES FINE GRAINED SOILS SYMBOLSMAJOR DIVISIONS SOIL CLASSIFICATION CHART PT OH CH MH OL CL ML CLEAN SANDS SC SILTY SANDS, SAND - SILT MIXTURES CLAYEY SANDS, SAND - CLAY MIXTURES INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS INORGANIC CLAYS OF HIGH PLASTICITY ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS SILTS AND CLAYS GRAVELS WITH FINES SAND AND SANDY SOILS (LITTLE OR NO FINES) SANDS WITH FINES LIQUID LIMIT LESS THAN 50 LIQUID LIMIT GREATER THAN 50 HIGHLY ORGANIC SOILS NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS GRAVEL AND GRAVELLY SOILS (APPRECIABLE AMOUNT OF FINES) (APPRECIABLE AMOUNT OF FINES) (LITTLE OR NO FINES) WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES CLEAN GRAVELS 5 5 12 4 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown fine Sand, little Silt, trace medium to coarse Sand, trace fine Gravel, loose-damp ALLUVIUM: Light Brown fine to coarse Sand, trace to little Silt, medium dense-damp Gray Brown Silty fine to medium Sand, trace coarse Sand, medium dense-moist Boring Terminated @ 10 feet 14 26 35 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-1 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 964.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-1 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 7 5 5 2 2 7 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine to coarse Sand, trace fine to coarse Gravel, occasional trash fragments, loose-damp ALLUVIUM: Brown Silty fine to coarse Sand, trace fine Gravel, medium dense to dense-damp Gray Brown Gravelly fine to coarse Sand, trace Silt, dense-dry Boring Terminated @ 12 feet 14 31 35 5 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-2 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 962.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-2 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 6 4 3 5 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine to coarse Sand, trace fine Gravel, loose-damp ALLUVIUM: Gray Brown fine to coarse Sand, trace Silt, trace fine to coarse Gravel, medium dense-damp @ 10½ feet, little fine Gravel Boring Terminated @ 12 feet 14 26 6 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-3 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 960 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-3 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 4 5 16 5 ± inches Asphaltic concrete, 4 ± inches Aggregate Base FILL: Dark Gray Brown Silty fine to coarse Sand, trace fine Gravel, loose-damp ALLUVIUM: Gray Brown Silty fine to coarse Sand, little fine Gravel, medium dense-damp Gray Brown fine Sandy Silt, trace medium to coarse Sand, trace to little Iron Oxide staining, medium dense-moist to very moist Boring Terminated @ 10 feet 22 22 58 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-4 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 970 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-4 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 11 11 13 5 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine to coarse Sand, little fine to coarse Gravel, medium dense-moist ALLUVIUM: Brown Silty fine Sand, trace medium to coarse Sand, little Iron oxide staining, medium dense-moist Gray Brown Silty fine to medium Sand, trace coarse Sand, little fine Gravel, medium dense-moist to very moist Boring Terminated @ 12 feet 11 21 32 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-5 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 968 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-5 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 7 12 7 2 5 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine Sand, trace medium to coarse Sand, loose-damp ALLUVIUM: Gray Brown Silty fine Sand, trace medium Sand, little Iron Oxide staining, medium dense-moist Brown Silty fine to coarse Sand, trace fine Gravel, dense-damp Gray Brown Gravelly fine to coarse Sand, trace Silt, dense-dry Boring Terminated @ 12 feet 10 35 5 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-6 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 964 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-6 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 6 2 15 4 ± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Gray Brown Silty fine to coarse Sand, loose-damp ALLUVIUM: Gray Brown Gravelly fine to coarse Sand, medium dense-dry Gray Brown fine Sandy Silt, trace medium to coarse Sand, trace fine Gravel, trace Iron Oxide staining, trace Calcareous veining, medium dense-moist to very moist Boring Terminated @ 12 feet 16 20 55 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-7 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 969.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-7 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 7 4 4 3½ ± inches Asphaltic concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine to medium Sand, little coarse Sand, trace fine Gravel, medium dense-damp ALLUVIUM: Gray Brown Gravelly fine to coarse Sand, trace Silt, medium dense to dense-damp Boring Terminated @ 12 feet @ 3½ to 12 feet, some Cobbles in soil cuttings 26 48 5 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 3/4/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Jamie Hayward OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-8 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 964.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-8 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 5 5 4 2 2 4± inches Asphaltic Concrete, No Discernible Aggregate Base FILL: Dark Brown Silty fine Sand, little medium to coarse Sand, little fine Gravel, trace Cobbles, little to some debris/copper wires, medium dense-damp ALLUVIUM: Dark Gray Brown Silty fine to medium Sand, little coarse Sand, little fine Gravel, medium dense-damp Gray Brown Gravelly fine to coarse Sand, trace to little Silt, dense-dry to damp Boring Terminated at 12 feet 27 36 40 7 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 6/21/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Michelle Krizek OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-9 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 964 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-9 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 4 4 3 3± inches Asphaltic Concrete underlain by 8± inches Aggregate Base FILL: Dark Brown Silty fine to medium Sand, trace to little coarse Sand, trace fine Gravel, medium dense-damp ALLUVIUM: Gray Brown fine to coarse Sand, little Silt, little fine Gravel, medium dense-damp Boring Terminated at 6½ feet 17 12 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 6/21/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Michelle Krizek OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-10 5 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 957.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-10 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 5 5 2 4± inches Asphaltic Concrete, No Discernible Aggregate Base ALLUVIUM: Gray Brown Silty fine to medium Sand, little coarse Sand, trace to little fine Gravel, medium dense-damp Gray Brown Silty fine to medium Sand, trace to little coarse Sand, trace fine Gravel, medium dense-damp Gray Brown fine to coarse Sand, little Silt, little fine Gravel, medium dense-dry Boring Terminated at 12 feet 12 26 9 FIELD RESULTS WATER DEPTH: Dry CAVE DEPTH: --- READING TAKEN: At Completion GR A P H I C L O G PO C K E T P E N . (T S F ) DRILLING DATE: 6/21/24 DRILLING METHOD: Hollow Stem Auger LOGGED BY: Michelle Krizek OR G A N I C CO N T E N T ( % ) DR Y D E N S I T Y (P C F ) DE P T H ( F E E T ) MO I S T U R E CO N T E N T ( % ) JOB NO.: 24G111-2 PROJECT: Proposed Industrial Building LOCATION: Fontana, California PLATE B-11 5 10 LABORATORY RESULTS CO M M E N T S PA S S I N G #2 0 0 S I E V E ( % ) BL O W C O U N T DESCRIPTION SURFACE ELEVATION: 963.5 feet MSL LI Q U I D LI M I T PL A S T I C LI M I T SA M P L E BORING NO. I-11 TEST BORING LOG TB L 2 4 G 1 1 1 - 2 . G P J S O C A L G E O . G D T 7 / 1 / 2 4 INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 10.18 (ft) Infiltration Test Hole I-1 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 9:01 AM 7.50 Final 9:26 AM 10.18 Initial 9:28 AM 7.50 Final 9:53 AM 10.18 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 9:56 AM 7.50 Final 10:06 AM 9.62 Initial 10:07 AM 7.50 Final 10:17 AM 9.59 Initial 10:19 AM 7.50 Final 10:29 AM 9.57 Initial 10:31 AM 7.50 Final 10:41 AM 9.55 Initial 10:44 AM 7.50 Final 10:54 AM 9.51 Initial 10:57 AM 7.50 Final 11:07 AM 9.50 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 1 10.00 2.12 1.62 14.24 Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek SANDY SOILS125.00 32.16 YES 2 Soil Criteria Test SANDY SOILS25.00 32.16 YES 2 10.00 2.09 1.64 13.92 3 10.00 2.07 1.65 13.71 13.50 5 10.00 2.01 1.68 13.10 6 10.00 2.00 1.68 13.00 Test Data 4 10.00 2.05 1.66 )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 12.02 (ft) Infiltration Test Hole I-2 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 9:05 AM 7.60 Final 9:30 AM 12.02 Initial 9:32 AM 7.60 Final 9:57 AM 12.02 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 10:01 AM 7.60 Final 10:11 AM 11.30 Initial 10:13 AM 7.60 Final 10:23 AM 11.22 Initial 10:25 AM 7.60 Final 10:35 AM 11.15 Initial 10:36 AM 7.60 Final 10:46 AM 11.05 Initial 10:49 AM 7.60 Final 10:59 AM 11.04 Initial 11:02 AM 7.60 Final 11:12 AM 11.04 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 3.44 2.70 14.40 6 10.00 3.44 2.70 14.40 3 10.00 3.55 2.65 15.15 4 10.00 3.45 2.70 14.47 1 10.00 3.70 2.57 16.22 2 10.00 3.62 2.61 15.64 2 25.00 53.04 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 53.04 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 12.06 (ft) Infiltration Test Hole I-3 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 11:31 AM 7.50 Final 11:56 AM 12.06 Initial 11:58 AM 7.50 Final 12:23 PM 12.06 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 12:26 PM 7.50 Final 12:36 PM 10.87 Initial 12:37 PM 7.50 Final 12:47 PM 10.82 Initial 12:50 PM 7.50 Final 1:00 PM 10.78 Initial 1:02 PM 7.50 Final 1:12 PM 10.78 Initial 1:15 PM 7.50 Final 1:25 PM 10.76 Initial 1:27 PM 7.50 Final 1:37 PM 10.75 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 3.26 2.93 12.63 6 10.00 3.25 2.94 12.57 3 10.00 3.28 2.92 12.75 4 10.00 3.28 2.92 12.75 1 10.00 3.37 2.88 13.30 2 10.00 3.32 2.90 12.99 2 25.00 54.72 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 54.72 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 10.17 (ft) Infiltration Test Hole I-4 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 1:51 PM 7.50 Final 2:16 PM 9.61 Initial 2:18 PM 7.50 Final 2:43 PM 9.54 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 2:46 PM 7.50 Final 2:56 PM 8.95 Initial 2:57 PM 7.50 Final 3:07 PM 8.94 Initial 3:09 PM 7.50 Final 3:19 PM 8.87 Initial 3:21 PM 7.50 Final 3:31 PM 8.85 Initial 3:34 PM 7.50 Final 3:44 PM 8.82 Initial 3:45 PM 7.50 Final 3:55 PM 8.81 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 1.32 2.01 7.28 6 10.00 1.31 2.02 7.21 3 10.00 1.37 1.99 7.64 4 10.00 1.35 2.00 7.49 1 10.00 1.45 1.95 8.24 2 10.00 1.44 1.95 8.16 2 25.00 24.48 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 25.32 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 11.79 (ft) Infiltration Test Hole I-5 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 8:31 AM 7.50 Final 8:56 AM 9.80 Initial 8:58 AM 7.50 Final 9:23 AM 9.30 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 9:26 AM 7.50 Final 9:36 AM 8.10 Initial 9:39 AM 7.50 Final 9:49 AM 8.05 Initial 9:51 AM 7.50 Final 10:01 AM 8.03 Initial 10:04 AM 7.50 Final 10:14 AM 7.99 Initial 10:16 AM 7.50 Final 10:26 AM 7.98 Initial 10:27 AM 7.50 Final 10:37 AM 7.98 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 0.48 4.05 1.37 6 10.00 0.48 4.05 1.37 3 10.00 0.53 4.03 1.52 4 10.00 0.49 4.05 1.40 1 10.00 0.60 3.99 1.73 2 10.00 0.55 4.02 1.58 2 25.00 21.60 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 27.60 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 11.92 (ft) Infiltration Test Hole I-6 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 8:37 AM 7.50 Final 9:02 AM 11.92 Initial 9:06 AM 7.50 Final 9:31 AM 11.82 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 9:33 AM 7.50 Final 9:43 AM 9.08 Initial 9:46 AM 7.50 Final 9:56 AM 8.78 Initial 9:59 AM 7.50 Final 10:09 AM 8.66 Initial 10:10 AM 7.50 Final 10:20 AM 8.60 Initial 10:22 AM 7.50 Final 10:32 AM 8.57 Initial 10:33 AM 7.50 Final 10:43 AM 8.56 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 1.07 3.89 3.17 6 10.00 1.06 3.89 3.14 3 10.00 1.16 3.84 3.47 4 10.00 1.10 3.87 3.27 1 10.00 1.58 3.63 4.99 2 10.00 1.28 3.78 3.89 2 25.00 51.84 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 53.04 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 11.90 (ft) Infiltration Test Hole I-7 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 11:02 AM 5.92 Final 11:27 AM 6.58 Initial 11:30 AM 5.92 Final 11:55 AM 6.53 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 11:59 AM 5.92 Final 12:09 PM 6.15 Initial 12:11 PM 5.92 Final 12:21 PM 6.14 Initial 12:24 PM 5.92 Final 12:34 PM 6.15 Initial 12:35 PM 5.92 Final 12:45 PM 6.14 Initial 12:48 PM 5.92 Final 12:58 PM 6.14 Initial 1:01 PM 5.92 Final 1:11 PM 6.14 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 0.22 5.87 0.44 6 10.00 0.22 5.87 0.44 3 10.00 0.23 5.87 0.46 4 10.00 0.22 5.87 0.44 1 10.00 0.23 5.87 0.46 2 10.00 0.22 5.87 0.44 2 25.00 7.32 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 7.92 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 12.03 (ft) Infiltration Test Hole I-8 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 11:12 AM 7.50 Final 11:37 AM 11.98 Initial 11:40 AM 7.50 Final 12:05 PM 11.83 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 12:07 PM 7.50 Final 12:17 PM 10.74 Initial 12:19 PM 7.50 Final 12:29 PM 10.50 Initial 12:31 PM 7.50 Final 12:41 PM 10.46 Initial 12:44 PM 7.50 Final 12:54 PM 10.45 Initial 12:57 PM 7.50 Final 1:07 PM 10.35 Initial 1:13 PM 7.50 Final 1:23 PM 10.33 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 2.85 3.11 10.45 6 10.00 2.83 3.12 10.35 3 10.00 2.96 3.05 11.04 4 10.00 2.95 3.06 10.99 1 10.00 3.24 2.91 12.64 2 10.00 3.00 3.03 11.26 2 25.00 51.96 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 53.76 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 12.10 (ft) Infiltration Test Hole I-9 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 10:45 AM 7.00 Final 11:10 AM 12.10 Initial 11:13 AM 7.00 Final 11:38 AM 12.10 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 11:42 AM 7.00 Final 11:52 AM 12.10 Initial 11:55 AM 7.00 Final 12:05 PM 12.10 Initial 12:06 PM 7.00 Final 12:16 PM 12.10 Initial 12:19 PM 7.00 Final 12:29 PM 12.10 Initial 12:30 PM 7.00 Final 12:40 PM 12.10 Initial 12:43 PM 7.00 Final 12:53 PM 12.09 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 5.10 2.55 22.53 6 10.00 5.09 2.56 22.44 3 10.00 5.10 2.55 22.53 4 10.00 5.10 2.55 22.53 1 10.00 5.10 2.55 22.53 2 10.00 5.10 2.55 22.53 2 25.00 61.20 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 61.20 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 6.45 (ft) Infiltration Test Hole I-10 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 1:31 PM 4.00 Final 1:56 PM 6.45 Initial 1:58 PM 4.00 Final 2:23 PM 6.45 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 2:25 PM 4.00 Final 2:35 PM 5.44 Initial 2:37 PM 4.00 Final 2:47 PM 5.38 Initial 2:50 PM 4.00 Final 3:00 PM 5.28 Initial 3:02 PM 4.00 Final 3:12 PM 5.23 Initial 3:15 PM 4.00 Final 3:25 PM 5.23 Initial 3:27 PM 4.00 Final 3:37 PM 5.22 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 1.23 1.84 7.37 6 10.00 1.22 1.84 7.30 3 10.00 1.28 1.81 7.77 4 10.00 1.23 1.84 7.37 1 10.00 1.44 1.73 9.11 2 10.00 1.38 1.76 8.60 2 25.00 29.40 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 29.40 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = INFILTRATION CALCULATIONS Project Name Project Location Project Number Engineer Test Hole Radius 4 (in) Test Depth 11.95 (ft) Infiltration Test Hole I-11 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (in) Did 6 inches of water seep away in less than 25 minutes? Sandy Soils or Non- Sandy Soils? Initial 4:10 PM 9.00 Final 4:35 PM 11.95 Initial 4:37 PM 9.00 Final 5:02 PM 11.95 Interval Number Time Time Interval (min) Water Depth (ft) Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Initial 5:05 PM 9.00 Final 5:15 PM 11.35 Initial 5:16 PM 9.00 Final 5:26 PM 11.30 Initial 5:29 PM 9.00 Final 5:39 PM 11.23 Initial 5:41 PM 9.00 Final 5:51 PM 11.20 Initial 5:52 PM 9.00 Final 6:02 PM 11.19 Initial 6:05 PM 9.00 Final 6:15 PM 11.19 Per County Standards, Infiltration Rate calculated as follows: Where:Q =Infiltration Rate (in inches per hour) ∆H =Change in Height (Water Level) over the time interval r =Test Hole (Borehole) Radius ∆t =Time Interval Havg =Average Head Height over the time interval 5 10.00 2.19 1.86 13.00 6 10.00 2.19 1.86 13.00 3 10.00 2.23 1.84 13.37 4 10.00 2.20 1.85 13.09 1 10.00 2.35 1.78 14.52 2 10.00 2.30 1.80 14.03 2 25.00 35.40 YES SANDY SOILS Test Data Proposed Industrial Building Fontana, California 24G111-2 Michelle Krizek Soil Criteria Test 1 25.00 35.40 YES SANDY SOILS )2Ht(r H(60r)Q avg+ = Sample Description I-1 @ 8½ to 10 feet Soil Classification Gray Brown Silty fine to medium Sand, trace coarse Sand Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 1 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-2 @ 10½ to 12 feet Soil Classification Gray Brown Gravelly fine to coarse Sand, trace Silt Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 2 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-3 @ 10½ to 12 feet Soil Classification Gray Brown fine to coarse Sand, little fine Gravel, trace Silt Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 3 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-4 @ 8½ to 10 feet Soil Classification Gray Brown fine Sandy Silt, trace medium to coarse Sand Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 4 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-5 @ 10½ to 12 feet Soil Classification Gray Brown Silty fine to medium Sand, trace coarse Sand, little fine Gravel Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 5 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-6 @ 11½ to 12 feet Soil Classification Gray Brown Gravelly fine to coarse Sand, trace Silt Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 6 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-7 @ 10½ to 12 feet Soil Classification Gray Brown fine Sandy Silt, trace medium to coarse Sand, trace fine Gravel Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 7 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-8 @ 10½ to 12 feet Soil Classification Gray Brown Gravelly fine to coarse Sand, trace Silt Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 8 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-9 @ 10½ to 12 feet Soil Classification Gray Brown Gravelly fine to coarse Sand, trace to little Silt Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 9 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-10 @ 5 to 6½ feet Soil Classification Gray Brown fine to coarse Sand, little Silt, little fine Gravel Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 10 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-11 @ 10½ to 12 feet Soil Classification Gray Brown fine to coarse Sand, little Silt, little fine Gravel Proposed Industrial Building Fontana, California Project No. 24G111-2 PLATE C- 11 3 1½¾½¼⅜#4 #8 #10 #16 #20 #30 #40 #50 #100 #200 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 Pe r c e n t P a s s i n g b y W e i g h t Grain Size in Millimeters Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Attachment 10 - Worksheet H - Infiltration Factor of Safety TECHNICAL GUIDANCE DOCUMENT APPENDICES VII-35 December 20, 2013 Worksheet H: Factor of Safety and Design Infiltration Rate and Worksheet Factor Category Factor Description Assigned Weight (w) Factor Value (v) Product (p) p = w x v A Suitability Assessment Soil assessment methods 0.25 Predominant soil texture 0.25 Site soil variability 0.25 Depth to groundwater / impervious layer 0.25 Suitability Assessment Safety Factor, SA = p B Design Tributary area size 0.25 Level of pretreatment/ expected sediment loads 0.25 Redundancy 0.25 Compaction during construction 0.25 Design Safety Factor, SB = p Combined Safety Factor, STotal= SA x SB Observed Infiltration Rate, inch/hr, Kobserved (corrected for test-specific bias) Design Infiltration Rate, in/hr, KDESIGN = KObserved / STotal Supporting Data Briefly describe infiltration test and provide reference to test forms: Note: The minimum combined adjustment factor shall not be less than 2.0 and the maximum combined adjustment factor shall not exceed 9.0. 1 0.25 1 1 1 0.25 0.25 0.25 1.0 3 3 2 3 0.75 0.75 0.75 0.50 2.75 2.75 11 (ave) 4.0 Infiltration testing was performed in general accordance with the guidelines published in Riverside County - Low Impact Development BMP Design Handbook - Section 2.3 Appendix A. Infiltration test borings were pre-soaked. Each test hole was filled with water and readings were taken at 10-minute intervals for one hour, since sandy soils were encountered. Please see Appendix 9 for the Infiltration Report and Test Forms.