Loading...
HomeMy WebLinkAboutTract No. 16869 Hydrology StudyTRACT 16869 PLANNING AREA 7 SHADY TRAILS (Citrus Heights North) DRAINAGE STUDY CITY OF FONTANA November 14, 2005 Reference 126-2001 PREPARED BY: Madole & Associates, Inc. REVIEWED BY WILLDAN THIS CIVIL ENGINEERING DOCUMENT HAS BEEN REVIEWED FOR GENERAL CONFORMANCE WITH APPLICABLE CITY STANDARDS. ACCEPTANCE BY THE REVIEWER OF ANY ELEMENTS OF THE ENGINEERING DOCUMENT DOES NOT CONSTITUTE A WARRANTY AND DOES NOT RELIEVE THE APPLICANT OR APPLICANT'S CONSULTANTS OF FULL ii R -' °ONSI IUTY FOR COMPLIANCE WITH CODES AND +DARDS.Q' c 4 Aso" SI NATURE DATE 760-A Rochester Avenue Ontario 91761 (909) 937-9151 F. 93 -9152 ell L. Iwatsuru R.C.E. 36637 Exp. 6/30/06 11 Date CONTENTS SECTION TITLE ❑ A DISCUSSION ❑ Vicinity Map Q100 HYDROLOGY ❑ Lateral Catch Basin Systems CATCH BASIN SIZING Q100 STORM DRAIN HYDRAULICS ❑ Lateral Catch Basin Systems REFERENCES & MAPS ❑ Soils Map (from San Bernardino County Hydrology Manual) ❑ Isohyetal Maps (from San Bernardino County Hydrology Manual) ❑ Reference Storm Drain Plan (Sheet 2 of 3) ❑ Reference Storm Drain Summit Avenue Storm Drain Plans & Hydraulic Calculations SUPPLEMENTAL CALCULATIONS FOR INFILTRATION BASIN SECTION A DISCUSSION DISCUSSION INTRODUCTION The purpose of this report is to perform a drainage study and to provide hydrologic and hydraulic supporting calculations for the local storm drain lateral that is the connection to the Summit Avenue Storm Drain system (Lateral N). The proposed area of study is located on the north side of Summit , Avenue east of Knox Avenue within the Citrus Heights -North Specific Plan, Tract 16869, in the City Fontana, County of San Bernardino, California (See the following Vicinity Map). This study provides the design criteria for the catch basins and laterals being proposed for the project and a mentioning of the adjacent Summit Avenue Storm Drain system. The development will have underground storm drain systems that will intercept the storm flows and discharge into the Lateral N, which drains into the Summit Avenue Storm Drain, MPSD Line B. EXISTING CONDITIONS The topographic contours for this area indicate that the general terrain falls from the northeast to the southwest. The land is for the most part open field with very small amounts of vegetation. The drainage area is bound on the north by the Edison R/W. The east side is bound by open fields to Citrus Avenue. The storm water flows drain southwesterly to Summit Avenue and to Lytle Creek Road. An existing drainage system _ at Summit Avenue and Lytle Creek Road currently provides for the drainage interception of the surface runoff from the predeveloped conditions (This existing drainage system will be re -constructed as part of the first phase of the Summit Avenue Storm Drain Improvements). PROPOSED STORM WATER DRAINAGE The Summit Avenue Storm Drain, Line B, will provide the primary drainage infrastructure for the Q100 storm water runoff from the area northerly of Summit Avenue to Duncan Canyon Road between Lytle Creek Road and Citrus Avenue. The facility will be a main line 11'x 9' and 12'x 9' R.C.B. with laterals for the adjacent potential development areas. This submittal of the design and drainage study assumes portions of the drainage area will be contributory to Knox Avenue. The areas east of Lytle Creek Road to Citrus Avenue and adjacent to and northerly to Summit Avenue will conceptually drain into Summit Avenue. Laterals will provide adequate drainage. Lateral N from the Summit Avenue Storm Drain is being provided for the runoff from -this area. Catch basins within the tract will intercept portions of the storm water near the southwesterly corner of the tract. Even though the original design for the Summit Avenue Storm Drain did not provide a lateral at this location, Lateral "N" is now being provided to the tract boundary and will be constructed as part of the Summit Avenue Storm Drain: 1 TRACT. A 17041 J:\126-20231streets\ST01.dwa. 3/1/2005 6:20:30 PM. Wendell. Wendell A secondary overflow will be provided as part of the tract improvements. An opening in the perimeter wall will be provided south of the catch basins at the tract boundary. METHOD OF STUDY: HYDROLOGIC STUDY AND HYDRAULIC CALCULATIONS The rational method hydrologic model, as defined by Flood Control for San Bernardino County, was performed in the determination of the storm runoff peak flow rates (Section Q). AES software was utilized for the hydrology calculations, street 'flow depth analysis, and catch basin sizing. Civil Design's WSPGW hydraulic software program was used to analyze pipe sizes and carrying capacities (Section H). DISCUSSION OF RESULTS Project Storm Drain Capacity The attached hydrologic study (and references and hydraulic calculations indicate that the catch basins and storm drain laterals being proposed will be adequate for drainage. For this project, W=28 feet at the two catch basins in the street near the southwesterly corner of the tract will be adequate. `' A minimum width for each catch basin was calculated for inundation to the top of curb, however, additional capacity is provided by these catch basins for the sump conditions. A secondary overflow is provided south of the catch basin location at the tract boundary adjacent to the Summit Avenue. Free flow will be provided through wrought iron fencing in an opening of the perimeter wall. Water Quality Infiltration Basin A water quality basin will be part of the private development and maintained as part of the HOA. The purpose of the basin is to provide an infiltration treatment for the project site. The low flow water in the gutters will be intercepted and conveyed to the basin. The capacity of the basin is approximately 0.6 acre-feet (The required capacity is 0.48 acre-feet). The intercepted flows will be taken on the upper ends of the catch basins (About 4.5 c.f.s. on each end for a total of 2 CB's x 2 intercepts/CB x 4.5 c.f.s. = about 18 c.f.s.) Once the basin fills, at the peak low, flow for the 5-year storm, flows will also flow into the storm drain. Storm water will no longer flow into the basin. A secondary overflow will be near the west end of the infiltration basin. Any flows from this location will flow to the same location as stated above. SECTION Q 0100 HYDROLOGY LATERAL S 11E11 =I- MIMI. DESCRIPTION OF STUDY: DRAINAGE STUDY FOR TRACT 16869 Q100-YEAR STUDY JN 126-2001 to 16869.dat [SAN BERNARDINO COUNTY] FILE NAME:16869.DAT *ENGLISH UNITS* TIME/DATE OF STUDY: 10:27 6/ 8/2005 100.0-YEAR STORM RATIONAL METHOD STUDY (AMC II LOSSES) [(c) 1983-2004 ADVANCED ENGINEERING CONCENTRATION AREA (ACRES) SOILIDEV. Tt Tc I I Fm Fm POINT NUMBER SUBAREA SUM TYPEITYPE MIN. MIN. (in/hr) (Avg) 102.00 0.5 0.5 A I6D/AC ---- 6.9 5.75 0.49 0.488 40.ft-STREETI FLOW TO PT.# 103.00 40.ft-STREET FLOW TO PT.# 104.00 40.ft-STREET FLOW TO PT.# 105.00 40.ft-STREET FLOW TO PT.# 106.00 106.00 402.00 40.ft-STREET FLOW TO PT.# 403.00 40.ft-STREET FLOW TO PT.# 404.00 0.8 0.8 1.2 0.2 0.6 0.7 1.1 1.30 2.10 3.30 3.50 3.5 A I6D/AC --I A I6D/AC A I6D/AC - I A I6D/AC - I 0.6 A I6D/AC 1.30 2.40 A 16D/AC A I6D/AC 1.1 1.0 1.4 1.3 1.2 1.3 8.0 9.1 10.4 11.7 11.7 9.0 10.2 11.5 5.24 4.88 4.49 4.18 4.18 4.91 4.55 4.22 0.49 0.49 0.49 0.49 0.488 0.488 0.488 0.488 0.49 0.488 0.49 0.488 0.49 0.487 I CALCULATED BY: I CHECKED BY: 1 PAGE NUMBER 1 OF SOFTWARE] Q-SUM PATH (cfs) (ft) 2.4 5.6 8.3 11.9 11.9 11.9 2.4 4.7 8.1 240 250 250 300 290 270 250 320 SLOPE ft/ft .0329 .0256 .0256 .0147 .0134 .0111 .0240 .0250 V FPS. 3.9 4.2 3.8 3.7 3.6 4.2 HYDRAULICS AND NOTES INITIAL SUBAREA Qest.= 4.1 D=0.33;D*V= 1.3 FLOODWIDTH=10.0 Qest.= 7.1 D=0.38;D*V= 1.6 FLOODWIDTH=12.7 Qest.= 10.5 D=0.46;D*V= 1.7 FLOODWIDTH=16.6 Qest.= 12.2 D=0.48;D*V= 1.8 FLOODWIDTH=17.9 FOR CONFLUENCE INITIAL SUBAREA Qest.= 3.7 D=0.32;D*V= 1.2 FLOODWIDTH= 9.8 Qest.= 6.6 D=0.37;D*V= 1.6 FLOODWIDTH=12.4 * +-+ I E- 11E11 1NMI MINI MINI - INN 1 N- I 1 I -: I N 11111 + - * DESCRIPTION OF STUDY: DRAINAGE STUDY FOR TRACT 16869 Q100-YEAR STUDY JN 126-2001 to 16869.dat [SAN BERNARDINO COUNTY] FILE NAME:16869.DAT *ENGLISH UNITS* TIME/DATE OF STUDY: 10:27 6/ 8/2005 100.0-YEAR STORM RATIONAL METHOD STUDY (AMC II LOSSES) [(c) 1983-2004 ADVANCED ENGINEERING SOFTWAR ] CONCENTRATION POINT NUMBER 40.ft-STREET FLOW TO PT.# 405.00 CONFLUENCE ANALYSIS FOR POINT# 405.00 405.00 202.00 40.ft-STREET FLOW TO PT.# 203.00 40.ft-STREET FLOW TO PT.# 204.00 40.ft-STREET FLOW TO'PT.# 205.00 205.00 I CALCULATED BY: I CHECKED BY: 1 PAGE NUMBER 2 OF AREA (ACRES) ISOILIDEV.1 Tt Tc I 1 Fm Fm Q-SUM PATH SUBAREA SUM ITYPEITYPEIMIN. MIN. (in/hr) (Avg) (cfs) (ft) 1---1 1- 1 -1 1 1 I 11.2 0.9 3.301 A 16D/ACI---- 12.8 3.97 0.49 0.487 10.3 PEAK FLOW RATE = 21.9 (cfs) TIME OF CONCENTRATION(MIN.) = 11.7 MEAN VALUES: Fp = 0.975 (in/hr); Ap = 0.500; Fm = EFFECTIVE AREA = 6.53 (Acres); TOTAL AREA = Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) 21.95 11.75 0.975 0.50 0.488 4.18 21.56 12.78 0.975 0.50 0.487 3.97 1 1---I 1--1- I I ---I 1--1--- MAIN-STREAM COPIED ONTO MEMORY BANK # 1 - 1 1- - I I . 240 0.5 0.5 A 16D/ACI---- 6.9 5.75 0.49 0.488 2.4 - 1 1 0.8 0.8 1.1 1.30 2.10 3.20 3.2 1 1.1 A 16D/ACI---- -1 1 1 1.0 A 16D/ACI---- 2.1 8.0 9.1 11.2 11.2 5.24 4.88 4.30 4.30 0.49 0.49 0.49 0.988 0.488 0.488 5.6 8.3 11.0 11.0 250 250 990 300 SLOPE ft/ft .0200 V FPS. 4.1 0.488 (in/hr) 6.80 (Acres) Ae(Acres) NODE 6.534 101.0 6.800 401.0 .0329 .0256 .0256 .0169 3.9 4.2 3.9 HYDRAULICS AND NOTES Qest.= 9.5 D=0.43;D*V= 1.7 FLOODWIDTH=15.0 LARGEST CONFLUENCE 4= 21.9 INITIAL SUBAREA Qest.= 4.1 D=0.33;D*V= 1.3 FLOODWIDTH=10.0 Qest.= 7.1 D=0.38;D*V 1.6 FLOODWIDTH=12.7 Qest.= 10.2 D=0.45;D*V= 1.7 FLOODWIDTH=16-.0 FOR CONFLUENCE +-+ -I- --I- r- 1 1--- I EN 1 M 1 s- 1 M N +-+ +-+ DESCRIPTION OF STUDY: DRAINAGE STUDY FOR TRACT 16869 Q100-YEAR STUDY JN 126-2001 to 16869.dat [SAN BERNARDINO COUNTY] FILE NAME:16869.DAT *ENGLISH UNITS* CALCULATED BY: TIME/DATE OF STUDY: 10:27 6/ 8/2005 CHECKED BY: 100.0-YEAR STORM RATIONAL METHOD STUDY (AMC II LOSSES) PAGE NUMBER 3 OF [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) Tt Tc I 1 Fm Fm Q-SUM PATH SLOPE V HYDRAULICS POINT NUMBER SUBAREA SUM MIN. MIN. (in/hr) (Avg) (cfs) (ft) ft/ft FPS. AND NOTES 302.00 40.ft-STREET FLOW TO PT.# 303.00 40.ft-STREET FLOW TO PT.# 304.00 40.ft-STREET FLOW TO PT.# 305.00 CONFLUENCE ANALYSIS FOR POINT# 305.00 305.00 0.7 0.8 0.9 0.7 0.7 1.50 2.40 3.10 SOILIDEV. TYPEITYPE -1 -1 I A I6D/AC - 1 1.3 A I6D/AC - 1 0.8 A 16D/AC - 1 270 .0148 .. 8.5 5.08 0.49 0.488 2.9 ---- 250 .0200 3.5 9.7 4.68 0.49 0.487 5.7 10.5 4.46 0.49 0.487 8.6 1.4 A I6D/AC ---- 11.9 4.14 0.49 0.487 10.2 200 .0250 4.2 360 .0250 4.5 PEAK FLOW RATE = 21.0 (cfs) TIME OF CONCENTRATION(MIN.) = 11.2 MEAN VALUES: Fp = 0.975 (in/hr); Ap = 0.500; Fm = 0.488 (in/hr) EFFECTIVE AREA = 6.11 (Acres); TOTAL AREA = 6.30 (Acres) Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 20.97 11.19 0.975 0.50 0.488 4.30 6.113 201.0 20.72 11.91 0.975 0.50 0.487 4.14 6.300 301.0 I 1--1 1--1I----I----I 1 1--1I--- I 1- -1 1- -1 1- -1- -1 I 1----I 1-- MEMORY BANK # 1 CONFLUENCED WITH MAIN -STREAM Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 42.58 11.19 0.975 0.50 0.488 4.30 12.339 201.0 42.73 11.75 0.975 0.50 0.488 4.18 12.790 101.0 42.61 11.91 0.975 0.50 0.488 4.14 12.877 301.0 41.31 12.78 0.975 0.50 0.487 3.97 13.100 401.0 TOTAL AREA= 13.100 I 1---I I ----I I----I----I 1 1--1I---- I 1 I I I I I I 1 I 1 I I I I I I I I I I 1 1 I INITIAL SUBAREA Qest.= 4.4 D=0.35;D*V= 1.2 FLOODWIDTH=11.0 Qest.= 7.3 D=0.38;D*V= 1.6 FLOODWIDTH=12.9 Qest.= 9.7 D=0.42;D*V= 1.9 FLOODWIDTH=14.5 LARGEST CONFLUENCE Q= 21.0 * * +-+ +-+ DESCRIPTION OF STUDY: DRAINAGE STUDY FOR TRACT 16869 Q100-YEAR STUDY JN 126-2001 to 16869.dat [SAN BERNARDINO COUNTY] FILE NAME:16869.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 10:27 6/ 8/2005 I CHECKED BY: 100.0-YEAR STORM RATIONAL METHOD STUDY (AMC II LOSSES) I PAGE NUMBER 4 OF [(c), 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION POINT NUMBER 305.00 AREA (ACRES) SUBAREA! SUM I. 1 I 12.8 1 SOILIDEV. TYPEITYPE -1 Tt I Tc MIN.I MIN. -1 -1 --- 111.7 Fm IQ -SUM IPATHISLOPE (Avg) (cfs) I(ft)'Ift/ft I 1--I I I--1 42.71----I I- 1 V FPS. HYDRAULICS AND NOTES STREAM SUMMARY EFFECTIVE AREA = 12.79 Acres TOTAL AREA = 13.10 Acres PEAK FLOW RATE = 4 .73 cfs TIME OF CONCENTRATION(MIN.) 11.75 MEAN VALUE : Fp = 0.975 ( n/hr); Ap = 0.500; Fm = 0.488 (in/hr) I -I I- -I - -I- -I I- -I 1 PEAK FLOW RATE TABLE Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 42.58 11.19 0.975 0.50 0.488 4.30 12.339 201.0 42.73 11.75 0.975 0.50 0.488 4.18 12.790 101.0 42.61 11.91 0.975 0.50 0.488 4.14 12.877 301.0 41.31 12.78 0.975 0.50 0.487 3.97 13.100 401.0 * * **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1251 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * DRAINAGE STUDY FOR TRACT 16869 * Q100-YEAR STUDY * JN 126-2001 to 16869.dat ************************************************************************** FILE NAME: 16869.DAT TIME/DATE OF STUDY: 10:27 06/08/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER` SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.5700 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 20.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.110 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER -SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 ELEVATION DATA: UPSTREAM(FEET) = 653.00 DOWNSTREAM(FEET) Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.895 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.750 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 645.10 GROUP (ACRES) (INCH/HR) (DECIMAL) A 0.50 0.98 LOSS RATE, Fp(INCH/HR) = 0.98 AREA FRACTION, Ap = 0.50 2.37 0.50 PEAK FLOW RATE(CFS) = 0.50 2.37 SCS Tc CN (MIN.) 32 6.90 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) «« < UPSTREAM ELEVATION(FEET) = 645.10 DOWNSTREAM ELEVATION(FEET) = 638.70 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.62 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.19 STREET FLOW TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 8.05 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.242 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.80 0.98 0.50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.42 EFFECTIVE AREA(ACRES) = 1.30 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: SCS CN 32 0.49 5.56 1 1 1 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.45 FLOW VELOCITY(FEET/SEC.) = 3.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.38 LONGEST FLOWPATH FROM NODE, 101.00 TO NODE 103.00 = 490.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 61 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.70 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 632.30 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.70 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57 STREET FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.883 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.80 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.16 EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = 0.98, AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.55 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) = 1.69 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 740.00 FEET. 9.05 0.49 **************************************************************************** FLOW. PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 61 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« <« » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 632.30 DOWNSTREAM ELEVATION(FEET) = 627.90 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.47 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.60 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.67 STREET FLOW TRAVEL TIME(MIN.) = 1.37 Tc(MIN.) = * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.486 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.20 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.32 EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 11.88 Ap (DECIMAL) SCS CN END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = .17.46 FLOW VELOCITY(FEET/SEC.) = 3.75 DEPTH*VELOCITY(FT*FT/SEC.) = 1.78 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 1040.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« < < >»» (STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 627.90 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.48 12.21 0.0150. HALFSTREET FLOOD WIDTH(FEET) = 17.93 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.78 STREET FLOW TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) = 11.75 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.177 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.20 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES)'= 0.20 SUBAREA RUNOFF(CFS) = 0.66 EFFECTIVE AREA(ACRES) = 3.50 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) = 11.88 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.70 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 1.76 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. ********************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.75 RAINFALL INTENSITY(INCH/HR) = 4.18 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.50 TOTAL STREAM AREA(ACRES) = 3.50, PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.88 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 270.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) = 644.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.981 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.907. SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 0.60 0.98 0.50 32 8.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 2.39 ************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 61 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 644.00 DOWNSTREAM ELEVATION(FEET) = 638.00 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF =1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.67 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.42 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.10 STREET FLOW TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 10.20 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.546 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.70 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.56 EFFECTIVE AREA(ACRES) = 1.30 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 4.75 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET/SEC.) = 3.64 DEPTH*VELOCITY(FT*FT/SEC.) = 1.25 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 520.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« c » > >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 630.00 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.00 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.49 STREET FLOW TRAVEL TIME(MIN.) = 1.33 Tc(MIN ) = 11.53 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.223 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.10 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.70 EFFECTIVE AREA(ACRES) = 2.40 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) = 8.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET/SEC.) = 4.22 DEPTH*VELOCITY(FT*FT/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 840.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < » »>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 630.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.43 9.48 1 HALFSTREET FLOOD WIDTH(FEET) = 14.96 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.71 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 12.78 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.971 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.90 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.82 EFFECTIVE AREA(ACRES) _ 3.30 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = SCS CN 0.49 10.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.51 FLOW VELOCITY(FEET/SEC.) = 4.10 DEPTH*VELOCITY(FT*FT/SEC.) = 1.79 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1140.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.78 RAINFALL INTENSITY(INCH/HR) = 3.97 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.30 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.35 ** CONFLUENCE DATA ** STREAM Q Tc Intensity NUMBER (CFS) (MIN.) (INCH/HR) 1 11.88 11.7.5 4.177 2 10.35 12.78 3.971 Fp(Fm) (INCH/HR) 0.98( 0.49) 0.97( 0.49) Ap Ae HEADWATER (ACRES) NODE 0.50 3.5 ,101.00 0.50 3.3 401.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK STREAM NUMBER 1 2 FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 21.95 11.75 4.177 21.56 12.78 3.971 Fp(Fm) Ap Ae (INCH/HR) (ACRES) 0.98( 0.49) 0.50 6.5 0.97( 0.49) 0.50 6.8 HEADWATER NODE 101.00 401.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.95 Tc(MIN.) = 11.75 EFFECTIVE AREA(ACRES) = 6.53 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 6.80 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 405.00 = 1330.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 10 »» >MAIN -STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 ELEVATION DATA: UPSTREAM(FEET) = 653.00 DOWNSTREAM(FEET) = 645.10 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.895 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.750 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.50 0.98 0.50 32 6.90 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.37 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.37 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) « « < UPSTREAM ELEVATION(FEET) = 645.10 DOWNSTREAM ELEVATION(FEET) = 638.70 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.62 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.19 4.08 STREET FLOW TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 8.05 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.242 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = Ap SCS (DECIMAL) CN A 0.80 0.98 0.50 32 LOSS RATE, Fp(INCH/HR) = 0.98 AREA FRACTION, Ap = 0.50 0.80 SUBAREA RUNOFF(CFS) = 3.42 1.30 AREA -AVERAGED Fm(INCH/HR) = 0.49 = 0.98 AREA -AVERAGED Ap = 0.50 1.30 PEAK FLOW RATE(CFS) = 5.56 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.45 FLOW VELOCITY(FEET/SEC.) = 3.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.38 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.70 DOWNSTREAM ELEVATION(FEET) = 632.30 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150. Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.70 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.13 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57 STREET FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.883 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL)' CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.80 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.16 EFFECTIVE AREA(ACRES) = 2.10 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 8.31 9.05 0.98 7.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.55 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) = 1.69 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 740.00 FEET. FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 632.30 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 490.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL).= 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 'STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back -of -Walk Flow Section= 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.20 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 15.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.82 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70 STREET FLOW TRAVEL TIME(MIN.) = 2.14 Tc(MIN.) = 11.19 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.300 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.10 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 3.77 EFFECTIVE AREA(ACRES) = 3.20 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.20. PEAK FLOW RATE(CFS) = 10.98 0.0150 Ap SCS END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.45 FLOW VELOCITY(FEET/SEC.) = 3.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.77 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1230.00 FEET. **************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.19 RAINFALL INTENSITY(INCH/HR) = 4.30 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.20 TOTAL STREAM AREA(ACRES) = 3.20, PEAK FLOW RATE(CFS) AT, CONFLUENCE FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR "INITIAL SUBAREA«. INITIAL SUBAREA FLOW-LENGTH(FEET) = 270.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) = 643.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.479 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.079 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.70 0.98 0.50 32 8.48 SUBAREA AVERAGE\PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.89 TOTAL AREA(ACRES) 0.70 PEAK FLOW RATE(CFS) = 2.89 **************************************************************************** FLOW PROCESS FROM NODE, 302.00 TO NODE 303.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STANDARD CURB SECTION USED) «« < UPSTREAM ELEVATION(FEET) = 643.00 DOWNSTREAM ELEVATION(FEET) = 638.00 STREET LENGTH(FEET) = 250.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 10.00 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.98 AVERAGE FLOWVELOCITY(FEET/SEC.) = 3.33 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15 STREET FLOW TRAVEL TIME(MIN.) = 1.25 Tc(MIN:) = 9.73 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.676 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.80 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 3.02 EFFECTIVE AREA(ACRES) = 1.50 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 5.65 Ap SCS (INCH/HR) (DECIMAL) CN Fp. END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.15 FLOW VELOCITY(FEET/SEC.) = 3.55 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 520.00 FEET:' FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 633.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 10.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF =1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW::; STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.85 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57 STREET FLOW TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 10.54 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.456 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.90 SUBAREA AVERAGE PERVIOUS. SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = Fp (INCH/HR) 0.98 LOSS RATE, 'Fp(INCH/HR) _ AREA FRACTION, Ap = 0.50 0.90 SUBAREA RUNOFF(CFS) = 3.21 2.40 AREA -AVERAGED Fm(INCH/HR) = 0.49 = 0.97 AREA -AVERAGED Ap = 0.50 2.40 PEAK FLOW RATE(CFS) = 8.57 7.26 Ap SCS (DECIMAL) CN 0.50 32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.79 FLOW VELOCITY(FEET/SEC.) = 4.24 DEPTH*VELOCITY(FT*FT/SEC.) = 1.71 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 633.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.49 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.38 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.82 STREET FLOW TRAVEL TIME(MIN.) = 1.37 Tc(MIN.) = 11.91 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.142 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 0.70 0.98 0.50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.30 EFFECTIVE AREA(ACRES) = 3.10 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 10.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.73 FLOW VELOCITY(FEET/SEC.) = 4.46 DEPTH*VELOCITY(FT*FT/SEC.) = 1.88 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1080.00 FEET. FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.91 RAINFALL INTENSITY(INCH/HR) = 4.14 AREA -AVERAGED Fm(INCH/HR) = 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.97 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.10 TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM Q Tc NUMBER (CFS) (MIN.) 1 10.98 11.19 2 10.20 11.91 10.20 Intensity Fp(Fm) Ap Ae (INCH/HR) (INCH/HR) (ACRES) 4.300 0.98( 0.49) 0.50 3.2 4.142 0.97( 0.49) 0.50 3.1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER 1 2 Tc Intensity Fp(Fm) Ap Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) 20.97 11.19 4.300 0.98( 0.49) 0.50 6.1 20.72 11.91 4.142 0.97( 0.49) 0.50 6.3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.97 Tc(MIN.) = EFFECTIVE AREA(ACRES) = 6.11 AREA -AVERAGED AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED TOTAL AREA(ACRES) = 6.30 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 305.00 = 1230.00 FEET. HEADWATER NODE 201.00 301.00 HEADWATER NODE 201.00 301.00 11.19 Fm(INCH/HR) = 0.49 Ap = 0.50 FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 11 »» >CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 20.97 11.19 4.300 0.98( 0.49) 0.50 6.1 201.00 2 20.72 11.91 4.142 0.97( 0.49) 0.50 6.3 301.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 305.00 = 1230.00 FEET. ** MEMORY BANK # STREAM Q NUMBER (CFS) 1 21.95 2 21.56 LONGEST FLOWPATH * PEAK STREAM NUMBER 1 2 3 Tc Intensity Fp(Fm) (MIN.) (INCH/HR) (INCH/HR) 11.75 4.177 0.98( 0.49) 12.78 3.971 0.97( 0.49) FROM NODE 101.00 TO NODE FLOW RATE TABLE ** Q Tc Intensity (CFS) (MIN.) (INCH/HR) 42.58 11.19' 4.300 42.73 11.75 4.177 42.61 11.91 4.142 Fp(Fm) (INCH/HR) 0.98( 0.49) 0.98( 0.49) 0.98( 0.49) 0.50 0.50 0.50 1 CONFLUENCE DATA ** AI HEADWATER Le, -� NODE 5 101.00 8 401.00 1330.00 FEET. Ap Ae (ACRES) 0.50 6. 0.50 6. 305.00 = Ap Ae (ACRES) 12.3 12.8 12.9 HEADWATER NODE 201.00 101.00 301.00 c�� ' 4 41.31 12.78 3.971 0.97( 0.49) 0.50 13.1 401.00 TOTAL AREA(ACRES) = 13.10 ' COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.7a Tc(MIN.) = 11.746 EFFECTIVE AREA(ACRES) = 12.79 AREA -AVERAGED Fm(INCH/HR) = 0.49 ' AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 13.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 305.00 = 1330.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 13.10 TC(MIN.) = 11.75 EFFECTIVE AREA(ACRES) = 12.79 AREA -AVERAGED Fm(INCH/HR)= 0.49 AREA -AVERAGED Fp(INCH/HR) = 0.98 AREA -AVERAGED Ap = 0.50 PEAK FLOW RATE(CFS) = 42.73 II ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 42.58 11.19 4.300 0.98( 0.49) 0.50 12.3 201.00 11 2 42.73 11.75 4.177 0.98( 0.49) 0.50 12.8 101.00 3 42.61 11.91 4.142 0.98( 0.49) 0.50 12.9 301.00 4 41.31 12.78 3.971 0.97( 0.49) 0.50 13.1 401.00 II END OF RATIONAL METHOD ANALYSIS ' l 1-vTAL = 4Z,7 C:PC, -C - 11,7 kr);� Z. -2 2 1 1 6 or Tc )1,7 ��g. 1 ■ SECTION D CATCH BASIN SIZING ******************************************************************* ******** »»SUMP TYPE BASIN INPUT INFORMATION«« /1 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN OPENING(FEET) = 0.83 DEPTH OF WATER(FEET) = 0.80 .0,0,E »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 9.51— BASIN INFLOW(CFS) = 21.00 q N W1r ****************************************************************** »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 21.00---� BASIN OPENING(FEET) = 0.83 DEPTH OF WATER(FEET) = 0.39 L72r, `� »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 27.93 1/(4E ************************************************************************** * »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 21.90 BASIN OPENING(FEET) = 0.83 DEPTH OF WATER(FEET) = 0.80 — -Opjp »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 9.91 1-1't cr-R4- ************************************************************************** »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS)= 21.90 BASIN OPENING(FEET) = 0.83 -Oa OF WATER(FEET) 0.40 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 28.04 SECTION H STORM DRAIN HYDRAULICS 11111 1 r INI1 1 1 INN 11111I ---RODRIGUEZ--WAY {PR( EAST -PARK -WA VENiA�{PR/K4Tf)- SCHARF AVENUE -(PRIVATE)- TRACT 17041 1 M FILE: ln.WSW ********************* 1 Invert 1 Station 1 Elev -I- -1- L/Elem 1Ch Slope 1 *********I*********I******** ********* 1 1 1007.780 1607.900 6.220 1614.120 - I- -I- -I- - 4.270 .0093 1 I 1012.050 1607.940 6.198 1614.137 - I- -I- -I- - 13.860 .0108 I 1025.910 1608.090 6.104 1614.194 - 1- -1- -1- 26.140 .0096 1 1 1052.050 1608.340 6.030 1614.370 -I- -I- -I- - 7.869 .2079 I I 1059.919 1609.976 4.457 1614.432 - 1- HYDRAULIC JUMP 1 I I 1059.919 1609.976 .983 1610.959 -I -I- -I- - 3.581 .2079 I 1 I 1063.500 1610.720 1.011 1611.731 - I- -I- -I- - 2.799 .2079 1066.299 1611.302 1.036 1612.338 W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 100-YR HYDRAULICS LATERAL "N" ln.wsw Depth (FT) - 1- -1- -I- 3.416 .2079 Water Elev I I I 1069.715 1612.012 1.073 1613.085 -I- -I- -1- 2.929 .2079 Q (CFS) Vel Vel (FPS) Head SF Ave ****** Energy 1 Super Grd.E1.1 Elev HF ISE Dpth 42.70 6.04 .57 1614.69 .00 - -I- -I- -I- - .0041 .02 6.22 I 42.70 6.04 .57 1614.70 .00 - -I- -I- -I- -I- - .0041 .06 6.20 1 42.70 6.04 .57 1614.76 .00 - -I- -I- -I- -I- - .0041 .11 .00 I I 1 42.70 6.04 .57 1614.94 .00 - -1- -I- -I- -I- - .0041 .03 .00 I I 1 42.70 6.04 .57 1615.00 .00 - -I- -I- -I -I- I 1 42.70 21.18 6.97 1617.93 .87 - -I- -I- -I- -I- - 0722 .26 1.86 I 1 42.70 20.40 6.46 1618.19 1.63 - I- -I- -I- -I- - .0653 .18 2.64 I I 42.70 19.70 6.03 1618.37 1.53 - -I- -I- -I- -1- - .0583 .20 2.56 I I I 42.70 18.79 5.48 1618.57 1.40 - -I- -I- -I- -I- - .0511 .15 2.47 LRIE t( CriticallFlow Top Depth 1 Width - -I- Froude N1Norm Dp ********I******** MIMI MEN. NMI Date: 9-28-2005 Time: 3:43:33 Height/ Dia.-FT ITN. 2.13 .00 3.000 -1- - - - .00 1.78 .013 2.13 .00 3.000 -1- -1- .00 1.70 .013 2.13 .00 3.000 -1 - .00 1.77 .013 2.13 .00 3.000 -1_ - .00 .76 .013 2.13 .00 3.000 1 2.13 2.82 3.000 - -I- -1- - 4.41 .76 .013 1 1 2.13 2.84 3.000 - -I- -I- 4.18 .76 .013 2.13 2.85 3.000 3.98 .76 .013 I I 2.13 2.88 3.000 -1- -1- 3.72 .76 .013 Base Wt or I.D. X-Fall ******* .000 .00 .000 .00 .000 .00 .000 00 .000 .000 .00 .000 .00 .000 .00 .000 .00 ZL ZR ***** No Wth Prs/Pip Type Ch ******* .00 1 1- .00 PIPE .00 1 1- .00 PIPE .00 1 1- .00 PIPE I .00 1 1- .00 PIPE 1 .00 1 I .00 1 .0 .00 PIPE .00 1 .0 1- .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 1- .00 PIPE 1- r MIMI M N 1---- 1- I 1 111111 r FILE: ln.WSW Station L/Elem 1072.644 2.532 1075.177 2.199 W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 100-YR HYDRAULICS LATERAL "N" ln.wsw ************************************************************************************************************ ******** Invert Elev C- h Slope 1612.621 .2079 1613.148 .2079 1077.376 1613.605 1.905 .2079 1079.281 1614.001 1.663 .2079 1080.944 1614.347 1.447 .2079 1082.391 1614.648 1.253 .2079 I 1083.644 1614.908 _1- 1.087 .2079 1084.731 1615.135 .940 .2079 1085.671 1615.330 -I- - .804 .2079 Depth (FT) ******** Water Elev ********* 1.112 1613.733 1.152 1614.300 1.193 1614.798 1.237 1615.238 1.282 1615.629 1.329 1615.977 1.379 1616.288 1.431 1616.566 1.485 1616.815 4 (CFS) ********* 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 Vel Vel (FPS) Head SF Ave 17.91 - -I- 4.98 .0449 17.08 4.53 - -I- .0393 16.28 4.12 .0345 15.53 14.80 3.74 .0303 3.40 .0266 14.12 3.09 - -I- - .0234 13.46 12.83 12.23 - -I- 2.81 .0206 2.56 .0181 2.32 .0159 Energy Grd.E1. HF ********* Super Elev SE Dpth ******* 1618 72 1.28 11 2.40 1618 83 1.17 -1- .09 2.33 1618.92 .07 1618.98 .05 1619.03 .04 1619.07 .03 1619.10 .02 1619.12 .02 1619.14 .01 1.07 - I- 2.27 1 .98 - I- 2.22 1 .90 -I- 2.18 .82 - I- 2.15 .75 - 1- 2.13 I .68 2.11 .62 - 1- 2.10 CriticallFlow Top Depth 1 Width Froude N1Norm Dp 2.13 2.90 -1- 3.48 .76 2.13 2.92 3.25 .76 2.13 2.94 - I- 3.04 .76 2.13 2.95 - 1- 2.84 .76 1 2.13 2.97 - 1- 2.65 .76 2.13 2.98 - 1- 2.47 .76 2.13 2.99 - 1- 2.30 .76 2.13 3.00 -1- 2.15 .76 2.13 3.00 2.00 .76 PAGE Date: 9-28-2005 Time: 3:43:33 Height/ Dia.-FT - "N" ******* 3.000 .013 3.000 .013 3.000 .013 3.000 .013 Base Wt or I.D. X-Fall ******* ZL ZR ***** .000 .00 .00 .00 .000 .00 - -I- .00 .00 .000 .00 .00 .00 No Wth Prs/Pip Type Ch ******* 1 .0 PIPE 1 0 P- IPE 1 .0 PIPE .000 .00 1 .0 .00 .00 P- IPE 3.000 .000 .00 1 .0 -I- -I- I- .013 .00 .00 PIPE I I I 3.000 .000 .00 1 .0 - -I- -I- I- .013 .00 .00 PIPE I I 3.000 .000 .00 1 .0 - -I- -I- I- .013 .00 .00 PIPE I I I 3.000 .000 .00 1 .0 - -I- -I-1- .013 .00 .00 PIPE I I I 3.000 .000 .00 1 .0 -I- 1- .013 .00 .00 PIPE FILE: 1n.WSW W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 100-YR HYDRAULICS LATERAL "N" ln.wsw ************************************************************************ Invert Depth I 0 Station Elev (FT) I (CFS) L/Elem Ch Slope 1 1.542 1617.039 -1- 1086.475 1615.497 .687 .2079 1087.161 1615.640 .571 .2079 1087.732 1615.758 .471 .2079 1088.203 .375 1088.578 .287 1088.865 .206 1089.071 .121 1089.193 .037 tNT' 1089.230 JUNCT STR 1,0 4i-.z 1615.856 .2079 1615.934 - I -1- .2079 * * * 1.601 1617.241 -1- 1.664 1617.422 -1- 1 1.730 1617.586 - -I- - 1615.994 -I- .2079 1616.037 -I- .2079 1616.062 -1- .2079 1616.070 -1- .2315 Water Elev 1.800 1617.734 1.874 1617.868 -1 -1- 1.952 1617.989 -1- -1- 2.036 1618.098 -1- -1- -1 1 2.128 1618.198 -I- -1- * 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 Vel Vel (FPS) Head SF Ave *******I******* 11.67 2.11 - -I- 0140 11.12 1.92 .0124 10.60 1.75 9.64 9.19 8.76 8.36 42.70 7.96 -1 -I- .0109 1.59 .0097 1.44 .0086 1.31 .0076 1.19 .0067 1.08 .0060 .98 PAGE Date: 9-28-2005 Time: 3:43:33 ******************************************** Energy I Super CriticallFlow Top Height/ Base Wt Grd.E1.I Elev Depth I Width HF ISE Dpth Froude NlNorm Dp *********I******* ********I******** 1 1619.15 .56 2.13 3.00 .01 2.11 1.86 .76 1619.16 .51 2.13 2.99 .01 2.11 1.73 .76 1 1 1619.17 .46 2.13 2.98 .01 2.13 1.61 .76 1 1619.17 .42 2.13 2.96 .00 2.15 1.49 .76 1 1619.18 .38 2.13 2.94 .00 2.18 1.38 .76 1619.18 .34 2.13 2.91 -1- - - -I- .00 2.21 1.28 .76 1619.18 .30 2.13 2.86 - - - -1- .00 2.26 1.18 .76 1619.18 .27 2.13 2.80 -1 - - -I- .00 2.31 1.09 .76 1 1619.18 .00 2.13 2.72 - -I - - -1- 2.13 1.00 Dia.-FT N� 3.000 .013 3.000 .013 3.000 .013 3.000 .013 3.000 .013 3.000 .013 .00 .00 1 3.000 .000 .00 - -1- -1- .013 .00 .00 ZL ZR ***** .000 .00 - -I- .00 .00 .000 .00 - -1- .00 .00 .000 .00 -1- .00 .00 1 .000 .00 -1- .00 .00 1 .000 .00 -1- .00 .00 .000 .00 - I 3.000 .000 .00 -I- -1 .013 .00 .00 I I 3.000 .000 .00 - -I- -1- .015 ******* No Wth Prs/Pip Type Ch ******* 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 .00 .00 PIPE FILE: ln.WSW W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 100-YR HYDRAULICS LATERAL "N" ln.wsw PAGE Date: 9-28-2005 Time: 3:43:33 ************************************************************************************************************************** I Invert Station I Elev L/Elem ICh Slope 1 1095.710 1617.570 .005 .0000 1 1095.720 1617.570 Depth I Water (FT) I Elev .012 1617.581 1 .012 1617.582 -1- Q (CFS) ********* .00 Vel Vel (FPS) Head -1- SF Ave .50 .00 -I- - .0114 .00 .45 71- -1 .00 HF ISE Dpth 1 1617.59 .00 -1- .00 .01 Energy I Super CriticallFlow Top Grd.E1.I Elev Depth I Width Froude NlNorm Dp I .01 .26 -1- -I- 1.00 .00 .013 .00 .00 I I I I I 1617.59 .00 .01 .27 1.500 .000 .00 ******** Height/ Base Wt No Wth Dia.-FT or I.D. ZL Prs/Pip "N" X-Fall ZR Type Ch ******* ******* ***** ******* 1.500 .000 .00 1 PIPE' 1 1- R 1 1- W 111111 MI M-- N 1 a - FILE: ln.WSW WSPGW - EDIT LISTING - Version 14.01 Date: 9-28-2005 Time: 3:43:24 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP' WIDTH DIAMETER WIDTH DROP CD 1 4 1 3.000 CD 2 4 1 1.500 CD 3 4 1 2.000 CD 4 4 1 1.500 HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 100-YR HYDRAULICS LATERAL "N" ln.wsw WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING - ELEMENT NO 1 IS A SYSTEM OUTLET * * U/S DATA STATION INVERT SECT W S ELEV 1007.780 1607.900 1 1614.120 ELEMENT NO 2 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1012.050 1607.940 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1025.910 1608.090 1 .013 .000 .000 .000 0 ELEMENT NO 4 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1052.050 1608.340 1 .013 44.999 33.283 .000 0 ELEMENT NO 5 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1063.500 1610.720 1 .013 44.999 -14.579 .000 0 ELEMENT NO 6 IS A REACH * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1089.230 1616.070 1 .013 1,1.. �J 4_) 22.500 65.521 .000 0 ELEMENT NO 7 IS A JUNCTION * * * * v * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 1095.710 1617.570 4 3 3 .015 21.900 20.800 1617.120 1616.690 45.000 -45.000 RADIUS ANGLE .000 .000 WARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL DEFINITIONS ELEMENT NO 8 IS A REACH U/S DATA STATION INVERT SECT N 1095.720 1617.570 2 .013 ELEMENT NO 9 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 1095.720 1617.570 2 RADIUS ANGLE ANG PT MAN H .000 .000 .000 0 W S ELEV 1626.000 T1 TRACT 16869 LATERAL LINE N FROM SUMMIT AVE. 0 T2 100-YR HYDRAULICS T3 LATERAL "N" ln.wsw SO 1007.7801607.900 1 1614.120 R 1012.0501607.940 1 .013 .000 .000 0 R 1025.9101608.090 1 .013 .000 .000 0 R 1052.0501608.340 1 .013 -33.283 .000 0 R 1063.5001610.720 1 .013 -14.579 .000 0 R 1089.2301616.070 1 .013 V1"1 14' 2 65.521 .000 -0 JX 1095.7101617.570 4 3 3.015 21.900 20.8001617.1201616.690 45.0-45.0 .000 R 1095.7201617.570 2 .013 .000 .000 0 SH 1095.7201617.570 2 1626.000 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 CD 3 4 1 .000 2.000 .000 .000 .000 .00 - CD 4 4 1 .000 1.500 .000 .000 .000 .00 Q .001 .0 s- -- 11 -- 1 i 1 M r r 1- 111111 r 111111 FILE: N1.WSW I Invert Station I Elev - 1 L/Elem ICh`Slope 1 1002.010 1617.120 9.371 .0443. 1011.381 1617.535 9.217 .0443 1020.598 1617.943 6.887 .0443 1 1 1027.484 1618.248 -I -I- 5.364 .0443 11 1032.849 1618.485 - I -1- 4.140 .0443 1036.989 1618.668 - 1 -I- 3.232 .0443 I I 1040.221 1618.811 -I -I- 2.508 .0443 1 1 1042.729 1618.922 - 1- -1 1.884 .0443 1 I 1044.613 1619.006 -I -1- 1.297 .0443 W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 Q100--LAT-N1 1.040 1.070 1.112 1.157 1.203 1.253 1 1 1.306 1620.118 JN 126-2001 Q (CFS) wli PAGE Date:10- 2-2005 Time: 5:42:10 N1 wsw **************************************************************** ******** Vel Vel (FPS) Head - -1- SF Ave *1******* Energy Grd.E1. HF 1618.160 21.00, 12.72 _ 2.51 1620.67 .0288 .27 I 618.605 21.00 12.26 2.34 1620.94 - -1 -1- -1- .0258 .24 I I I 1619.055 21.00 11.69 2.12 1621.18 - -I- - - -I- -I- -1- .0228 .16 1 1619.405 21.00 11.15 1.93 1621.33 - -I- - - -I- -I- -1- .0201 .11 I I 1619.688 21.00 10.63 1.75 1621.44 - -I -I- -I- -1- .0178 .07 I I 1619.921 21.00 10.13 1.59 1621.52 - -I- -1- -I- -I- -1- .0158 .05 21.00 9.66 1.45 1621.57 -I -1- -I- -I- -I- .0140 .04 I I 21.00 9.21 1.32 1621.60 1 1 1.422 1620.428 L47, -I -I- -I- -1- .0125 .02 1.20 1621.63 -1- -1- .0112 .01 8.78 - Super CriticallFlow Top Height/ Base Wt Elev Depth I Width Dia.-FT or I.D. - - -1- SE Dpth Froude N1Norm Dp ******* ********1******** I .00 1.64 2.00 2.000 1.04 2.47.93 .013 .00 1.64 2.00 2.000 1- 1.07 2.33 .93 .013 .00 1.64 1.99 2.000 1.11 2.17 .93 .013 .00 1.64 1.98 2.000 1.16 2.01 .93 .013 I 1 .00 1.64 1.96 2.000 1.20 1.86 .93 .013 1 .00 1.64 1.93 2.000 - - -1- - - -1- 1.25 1.73 .93 .013 1 .00 1.64 1.90 2.000 1.31 1.59 .93 .013 I I .00 1.64 1.86 2.000 1.36 1.47 .93 .013 .00 1.64 1.81 2.000 - - 1- -I- -I- .013 1.42 1.35 - .93 - " N " ******* X-Fall ******* ZL ZR ***** .00 .00 No Wth Prs/Pip Type Ch ******* 0 PIPE .000 .00 0 .0 - 1_ .00 .00 PIPE 1 .000 .00 0 .0 -1- .00 .00 P- IPE I .000 .00 0 .0 - 1- - .00 .00 PIPE 1 .000 .00 0 -1- 1- .00 .00 PIPE 1 1 .000 .00 0 .0 - 1- 1- .00 .00 PIPE 1 1 .000 .00 0 - 1- 1- .00 .00 PIPE 1 1 .00Q .00 0 -1- 1- .00 .00 PIPE 1 1 .000 .00 0 -1 1- .00 .00 PIPE r-- M I- - 1111111 M 1111 r 111111 1 M 1 i 111111 FILE: Nl.WSW **** I Invert 1 Depth 1 Water I Q Station 1 Elev 1 (FT) 1 Elev 1 (CFS) - I -I- -I- -I- L/Elem ICh Slope I I I *********I*********I********I*********I********* 1045.910 1619.063 1.488 1620.551 21.00 - 1 -1- .789 .0443 1 I I I 1046.700 1619.098 1.560 1620.658 - I- -I- -1- -1- .270 .0443 I I I I 1046.970 1619.110 1.642 1620.752 - 1- -I- -1- -1- WALL ENTRANCE W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING .TRACT 16869 Q100--LAT-N1 JN 126-2001 I 1 1046.970 1619.110 -1- I 3.238 1622.348 -1- -1- 21.00 21.00 .23 - -1- wli Nl.wsw ************************************************************************** ******** PAGE Date:10- 2-2005 Time: 5:42:10 Vel Vel (FPS) Head SF Ave 8.38 7.99 Energy Grd.El. HF ********* 1.09 1621.64 .0100 .01 .99 1621.65 Super Elev SE Dpth ******* -I- -I- -1- .0090 .00 1 1 .90 1621.65 I .00 1622.35 -1- -1- 00 1.49 00 1.56 .00 .00 CriticallFlow Top Depth 1 Width Froude N1Norm Dp I 1.64 1.75 1.23 .93 1.64 1.66 - -1 1.12 .93 1.64 1.53 -1- 1 .26 28.00 _1- Height/ Dia.-FT " N " ******* Base Wt or I.D. X-Fall ******* 2.000 .000 .013 .00 2.000 .000 - -1- .013 .00 1 2.000 .000 - -1- I 5.500 28.000 .00 0 - -1- -1- I ZL ZR ***** .00 No Wth Prs/Pip Type Ch ******* P- IPE 1 0 . 0 .0 .0 f i r 111111 rr MI M 1__ rMINI O r 11111 1 FILE: N1.WSW WSPGW - EDIT LISTING - Version 14.01 Date:10- 2-2005 Time: 5:42: 2 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 0 5.500 CD 2 4 0 5.500 CD 3 4 0 3.500 CD 4 4 0 3.000 CD 5 4 0 2.500 CD 6 4 0 2.000 CD 7 - 2 0 .000 7.470 2.000 .00 CD 8 3 0 .000 5.500 28.000 .000 .000 .00 W S'P G W WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - TRACT 16869 Q100--I1AT-N1 JN 126-2001 wli N1.wsw W SPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * U/S DATA STATION INVERT SECT 1002.010 1617.120 6 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT 1046.970 1619.110 6 ELEMENT NO 3 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT 1046.970 1619.110 8 ELEMENT NO 4 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 1046.970 1619.110 8 W S ELEV 1618.200 RADIUS ANGLE ANG PT. MAN H .000 .000 .000 0 W S ELEV 1619.110 1 - M 1 1 1r r M r - 1 N 1 r - 1 11111 T1 TRACT 16869 T2 Q100--LAT-N1 T3 JN 126-2001 wli N1.wsw SO 1002.0101617.120 6 1618.200 R 1046.9701619.110 6 .013 .000 .000 0 WE 1046.9701619.110 8 .500 SH 1046.9701619.110 8 1619.110 CD 1 4 0 .000 5.500 .000 .000 .000 .00 CD 2 4 0 .000 5.500 .000 .000 .000 .00 CD 3 4 0 .000 3.500 .000 .000 .000 .00 CD 4 4 0 .000 3.000 000 .000 .000 .00 CD 5 4 0 .000 2.500 .000 .000 .000 .00 CD 6 4 0 .000 2.000 .000 .000 .000 .00 CD 7 2 0 .000 .7.470 2.000 .000 000 .00 CD 8 3 0 .000 5.500 28.000 .000 _.000- .00 21.000 .0 6- -- S S i - 1 - 8 1 1 8 1 - 1 1 111111 FILE: N2.WSW ******************** I Invert Station I Elev L/Elem ICh Slope *********I********* 1 1002.170 1616.690 .028 .0543 1002.198 1616.691 5.168 .0543 1 1007.366 1616.972 4.099 .0543 1011.465 1617.195 3.271 .0543 1014.736 1617.373 -I- 2.633 .0543 1 1017.369 1617.516 -1- 2.035 .0543 1019.405 1617.626 -I- 1.554 .0543 1020.959 1617.711 -1- 1.094 .0543 1022.053 1617.770 .690 .0543 W S P G W- CIVILDESIGN Version 14.01 PAGE 1 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date:10- 2-2005 Time: 5:41:51 TRACT 16869 Q100--LAT-N2 Depth (FT) JN 126-2001 ** *** ********** Water Elev ******** 1.127 1617.817 1.127 1617.818 1.172 1618.144 1.220 1618.415 1.271 1618.644 1.324 1618.840 1.382 1619.008 1.444 1.512 1619.155 1619.282 -1- wli Q Vel (CFS) (FPS) Head I Grd.El. SF Ave' HF ********* *******I*******I********* 21.90 12.00 2.24 1620.05 - - -1- -1- .0252 .00 21.90 12 00 2.23 1620.05 N2.wsw ************************************************************* ******** Vel I Energy - -I -1- -1- .0237 .12 1 21.90 11 44 2.03 1620.18 -I- -I- -1- .0210 .09 I I 21.90 10 91 1.85 1620.26 -I- -I- -I- .0186 .06 21.90 10.40 1.68 1620.32 - -I- -I- -I- - .0165 .04 I I 21.90 9.91 1.53 1620.37 .0147 .03 21.90 9.45 1.39 1620.40 -I- -I- -I- .0131, .02 1' 1 21.90 9.01 1.26 1620.42 -I- -I- -I- .0117 .01 21.90 8.59 1.15 1620.43 -I- -I- L ! , .0105 .01 Super Elev SE Dpth ******* .00 1.13 .00 1.13 .00 1.17 .00 1.22 .00 1.27 .00 1.32 .00 1.38 .00 1.44 .00 1.51 CriticallFlow Top Depth 1 Width Froude NINorm Dp 1.67 1.98 2.000 2.21 .90 .013 1.67 1.98 2.000 - -1- -I- 2.20 .90 .013 1.67 1.97 2.000 2.04 .90 .013 I I 1.67 1.95 2.000 -I -I- 1.89 .90 .013 1.67 1.93 2.000 Height/ Dia.-FT "N" ******* -I- -1- - 1.75 .90 .013 1.67 1.89 2.000 1.62 .90 .013 I I 1.67 1.85 2.000 - -I -1- 1.49 .90 .013 1 1.67 1.79 2.000 -1 -I- - 1.36 .90 .013 1.67 1.72 2.000 1.24 .90 .013 Base Wtl INo Wth or I.D.I ZL IPrs/Pip -I- -I X-Fal11 ZR 'Type Ch *******I***** I******* .000 .00 0 .0 .00 .00 PIPE .000 .00 0 .0 - -1 1- .00 .00 PIPE 1 1 .000 .00 0 .0 .00 .00 PIPE 1 .000 .00 0 .0 - -I- 1- .00 .00 PIPE 1 .000 .00 0 .0 -1- .00 .00 PIPE .000 .00 0 .0 .00 .00 PIPE 1 .000 .00 0 .0 - -I- .00 .00 PIPE 1 .000 .00 0 .0 - -I- .00 .00 PIPE .000 .00 0 .0 - -I- .00 .00 PIPE 1 I 1 N - r S 1 1 S - 1 - 1 1 -' r111111 FILE: N2.WSW Invert Station Elev L/Elem Ch Slope ********* ********* 1022.743 1617.808 .227 .0543 1022.970 1617.820 WALL ENTRANCE 1022.970 1617.820 - 1- W S P G W- CIVILDESIGN Version 14.01 PAGE Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date:10- 2-2005 Time: 5:41:51 TRACT 16869 Q100--LAT-N2 JN 126-2001 wli N2.wsw ************************************************************************************************* ******** Depth (FT) Water Elev *** 1.586 1619.394 Q (CFS) 21.90 1.672 1619.492 21.90 3.375 1621.195 21.90 Vel Vel (FPS) Head SF Ave ***#***I******* 8.19 1.04 - -I- .0095 7.81 .95 - I - .23 Energy Grd.E1. HF ********* 1620.44 .00 1620.44 .00 1621.20 Super ICriticallFlow Top Elev I Depth I Width S- E DpthlFroude NlNorm Dp .00 1.67 1.62 1.59 1.12 .90 .00 1.67 1.48 � I .00 27 28.00 Height/ Dia.-FT . N . 2.000 .013 2.000 5.500 Base Wt or I.D. X-Fall .000 .00 .000 28.000 INo Wth ZL IPrs/Pip - -I ZR 'Type Ch .00 0 .0 .00 PIPE .00 0 .0 .00 0 0 _ I_ MI= N E 1-- -! ®- - 1 e I _ I 1 11111 FILE: N2.WSW WSPGW - EDIT LISTING - Version 14.01 Date:10- 2-2005 Time: 5:41:43 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 0 5.500 CD 2 4 0 5.500 CD 3 4 0 3.500 CD 4 4 0 3.000 CD 5 4 0 2.500 CD 6 4 0 2.000 CD 7 2 0 .000 7.470 2.000 .00 CD 8 3 0 .000 5.500 28.000 .000 .000 .00 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS TRACT 16869 Q100--LAT-N2 JN 126-2001 wli N2.wsw PAGE NO 1 WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * U/S DATA STATION INVERT SECT W S ELEV 1002.170 1616.690 6 1618.200 ELEMENT NO 2 IS A REACH * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1022.970 1617.820 6 .013 .000 .000 .000 0 ELEMENT NO 3 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 1022.970 1617.820 8 .500 ELEMENT NO 4 IS A SYSTEM HEADWORKS * U/S DATA STATION INVERT SECT W S ELEV 1022.970 1617.820 8 1624.300 NMI N I N N-- M II= INN T1 T2 T3 SO R WE SH CD CD CD CD CD CD CD CD Q TRACT 16869 Q100--LAT-N2 JN 126-2001 1002.1701616.690 1022.9701617.820 1022.9701617.820 1022.9701617.820 1 4 0 .000 2 4 0 .000 3 4 0 .000 4 4 0 .000 5 4 0 .000 6 4 0 .000 7 2 0 .000 8 3 0 .000 21.900 wli 6 6 .013 8 .500 8 5.500 5.500 3.500 3.000 2.500 2.000 7.470 5.500 N2.wsw .000 .000 .000 .000 .000 .000 2.000 28.000 .000 .000 .000 000 .000 .000 .000 .000 1618.200 1624.300 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 ▪ 000 .00 ▪ 000 .00 .000 .000 0 REFERENCES & MAPS 03/02/05 N �• - -i-�--!-"� -t__.r '- R6 R7W , R6W .I R w I i 4W 0., _ `i 1 R2W N RIE R2E T4N - --A j 0/,1111 ._ _ ,(� - - - ,g _ _ _ _ O. -L_ t � :Z t �"i I - I -•.� J • I �. , I,. , I ,;�I ! ! I ! -- -' -1 ^11 -1 r t I .. , %1 r t -� 1 liI, I _~�` -� _ i `�l 1 I I i \� .. +. I- I- -I- �1IIi•• _ --1 - _'I'_ _I, _i— _ a f— i. L' �' i•, I ...•I• ."!�. I =aim J/ _ _ �-- - 1- y `I ram:•!. -��/�/_���.a .I_ 1 ' I _ .I / _ •/ •P t-I -[I 1• t - I I T�tT;. -! I I I I e . I- • - `•1. uI�•�&A��J�i�l�/its"! =j--'�! _ - i y�T-. 1-• t ` _ -1-fJ_ - - j ILA i% ��� i` i. I I ,^ -"� '1�, u' 1!- - •:I I • 3,_ kT ❑ i. ..rO- ly.�J.'!:'E -_ • - uIE: _._ ,.,„a• •..L V. d 1 11: --' - • -_ I l _ - -- - - ✓ - t- _ ... A �+ _ - -} -- � ,• �� - �, _. ti t_ I �... ; �P ®'' n` t -it y- ' wQ �,.v 'f7 UM-T4 � L.,.T2 N - - ' �i_ 4_ N. /S/.-+ "� r a� 'ice - -. 1 1- - ._' 4-- \ '- ' S ` rit Y I _1 I-.. ' r �..;u - "I '`�k �,�•�• - _ s r. 1; u� TIN- i I -�' 4. •.a I I I „in NE EIMININklIENTINitt '' '' k- __ ... _ , m l�m . ` �� 11 I ! dime%I�� ��! s�d`a1'w IE�t -. -.4 ....VPWRiii1M117. Milt.. VW lail ,. .,..:...,_\: _t_i__ T I S II MIMS' ' : . ..: ___ . ,___ _ 0 T.A 10 • ige . J_-. 111111 IREIKIIIIMMINI l - a� r ~ Vs - I MIND ��� -.r .- . _.. Amok 4111111M Al _..iiiklier_ 'Nilindririt --""7` 'llIl -v.!M. , . PI El, =IP , i m mi t i g • ,,, -id :"\- .__:----. I b ,- „ . PVIIIMP"IIINI plri7,_ _ .., • R : I R2 r I T Z S ' 1131101r Plj d ERSIDE Afri4 f"- •• II"• tee.. SI''( !_ , :am- ' ee i .111011TRAINSI ALR4W �111 R3•� "`RI ME FERROINSN- N oRICT i a ras -- I • "� ' ' -, 1. rs -, Rrr s SAN REDUCED DRAWING SCALE I"= 4 MILES VALLEYMoAREA YRJOOYEAA I HOUR •15. + `-- - - - - - - BERNARDINO COUNTY nc our � HYDROLOGY MANUAL 1 1.8 ISOLINES PRECIPITATION (INCHES) ��� 1L I - Rtt -1 I►t2 ) f•t1eL m� f• a en . r It 111111111111 1!i MI 1111 t-t-11 1111111 11119A11 , lill111111111i1i11 pripeam,..,,,,,.:,:,.„,,FANTrios, _i=„,_. s,�. # 1� .e�e a t ® ;TRH !] _ i1= '1- S �E ililli it 1 : 11 1 1i 11 NISI IoIIiIuuIuh1ICi1_.r 1110111111 1111 11111i1111IEhhli�l� i #. .4 ry 2} 111111111111111 " l j 1111111111111 ,11}IILIi 1 •.�.j 111111111111111 eeeeeeee ..1 I11.01 s���r�l �s l�;is®e1aa��.�esmseeee® 711111 s®1 T 1 4F.-- 4 r :1 Cr311Bic 185874, 40 Ut 1iT.' 7= '4`. 59 58 57 NOTE: SEE SHEET 4 FOR 8007f1f0 CB. CONSTRUCTION NOTES: 10+00 11+00 * CONTRACTOR TO 1ERIFY LOCATION AND ELEVATION PRIOR TO START OF OOVSTRUCTON. 8 N jl 2 w 7RACf"BOUN44RY 11NE-V-PE 5 OF,,12 13 ,TIE ................. ......................_.._.._...._. ..._....._...... ;,;-_........_._....._SH£ET..S OF _i2 im +CS�iN �03 21 12+00 22 23 0 CONSTRUCT 36' R.C.P. STORM DRAIN (0 LOAD SHOWN ON PLAN). O CONSTRUCT 24' R.C.P. STORM DRAIN (0 LOAD SHOWN ON PLAN). O CONSTRUCT MH PER AP.WA SID. PLAN 322-1 O CONSTRUCT P.C.C. COLLAR PER AP.WA STD. PLAN 380-2 O6 CONSTRUCT MODIFIED C.B. PER AP.WA 57D. RAN 300-2 ON SHE 3 Or PER PLAN) AND SEE DETAIL 44 ON SHEET 4 0 CONSTRUCT PIPE ANCHOR PER AP.WA STD. PLAN 221-1. IS CONSTRUCT to' MADE X 60' LONG K 7.5' DEEP ROCK NDL78ADON 7RD11H NNE TABLE UNE BEARING LENGTH L2 N3632'10-E 46.97 L3 N7343'38.W 22.97 13+00 10+00 PLAN 1•= 4D' SCALE IN FEET 0 40 80 1 0 160 CURIE TABLE CURYf CI C2 DELTA 1434'41' 7133'08' RADIUS 4500 22.50 LD1G7H 11.45 2823 TANGENT 5.76 16.31 )D4T t'Lr� DIAL BEFORE YOU DIG TWO VIORKING DAYS BEFORE YOU DIG TaL FREE 1-800-227-2600 A PUBIC SERVICE BY UNDERGROUND SERVICE ALERT REWSLW DE31D8700 DATE arr OA7E 3 -MIMI • .2111. L4 • 14••4.1 L. 150.1110C CONTR. Am1TNINIL •M3 10 05 11p IE 115_•50_ISY 5./ PIPE SEAT 3-0 ONE. /3 _ 131 0C 00RTIwE 135 _ (E•1 OC 4-201[0 E WW1 SEE N01E3 1011 • 430 me ON . 1••1 00 TIE INNS A •• EARS N r PLAN 13NAFT NOT SNORRI SECTION G-G 011IT 1413 STEP IN PAWS STREETS H BAR 130 _(/ 400 _ (1111 FOR PAYED STREETS. 050 _ 10 -r FOR UWAYED 1111 TIE OARS RM•• TO 10 _ (SIR OPTIONAL I(M•T ct E NM 1411 gt gig i0M RD PFT,akil MING3 AND COVER M NQWM IL Mrz 2 M R•ID OF 5.111 • 0111050 AN 6•y9 MNNOLE SHAFT PER STD. PLAN 3E4 STEPSE CI3 .1•30 PIPES SEAT ELEV. 3 15110 450 _ •OTN WAYS. TO OE USED WHEN D.1111500 pmIEa1 OR IMn SECTION N-M-P-O OPTIDNK tC ETE STREET -ADE MANGLE FRRE AM COYMII PEA STD. PLAN ISO T•a 9 D •ANS r�N TIE EARS •ARE E 11 F TIE EAE 11� A BARIt I DARN 1' IN .1.1 OC 1 1 CONCRETE RINGS PER STD. PLAN 514 5M • 450 _ 1N • 141 00 501N MATS. TO R USED MIEN • IS NSW _ 301OR MORE 3TR[[T GRADE la_(n_(3••r) 137 NINO SEAT 50 _ (1.) HOAR SECTION C-C ROM EON. TO 75 _ 131R AMERICAN PUBUC WORKS ASSOCIATION - SOUTHERN CALIFORNIA CHAPTER MANHOLE PIPE TO PIPE (LARGE SIDE INLET) U3E WIN 3TANOVIDIPECRICAT1011 PON PINING MORN. CON11000110M 11122•RDPLNN 322 - 1 31k2T,OF4 D Bus ROOM EDGES TO 73 n.131 R I..- S. uMr 125_•50_15..1 I PIPE NEAT OAR ,_.._Nip,+.•WWII.•W ,_ LONGITUDINAL SECTION r: :•4P:4 LLI1714 T;fT rn3FTSRL�ILI'[7F.[--SC Nam . [r.-o-[_'_TCQy■ iT[SY1L:•' irjyCr1L14 S•L•1Dr191 . t•TNl:•Y}1t4•1[[Y Li.-iri[-[Rl1Y3L:•"[1L:•llCW3YW �1Rc:1•acsla•a•Ycnn 1.1 OJT. • •31iT%iAWAW■t♦ �.,; J li%•lA� 144■ILEA--flbU.•"113G.t♦[IM1 3>-141GV3 1--rru■3iTTr1Ni._ .IaL•S4•u•-1_ ll1,11YARR 1-71••• 11,1r1Lir411.'•T1AI .1• AI-13 41211 r=1fv:Yl� L••I•C1LIY1 11314Hi 1r tT_E :LAN F>=1 U1'.rr.*VM 11r711V' [uzT_N LOON Lr7TI11LY1♦ 14i r1 I•.•11-Fr�RTrr� 11li13(r3i1 Frl'1R.1♦ 11.411= 111T11T 111211 1ME>=1 111 Ffh[7.:2tLY_ 1I::•r1/IM :9-7zne �••}ET r4.. 1Tf1ori* � 1H�1--rivAlm )1T-•T f Y� zoos NI lax Tr1 Yi Ifr -fl IYIEC01 cli Y!• •IFEI"•3231 S:riT1.' 1C1.1♦ •I.T 1-TH•YI1 IN,. •ii a(1J •CE1a 1•• 1.2.1412.1. Y15 F>^IYi ■E.F..1 0) >il FIT- 5 [ r-f•3•T>•1:e 1 •r7i •Y_14t•T YI♦ MT rtL ➢_I(ls . SI1Y1 •1'•r'T Y_4r -T10 n [ rZ romionmel Ism T♦ 1.1 N-1 u�21.1=T /G.AR 1.1 Tt YI.1PPIL- FILL■ 1%-1 �E31__'T 1r 01 1.71 BMW 1I,TIL•♦ IN-7.1vt• F::1-1.1LLY ■ IL 4['1trY■R1r11T11.11 111T111YT•1i11 1Q1I14 1 1 OEM l»E.1-.112G1 1•1111 1. 1tI•1-1JY� O 5r_1MNA1S. r1111 11 1 i'11 YTNESZ•C7.1.1111 1± • o 7511.1Jr-Ta•1LY• i•• T •)* .,l1-161- NI •0 11 ot.imX4r-IC t♦ H 17flclot• ri 1•rsC11r.• ■ 71•r'1l1•Y1EH•3-11Y11•41 A! I•rz• LLM•[r113L11•111 ■ IT•r64r..1r•1r11n.4• ■ 141-1 IE1R1r11AL.• 111•aI1C1O1 [r4.711 Y1.111 AMERICAN PUBLIC WORKS ASSOCIATION -SOUTHERN CALIFORNIA CHAPTER MANHOLE PIPE TO PIPE (LARGE SIDE INLET) [ruauoPIAN 322-1 MEET 20F4 SHOULD CONSTRUCTION OF THE REQUIRED MIPROVEMENTS NOT COMMENCE NITHN TWO YEARS OF THE DATE OF APPROVAL SHOWN HEREON AND CARRIED FORTH /N A DILIGENT MANNER THE CITY ENGNEER MAY REQUIRE REVISIONS TO THE PLANS TO BRING THEM NATO CONFORMANCE WITH CONDITIONS AND STANDARDS N EFFECT. NOTES I. VALUES FOR A. B. C, D.. D. ELEVATION R AND ELEVATION S ARE SHOWN ON THE PROJECT DRAWINGS. ELEVATIONS APPLIES AT INSIDE WALL OF STRUCTURE. 2. WHEN DEPTH M FROM STREET GRADE TO THE TOP OF THE BOX IS LESS THAN 867 mm (2'-10 I/2.1 FOR PAVED STREETS OR 1060 nR 13•-6.1 FOR UNPAVED STREETS. CONSTRUCT MONOLITHIC SHAFT PER SECTION C-C AND DETAIL 'N•. SHAFT FOR ANY DEPTH OF MANHOLE MY BE CONSTRUCTED PER SECTION C-C. WHEN DIAMETER Di IS 1200 no 148'1 OR LESS. CENTER OF SHAFT MAY BE LOCATED PER NOTE 3. 3. CENTER OF MANHOLE SHAFT SHALL 8E LOCATED OVER CENTER LINE OF STORM DRAIN WHEN DIAMETER D, IS 1200 mm148') OR LESS. IN WHICH CASE PLACE E BARS SYMMETRICALLY AROUND SHAFT AT 43' WITH CENTER LINE 4. LENGTH OF MANHOLE MAY BE INCREASED AT OPTION TO MEET PIPE ENDS. BUT ANY CHANGE IN LOCATION OF SPUR MUST BE APPROVED BY THE ENGINEER. 5. P SHALL BE 125 ,,on (5.1 FOR Dl•2400 mm 1961 OR LESS AND 200 mil (8'1 FOR D. OVER 2400 no.. (96'). 6. REINFORCEMENT SHALL CONFORM TO ASTM A 615M. GRADE 300(A5T1A A 615. GRADE 401. AND SHALL TERMINATE 40 mD (I 1/2') CLEAR OF CONCRETE SUR- FACES UNLESS OTHERWISE SHOWN. 7. FLOOR OF MANHOLE SHALL BE STEEL TROWELED TO SPRING LINE 8. BODY OF MANHOLE SHALL T) POURED IN ONE CONTINUOUS LOPERATIONWAY EXCEPT THAT A CONSTRUCTION JOINT WITH A LONGITUDINAL KEYWAY MAY BE PLACED AT SPRING LINE. 9. THICKNESS OF THE DECK SHALL VARY WHEN NECESSARY TO PROVIDE A LEVEL SEAT BUT SHALL NOT BE LESS THAN THE TABULAR VALUES OF F SHOWN ON TABLE. SH. 1. 10. IF LATERALS ENTER ON BOTH SIDES OF MANHOLE. SHAFT SHALL BE LOCATED ON 510E RECEIVING THE SMALLER LATERAL II. STEPS SHALL CONFORM TO STANDARD PUN 635 OR 636. UNLESS OTHERWISE SHOWN. STEPS SHALL BE UNIFORMLY SPACED 350 mm (14.1 TO 375 mm (151 OC. THE LOWEST STEP SHALL NOT BE MORE THAN 600 mm 124') ABOVE THE INVERT. 12. THE FOLLOWING CRITERIA SHALL BE USED FOR THIS MANHOLE. A. THIS STANDARD PLAN IS USED WHEN STANDARD PLAN 320 IS INADE- QUATE MAIN LINE.. 900 mm (36.1 INSIDE DIAMETER OR LARGER. B. LATERAL • 300 mm ((21 TO 3600 mm (1449 INSIDE DIAMETER, HOWEVER. THE INSIDE DIAMETER SHALL NOT EXCEED THE INSIDE DIAMETER OF THE MAIN LINE. AMERICAN PUBLIC WORKS ASSOCIATION -SOUTHERN CALIFORNIA CHAPTER MANHOLE PIPE TO PIPE (LARGE SIDE INLET) mAr161oPLAx 322 -1 MEET 30PN 13. MANHOLE FRAME AND COVER SHALL CONFORM TO STANDARD PLAN 630 UNLESS OTHERWISE SHOWN. 14. MANHOLE SHAFT SHALL CONFORM TO STANDARD PLAN 324 UNLESS OTHERWISE SHOWN. 15. WHERE A MANHOLE SHAFT - 900 mm (36') WITHOUT REDUCER IS SPECIFIED REFER TO STANDARD PLAN 326. 16. WHERE A PRESSURE MANHOLE SHAFT - WITH ECCENTRIC REDUCER (5 SPECIFIED REFER TO STANDARD PLAN 328. 17. WHERE A PRESSURE MANHOLE SHAFT - 914 min (361 WITHOUT IS SPECIFIED REFER TO STANDARD PLAN 329. 18. DIMENSIONS SHOWN ON THIS PLAN FOR METRIC AND ENGLISH UNITS ARE NOT EXACT EQUAL VALUES. IF METRIC VALUES ARE USED. ALL VALUES USED FOR CONSTRUCTION SHALL BE METRIC VALUES. EXCEPT REINFORCING BAR SIZES IN ENGLISH UNITS MAY BE SUBSTITUTED FOR METRIC BAR SIZES. IF ENGLISH UNITS ARE USED. ALL VALUES USED FOR CONSTRUCTION SHALL BE ENGLISH UNITS. THE FOLLOWING STANDARD PLANS ARE INCORPORATED HEREIN; 324 MANHOLE SHAFT - WITH ECCENTRIC REDUCER 326 MANHOLE SHAFT - 900 mm (36'1 WITHOUT REDUCER 328 PRESSURE MANHOLE SHAFT - WITH ECCENTRIC 328 PRESSURE MANHOLE SHAFT - 914 non 1361 WITHOUT REDUCER 630 610 mm (241 MANHOLE FRAME AND COVER 633 914 mm 136') MANHOLE FRAME AND COVER 633 STEEL STEP 636 POLYPROPYLENE PLASTIC STEP AMERICAN PUBLIC WORKS ASSOCIATION- SOUTHERN CALIFORNIA CHAPTER MANHOLE PIPE TO PIPE (LARGE SIDE INLET) 322-1 OMIT •024 BENCH MARK: TESSOHNI CO OONCREIF TONER OF 34J' HORTII OF NT0EAML 02 51 NEST OF SRN SERAPE RD, 205 M NEST OF SERRA ADE E E VA770V: / 1420E09 y s No. 36037 A D0: 06-30-06 ,mcA� BASS OF BEARINGS: RE BM 14014 59:RT ALONG IRE Q SAW A W AS SNOWNr0 ALMG 10427-1. MEC 238/7-/L. Prepared Under The SupeMsisn Of : PREPARED N THE CFFICE OF MAHOLE ANO ASSOCIATES, INC- 760-A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE 19ORI 937-9131 Date : CITY OF FONTANA, CALIFORNIA RCE 38637 EXP. 6-30-06 MENDELL L. IWATBURU STORM DRAIN IMPROVEMENT PLANS DRAW Br DJ DESAo1E0 Br Cf8 7LECKE0 Br SCE LINE N' TRACT 1B8B9 APPRO4EV Br arr. EN0NEDt R.CE 51132 SAE. S SHOWN J:\126-2001\storm\sd02.dwa. 11/14/2005 2:48:02 PM. Wendell Wendell RERERENCE STORM DRAIN HYDRAULICS SUMMIT AVENUE STORM DRAIN \I 1 1 ramWI , ' POOP! F$ OVER ! :: 05 581 LINE : •TE"AL'CL ! ! • " " 594+-0505 I UNk "�" Q 1 �� W 3 ! i i 1 I I + ' 1 ; i ! i !, J j I•i ! o HG ii .1 i 61L5 t W i i ! i i ! i W i o i, i , , I ,..,, 1 , , , , , , , 160 a a i61� j11 1 .111 H Izo1' l ! w ; tip 1 N I lb io CIL I I I +'off N ,\ j i cc•u L IN�TA�L ` 0 LF I Ir 361" ROP fD- j 506 + NI 4 i I i j i I INSTALL 36" RCP I A\ 10+00 1 1 +00 LATERAL "N" Q-100 = 41.0 CFS Vmax = 5.8 FPS 10+00 LATE. Q-10( Vma REV. REVISION DEP110N DATE ENGR. CITY DATE SHOULD C( COMMEt, 11 n O N U. ,v R REVISED GAS, WATER & SEWER LINES �.(e►of � � I-ll-fi� ADDED ELECTRICAL LINE AND sn rnNNFrTinnic 111111111111•11M1111111111 11111111111111111111111M1111111611P ' 1+00 1+50 LATERAL "H" Q-100 = 5.8 CFS Vmax = 14.3 FPS *4- ma I I I I 1 I I I I i I r -h- As% I Kt - 1 • • VI I IN WA II HUM I MI I II I I I II I I I I I I EWA M I I I I I IIII 1111111 IN III PAIAMININOMMINIMIIMM=1.1.11.1.111.WPAI ,LIEME PINIIIIIIMIIII411.A....6111111111110M1111 -Het am I Ca PfsF OP. ; ; I f I I t ---+ ii 4 ,N ; I ; I ; *-11=1117 IM1111111L411111M1 am 11111111111111111U4 11111.111 iaa I PROP kICI • IL 11111111111.11111111111MMINEMIIIIIMINI11111111111111111Mill& ini;aus remmi aulunc=atim nossimmr..w.immommiramirommammum 6 11F20111111mmagiustaffallmommlIIIIIIIIIIMAINM I , 0 1+00 1+50 LATERAL "I" Q-100 = 5.8 CFS Vmax = 15.4 FPS I /11111141111111111111 • • i Al4111711 Ent CM 4: TERM. CL I I I ill I PROFILE HORIZ I'= 20' VERT V= 4' PLAN V= 40' SCALE IN FEET 40 BO 1+00 II 110 • MIR NMI 8 I MIMI I 1111111ValMill._ I I ! /di 21M111.1111111111111 Et" 1111MMINIONMPr LtcF.. 4 1111111 10+00 INSTALL E 4.55 4 R. ...P 10+50 0 -1 F. 50 I L sth.97t-Ps PIX YE:I I!j_ _ 1.1 - ri '1g-1- • 11+00 I I I MPSD LINE - "B3" Q-100 = 922.2 CFS Vmax = 24.0 FPS DD I±'M " " 111111 I • • MVP -61 z\ DIAL YOU DIG 1ARKING BEFORE DAYS REFEIRE VDU DIG TELL FREE I-800-227-2600 A PUBLIC SERVICE BY LACERGRCUND SERVICE ALERT REV.A I IES 4.1-40 LE -I 11- 500 j I 1 I 1 1 +00 3 R 10+00 LATERAL "N" Q-100 = 41.0 CFS Vmax = 5.8 FPS RENON DESCRFMCN REVISED GAS, WATER & SEWER LINES ADDED ELECTRICAL LINE AND SD CONNECTIONS REV. LAT. "E" AND ADDED LATERALS L, M, N 0 AND P DATE I I D. CRT DALE INSTALL ta-1, 31.6 U- LF. II 1+50 LATERAL "J" Q-100 = 7.8 CFS Vmax = 10.8 FPS Hill „ mu 2 6- 70. .0 P. 1+00 1+50 LATERAL ''K" Q-100 = 3.7 CFS Vmax = 1.2 FPS hiiTi • IHU• 111111'11ml TV- NAA io+oo 11+00 LATERAL "0" Q-100 = 44.2 CFS Vmax = 6.3 FPS I'S 'YE NMI ; Hminimmisiore Brimmainummumim I I I I I • 1'4 • PROFILE HORIZ 1.= 40' VERT 1.= 4' PLAN 1.= 40' SHOULD CONSTRUCTION OF THE REQUIRED IMPROVEMENTS NOT COMMENCE WITHIN TWO YEARS OF THE DATE OF APPROVAL SHOWN HEREON AND CARRIED FORTH IN A DILIGENT MANNER, THE CITY ENGINEER MAY REQUIRE REVISIONS TO THE PLANS TO BRING THEM INTO CONFORMANCE WITH CONDITIONS AND STANDARDS IN EFFECT, 10+00 ii+oo LATERAL "P" A Q-100 = 33.7 CFS Vmax = 4.8 FPS BOCI1 KNOB o-L7 cAnt,.., BeSS OF NE BASIS OF BEARINGS FOR INS NAP IS THE BRASS CAP IN CONCRETE S.C.E. souni UNE OF THE NORPLEAST QUARTER OF TOWER LEG.343 N 0 HIGHLAND SEC. 26. TOWNSHP I NORTH. RANGE 6 WEST AVE,. 0.20 MI. W 0 SAN SEVERE RD. SAN BERNA0DI/43 MERIDA/I WA AS 2.65 MI. W. ALONG HIGHLAND AVE., N 11437.36T 11 ON A LOP BLED IN BOOK 88 FROM SIERRA AVE. PACES 36 THROUGH 42. INCLUSIVE. OF SURVEY. ELEVATICH 14261060 RECORDS Of SAN BERNARMNO COUNTY. Prepared Under The Supenvision Of: PREPARED IN THE OFFICE OF DADOLE AND ASSOCIATE-S. INC. 10601 CHURCH STREET , STE 107 RANCHO CUCAMONGA CA 91730 PHONE (909)9481311 Date BCE 62183 DP.9-30-05 NOTE: * CONTRACTOR TO VERIFY DEPTH & LOCATION CITY OF FONTANA, CALIFORNIA STORM DRAIN IMPROVEMENT PLANS DRAIN BE DI.S DESIGNED ERG LP/ATS SUMMIT AVENUE IIPSD LINE B - PHASE 2 LATERALS "11.-..K., AND LINE "Br =E. AS SHOWN DATE NOV 2003 IIECKED BE ATS/MJG APPRCAED BE CITY ENGINEER R.C.0. 51152 DATE CRAW NB: 3213 Y12 1' J:\652-1452 \storm \sd-oh2-09Delta1.dwa. 5/25/2005 3:10:21 PM. Wendell. Wendell II II 1 ,. - MMEMMEMEMMEMMEMEMUMEMMEMMEMMENCAMMIMMEMMEMEN IMMIMMMIIIIIIIIIIIIIIIIMM ' iMM "i"" 1111111111111111 1 1111111111111111iirm mmumumm"mmn "^mmumm - I; iiiiiiiiiiim•imelpillme .:....... memmmummomunimm N AM n'T'':.- -'qUilndialt "inn MUM MEM MMMMMMIMP::C4rrgg45T NMEIMMIMMIMMIIIIIII"MMMEM111:11141iigI1111111111111i1111111 IN m iiiIiiIiiilmiiimMiliiimmm IIIIIiiiiiiralullsms="Imilti66 iimmmililifimmamommligraliimme 11116m1mmom m m miC Room= liEliiiilliiiiMEMEMPAILUMMUNIEFAIMMOMENIENNEERMEMIPPAIMITEELVEM NOMMEIMMENINIMENIMENENIMMENINIERREENGSAMMEMEINHEMININEMEEEMZEMSSIBUMBIZSMMIIRIMMENNEMILIONMEMOMMESIMMFAMMILEILAWIRES! NirmismiaffiNMEMENOVIIMEN FlIMEMEEMINSI IMMENINNIUMMENIUMMINIMENNIUMMORNINEWARMEMMIONIMMIIMMEMEMEMNIZEREMEMEMIIMENIVOMUMMEMBINEMIMINENSIENINEEMBIEF-0ErigillMrigesamintuLTMERIMMEREMIREHOPMER PERMISERME IMIERIMENINEMMINIIIINANNIMENNIMMEMENNIMEN4MIN EGIMENIERMINNEWIENNiiiMMERIBUIRNINISMINERIER EVANS IIIIRMAIMPEEMPArafaStrZaiiiiMINEFIEZEIMERIERIONIIiiiiiNEMMEILM., slikiiiiiNIRIMENI 11111111110111MINEIBEIBIEMBIERNIMINMEMINNIEUMMIMENIMENIMININIMEMIENSMIUMEMMENIMIIIIVREEMMEIMMIRELERAMEMEMEMERNOMMENIENVOIMMIELAMiiiiMnintrirs IPBEEMBIRRIM INIMPIRECIENEMEMMINIP IMIEMBRIPMENKIMUU 1111111111MINNEMINNEVIIIMMIPPINIMINIMILEMEMBRIENOTAVAraiiiiiirITATimi HIM ME INNEVAMENERFAMPRIEROMPUILEMegyaiNEELTEMIENSINIMMERREI PINERNIENIMI r..16911111MPAIIIMIUMMEEnamILIE111169111LIMM=r9Lis."96165EIVAILIMmon'ibmsarlinEmliallffilitiiiIMIEILMILI ERIMMIL9 MMEMMEMMINIMEMMINENRIMMOMMEMEMUMMEMMOMMEMMEEMEMMERMINWignWaTiMMEMERMEMMIenEMENNEMMEENNMWOMET=MEMMEMMEMEMENMEMEMEMMEHEMENEREMOMPOIMEMEMENEMEMM Igu"'"--Wom--ingrMENNIMMEMEMINECSIT/MMIIREMMOMEMEMEWEENICAMMMEMMEMEMEMEMMEMEWOHIBOOPMIggrmmommimmm IMIMMUMMMMMMMMMMMIIMMMMMUMMMMMMMIMMM11-=5-2111ffidalINMEMUMEMPTAWdMoW=7-IMMEMENEMMEMMEMEMERNMEMEMEEMENEWM, a3011.--..mmiiimmillipplifill111111 111111111111111111111111111111221112161111MMM4611:21111170116=21111041111111gMagaggiiIIMIIIINEMEMEMMITAMEMERFAUMMEN 11111111111111111111111111111111115;;;Riiiiiiiiii:1111111111111111111111111111111111111111111111111111111111111111111111 --NolosomMaisiliNglIMEMMEMEMEMEMVEMSNIMMEEM 119111111111111111111111111111111111111111121AUMMERMi=aVEgVS 0 VaillEMEEMIUMEMEMZENZEZEINEENIEREMEMMEEMMIEMMEEW. 1014 MEER 115110115111111110011MENkidEU INEEMIEMENOMMIEZEIMEMEMIBIEMEMERE=iiimmts.P.ELloaraNEEMEINEMEEMEMOUNIEMEMEEMEMMER=SMEEMEMESIEBEIMEN-ME Effmtaillmung mmlilliiiiiiiiiiril EMMEMMEMMEMMEMEMIMMEMEMEMEMERMUMMENE.ZolauseMEMEMEMEMEMMEMMURNEMEMMMEMMEMOMEMEMMEMEMEMOMMEMENMEMMEMMEMEN Willinp0q1VIIMAIME mmgmmmmmmommommmilmmmgmEmmmgm,Raimismiammommmilmiimmmii mIlimmilmlimmmommemmlimIlimmommisimprimummil miervinin 1119141111111 mmoommmommEmmomm-momm,pingsommammimmelm meimmimmm m III m IMUME1113:1111116 IlWalliii.11111.d.-11 ng"°1Idlatlldllds'm%aw9BNINL.aIEML ...."-41111 inkikarli indiumni•dirmiiir-Tormihrouniirmak'on II mill .1 . ELL= iiiiiillingidlaillEMELAWNIER UU 1„.*00tr.,- !.. r 1,1,11rimela - lim m"Im alm MM M 14- illi WEI IIIM -7- ---1- - i7 A + 7 .-: .:. 583+00 584+00 P. . • A'vs I ® TR. NO.16877 DIST. POLE TO BE RELOCATED BY OTHERS(TYP) 585+00 586+00 A.P.N.226-092-5,43 VI OUST. 25WATER (A.P.N.226-171-32 A.P.N.226-171-18 PL CONSTRUCTION NOTES 0-- CONST. 11' X 9' CAST -IN -PLACE REINFORCED CONCRETE SINGLE BOX PER DETAILS ON SALT 12 0--- CONST. 12' X 9' CAST -IN -PLACE REINFORCED CONCRETE SINGLE BOX PER DETAILS ON SHT 12 0-- CONST. MANHOLE -CONCRETE BOX STORM DRAIN PER A.P.W.A. STD. 323-1 CONST. JUNCTION STRUCTURE -PIPE TO RCB, PER A.P.W.A. SR). 333-1 CONST. JUNCTION STRUCTURE -PIPE TO RCB, PER AP.W.A. SM. 334-1 CONST. TRANSITION STRUCTURE -SINGLE RCB TO SINGLE RCB PER A.P.W.A. STD. 341-1 CONST. PIPE CLOSURE TYPE 'B' PER SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT STD S.P. 176A CONST. 24 R.C.P. D-LOAD PER PLAN CONST. 36' R.C.P. D-LOAD PER PLAN. CONST. CONCRETE COLLAR PER A.P.W.A STD. 380-2 PROTECT EXISTING IMPROVEMENT IN PLACE. CONST. 30" R.C.P. D-LOAD PER PLAN., EXIST. R/W OUST. SEEWALX MST. CURB & CURER PROP. CURB & GLITTER PROP. SIDEWAY PROP. RN TRAPITCWIALIW EXIST. EDISON CONDUIT LEXIST. TEL CONDUIT kP.N.226-171-15 FUTURE PARK E Y r0-61.46 1111111111111111111111111111111111111111111119111111111111,1111111111111 MUMMEMEMMEMMEMMEMMEMEMMEMEMEMUMEMEMEMEME&AMMEMMMEMMEMB 587+00 PLAN l'= 40' 588+00 SCALE IN FEET o6e540 34io CATCH BASINS PER CITY DWG 3211 SEE SHEET I FOR LATERAL mows 2 A P.N.226-092-5,4/c3 r" 4 MST. POLE TO BE +2 RELOCATED BY OTHERS 20, (TIP) - Al A.P.N 21-171-26 PARK'SIIIE WAY PROPOSED 10' SEWER -3712- PROP. EDP 589+00 590+00 LATERAL "W. - 104.52.05r:0 \ END RCP v..7 MST. POLE 10 BE RELOCATED BY ODIERS(TYP) ror-r-4c, EXIST. EDISON CONDUIT A.P.N.226-171-29 589+43 05 A.P.N.226-171-28 =1+07.07 (ATT PL SUMMIT AVENUE TR. NO.1 6869 •J„ 591+00 592+00 00 CL CB 1 15 A.P.N.226-092-5,4&3 ST. STwA1341+cul T57 -r=EXISE-POLE-TO-BEr RELOCATED BY OTHERS(IYP) A.P.N.22 171-24 LATERAL FL CL CB 116 ST. STA 8i+00.0(1 W=14 V=5 :AA k IMIOMIMMEMIME:=MEMMIll=11111 1111.030111111.1111MOMPIEMM MICEOMICI=1121.0:=E1 EltoRMINEINCEIZMM3351111111102111111 IIKG.IIIIIEMIMBI:511111MIEMMEINEEMI INIteNim N oaorsr wipmnamizmi. DDT. YOU DIG DIAL BEFORE )110:1 WORKING DAYS BEFORE YOU DID TILL FREE 1-800-227-2600 A PUBLIC SERVICE 11Y UNCERGRIAND SERVICE ALERT 1EV. REESER DESCRPRON DATE OM OTT DATE REVISED GAS, WATER & SEWER LINES ADDED ELECTRICAL UNE AND SD CONNECTION REV. LAT. "E" AND ADDED LATERALS L, IA. N 0, P & R SHOULD CONSTRUCTION OF THE REQUIRED IMPROVEMENTS NOT COMMENCE WITHIN TWO YEARS OF THE DATE OF APPROVAL SHOWN HEREON AND CARRIED FORTH IN A DILIGENT MANNER. THE CITY ENGINEER MAY REQUIRE REVISIONS TO THE PLANS TO BRING THEM INTO CONFORMANCE WITH CONDITIONS AND STANDARDS IN EFFECT. 00 5 TS '-LOSTR/W EXIST. EDISON DIST 8' GAS CONDUIT EXIST. TEL CONDUIT A.P.N.226-171-29 593+00 594+00 r—m/W:OTHEIstro BE Fur..mmerRELOCA-m\ A.P.N.226-092-02 GOGH MARIO 8-17 CALTRANS TOWER LEG,343 N 0 HIGHLAND AVE., 0.20 MI. W 0 SAN SEVAINE RD. GRASS CAP IN CRETE S.C.E. 2.65 LII. W. ALONG HIGHLAND AVE., FROM SIERRA AVE. OEVAD3R 1428.0090 NASSOFIEPRECP THE PSIS OF BEARINGS FOR NS mAP IS THE SOUTH LEE OF THE NOICHIEWT QUARTER OF SEC. 26. TOWNSHR I NORTH. RANGE 6 WEST SVI BERNARDINO MERIDIAN SHOWN AS N 1391716. W ON A WV FILED IN BOOK PO PACES 36 THROUGH AZ INCLUSIVE. OF SURVEY, RECORDS OF SAN BERNARDINO COUNTY. Prepared Under The Supervision Of: PREPARED IN THE OFFICE OF ISADOLE AND ASSOCIATES, INC. 10601 CHURCH STREET. S1E.107 RANCHO CUCAMONGA. CA 91730 PHONE (909) 9481311 Date RCE 62163 DP.9-30-05 4,12114D] EXIST. EDTSON-7 CONDUIT A.P.N.226-191-18 CITY OF FONTANA, CALIFORNIA STORM DRAIN IMPROVEMENT PLANS SUMMIT AVENUE TO 11! EP/03 KNOAk X CRAM Ert DLS/D.T ODAMITe LP/ATS DAM NOV. 2003 MSCEDBY: ATSAM APP111741:1111: CITY ENGINEER R.E.E. 51152 DATE DORM ND.: 3213 5 12 to JA652-1452\storrasd-Dh2-05Delta1.dwa. 3/2/2005 11:04:57 AM. Dawn. Dawn =II MINI FILE: B.WSW ***************** ** M =I M 1=1 M N I/� MINQi-t 1, vt l Y,dra cc l,G W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 I Invert I Depth Station I Elev I (FT) - 1- -1 L/Elem ICh Slope 1 Water Elev ********* 55956.070 1565.738 8.519 1574.257 _I_ -1 88.152 .0032 Q (CFS) ********* Vel Vel 1 Energy (FPS) Head 1 Grd.E1. SF Ave] HF *******I*******I********* Super ICriticallFlow Top Elev I Depth 1 Width - -1- -I- - SE DpthlFroude NlNorm Dp *******I********1******** 1 2374.00 23.22 8.37 1582.63 .00 9.00 12.00, - - -1- -I- -1 -I- -I .0082 .72 8.52 1.40 9.00 WARNING - Flow depth near top of box conduit 1 1 I 56044.230 1566.020 8.123 1574.143 - I- -I_ -I- -I- 89.480 .0032 I I I I 56133.710 1566.307 7.745 1574.052 - I- -1- -1- -1- 89.621 .0032 I I 1 1 56223.330 1566.594 7.384 1573.978 -I -1- -I- -I- 88.953 .0032 I I I I I 56312.280 1566.879 7.041 1573.920 2374.00 -I- 1 -I- -1- -I- 87.719 .0032 I 56400.000 1567.160 6.713 1573.873 - 1- -1 -I- -I- TRANS STR .0035 56420.000 1567.230 5.500 1572.730 2374.00 -I- I- 135.000 .0032 06/30/04 -1- -1- -1- 1 2374.00 24.35 9.21 1583.35 .0093 .83 WARNING - Flow depth near top of 1 2374.00 25.54 10.13 1584.18 - I- -I -1- -1- .0105 .94 2374.00 26.79 11.14 1585.12 - 1- -I -I -1- .0119 1.06 1 I' 28.10 12.26 1586.18 - I- -I- -1- .0134 1.18 I 2374.00 29.47 13.49 1587.36 _1_ -1 -1- -1- .0157 .31 31.39 15.30 1588.03 - I- -I -1- .0307 4.14 PAGE Date: 4- 2-2003 Time: 2: 7:54 Height/IBase Wtl Dia.-FTIor I.D.I ZL "N" I X-Falll ZR *******1*******1***** 9.000 12.000 .00 - -I- .013 .00 .00 ******* No Wth Prs/Pip Type Ch ******* 0 .0 BOX 1 I 1 I I .00 .9.00 12.00 9.000 12.000 .00 0 .0 -I- -I- -1- -I- I I- 8.12 1.51 9.00 .013 .00 .00 BOX box conduit I I 1 1 I I .00 9.00 12.00 9.000 12.000 .00 0 .0 - I- -I- _I_ -I_ -I I- 7.74 1.62 9.00 .013 .00 .00 BOX 1 I I I I I .00 9.00 12.00 9.000 12.000 .00 0 .0 - 1- -1- -I- -I- -1- I- 7.38 1.74 9.00 .013 .00 .00 BOX I I 1 I I I .00 9.00 12.00 9.000 12.000 .00 0 0 - I- -I- -1- -1- _1- I- 7.04 1.87 9.00 .013 .00 .00 BOX I I I I I .00 9.00 12.00 9.000 12.000 .00 0 0 -I- _1_ -1- -1- -I- I- 6.71 2.00 013 00 .00 BOX, I` I I I I I .00 5.50 13.75 5.500 13.750 .00 0 .0 -I- -I- -I- -I- -I I- 5.50 2.36 5.50 .013 .00 .00 BOX FILE: B.WSW ****************** Station L/Elem ******** 56555.000 TRANS STR Invert Elev Ch Slope ********* 1567.660 .0820 W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 **************************************************************************************************** Depth I Water (FT) 1 Elev - -1- 9.209 1576.869 2374.00 1 56575.000 1569.300 15.017 1584.317 2374.00 _1- -I-- 49.000 .0820 56624.000 1573.320 11.641 1584.961 2374.00 - I- -I- -I- -I- - JUNCT STR .0825 I I I I 56632.000 1573.980 15.643 1589.623 1917.00 - 1- -1 -1- -1- - 55.289 .0820 I 56687.290 1578.512 11.582 1590.094 1917.00 - I--1- HYDRAULIC JUMP Vel Vel (FPS) Head SF Ave Energy Grd.E1. HF Super ICriticallFlow Top Elev I Depth I Width - -1- -1- SE DpthlFroude NlNorm Dp *******1********1******** Height/ Dia.-FT "N,. ******* Base Wt or I.D. X-Fall ******* I I 31.39 : 15.30 1592.17 .00 5.50 13.75 5.500` 13.750 -1- -1_ .0131 .26 9.21 2.36 .013 23.98 8 93 1593.25 .00 9.00 11.00 9.000 11.000 - -I- - -1- -I- -1- -1- _I--1- .0131 .64 15.02 1.41 3 83 .013 .00 I I I I I I 23.98 8.93 1593.89 .00 9.00 11.00 9.000 11.000 - -I- - -I- -I- -I- -I- -I- -I- .0086 .07 11.64 1.41 .013 .00 I I I I 1 I 19.36 5.82 1595.45 .00 9.00 11.00 9.000 11.000 - -I- - - -I- -I- -I- -I- -I- -I- .0086 .47 15.64 1.14 3.29 .013 .00 ZL ZR ***** Date: 4- 2-2003 Time: 2: 7:54 ******* No Wth Prs/Pip Type Ch .00 0 1- .00 .00 BOX .00 0 .0 1- .00 BOX .00 0 0 1- .00 BOX .00 0 .0 1- .00 BOX I I 19.36 5.82 1595.92 .00 9.00 11.00 9.000 11.000 .00 -1- - - -I- -1 -I- -I- -I- -I- 56687.290 1578.512 6.357 1584.869 1917.00 27.41 - I- -I- I- -I- -I- -I- 7.172 .0820 I I 56694.460 1579.100 - 1- -I- 774.559 .0124 I I 57469.020 1588.700 - 1- _1- 168.414 .0162 1 I 57637.430 1591.428 -I- -I- -I- -1- -I- 193.988 .0162 06/30/04 I 6.552 1585.652 1917.00 -1- I I I 6.267 1594.967 1917.00 -I- -I- -1- 1917.00 6.425 1597.852 0 I - I I 11.67 1596.54 .00 9.00 11.00 9.000 11.000 .00 0 - - -I- I -1- -1- -I- -I- I .0131 .09 6.36 1.92 3.29, .013 .00 .00 BOX I I - I 1 I I I 26.60 10.98 1596.64 .00 9.00 11.00 9.000 11.000 .00 0 -I- - - -I- I -I- -I- -I- -I- .0133 10.34 6.55 1.83 6.59 .013 .00 .00 I I I I I I I - BOX 27.81 12.01 1606.97 .00 9.00 11.00 9.000 11.000 .00 0 .0 -I- - - -I- -I- -I- -I- -I- -I- .0137 2.30 6.27 1.96 5.95 .013 .00 .00 I I I I I I BOX 27.13 11.43 1609.28 .00 9.00 11.00 9.000 11.000 .00 0 -I- I- -I -1- -I- -I- -1- .0125 2.42 6.42 1.89 : 5.95 .013 .00 H-15 1- .00 BOX FILE: B.WSW W S P G W CIVILDESIGN Version 14.01 PAGE Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date: 4- 2-2003 Time: 2: 7:54 SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 1 Q Vel Vel Energy Super CriticallFlow Top Height/ I (CFS) (FPS) Head Grd.E1. Elev Depth 1 Width Dia.-FT -- -1- -- -1- -- -- -- -I- -- - I SF Ave HF SE Dpth Froude N1Norm Dp "N" *******1******* ********* ******* ******* I Invert 1 Depth Station 1 Elev I (FT) L/Elem ICh Slope 1 57831.420 1594.569 6 738 -I -1- 118.578 .0162 I I 57950.000 1596.490 7.067 -1- -I- JUNCT STR .0150 1 1 57954.000 1596.550 6.430 -1 -1- 14.262 .0168 57968.260 1596.790 6.459 -1- -1- 363.406 .0124 I I 58331.660 1601.297 6.535 463.523 .0124 58795.190 1607.044 -1- -I 196.598 .0124 58991.790 1609.482 -I -I- 112.223 .0124 1 I 59104.010 1610.874 -1 70.258 .0124 59174.270 1611.745 -1- 44.754 .0124 6.854 7.188 7.539 7.907 ** Water Elev *I********* 1601.308 1917.00 25.86 10.39 -1- -1- .0110 I I 1603.557 1917.00 24.66 9.44 -T- -1- -1- - .0113 1 1602.980 1848.00 26.13 10.60 -1- -1- -1- - .0122 1603.249 1848.00 26.01 10.50 .0119 1607.831 1848.00 25.71 10.26 - -1_ -1- _I_ - .0111 1613.898 -1848.00 24.51 9.33 - -1- -1- -I- - .0098 1 1616.671 1848.00 23.37 8.48 -I -1- -1- 1 1618.413 1848.00 22.28 .0087 7.71 .0077 1619.652 1848.00 21.25 7.01 -1- -I- -1 - .0068 1611.69 1.31 1613.00 _1- .05 1 1613.58 .17 1613.75 4.34 1618.09 -I- 5.13 I 1623.23 .00 9.00 11.00 - -1- 6.74 1.76 5.95 .00 9.00 11.00 7.07 1.63 1 1 .00 9.00 11.00 -I- _1- 9.000 .013 9.000 -I - .013 9.000 -I - 6.43 1.82 5.70 .013 I I .00 9.00 11.00 9.000 -I- -1- 6.46 1.80 6.40 .013 1 1 .00 9.00 11.00 9.000 -1 -1 -1 6.53 1.77 6.40 .013 1 1 .00 9.00 11.00 9.000 -1 -1- -1 - - 1.92 6.85 1.65 6.40 .013 I I I I 1625.15 .00 9.00 11.00 9.000 -I- -1- _I_ -I- - .97 7.19 1.54 6.40 .013 1 1 1626.12 .00 9.00 11.00 9.000 -1- -I- -I- -I- .54 7.54 1.43 6.40 .013 I 1626.66 .00 9.00 11.00 9.000 -1- -I -1 -1- .30 7.91 1.33 6.40 .013 Base Wtl INo Wth or I.D.-I ZL IPrs/Pip - -1- -1 X-Fa11I ZR 'Type Ch *******I***** 1******* I I 11.000 .00 0 0 - -1- 1- .00 .00 BOX I I 11.000 .00 0 0 - -1- 1- .00 .00 BOX 11.000 .00 0 0 - _1-1- .00 .00 BOX 1 11.000 .00 0 .0 - -I- 1- .00 .00 BOX 1 11.000 .00 0 0 - -1- 1- .00 .00 BOX I 1 11.000 .00 0 .0 -1_ 1- .00 .00 BOX 11.000 .00 0 0 - -1- 1- .00 .00 BOX 1 11.000 .00 0 .0 - -I- 1- .00 .00 BOX I I 11.000 .00 0 .0 - -1- .00 .00 BOX 06/30/04 H-16 FILE: B.WSW W S P G W - CIVILDESIGN Version 14.01 PAGE 10 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date: 4- 2-2003 Time: 2: 7:54 SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 I Invert Station I Elev - 1- L/Elem ICh Slope 1 59219.020 1612.300 -I- 5.980 .0083 Depth I Water (FT) 1 Elev Q (CFS) I 1 8.293 1620.593 1848.00 WARNING - Flow 1 I I I 59225.000 1612.350 8.315 1620.665 1848.00 20.20 - I -I- -I- -I- -I- -I- JUNCT STR .0093 Vel Vel I Energy I Super ICriticallFlow ToplHeight/ (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FT - -I- -I- -I- -I- -I- -I- - SF Ave! HF ISE DpthlFroude NlNorm Dp I "N" 1 I I 1 I - 20.26 6.37 1626.97 .00 9.00 11.00 _ -1- -1- -I- -1- -1- .0064 .04, 8.29 1.24 7.46 depth near top of box conduit 1 6.34 1627.00 -I- -1- .0075 .11 WARNING - Flow depth near top of * Base Wt or I.D. X-Fall ******* 9.000 11.000 .013 ZL ZR ***** .00• No Wth Prs/Pip Type Ch ******* 0 .0 .00 .00 BOX I I I 1 1 .00 9.00 11.00 9.000 11.000 .00 0 .0 -I- -I- -I- -I- -I- I- 8.32 1.23 .013 .00 .00 BOX box conduit I I I I I I 1 I I I I I I 59240 000 1612.490 6.611 1619.101 1822.90 22.98 8.20 1627.30 .00 8.95 12.00 9.000 12.000 .00 0 .0 - I- -I- -I- -I- -1 -I- -I- -I- -I- -1- -I- -1- -I- I- 782 664 .0088 .0084 6.54 6.61 1.57 6.60 .013 .00 .00 BOX I I I I 1 I I I I I I I 1 60022 670 1619.370 6.861 1626.231 1822.90 22.14 7.61 1633.84 .00 8.95 12.00 9.000 12.000 .00 0 .0 -I -I- -I- -I- -I- -I- -I- -1- -I--I- -I -I- -I- 1- 273 871 .0088 .0075 2.05 6.86 1.49 -6.60 .013 .00 .00 BOX I I I I I I I I I I I I 1 60296.540 1621.778 7.196 1628.974 1822.90 21.11 6.92 1635.89 .00 8.95 12.00 9.000 12.000 .00 0 0 -I- -1- -I- -I- _I- -1- -I -1- -I- -I- -1 -I- -I- I- 127.531 .0088 .0066 .84 7.20 1.39 6.60 .013 .00 .00 BOX I 1 1 1 1 I I I I I I I 60424.070 1622.899 7.547 1630.446 1822.90 20.13 6.29 1636.74 .00 8.95 12.00 9.000 12.000 .00 0 .0 - I- -1- -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- I- 69.063 .0088 .0058 .40 7.55 1.29 6.60 .013 .00 .00 BOX 1 I 1 1 1 I I 1 I 1 I I 60493.130 1623.506 7.916 1631.422 1822.90 19.19 5.72 1637.14 .00 8.95 12.00 9.000 12.000 .00 0 .0 - I- -1- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- I- 36.867 .0088 .0052 .19 7.92 1.20 6.60 .013 .00 .00 BOX 06/30/04 H-17 MINI MINI 111111 IN1111 NIB FILE: B.WSW W S P G W- CIVILDESIGN Version 14.01 PAGE 11 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date: 4- 2-2003 Time: 2: 7:54 SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 ********************************************************************************************************************* 1 Invert I Depth Station I Elev I (FT) - I- -1- - L/Elem ICh Slope I ******1*********I******** Water Elev ******** 1 1 60530.000 1623.830 8.302 1632.132 - I- -1- - - 9.953 .0094 Q (CFS) ********* 1822.90 Vel Vel (FPS) Head SF Ave *******I******* WARNING - Flow I I I I I I I I I 60539.950 1623.923 8.533 1632.456 1822.90 17.80 4.92 1637.38 .00 8.95 12.00 9.000 12.000 .00 0 .0 - I- -I- -I- -I- -I- -I- -I- -I- -►- -I- -I- -I- -I- I- 6.047 .0094 .0043 .03 8.53 1.07 6.45 .013 .00 .00 BOX WARNING - Flow depth near top of box conduit I I I I 60546.000 1623.980 8.951 1632.931 1822.90 16.97 4.47 1637.40 .00 8.95 12.00 9.000 12.000 .00 0 .0 - 1- -I- -1- -1- -I- -1- -I- -I- -I- -I- -I- -I- -I- I- JUNCT STR .0850 .0028 .06 8.95 1.00 .013. .00 .00 BOX WARNING - Flow depth near top of box conduit I I I I 1 I I I I I I - I I 60566.000 1625.680 9.982 1635.662 971.70 10.80 1.81 1637.47 .00 6.64 10.00 9.000 10.000 .00 0 0 - 1- -I- -I- -I -1- -I -I -I- -I- -I- -I- -I -1- 1- 11.914 .0853 .0028 .03 9.98 .63 2.20 .013 .00 .00 BOX 1 I I I I I I I I I I I I 60577.910 1626.696 9.000 1635.696 971.70 10.80 1.81 1637.51 .00 6.64 10.00 9.000 10.000 .00 0 .0 -1- -1- -I- -I- -I- -1- -1 -I- -1 -I- -1- -I- -I- 1- 2.855 .0853 .0019 .01 9.00 .63 2.20 .013 .00 .00 BOX 1 1 I I I I I I I I 60580.770 1626.939 8.580 1635.519 971.70 11.32 1.99 1637.51 .00 6.64 10.00 9.000 10.000 .00 0 .0 - 1- -I- -1- -1- -1- -I- -I- -I- -I- -1- -I- -1 -1 1- 2.410 .0853 .0021 .01 8.58 .68 2.20 .013 .00 .00 BOX WARNING - Flow depth near top of box conduit Energy I Super Grd.E1.I Elev HF ISE Dpth CriticalIFlow ToPIHeight/ Depth I Width IDia.-FT - -1- -I- Froude N1Norm Dp 1 "N" ********I********I******* Base Wt or I.D. X-Fall ******* ZL ZR ***** 12.000 .00 .00 .00 ******* No Wth Prs/Pip Type Ch ******* 0 .0 BOX 18.30 5.20 1637.33 .00 8.95 12.00 9.000 - -I- - -I - - -I- -I - .0047 .05 8.30 1.12 6.45 .013 depth near top of box conduit 06/30/04 H-18 - - - 1 M 1 - - r 1 1 M - - - - - - FILE: B.WSW PAGE 12 Date: 4- 2-2003 Time: 2: 7:54 ******* I Invert I Depth 1 Water Q Vel Vel I Energy I Super CriticallFlow ToplHeight/ Base Wtl No Wth Station'I Elev 1 (FT) I Elev (CFS) (FPS) Head I Grd.El.I Elev Depth 1 Width IDia.-FT or I.D.I ZL Prs/Pip -I- -I- -I- - - - - -I- -I- -I- - - -I- -I- - - -I- - ICh Slope I I SF Ave' HF ISE Dpth Froude N1Norm Dp I "N" X-Fa11I ZR Type Ch 1*********1********1********* ****************I*******I*********I******* ********I********1******* *******I***** ******* 1 I I I 971.70 11.88 2.19 1637.52 .00 6.64 10.00 9.000 10.000 .00 0 .0 - 1- -I -I- -I- - - -I- -I- -I- - -I- -I- - - -I-- - 1.820 .0853 .0024 .00 8.18 .73 2.20 .013 00 .00 BOX WARNING - Flow depth near top of box conduit I I 1 I 1 I 1 I 1 I I I 60585.000 1627.300 7.829 1635.129 971.70 12.41 2.39 1637.52 .00 6.64 10.00 9.000 10.000 .00 0 .0 - I- -I- -I- -I- -1- -I- -I- -I- -I- 71- -I- -I- -I- I- 63.984 .0048 .0027 .17 7.83 .78 6.22 .013 .00 .00 BOX I I I I I I I I 1 1 1 1 1 60648.980 1627.607 7.465 1635.071 971.70 13.02 2.63 1637.70 .00 6.64 10.00 9.000 10.000 .00 0 .0 - I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 52.938 .0048 .0030 .16 7.46 .84 6.22 .013 .00 .00 BOX I 1 I I 1 1 I; I I I 1 60701.920 1627.860 7.117 1634.978 971.70 13.65 2.89 1637.87 .00 6.64 10.00 9.000 10.000 .00 0 .0 - I- -I- -I- -I- -I- -I- -I- -I- -1- -I- -1- -I -I- I- 5.102 .0048 .0034 .02 7.12 .90 6.22 .013 .00 .00 BOX 1 I I 1 I 1 I, I I I I I I 60707.020 1627.885 7.085 1634.969 971.70 13.72 2.92 1637.89 .00 6.64 10.00 9.000 10.000 .00 0 .0 - 1- -I -1- -I -1 -1 -I- -I- -1- -1- -I- -I- -I- (- HYDRAULIC JUMP 1 I I I I I I I 60707.020 1627.885 6.219 1634.104 971.70 15.62 3.79 1637.89 .00 6.64 10.00 9.000 10.000 .00 0 0 - I- -1- -I- -I- -1- -1- -I -I- -1 -I- -1- -1- -1- 1- 92.977 .0048 .0048 .45 6.22 1.10 6.22 .013 .00 .00 BOX I I I I I I I I I I I 60800.000 1628.330 6.219 1634.549 971.70 15.62 3.79 1638.34 .00 6.64 10.00 9.000 10.000 .00 0 .0 - I- -I- -I- -I- -1- -I- -I -1- -1- -1- -1- -1- -I- I- 379.211 .0048 .0048 1.82 6.22 1.10 6.22 .013 .00 .00 BOX W S P G W-- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING SUMMIT AVENUE STORM DRAIN - MPSD LINE B Sierra Ave to Hawker Crawford Channel Flow @ Q-100 ************************************************************************************************************************** L/Elem 60583.180 1627.145 8.181 1635.326 06/30/04 H-19 4 city of rancho cucamonga PIPE SIZE 12 15 8 21 DEPTH OF COVER IN FEET STANDARD DRAWING 27 30 33 36 I 11.23 1.5 1 1•73 I z 3 2000 2000 1300 1500 1500 CONCRETE CONCRETE OACx FILL , BACK FILL ,. 1500 1500 11300 2000 1750 1250 1250 1000 4 1 3 1250 1230 1000 1000 1750 1500 39 1600 1 1500 42 1500 11400 1400 1300 1230 1300 1200 1100 45 48 1400 11300 1300 1200 1100 ICOO 6 1 7 _ 8 9 10 500 11730 2000 2250 2500 1230 1500 1750 2000 2230 1250 1300 ,1730 2 PIPE SIZE 12 15 16 2► 1300 1750 24 27 30 33 1000 1 1100 1300 1400 1600 36 39 42 I200. 1•1J 1500 45 48 51 1200 1100 1000 1300 51 54 1200 1100 57 60 63 66 69 1250 1000 900 45n 900 nzn 500 800 800 1130 1050 72 1300 1200 1100 900 850 1000 54 950 1100 1400 57 60 2'S0 63 1200 66 1330 69 1050 72 75 1350 78 1250 1000 61 1400 84 $7 1450 1300 1150 90 93 1200 1030 900 96 102 1500 1550 1350 108 1400 800 1 900 l 1000 1130 .1 75 300 78 81 04 67 1250 90 93 1100 96 102 12120 108 PROJECTION CONDITION UNRESTRICTED TRENCH WIDTH PIPE SIZE 12 15 18 21 24. DEPTH OF COVER IN FEET II 1750 1500 12 2000 1750 13 2000 1750 14 ' 13 2000 2250 16 17 2250 2250 18 2250 19 20 2250 2250 21 22 23 24 25 IPIPE SIZE 2250 2250 2500 2500 2500 12 2000 2000 2000 WOO 1500 1500 27 30 1250 1750 1750 1750 17-50 1500 I 2000 2000 2250 2250 2250 18 2000 2000 2000 1750 1500 1750 33 36 39 1200 1250 1300 1300 1400 1 1750 1500 1600 42 1700 1600 18 21 2000 24 2000 27 30 33 ITOO r IBOO 118001 45 48 1200 51 1100 1400 1700 1900 1900 1900 •36 39 42 45 48 54 57 60 63 66 1150 1300 1250 51 1450 1500 1650 54 1750 19 50 57 60 63 66 69 69 72 75 1050 78 1200 61 84 87 90 93� 96 102 108 1350 1550 72 75 1950 2000 78 81 84 87 90 1900 93 MOO 96 ;02 1850 108 TRENCH CONDITION TRENCH WIDTH • 0.0. 4- 20 INCHES 1 �o/i- 3889pie R. C. P. n-I nL1n T�RI FS 519 TRACT 16869 PLANNING AREA 7 SHADY TRAILS (Citrus Heights North) SUPPLEMENTAL CALCULATIONS FOR INFILTRATION BASIN CITY OF FONTANA September 24, 2005 fir Reference 126-2001 PREPARED BY: Madole & Associates, Inc. 760-A Rochester Avenue Ontario, California 91761 TRACT 16869 PLANNING AREA 7 SHADY TRAILS (Citrus Heights North) SUPPLEMENTAL CALCULATIONS FOR INFILTRATION BASIN CITY OF FONTANA September 24, 2005 'it Reference 126-2001 PREPARED BY: Madole & Associates, Inc. 760-A Rochester Avenue Ontario 91761 (909) 937-9151 Fax 937-9152 Wendell L. Iwatsuru Date R.C.E. 36637 Exp. 6/30/06 SECTION M MISCELLANEOUS HYDRAULIC CALCULATIONS • ( ( MADO L7E6 0A NA Ds . A RTHCEIsATTEERS , INC. ONTARIO, CA. 91761 PHONE (909) 937-9151 JOB /it" `O SHEET NO OF CALCULATED BY DATE CHECKED BY DATE SCALE : • . . • - . . . : . . . • . : • • i • . . . . . . • • . • : ! : , • . . •', : . . • • . . . • . . cm fgE i 1z e /A KA FL: 7E fre, 131 (a* KITE red Err .,eFt jop'! ! • !'-‘1 Z.EL14,4K;1••••• ( • • ! i : : ••••• . . 041 F );L4r I 1 , , : • . • , , , . . t r I77.7:- ! 1 - • . • • ••••- , 1") 1 4- Z.-- C.,dist,%:tip '`rj E..) A r. td.5,4e W 1_41_ Fr/L.4_ I to ; 4.4. : .052P.4 • ) i • / . 4 t j!' /8,42-1?!cii 1 : 1 »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.20 GUTTER FLOWDEPTH(FEET) = 0.42 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.29 0.79 1.50 0.91 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 12.90 1.19 1.48 1.75 2.03 2.30 2.54 2.76 2.97 3.18 3.39 3.59 3.78 3.95 4.10 4.25 4.39 4.53 4.65 4.78 4.89 5.01 5.12 5.20 r A L f.) E ti L7€ it »»STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW(CFS) = 5.20 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 15.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03 PRODUCT OF DEPTH&VELOCITY = 0.86 **************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.70 `�-- GUTTER FLOWDEPTH(FEET) = 0.38 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.02 0.55 1.50 0.79 2.00 1.04 2.50 1.28 3.00 1.52 3.50 1.75 4.00 1.95 4.50 2.14 5.00 2.33 5.50 2.50 6.00 2.68 6.50 2.82 7.00 2.96 7.50 3.09 8.00 3.21 8.50 3.33 9.00 3.44 9.50 3.55 10.00 3.66 f `e 10.20 3.70 z 00 2 n E 1 t25 l »STREETFLOW MODEL INPUT INFORMATION«« CONSTANT STREET GRADE(FEET/FEET) = 0.005000 CONSTANT STREET FLOW(CFS) = 3.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.96 PRODUCT OF DEPTH&VELOCITY = 0.74 MADOLE & ASSOCIATES, INC. Civil Engineers -Land Surveyors -Planners 760-A S. Rochester Avenue Ontario, CA 91761 909-937-9151 fax 937-9152 Job TTM 16869 JN 126-2001 Sheet No. 1 of 1 Calculated by: WLI Date 8/5/05 Checked by: Date Scale ':. CaliforniaxBMP Treatement<Control> TQ ° 9 - "lnfiItratianiBasm ,..`, 1 BMP Drainage Area 2 Rainfall to Runoff Losses Cover Descr. Area Ap (%) CN" 5-7 du/ac 13.0 50% 32 13.0 acres C (T-B.2) Cw 0.6 7.8 13.0 3 Runoff capture 85% 4 Unit Basin storage volume From Figure D-4 0.44 in ECw= 0.6 0.60 5 Calculate required capture volume 13.0 x 0.44 _ 5.72 ac-in 6 Calculate basin invert area for infiltration A=WQV / (D.5k t) WQV= 0.4766667 ac-ft k= 2 in/hr t= 48 hr 7 Basin configuration West Length 25 ft East Length 50 ft Base Length 160 ft Depth 5 ft 0.48 ac-ft 5191 sf Surface Area = 6000 sf OK P:\126-2001 \WQMPs\calc-sheet.xls Printed: 7:05 PM-8/16/2005 1 of 1 11111 N -■r s 1 N r — 1 r-- 1— M— I 111111 100 90 80 70 0 60 O 50 y 40 tat U 30 20 10 0 Attachmv,it D Capture/Treatment Curves Riverside Citrus Experiment Station (7473) - Riverside County, California Capture / Treatment Analysis 48-hr Drawdown = 0.25 = 0.50 = 0.75 = 1.00 —Runoff Coefficient Runoff Coefficient —® Runoff Coefficient Runoff Coefficient 1111 0.0 June 01, 2004 0.2 0 4 0.6 0.8 1.0 Unit Basin Storage Volume (inches) 1.2 1.4 D-4 SECTION Q IMIII N E M MI= N - N MR N N r NM M M N N 1 621 FS =''62 12.8 Q2 ='"7`1 I 6 NOTE \, ALL 'SOILS -GROUP EXCEPT AS DELINEATED, GR• P SCALE IN FEET 0 60 10 180 240 KEY NODE DESCRIPTION SUBAREA DESCRIPTION LENGTH BETWEEN NODES FLOW ARROW DRAINAGE BOUNDARY NODE F.S. ELEV. INV. ELEV. a5 ACREAGE DENSITY L=500' HYDROLOGIC DRAINAGE MAP TRACT 16869 PRE -DEVELOPED CI Co CO CD U I- J:\126-2001\storm\l-lvd-PreDev.dwa. 8/16/2005 11:48:46 AM. Wendell. Wendell MADOLE AND ASSOCIATES, INC. 760-A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE (909) 937-9151 JOB NUMBER 126-2001 SHEET 1 OF 1 C 1 FS = 624 05=4.9 FS = 625 05=5.1 FS = 647 INV = INITIAL l-131�}!�-i_� sr (�F \. FS = 638 FS = 638 (PF30;f- SIP <4.42.6,: FS = 624 05=5.3 FS = 647 INV = INITIAL ("s2`S.3) FS = 624 05=5.2 FS = 653 INV = IN/77AL FS = 653 INV = INITIAL 55. FS = 639 FS = 639 0 SCALE IN FEET 60 120 180 240 1 KEY NOTE ALL SOILS GROUP "A B/16/05 NODE DESCRIPTION SUBAREA DESCRIPTION LENGTH BETWEEN NODES FLOW ARROW DRAINAGE BOUNDARY NODE F.S. ELEV. INV. ELEV. 05 DENSITY L=500. HYDROLOGIC MAP TRACT 16869 WQMP MITIGATION 6 MADOLE AND ASSOCIATES, INC. 760-A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE (909) 937-9151 JOB NUMBER 126-2001 SHEET 1 OF 1 rn co co H C) 1- J:\126-2001\storm\Hvd-05-02-01.dwa. 8/16/2005 11:32:51 AM. Wendell. Wendell Calculated by: Checked by: MADOLE &ASSOCIATES, INC. Job PA 7 Tract 16869 Civil Engineers -Land Surveyors -Planners Sheet No. of 760 S. Rochester Avenue Ontario, CA 91761 909-937-9151 Fax 937-9152 Date 5/26/05 Date Scale nts Rainfall Intensity Data Slope of Intensity/Duration curve 0.6 Duration hr 1 Retum Period year) 2 5 10 25 100 1 0.57 0.72 0.92 1.07 1.27 1.57 3 1.06 1.33 1.72 2.01 2.41 2.99 6 1.50 1.95 2.55 3.00 3.60 4.5 24 2.39 3.55 5.08 6.24 7.78 10.1 slope 0.56 0.57 0.58 0.58 0.59 values taken from Isohyetals, San Bernardino County Hydrology Manual All other values "interpolated" using logarithmic equations as follows: --> Exp( +/- Slope x Ln(T des) + Ln(ref I) -/+ Slope x Ln(ref T)) —> 1100-110 / Ln(100/10) x Ln(des Period / 10) + 110 * * NMI MINI MN NM NM INN DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH - TRACT 16869 ROMP FOR PA 7 5-YEAR UNDEVELOPED / DEVELOPED RUNOFF [SAN BERNARDINO COUNTY] FILE NAME:CHN7-05.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 7:99 8/13/2005 I CHECKED BY: 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) I PAGE NUMBER 1 [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION POINT NUMBER 611.00 621.00 103.00 40.ft-STREET FLOW TO PT.# 106.00 106.00 403.00 40.ft-STREET FLOW TO PT.# 106.00 CONFLUENCE ANALYSIS FOR POINT# 106.00 106.00 AREA (ACRES) ISOILIDEV. Tt Tc I I Fm Fm Q-SUM PATH SUBAREA SUM ITYPEITYPE MIN. MIN. (in/hr) (Avg) (cfs) (ft) 4.7 8.7 1.3 2.1 1.3 2.0 4.7 13.40 1.3 3.40 3.4 1.3 3.30 A A A A A Grass ---- 12.9 Open Brush 16.4 3.5 6D/AC 9.4 4.4 6D/AC ---- 13.8 ---- 13.8 6D/AC ---- 10.8 A I6D/AC -1 3.0 13.8 2.31 2.00 2.79 2.22 2.22 2.57 2.22 0.85 0.850 0.99 0.850 0.50 0.500 0.50 0.500 0.50 0.50 0.500 0.500 6.2 12.8 2.7 5.3 5.3 2.4 5.1 PEAK FLOW RATE = 10.4 (cfs) TIME OF CONCENTRATION(MIN.) = 13.8 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; Fm = EFFECTIVE AREA = 6.69 (Acres); TOTAL AREA = Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) 10.37 13.81 1.000 0.50 0.500 2.22 10.36 13.84 1.000 0.50 0.500 2.22 I 1--II--II----I- ---I I I 1--II--1I----I- ---I I MAIN -STREAM COPIED ONTO MEMORY BANK # 1 I I--II--11----1----1 1 500 490 990 890 530 620 SLOPE V ft/ft FPS. .0280 .0265 2.6 .0286 .0179 .0170 .0226 3.3 OF HYDRAULICS AND NOTES INITIAL SUBAREA Qest = 10.22 n=.0200 D= 0.10 B=50.00 Z=10.0 INITIAL SUBAREA Qest.= 4.3 D=0.35;D*V= 1.2 FLOODWIDTH=11.1 FOR CONFLUENCE INITIAL SUBAREA 3. 6f Qest.= 4.0 D=0.33;D*V= 1.2 FLOODWIDTH=10.2 0.500 (in/hr) 6.70 (Acres) Ae(Acres) NODE 6.693 401.0 6.700 101.0 LARGEST CONFLUENCE Q= 10.4 + - + * I N-- - I I IIIIIr M N M I-- M 1- 1 +-+ DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH - TRACT 16869 WQMP FOR PA 7 5-YEAR UNDEVELOPED / DEVELOPED RUNOFF [SAN BERNARDINO COUNTY] FILE NAME:CHN7-05.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 7:49 8/13/2005 1 CHECKED BY: 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) I PAGE NUMBER 2 OF [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION POINT NUMBER 106.00 203.00 40.ft-STREET FLOW TO PT.# 205.00 205.00 303.00 40.ft-STREET FLOW TO PT.# 205.00 CONFLUENCE ANALYSIS FOR POINT# 205.00 AREA (ACRES) SUBAREA' SUM SOILIDEV.I Tt I Tc TYPEITYPEIMIN.I MIN. -I I- -I -I I- -I MAIN -STREAM MEMORY CLEARED 1.3 1.9 1.5 1.6 1.3 3.20 3.2 1.5 3.10 A 16D/AC A A 6D/AC 6D/AC 3.7 9.4 13.2 13.2 10.8 I I Fm (in/hr) 2.79 2.29 2.29 2.57 0.50 0.50 0.50 2.6 A 16D/AC ---- 13.4 2.26 0.50 Fm (Avg) 0.500 0.500 0.500 0.500 Q-SUM PATH (cfs) (ft) 2.7 5.1 5.1 2.8 4.9 490 740 • 530 560 SLOPE ft/ft .0286 .0203 .0170 .0250 V FPS. 3.5 3.7 PEAK FLOW RATE = 10.0 (cfs) TIME OF CONCENTRATION(MIN.) = 13.2 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; Fm = 0.500 (in/hr) EFFECTIVE AREA = 6.24 (Acres); TOTAL AREA = 6.30 (Acres) Q(cfs) Tc(min) Fp(avg) Ap(avg) Fp(avg) I(in/hr) Ae(Acres) NODE 10.03 13.16 1.000 0.50 .500 .29 6.238 201.0 9.97 13.43 1.000 0.50 .500 .26 6.300 301.0 HYDRAULICS AND NOTES INITIAL SUBAREA Qest.= 4.2 D=0.34;D*V= 1.2 FLOODWIDTH=10.7 FOR CONFLUENCE INITIAL SUBAREA Qest.= 4.1 D=0.33;D*V= 1.2 FLOODWIDTH=10.1 LARGEST CONFLUENCE Q= 10.0 + - + 1- H 1- M-- s ■1111 - 1- M 1- M +-+ +-+ DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH - TRACT 16869 WQMP FOR PA 7 5-YEAR UNDEVELOPED / DEVELOPED RUNOFF * [SAN BERNARDINO COUNTY] FILE NAME:CHN7-05.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 7:49 8/13/2005 I CHECKED BY: 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) I PAGE NUMBER 3 OF [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) ISOILIDEV.I Tt I Tc 1 1 I Fm I Fm IQ -SUM IPATHISLOPEI V POINT NUMBER SUBAREA! SUM ITYPEITYPEIMIN.I MIN.I (in/hr) I(Avg)I(cfs) I(ft)Ift/ftIFPS. I 1---1 I ----I 1--1--I I 1--II---- I 1--1I----I I----1----I I 1--11---- 106.00 MEMORY BANK # 1 CONFLUENCED WITH MAIN -STREAM Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 20.28 13.16 1.000 0.50 0.500 2.29 12.613 201.0 20.27 13.43 1.000 0.50 0.500 2.26 12.805 301.0 20.12 13.81 1.000 0.50 0.500 2.22 12.993 401.0 20.10 13.84 1.000 0.50 0.500 2.22 13.000 101.0 TOTAL AREA= 13.000 1 1---1 I 1----I----I I 1--1I- I 1---1 I 1----1----1 I 1--11- 106.00 I 12.61 I I ----I 13.21 I I I 20.31----I I- I 1---I I I----1----I I I- ---I I - EFFECTIVE AREA = 12.61 Acres TOTAL AREA = 13.00 Acres PEAK FLOW RATE = TIME OF CONCENTRATION(MIN.)= 13.16 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; ---I I I----I----I I 1- ---I 1- PEAK FLOW RATE TABLE Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 20.28 13.16 1.000 0.50 0.500 2.29 12.613 201.0 20.27 13.43 1.000 0.50 0.500 2.26 12.805 301.0 20.12 13.81 1.000 0.50 0.500 2.22 12.993 401.0 20.10 13.84 1.000 0.50 0.500 2.22 13.000 101.0 HYDRAULICS AND NOTES STREAM SUMMARY 20.28 cfs Fm = 0.500 (in/hr) * * **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1251 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * CITRUS HEIGHTS NORTH - TRACT 16869 * WQMP FOR PA 7 * 5-YEAR UNDEVELOPED / DEVELOPED RUNOFF *"************************************************************************* FILE NAME: CHN7-05.DAT TIME/DATE OF STUDY: 07:49 08/13/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* - USER SPECIFIED STORM EVENT(YEAR) = 5.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.9200 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER -SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 609.00 TO NODE 611.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 652.00 DOWNSTREAM(FEET) = 638.00 Tc = K*[(LENGTH**"3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.892 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.315 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "GRASS" A 4.70 0.85 1.00 47 12.89 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.85 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 6.20 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 6.20 FLOW PROCESS FROM NODE 611.00 TO NODE 621.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 638.00 DOWNSTREAM(FEET) = 625.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = 0.0265 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 1.00 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.002 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 8.70 0.99 1.00 28 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.99 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.22 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.32 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 3.53 Tc(MIN.) = 16.42 SUBAREA AREA(ACRES) = 8.70 SUBAREA RUNOFF(CFS) = 7.92 EFFECTIVE AREA(ACRES) = 13.40 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = 0.94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 13.40 PEAK FLOW RATE(CFS) = 12.79 0.94 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 2.61 LONGEST FLOWPATH FROM NODE 609.00 TO NODE 621.00 = 990.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 103.00 IS CODE = 21 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 ELEVATION DATA: UPSTREAM(FEET) = 653.00 DOWNSTREAM(FEET) = 639.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.437 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.791 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.30 1.00 0.50 17 9.44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.68 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 2.68 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 106.00 IS CODE = 61 »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 639.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 840.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 10.00 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.32 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.11 STREET FLOW TRAVEL TIME(MIN.) = 4.40 Tc(MIN.) = 13.84 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.218 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap. SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.10 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 3.25 EFFECTIVE AREA(ACRES) = 3.40 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.07 FLOW VELOCITY(FEET/SEC.) = 3.34 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.84 RAINFALL INTENSITY(INCH/HR) = 2.22 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.40 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 403.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 530.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.806 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.573 SUBAREA Tc AND LOSS RATE DATA(AMC I ) DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE A 1.30 1.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.43 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 638.00 Ap SCS Tc (DECIMAL) CN (MIN.) 17 10.81 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 106.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 620.00 CURB HEIGHT(INCHES) = ' 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.44 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 3.01 Tc(MIN.) = 13.81 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.221 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.00 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 3.10 EFFECTIVE AREA(ACRES)= 3.30 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 5.11 3.98 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.37 FLOW VELOCITY(FEET/SEC.) = 3.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 106.00 = 1150.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <<<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.81 RAINFALL INTENSITY(INCH/HR) = 2.22 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.30 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.11 ** CONFLUENCE DATA ** STREAM Q Tc Intensity NUMBER (CFS) (MIN.) (INCH/HR) 1 5.26 13.84 2.218 2 5.11 13.81 2.221 Fp(Fm) Ap (INCH/HR) 1.00( 0.50) 0.50 1.00( 0.50) 0.50 Ae HEADWATER (ACRES) NODE 3.4 101.00 3.3 401.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR), (ACRES) NODE 1 10.37 13.81 2.221 1.00( 0.50) 0.50 6.7 401.00 2 10.36 13.84 2.218 1.00( 0.50) 0.50 6.7 101.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.37 Tc(MIN.) = 13.81 EFFECTIVE AREA(ACRES) = 6.69 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 6.70 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 10 »»>MAIN -STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 13 »»>CLEAR THE MAIN -STREAM MEMORY««< **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 203.00 IS CODE= 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 ELEVATION DATA: UPSTREAM(FEET) =-653.00 DOWNSTREAM(FEET) = 639.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.437 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.791 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.30 1.00 0.50 17 9.44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.68 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 2.68 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 205.00 IS CODE = 61 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< 'UPSTREAM ELEVATION(FEET) = 639.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 740.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.74 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.32 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 3.72 Tc(MIN.) = 13.16 * 5 YEAR RAINFALL INTENSITY(INCH/HR)'= 2.287 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.90 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.06 EFFECTIVE AREA(ACRES) = 3.20 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 5.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.68 FLOW VELOCITY(FEET/SEC.) = 3.47 DEPTH*VELOCITY(FT*FT/SEC.) = 1.25 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1230.00 FEET. FLOW PROCESS FROM NODE . 205.00 TO NODE 205.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.16 RAINFALL INTENSITY(INCH/HR) = 2.29 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.20 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.15 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 303.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 530.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) = 638.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.806 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.573 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ LAND USE RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = SCS SOILAREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL), CN (MIN.) A 1.50 1.00 0.50 17 10.81 LOSS RATE, Fp(INCH/HR) = 1.00 AREA FRACTION, Ap = 0.50 2.80 1.50 PEAK FLOW RATE(CFS) = 2.80 ************************************************************* FLOW PROCESS FROM NODE 303.00 TO NODE 205.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 560.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.12 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.56 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 13.43 * 5 YEAR RAINFALL INTENSITY(INCH/HR) = 2.259 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.60 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 2.53 EFFECTIVE AREA(ACRES) = 3.10 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 4.91 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.98 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 205.00 = 1090.00 FEET. **************************************************************************** FLOW PROCESS, FROM NODE 205.00 TO NODE 205.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < »» >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <« << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.43 RAINFALL INTENSITY(INCH/HR) = 2.26 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.10 TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.91 ** CONFLUENCE DATA ** STREAM Q Tc Intensity NUMBER (CFS) (MIN.) (INCH/HR) 1 5.15 13.16 2.287 2 4.91 13.43 2.259 Fp(Fm) Ap Ae (INCH/HR) (ACRES) 1.00( 0.50) 0.50 3.2 1.00( 0.50) 0.50 3.1 RAINFALL INTENSITYAND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity NUMBER (CFS) (MIN.) (INCH/HR) 1 10.03 13.16 2.287 2 9.97 13.43 2.259 HEADWATER NODE 201.00 301.00 Fp(Fm) Ap Ae HEADWATER (INCH/HR) (ACRES) NODE 1.00( 0.50) 0.50 6.2 201.00 1.00( 0.50) 0.50 6.3 301.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.03 Tc(MIN.) = 13.16 EFFECTIVE AREA(ACRES) = 6.24 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 6.30 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 106.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY« «< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 10.03 13.16 2.287 1.00( 0.50) 2 9.97 13.43 2.259 1.00( 0.50) LONGEST FLOWPATH FROM NODE 201.00 TO NODE Ap Ae HEADWATER (ACRES) NODE 0.50 6.2 201.00 0.50 6.3 301.00 106.00 = 1230.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q' Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) 1 10.37 13.81 2.221 1.00( 0.50) 0.50 6.7 2 10.36 13.84 2.218 1.00( 0.50) 0.50 6.7 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) HEADWATER NODE 401.00 101.00 1330.00 FEET. Ap Ae HEADWATER NUMBER 1 2 3 4 (CFS) (MIN.) (INCH/HR) 20.28 13.16 2.287 20.27 13.43 2.259 20.12 13.81 2.221 20.10 13.84 2.218 TOTAL AREA(ACRES) = 13.00 (INCH/HR) (ACRES) 1.00( 0.50) 0.50 12.6 1.00( 0.50) 0.50 12.8 1.00( 0.50) 0.50 13.0 1.00( 0.50) 0.50 13.0 NODE 201.00 301.00 401.00 101.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.28 Tc(MIN.) = 13.157 EFFECTIVE AREA(ACRES) = 12.61 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 13.00 LONGEST FLOWPATH FROM NODE. 101.00 TO NODE 106.00 = 1330.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 13.00 TC(MIN.) = 13.16 EFFECTIVE AREA(ACRES) = 12.61 AREA -AVERAGED Fm(INCH/HR) 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 PEAK FLOW RATE(CFS) = 20.28 ** PEAK FLOW RATE TABLE STREAM Q Tc NUMBER 1 2 3 4 (CFS) (MIN.) 20.28 13.16 20.27 13.43 20.12 13.81 20.10 13.84 ** Intensity (INCH/HR) 2.287 2.259 2.221 2.218 Fp(Fm) Ap Ae (INCH/HR) (ACRES) 1.00( 0.50) 0.50 12.6 1.00( 0.50) 0.50 12.8 1.00( 0.50) 0.50 13.0 1.00( 0.50) 0.50 13.0 HEADWATER NODE 201.00 301.00 401.00 101.00 END OF RATIONAL METHOD ANALYSIS r DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH - TRACT 16869 WQMP FOR PA 7 2-YEAR UNDEVELOPED / DEVELOPED RUNOFF [SAN BERNARDINO COUNTY] FILE NAME:CHN7-02.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 9:20 8/13/2005 I CHECKED BY: 2.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) I PAGE NUMBER 1 OF [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION POINT NUMBER 611.00 621.00 103.00 40.ft-STREET FLOW TO PT.# 106.00 106.00 403.00 40.ft-STREET FLOW TO PT.# 106.00 CONFLUENCE ANALYSIS FOR POINT# 106.00 106.00 AREA (ACRES) SOILIDEV. Tt Tc I 1 Fm Fm Q-SUM PATH SUBAREA SUM TYPEITYPE MIN. MIN. (in/hr) (Avg) (cfs) (ft) 4.7 8.7 1.3 2.1 1.3 2.0 4.7 13.40 1.3 3.40 3.4 1.3 3.30 A A A A A Grass Open Brush 6D/AC 6D/AC 6D/AC 4.2 4.7 3.3 A 16D/ACI---- 1 I- 12.9 17.1 9.4 14.2 14.2 10.8 14.1 1. 81 1.53 2.18 1.71 1.71 2.01 1.72 0.85 0.99 0.50 0.50 0.50 0.50 0.850 0.850 0.500 0.500 0.500 0.500 4.1 7.1 2.0 3.7 3.7 1.8 3.6 PEAK FLOW RATE = 7.3 (cfs) TIME OF CONCENTRATION(MIN.) = 14.1 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; Fm = EFFECTIVE AREA = 6.68 (Acres); TOTAL AREA = Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) 7.32 14.08 1.000 0.50 0.500 1.72 7.30 14.18 1.000 0.50 0.500 1.71 I I- --1 1--1I----I ----I 1 I I- --I 1--1I----I----I I MAIN -STREAM COPIED ONTO MEMORY BANK # 1 I I- --I I- ---I 1----I----I 500 490 490 840 530 620 SLOPE ft/ft .0280 .0265 ..0286 .0179 .0170 .0226 V FPS. 1.9 3.1 3.3 0.500 (in/hr) 6.70 (Acres) Ae(Acres) NODE 6.676 401.0 6.700 101.0 1- ---1 1---- 1----1 1---- I----I I - HYDRAULICS AND NOTES INITIALSUBAREA Qest = 6.24 n=.0200 D= 0.07 B=50.00 Z=10.0 INITIAL SUBAREA Qest.= 3.1 D=0.32;D*V= 1.0 FLOODWIDTH= 9.7 FOR CONFLUENCE INITIAL SUBAREA Qest.= 2.9 D=0.30;D*V 1.0 FLOODWIDTH= 8.9 LARGEST CONFLUENCE Q= 7.3 1 r - 1 S, 1 - - 1 - 1 - - 1 r +-+ DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH - TRACT 16869 WQMP FOR PA 7 2-YEAR UNDEVELOPED / DEVELOPED RUNOFF [SAN BERNARDINO COUNTY] FILE NAME:CHN7-02.DAT *ENGLISH UNITS* I CALCULATED BY: TIME/DATE OF STUDY: 9:20 8/13/2005 I CHECKED BY: 2.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) I PAGE NUMBER 2 OF [(c) 1983-2004 ADVANCED ENGINEERING OFTWARE] CONCENTRATION POINT NUMBER 106.00 203.00 40.ft-STREET FLOW TO PT.# 205.00 205.00 303.00 40.ft-STREET FLOW TO PT.# 205.00 CONFLUENCE ANALYSIS FOR POINT# 205.00 SUBAREA) SUM ITYPEITYPEIMIN.I MIN. I ---I I----1 MAIN -STREAM MEMORY CLEARED 1.3 1.9 1.5 1.6 1.3 A 16D/AC 3.20 A 3.2 1.5 A 3.10 4.0 6D/AC 6D/AC 2.8 A I6D/AC AREA (ACRES) ISOILIDEV.I Tt I Tc I I Fm Fm Q-SUM (PATH (in/hr) (Avg) (cfs) I(ft) 9.4 2.18 13.4 1.77 13.4 1.77 10.8 2.01 13.6 1.75 0.50 0.500 0.50 0.500 0.50 0.50 0.500 0.500 2.0 3.6 3.6 2.0 3.5 490 740 530 560 SLOPE] V ft/ftIFPS. .0286 .0203 .0170 .0250 3.2 3.5 PEAK FLOW RATE = 7.1 (cfs) TIME OF CONCENTRATION(MIN.) = 13.4 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; Fm = 0.500 (in/hr) EFFECTIVE AREA = 6.26 (Acres); TOTAL AREA = 6.30 (Acres) Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres). NODE 7.14 13.45 1.000 0.50 0.500 1.77 6.262 201.0 7.10 13.62 1.000 0.50 0.500 1.75 6.300 301.0 HYDRAULICS - AND NOTES +-+ INITIAL SUBAREA Qest.= 3.1 D=0.31;D*V= 1.0 FLOODWIDTH= 9.4 FOR CONFLUENCE INITIAL SUBAREA Qest.= 2.9 D=0.30;D*V= 1.0 FLOODWIDTH= 8.8 LARGEST CONFLUENCE Q= 7.1 +-+ +-+ DESCRIPTION OF STUDY: CITRUS HEIGHTS NORTH TRACT 16869 WQMP FOR PA 7 2-YEAR UNDEVELOPED / DEVELOPED RUNOFF [SAN BERNARDINO COUNTY] FILE NAME:CHN7-02.DAT *ENGLISH UNITS* 1 CALCULATED BY: TIME/DATE OF STUDY: ;9:20 8/13/2005 I CHECKED BY: 2.0-YEAR STORM RATIONAL METHOD STUDY (AMC I LOSSES) 1 PAGE NUMBER 3 OF [(c) 1983-2004 ADVANCED ENGINEERING SOFTWARE] CONCENTRATION AREA (ACRES) ISOILIDEV.I Tt I Tc I I I Fm I Fm IQ -SUM IPATHISLOPEI V POINT NUMBER SUBAREA( SUM ITYPEITYPEIMIN.1 MINI (in/hr) I(Avg)I(cfs) I(ft)Ift/ftIFPS. I I- -I I- -I I- -I- -I I I- -I I I I- -I I- -I 1- -1- -I I I- -I I 106.00 MEMORY BANK # 1 CONFLUENCED WITH MAIN -STREAM Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 14.40 13.45 1.000 0.50 0.500 1.77 12.636 201.0 14.38 13.62 1.000 0.50 0.500 1.75 12.755 301.0 14.22 14.08 1.000 0.50 0.500 1.72 12.976 401.0 14.16 14.18 1.000 0.50 0.500 1.71 13.000 101.0 TOTAL AREA= 13.000 I 1- -I I- -1 1- -1- -I 1 I- -I I 1 I- -I I -I I -I- -I I I- --I 106.00 I 12.61 I I----1 13.41 I I I 14.41- -I I 1 1- -I I- -I I- -I- -I I I -I 1 EFFECTIVE AREA = 12.64 Acres TOTAL AREA = 13.00 Acres PEAK FLOW RATE = TIME OF CONCENTRATION(MIN.)= 13.45 MEAN VALUES: Fp = 1.000 (in/hr); Ap = 0.500; 1 I- -I 1- -1 I- -I- -I I 1- -I I PEAK FLOW RATE TABLE Q(cfs) Tc(min) Fp(avg) Ap(avg) Fm(avg) I(in/hr) Ae(Acres) NODE 14.40 13.45 1.000 0.50 0.500 1.77 12.636 201.0 14.38 13.62 1.000 0.50 0.500 1.75 12.755 301.0 14.22 14.08 1.000 0.50 0.500 1.72 12.976 401.0 14.16 14.18 1.000 0.50 0.500 1.71 13.000 101.0 HYDRAULICS AND NOTES STREAM SUMMARY 14.40 cfs Fm = 0.500 (in/hr) * * +-+ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1251 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************* * CITRUS HEIGHTS NORTH - TRACT 16869 * WQMP FOR PA 7 * 2-YEAR UNDEVELOPED / DEVELOPED RUNOFF ************************************************************************** FILE NAME: CHN7-02.DAT TIME/DATE OF STUDY: 09:20 08/13/2005 * * * USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.7200 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER -SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS. FROM NODE 609.00 TO NODE 611.00 IS CODE = 21 »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 500.00 ELEVATION DATA: UPSTREAM(FEET) = 652.00 DOWNSTREAM(FEET) = 638.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.892 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.811 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "GRASS" A 4.70 0.85 1.00 47 12.89 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.85 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 4.07 TOTAL AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) = 4.07 **************************************************************************** FLOW PROCESS FROM NODE 611.00 TO NODE 621.00 IS CODE = 51 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 638.00 DOWNSTREAM(FEET) = 625.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = 0.0265 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 1.00 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.528 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL FAIR COVER "OPEN BRUSH" A 8.70 0.99 1.00 28 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.99 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.24 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.93 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 4.23 Tc(MIN.) = 17.12 SUBAREA AREA(ACRES) = 8.70 SUBAREA RUNOFF(CFS) = 4.20 EFFECTIVE AREA(ACRES) = 13.40 AREA -AVERAGED Fm(INCH/HR) = 0.94 AREA -AVERAGED Fp(INCH/HR) = 0.94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 13.40 PEAK FLOW RATE(CFS) = 7.07 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 609.00 TO NODE 621.00 = 990.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 103.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 ELEVATION DATA: UPSTREAM(FEET) = 653.00 DOWNSTREAM(FEET) = 639.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.437 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.184 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) SCS CN A 1.30 1.00 0.50 17 LOSS RATE, Fp(INCH/HR) = 1.00 AREA FRACTION, Ap = 0.50 1.97 1.30 PEAK FLOW RATE(CFS) = 1.97 Tc (MIN.) 9.44 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 106.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»>(STANDARD CURB SECTION USED)< «< UPSTREAM ELEVATION(FEET) = 639.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 840.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.70 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.95 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.94 STREET FLOW TRAVEL TIME(MIN.) = 4.75 Tc(MIN.) = 14.18 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.711 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.10 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 2.29 EFFECTIVE AREA(ACRES) = 3.40 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 3.70 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.43 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 1.03 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.18 RAINFALL INTENSITY(INCH/HR) = 1.71 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.40 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.70 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 403.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 530.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) = 638.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.806 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.014 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.301.00 0.50 17 10.81 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 1.77 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.77 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 106.00 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 620.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 10.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.87 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.90 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.15 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96 STREET FLOW TRAVEL TIME(MIN.) = 3.28 Tc(MIN.) = 14.08 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.718 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.00 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 2.19 EFFECTIVE AREA(ACRES) = 3.30 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 3.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.83 FLOW VELOCITY(FEET/SEC.) = 3.33 DEPTH*VELOCITY(FT*FT/SEC.) = 1.08 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 106.00 = 1150.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.08 RAINFALL INTENSITY(INCH/HR) = 1.72 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.30 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.62 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.70 14.18 1.711 1.00( 0.50) 0.50 3.4 101.00 2 3.62 14.08 1.718 1.00( 0.50) 0.50 3.3 401.00 •RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 7.32 14.08 1.718 1.00( 0.50) 0.50 6.7 401.00 2 7.30 14.18 1.711 1.00( 0.50) 0.50 6.7 101.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.32 Tc(MIN.) = 14.08 EFFECTIVE AREA(ACRES) = 6.68 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00, AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 6.70 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 10 »»>MAIN -STREAM MEMORY COPIED: ONTO MEMORY BANK # 1 _««< **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 13 »»>CLEAR THE MAIN -STREAM MEMORY««< FLOW PROCESS FROM NODE 201.00 TO NODE 203.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 490.00 ELEVATION DATA: UPSTREAM(FEET) = 653.00 DOWNSTREAM(FEET) = 639.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.437 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.184 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.30 1.00 0.50 17 9.44 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 1.97 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.97 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 205.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 639.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 740.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.37 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.07 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96 STREET FLOW TRAVEL TIME(MIN.)'= 4.01 Tc(MIN.) = 13.45 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.766 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap, SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.90 1.00 0.50 17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 2.17 EFFECTIVE AREA(ACRES) = 3.20 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 3.06 0.50 3.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.12 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.45 RAINFALL INTENSITY(INCH/HR) = 1.77 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 EFFECTIVE STREAM AREA(ACRES) = 3.20 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.65 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 303.00 IS CODE = 21 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 530.00 ELEVATION DATA: UPSTREAM(FEET) = 647.00 DOWNSTREAM(FEET) = 638.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.806 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.014 SUBAREA Tc AND LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.50 1.00 0.50 17 10.81 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 1.00 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.50 SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 2.04 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 205.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 638.00 DOWNSTREAM ELEVATION(FEET) = 624.00 STREET LENGTH(FEET) = 560.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.95 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.32 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.00 STREET FLOW TRAVEL TIME(MIN.) = 2.81 Tc(MIN.) = 13.62 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.753 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE"> SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS' SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = A 1.60 1.00 0.50 17 LOSS RATE, Fp(INCH/HR) = 1.00 AREA FRACTION, Ap = 0.50 1.60 SUBAREA RUNOFF(CFS) = 1.80 3.10 AREA -AVERAGED Fm(INCH/HR) = 0.50 = 1.00 AREA -AVERAGED Ap = 0.50 3.10 PEAK FLOW RATE(CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.44 FLOW VELOCITY(FEET/SEC:) = 3.47 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 205.00 = 1090.00 FEET. 3.50 ********************************** ***************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 1 »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« << »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.62 RAINFALL INTENSITY(INCH/HR) = 1.75 AREA -AVERAGED Fm(INCH/HR):= 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50, EFFECTIVE STREAM AREA(ACRES) = 3.10 TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.50 ** CONFLUENCE DATA ** STREAM Q Tc NUMBER (CFS) (MIN.) 1 3.65 13.45 2 3.50 13.62 Intensity (INCH/HR) 1.766 1.753 Fp(Fm) (INCH/HR) 1.00( 0.50) 1.00( 0.50) Ap Ae HEADWATER (ACRES) NODE 0.50 3.2 201.00 0.50 3.1 301.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH/HR)`(INCH/HR) (ACRES) 1 7.14 13.45 1.766 1.00( 0.50) 0.50 6.3 2 7.10 13.62 1.753 1.00( 0.50) 0.50 6.3 HEADWATER NODE 201.00 301.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.14 Tc(MIN.) = 13.45 EFFECTIVE AREA(ACRES) = 6.26 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 6.30 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 106.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN -STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM NUMBER 1 2 Q Tc Intensity (CFS) (MIN.) (INCH/HR) 7.14 13.45 1.766 7.10 13.62 1.753 Fp(Fm) Ap Ae (INCH/HR) (ACRES) 1.00( 0.50) 0.50 6.3 1.00( 0.50) 0.50 6.3 LONGEST FLOWPATH FROM NODE 201.00 TO NODE ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 7.32 14.08 1.718 1.00( 0.50) 2 7.30 14.18 1.711 1.00( 0.50) LONGEST FLOWPATH FROM NODE 101.00 TO NODE ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) HEADWATER NODE 201.00 301.00 106.00 = 1230.00 FEET. Ap Ae HEADWATER (ACRES) NODE 0.50 6.7 401.00 0.50 6.7 101.00 106.00 = 1330.00 FEET. Ap HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 14.40 13.45 1.766 1.00( 0.50) 0.50 12.6 201.00 2 14.38 13.62 1.753 1.00( 0.50) 0.50 12.8 301.00 3 14.22 14.08 1.718 1.00( 0.50) 0.50 13.0 401.00 4 14.16 14.18 1.711 1.00( 0.50) 0.50 13.0 101.00 TOTAL AREA(ACRES) = 13.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.40 Tc(MIN.) = 13.448 EFFECTIVE AREA(ACRES) = 12.64 AREA -AVERAGED Fm(INCH/HR) = 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 TOTAL AREA(ACRES) = 13.00 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 1330.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 13.00 TC(MIN.) = 13.45 EFFECTIVE AREA(ACRES) = 12.64 AREA -AVERAGED Fm(INCH/HR)= 0.50 AREA -AVERAGED Fp(INCH/HR) = 1.00 AREA -AVERAGED Ap = 0.50 PEAK FLOW RATE(CFS) = 14.40 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 14.40 13.45 1.766 1.00( 0.50) 0.50 12.6 201.00 2 14.38 13.62 1.753 1.00( 0.50) 0.50 12.8 301.00 3 14.22 14.08 1.718 1.00( 0.50) 0.50 13.0 401.00 4 14.16 14.18 1.711 1.00( 0.50) 0.50 13.0 101.00 END OF RATIONAL METHOD ANALYSIS WINNE MAZY • I I _ - - e��.Iawt�s�� /! G � tT Ri) , �` ill 9 r I — r-4-I = r— .f ••.it.— D i,\ ., �^4 _ ' I. ITT'i IMEGIREMITIMMIlatrrIMMOUVAMnrffiralitCyra. . Aimiziiiikaslailliiir,,_ Il���!s1 RINls�i` - amat�I�rll�hAEW �� ~T� I i r , I., TIS ..,„„,_ .,...walgi maniiiimia-mppiragi ...... =� �T v���,� ��!j �CP :, r L I ihiii ICMil I1 '!u it , �J\ 1.4 MIME 1=111111111 MIMEWLI r A i ii 1 i •-7-74-.111141 1 111 irehlWATAI ' IPMILVIRlial ilk. T2S , ..__ _ (+ I "1"""'_ �� -!U V I 7- 'p� %I I ; ;k;.1 r IIMPIIII Ft I i I R W. •• I R3 I 4— i i I _I... 4 •..i -1 RBW I R 7 W -- — -. .._� 1 -_ 4- --I -R5W i I — r T I - -1--+— L 1 R6W SAN BERNARDINO COUNTY HYDROLOGY MANUAL R 2 W REDUCED DRAWING SCALE I". 4 MILES LEGEND: �.0 ISOLINES PRECIPITATION (INCHES) R2E --4N I -t.-t-I-t.- �_ -1-4-- IN` I IS —1 — I— -{- I R2E SAN BERNARDINO �� FLOOD CONTROL OISTRCT VALLEY AREA IIOHYETAL8 XI - 2 YEAR 6 HOUR YWm Oa O.WDA. L1O..RW B. IIITS Dag )sat WALL Mt OIS naL WY M1Wa « It i *.gaminialitiba i s/aszeini„EripmniattiEai�iC�i �.i�i11i'�� I ,^sue• "r triamilie iNigr��'�.1®® f\\I\I"'111 _}-1}•]i ARi:.ralE►�FA (r H�3l��� �y Imrgf F 44antoltilk T4 Pr' 1111'11‘..114aniii 111111.1t. . 5W a �— - "Ft I RBW.L_1 -. ....: R7—_-rr" -- R6W1 : L SAN BERNARDINO COUNTY HYDROLOGY MANUAL REDUCED DRAWING SCALE I".4 MILES 0.0 ISOLINEi MtECIPITATION (INCHES) 3.0 IN SAN BERNARDINO CWITY FLOOD CONTROL OLSMICT VALLEY AREA ISCHTETALS Yz - 2 YEAR 24 HOUR . uo oM 0100, HCAA111IM t, VMS OUT _ 'US *CALI Ina OP OWL NU Air wwi t .I It T4N �rA I I T1) IJ — i I/-- I— I I I 4W ) »(ram .I .V a•vle 1 INN NIN� R2W 1— ' , -11 AMMO._ ( ! reel411 ` = zh ;— I �"f 1PI11!!I&L1 TAN WfikaiLlimarn foam T3S— = �� 1 1. it_t4 1._ , ' "{'i .�i•R e w 'I R7W .._r-r RIW EL NIL: Vim iwomjimai 111 L RSIDE i R3 R5 SAN BERNARDINO COUNTY HYDROLOGY MANUAL REDUCED DRAWING SCALE I". 4 MILES agiZt ISOLINES PRECIPITATION (INCHES) I r — RIE R?E T4N I I -rth :I-4- - R SAN BERNARDINO COUNTY VALLEY AREA ISOHYETALS YR - 10 YEAR I HOUR SAUEO ON O.LOC, NOAA.RIA$ E, If/] SCALE ZIN.- I Y t-r s. IIIMAIRWINVIONIIMBELIERIZMNIIIMINEMIPMEIffitiVan nitallariarir T35-- = NMI 111M1 R3 '®. R2W SAN BERNARDINO COUNTY HYDROLOGY MANUAL NIB MN 111111 REDUCED DRAWING SCALE I'• 4 MILES 1.8 ISSOOLIINEY PRECIPITATION (INCHES) VALLEY AREA 1lOHYETALS Y -100 YEAR I HOUR Moto ON CIOC, NOY RW..M. I••2 FOE NC •IIO.1 .It. OM • - It T3S f- 601 I I 6.. 4W I �"1'� ��. PallIMILIC fa m ONTA1110 i' ailet`.11111„EIRMLI1i WinibiliaMatimosonir I I r.. t-� - -I -_ L...1. __I I ' I i— 461-1--I- I- k• I.R8W 1 . T dos ' I I i 6tr� TOP"; I c I I Tr I _I °� i � Z-.%ter►�A t ti�j I `rgo I- -4 — ©e+�w�!!�!!>�►�l�►phi ► NOWII4 _� ,�jERIDE', II �I I I ' _�,._� _ I,-r� �?-1r �- I r 4 RW „y!. I R2W \I r-11 I t 1 I 6/ `iNt - I_ � —•- 1_ 1 — -- - -R5W - - - i -� i R6W I SAN BERNARDINO COUNTY HYDROLOGY MANUAL REDUCED DRAWING SCALE I" = 4 MILES co.=LINES PRECIPITATION (INCITES) TIN —I —I— + I I I R2E FWOO CONTROL 0 TIIICT VALLEY AREA ISONTETALS X3-IOOYEAR 6 HOUR YWID ON U.•GS. MAIL ARAI I.Ig11 OOZE 11142 FLOOD WALE MI IR NM ee. C•Iei mei 5 M 12 aim am - 4_I. 1 1 1 1 1 1.-'r P-• 1-41k_, ar46.07aL,."112MAI arnAhoiT__ Witt-Miitriuralm \I\'u � 5s,Hj!i: !ter -MINN - - r rt I-- ,�r: _nen� a ii%1._ 111111E IAM:11M611941111.116164111231111111111161LIWAIIIIVARMIlk J�1 1 '1 E R"iIA , FONTANA- NAN iirmenia,As �/'I gissaw- WIMPIpp WirallWAIIIM 1011411 .ceutraimifirirememol IDE 1 R4W NIB -r-I -+--1-E-;-I- •-- I I -1--I-I- sa-I-1-- ) 'fi '1 4., REDUCED DRAWING SCALE I"=4 MILES GA ISOLINES S PRECIPITATION (INCHES) \ x _ -I -1- -1- I R SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT VALLEY AREA ISONYETALS X. -100 YEAR 24 HOUR 1IISLO ON 0.6OC, NOY. Rue S. MS rvorto ex L DATE a'•, • I6L NO ORNG 110. 1982 f•Sr. wND-1 6 .1 II SECTION S BASIN ROUTING AND HYDRAULICS Iit MADOLE AND ASSOCIATES, INC. JOB 760-A S. ROCHESTER SHEET NO OF ONTARIO, CA. 91761 CALCULATED BY PHONE (909) 937-9151 DATE CHECKED BY DATE SCALE I ) C‘ ki i 4) : plc, N-ek__.;-,7 '- rakic7rELr..--,- I af 4 1/H4 ;•:-.H celid (o.l'r.i) 1 A... ,E,..‘c.."4) ! ! 1 ! 6,.gwitl, .7--I 0 E.-0 71- 0 13..NII.4k4 1 ),'LlitrsiT.- ) F ; !!!!" I ! I I I I ! ! ! , ! C3; /1 I 1! HI !II! !II !!!!IIIII • ; : . . re ,3!.9V • , , • 1 I = i4i=> '1 be.1.7714.#t a. 1! t -!-- a/7 ! ra,r ! - • T7 I '!" 1 !:----/hio...7.7.7! ! .1,1411.,101 4PA/C1,77,py./ ;TV* 44+5 f /»/47Mi fr ......... UMendell\Mv Documents\Calculations\Calcsheetdwa. 9/9/2005 8:34:57 AM. Wendell. Wendell 1 1 i i SUMMARY OF DEPTH VS VOLUME ELEV DEPTH AREA VOLUME AC-VOL AC -FT OUT (FT) (SF) (CF) (CF) (CFS) 25 15 7390 29775 0.684 25.68 6895 24 14 6400 22880 0.525 20.75 5900 23 13 5400 16980 0.390 16.26 4950 22 12 4500 12030 0.276 12.51 4090 21 11 3680 7940 0.182 9.38 3100 20 10 2520 4840 0.111 5.84 2060 19 9 1600 2780 0.064 3.34 1100 18 8 600 1680 0.039 1.11 1680 10 0 600 ^ r rr ' :') r°t 14% ' o -1 k= 0.00353 cm/sec= 0.0001158 ft/sec. q= k x (s.f. area x 2xdepth) P:\126-20011WQMPs\BASIN2-DEPTH VOLUME-00035.xls MADOLE AND ASSOCIATES, INC. 760-A S. ROCHESTER ONTARIO, CA. 91761 PHONE (909) 937-9151 JOB SHEET NO OF CALCULATED BY DATE CHECKED BY DATE SCALE U:\Wendell\Mv Documents\Calculations\Calcsheet.dwa. 9/9/2005 8:34:57 AM. Wendell. Wendell MADOLE & ASSOCIATES, INC. Civil Engineers -Land Surveyors -Planners 760 S. Rochester Avenue Ontario, CA 91761 909-937-9151 Fax 937-9152 Job PA 7 Tract 16869 Sheet No. Calculated by: Checked by: of Date 5/26/05 Date Scale nts Rainfall Intensity Data Slope of Intensity/Duration curve 0.6 Duration hr 1 Return Period (year) 2 5 10 25 100 1 0.57 0.72 0.92 1.07 1.27 1.57 3 1.06 1.33 1.72 2.01 2.41 2.99 6 1.50 1.95 2.55 3.00 3.60 4.5 24 2.39 3.55 5.08 6.24 7.78 10.1 slope 0.56 0.57 0.58 0.58 0.59 =values taken from Isohyetals, San Bernardino County Hydrology Manual All other values "interpolated" using logarithmic equations as follows: -> Exp( +/- Slope x Ln(T des) + Ln(ref I) -/+ Slope x Ln(ref T)) --> 1100 -110 / Ln(100/10) x Ln(des Period / 10) + 110 111111 1 1 1 I I E - 1 - 1 a N M M 1 O 111111 INN LossesData Set Number 1 2 - 3 4 5 6 Description Developed 1-yr Developed 2-yr Developed 5-yr Tc 13.6 13.4 13.2 Land use desc below Acres (below) Acres (below) Acres (below) Acres (below) Acres (below) Tract 16869 13 13 13 P:1126-20011W QMPs1W QMP-U Hinput-sheetPA7-W QMP.xls <-- Enter Set Description Here <-- Enter Set Tc here <-- Enter Cover/use in "A" and Acres in 'B" thru "F" 8/16/2005 MN O 1--- 1 8 r MIN M INN 1- M 1 r M PA 7 Tract 16869 Citrus Heights North 126-2001 5/26/05 Low Loss Fraction & Maximum Loss Rate Developed 5-yr Set # 3 Cover Resident 5-7 DU Area 13 Soil type A (AiitoCald:In perVIO Return Period AMC Type Lag Time 13.0 P-24= 5.08 in 5 I I (1,11 or III) Area 13 13 % 100 CN-Il 32 Tributary area Tc= Lag CN-III 52 9 13.2 min from Rational Method Study 10.56 min Lag = 0.18 hr WQMP-UHinput-sheetPA7-WQMP.xls Run:, Ap 0.5 0' 0.50 2 £ 4 251. 0 Y 0 =g" V (wght): 0 Y= 0.48 Est Vol = Fp (F.C-6) 0.98 3 ac-ft Low Loss Fraction,Y-bar = 0.52 Fin Y0.49 Fm (vght)' 0.49 24-hr Rainfall (other than 100 yr) T (yr) (in) 2 3.55 100 10.1 5 5.08 8/16/2005 Project: PA 7 Tract 16869 Date: 5/26/2005 126-2001 Engineer: p Notes: Developed 5-yr Set #3 1st-24hr 2nd-24hr 1 Design Storm yr 5 2 Catchment Lag time hrs 0.18 (TC, min) 13.2 3 Catchment Area acres 13 4 Base flow cfs/sq mi 0 5 S-graph 6 Maximum loss rate, Fm in/hr 0.49 7 Low loss fraction, Y-bar 0.52 8 Watershed area -averaged 5 -minute point rainfall inches 0.29 0.10 Watershed area -averaged 30 -minute point rainfall inches 0.66 0.24 Watershed area -averaged 1 -hour point rainfall inches 0.92 0.33 Watershed area -averaged 3 -hour point rainfall inches 1.72 0.62 Watershed area -averaged 6 -hour point rainfall inches 2.55 0.92 Watershed area -averaged 24 -hour point rainfall inches 5.08 1.83 9 24-hour storm unit interval minutes 5 Point rainfall unadjusted by depth -area factors 10 Depth -area adjustment factors 5-min 0.98 (Fig E-4) 30-min 0.98 1-hr 0.98 3-hr 1 6-hr 1 24-hr 1 WQMP-UHinput-sheetPA7-WQMP.xls 8/16/2005 1 i SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1251 Analysis prepared by: **************************************************************************** Problem Descriptions: WQMP INFILTRATION BASIN FOR TRACT 16869 5-YEAR STUDY JN 126-2001 wli RATIONAL METHOD CALIBRATION COEFFICIENT = 0.79 TOTAL CATCHMENT AREA(ACRES) = 13.00 SOIL -LOSS RATE, Fm,(INCH/HR) = 0.490 LOW LOSS FRACTION = 0.520 TIME OF CONCENTRATION(MIN.) = 13.20 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 5 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.29 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.66 1-HOUR POINT RAINFALL VALUE(INCHES) = 0.92 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.72 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.55 24-HOUR POINT RAINFALL VALUE(INCHES) = 5.08 TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 2.19 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE-FEET) = 3.32 TIMEVOLUME Q 0. 5.0 10.0 15.0 20.0 (HOURS) (AF) (CFS) 0.16 0.0047 0.52 .Q 0.38 0.0142 0.52 Q 0.60 0.0237 0.53 .Q 0.82 0.0333 0.53 .Q 1.04 0.0430 0.53 .Q 1.26 0.0527 0.54 .Q 1.48 0.0625 0.54 .Q 1.70 0.0724 0.55 .Q 1.92 0.0823 0.55 .Q 2.14 0.0924 0.55 .Q 2.36 0.1025 0.56 .Q 2.58 0.1127 0.56 .Q 2.80 0.1229 0.57 .Q 3.02 0.1333 0.57 .Q 3.24 0.1438 0.58 .Q 3.46 0.1543 0.58 .Q 3.68 0.1649 0.59 .Q 3.90 0.1757 0.59 .Q 4.12 0.1865 0.60 .Q 4.34 0.1974 0.60 .Q 4.56 0.2084 0.61 .Q 4.78 0.2196 0.62 .Q 5.00 0.2308 0.62 .Q 5.22 0.2421 0.63 .Q 5.44 0.2536 0.63 .Q 5.66 0.2652 0.64 .Q 5.88 0.2769 0.65 .Q 6.10 0.2887 0.66 .Q 6.32 0.3007 0.66 .Q 6.54 0.3128 0.67 .Q 6.76 0.3250 0.68 .Q 6.98 0.3374 0.69 .Q 7.20 0.3499 0.69 .Q 7.42 0.3626 0.70 .Q 7.64 0.3755 0.71 .Q 7.86 0.3885 0.72 .Q 8.08 0.4017 0.73 .Q 8.30 0.4151 0.74 .Q 8.52 0.4286 0.75 .Q 8.74 0.4424 0.76 .Q 8.96 0.4563 0.77 .Q 9.18 0.4705 0.79 .Q 9.40 0.4849 0.80 .Q 9.62 0.4996 0.81 .Q 9.84 0.5145 0.82 .Q 10.06 0.5296 0.84 .Q 10.28 0.5450 0.85 .Q 10.50 0.5608 0.88 .Q 10.72 0.5768 0.89 .Q 10.94 0.5932 0.91 .Q 11.16 0.6099 0.93 .Q 11.38 0.6270 0.95 .Q 11.60 0.6444 0.97 .Q 11.82 0.6623 1.00 . Q 12.04 0.6807 1.02 Q 12.26 0.7009 1.21 Q 12.48 0.7230 1.23 Q 12.70 0.7457 1.27 Q 12.92 0.7690 1.29 Q 13.14 0.7930 1.35 Q 13.36 0.8177 1.38 Q 13.58 0.8434 1.44 Q 13.80 0.8699 1.48 Q 14.02 0.8976 1.56 Q 14.24 0.9265 1.62 Q 14.46 0.9569 1.73 Q 14.68 0.9890 1.80 Q 14.90 1.0234 1.97 Q 15.12 1.0602 2.08 Q 15.34 1.1008 2.38 Q 15.56 1.1441 2.37 Q 15.78 1.1924 2.95 Q 16.00 1.2538 3.80 16.22 1.4347 16.10 16.44 1.6038 2.50 Q 16.66 1.6467 2.22 Q 16.88 1.6839 1.88 Q 17.10 1.7162 1.67 Q 17.32 1.7452 1.52 Q 17.54 1.7718 1.41 . Q 17.76 1.7966 1.32 . Q 17.98 1.8199 1.25 . Q 18.20 1.8411 1.08 . Q 18.42 1.8598 0.98 .Q 18.64 1.8773 0.94 .Q 18.86 1.8940 0.90 .Q 19.08 1.9101 0.86 .Q 19.30 1.9255 0.83 .Q 19.52 1.9404 0.81 .Q 19.74 1.9548 0.78 .Q 19.96 1.9688 0.76 .Q 20.18 1.9824 0.74 .Q 20.40 1.9955 0.72 .Q 20.62 2.0084 0.70 .Q 20.84 2.0209 0.68 .Q 21.06 2.0332 0.67 .Q 21.28 2.0451 0.65 .Q 21.50 2.0568 0.64 .Q 21.72 2.0683 0.62 .Q 21.94 2.0795 0.61 .Q 22.16 2.0906 0.60 .Q 22.38 2.1014 0.59 .Q 22.60 2.1120 0.58 .Q 22.82 2.1225 0.57 .Q 23.04 2.1328 0.56 .Q 23.26 2.1429 0.55 .Q 23.48 2.1528 0.54 .Q 23.70 2.1626 0.54 .Q 23.92 2.1723 0.53 .Q 24.14 2.1818 0.52 .Q 24.36 2.1865 0.00 Q Problem Descriptions: WQMP INFILTRATION' BASIN FOR TRACT 16869 5-YEAR STUDY JN 126-2001 wli RATIONAL METHOD CALIBRATION COEFFICIENT = 0.79 TOTAL CATCHMENT AREA(ACRES) = 13.00 SOIL -LOSS RATE, Fm,(INCH/HR) = 0.490 LOW LOSS FRACTION = 0.520 TIME OF CONCENTRATION(MIN.) = 13.20 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 5 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.29 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.66 1-HOUR POINT RAINFALL VALUE(INCHES) = 0.92 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.72. 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.55 24-HOUR POINT RAINFALL VALUE(INCHES) = 5.08 1 t t t t t TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 2.19 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE-FEET) = 3.32 **************************************************************************** TIME VOLUME Q 0. 5.0 10.0 15.0 20.0 (HOURS) (AF) (CFS) 0.16 0.38 0.60 0.82 1.04 1.26 1.48 1.70 1.92 2.14 2.36 2.58 2.80 3.02 3.24 3.46 3.68 3.90 4.12 4.34 4.56 4.78 5.00 5.22 5.44 5.66 5.88 6.10 6.32 6.54 6.76 6.98 7.20 7.42 7.64 7.86 8.08 8.30 8.52 8.74 8.96 9.18 9.40 9.62 9.84 10.06 10.28 10.50 10.72 10.94 11.16 11.38 0.0047 0.0142 0.0237 0.0333 0.0430 0.0527 0.0625 0.0724 0.0823 0.0924 0.1025 0.1127 0.1229 0.1333 0.1438 0.1543 0.1649 0.1757 0.1865 0.1974 0.2084 0.2196 0.2308 0.2421 0.2536 0.2652 0.2769 0.2887 0.3007 0.3128 0.3250 0.3374 0.3499 0.3626 0.3755 0.3885 0.4017 0.4151 0.4286 0.4424 0.4563 0.4705 0.4849 0.4996. 0.5145 0.5296 0.5450. 0.5608 0.5768 0.5932 0.6099 0.6270 0.52 .Q 0.52 .Q 0.53 .Q 0.53 .Q 0.53 .Q 0.54 .Q 0.54 .Q 0.55 .Q 0.55 .Q 0.55 .Q 0.56 .Q 0.56 .Q 0.57 .Q 0.57 .Q 0.58 .Q 0.58 .Q 0.59 .Q 0.59 .Q 0.60 .Q 0.60 .Q 0.61 .Q 0.62 .Q 0.62 .Q 0.63 .Q 0.63 .Q 0.64 .Q 0.65 .Q 0.66 .Q 0.66 .Q 0.67 .Q 0.68 .Q 0.69 .Q 0.69 .Q 0.70 .Q 0.71 .Q 0.72 .Q 0.73 .Q 0.74 .Q 0.75 .Q 0.76 .Q 0 77 .Q 0.79 .Q 0.80 .Q 0.81 .Q 0.82 .Q 0.84 .Q 0.85 .Q. 0.88 .Q 0.89 .Q 0.91 .Q 0.93 .Q 0.95 .Q 1 1 t 11.60 11.82 12.04 12.26 12.48 12.70 12.92 13.14 13.36 13.58 13.80 14.02 14.24 14.46 14.68 14.90 15.12 15.34 15.56 15.78 16.00 16.22 16.44 16.66 16.88 17.10 17.32 17.54 17.76 17.98 18.20 18.42 18.64 18.86 19.08 19.30 19.52 19.74 19.96 20.18 20.40 20.62 20.84 21.06 21.28 21.50 21.72 21.94 22.16 22.38 22.60 22.82 23.04 23.26 23.48 23.70 23.92. 24.14 24.36 0.6444 0.6623 0.6807 0.7009 0.7230 0.7457 0.7690 0.7930 0.8177 0.8434 0.8699 0.8976 0.9265 0.9569 0.9890 1.0234 1.0602 1.1008' 1.1441 1.1924 1.2538 1.447 1.6038 1.6467 1.6839 1.7162 1.7452 1.7718 1.7966 1.8199 1.8411 1.8598 1.8773 1.8940 1.9101 1.9255 1.9404 1.9548 1.9688 1.9824 1.9955 2.0084 2.0209 2.0332 2.0451 2.0568 2.0683 2.0795 2.0906 2.1014 2.1120 2.1225 2.1328 2.1429 2.1528 2.1626 2.1723 2.1818 2.1865 0.97 1.00 1.02 1.21 1.23 1.27 1.29 1.35 1.38 1.44 1.48 1.56 1.62 1.73 1.80 1.97 2.08 2.38 2.37 2.95 3.80 16 10 2.50 . Q 2.22 Q 1.88 Q 1.67 Q 1.52 Q 1.41 . Q 1.32 . Q 1.25 Q 1.08 . Q 0.98 .Q 0.94 .Q 0.90 .Q 0.86 .Q 0.83 .Q 0.81 .Q 0.78 .Q 0.76 .Q 0.74 .Q 0.72 .Q 0.70 .Q 0.68 .Q 0.67 .Q 0.65 .Q 0.64 .Q 0.62 .Q 0.61 .Q 0.60 .Q 0.59 .Q 0.58 .Q 0.57 .Q 0.56 .Q 0.55 .Q 0.54 .Q 0.54 .Q 0.53 .Q 0.52 .Q 0.00 4 Problem Descriptions: WQMP INFILTRATION BASIN FOR TRACT 16869 5-YEAR STUDY JN 126-2001 FLOW -THROUGH DETENTION BASIN MODEL wli SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: CONSTANT HYDROGRAPH TIME UNIT(MINUTES) = 13.200 DEAD STORAGE(AF) = 0.00 SPECIFIED DEAD STORAGE(AF) FILLED = 0.00 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN = INFLOW detention I basin I<--> V OUTFLOW. effective depth I (and volume) outflow. 0.00 I \ storage I basin outlet DEPTH -VS. -STORAGE AND DEPTH -VS. -DISCHARGE INFORMATION: TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = 9 *BASIN -DEPTH STORAGE OUTFLOW **BASIN -DEPTH STORAGE * (FEET) (ACRE-FEET) (CFS) ** (FEET) (ACRE-FEET) * 0.000 0.000 0.000** 8.000 0.039 * 9.000 0.064 3.340** 10.000 0.111 * 11.000 0.182 9.380** 12.000 0.276 * 13.000 0.390 16.260** 14.000 0.525 * 15.000 0.684 25.680** OUTFLOW (CFS) * 1.110* 5.840* 12.510* 20 750* BASIN STORAGE, OUTFLOW AND DEPTH INTERVAL DEPTH NUMBER (FEET) 1 0.00 2 8.00 3 9.00 4 10.00 5 11.00 6 12.00 7 13.00 {S-0*DT/2} (ACRE-FEET) 0.00000 0.02891 0.03364 0.05791 0.09673 0.16227 0.24218 ROUTING VALUES: {S+0*DT/2} (ACRE-FEET) 0.00000 0.04909 0.09436 0.16409 0.26727 0.38973 0.53782 8 14.00 0.33636 0.71364 9 15.00 0.45055 0.91745 WHERE S=STORAGE(AF);O=OUTFLOW(AF/MIN.);DT=UNIT INTERVAL(MIN.) DETENTION BASIN ROUTING RESULTS: NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. TIME DEAD -STORAGE OUTFLOW EFFECTIVE (HRS) FILLED(AF) (CFS) DEPTH(FT) '(CFS) VOLUME(AF) INFLOW EFFECTIVE 0.160 0.380 0.600 0.820 1.040 1.260 1.480 1.700 1.920 2.140 2.360 2.580 2.800 3.020 3.240 3.460 3.680 3.900 4.120 4.340 4.560 4.780 5.000 5.220 5.440 5.660 5.880 6.100 6.320 6.540 6.760 6.980 7.200 7.420 7.640 7.860 8.080 8.300 8.520 8.740 8.960 9.180 9.400 9.620 9.840 10.060 10.280 10.500 10.720 10.940 11.160 11.380 11.600 11.820 12.040 12.260 12.480 0.000 0.000 0.000 0.000 0.000. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.55 0.55 0.55 0.56 0.56 0.57 0.57 0.58 0.58 0.59 0.59 0.60 0.60 0.61 0.62 0.62 0.63 0.63 0.64 0.65 0.66 0.66 0.67 0.68 0.69 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.79 0.80 0.81 0.82 0.84 0.85 0.88 0.89 0.91 0.93 0. 95 0.97 1.00 1.02, 1.21 1.23 1.54 2.45 3.00 3.34 3.54 3.68 3.77 3.84 3.89 3.93 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25` 4.30 4.33 4.38 4.41 4.46 4.50 4.55 4.60 4.65 4.69 4.75 4.80 4.86 4.91 4.98 5.03 5.10 5.17 5.24 5.31 5.39 5.46 5.55 5.63 5.73 5.81 5.92 6.02 6.14 6.24. 6.38 6.50 6.65 6.79 6.96 7.12 7.76 8.03 0.11 0.28 0.38 0.44 0.48 0.50 0.52 0.53 0.54 0.54 0.55 0.55 0.56 0.56 0.57 0.57 0.58 0.58 0.59 0.59 0.60 0.60 0.61 0.62 0.62 0.63 0.63 0.64 0.65 0.66 0.66 0.67 0.68 0.69 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.78 0.79 0.80 0.81 0.83 0.84 0.86 0.88 0.89 0.91 0.93 0.95 0.98 1.03 1.12 0.007 0.012 0.015 0.016 0.017 0.018 0.018 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.024 0.024 0.024 0.025 0.025 0.025 0.026 0.026 0.026 0.027 0.02.7 0.027 0.028 0.028 0.029 0.029 0.030 0.030 0.031 0.032 0.032 0.033 0.034 0.035 0.038 0.040 C:At'ft A. 14 nuas C�-'-/6#t- OT1 RoCK EL Ev, JO( 'f !1 toS. 1, 12.700 12.920 13.140 13.360 13.580 13.800 14.020 14.240 14.460 14.680 14.900 15.120 15.340 15.560 15.780 16.000 16.220 16.440 16.660 16.880 17.100 17.320 '17.540 17.760 17.980 18.200 18.420 18.640 18.860 19.080 19.300 19.520 19.740 19.960 20.180 20.400 20.620 20.840 21.060 21.280 21.500 21.720 21.940 22.160 22.380 22.600 22.820 23.040 23.260 23.480 23.700 23.920 24.140 24.360 0.000 1.27 8.07 1.22 0.000 1.29 8.08 1.27 0.000 1.35 8.10 1.32 0.000 1.38 8.12 1.36 0.000 1.44 8.15 1.40 0.000 1.48 8.16 1.45 0.000 1.56 8.20 1.51 0.000 1.62 8.22 1.58 0.000 1.73 8.27 1.66 0.000 1.80 8.31 1.76 0.000 1.97 8.38 1.87 0.000 2.08 8.43 2.01 0.000 2.38 8.56 2.21 0.000 2.37 8.57 2.36 0.000 2.95 8.80 2.63 0.000 3.80 9.11 3.25 0.000 16.10 11.50 7.28 0.000 2.50 10.11 8.59 0.000 2.22 9.11 4.92 0.000 1.88 8.48 2.90 0.000 1.67 8.28 1.95 0.000 1.52 8.19 1.63 0.000 1.41 8.14 1.48 0.000 1.32 8.10 1.38 0.000 1.25 8.07 1.29 0.000 1.08 7.95 1.18 0.000 0.98 7.60 1.08 0.000 0.94 7.26 1.03 0.000 0.90 6.94 0.99 0.000 0.86 6.65 0.94 0.000 0.83 6.38 0.90 0.000 0.81 6.15 0.87 0.000 0.78 5.93 0.84 0.000 0.76 5.73 0.81 0.000 0.74 5.56 0.78 0.000 0.72 5.39 0.76 0.000 0.70 5.24 0.74 0.000 0.68 5.11 0.72 0.000 0.67 4.98 0.70 0.000 0.65 4.86 0.68 0.000 0.64 4.75 0.67 0.000 0.62 4.65 0.65 0.000 0.61 4.55 0.64 0.000 0.60 4.46 0.62 0.000 0.59 4.37 0.61 0.000 0.58 4.29 0.60 0.000 0.57 4.22 0.59 0.000 0.56 4.14 0.58 0.000 0.55 4.08 0.57 0.000 0.54 4.01 0.56 0.000 0.54 3.95 0.55 0.000 0.53 3.89 0.54 0.000 0.52 3.83 0.54 0.000 0.00 2.26 0.42 0.041 0.041 0.042 0.042 0.043 0.043 0.044 0.045 0.046 0.047 0.048 0.050 0.053 0.053 0.059 0.069 0.229 0.119 0.069 0.051 0.046 0.044 0.042 0.041 0.041 0.039 0.037 0.035 0.034. 0.032 0.031 0.030 0.029 0.028 0.027 0.026 0.026 0.025 0.024 0.024 0.023 0.023 0.022 0.022 0.021 0.021 0.021 0.020 0.020 0.020 0.019 0.019 0.019 0.011 1 1 - - - 1 1 i- v - r - - w - - - 1 - 11111 FILE: nul.WSW W S P G W- CIVILDESIGN Version 14.01 PAGE Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING Date: 9-30-2005 Time:11:51:43 TRACT 16869 Q100--LINE NU-1 JN 126-2001 wli nul.wsw ************************************************************************************************************************** ******** I Invert Station I Elev - 1- L/Elem ICh Slope 923.290 18.250 32.715 .0249 956.005 19.063 - 1- 7.484 .0249 963.490 19.250 JUNCT STR .1125 A lf967.490 -1- 53.510 19.700 .0056 1021.000 20.000 4.000 .0750 1025.000 20.300 55.370 .0052 1080.370 20.590 -17 JUNCT STR .0602 1081.700 20.670 24.219 .0136 1105.919 21.000 1105.920 22.000 - 1- WALL ENTRANCE Depth I Water I Q (FT) I Elev I (CFS) - -I- -1- 1 1 1 3.250 21.500 -1- 1 2.500 21.563 I I 2.310 21.560 - -1- -1- 2.051 21.751 - -1- -I 1 2.144 22.144 1_ 2.023 22.323 - -17 -I- 2.139 22.729 - -i- 7I- 2.684 23.354 - -I- -I I I 2.487 23.487 1.487 23.487 18.00 18.00 18.00 9.00 9.00 9.00 9.00 4.50 4.50 4.50 Vel Vel (FPS) Head SF Ave *******1******* Energy Grd.E1. HF ********* 3.67 .21 21.71 .0019 .06 3.67 .21 21.77 -I- -1- .0018 .01 3.80 .22 21.78 - -1- -I- .0060 .02 5.09 1 .40 22.15 -i- .0073 .39 1 5.09 .40 22.55 - -I- .0098 .04 5.09 .40 22.73 - -1- -I- - .0073 .41 5.09 .40 23.13 .0072 .01 I 3.24 .16 23.52 -1- .0035 .08 I 3.24 .16 23.65 1 3.24 .16 23.65 - -I -1- - Super Elev SE Dpth ******* .00 3.25 .00 2.50 .00 CriticallFlow ToplHeight/IBase Wtl INo Wth Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip -I- -I- -I- -I- -I Froude NINorm Dp I "N" I X-FallI ZR 'Type Ch ********1********I*******1*******1***** I******* I I I I i 1 44 .00 2.500 .000 .00 0 0 .00 .90 .013 .00 .00 PIPE I I I 1.44 .00 2.500 .000 .00 0 .0 - I- I- -I- -I- 1= .00 .90 .013 .00 .00 PIPE I I I I 1.44 1.32 2.500 .000 .00 0 .0 - -I- -I- -I- -I- I- 2.31 .00 -1- 2.05 .00 2.14 .00 2.02 .00 2.14 .00 -1- 2.68 .00 71- I .00 .35 .015 .00 .00 PIPE I I 1 1 1 1.16 .00 1.500 .000 .00 0 .0 - I- -I- -I- -I- 1- .00 1.50 .013 .00 .00 PIPE 1 1 I I I 1.16 .00 1.500 .000 .00 0 .0 -I- -I- -I- -I- I- .00 .62 .015 .00 .00 PIPE 1 I I 1 1 1.16 .00 1.500 .000 .00 0 .0 - I- -I- -I- -I- 1- .00 1.50 .013 .00 .00 PIPE I I I 1 I 1.16 .00 1.500 .000 .00 0 .0 -I- -I- -I- -I- I- .00 .015 .00 .00 PIPE I I I I I .84 .00 1.330 .000 .00 0 .0 -I- -I- -I- -I- I- .00 .67 .013 .00 .00 PIPE 1 I 1 1 1 .84 .00 1.330 .000 .00 0 0 -I- -I- -I- -I- I- I I I I I .84 .00 1.330 .000 .00 0 0 -I- -I- -I- -i_ 1_ r 1 1 1 — 1 i 1 ■w r S i 1 N 1 M N 1 1 FILE: nul.WSW Station L/Elem 1105.920 Invert W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 Q100--LINE NU-1 JN 126-2001 Depth I Water Elev I (FT) I Elev - -I- Ch Slope I 1********1********* I 1 22.000 1.682 23.682 -1 -1- Q (CFS) ********* wli nul.wsw Vel Vel (FPS) Head SF Ave *******1******* 4.50 .10 .00 - -1- -I- Ls� Energy I Super Grd.E1.I Elev HF ISE Dpth *********I******* 23.68 .00 CriticallFlow Top Depth I Width - -I- Froude NlNorm Dp ********I******** .09 28.00 PAGE - 2 Date: 9-30-2005 Time:11:51:43 eNbuCpF! Foir -th e 4,3 DisA ro c.. Y Hit) re IE.- -t.�n �'�: e_ EA, 7 _. I► l til 4 N }1,77- cv 6 W 4 LI'E/- i/ ******************* Height/ Base Wt Dia.-FT or I.D. - "Nn ******* X-Fall ******* 2.300 28.000 ******** No Wth ZL Prs/Pip ZR ***** .00 Type Ch ******* 0 .0 FILE: nu1.WSW WSPGW - EDIT LISTING - Version 14.01 Date: 9-30-2005 Time:11:51:35 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 0 2.500 CD 2 4 0 2.500 CD 3 4 0 2.000 CD 4 4 0 1.500 CD 5 4 0 1.330 CD 6 4 0 2.000 CD 7 2 0 .000 7.470 2.000 .00 CD 8 3 0 .000 2.300 28.000 .000 .000 .00 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS TRACT 16869 Q100--LINE NU-1 PAGE NO JN 126-2001 wli nul.wsw WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 923.290 18:250 1 21.500 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 963.489 19.249 1 .013 .000 .000 .000 0 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT 963.490 19.250 1 ELEMENT NO 4 IS A JUNCTION N .013 * RADIUS ANGLE ANG PT MAN H .000 .000 69.400 0 * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 967.490 19.700 4 5 0 .015 9.000 .000 20.750 .000-85.000 .000 RADIUS ANGLE .000 .000 ELEMENT NO 5 IS A REACH * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1021.000 20.000 4 .013 .000 .000 .000 0 ELEMENT NO 6 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1025.000 20.300 4 .015 .000 .000 -90.000 1 ELEMENT NO 7 IS A REACH * U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1080.370 20.590 4 .013 .000 .000 .000 0 ELEMENT NO 8 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 1081.700 20.670 5 5 0 .015 4.500 .000 20.670 .000-90.000 .000. RADIUS ANGLE .000 .000 ELEMENT NO 9 IS A REACH U/S DATA STATION INVERT SECT 1105.919 21.000 5 ELEMENT NO 10 IS A REACH U/S DATA STATION INVERT SECT 1105.920 22.000 5 N RADIUS ANGLE ANG PT MAN H .013 .000 .000-90.000 0 8 RADIUS ANGLE ANG PT MAN H .013 .000 .000 .000 0 I 1 M I I I M M N I 1 r 111111 I I N INN INN 11111 WSPGW PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 11 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 1105.920 22.000 8 .200 ELEMENT NO 12 IS A SYSTEM IiEADWORKS U/S DATA STATION INVERT SECT W S ELEV 1105.920 22.000 8 22.000 NEI 11111; S INN M Ell 11E1 MN T1 TRACT 16869 T2 Q100--LINE NU-1 T3 JN 126-2001 SO 923.290 18.250 R 963.489 19.249 R 963.490 19.250 JX 967.490 19.700 R 1021.000 20.000 R 1025.000 20.300 R 1080.370 20.590 JX 1081.700 20.670 R 1105.919 21.000 R 1105.920 22.000 WE 1105.920 22.000 SH 1105.920 22.000 CD 1 4 0 .000 CD 2 4 0 .000 CD 3 4 0 .000 CD 4 4 0 .000 CD 5 4 0 .000 CD 6 4 0 .000 CD 7 2 0 .000 CD 8 3 0 .000 Q 4.500 wli 1 1 1 4 4 4 4 5 5 5 5 8 8 2.500 2.500 2.000 1.500 1.330 2.000 7.470 2.300 .0 nul.wsw .013 .013 .015 .013 .015 013 .015 .013 .013 .200 .000 .000 .000 .000 .000 .000 2.000 28.000 9.000 4.5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 21.500 20.750 20.67 22.000 .00 .00 00 .00 .00 .00 .00 .00 .000 .000 0 .000 69.400 0 - 85.0 .000 .000 0 . 000-90.000 1 .000 .000 0 - 90.0 .000-90.000 0 .000 .000 0 .000 .000 M 11111 111111 MINI M NMI 11111 INN FILE: nu2.WSW 1 Invert I Station 1 Elev I - 1- -1 L/Elem ICh Slope 1 967.490 19.750 -I- -1- 34.862 .0223 I I W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 Q100--LINE NU-2 JN 126-2001 Depth (FT) 2.050 Water Elev 21.800 1002.352 20.529 1.500 22.029 -1- -1- -I- HYDRAULIC JUMP 1002.352 20.529 .861 21.390 -1- 4.407 .0223 1006.759 20.627 14.567 .0223 1021.325 20.953 - 1- -1- 8.413 .0223 1029.738 -1- 5.449 1035.187 - 1- 3.552 1038.739 -I- 2.256 1040.996 - I- 1.300 .861 21.488 .895 21.848 Q (CFS) PAGE Date: 9-30-2005 Time: 2:34: 5 wli nu2.wsw ********************************************************************** ******** Vel Vel (FPS) Head SF Ave Energy Grd.El. HF 9.00 5.09 .40 22.20 - -I -I- -I- .0073 .26 1 I 1 9.00 5.09 .40 22.43 -I- -I- -1- -I 21.141 .932 22.073 -I - 1 - -1- .0223 I I 21.263 .971 22.234 -I_ -I- .0223 1 21.342 1.013 22.355 -1- -I- -I- .0223 21.392. 1.058 22.450 -1 71- -I- .0223 Super Elev S- E Dpth 1 9.00 8.57 1.14 22.53. - I- -I- -1- -1- .0186 .08 I 1 9.00 8.57 1.14 22.63 - I- -I- I -I- .0176 .26 I I 1 9.00 8.17 1.04 22.89 -I- .0155 .13 1 9.00 7.79 .94 23.02 - I- -I, -I- -1- .0138 .08 9.00 7.43 .86 23.09 -I- -I- -I- -1- .0122 .04 9.00 7.08 .78 23.13 -I- -I- -I- -I- 0109 .02 I I I 9.00 6.75 .71 23.16 -I- -I- -I- -I- .0097 .01 CriticallFlow Top Depth 1 Width - -1- Froude N1Norm Dp ********I******** I .00 1.16 .00 1.500 .000 .00 0 -1- -1- - - 2.05 .00 .81 .013 .00 -.00 PIPE I I 1 .00 1.16 .00 1.500 .000 .00 0 .0 - 1- -1- -I- -I- -I- - I I I I 1 .00 1.16 1.48 1.500 .000 .00 0 .0 - I- -I- -I- -I- -I- .86 1.80 .81 .013 .00 .00 I I I 1 .00 1.16 1.48 1.500 .000 .00 0 .0 - I- -I- -I- -1- -1- .86 1.80 .81 .013 .00 .00 I I I I .00 1.16 1.47 1.500 .000 .00 0 - 1- -I- -I- -I- -I- - .90 1.67 .81 .013 .00 .00 PIPE 1 I 1 I I .00 1.16 1.46 1.500 .000 .00 0 - 1- -I -1- -I- -I- - .93 1.54 .81 .013 .00 .00 PIPE I I I 1 I .00 1.16 1.43 1.500 000 0 . P- IPE Height/ Base Wt Dia.-FT - "N" or I.D. X-Fall No Wth ZL Prs/Pip - I- -I- -1- -1_ .97 1.42 .81 .013 I I .00 ' 1.16 1.40 1.500 - I- -I- -I -1- 1.01 1.31 .81 .013 I I I I .00 1.16 1.37 1.500 - I- -I- -I- -1- 1.06 1.21 .81 .013 ZR Type Ch ***** ******* - 1- .00 .000 - 1- .00 .00 I .000 .00 -1- .00 .00 .00 .00 .00 PIPE P- IPE 0 P- IPE 0 P- IPE 1 N N - - - 1 - - - 1 - I M 1111111 N 1 1 INN FILE: nu2.WSW ********* Station L/Elem Invert Elev Ch Slope ********* 1042.296 21.421 - I - .385 .0223 1042.680 21.430 -I - JUNCT STR .0226 1044.010 21.460 24.360 .0140 1068.370 21.800 - I - 8.720 .0229 1077.090 22.000 WALL ENTRANCE 1077 090 22.000 - 1- W S P G W- CIVILDESIGN Version 14.01 Program Package Serial Number: 1296 WATER SURFACE PROFILE LISTING TRACT 16869 Q100--LINE NU-2 JN 126-2001 ****************** Depth I Water I Q (FT) I Elev I (CFS) - -I- -I- I - I 1.106. 22.528 9.00 - -1 -1- I 1.160 22.590 1.980 23.440 - -1- -I- I 1.773 23.573 - -I- -I- I 1.603 23.603 - -I �--1 1.799 23.799 9.00 4.50 4.50 4.50 Height/ISase Wt Dia.-FTIor I.D. - -I- - "N" I X-Fall .00 1.16 1.32 1.500 -I- 1.11 1.10 .81 .013 I I 1- -I- -I- .00 1.16 1.26 1.500 - 1- -I -I- -I 1.00 .015 .00 .84 .00 1.330 - 1 -I -I- -1- 1.98 .00 .66 .013 I I I I .00 = .84 .00 1.330 1 1- -1 -1- 1.77 .00 .58 .013 .00 wli nu2.wsw PAGE Date: 9-30-2005 Time: 2:34: 5 ******************************************************************** Vel Vel (FPS) Head SF Ave ******1******* Energy Grd.El. HF ********* 6.44 .64 23.17 .0087 .00 6.14 .58 23.17 - 1- -I- -1- .0067 .01 1.16 I I 3.24 .16 23.60 -I- -I- .0035 .08 3.24 .16 23.74 .0035 .03 3.24 .16 23.77 - I- -I- -I- -I- Super ICriticallFlow Top Elev I Depth I Width SE DpthlFroude NINorm Dp **1********1******** .00 23.80 -I I .84 .000 .00 .000 .00 ZL ZR *** No Wth Prs/Pip Type Ch ******* .000 .00 0 .00 .00 PIPE .000 .00 0 .00 .00 PIPE I I I .00 1.330 .000 .00 0 .0 -I I- -I- -I- I- .0 I I .09 28.00 2.300 28.000 -I- -I- -I- -I- 1 1 - 1 M 1 1 a - N r 111111 - I - 11111 FILE: nu2.WSW CARD SECT CHN NO OF AVE PIER CODE NO TYPE PIER/PIP WIDTH. WSPGW EDIT LISTING - Version 14.01 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) DIAMETER WIDTH DROP CD 1 4 0 2.500 CD 2 4 0 2.500 CD 3 4 0 2.000 CD 4 4 0 1.500 CD 5 4 0 1.330 CD 6 4 0 2.000 CD 7 2 0 .000 7.470 2.000 .00 CD 8 3 0 .000 2.300 28.000 .000 .000 .00 WSPGW WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS HEADING LINE NO 2 IS - TRACT 16869 Q100--LINE NU-2 HEADING LINE NO 3 IS - JN 126-2001 wli nu2.wsw WSPGW WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT 967.490 19.750 4 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT 1042.680 21.430 4 ELEMENT NO 3 IS A JUNCTION U/S DATA STATION INVERT SECT LAT-1 LAT-2 1044.010 21.460 4 5 0 N .013 Y(5) W S ELEV 21.800 Date: 9-30-2005 Time: 2:33:57 PAGE 1 Y(8) Y(9) Y(10) Y(6) RADIUS .000 N 43 Q4 INVERT-3 INVERT-4 PHI 3 -PHI 4 .015 4.500 .000 21.800 .000 90.000 WARNING - ADJACENT SECTIONS ARE NOT IDENTICAL - SEE SECTION NUMBERS AND CHANNEL DEFINITIONS ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT N '" 1068.370 21.800 5 .013 ELEMENT N0 5 IS'A REACH U/S DATA ELEMENT NO 6 IS ELEMENT NO 7 IS A A STATION 1077.090 WALL ENTRANCE U/S DATA STATION 1077.090 SYSTEM HEADWORKS U/S DATA STATION 1077.090 INVERT 22.000 SECT 5 INVERT SECT 22.000 8 * INVERT SECT 22.000 8 N .013 FP .200 RADIUS ANGLE .000 .000 Y(7) ANGLE ANG PT MAN H .000 .000 0 .000 RADIUS ANGLE ANG PT MAN H .000 .000 90.000 0 RADIUS ANGLE ANG PT .000 .000 .000 W S ELEV 22.000 111111 r INN! _- M N Bill NIB 11■ir 111111 11 1- M M 111111 T1 TRACT 16869 T2 Q100--LINE NU-2 T3 JN 126-2001 wli SO 967.490 19.750 4 R 1042.680 21.430 4 .013 JX 1044.010 21.460 4 5 .015 R 1068.370 21.800 5 .013 R 1077.090 22.000 5 :013 WE 1077.090 22.000 8 .200 nu2.wsw 4.500 21.800 21.800 SH 1077.090 - 22.000 8 22.000 CD 1 4 0 .000 2.500 .000 .000 .000 .00 CD 2 4 0 .000 2.500 .000 .000 .000 .00 CD 3 4 0 .000 2.000 .000 .000 .000 .00 CD 4 4 0 .000 1.500 .000 .000 .000 .00 CD 5 4 0 .000 1.330 .000 .000 .000 .00 CD 6 4 0 .000 2.000 .000 .000 .000 .00 CD 7 2 0 .000 7.470 2.000 .000 .000 .00 CD 8 3 0 .000 2.300 28.000 .000 .000 .00 Q 4.500 0 .000 .000 0 90.0 .000 .000 90.000 0 .000 .000 0 »»CHANNEL INPUT INFORMATION«« f tt4-1 %✓%/ LIB[ g CHANNEL Z1(HORIZONTAL/VERTICAL) = 0.00 Z2(HORIZONTAL/VERTICAL) = 0.00 BASEWIDTH(FEET) = 10.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.020 UNIFORM FLOW(CFS) = 20.00 1 G MANNINGS FRICTION FACTOR= 0.0150 - NORMAL-DEPTH FLOW INFORMATION: »»> NORMAL DEPTH(FEET) = 0.32 FLOW TOP-WIDTH(FEET) = 10.00 FLOW AREA(SQUARE FEET) = 3.19 HYDRAULIC DEPTH(FEET) = 0.32 FLOW AVERAGE VELOCITY(FEET/SEC.) = 6.28 UNIFORM FROUDE NUMBER = 1.961 PRESSURE + MOMENTUM(POUNDS) = 275.01 AVERAGED VELOCITY HEAD(FEET) = 0.612 SPECIFIC ENERGY(FEET) = 0.931 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 10.00 CRITICAL FLOW AREA(SQUARE FEET) = 4.99 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.50 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 4.00 CRITICAL DEPTH(FEET) = 0.50 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 233.03 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.249 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.748 14-E ✓z -r-- P or dA g K-Cell--1-7D �'� �►2 b 12 i-. �i� STYE TLF i.[ �( -- 1 i fl `�1� t�.- J ✓1, S J i..l ©&l Cfti. ' % Q ge apt l '-�) I E , SY7:412M 0rr- U? 1 c_ c_.. Moo ..�E✓G►2 F4 I` oN'2-L 04,iE F IT VA`,% INT G9 - 77 E -Lou& PF 13 kr-5ik) ALL- D Cak re 4E-s rC L—Y /Il OF +E 6.1T? 614 ,g. r?-#4-) N A 40- T7a C Srr.,1s- :r4 s) C-mu r--/ c=eeofec 2A- �i , �,.1?' , a_ —3 ) 4 /Z SECTION R REFERENCES & MAPS I WitsfA Group GEOTECTINTCAT, CONSULTANTS GEOTECHNICAL INVESTIGATION FOR TRACT No 16868 230-ACRE RESIDENTIAL DEVELOPMENT NORTH OF SUMMIT AVENUE AND WEST OF CITRUS AVENUE FONTANA, CA for Lewis Operating Corp 1156 N Mountain Ave P.O. Box 670 Upland, CA 91785-0670 August 30, 2004 04-118-01 Ii i 1 1 1 e i e 1 RMA Group GEOTFCHNICAT, CONSULTANTS 10851 EDISON CT., RANCHO CUCAMONGA, CA 91730 : 909-989-1751 : FAX 909-989-4287 August 31, 2004 Lewis Operating Corp 1156 N Mountain Ave P.O. Box 670 Upland, CA 91785-0670 Attention: Brian Goodman Subject: Geotechnical Investigation Tract No 16868 230-Acre Residential Development North of Summit Avenue and west of Citrus Avenue Fontana, CA Gentlemen: In accordance with your request, a geotechnical investigation has been completed for the above -referenced site. The report addresses both engineering geologic and geotechnical conditions. The results of the investigation are presented in the accompanying report, which includes a description of site conditions, results of our field exploration and laboratory testing, conclusions and recommendations. We appreciate this opportunity to be of continued service to you. If you have any questions regarding this report, please do not hesitate to contact us at your convenience. Respectfully submitted, RMA Group Gary Wallace Engineering Geologist CEG 1 5 EL , P.E. President GE 2362 GARY W. WALLACE EG 001255 CERTIFIED GEOLOGISTENGINEERING Q,o%ESS OF CO-OP 1 a uis:Operating Corporation Mountain Avenue Upland, CA 91.7 6 wisisimrstaii 'DRAWN BY 520CJL CHECKED BY' 55t7WG V1/ APPROVED BY: 5ooLEP aft,: - Artiticial fill Qal - Alluvium - Geologic contact - Boring Location B-N - Exploratory Trench Location Base Map Prodded by Meddle and'Associates' GEOW 1C MAP Tract 16868 Fontana, CA DATE .August 20Q4viiinootommisecalbszftentimigegissee RMAJOB No. 04=1 1.0-g1 SHEET No. of PLATE No.: I = 1111111V—taWaliti= LchMasai= NIM- &M_- _NER-_:. UM- r Pile of with t and mortar foundation piles of brokn concrete t Concrete Slab note Slab 226 ora boo !tsee.,-.; 1 I r',r Y, /d 4r--- 0 0 O 15881 6/17- NOT A Location: See Plot Plan Elevation (ft): 1648 Bulk Sample o u Content (%) Dry Density %q I Date Excavated: 7-1E I us S 1 Graphic Symbol 4/7/ (flag' =a }/ �jaEP Cƒ!ƒ o Er g aR§[ƒ C\j/ /\/( ci )a0§ }D}'J })a - }}\ «a.a- C CD < DC j(D _ SM '. ' Alluvium (Qf): Brown silty fine to coarse sand with about 30% gravel and 10% — cobbles, dry, non -cohesive, non -porous, medium dense, contained a 2" metal pipe buried about 4-6" in the western portion of trench. GP � p ` Gray to yellowish -brown fine to coarse sandy gravel with about 35% gravel, 20% cobbles and <2% small boulders to 20" in diameter, dry, crudely stratified, poorly 5 — ( sorted, dense. Q � Total depth 6 feet No groundwater — Moderate digging Trench backfiiled 10 — 15 — Location: See Plot Plan E evation (ft):1636 Exploratory Trench Log Logged By: 520 DKR Exploratory Trench Log Logged By:520 DKR Trench No. T-23 Equipment: Backhoe w/24" bucket -04 Trench No. T-24 -- ....__ ..._ . �.. 1..hatou cxuavatea: i-1 a)Material oau Content (%) Dry Density (pcf) co Graphic Symbol k/U§ §/A{ ;REF wag §§ } EJg a it' a a;£- i:k a k/(� DCCC(\ ,g J}k(o !)»� }\/ E%§ { ,} ■}2 }Dk °0 0 CO co CO to D — SM • • Alluvium (Qf): Brown silty fine to coarse sand with about 15-20% gravel and _ : occasional cobbles, slightly moist, non -cohesive, non -porous, medium dense. • • _ 5 _ GP - GM �, Gray to yellowish -brown fine to coarse sandy gravel with about 30-35% gravel, 20% cobbles and 2% small boulders to 18" in diameter and minor silt, dry, , crudely stratified, poorly sorted, dense. Total depth 5 feet No groundwater — Moderate digging _ Trench backfiiled - 10 - 15 — 04 RMA Job N°. 04-118-01 Page A 21 1 1 1 1 1 t 1 KMA Group Location: See Plot Plan Elevation (ft):1638 Exploratory Trench Log Logged By: 520 DKR Equipment: Backhoe w/24" bucket Trench No. T-27 4, Moisture Content (%) Dry Density (p 0 Us S Graph Symbol 3|//. §ƒ7/ o (ƒA/ 0 \ \Ef0 ek|sƒ }\}\ 11) k( E (o§§ }�((J (� \}\ • 0 }}\ 941 0 0 G .. n m cn _ — SP .• .' Artificial fill (afu): Gray to brown gravelly fine to coarse sand with about 30% • gravel and 15% cobbles, dry to moist at 1 foot, dense. SM • Alluvium (Qf): DArk brown to brown silty fine to coarse sand with about 20% — p gravel and minor decaying grass at fill -alluvium contact, moist, non -cohesive, _ GP dense. — 5 0 Gray to yellowish -brown fine to coarse sandy gravel with about 40-45% gravel, 15-20% cobbles and <2% small boulders to 18" in diameter, moist, crudely stratified, poorly sorted, dense. — Total depth 5 feet _ No groundwater Moderate digging — Trench backfilled 10 — 15 — Location: See Plot Plan Elevation (ft): 1636 Exploratory Trench Log Logged By: 520 DKR Equipment: Backhoe w/24" bucket Trench No. T-28 Date Excavated: 7-16-04 Si" CI- CD Y a m E rp cn _ _ Content (%) Dry Densi$ (q I U C Graphic Symbol Off¥ ggas \(}( gong K0 1.5 13 g2 E .0 -=CD �i7} 13gg E o .)(}\ g2 • c-R °( %ƒl kg {(f 45° 0 — 5.0 107.9 SP .. . Artificial fill (afu): Gray to brown gravelly fine to coarse sand with about 30% . gravel and 15% cobbles, dry to moist at 1 foot, dense. SM .�• " Alluvium (Qf): DArk brown to brown silty fine to coarse sand with about 20% decaying — 8.9 102.1 GP p O gravel and minor grass at fill -alluvium contact, moist, non -cohesive, ( ense. 5 3i•0 Gray to yellowish -brown fine to coarse sandy gravel with about 40-45% gravel, 15-20% cobbles and <2% small boulders to 18" in diameter, moist, crudely — stratified, poorly sorted, dense. — Total depth 5 feet _ No groundwater Moderate digging Trench backfilled 10 — 15 — RMA Job N°. 04-118-01 Page A 23 i t r 1 1 w 7.11MA Group Location: See Plot Plan Elevation (ft):1625 Exploratory Trench Log Logged By: 520 DKR Equipment: Backhoe w/24" b Trench No. T-29 • L o = cu ,, n CO E co ois ure Content (%) Dry Density (pcf) co U co D Graphic Symbol Material Description This log contains factual information and interpretation of the subsurface conditions between the samples. The stratum Indicated on this log represent the approximate boundary between earth units and the transition may be gradual. The log show subsurface conditions at the date and location indicated, and may not be representative of subsurface conditions at other locations and times. _ — 4.4 102.7 SM .. . •cohesive, Alluvium (Qf): Brown silty fine to coarse sand with about 20% gravel, dry, non- loose in the upper 1 foot then medium dense. — e — — 10 — 15 — 3.3 115.7 L GP - GM o d — Gray to yellowish -brown fine to coarse sandy gravel with about 40-45% gravel, 15% cobbles and trace of silt, dry to slightly moist, crudely stratified, poorly sorted, dense. Total depth 5 feet No groundwater Moderate digging Trench backfilled Location: See Plot Plan Elevation (ft):1636 Exploratory Trench Log Logged By: 520 DKR Equipment: Backhoe w/24" bucket Trench No. T-30 • - a __ co 0 $ Bulk Sample ois re Content (%) Dry Density (pcf) Isosn Graphic Symbol criag c�3a y m a • N 0 0 -. m m a o c s §!i0 erg' ioga =m Ea.2 omgm mg W a o- gym= g a Qag s. d j tOwp/ 3 N MAg a 1 j QP 0 H p O. 7 _ - 5 — _ — 10 — 15 — 3.4 110.9 - SM - ' c Alluvium (Qf): Brown silty fine to coarse sand with about 10-20% gravel, slightly • moist, loose in the upper 1 foot (plowed zone) then medium dense. Trace -grass roots to 3 feet. GP - GM Gray to yellowish -brown fine to coarse sandy gravel with about 40-45% gravel, 15-20% cobbles, 2% small boulders to 20" in diameter and trace of silt, slightly moist, poorly sorted, dense. Total depth 5 feet No groundwater Moderate digging ' Trench backfilled Page A24 TABLE AV-1. Major Divisions Group Symbols Typical Names Field Identification Procedures (excluding particles larger than 3 in. and basing fractions on estimated weights) (1) (2) (3) (4) (5) L > a a N t 4 O 0. w a S a d a! z o 4. a E. N `n a V] N a, el12 $ v, v o. to a N E o LT iiaa�� =ai C N.r RI 0 ai 2. O p io GM GC SW SP SM • SC Well -graded gravels, gravel -sand mixtures, little or no fines Poorly graded gravels, gravel -sand mixtures, little or no fines Silty gravels, gravel -sand -silt mixtures Clayey gravels, gravel -sand -clay mixtures Well -graded sands, gravelly sands, little or no fines Poorly graded sands, gravelly sands, little or no fines Silty sands, sand -slit mixtures Clayey sands, sand -clay mixtures Wide range in grain sizes and substantial amounts of all intermediate particle sizes Predominantly one size or a range of sizes with some intermediate sizes missing Nonplastic fines or fines with low plas- ticity (for identification procedures see ML below) Plastic fines (for identification proce- dures see CL below) Wide range in grain size and substantial amounts of all intermediate particle sizes Predominantly one size or a range of sizes with some intermediate sizes missing Nonplastic fines or fines with low plas- ticity (for identification procedures see ML below) Plastic fines (for identification proce- dures see CL below) Identification Procedures on Fraction Smaller than No.40-Sieve Size Dry Strength (Crushing character- istics) Dilatancy (Reaction to shaking) Toughness (Consistency near PL) ML Inorganic silts and very fine sands. rock flour, silty or clayey fine sands. or clayey silts with slight plasticity None to slight Quick to slow None CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays Medium to high None to very slow Medium OL Organic silts and organic silty clays of low plasticity Slight to medium Slow Slight MH CH Inorganic silts, micaceous or dia- tomaceous fine sandy or silty soils, elastic silts Slight to medium Slow to none Slight to medium Inorganic clays of high plasticity, fat clays High to very high None High OH Organic clays of medium to high plasticity, organic silts Medium to high None to very slow Slight to medium Highly Organic Soils Pt Peat and other highly organic soils Readily ident lied by color, odor, spongy feel, and frequently by fibrous texture (1) Boundary classifications: Soils possessing characteristics of two groups are designated by combinations of group symbols, for example, OW.0c , well -graded gravel -sand mixture with clay binder. (2) All sieve sizes on this chart are U. S. standard. Field Identification Procedures for Fine-grained Soils or Fractions These procedures are to be performed on the minus No. 40-sieve-size particles, approximately 1/64 In. For field classification purposes, screening is not intended: simply remove by hand the coarse particles that interfere with the tests. Dilatancy (reaction to shaking) After removing particles larger than No. 40-sieve size, prepare a pat of moist soil with a volume of about 1/2 cu. in. Add enough water if necessary to make the soil soft but not sticky. Place the pat in the open palm of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appear- ance of water on the surface of the pat, which changes to a livery consistency and becomes glossy. When the sam- ple is squeezed between the fingers, the water and gloss disappear from the surface, the pat stiffens, and finally it cracks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil. Very fine clean sands give the quickest and most dis- tinct reaction, whereas a plastic clay has no reaction. In- organic silts, such as a typical rock flour, show a mod- erately quick reaction. Dry Strength (crushing characteristics) After removing particles larger than No. 40-sieve size, mold a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven, sun, The Unified Soil Classification System, Vol. I, March, 1953. Technical Memorandum No. 3-357, UNIFI Unified Sc Information f Describit (6) For undisturbed soil on stratification, de ness, cementation, i and drainage charac Give typical name; in percentages of sand mum size; angularit and hardness of the local or geologic na1 tinent descriptive in symbol in parenthes Example: Silty sand, gravelly; angular gravel; par imum size: rounder sand grains coarse • nonplastic fines wit well compacted and alluvial sand: (SM). Give typical name; inc character of plastid' maximum size of co: in wet condition, ()do. geologic name, and o descriptive informati in parentheses. For undisturbed soils on structure, stratifi ency in undisturbed a states, moisture and ditions. Example: Clayey silt, brown, s small percentage of numerous vertical r and dry in place, tot or air drying, and crumbling it betwc ure of the charact, contained in.the se creasing plasticity High dry streng group. A typical it dry strength. Silty same slight dry st feel when powderir gritty, whereas a t Toughness (consist After removing size, a specimen o molded to the cons be added, and if sti out in a thin layer Adopted by Corps prepared fol 602 1 Groundwater and Seepage M. E. Harr Professor of Soil Mechanics School of Civil Engineering, Purdue University McGRAW-HILL BOOK COMPANY New York San Francisco Toronto London • 8 GROUNDWATER AND SEEPAGE [Sec. 1-7 Sec. 1-71 that part of k which is dependent on these properties. To do this, we of free wa introduce the physical permeability ko (square centimeters), which is a elevation constant typifying the structural characteristics of the medium and is independent of the properties of the fluid. The relationship between the permeability and the coefficient of permeability as given by Muskat [99] is k = ko yt° µ (2) where yu, is the unit weight of the fluid andµ is the coefficient of viscosity. Substituting Eq. (2) into Darcy's law, we obtain v= — k o µao dsh (3) which indicates that the discharge velocity is inversely proportional to the viscosity of the fluid. Equation (3) may be used when dealing with more than one fluid or with temperature variations. In the groundwater and seepage problems encountered in civil engineering, where we are primarily interested in the flow of a single relatively incompressible fluid subject to small changes in temperature, it is more convenient to use Darcy's law with k as in Eq. (1). Laboratory and field determinations of k have received such excellent coverage in the soil -mechanics literature [81, 99, 142, 145] that duplication in this book does not appear to be warranted. Some typical values of the coefficient of permeability are given in Table 1-2. sbl L ►—DCOS Clean ;ravel 1.0 and greater I N. Jjl a k-r" 1 Clean sand (coarse) 1.0-0.01 Q Sand (mixture) 0.01-0.005 (,^O)zL`( Crtti-o! Fine sand 0.05-0.001 Table 1-2. Some Typical Values of Coefficient of Permeability* Soil type Coefficient of permeability k, cm/sec Silty sand f/�, tYT�,�-A.JE;; Silt Clay 0.002-0.0001 0.0005-0.00001 0.000001 and smaller * From A. I. Silin-Bekchurin, "Dynamics of Underground Water," p. 34, Moscow University, 1058. • 1-7. Capillarity Although the physical cause of capillarity is subject to controversy, the surface -tension concept, of capillarity renders it completely amenable to rational analysis. If a. tube filled with dry sand has its lower end immersed below the level equilibriui yields, for Ts is the s of as bein water intE h,. aisc erties of b a = 0. If atmc water imr. On the. law, Terz; the follow rise to the ' As the co, and henc tests, Ta3 tion is ref On the soils exhi Seepage from Canals and Ditches 9-1. Seepage from a Ditch with a_Curved Perimeter into a Horizontal Drainage Layer As an introduction to the subject of seepage from ditches let us investi- gate the characteristics of the equation B=iz+ kw =Aew1" (1)* with reference to the section shown in Fig. 9-1. Here 8 is Zhukovsky's FIG. 9-1 function, w = -I- i¢, a is a parameter, and A is a real constant. Sepa- rating this expression into real and imaginary parts, we obtain —y -]- = Ae'1" cos Ic a x -I-17; = Aeola sin a (2) * This expression was given ab initio by Kozeny [76] in 1931 (see also Muskat [99]). The formal derivation of this expression was obtained by Pavlovsky [110] in 1936 by taking the e plane of Fig. 9-1 as a circle (see Prob. 1 of this chapter). 231 232 GROUNDWATER AND SEEPAGE [Sec. 9-1 Substituting -'P for ip and —x for x in Eqs. (2), we see that the system of streamlines defined by ¢ in these equations is symmetrical about the y axis. Hence, the y axis can be taken as the streamline ¢ = 0. Now a free surface must satisfy the conditions —y -}- 4,/k = 0 and, say, 'P _ —q/2; from the first of Eqs.. (2) we find cos (-- 2«0or q = — (2n + 1)«r (3) where n is an integer. In particular, taking n = 0 and substituting Eq. (3) with ¢ = — q/2, and 4, = ky into the second of Eqs. (2), we obtain for the free surface x - = Ae—k7sl4 2k which has the asymptote (at y = ) (4) _ 4 (5) x, =21c Letting y = 0 in Eq. (4), we obtain for the half width of the ditch (Fig. 9-1) —B=2k+A Now, taking 4, = 0 in Eqs. (2), we find the parametric equations for the perimeter of the ditch: —y = A cos- x -}- k = A sin a (6) (7) As 'P = 0 at the bottom of the ditch, we find from the first of these equations that y = —A = H, where H is the maximum depth of water in the ditch. Hence the quantity of seepage from the ditch section is found from Eq. (6) to be q = k(B + 2H) (8) From Eq. (5), the width of the section at y = co is B, = 2xc = B + 2H (9) Eliminating ¢ in Eqs. (7) and noting that A = —H, the equation of the perimeter of the ditch is = -N/H2 +B+2Hcos—' —y (10) Sec. For am V are T ti si Sec. 9-11 SEEPAGE FROM CANALS AND DITCHES 233 For the velocity along the perimeter of the ditch, we have V — chi) 1 ds V(ax/aq5)2 -f (ay/acb)2 and V= k -V1 + [7rH/(B 2H)]2 — [27rH/(B + 2H)] cos [7r,&/k(B ± 2H)] (11) Cross sections of the ditches for two cases are shown in Fig. 9-2. The arrows denote the velocity distribution along the perimeter of the section. k =9.79 i_ k 0.85 B=2 - FIG. 9-2. (After T'edernikov [151].) The complete flow net for B = 2 and H = 1 is given in Fig. 9-3a. From this figure we see that for practical purposes the free surface can be con- sidered to approach its vertical asymptote, and the equipotential lines 8-2 11) of FIG. 9-3 234 GROUNDWATER AND SEEPAGE [Sec. 9-2 can be taken as horizontal at a depth of r y 3(B -}- 2H)/2. Thus the solution given above may be considered as a reasonable approximation for a deep drainage layer of finite depth, as shown in Fig. 9-3b. 9-2. Seepage from a Ditch into a Curved Drainage Layer* If we take n = —1 in Eq. (3), Sec. 9-1, then a = q/Tr, and Eq. (1), Sec. 9-1, will be (changing A to --C) —iz=±Cewiq (1) ��i� 7¢ —x = Ce sin q k- v y = Ce-mfv cos + As in the previous section we find that C = H, where H is the maximum depth of water in the ditch; therefore, for = 0, we get —x=Hsin q +k y = H cos q and the perimeter_of the ditch is given by = 1/H2-y2+17rcos-1 Aty=0,x=B/2,and • q = k(B — 2H) (4) Hence ±x =2 — y2 -{- B - 2H cos-1 H (5) (2) For the equation of the free surface, where tp = -q/2 and y = ¢/k, we obtain x = Herkv/a -} 2Ic (6) Sec. app equ: spre a v< F Evidently, as y —* + co, x --+ co, and the free surface will develop for vali this case as shown in Fig. 9-4a. not. The shapes of the ditches and their free surfaces for both cases (curve I of t for n = 0 and curve II for n = —1) with B = 8 and H = 1 are shown qua in Fig. 9-4b. In reference to this plot we note that the differences in the 9-3. developed free surfaces for the two conditions depicted cannot be attrib- uted to the small differences in the shape of the ditches but result from , p the nature of the boundary equipotential lines imposed at infinity. For can the first case (n = 0) we found in Sec. 9-1 that the equipotential lines Th( give * See previous footnote. in 1 Infiltration Basin TC-11 Description An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices. California Experience Infiltration basins have a long history of use in California, especially in the Central Valley. Basins located in Fresno were among those initially evaluated in the National Urban Runoff Program and were found to be effective at reducing the volume of runoff, while posing little long-term threat to groundwater quality (EPA, 1983; Schroeder, 1995). Proper siting of these devices is crucial as underscored by the experience of Caltrans in siting two basins in Southern California. The basin with marginal separation from groundwater and soil permeability failed immediately and could never be rehabilitated. Advantages ■ Provides l00% reduction in the load discharged to surface waters. ■ The principal benefit of infiltration basins is the approximation of pre -development hydrology during which a Design Considerations ■ Soil for Infiltration ■ Slope ■ Aesthetics Targeted Constituents 1 Sediment ■ 1 Nutrients ■ 1 Trash ■ ✓ Metals ■ ✓ Bacteria ■ ✓ Oil and Grease ■ 1 Organics ■ Legend (Removal Effectiveness) • Low ■ High Medium C- A S a.. A California Stormwater Quality Association January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 1 of 8 TC-11 Infiltration �®n eo asin significant portion of the average annual rainfall runoff is infiltrated and evaporated rather than flushed directly to creeks. • If the water quality volume is adequately sized, infiltration basins can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events. Limitations ■ May not be appropriate for industrial sites or locations where spills may occur. ▪ Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D. If infiltration rates exceed 2.4 inches/hour, then the runoff should be fully treated prior to infiltration to protect groundwater quality. Not suitable on fill sites or steep slopes. Risk of groundwater contamination in very coarse soils. • Upstream drainage area must be completely stabilized before construction. Difficult to restore functioning of infiltration basins once clogged. Design and Sizing Guidelines • Water quality volume determined by local requirements or sized so that 85% of the annual runoff volume is captured. • Basin sized so that the entire water quality volume is infiltrated within 48 hours. ■ Vegetation establishment on the basin floor may help reduce the clogging rate. Construction/Inspection Considerations • Before construction begins, stabilize the entire area draining to the facility. If impossible, place a diversion berm around the perimeter of the infiltration site to prevent sediment entrance during construction or remove the top 2 inches of soil after the site is stabililized. Stabilize the entire contributing drainage area, including the side slopes, before allowing any runoff to enter once construction is complete. • Place excavated material such that it can not be washed back into the basin if a storm occurs during construction of the facility. • Build the basin without driving heavy equipment over the infiltration surface. Any equipment driven on the surface should have extra -wide ("low pressure") tires. Prior to any construction, rope off the infiltration area to stop entrance by unwanted equipment. • After final grading, till the infiltration surface deeply. s Use appropriate erosion control seed mix for the specific project and location. 2 of 8 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Infiltration Basin TC-11 Performance As water migrates through porous soil and rock, pollutant attenuation mechanisms include precipitation, sorption, physical filtration, and bacterial degradation. If functioning properly, this approach is presumed to have high removal efficiencies for particulate pollutants and moderate removal of soluble pollutants. Actual pollutant removal in the subsurface would be expected to vary depending upon site -specific soil types. This technology eliminates discharge to surface waters except for the very largest storms; consequently, complete removal of all stormwater constituents can be assumed. There remain some concerns about the potential for groundwater contamination despite the findings of the NURP and Nightingale (1975; 1987a,b,c; 1989). For instance, a report by Pitt et al. (1994) highlighted the potential for groundwater contamination from intentional and unintentional stormwater infiltration. That report recommends that infiltration facilities not be sited in areas where high concentrations are present or where there is a potential for spills of toxic material. Conversely, Schroeder (1995) reported that there was no evidence of groundwater impacts from an infiltration basin serving a large industrial catchment in Fresno, CA. Siting Criteria The key element in siting infiltration basins is identifying sites with appropriate soil and hydrogeologic properties, which is critical for long term performance. In one study conducted in Prince George's County, Maryland (Galli, 1992), all of the infiltration basins investigated clogged within 2 years. It is believed that these failures were for the most part due to allowing infiltration at sites with rates of less than 0.5 in/hr, basing siting on soil type rather than field infiltration tests, and poor construction practices that resulted in soil compaction of the basin invert. A study of 23 infiltration basins in the Pacific Northwest showed better long-term performance in an area with highly permeable soils (Hilding, 1996). In this study, few of the infiltration basins had failed after 10 years. Consequently, the following guidelines for identifying appropriate soil and subsurface conditions should be rigorously adhered to. • Determine soil type (consider RCS soil type 'A, B or C' only) from mapping and consult USDA soil survey tables to review other parameters such as the amount of silt and clay, presence of a restrictive layer or seasonal high water table, and estimated permeability. The soil should not have more than 30% clay or more than 40% of clay and silt combined. Eliminate sites that are clearly unsuitable for infiltration. • Groundwater separation should be at least 3 m from the basin invert to the measured ground water elevation. There is concern at the state and regional levels of the impact on groundwater quality from infiltrated runoff, especially when the separation between groundwater and the surface is small. • Location away from buildings, slopes and highway pavement (greater than 6 m) and wells and bridge structures (greater than 3o m). Sites constructed of fill, having a base flow or with a slope greater than 15% should not be considered. • Ensure that adequate head is available to operate flow splitter structures (to allow the basin to be offline) without ponding in the splitter structure or creating backwater upstream of the splitter. January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 3 of.8 TC-11 Infiltration Basin • Base flow should not be present in the tributary watershed. Secondary Screening Based on Site GeotechnicaI Investigation ■ At least three in -hole conductivity tests shall be performed using USBR'73oo-8g or Bouwer- Rice procedures (the latter if groundwater is encountered within the boring), two tests at different locations within the proposed basin and the third down gradient by no more than approximately 10 m. The tests shall measure permeability in the side slopes and the bed within a depth of 3 m of the invert. ■ The minimum acceptable hydraulic conductivity as measured in any of the three required test holes is 13 mm/hr. If any test hole shows less than the minimum value, the site should be disqualified from further consideration. e Exclude from consideration sites constructed in fill or partially in fill unless no silts or clays are present in the soil boring. Fill tends to be compacted, with clays in a dispersed rather than flocculated state, greatly reducing permeability. ■ The geotechnical investigation should be such that a good understanding is gained as to how the stormwater runoff will move in the soil (horizontally or vertically) and if there are any geological conditions that could inhibit the movement of water. Additional Design Guidelines (1) Basin Sizing - The required water quality volume is determined by local regulations or sufficient to capture 85% of the annual runoff. (2) Provide pretreatment if sediment loading is a maintenance concern for the basin. (3) (4) (5) Include energy dissipation in the inlet design for the basins. Avoid designs that include a permanent pool to reduce opportunity for standing water and associated vector problems. Basin invert area should be determined by the equation: A_WQV kt where A = Basin invert area (m2) WQV = water quality volume (m3) k = 0.5 times the lowest field -measured hydraulic conductivity (m/hr) t = drawdown time (48 hr) The use of vertical piping, either for distribution or infiltration enhancement shall not be allowed to avoid device classification as a Class V injection well per 40 CFR146.5(e)(4)• 4 of 8 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Infiltration Basin TC-11 Maintenance Regular maintenance is critical to the successful operation of infiltration basins. Recommended operation and maintenance guidelines include: • Inspections and maintenance to ensure. • Observe drain time for the design storm after completion or modification of the facility to confirm that the desired drain time has been obtained. • Schedule semiannual inspections for beginning and end of the wet season to identify potential problems such as erosion of the basin side slopes and invert, standing water, trash and debris, and sediment accumulation. • Remove accumulated trash and debris in the basin at the start and end of the wet season. • Inspect for standing water at the end of the wet season. • - Trim vegetation at the beginning and end of the wet season to prevent establishment of woody vegetation and for aesthetic and vector reasons. • Remove accumulated sediment and regrade when the accumulated sediment volume exceeds io% of the basin. • If erosion is occurring within the basin, revegetate immediately and stabilize with an erosion control mulch or mat until vegetation cover is established. • To avoid reversing soil development, scarification or other disturbance should only be performed when there are actual signs of clogging, rather than on a routine basis. Always remove deposited sediments before scarification, and use a hand -guided rotary tiller, if possible, or a disc harrow pulled by a very light tractor. Cost Infiltration basins are relatively cost-effective practices because little infrastructure is needed when constructing them. One study estimated the total construction cost at about $2 per ft (adjusted for inflation) of storage for a 0.25-acre basin (SWRPC, 1991). As with other BMPs, these published cost estimates may deviate greatly from what might be incurred at a specific site. For instance, Caltrans spent about $18/ft3 for the two infiltration basins constructed in southern California, each of which had a water quality volume of about 0.34 ac.-ft. Much of the higher cost can be attributed to changes in the storm drain system necessary to route the runoff to the basin locations. Infiltration basins typically consume about 2 to 3% of the site draining to them, which is relatively small. Additional space may be required for buffer, landscaping, access road, and fencing. Maintenance costs are estimated at 5 to io% of construction costs. One cost concern associated with infiltration practices is the maintenance burden and longevity. If improperly maintained, infiltration basins have a high failure rate. Thus, it may be necessary to replace the basin with a different technology after a relatively short period of time. January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 5 of 8 TC-11 infiltration Basin References and Sources of Additional Information Caltrans, 2002, BMP Retrofit Pilot Program Proposed Final Report, Rpt. CTSW-RT-01-050, California Dept. of Transportation, Sacramento, CA. Galli, J. 1992. Analysis of Urban BMP Performance and Longevity in Prince George's County, Maryland. Metropolitan Washington Council of Governments, Washington, DC. Hilding, K. 1996. Longevity of infiltration basins assessed in Puget Sound. Watershed Protection Techniques 1(3):124-125. Maryland Department of the Environment (MDE). 2000. Maryland Stormwater Design Manual. http://www.mde.state.md.us/environment/wma/stormwatermanual. Accessed May 22, 2002. Nightingale, H.I.,1975, "Lead, Zinc, and Copper in Soils of Urban Storm -Runoff Retention Basins," American Water Works Assoc. Journal. Vol. 67, p. 443-446. Nightingale, H.I., 1987a, "Water Quality beneath Urban Runoff Water Management Basins," Water Resources Bulletin, Vol. 23, p. 197-205. Nightingale, H.I., 1987b, "Accumulation of As, Ni, Cu, and Pb in Retention and Recharge Basin Soils from Urban Runoff," Water Resources Bulletin, Vol. 23, p. 663-672. Nightingale, H.I., 1987c, "Organic Pollutants in Soils of Retention/Recharge Basins Receiving Urban Runoff Water," Soil Science Vol. 148, pp. 39-45. Nightingale, H.I., Harrison, D., and Salo, J.E., 1985, "An Evaluation Technique for Ground- water Quality Beneath Urban Runoff Retention and Percolation Basins," Ground Water Monitoring Review, Vol 5, No. 1, pp. 43-50. Oberts, G. 1994. Performance of Stormwater Ponds and Wetlands in Winter. Watershed Protection Techniques 1(2): 64-68. Pitt, R., et al. 1994, Potential Groundwater Contamination from Intentional and Nonintentional Stormwater Infiltration, EPA/ 60o/R-94/051, Risk Reduction Engineering Laboratory, U.S. EPA, Cincinnati, OH. Schueler, T. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments, Washington, DC. Schroeder, R.A., 1995, Potential For Chemical Transport Beneath a Storm -Runoff Recharge (Retention) Basin for an Industrial Catchment in Fresno, CA, USGS Water -Resource Investigations Report 93-414o. Southeastern Wisconsin Regional Planning Commission (SWRPC). 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. U.S. EPA, 1983, Results of the Nationwide Urban Runoff Program: Volume 1 - Final Report, WH-554, Water Planning Division, Washington, DC. 6 of 8 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Infiltration Basin TC-11 Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency Office of Water, Washington, DC. Information Resources Center for Watershed Protection (CWP). 1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for U.S. Environmental Protection Agency Office of Wetlands, Oceans and Watersheds. Washington, DC. Ferguson, B.K., 1994. Stormwater Infiltration. CRC Press, Ann Arbor, MI. USEPA. 1993. Guidance to Specify Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-84o-B-92-oo2. U.S. Environmental Protection Agency, Office of Water, Washington, DC. t January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 7 of 8 TC-11 Infiltration Basin GRASS CHANNEL WWWWWWWWWWWWWW *WWWWWW**WWWWWWWWW*WWWW WWWWWWWWWWWWWWWWWWWWWWWWWW WW4 WWWWWWWWWWWWWWWWWWW W W WWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW* WWWWWWWWWWW*WWWW* WWWW WV WWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWW FLAT BASIN FLOOR WITH **WWWWWW W WWWWWWWWL... GRASSTURF WWW*WWWWW*WWr... .+WWWWWWWWWWW *WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW *WWWWWWWWW*WWWWWWWWWWWWWWWWWWWWWWW WWWWWWY+YWWWWWWWWWWWWWWWWWW*WWWW *WWWW*wwwwwwwwwWBACKUP UNDERDRAIN w W W W W W W W W W W W W W W* 1MMM��NMIM�IN/N�NINMiW *WWWWWWWWWWWWWW WWWWWWWWWWW*WWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWW*WWW**WWWWWW WWW*WWWWWW+YWWWWWWWWWWWW*WWWW WWWWWWWWWWWWWWWW WWWWWW OW WW WWWW+YWWWWWWWWWWWWWWWWWWW WWWWWWWWWWW*****VWWWWW *WWWWWWWWWWWWWWWWW WWWWW*WWWWWWW EMERGENCY SPILLWAY OUTFALL RISER / BARREL PLAN VIEW INFLOW t► STILLING BASIN 100 YEAR LEVEL 1W=ill—➢ m— -II(II_QtllIIID II➢=W1=IW=ll11— =1I1I full=(f111=1Iff1 fID=Q=ID1=ll➢== _II111=fflll�1111=M— � _ BACKUP UNDERDRAIN PIPE IN CASE OF STANDING WATER PROBLEMS EMBANKMENT RISER BARREL—' ANTI -SEEP COLLAR or FILTER DIAPHRAGM EMERGENCY SPILLWAY STABLE 7-OUTFALL PROFILE 8 of 8 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Infiltration Trench TC-1O Description An infiltration trench is a long, narrow, rock -filled trench with no outlet that receives stormwater runoff. Runoff is stored in the void space between the stones and infiltrates through the bottom and into the soil matrix. Infiltration trenches perform well for removal of fine sediment and associated pollutants. Pretreatment using buffer strips, swales, or detention basins is important for limiting amounts of coarse sediment entering the trench which can clog and render the trench ineffective. California Experience Caltrans constructed two infiltration trenches at highway maintenance stations in Southern California. Of these, one failed to operate to the design standard because of average soil infiltration rates lower than that measured in the single infiltration test. This highlights the critical need for appropriate evaluation of the site. Once in operation, little maintenance was required at either site. Advantages • Provides i00% reduction in the load discharged to surface waters. • An important benefit of infiltration trenches is the approximation of pre -development hydrology during which a significant portion of the average annual rainfall runoff is infiltrated rather than flushed directly to creeks. • If the water quality volume is adequately sized, infiltration trenches can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events. Design Considerations • Accumulation of Metals • Clogged Soil Outlet Structures ■ VegetationiLandscape Maintenance Targeted Constituents RRRRRRR Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics Legend (Removal Effectiveness) • Low • High A Medium ■ ■ ■ ■ ■ ■ ■ January 2003 California Stormwater BMP Handbook New Development and Redevelopment www. cabm phandb ooks. corn 1 of 7 I TC-10 Infiltration Trench II. As an underground BMP, trenches are unobtrusive and have little impact of site aesthetics. Limitations I. Have a high failure rate if soil and subsurface conditions are not suitable. • May not be appropriate for industrial sites or locations where spills may occur. I I. The maximum contributing area to an individual infiltration practice should generally be less than 5 acres. I. Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not Iappropriate at sites with Hydrologic Soil Types C and D. • If infiltration rates exceed 2.4 inches/hour, then the runoff should be fully treated prior to I infiltration to protect groundwater quality. • Not suitable on fill sites or steep slopes. ' ■ Risk of groundwater contamination in very coarse soils. I. Upstream drainage area must be completely stabilized before construction. ■ Difficult to restore functioning of infiltration trenches once clogged. I ■ Design and Sizing Guidelines Provide pretreatment for infiltration trenches in order to reduce the sediment load. Pretreatment refers to design features that provide settling of large particles before runoff I reaches a management practice, easing the long-term maintenance burden. Pretreatment is important for all structural stormwater management practices, but it is particularly important for infiltration practices. To ensure that pretreatment mechanisms are effective, I designers should incorporate practices such as grassed swales, vegetated filter strips, detention, or a plunge pool in series. I. Specify locally available trench rock that is 1.5 to 2.5 inches in diameter. ■ Determine the trench volume by assuming the WQV will fill the void space based on the computed porosity of the rock matrix (normally about 35%). I • Determine the bottom surface area needed to drain the trench within 72 hr by dividing the WQV by the infiltration rate. WQV + RFV SA ■ Calculate trench depth using the following equation: where: D = Trench depth 2 of 7 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Infiltration Trench TC-1O WQV = Water quality volume RFV = Rock fillvolume SA = Surface area of the trench bottom • The use of vertical piping, either for distribution or infiltration enhancement shall not be allowed to avoid device classification as a Class V injection well per 4o CFR146.6(e)(4). • Provide observation well to allow observation of drain time. • May include a horizontal layer of filter fabric just below the surface of the trench to retain sediment and reduce the potential for clogging. Construction/Inspection Considerations Stabilize the entire area draining to the facility before construction begins. If impossible, place a diversion berm around the perimeter of the infiltration site to prevent sediment entrance during construction. Stabilize the entire contributing drainage area before allowing any runoff to enter once construction is complete. Performance Infiltration trenches eliminate the discharge of the water quality volume to surface receiving waters and consequently can be considered to have t00% removal of all pollutants within this volume. Transport of some of these constituents to groundwater is likely, although the attenuation in the soil and subsurface layers will be substantial for many constituents. Infiltration trenches can be expected to remove up to 90 percent of sediments, metals, coliform bacteria and organic matter, and up to 6o percent of phosphorus and nitrogen in the infiltrated runoff (Schueler, 1992). Biochemical oxygen demand (BOD) removal is estimated to be between 7o to 8o percent. Lower removal rates for nitrate, chlorides and soluble metals should be expected, especially in sandy soils (Schueler,1992). Pollutant removal efficiencies maybe improved by using washed aggregate and adding organic matter and loam to the subsoil. The stone aggregate should be washed to remove dirt and fines before placement in the trench. The addition of organic material and loam to the trench subsoil may enhance metals removal through adsorption. Siting Criteria The use of infiltration trenches may be limited by a number of factors, including type of native soils, climate, and location of groundwater table. Site characteristics, such as excessive slope of the drainage area, fine-grained soil types, and proximate location of the water table and bedrock, may preclude the use of infiltration trenches. Generally, infiltration trenches are not suitable for areas with relatively impermeable soils containing clay and silt or in areas with fill. As with any infiltration BMP, the potential for groundwater contamination must be carefully considered, especially if the groundwater is used for human consumption or agricultural purposes. The infiltration trench is not suitable for sites that use or store chemicals or hazardous materials unless hazardous and toxic materials are prevented from entering the trench. In these areas, other BMPs that do not allow interaction with the groundwater should be considered. January 2003 California Stormwater BMP Handbook New Development and Redevelopment www. cabmphandbooks. corn 3 of 7 TC-10 Infiltration Trench The potential for spills can be minimized by aggressive pollution prevention measures. Many municipalities and industries have developed comprehensive spill prevention control and countermeasure (SPCC) plans. These plans should be modified to include the infiltration trench and the contributing drainage area. For example, diversion structures can be used to prevent spills from entering the infiltration trench. Because of the potential to contaminate groundwater, extensive site investigation must be undertaken early in the site planning process to establish site suitability for the installation of an infiltration trench. Longevity can be increased by careful geotechnical evaluation prior to construction and by designing and implementing an inspection and maintenance plan. Soil infiltration rates and the water table depth should be evaluated to ensure that conditions are satisfactory for proper operation of an infiltration trench. Pretreatment structures, such as a vegetated buffer strip or water quality inlet, can increase longevity by removing sediments, hydrocarbons, and other materials that may clog the trench. Regular maintenance, including the replacement of clogged aggregate, will also increase the effectiveness and life of the trench. Evaluation of the viability of a particular site is the same as for infiltration basins and includes: ■ Determine soil type (consider RCS soil type 'A, B or C only) from mapping and consult USDA soil survey tables to review other parameters such as the amount of silt and clay, presence of a restrictive layer or seasonal high water table, and estimated permeability. The soil should not have more than 30 percent clay or more than 40 percent of clay and silt combined. Eliminate sites that are clearly unsuitable for infiltration. ■ Groundwater separation should be at least 3 m from the basin invert to the measured ground water elevation. There is concern at the state and regional levels of the impact on groundwater quality from infiltrated runoff, especially when the separation between groundwater and the surface is small. ■ Location away from buildings, slopes and highway pavement (greater than 6 m) and wells and bridge structures (greater than 3o m). Sites constructed of fill, having a base flow or with a slope greater than 15 percent should not be considered. • Ensure that adequate head is available to operate flow splitter structures (to allow the basin to be offline) without ponding in the splitter structure or creating backwater upstream of the splitter. • Base flow should not be present in the tributary watershed. Secondary Screening Based on Site Geotechnical Investigation • At least three in -hole conductivity tests shall be performed using USBR 7300-89 or Bouwer- Rice procedures (the latter if groundwater is encountered within the boring), two tests at different locations within the proposed basin and the third down gradient by no more than approximately 10 m. The tests shall measure permeability in the side slopes and the bed within a depth of 3 m of the invert. • The minimum acceptable hydraulic conductivity as measured in any of the three required test holes is 13 mm/hr. If any test hole shows less than the minimum value, the site should be disqualified from further consideration. 4 of 7 California Stormwater BMP Handbook New Development and Redevelopment www. cabm phandbooks. corn January 2003 Infiltration Trench TC-1O • Exclude from consideration sites constructed in fill or partially in fill unless no silts or clays are present in the soil boring. Fill tends to be compacted, with clays in a dispersed rather than flocculated state, greatly reducing permeability. • The geotechnical investigation should be such that a good understanding is gained as to how the stormwater runoff will move in the soil (horizontally or vertically) and if there are any geological conditions that could inhibit the movement of water. Maintenance Infiltration trenches required the least maintenance of any of the BMPs evaluated in the Caltrans study, with approximately 17 field hours spent on the operation and maintenance of each site. Tnspection of the infiltration trench was the largest field activity, requiring approximately 8 hr/yr. In addition to reduced water quality performance, clogged infiltration trenches with surface standing water can become a nuisance due to mosquito breeding. If the trench takes more than 72 hours to drain, then the rock fill should be removed and all dimensions of the trench should be increased by 2 inches to provide a fresh surface for infiltration. Cost Construction Cost Infiltration trenches are somewhat expensive, when compared to other stormwater practices, in terms of cost per area treated. Typical construction costs, including contingency and design costs, are about $5 per ft3 of stormwater treated (SWRPC, 1991; Brown and Schueler, 1997). Actual construction costs may be much higher. The average construction cost of two infiltration trenches installed by Caltrans in southern California was about $ 5o/ft3; however, these were constructed as retrofit installations. Infiltration trenches typically consume about 2 to 3 percent of the site draining to them, which is relatively small. In addition, infiltration trenches can fit into thin, linear areas. Thus, they can generally fit into relatively unusable portions of a site. Maintenance Cost One cost concern associated with infiltration practices is the maintenance burden and longevity. If improperly sited or maintained, infiltration trenches have a high failure rate. In general, maintenance costs for infiltration trenches are estimated at between 5 percent and 20 percent of the construction cost. More realistic values are probably closer to the 2o-percent range, to ensure long-term functionality of the practice. References and Sources of Additional Information Caltrans, 2002, BMP Retrofit Pilot Program Proposed Final Report, Rpt. CTSW-RT-of-o50, California Dept. of Transportation, Sacramento, CA. Brown, W., and T. Schueler. 1997. The Economics of Stormwater BMPs in the Mid -Atlantic Region. Prepared for the Chesapeake Research Consortium, Edgewater, MD, by the Center for Watershed Protection, Ellicott City, MD. Galli, J. 1992. Analysis of Urban BMP Performance and Longevity in Prince George's County, Maryland. Metropolitan Washington Council of Governments, Washington, DC. January 2003 California Stormwater BMP Handbook New Development and Redevelopment www, cabm phandbooks. corn 5 of 7 TC-10 Infiltration Trench Maryland Department of the Environment (MDE). 2000. Maryland Stormwater Design Manual. hap: //www.mde.state.md.us/environment/wma/stormwatermanual. Accessed May 22, 2001. Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39. Schueler, T.1987. Controlling Urban Runoff A PracticalManualfor Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments, Washington, DC. Southeastern Wisconsin Regional Planning Commission (SWRPC).1991.. Costs of Urban Nonpoint Source Water Pollution Control Measures. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water, Washington, DC. Information Resources Center for Watershed Protection (CWP).1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for the U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds, Washington, DC, by the Center for Watershed Protection, Ellicott City, MD. Ferguson, B.K.1994. Stormwater Infiltration. CRC Press, Ann Arbor, MI. Minnesota Pollution Control Agency. 1989. Protecting Water Quality in Urban Areas: Best Management Practices. Minnesota Pollution Control Agency, Minneapolis, MN. USEPA.1993. Guidance to Specify Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-84o-B-92-o02. U.S. Environmental Protection Agency, Office of Water, Washington, DC. of 7 California Stormwater BMP Handbook New Development and Redevelopment www . cabm phandbooks. com January 2003 1 1 1 t t Infiltration Trench TC-10 PARKING LOT CONCRETE LEVEL CrRCADCR / GRASS CHANNEL THAN 1 % Y Fit fry.) (LESS PLUNGE V,mv4`'v W'v"V SLOPE) y, } F POOL r . W..y-. I „ , (: i'W V' V V V V• v W W W h ,W "Vr.444yV'4 ••vWVW%GW VW WW4YV V•V VVVW n r 1-.ASS (TO DETENTION FACILITY} III/� //J Y ....r. iY Wv v v v v W wL•u• r ' 2 ";•—. 4 " INFILTRATION TRENCH WITH PEA GRAVEL FILTER LAYER OVER YJASHED �' '� ;,.. w'; 2:"'-0-,,a: ex..:,..�•••'.;''. ef-5..'pi!,• ..7: > i'..r a •4'.a •$'.. y .. .4 " 'e ? DANK RUN ORANGE AGGREGATE • �,e , rl; '; $ "" n *_ � Y.) (Y J/. OVERFLOW PLAN VIEW OVERFLOW BERM RUNOFF FILTERS THROUGH G• SS OBSERVATION WELL BUFFER STRIP (20' MINIMUM): GRASS WITH SCREW TOP LID WO/AM CHANNEL; ORSEDIMENTATION VAULT I III--' =III— •+ ...... .....::::.: ::.::::::...%:' III=h:''=; �. -. IIr11=All-.I h-AU-'J. .71II_ 1 -A9 • 1I�I TII iJL "m Sul �II III IIII,:. SAND FILTER6" DEEP (OR FABRIC EQUIVAI.FNT) 2" PEA GRAVEL FILTER LAYER PROTECTIVE LAYER OF FILTER FABRIC TRENCH 3.5 FEET DEEP RI 1 FD WITH 1.5 - 2.5 INCH DIAME I tit CLEAN STONE (BANK RUN GRAVEL PREFERRED) ''Il-il- II-11= d l l! I 9I!F:'0 5101: 11111 I_I LI _ IF" RUNOFF EXFILTRATES THROUGH UNDISTURBED SUBSOILS WITH A MINIMUM RATE OF 0.5 INCHES PER HOUR SECTION January 2003 California Stormwater BMP Handbook New Development and Redevelopment www. cabmphandbooks. corn 7 of 7 i+ fl1ygnr ij:1" IP WPE9`NI"41'NTWEE hirimnr;Tlu!I I' Pl hill SCALE IN FEET 120 180 240 KEY NODE DESCRIPTION SUBAREA DESCRIPTION LENGTH BETWEEN NODES FLOW ARROW DRAINAGE BOUNDARY NODE F.S. ELEV. INV. ELEV. Q5 ACREAGE DENSITY L=500' MINIM I -I -Ia HYDROLOGIC DRAINAGE MAP TRAC16869 PRE -DEVELOPED MADOLE A\D ASSOCIATES, INC. 760—A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE (909) 937-9151 JOB NUMBER 126-2001 SHEET 1 OF 1 Ja126-2001\storm\Hvd-PreDev.dwa. 9/24/2005 9:33:05 AM. Wendell. Wendell If I J :1ITlI` Jill i; pol®M "I I C II 9VIIF9 II JR iii,,,, .,i_t!aIE■ 10' 20' PO 304 FS = 633 INV = Q100=8.6 404 FS = 630 INV = Q 100=8. 1 FS = 624 INV = Q 100=10.2 405 FS = 624 INV = Q 100=10.3 /L 401 FS = 647 INV = INITIAL FS = 643 INV = Q 100=2.9 FS = 644 INV = Q100=2.4 FS = 638 INV = Q 100=5.6 FS = 638 INV = 7— FS = 647 INV = INITIAL 7.$ 1 z.12% Q (ITO..t CD I) c 628,3 tfiI Q/' LOTE FS = 624 INV = Q 100=11.9 30' 2' 4 iM 23 INFILTRA1iO BASIN FS = 653 INV = INITIAL 35 Cf B:1) CO 4) c ��tto Jj FS = 624 INV = Q 100=11.0 10+50. ANC 202 FS =645.1 INV = Q 100=2.3 '6., 12 c,S33.ip FS = 653 INV = INITIAL 102 FS =645.1 INV = Q100=2.4 FS =638.7 INV = Q 100=5.6 FS= 638.7 INV = Q 100=5.6 FS =632.3 INV = Q 100=8.3 FS =632.3 INV = Q 100=8.3 105 FS = 627.9 INV = Q 100=11.9 \ 0 T E ALL SOILS GROUP "A" EXCEPT 6/07/05 AS DELINEATED GROUP "B". SCALE IN FEET 0 50 101015I 200 KEY NODE DESCRIPTION SUBAREA DESCRIPTION LENGTH BETWEEN NODES FLOW ARROW DRAINAGE BOUNDARY NODE F.S. ELEV. INV. ELEV. 0100 L=500' 100 YRS HYDROLOGY MAP TRACT 16869 DEVELOPED CONDITIONS MADOLE AND ASSOCIATES, INC. 760—A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE (909) 937-9151 JOB NUMBER 126-2001 SHEET 1 OF 1 HYDROLOGY TRACT16869 J:\126-2001\storm\Hvd01.dwa. 9/24/2005 7:11:26 AM. Wendell. Wendell 10' 1 106 FS = 624 FS = 647 INV = INITIAL tL 20' 10' de FS = 647 INV = INITIAL —10(8 C 6''1) 72 ' LOT t" 71 ¢6.� (636.6) C6.264 L07 not sp3 FS = 624 Q5=5.3 QT=10.4 0' 20' 10" 4 446of) QT=10.0 FS = 653 INV = INITIAL *at) N `Y. stc C633.4) 19 1 FS = 653 INV = INITIAL 650 645 SCALE IN FEET 0 60 120 180 240 Ij=l.1r.11=l i I KEY i NOTE ALL SOILS GROUP "A" 9/24/05 NODE DESCRIPTION SUBAREA DESCRIPTION LENGTH BETWEEN NODES FLOW ARROW DRAINAGE BOUNDARY NODE F.S. ELEV. INV. ELEV. Q5 ACREAGE DENSITY) L=500' HYDROLOGIC MAP TRACT 16869 WQMP MITIGATION MADOLE AND ASSOCIATES, INC. 760—A S. ROCHESTER AVENUE ONTARIO, CA 91761 PHONE (909) 937-9151 JOB NUMBER 126-2001 SHEET 1 OF 1 HYDROLOGY TRACT16869 J:1126-2001\storm\Hvd-05-02-01.dwa. 9/24/2005 8:57:51 AM. Wendell. Wendell