Loading...
HomeMy WebLinkAboutTract No. 16158-2 Hydrology StudyALLARD ENGINEERING civil engineering land surveying land planning TRACT 16158-2 HYDROLOGY AND HYDRAULICS REPORT November 15, 2001 Revised January 2, 2002 Revised February 15, 2002 Revised March 12, 2002 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477-6722 Fax (909) 477-6725 Prepared under the supervision of: David 5. Hammer, A.C.E. No. 43976, Exp. El Egate APPE:013 1-I 22-oz 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 Table of Contents Introduction Purpose Methodology Findings Summary Vicinity Map 100 Year Hydrology Calculations 10 Year Hydrology Calculations Unit Hydrograph Calculations Street Capacity Calculations Hydrology Exhibits Introduction Tract No. 16158 is a proposed 127 single-family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract No.16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract No. 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40 acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158-2), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10-year, 24-hour developed runoff from the entire 22 acre site of Tract No. 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100-year and 10-year runoff for tract 16158-2 and to verify the capacity of the proposed improvements to safely convey the runoff. Also, this report will provide additional 100-year and 10-year runoff for tract 16158, which will be verified upon the completion of grading and improvement plans for that tract. This report also provides unit hydrograph calculations to size a temporary detention basin for a 10-year, 24-hour event storm for tract 16158-2 and future tract 16158. Finally, at the request of the city, this report provides peak undeveloped 100 year event runoff for the vacant lands to the east and south of the project site. Methodology The rational method was used to determine 10-year and 100-year event storms, while the unit hydrograph was used to size the proposed detention basins as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10-year storm water runoff is conveyed in the street below the top of curb elevations while the 100-year storm water will be conveyed in the street does not exceed right-of-way elevations. The proposed detention basin is approximately 8.4 acre-ft, which is slightly larger than the 5.2 acre-ft found in unit hydrograph results. Since the basin has capacity to hold over 100% of the 10-year, 24 -hour storm runoff, a formal outlet structure designed to "meter" out flows is not necessary. Consequently basin rating calculations are not provided. Also, note that appropriate street capacity calculations, storm drain hydraulic calculations, and catch basin calculations will be provided with proposed storm drain and street improvements for the parent tract 16158. Summary Tract 16158-2 proposed improvements will adequately convey both the 100-year and 10-year runoff in accordance with County criteria. Also, the detention basin is sized to detain these flows and future improvement runoff as well. >I:�t E 111111111I- j:rl IIl111111 - lil! 1IT HIGHLAND AVENUE NIS ,nu1j 11f111 11�U1- y�t 11111 /� /11► i 11►� ��0� ��� : �.1�\1111 IhI 11v /1:1 �t p�����a /,�� 01 /1111j1 Iltt/t%`t�� �,�,��� lul� 1 :::: 11111:� 't��,,`''�irirt•,f r'%: , , 1,IIIt�, III ��� �'1`�Ililiii, 70] p111�rr 1 ,,1a p11 1t ,u1, rl VII A1u1r 11 • -II 1111 11111 f111111 ALLARD ENGINEERING Civil Engineering — Land Planning 8253 Sierra Avenue Fontana, California 92335 111111111111111111111UJl IIIIIIIII JIII CI LW 111 1. . . /I I I I I 1 II nn llnn lr. f► I VW : rr . 11� lllt Ig1;211ai11�V illlli:i inis111! lllllllll■• �, 11\ Val■. ill /1n1 nn: -- �11r1I1N111111 111111111111 1111111111111111 11111 ■i; •iiilllhiiiiiiii IIIIIIIIIIIIIIIIIIII as �,kIIIIIIIiII IIIIIIIIIIIIIIII -_ �� .. -- -- -- -- - � s!===========r INMI II p`isiOn _ Mal a'1Ganas_GG == : NE ... .. MI ■rg tr guipal I e �iq pG=11111 IIIIIIIIIIIIIIIIIIIIIIII ai >rs• I: :.a=�l�. Mill nnuolJI___ ��i/�lifr4r ►."1"` luln r �- ��111111 1. U iilll l..- ::::::::71..11:111111111111111115: ""IIIIIII'�li�10 itt1: =- : e ►.1101!'mimes n11_.h� 1111ut .nnn1P nib iiiiii41 IIIIII111111iiu l: 1111III/ ,0III If IMP VENUE n..,,.,,•: CAr•^I.w\NwUh r..Iw had C/.L4-.14 •IIIII1l10 IIPr� �iflllllllllili, q111111- -r n 111nin •11ZI1111111 VICINITY MAP J!.&Y. 2001 100 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 ******************* * Young Homes Tract * 100 year * By: Joe RAmirez ******************* FILE NAME: 0016158 TIME/DATE OF STUDY Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ******* DESCRIPTION OF STUDY 16158 - 2 Date: 12-31-01 ************************** 0 0 * 0 ******************************************************* .DAT : 12:26 12/31/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.5000 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE I. SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 Z Q 30-MINUTES 1-HOUR 3-HOUR 6-HOUR 24-HOUR .77 1.01 1.83 2.67 5.79 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE))** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.27 .80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 1415.50 Ap (DECIMAL) SCS Tc CN (MIN.) .50 52 9.31 8.56 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.58 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.248 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. 10.55 Ap (DECIMAL) A 1.15 .80 .50 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 1.15 SUBAREA RUNOFF(CFS) = 3.98 3.42 AREA -AVERAGED Fm(INCH/HR) = = .80 AREA -AVERAGED Ap = .50 42 PEAK FLOW RATE(CFS) = 11.85 SCS CN 52 .40 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 12.26 FLOW VELOCITY(FEET/SEC.) = 3.68 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.58 RAINFALL INTENSITY(INCH/HR) = 4.25 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) _ .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.682 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .80 .50 52 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.70 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.70 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.99 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 3/ lc PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 11.10 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.128 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. A 2.29 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 2.29 SUBAREA RUNOFF(CFS) = 7.69 3.77 AREA -AVERAGED Fm(INCH/HR) _ .40 = .80 AREA -AVERAGED Ap = .50 77 PEAK FLOW RATE(CFS) = 12.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET/SEC.) = 3.32 DEPTH*VELOCITY(FT*FT/SEC.) = 1.26 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.10 RAINFALL INTENSITY(INCH/HR) = 4.13 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 11.85 10.58 4.248 .80( :40) .50 2 12.65 11.10 4.128 .80( .40) .50 Ap Ae SOURCE (ACRES) NODE 3.42 1.00 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 24.3 2 24.1 Tc Intensity (MIN.) (INCH/HR) 10.58 4.248 11.10 4.128 Fp (Fm) (INCH/HR) .796( .398) .796( .398) Ap Ae SOURCE (ACRES) NODE .50 7.0 1.00 .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 EFFECTIVE AREA(ACRES) = 7.01 AREA -AVERAGED Fm(INCH/HR) = .40 AREA-AVERAGED'Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION ## 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 '+ STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.72 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.33 Tc(MIN.) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 8. A .89 .80 .50 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 .89 SUBAREA RUNOFF(CFS) = 2.85 7.90 AREA -AVERAGED Fm(INCH/HR) = 40 = .80 AREA -AVERAGED Ap = .50 08 PEAK FLOW RATE(CFS) = 25.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 19.86 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC. SCS CN 52 = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.87 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.87 SUBAREA RUNOFF(CFS) = 9.19 EFFECTIVE AREA(ACRES) = 10.77 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 10.95 PEAK FLOW RATE(CFS) = 34.50 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.00 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.10 STREET FLOW TRAVEL TIME(MIN.) = .42 Tc(MIN.) = 12.33 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.876 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. 35.04 A .35 .80 .50 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = 1.10 11.12 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 34.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.14 FLOW VELOCITY(FEET/SEC.) = 4.00 DEPTH*VELOCITY(FT*FT/SEC.) = SCS CN 52 2.09 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.28 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.87 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) _ EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 12. A LOSS AREA 1.68 12.80 = .80 98 1.68 .80 .50 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 4.95 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 37.71 SCS CN 52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.94 FLOW VELOCITY(FEET/SEC.) = 4.01 DEPTH*VELOCITY(FT*FT/SEC.) = 2.16 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) 15.04 = 3.671 AREA (ACRES) Fp (INCH/HR) 2.06 .80 RATE, Fp(INCH/HR) = FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.07 86 AREA -AVERAGED Fm(INCH/HR) = .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = Ap (DECIMAL) .80 SCS CN .50 52 .40 43.77 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH(FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.52 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.77 PIPE TRAVEL TIME(MIN.) = .44 Tc(MIN.) = 13.95 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.95 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.600 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 Fp (INCH/HR) Ap (DECIMAL) .43 .80 .50 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.24 29 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 44.07 SCS CN 52 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.64 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 44.07 PIPE TRAVEL TIME(MIN.) = .64 Tc(MIN.) = 14.59 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.59 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.504 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 5.00 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 13.98 EFFECTIVE AREA(ACRES) = 20 29 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 20.47 PEAK FLOW RATE(CFS) = 56.73 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.35 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 56.73 PIPE TRAVEL TIME(MIN.) = .92 Tc(MIN.) = 15.51 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.47 EFFECTIVE AREA(ACRES) = 20.29 AREA -AVERAGED Fp(INCH/HR) = .80 PEAK FLOW RATE(CFS) = 56.73 ** PEAK FLOW RATE TABLE ** STREAM Q Tc NUMBER (CFS) (MIN.) 1 56.7 15.51 2 55.8 16.04 Intensity (INCH/HR) 3.378 3.310 TC(MIN.) = 15.51 AREA -AVERAGED Fm(INCH/HR)= .40 AREA -AVERAGED Ap = .50 Fp (Fm) (INCH/HR) .796( .398) .796( .398) Ap Ae SOURCE (ACRES) NODE .50 20.3 1.00 .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS evk **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * TRACT 16158 * 100 YEAR OFF -SITE HYDROLOGY STUDY * BY: DAVID B. WARREN ************************************************************************** FILE NAME: 161580FF.DAT TIME/DATE OF STUDY: 10:15 2/14/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME -OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.5200 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 1435.50 DOWNSTREAM(FEET) = 1422.20 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.878 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.518 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL GOOD COVER "GRASS" A 7.60 .94 1.00 38 25.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 10.82 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 10.82 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< 0 UPSTREAM NODE ELEVATION(FEET) = 1422.20 DOWNSTREAM NODE ELEVATION(FEET) = 1403.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 840.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.383 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 13.30 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.64 AVERAGE FLOW DEPTH(FEET) _ .59 FLOOD WIDTH(FEET) = 11.65 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.48 TC(MIN.) = 28.36 SUBAREA AREA(ACRES) = 13.30 SUBAREA RUNOFF(CFS) = 17.32 EFFECTIVE AREA(ACRES) = 20.90 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.90 PEAK FLOW RATE(CFS) = 27.22 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .67 FLOOD WIDTH(FEET) = 13.27 FLOW VELOCITY(FEET/SEC.) = 6.11 DEPTH*VELOCITY(FT*FT/SEC) = 4.12 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 1403.00 DOWNSTREAM NODE ELEVATION(FEET) = 1385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 830.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.282 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 19.10 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.50 AVERAGE FLOW DEPTH(FEET) = .78 FLOOD WIDTH(FEET) = 15.38 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.13 TC(MIN.) = 30.49 SUBAREA AREA(ACRES) = 19.10 SUBAREA RUNOFF(CFS) = 23.13 EFFECTIVE AREA(ACRES) = 40.00 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.00 PEAK FLOW RATE(CFS) = 48.45 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .85 FLOOD WIDTH(FEET) = 16.77 FLOW VELOCITY(FEET/SEC.) = 6.84 DEPTH*VELOCITY(FT*FT/SEC) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 1385.00 DOWNSTREAM NODE ELEVATION(FEET) = 1376.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 430.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.236 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 7.20 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.79 AVERAGE FLOW DEPTH(FEET) = .89 FLOOD WIDTH(FEET) = 17.56 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.06 TC(MIN.) = 31.54 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 8.42 EFFECTIVE AREA(ACRES) = 47.20 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 47.20 PEAK FLOW RATE(CFS) = 55.21 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .90 FLOOD WIDTH(FEET) = 17.88 FLOW VELOCITY(FEET/SEC.) = 6.86 DEPTH*VELOCITY(FT*FT/SEC) = 6.21 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 47.20 TC(MIN.) = 31.54. EFFECTIVE AREA(ACRES) = 47.20 AREA -AVERAGED Fm(INCH/HR)= .94 AREA -AVERAGED Fp(INCH/HR) _ .94 AREA -AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 55.21 END OF RATIONAL METHOD ANALYSIS San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-1999 Version 6.2 Rational Hydrology Study Date: 03/11/02 Tract No. 16158-2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity by: D. Hammer, File Name: Walnut Allard Engineering, Fontana, California - S/N 643 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(%)= 0.62 TC = k(0.304) * [ (length'3) / (elevation change) J A0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.878 Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) 4 Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft/s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 3.229(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) Effective area this stream = 1.40(Ac.) Total Study Area (Main Stream No. 1) = 1.40(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 12.927(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.791(CFS) Depth of flow = 0.251(Ft.), Average velocity = 2.616(Ft/s) 13 14 Streetflow hydraulics at .midpoint of street travel: Halfstreet flow width = 13.591(Ft.) I Flow velocity = 2.62(Ft/s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type I Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 I SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.865(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified I rational method)(Q=KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) I Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 4.980(CFS) Halt street flow at end of street = 4.980(CFS) II Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) Flow width (from curb towards crown)= 13.788(Ft.) End of computations, Total Study Area = 2.00 (Ac.) I The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. IIArea averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 14 10 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 ' Analysis prepared by: ' ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ' ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158 * 10 year * By: Joe Ramirez rev. 12-31-01* ************************************************************************** ' FILE NAME: 1016158.DAT TIME/DATE OF STUDY: 12:24 12/31/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ' --*TIME-OF-CONCENTRATION MODEL*-- , USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.0100 ' SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING -_- WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 I2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET U as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN IIOR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc II USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF ' /10 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 30-MINUTES .77 1-HOUR 1.01 3-HOUR 1.83 6-HOUR 2.67 24-HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.27 .98 .50 32 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.31 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 5.31 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 alb() SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 9.52 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .97 STREET FLOW TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.72 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.838 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) _ EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. 6.53 Ap (DECIMAL) A 1.15 .98 .50 LOSS RATE, Fp(INCH/HR) _ .98 AREA FRACTION, Ap = .50 1.15 SUBAREA RUNOFF(CFS) = 2.43 3.42 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 42 PEAK FLOW RATE(CFS) = 7.24 SCS CN 32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) = 2.84 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.152 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) Ap (DECIMAL) .50 3.54 SCS Tc CN (MIN.) 32 9.00 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.77 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .85 STREET FLOW TRAVEL TIME(MIN.) = 2.35 Tc(MIN.) = 11.35 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. 5.88 AREA Fp Ap (ACRES) (INCH/HR) (DECIMAL) A 2.29 .98 .50 LOSS RATE, Fp(INCH/HR) = .97 AREA FRACTION, Ap = .50 2.29 SUBAREA RUNOFF(CFS) = 4.65 3.77 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 77 PEAK FLOW RATE(CFS) = 7.65 SCS CN 32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) = .97 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) RAINFALL INTENSITY(INCH/HR) AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Fp(INCH/HR) = AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM Q Tc NUMBER (CFS) (MIN.) 1 7.24 10.72 2 7.65 11.35 = 11.35 = 2.74 .49 .97 3.77 STREAM 2 ARE: 7.65 Intensity Fp(Fm) (INCH/HR) (INCH/HR) 2.838 .97( .49) 2.743 .97( .49) Ap Ae SOURCE (ACRES) NODE .50 3.42 1.00 .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 14.8 2 14.6 Tc Intensity (MIN.) (INCH/HR) 10.72 2.838 11.35 2.743 Fp (Fm) (INCH/HR) 975( .487) 975( .487) Ap Ae SOURCE (ACRES) NODE . 50 7.0 1.00 . 50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.77 Tc(MIN.) = 10.72 EFFECTIVE AREA(ACRES) = 6.98 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 15.62 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 8. Ap (DECIMAL) A .89 .98 .50 LOSS RATE, Fp(INCH/HR) = .98 AREA FRACTION, Ap = .50 .89 SUBAREA RUNOFF(CFS) = 1.71 7.87 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 08 PEAK FLOW RATE(CFS) = 15.13 SCS CN 32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 16.05 FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT/SEC.) = 1.22 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.87 EFFECTIVE AREA(ACRES) = 10.74 AREA -AVERAGED Fp(INCH/HR) = .97 TOTAL AREA(ACRES) = 10.95 = 2.624 AREA Fp (ACRES) (INCH/HR) 2.87 .98 RATE, Fp(INCH/HR) = FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.52 AREA -AVERAGED Fm(INCH/HR) = AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = Ap (DECIMAL) SCS CN .98 .50 32 .49 20.65 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = .47 Tc(MIN.) = 12.70 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.565 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. SCS CN A .35 .98 .50 32 LOSS RATE, Fp(INCH/HR) = .98 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = .65 11.09 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 20.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY(FT*FT/SEC.) = 1.58 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.49 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.68 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 22.19 Ap SCS (DECIMAL) CN .50 32 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 2.91 EFFECTIVE AREA(ACRES) = 12.77 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY(FT*FT/SEC.) = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.04 AREA Fp (ACRES) (INCH/HR) Ap (DECIMAL) SCS CN 2.06 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.57 83 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 25.72 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH(FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.45 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) = .49 Tc(MIN.) = 14.53 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.53 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.365 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL Fp Ap SCS (INCH/HR) (DECIMAL) CN I0 "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 .43 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = .73 26 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 25.79 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.55 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.79 PIPE TRAVEL TIME(MIN.) = .72 Tc(MIN.) = 15.24 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 15.24 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.298 SUBAREA LOSS RATE DATA(AMC II) : DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 5.00 EFFECTIVE AREA(ACRES) = 20. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 20.47 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN 5.00 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.15 26 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 33.01 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570..00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.09 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.01 PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 16.29 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.47 EFFECTIVE AREA(ACRES) = 20.26 AREA -AVERAGED Fp(INCH/HR) = .97 PEAK FLOW RATE(CFS) = 33.01 ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 33.0 2 32.3 Tc Intensity (MIN.) (INCH/HR) 16.29 2.208 16.97 2.154 TC(MIN.) = 16.29 AREA -AVERAGED Fm(INCH/HR)= .49 AREA -AVERAGED Ap = .50 Fp (Fm) (INCH/HR) .975( .487) .975( .488) Ap Ae SOURCE (ACRES) NODE .50 20.3 1.00 .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS to 064 MO N' i i = N i MN i U - I MO - U 1111 MO - Z PROJECT: YOL/,/0/2/-5 7 /6e/5e DATE: //- /5-0/ (20Ae1 5.z7a ENGINEER: A 66A4Q 1. Enter the design storm return frequency (years) 2. Enter catchment lag s) ©•87- ., = 02P /63//m/1)= 6,p 3. Enter the catchment area (acres) &O.s 7`'¢/.c2G 4. Enter baseflow (is/square mile) S. Enter S-Graph proportions (decimal) Valley: Developed Foothill Mountain Valley: Undeveloped Desert 6. Enter aximum loss rate, Fm (inch/hour) (, 5 14) 04/ 7. Enter low loss fraction, Y (decimal) (S2) 8. Enter watershed area -averaged S-minute point rainfall (inches)* Enter watershed area -averaged 30-minute point rain- fall (inches)* Enter watershed area -averaged 1-hour point rainfall (inches) * Enter watershed area -averaged 3-hour point rainfall (inches)* Enter watershed area -averaged 6-hour point rainfall (inches)* Enter watershed area -averaged 24-hour point rainfall (inches)* 9. Enter 24-hour storm unit interval (minutes) *Note: enter values unadjusted by depth -area factors SAN BERNARDINO COUNTY HYDROLOGY MANUAL l c,.s1g G3Z b. S70 O. WATERSHED INFORMATION FORM os Z I 202 -4rzck... 44 Le)55 s I A 0 04. I Et • J Avg 0.1S , 5E5e?-) — oizo4 = PeEc6 »-7 2 /OYe-240e Gur — (7A/77n) 0.5 7 si2 r • 5 10 25 RETURN PERIOD IN YEARS 50 •1.': /0 /8• Q5 .060' NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR' 0.95' AND 100-YEAR CNE HOUR 1.60M, L5-YEAR ONE. HOUR • I.le.N. REFERENCE 'NOAA ATLAS 2, VOLUME ZI-CAL.,1973 SAN BERNARDINO COUNTY HYDROLOGY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES D-7 FIGURE D-2 1;bzu - £pj('.i,I 9- tx _ E T /oyq - Zg f ( -2-N1q- -') 1 3.5 6.0 iv 2.5 co w U 0.5 3.0 fir ,3. 4)4 ioyfL-Z4 4' cr o' • 5 10 25 RETURN PERIOD IN YEARS �6 /5 NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR 0.95" AND 100-YEAR CNE HOUR • I.GON, 25-YEAR ONE HOUR • I.IS!. REFERENCEiNOAA ATLAS 2, VOLUME Z=-CAL.,19T3 SAN B HYDROL ERNARDINO COUNTY OGY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES 7 D-7 FIGURE D-2 7.0 6.0 4.0 9 . 0 MI • "z ffimain - { /� i - �•SIrMfialliallillanammemon- w1...r wY„•ww.==w/..w.�w��1 1w=17 -�• a•�, MINERS nw1...YY .W1=��� ":1IK12I0II • 3.0 mwwrrw.Y=•r w _ .w Fr� C W^2` •.tea fit• NFi Es§ =_sw _ ram_ _=-=M_� p w.._._ -= tli�c i tMtT�wli--m== rTi r.='' I 2.0 �:.-C:^=i " =rw_�w - '�.: • t:. ,^ e-= N. w,..�..-r I.:�.:••O.M...Y.w•.w.w�,.r\ Ir-:Y....Y-:.�.N.Y ���Ywi.Y..�-•..M.......w. 'r-----�-•w•••�•Y�.•••-.1I.� N 1�.t wr•.• •w w.wl�.www.•......r w�.w..w m.••wY.•.•N...w .•�wr •.w• ••-••r.�j.••��Y.w,.r111� =••••• w•.wi.,l.•.,wM.w.wwww..YaYN,rr.Nw.l1_Nww..•..•..Y•r�...wl. •....'N,YN,O...NN.4mn W r......w.w�IWIYa•\w.r N_I..rao..1.wY,N.r/.,N_w.._aNa.a-.Mwa•.wW..r......s\I/..waa.•M•...... Y..I p....•1•.a0 •a.N,F •1_Y 1mY1 .,.Ilw.a• �}�1 �1•••�.wel0alr wla•..Mw..111MOMM�____w....aa/ wa.a•..I,.,IaUw/M11. aN r,.I.wl a = f���ISICtMRiN••+•�•���Qiii�7i11iiiiY�..-� t• 1• .w1.•.rN _wr �/1 rra••wuuuamlIn .. �.t.taa/aa•wrt ■lwuomn..rw•wwr.111. r.nwll �a..01.t1..1 NI.a.ItRt11.Al..l.waur•.tral ■. ........................„......,....................h..... tIMMR...........1....i .W.t1....... 1.N::�M t.... �I R1Y�rffO01111111.1a1.....tn.1111H.11n tY.a.a.tn1 rauUM IMI MB Z MO MI e./u1111r11...I1�Mn1slarUlsl tlfll�� sem an l Nln iwA Immo' sins gamin. mall n..1....11Mt11N11 motion ow nisi tell a m In11A..1..ane mu umul tti111tl11{nlli/l101It.tf/rrillRf.It1111W1�np111.AM1p um v MA I1MPlir. it tlla mu two MN RNnit. IMMO Mei sso ...n nntttrtttatll.uulnmt..Itlmtwttttslmwullluatwntnuuuunu�rtoltlnuaunNluunnlntu/t:lltttttwttann/wuut m HallrlauwmunrumnlwpulenuutnnuurwlllwnntsiiiuunnrNr barn!lmnwml�l/luHuuu 117mennrntmtt uit 1i1MMIAM{NIMMIrrN111H111111tFE�IfIMMNIN INr111tT11110H�HL��rrrlrrNl nlq It!illttHlflllt{lll rrlrlll111HH11 WlRirylpr/Iln nitlHfplllu I- )... ONIMil r�1/1 11HHWNNR1�NNn�u1nlualme uumn1r11 ! IIIIII ▪ L0 .. _ • `=. - =_' - _ 1 uunmWii=1.=n =.7:2= �^ ImMI1NIHY W _^= �` . ==-e:-=e`':::::;:,_:�.•-:-:•-:__... -c=-.:.4:=ice I. Q8 is _ `•mot: .. =.:=: .• a' Er 'VI; =r•: =ea• .. En re --..... .��a.a • �ww.-w-w M ::w=..Y..AAAA .ww.-_w • ••••• A,.o �.ii-..- .1 w:•J1•�.Y�TvAZAAM r_•_w_...-.: �w. ==::1 'i jr1 •_/.=.".. W ....• "'".YM.M...•-..•:QIILItAIYU...:,..--rioY1VI.... „1.Jww..l.y.. : ? 0.7 C Nw..-.=�.: w... A.l'.•..Y.N...o .....a IW .r. wiw•aY Y...-VI...._N..........r.....M.D.. .w l...-. .•. ....I===.• -•-•:...maw =...••.,•IN.YN �•f_�w M..••• Ma•,•MM. N•11{Nl.. r.'II•••r• VW �.. r•�. I.MI.1...p. � Y.N• ..• t.... .•N1.•••1.wNw•.•••w•••r w.N lw.•..1..a..,•IMNW A; M•.•. •.wnIY,1 1N••JM1I1. • N..fwwM..1.1 •..� .-. 1_NN.. wwlm .n na.aw1.1.1•.._1,,.' N_.a :U�I_wm■ ammo wwunn G II ow.. WWII -I Nc1.' RIII Om Wwwwr 0.61���'1��1lINI W�)•/NIIIL�IM!!1/>tl/�l��l�fOlLNtIII��'. p' nw•ww-wl •w,.�•�i,rr,~.w �s1=_ -:=•: _ -_ _2»=rr•. per. -c'.-. _ ---"'-'ems Z �.•.j..r�_-. r... .. :::jam . �::5�..�. .---.��..._...-•-�• � .. Q .-sail=Ll. �ii[3rr[Ir�slR:o... �= tr 0.4 >�eiil:iiltiliwi: wW- :.. .� ::. • 2. ^'s. 'C:-t:.:::::w� - ..•I�•...•...•••AD SAA :ai .....•:�.: `` '�y y....,r. .•� .i::». »•...:---- �::: swim. 1�.w° Mtn11 _•NNEIMI 1R •i...••�;�•.� Yw.N••• n' MwMI•f.� .••••••••..w--.m...:••=...N.w w •ww..N•.wlwmminsem•wN.•.w N.m.••••oh'.•.NI►•II N►•.�,• ••w.w 1•./..e •.•.. •.N•NMN•. _M um/ma Mel w•m• ma•n flhltMIw ..ma Miss..• wNl.wwllwl Ml •IrY..N.•NM n•.1 0.3 YYIa1w.. Ya _.Ymlwr•WMNN._•411.111110....1111 wY1: Irma "I..aln11 .,0� •1-••��.• wm-• YN••YY.•.nY.• •-•N w.n•11 s� i�._.-c&O �:1�_. S. q- •.YW..MN.nNuu•...w••em .NM....1 Nil CGiwG Willi t ire Kiwi z �==-r7=:::- BE r =-r_:.............. •-� >S•-� N� 1�Rli t_�=IzE ��M� r''�=� -- a r-�=i-_::_. �--=a'.��- : =� 0.2 o=a s=-- -= Vie_ ::- _-....e-.=-:.-.:''_'3. .,.-= tip"" Qa�-...��-��� ���....zE=�tl�a�•�a.�. �..13...�•.�;1..., isaiu�tN•�.�•.'.�I!' 'i .���ii�..•�i �•.w...wa-NY•r... w•\ww�•.m.•aY •Y••..•.. lr•._._.l`w Y•.•w. �r•11 III IMMM•...11 N.l..w 1=_=== 1,=.=,.....w•mwm.••..•_.y♦ Ya..M �.�..rw•...w.M.� iv-•,•w...1.1._..Y.�a. __w.1..••���• •..I���N, �/1 N..•un•/w1• n •rw•M�-/1•1.1 .aam NI�..a s= mei Sas mini II r�..airni l SUM1 _I ta.__mww....aaaa��inwiii ...p �µ11�•io mis aim am. am :NI um �•`m N. l Ilii uit w�rw li n.awlnrw w,aall w..111 UNMI II: wt.tlA.atrrtuwltlY.t♦.,ewmm.o...a.srr 11•M namatll•w•ta.....tat... t m n1.s. t..-Ir•aa-�a w:.tsnnt/►M1ll e.,aplrin a aw1 ilal.�w�itI1.1M.tlt♦wWr.ltaf to 11flMtMO MIMI ISM YMsltlMt.taa. n.al• NMI .n1 NM am�VA�\411IIIiliremm N Humps mit nun mni IYtI t�lllt.tal...l Itit.11wncnrru YfO!@Lltl .um met■It1t1.. mom nnf...-1�\YA n. ima rtrfo es uirri 1� ���....tlsutl l.IntttM tUHttltrrsn eMl Otl tflllA�sltttrr.nrNtRy/Mf1�1� urmmnn• •.9mtima mntRlnQmulprmffNnnnmlratall nHH�nttnlrl/tl yu rr11111n.:�' n►MmnrrnpInnflh$i I>rwuwaesnauwmwlutarmlWnluuntl111WIIIIM.iilurnlnn mm� i mmmnntDnFfu nornnmuuHtmu 0.1 11WlnitnlatutrW/RnitslstrMMMIt1...n1u1N11111u1It r1�.ltltttllYtr/arnpttift111tlWlnnl to t%►1•�,-harItam IIIIIH HIW 2 3 4 R a 7 8 9 10 I 20 30 40 50 ' 6Q `.1O 80 90 i STORM DURATION (MINUTES) DESIGN STORM FREQUENCY= I'O YEARS ONE HOUR POINT RAINFALL = 1.0 - INCHES .LOG -LOG SLOPE=U•�od PROJECT LOCATION = `ThJ,4 c ROMPS "1=Z, ;?6v168 CS -v2cx, MA-P SAN BERNARDINO COUNTY HYDROLOGY MANUAL INTENSITY - DURATION CURVES. CALCULATION SHEET D-8 FIGURE D- 3 PG .cf - Pe r,iPrT4,CJ 6-57 /OK- Ai/2. 3.5 3 2.5 In W z 1- .a. w J —1 1.5 z Q . M .. 0.5 0 NOTE' I. FOR 1NT THEN ONE REFERENCE SAN B HYDROL 2 o /OY -*lig. 2. 7b b'J. 5 10 25 RETURN PERIOD IN YEARS - 3.5 3 a 2.5 1.5 1 as 0 50 100 ERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR HOUR • 0.95" AND 100-YEAR CNE HOUR • 1.60" , E5-YEAR ONE HOUR • I,Ie". OAA ATLAS 2, VOLUME ZI-CAL.,19T3 RNARDINO COUNTY GY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES D-7 FIGURE D-2 • INT RAINFALL - INCH 'I1: C::..:1'12 I 131.1mI III[•: .. w �■■ 1:::■.. - ..:.: 14::1 '`t IIIIi:•■:.■ 11./I111111 .:.I.t■t/111I■ : in isiii:iquqhmsi:::FothoIIf1 ili��um •• 1 ..... ■1111IMINI..■=111f..flllfI ■....if1fi111 1111•11111■ ■../.1.1111 ■...I 1 r iiii�_� Eti i1iiii■ ii iiif i ■ i■■ .I In.iI•Iun II.Iiri.....!.,!_ _=Illi pi , i__Illf •�IIu f nniUl�iiiill.■■.nn111I111 I.■I .: s=_=_-s:e_ . L i:irs=-::!:sii=islrE-xi=as: r:F°O===i i �s�•.=__!i::a_:i-i=--- ::o :#.•l...I...s::5i:l:.l E it1i---iiiii=:ii Iiii::xx::iu': �:i i:al imil _-1 50 SS .3.ii. ....L.. i ..L::iiii .. C=.. iiii .1:: .:i..I.i :.:' ...w�- .... �=.iL.i ::i1.0=.i=-•C.......=111.=:t::M•��n.Iiil�l iii ii€i..INL= i•f=�Ij �1 ..• i... _-■■. .■. ./.l . ..iI...... IN .... ... / .• nii. • .. ...iiC...C....ii'.^^''.Z. -:•:. a 0.0 Hain ■suss - ■ .. • ../. 7.. ... ■■: - ■..�■ ..rimalumenip:119 -'/111.I.tN■■.•IMIN......■ IM.111..11�■.■: f1 ■� ■■::::: .■■19+1111■■�■.�.■�..■■■■..:■/ ■.ItII//1• 111111 ■ ■■ ■. ..■:■:iit l■ I.11■t111......11....Ihl■■ ■■ �....■■.111114ffl 1111.t1■11■ ■■ • ■ /■11.■■■1111111.■N■I.M30.0 u/I...■.■ ■..t....■.. I■ 11u111.■■._.t.■■1.1111■■■ ...■ ...�■...f .. I.■■t■eUIIItt.■.Il..u::......a===-_= es e._s.: :-:-s:•s x==-_zs- s•t z__ _ s:::I- zzs-s�� it i:: '1::.:-=_ .....s... i=--a===!If!!i 1 .I:s? .s: •t••: _-_- dramaiui�-: -•N�>:�>i....................................... .■ ■.i: C-� i1v - Lil���.NI.i---i'i .. ... :ii.I::::.sf ::. � �. ie:-----.a .: 1.. ...1 .. _�■--.■----- i! I I ... M.:i .- HI --- -■ --_ 20.0 midossi:iiiiii=irl : ....a ■ 111.w.■ ..N.uH1 .MINIM■ • IN . ■ • 1111■ ■■■ ■■. .■■:...■■/1.111111 h.11■■ .11111t M ■■■I..■■.. ■■11.11 1hMMuII MINION' ■■.:MINIM.■.■ 1111.:■■.11mm.t.■■■.■■■111 ttlt■■:.■■ nluttl ■ta ■.■....■.. .t.t■1. IHY■■■■■ sett1r111■.IN■..M.. i■ IHINHIIlllii1i1111���i11111.111.1 III .....i 1111111�.■..1..■■�i.■ .....nt.'11.11■..q Iltlfil ifi�n■ umpitimm IIII■...■.I.N..■....1111111iiiii 1s.11f� 11111...1.......■.....111 1ps�11.f1..=�=111 Ifl �nuenu.■..e 111! lE111111R1111M11111111111111111111111l1II11MUPt11A�,1ftli71111111111111% llii 11 111111UIRMNI11: III%M 10.0 .HIM.. .MO...■ . Mull I v .- • .. l ; . ■ . MINIM N/■■. .III.. .. 1.N./•. •C/■ Ste?.. f �_t__t .. ...■■■... .. ..Melt �uzitif ....Il::::: ..N11=:::.t.:...:■.MINIM.. II/1.. INIM. .t.1 ■ IHl 1'.. ■INS.■�■.t ...■IM'■�' /M11.■■.M.N1...H..pp.■ yyINIM..N■ /111t...■.I■.IN. 111111.:■.I.MMf111t1.Ci.1.•I-.IG-. ■.1■1 .■iraaM ■MINMq=::nNnnfil■■ •- im.....■.......■. ■lII■.IIIIII.■.■tun UUIr-11. ►'!ICr...-" �11.. ..� ul.■..■..t■IN .■■ nn. mal p . ■_ ...ttlhu 1 ■■■...t■Illlli ..�... .J.�.r. , II .... I tq��j ll{1iiI11.�I„iii1..�111111111iII.t.111111 n H ■ ■I.I,� ��.■.,IIII�iI f�l':.11.��itl fiif�Ilt� IIIIII!1!! !! IIIIIM MI 1111111 ! 1 IIIu u ■ ■ 11 .■ .In 1p� ■ 111/ lu • :-:-- a :f:-i! 4 =-iisi;ei: ie=�::�i:s:u ` L.1.-- 9Ls-'i 5.0 'ii•a-a--ii.iiiiii'>la-smii iingli:il. l 't ! airs ai .11lilll, f�.sLan� it 1�.!ii1� ....----e- •--- w . . .. ■.91■.. IH•:.1M.■ ..INN-S.l.... IH/...Mee .iI....■■.L.. II Tall.■ ■.� I'i.Ch 1.INIM..INN.M..... IH.,..■Ii. • HIH 4 e. 4.0 zumnisiIIUIssss r.:1:�• .. . .• mils -11ss.- -..IIinInlra •• Iralgssniiii ■■ .HIM... ■. H. .. ..■N.• ■■■■ tll....../INIM..■■ • MINIM■ ./.HI .■ .■ ■IN. ■.s■MMMtsH.II ■■. MIW..1 ■...MINIM IYt.■■..■■...■■■ M/■MM1 H..■MINI.h111 ■■ ■■ ...■■■ ■■.■■MI /11Hi11■■■ Ml,iu.ttt ■N■IM ■I� 111.. INIM.■..■.II.■NI 1.1■...M■■......e ■ ■ ■ .....■ ■ nn 1u11 ••1 r-..I".ul■ ree e ...■ 3.0 l!!/iiil/H!1I!l1P!■!111118: ice=„ ■�!�/1�!'�!�!!1l1 llul . ■':.Itllml !! !1 Ymi_ :Hilt= i:::..-=NN ...i I...:M:N r...:.. .:=-=_iilE :il :: :::i• _.-.....-- ii=i_ _Nit iiii:::::.. . amt. . 1. •-- .Sni�Nra i:::�- .I■-■ M:.•4.-. •.w..--=--:i..E-NN.L U........•--...L..s...- 1.-...I ....1• • ..YIN....• I A.H 1..ai■ OHS::....N.... a...- ..N..1... H.1......-NOIM.r.. I... --.INN. ■:ILII ..NI.:� .■r.:EZ...-INN.%= H . ....5 .MINIM �C=INIS..f. 2.0 H.I.IN- /.I. ..,.l w ■NN NNNNNN•••••• MI --.1-..----IN--- �.n./1� .. HlNwwl.--■ - .•II...JV�..osmium.I.I.JM. 1t,u■ .I..I.:.I.tu,. I.■.:■ IM-.■■I. 7M. MM..0 1Ma ....■NI.u/1........INr....NN 111 ■■ INIM. I IIIIIIIIII It11u�-.■■.s'v..■ill ■II11nit11.1I.■.MMI11M5Ht. .. .IN.... II I..■U■UIINIM....N■ IIIIII.UUIII I................... I■.n1U ssiens■..I1■D.uH...■au...■.I: Iillliiiu11�n11iui Filli glOnnPilIIPM111!/411111111I11111111=4111gMnuif11ii1111 IIIIU..s.nsmisim ... 1 11.■ trunk n MINIM...:/...■'1.■1111111111I■■s.11111111111q.ss.a......■ 1111■u.■III1R■...I.nn111i1I1.1sI1111111L1I■\■!R:.I�s1■■..:s.n111111111....1111 Ill llu.i■ .Intl■■..■ 1111I1111111■■■■IIttIMIqIIIIINq1I111.1111111ut eat 111aRuI11,1111u111N1111111111 i111u11•inI/U■..1■ 1 llllulIIIIII.l!!■l1 W n1III1111111111111111�1- ri111l11a■■s1'/leillnl lnll hell lllll11111 ss n 1111 N1s111 1.0 ltl.. INIM..... t11.. .. ■. a .. . . . ... ......... ■.IN.. .. iiiiiiENIIii:l� : �iiiiiiii::i:1=1 i lid �i11:� MmullhuI11iiiii111ll n11l! : 1BIflll1UUE!EuE'iii.l6�!!1l LPUilit iginn..!l�=E■E! NIIItU1t11I1IflM , UR ■lI N.tll p.11...t..••I...N tll■■.■s..1...■.s■..11111 UN!• ■s11 IIIIffl ■ yN.■n■■ /I1 �r,r,r;l■���.,1►�1I ■ .s...l ■...■ •111!■....NiN.I..■...=IIIIii:d1.I..11111.flH1■ill■I a •Ul�.I�L�!1i.If,inie y.viwi.! .IInpt1IM.■.. .INN _gip': i pp . Il--F- ..fix::::C:��= •TIN:�:.�-. Cu� xT Ee.!'A=s. :z'..7if -_E- IIIIM 0.5 1{11.1_.■.It.IiIi_f11I1.ss/it111.=11 .if iili: =BNil.l E f1 Gii�:.•.::1�7/iIt ii'� [fi; fit= eau. • • 1 ...■ ... N.N .1 11�'.: J.i ... N1..a...,..IMHIY....MIN.-.II .M .... . .■IlLIM ..1 I' . ■..I .INN. ■..' 4131.IN.. ...I..N..... ... 0.4 Illlsss1I111Pissell/I:PIMIIl « ::•1=1ih%j id -- st>t/sE1�i:w1 :liii11.1�+,/fill.■;: 11INI iiii411�ssssl: tell.. --- ■■ . Nee .l.MHW 1INa-;:I■......1.rg11•..iM.1.�1 1. ...----.■ team. !/IN.■■.■■■■MMi.11H11■■..�IeIW. .IIN . ■ ■ ■■I 1 ■ Htftll. ■INn.N■ Illltt■.V.i■INIM.■...IIt11■■■ ■.■/1 ■. INN■III■ 1 ult ■..1■■ ■■MIN■.■0.3 !Iulsr_nll�EE!:!!ll�fll`li.!1; If11. ii=iiiinllf luillllnIUWgiIIEI_M ■=i!s! - Mil-. ..---- -.... ----r' i.I:.f• E-- l------ iiiriGs.... EBEIZ II.111. I i iii■■ 1 .. 111FM EM . r. !: 3 ...... Main- --YIN ..■■ S. •.. I:-! �■s..1ii=.■I�G�i .N...S....i�- ..3 INN.. .�O=3C - -•": . ..N......aa. minim ... N1.... N.. -... ..M Mind um=...=...C1z� .a ..IN • • . .. H M ...• . .INN 0.2 Main..... sisal Iittl t�ullsil siisssslsilnatiI�lishanu i minsiiimiiiissa ..tt....M. ININ... M■IN.IM.■. nI•lI ■ INIM...N..■r..1 I •.IH .......IN.....■ mi.... MIN...■ ..I■Mn1/.11■I.■■■ C......■.■■MMIt111 I116 ■..11.MINIM..■■ Ihilt..: ■N.IMIM....■..IIt IMN■■ IN 11. IM.....■ t/I u N ..■.■■I■IhnNt�.■■.MIN ...■■■ !li111i11 Iln�illilll l�1 WI11:1 q 111111111.1111.111111 illiiii NM pm :../ilifiiul$flsllIHI111NI111Ri1nNu11l$/i111 111111111111111. lIIHIielii W niIIiiii'i1111 U I�1111 isle ., ■_ I iiiiiii.Il11111 It Il111311 III ■niin IUIIIIu 0.1 10 20 30 40 50 100 200 300 400500 1000 STORM DURATION -MINUTES PROJECT LOCATION YDa4 , 4 A4&' le. /6 /58 NOTES /DYR--Pik= /D/l /OYQ70 le SAN BERNARDINO COUNTY HYDROLOGY MANUAL AREA -AVERAGED MASS RAINFALL PLOTTING SHEET F,- 29 cll:1ioc tr-rs **************************************************************************** *** NON -HOMOGENEOUS WATERSHED AREA -AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 NON -HOMOGENEOUS WATERSHED AREA -AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II: TOTAL 24-HOUR DURATION RAINFALL DEPTH = 5.80 (inches) SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in./hr.) YIELD 1 20.50 55.00 32. .975 .442 2 4.64 100.00 78. .416 .587 TOTAL AREA (Acres) = 25.14 AREA -AVERAGED LOSS RATE, Fm (in./hr.) = .514 AREA -AVERAGED LOW LOSS FRACTION, Y = .532 **************************************************************************** SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 RATIONAL METHOD CALIBRATION COEFFICIENT = .90 TOTAL CATCHMENT AREA(ACRES) = 25.10 SOIL -LOSS RATE, Fm,(INCH/HR) = .514 LOW LOSS FRACTION = .532 TIME OF CONCENTRATION(MIN.) = 16.31 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 10 1 5-MINUTE POINT RAINFALL VALUE(INCHES) = .38 30-MINUTE POINT RAINFALL VALUE(INCHES) = .75 1-HOUR POINT RAINFALL VALUE(INCHES) = 1.00 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.90 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.70 24-HOUR POINT RAINFALL VALUE(INCHES) = 5.80 TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 5.31 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE-FEET) = 6.82 **************************************************************************** TIME VOLUME Q 0. 10.0 20.0 30.0 40.0 (HOURS) (AF) (CFS) .23 -.0963 1.41 .51 -.0645 1.42 .78 -.0324 1.43 1.05 -.0001 1.44 1.32 .0324 1.45 1.59 .0652 1.47 1.86 .0983 1.48 2.14 .1317 1.49 2.41 .1654 1.50 . 2.68 .1993 1.52 . 2.95 .2336 1.53 3.22 .2682 1.55 3.50 .3031 1.56 . 3.77 .3383 1.58 . 4.04 .3739 1.59 . 4.31 .4099 1.61 . 4.58 .4462 1.62 . 4.85 .4829 1.65 . 5.13 .5200 1.66 . 5.40 .5575 1.68 . 5.67 .5954 1.69 . 5.94 .6338 1.72 . 6.21 .6726 1.74 6.49 .7119 1.76 6.76 .7517 1.78 7.03 .7921 1.81 . 7.30 .8329 1.83 . 7.57 .8743 1.86 . 7.85 .9163 1.88 . 8.12 .9590 1.92 . 8.39 1.0022 1.94 . 8.66 1.0462 1.98 . 8.93 1.0908 2.00 . 9.20 1.1362 2.04 . 9.48 1.1825 2.07 . 9.75 1.2295 2.12 . 10.02 1.2775 2.15 . 10.29 1.3264 2.21 . 10.56 1.3763 2.24 . 10.84 1.4273 2.30 . 11.11 1.4794 2.34 . 1 1 11.38 11.65 11.92 12.19 12.47 12.74 13.01 13.28 13.55 13.83 14.10 14.37 14.64 14.91 15.18 15.46 15.73 16.00 16.27 16.54 16.82 17.09 17.36 17.63 17.90 18.17 18.45 18.72 18.99 19.26 19.53 19.81 20.08 20.35 20.62 20.89 21.16 21.44 21.71 21.98 22.25 22.52 22.80 23.07 23.34 23.61 23.88 1.5329 1.5877 1.6440 1.7017 1.7588 1.8157 1.8749 1.9365 2.0012 2.0690 2.1411 2.2236 2.3174 2.4181 2.5284 2.6511 2.7771 2.9185 3.4229 3.9054 4.0175 4.1191 4.2017 4.2699 4.3317 4.3887 4.4442 4.4991 4.5513 4.6012 4.6492 4.6954 4.7401 4.7834 4.8254 4.8663 4.9061 4.9449 4.9828 5.0200 5.0563 5.0919 5.1268 5.1611 5.1947 5.2278 5.2604 2.42 2.46 2.55 2.59 2.50 2.56 2.70 2.78 2.97 3.07 3.35 3.99 4.36 4.60 5.23 5.69 5.53 7.05 37.85 5.11 4.88 4.16 3.19 2.87 2.63 2.44 2.50 2.38 2.27 2.18 2.09 2.02 1.96 1.90 1.84 1.79 1.75 1.71 1.67 1.63 1.60 1.57 1.54 1.51 1.49 1.46 1.44 Street Capacity Calculations **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 21: 3 3/11/2002 ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * Immediately South of Caroline Street (Q10 = 20.7 cfs) * by: D. Hammer, File Name: StCap ************************************************************************** **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .011400 CONSTANT STREET FLOW(CFS) = 20.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.30 PRODUCT OF DEPTH&VELOCITY = 1.51 <O.Sot O_ K, ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * Immediately North of Caroline Street (Q10 = 15.1 cfs) * by: D Hammer ************************************************************************** * * * **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .005000 CONSTANT STREET FLOW(CFS) = 15.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.26 PRODUCT OF DEPTH&VELOCITY = 1.06 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 21:10 3/11/2002 ************************** DESCRIPTION OF STUDY ************************** * Julian Steet Capacity Calculation * Immediately South of Caroline Street ( Q100 = 34.8 cfs) * by: D Hammer, File Name: StCap2 ************************************************************************** * * * **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .011400 CONSTANT STREET FLOW(CFS) = 34.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) _ .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC.,//IS NEGLECTED. STREET WFLLOODWIDTH(FEET) DEPTH(FEET) 520.004 C` Zi HALFSTREET AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.71 PRODUCT OF DEPTH&VELOCITY = 2.00 • ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * * Immediately North of Caroline Street (Q100 = 25.3 cfs) * by: D Hammer * ************************************************************************** **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .005000 CONSTANT STREET FLOW(CFS) = 25.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLCTED. STREET FLOW DEPTH(FEET) _ .544: < 0.6 Z HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70 PRODUCT OF DEPTH&VELOCITY = 1.45 © X.% • 5Z- Q/W **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 20:15 3/11/2002 ************************** DESCRIPTION OF STUDY * Walnut Avenue Street Capacity Check * at Tailwind Avenue Intersection (Node 32) * by: D. Hammer ************************************************************************** ************************** * * * **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .007200 CONSTANT STREET FLOW(CFS) = 3.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .37 •4 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.25 PRODUCT OF DEPTH&VELOCITY = .82 ************************** DESCRIPTION OF STUDY ************************** * Walnut Avenue Street Capacity Check * * at West End of Project Frontage (Node 33) * by: D Hammer ************************************************************************** **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .010200 CONSTANT STREET FLOW(CFS) = 5.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET).= .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 * -6 3 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 38� HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.65 PRODUCT OF DEPTH&VELOCITY = 1.00 < 0 7 s Hydrology Exhibits .1111 MIL 1.111 • = *•••••••••••• • INN ...a•••••11 1=1 .111 MEL II MINI NMI Mil NMI 1V11NVIN AS010LIOM-1 AIN1100 ONICILIVNLI38 NVS x . r., I I II t:, r.' I rz, 7 • I 1 .) / / VALIV V-IS]MHIflOS —n dVIAJ d11089 SlIOS 319010?JCIAH 1 3 9 19 .1 z ••• •••:•11:1„ A • ;1;••• t. •S°. ••,‘ • j). •••;#• • , • t 4 .31186018411 • /11,... at= itiP• • 4 .7 • ., .......J..„-,-,...:r.-:' • ... mr-rkwileie 4 nom r .......-../.......!.-.-._1 • ...Zam..1.-.1-...-_. 1 1:. 1.1.* ts..1 • ... 41c 4 • 7P`•• •••••"!!•.. 1.77.....',.‘i • ........., . ,4,4,%,,r,...1.:‘: .,. 'it; 1 • 7*.;•', ....• las. %/I • • ../ o • • •, .. t:.4.14,r**1.1_. . •••• t........:.,.. , .1^ , 'ILA .. ,• 3 ;. ••• • . ..• *. • I. I.f.' . .., ..... 077.a.5.74•..:4•"'n .i.t.ii.t: .... s'IN s; rt, • •,,:t ••••%* ••••••',. , • , • • • i :: , •• v • ."': . 1 ..",..,, - ,;.... :. 1.1. • ,14,..c/.• .1.• N.. ,,, • , • , . , • • • • . " ......7h. . ';. , ', •• • • • '..„.4.,;(...,•••3%- • . • ••• ', • 1 • ••/ "•••.• • ' • '... ...' * • k 7. • • • ,o, • '7. i.; 4....\;••• ., ? I (..e.‘..' 17% ; • • • •,,.%‘'f.. J:4.. .' ...); • •`...•• ...;;; 7. • .' 4.,‘• vv: ‘;;• ... . • - • • : .• ' .".•••,• ' .....:::;.,... ......t.......4..., ::itI;,...141.,.. r•-.. :;...,‘ , ...'..,,......,• 4. ::.'..... • :• ..• is:1' .''..:`,....1. , . ..... I: . •• . ..: .is. ..., . :. i., .: .... ;-.0., ' l• A: IN. ' ''.r4.; ' '..:rp.• 17.717' -.','7770-77-11 .%—:--', : . • . • ' % .. • ..71<.. '47.,•:.:e.././.111:. ..'..•T‘c.".•..41',;',.!.t.,•••:.: 1.,...1.5."....4.4,..4.;:i./..,!;.:'.7.;.'.•;.\,::...t.....i7),:!:,.4i....1.,..., ;..e..1.....;•:7. ••••`•• .,, , .i ',,) . : 7., I. • '• " •';',.. ,.,:'.i. 1.- - i ,,,;. • ',;•1. 1•:'-.. ; .N.• ..; N .• 1 ., .> ...,:..,:..: ..1:,•; ,,,,....,, : • .:i:,.....• .. . ,.. - `. • • , • • • - , .. .".s..t.13',1,1,./ :I ...xi ft•-..•-•-•,•-.).t.'•••,r, ••••• • ,. ••• - ../, s...:...... (,.,. j.-j.,/),.,„,...,-,,,..„4,,, 1 ....,....,, -4,..„ -..— - - - , • .....,;-•••••,-.:_.• • . . ../.,..,....H.,,.;;;:,•••. 7;./. • :1.1' • ... - r ..,•?, ,„, ....• • , : • , \ • ,•-,., • 1 ., . • , ,. . . ...A, 0(1 ,.., ... _..m,e...... I • ,4 . ' •• .! I. ••:. * I \ : .•C: •, .N•ri , 4C..i! .. :; ..... .. ..F..e..••I• ‘• . ; .. I • •.' . I S • • „'' • •3•;•••;•,,••••ip•••••*. •••-e.;, .•‘.....::, • ... I • •I'" • •• '" ' 1 l'' • .,, , , • • • ' 'It.: • • . 'I: • I 1. • '.'..:44:7•‘ ••••7., • ' '. .... 1 • ' %.4.. ot, ': • ., ,, • ; • . . .. • 4.,!.. • r • A '' s' . 1\•t !IT ...., ! I. , ...', , 0 ..-1 • / •*0*. r• •,,...:., /......777...."7t • • •... ..-'7•r••,...ri-••,•-•••••••••\ .... • .• ,.. ; '. ''' ' . . • . • '; , ?I fr.r..!....'''. I'''" ''.....fNitI•144.',.,3•::•.;;',.C.,..._____'• *. I.. .'• ''• • ...L • l• . • , . ; ,' ' • ' • • '... . . . • ..• . • ir .e.• ,, -- I - • „/ • • ,,...',);•,•••,,...;,...,t.2.,t, ::... . , . 7.• • ; „-:• s,•i.: .7.''• • .-.. .' • ., .1,;:i u..• 'Ir'''.. -.... ' ,. . . ' , •I> it,ArM!: ',.; ' •' I ' '. , .! f - ' • , s7 .. •.% ' • b • ,!..s.,'I ...';•'1.1(,. ', ?7,7f.yi . ',••,'r ; •• :•\ • I .. r:,.., •• . :74A„" h'.• ' : , • 4;;,.. .t. k• ..:.:; ., ,... 1 ... .. ' ;I..% : \ • ... • s' ' 1 i..., ''' " . ,' . • -. • . ;.; 1 • " .. •.•-•••.:. 1 si•*_/! ' .\-';i: \ •!... ...'r r i• • to!) - i .......,..,, • . . 3 I: t 3 .•••• •• i•Ij• • • •••• t . . • 4. • . ; 071 ojaa1 1.1 * • • • ' 4•• • • • • • • ty r," • ..... • • I k I 1 • i• •• .t • \ , , • , • • ' , . • '• • • •. • • .1 , . ...•••••• • .3 S. • •• I • •"... . I • • Is, '` : I. 11't• 1 ••• • ••• , •••••• • ; • • • • , "*: • • 3, I "",' • "rt' • • i • • • ,.‘ • • 1.• • /A,. I .0i411 I 1....11.• •41k• \ • , 8.0 •••••'• ••;.y. 1....;••••• • • , • • • •:). •: • •,•! ••• •,,,,ITLY••••••••••- ,••• ; ' ' • • 'c"—• A •. ; , •“ ."`X.;:'••• '•••• f , • • I • t ; I • i; • : . • • • {7. ; ! • t •••• ••‘• •.• • 4, • .• ; •• • •• ••••‘) 1 ' • it • • 7'• t<,' • •••1 At.. t " •• •••• .,•,‘ • •••Lr:••••,p,y4;113411,i- •• "." - • s: ?..1f:•7••-•• .1.7:7' E.- • j1 • - • • •. I • -; . • • / • 7 7 i 1: T4N T3S • ►rf;w L f25Y '� ► - �� r 14 -!' ' AA 11/ , LW ,�� , r. � i 6 1411 e 1 .."-- "\• - - if* AlegiL491441. . . .. N4 dy flimpi .� /Ai �.r► ::IR& 1•Allifill111111111M11111111111111111011111111111111 . :. IN%�Iee�a ���� �� ll _RIALTO_ ��r ir..rr.pirin.4 �+' FONYAN �/E �ei�lvt WPM mai _ . 'trial .44 ..-Amisimi: nimimr.,---ai.. __, rid. 7-62"orgleRIMEININIEFEIF tow4,--- --1. .eggiiillbhm•mmtliv- •14, T. -eumniiimmortmennow -0. �.� ':-;.tv : CHINO 111001PM."1111111Par 1:171 ;.:4111"1( I_ ___. — - '7"tirilifirliP17 II • RSIDE • • t I4: ( R 7 W R6 RSW. •'REOL NOS SAN BERNARDINO COUNTY HYDROLOGY MANUAL r --\• .RY.( t`•L- • Z ► ...;74410_ 11, REDUCED DRAWING SCALE I•�= 4 MILES LEGEND: CI 'SOLI •iES PRECIPITATION (IHCIITS I R -- I RIE • - --I --I R E i� ;:. I . . 7 SAN BERNARDINO .COUNTY FLOOD CONTROL DISTRICT VALLEY AREA tSOHYfTALS Y.. - 10 YEAR I HOUR SAICo ON 0S0C, WAA. I71JLS 2.1973 .P..O+to SY Fl- DATE 1 SCALZ IFILE No. ON.C. HQ 1902 C.la wno-i 3 .1 12 FIGURF R-� 2S u v LI u R7W R 6 W '',10••• -44 altemiummianNittsgrAIIIIIIVA111111111110111 "AMC E. MUM p���I���►®��.���A ��'� R I ALTO �r .delgrninfira asi--•.A Myr,.._ 7>m - �� i- ONTAIO��•• Rit COLTN ti' :;.a �EIFF REOLANDS��� J •• •i• �� lim'as. re,wern i rt• IV • _ .. ' , I ERSIDEfr \ v, • .;j;, R4W � R3 ,�....., R2W R2W : a- T 3 S SAN BERNARDINO COUNTY HYDROLOGY MANUAL LEGEND: ( 1)6 ISOLINES PRECIPITAI!O++ (INCHES) R2E -- 1'4N i �- �;, - --r.,.T? N • SAN BERNARDINO COUNTY FLDOO CONTROL DISTRICT' VALLEY AREA 130NYETALS Yo,-100 YEAR I• -HOUR .Asm oil taw._ IIOAARU/ I. w$ . Dort - r►Ati it MO. Owe. 001 11182• I r•it r801 4 .4 I! z Scale: 86' "=200' ® 1421.9 FL -S.O CFs :ET 43' EXISTING IMPROVEMENTS 43' 18' 25' 25' 18' EXISTING MEDIAN WHERE -/ SHOWN ON PLAN 15 TYPICAL SECTION WALNUT STREET - 86' R/W N.T.S. 2% 6' WIDE MEANDERING SIDEWALK 8' CURB AND GUTTER FLOW PATH LENGTH -WA- LEGEND INDICATES HYDROLOGY NODE INDICATES AREA (ACREAGE) CONDITIONS OF DEVELOPMENT mossumalemsza INDICATES HYDROLOGY AREA • — FLOW PATH .AVENUE WALNUT AVE HYDROLOGY EXHIEIT FOR TRACT 16158-2 i Prepared By: ALLARD ENGINEERING Civil Engineering - Land Surveying - Land Planning 8253 Sierra Avenue Fontana, California 92335 (909) 356-1815 Fax (909) 356-1795