Loading...
HomeMy WebLinkAboutTract No. 16158 Hydrology StudyALLAHI] ENGINEERING civil engineering land surveying land planning TRACT 16158 HYDROLOGY AND HYDRAULICS REPORT May 29, 2002 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477-6722 Fax (909) 477-6725 Job Number 159.02.02 David S Hammer HCE 43976 Exp. 06-30-05 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 TABLE OF CONTENTS Introduction Purpose Methodology Findings Summary Hydrology Exhibits 100-Year Hydrology Calculations 10-Year Hydrology Calculations Street Capacity Calculations Appendix 16158-2 Hydrology and Hydraulics Report Introduction Tract 16158 is a proposed 127 single family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract 16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40-acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10-year, 24-hour developed runoff from the entire 22-acre site of Tract 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100-year and 10-year runoff for Tract 16158 and to verify the capacity of the proposed improvements to safely convey the runoff. The hydrology and hydraulics report for Tract 16158 introduces a storm drain system which conveys storm flows to the northeast side of the existing temporary basin. The approved hydrology report for Tract 16158-2 provided a unit hydrograph calculation to size a temporary detention basin for a 10-year, 24-hour event storm for both Tract 16158-2. and Tract 16158 improvement. Methodology The rational method was used to determine 10-year and 100-year event storms, as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10-year storm water runoff is conveyed in the street below the top of curb elevations while the 100-year storm water is conveyed in the street and does not exceed right-of-way elevations. A storm drain system within Tract 16158 and a portion outside of the tract will be used along with an earthen channel to convey flow to the existing basin. Summary Tract 16158 proposed improvements will adequately convey both the 100-year and 10-year runoff in accordance with County criteria. Also, the detention basin is sized to detain all storm water runoff from Tracts 16158-2 and 16158. Hydrology Exhibits la iii 11111 I HICHUIHO AVENUE �� .�/�• Y, ��� CC 11111 `.i �/ i • ♦ ��I�� �I • �l/ll l �1'1���?i•• iii,�I�ii, 1h,'Ip1U1 111, �i 4 'ice • frSJ ,,1911 /�4j7 . 111', ��p���� ripii�niill ALLARD ENGINEERING Civil Engineering — Land Planning 8253 Sierra Avenue " Fontana. California 92335 ii-!flCj: I! 1I111111111111111' .: •il!Il911 •1111111,:.r11111gi11e9nillii��€€€€ Iliii�( 1.1!I"Fij 1111 �! _fAl Ittl 111 11R11IIIIIIIH IIIIIIIItI11111 ■n Ii1.11IIIII111111 IIIIIIIII11IIIII1111 Mill =\11III11111 IIIIIIIIIIIIIII►e _CC:°==== am ma �.iGGumumm an ss�as im..Isssaim sssIN -C Fr CC C: ■ssnee ■ rim ■■ MI „I::: _=_— _ _IL: ___M rEPAII: gig IIIII1111111111111111111 •••ryaY1., C 1111 U. U. lull. a LILLIIW'.I1111H1men -- ._ a. == Illt11 1"' 'an 11111111P' 1;� 111 V a. 111111111'. 6 rmlrrtm 13TTmTnITe. .7.......: c:\fww\.e.d /.+tw I.M [e.•.Z/Yd.:1c�Ld.:� .,1 I1111111 `CINITY MAP MY. 2C.C+1 Doll: a.. .• / , o •r • r • .. • • - \ .••••• .• • h • ;\-- • •• • • .; • /7' ( .. ,...... .*". ,,•• 4 .%-•;,- -i,:/:',7,,, \...\ .•,•‘‘7‘; , : v 6...,-, . • .••••••-"fi .....:.z.r.s...,• . • '•,. 1....;.c.;:.,..:x-% ,tb2,,,.A .7 : ' • R• , , . • ; :4:4 •- 4_ L.C..... ..) .,.. , VtleF 2 :.....; 4.• ..-4-..;•..,.% - • e..V.4•-•"' :........ i r.' • 77.?..?. .,--i•'• ..',...,,..?:. • ..t, IUNct4;2,11 N7„, s .0...:M • ' 14;••••-:10:2- :--7 '• '. ‘,/7,-,' .‘,:." '''':-•ts"---4-e•••1•••.7. 1••••1.2?..L.2,4:::..„14.,......ttn. • I . '• ' • . '-' . ' '-' • ' • 1 . • .• t , 2 ' . ' • 11, t • r• .., , • • •sk,,.. 2 , • ., '' I I 1 I'... ,2., V. , .,00 It • 1 iN. I.. 1•0•: I .• ... r•-.....4,...t. ' ' ....:4.....;•....,1 • , ,: •k•,,o, .0.... ., . N . *:,-.. '.: •', : j,‘•.. '.., t...:.11 „......:. 4.:..S .1: :).1.rr!;,•• '. •1 ' • - • , .1;5,,A1 • • . e: , 07} e ...... At:, a:14- i . . • • . 1 •.• . F.:1.8-e •• 't • • I ; _y„.1 • ; 7 1.1- I '•• :2. . . • • / t' •!. 0. ... ' r ;•• ) .,.` .. i' . ."."• • • . . • : • , .*:•'N.- '''' '': IL:••• :-.• . ,. , • ,• .:4- r ___•11.4•:. ..,,., • %%VI ? ° .. • •,. ..1 .: •,..,:•`-;,,.:, • ...,-.............i...,:_,.....'•-•-' -. • '. • 1••'*1 %'i..;...'..,. ..!: \ 4 1rr't ;44.... ,..171. :: , 4.,,.. , .... . 1 ,..; r1:1..1. ,,.!...y ....-r.ta.unIvi4.,-J.,Iiii...: . 1.• 'AI t4111; ' .' 1 . ' • . . : • ;4. I ''.4 \-.. ...... . / , (). J.,• ••.:. I ` •'..'••.• • . - ' 1 • • . .....• I ••N I I• . , . ) ``.• • ,•. . , : , i, ,. . • '1: ...IYPP . .. %, •,,,, / 7' T ' /4" .21,00.2`1. .. ; os....) ;I' r..; is'..... .......1443 1: .1 N... . ...•.11.-. ) ) r.o. • -• ., i...4 v.. ., , ;V' . .14?V$:11,:;,... w .. . fr 7 T 'it• ilt: I 04.„:„ i. ... 0;1 • .-.1•• ol •:. 4 . ..--i,../..:?-1,.i,', y* 4 - • • ,:., "i 7 ..M.Ii • 111 ,i••••• • ,k1-:•-,.; fr , -.i;. • • .-i2;:-1.,.., i• ..11-.,.... .„..,,,.. . ..,.1.11(r: ......tpria....:,....- . , ..et 14 .. F',:q.,. tij ..tit% 3$ , t!'"i"13:7 11:4 -: t .41.1,-tiLit.,1 r ••'. . ,.. f $ 1 1. .. r•re,-. ,i.,. i ./ • \ i-,..:-.. ,ill 7 I 2 , 7 ..- -•,..-- ' 0::•711 " ..tr4.-••• ,e,,, • .:• ./ ••••1' • • atSk7/4:< %.. 1.• .%).1:•');;•4• •••• I , r • • • / • • 1 4 " I \ I • .1 .• ' . • 2.1' - "•'" . i•••: • ' - ---•••••••":-.20 •••-•••••i72••••'0;:.•••2•••,-• „}.• • ' t I 21.1i • • • • • •-. ••••••• s•'• • .s • , • • . . ,•,•-,•••-kr.• • ...„1-1 s • , . ; . s•o j; ••4••.::••• ":" •..---5r7••••••:;!••.,%.••• ,. • ••••, • ••••••••. •;•••••••1••• •••• •-‘ **•.• j• • • • '.•„,•• ,•<7,Jo..7-7:*\ :: •••;ci:;47-7-"f.;‘ • '147) •• • .. • • .• • - 1. • 7••• . . • . • • • • . • :• ." 1 • • • • • • .• • • • • • " •. • •t• 1, •• . • slt,. ,• ••• :;‘. • •- IN Aim \ t.7..;•••.11%.• • • ..;••• • • • • • / i• s ...t•X•),,f777. • ...1 "•••-• • . • . sit 1•45.1';1-t ..,•;•••••• • ••• . ‘111,-/•,,ot t o'D • • ki--:?"17:• • c;..M.i , ‘••••..; L' •• '0. •••711--r • , ••• 2 , •••• .•••••••••• • t Ct:a it A so • won emit. . • • A ... n . .t..:2711,:iirl ill 141: li A3111.11apt!l! •I! fiiii .1 -I 0.,J9 ie III Ili /$1 illinlii.ta i ski k% .o I 11•••1111111 ;1)3101 11:41.:••io 1 11 a .-...11I itilvitly na.:11 ! :::.1-..riiii:filtittlilAulfil :II f... 1 a p. •i4i!T;i .4 .... awl I •gi .."..3(.;;4•••.• 1.1 0 0 CC 0 (r) _J (X ° (r) 0 _J >- SOUTHWEST -A •'1 ... ..../'t, u // ( 2 I I 1 I 7 2 I ta I I x A .„ 1:•• 1,,,,_ _....... _„___ ---''.." SAN BERNARDINO COUNTY 2 Q HYDROLOGY MANUAL MEE (2., 114.wits. INXII MON RIM tzm no me Ns No 0•14.••••••• •40. • - . Noe ism am INN 1111 ums an EN um Ft 77-1 tt5V / I it I iiiL rl �R2v.1 1 :HIV/ -` -t •—_ i •, _ — I •••• / e - i . Am, ig..4ci..41d* , to v ' 4613"AthiMIPSiii4:-. g 1 I 1 i. ►:• a `I��tu.- . i i .111611Rat t t ri;ii.real aM y t' !MIME "ND ' = iiI rM i► EEi. iiil.. rill ®IIiIIII�I®®� v ���u �"�ii1�����:�®. .RIALTO_ �fiil�sas� .smav:+_^ - �Itti91•d g aniiNIEF"TiViner Cii�Pt is . • �' •�C'TpNi�iQif•EM�_+.._ PE !C iONT lGtn'� �,tl�� �a � s�I .�-�� I®eLit a• liig_ !fii. ��'R�E.-D- NOS i Awoote., ®iri ki : ,• RSIDE 481114111.111111 ,.‚5v1 SAN BERNARDINO COUNTY HYDROLOGY MANUAL REDUCED DRAINING SCALE 1 = 4 MILES LEGEND: Cei .SOU•tCS • RE cirtfeTlON ft.IU.('SI R-II 171t y,..• ID•.1 . �.— 1 "`.T? N r T...;.TIN SAN BERNARDINO :COMITY . FLOOD CONTROL DISTRICT -- VALLEY AREA tSOtiY-TALS Y.* — 10 YEAR 1 HOUR ..:co oft UibC NDAA PILLS Z. r/l3 DATE 1982 FIGURE R- 1., m ':OHTA . IC-` 01 :V CZETILIMMIZAIIISIMIliti .Atiii y / i® a issrawq.....iumairsimm f ,..., 'mum usalippi. , •lb'sltitag ....,....-. ati iv .c... „ .... L. , co..... .. V• ��• , Wit, v `! � �,� ��►, ..� er, ^V....tir, _ "EipiaLisarni WI.-- \ I i i 1 , 1---E.e..,, ..„Ensirolimeraummorin %,..i:-.0giti... mot/® _ .tea NlMtE� WNr'ii �,Y .ilMet I `ori®i®a�'®mgmn msr® m RIALTO dh�7_ i:!oaM eu� I: . 1n �ti "TA r71Nt rEI-- ‘Jf :a- arimmi ®l,,l!r+►+� COLT. H •• ;.a ' 1'1�� Lou •` _ 71401iiiiiiitg. ' IE.Fis. IDE -R OL NOS SAN BERNARDINO COUNTY HYDROLOGY MANUAL it 1E i , 't- I --} - - I_ L. �'. . I I .� . - T.IN_ c _ _ 100 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 ************************** * Young Homes Tract 16158 * 100 year * BY: JOE RAMIREZ DATE: 12-31-02(REV. 07-18-02) ************************************************************************** DESCRIPTION OF STUDY FILE NAME: 0016158.DAT TIME/DATE OF STUDY: 13:54 7/18/2002 ************************** * * * USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.5000 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE /.SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint '= 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 30-MINUTES .77 1-HOUR 1.01 3-HOUR 1.83 6-HOUR 2.67 24-HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.27 .80 .50 52 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 8.56 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< '»»> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = STREET PARKWAY CROSSFALL(DECIMAL) = .020 2 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.58 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.248 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. Ap SCS (DECIMAL) CN A 1.15 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 1.15 SUBAREA RUNOFF(CFS) = 3.98 3.42 AREA -AVERAGED Fm(INCH/HR) _ .40 = .80 AREA -AVERAGED Ap = .50 42 PEAK FLOW RATE(CFS) = 11.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 12.26 FLOW VELOCITY(FEET/SEC.) = 3.68 DEPTH*VELOCITY(FT*FT/SEC.)•= 1.31 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.58 RAINFALL INTENSITY(INCH/HR) = 4.25 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.682 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .80 .50 52 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.70 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.70 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.99 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 11.10 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = .4.128 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.29 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 7.69 EFFECTIVE AREA(ACRES) = 3.77 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 12.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET/SEC.) = 3.32 DEPTH*VELOCITY(FT*FT/SEC.) = 1.26 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.10 RAINFALL INTENSITY(INCH/HR) = 4.13 AREA -AVERAGED Fp(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 11.85 10.58 4.248 .80( .40) .50 3.42 1.00 2 12.65 11.10 4.128 .80( .40) .50 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 24.3 10.58 4.248 .796( .398) .50 7.0 1.00 2 24.1 11.10 4.128 .796( .398) .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 EFFECTIVE AREA(ACRES) = 7.01 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 25.72 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.33 TC(MIN.) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A .89 .80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN .50 52 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = ..89 SUBAREA RUNOFF(CFS) = 2.85 EFFECTIVE AREA(ACRES) = 7.90 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 25.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 19.86 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC.) = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.87 EFFECTIVE AREA(ACRES) = 10. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 10.95 AREA Fp Ap (ACRES) (INCH/HR) (DECIMAL) 2.87 .80 .50 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 9.19 77 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 34.50 SCS CN 52 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 = 10.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 35.04 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.00 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.10 STREET FLOW TRAVEL TIME(MIN.) = .42 Tc(MIN.) = 12.33 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.876 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) _ EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. A .35 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = 1.10 11.12 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 34.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.14 FLOW VELOCITY(FEET/SEC.) = 4.00 DEPTH*VELOCITY(FT*FT/SEC.) = 2.09 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.28 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .54 HALFSTREET FLOOD WIDTH(FEET) = 21.87 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) RESIDENTIAL SCS CN "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 12. A 1.68 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 1.68 SUBAREA RUNOFF(CFS) = 4.95 12.80 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 98 PEAK FLOW RATE(CFS) = 37.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.94 FLOW VELOCITY(FEET/SEC.) = 4.01 DEPTH*VELOCITY(FT*FT/SEC.) = 2.16 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.04 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN 2.06 80 .50 52 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.07 86 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 43.77 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1394.50 DOWNSTREAM(FEET) = 1391.30 FLOW LENGTH(FEET) = 234.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.56 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.77 PIPE TRAVEL TIME(MIN.) = .37 Tc(MIN.) = 13.87 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.87 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.612 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 GROUP (ACRES) (INCH/HR) (DECIMAL) CN .43 .80 .50 52 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.24 29 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 44.23 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1391.31 DOWNSTREAM(FEET) = 1387.20 FLOW LENGTH(FEET) = 308.40 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.2 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.43 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.23 PIPE TRAVEL TIME(MIN.) = .49 Tc(MIN.) = 14.36 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 14.36 * 100 YEAR RAINFALL INTENSITY(INCH/HR) SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 3.70 EFFECTIVE AREA(ACRES) = 18 AREA -AVERAGED Fp(INCH/HR) _ TOTAL AREA(ACRES) = 19.17 = 3.537 AREA (ACRES) Fp Ap SCS (INCH/HR) (DECIMAL) CN 3.70 .80 RATE, Fp(INCH/HR) = FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 99 AREA -AVERAGED Fm(INCH/HR) = .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 80 .50 52 10.45 .40 53.65 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1387.20 DOWNSTREAM(FEET) = 1383.40 FLOW LENGTH(FEET) = 614.00 MANNING'S N = .013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 8.37 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 53.65 PIPE TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 15.59 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 19.17 EFFECTIVE AREA(ACRES) = 18.99 AREA -AVERAGED Fp(INCH/HR) = .80 PEAK FLOW RATE(CFS) = 53.65 ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 53.6 2 52.8 Tc Intensity (MIN.) (INCH/HR) 15.59 3.368 16.12 3.300 TC(MIN.) = 15.59 AREA -AVERAGED Fm(INCH/HR)= .40 AREA -AVERAGED Ap = .50 Fp (Fm) (INCH/HR) .796( .398) .796( .398) Ap Ae SOURCE (ACRES) NODE . 50 19.0 1.00 . 50 19.2 4.00 END OF RATIONAL METHOD ANALYSIS 1 1 1 1 1 1 1 1 1 1 1 1 1 Scale: 86' "=200' 1421.9 FL \LAT 0%. =5.0 CFS 4,3' 43, EXISTING IMPROVEMENTS 18' 25' 25' 18' .§* 15 SHOWN ON PLAN EXISTING MEDIAN WHERE TYPICAL SECTION WALNUT STREET - 86' RIW N.T.S. FLOW PATH LENGTH LECZND INDICATES HYDROLOGY NODE INDICATES AREA (ACREAGE) CONDITIONS OF DEVELOPMENT memaimaillummin INDICATES HYDROLOGY AREA • • — FLOW PATH 1427.9 FL 0 c mom .a...mmiummoommomminniiiii.2jemeammun=c3,9 V - 2114rmr arest • memmin c c. ' -Chav•,2145-OF'i 6' WIDE MEANDERING SIDEWALK 8" CURB AND GUTTER ff ( '111.6.,,.._" • • I I el I Iff I II I Iff 0 '''' • " - — " - • . - .11...,—. ----. \k ‘7 k-') '------Z---/-----------. \ \ \ C \ N------C'N, ' --- \ --___. ----.2 `---„. ., M _Th,/ \-- I' \ ...1 \ s) ,7 : ‘ \ ,, , ,,,,,, 4 • --ki--1.-1 _ -.''‘ - \\ c--1 -1---,-----.1 1 1,--.... • 1.1 ".. VI P'OM• PIi! ,.1 j "\ _ \\\\ s'. .,„ ,L ) '" ' I .\: . . ,. ,,.. WALNUT AVE. HYDROLOGY EXHIBIT FOR TRACT 16158-2 Prepared By: ALLARD ENGINEERING Civil Engineering - Land Surveying - Land Planning 8253 Sierra Avenue Fontana, California 92335 (909) 356-1815 Fax (909) 356-1795 AI:\DWG.\15902\HOH\ALMERIA.DVIG San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-1999 Version 6.2 Rational Hydrology Study Date: 03/11/02 Tract No. 16158-2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity by: D. Hammer, File Name: Walnut Allard Engineering, Fontana, California - S/N 643 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from. Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(%)= 0.62 TC = k (0.304) * [ (length'3) / (elevation change) ] "0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.878 Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) 0. 098 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft/s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 3.229(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) Effective area this stream = 1.40(Ac.) Total Study Area (Main Stream No. 1) = 1.40(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 12.927(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.791(CFS) Depth of flow = 0.251(Ft.), Average velocity = 2.616(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.591(Ft.). Flow velocity = 2.62(Ft/s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.865(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q=KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 4.980(CFS) Half street flow at end of street = 4.980(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) Flow width (from curb towards crown)= 13.788(Ft.) End of computations, Total Study Area = 2.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 14 Iq **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158 * 100 year Rat. for Sizing Flowby catch basins at spruce tree and Julian * By: Joe Ramirez File. 001atab 2) 47) **********************************`******************** ******************* FILE NAME: 00.DAT TIME/DATE OF STUDY: 13:36 7/18/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.5000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 420.00 ELEVATION DATA: UPSTREAM(FEET) = 1403.40 DOWNSTREAM(FEET) = 1399.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.844 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.187 SUBAREA Tc AND LOSS RATE DATA(AMC II):. DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.00 .98 .50 32 10.84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.66 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 6.66 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1399.00 DOWNSTREAM ELEVATION(FEET) = 1395.10 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .98 STREET FLOW TRAVEL TIME(MIN.) = 2.61 Tc(MIN.) = 13.46 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.678 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.68 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 4.82 EFFECTIVE AREA(ACRES) = 3.68 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .98 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.68 PEAK FLOW RATE(CFS) = 10.57 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .40 HALFSTREET FLOOD WIDTH(FEET) = 13.66 FLOW VELOCITY(FEET/SEC.) = 2.66 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.68 EFFECTIVE AREA(ACRES) = 3.68 AREA -AVERAGED Fp(INCH/HR) = .98 PEAK FLOW RATE(CFS) = 10.57 TC(MIN.) = 13.46 AREA -AVERAGED Fm(INCH/HR)= .49 AREA -AVERAGED Ap = .50 END OF RATIONAL METHOD ANALYSIS tfrs_r-cf,_1 60, cx 0 (r-lt”A„, Ft2.0,74 -4 0 10 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8553 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 356 - 1815 ************************** DESCRIPTION OF STUDY * Young Homes Tract 16158 * 10 year * BY: JOE RAMIREZ 12-31-01 REV.(07-19-02) ************************************************************************** FILE NAME: 1016158.DAT TIME/DATE OF STUDY: 13:55 7/18/2002 ************************** * * * USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.0100 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH FOR DEVELOPMENTS OF'3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR. 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED. AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 30-MINUTES .77 1-HOUR 1.01 3-HOUR 1.83 6-HOUR 2.67 24-HOUR 5.79 *ANTECEDENT MOISTURE CONDITION' (AMC II) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1415.50 Ap SCS Tc (DECIMAL) CN (MIN.) A 2.27 .98 LOSS RATE, Fp(INCH/HR) = .97 AREA FRACTION, Ap = .50 5.31 2.27 PEAK FLOW RATE(CFS) = 5.31 .50 32 9.31 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« » »>(STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.50 .DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) =. 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.53 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 9.52 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .97 STREET FLOW TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.72 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.838 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.15 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.15 SUBAREA RUNOFF(CFS) = 2.43 EFFECTIVE AREA(ACRES) = 3.42 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) = 7.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) = 2.84 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE 2.1 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.152 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) Ap SCS (DECIMAL) CN .50 32 3.54 Tc (MIN.) 9.00 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.77 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .85 STREET FLOW TRAVEL TIME(MIN.) = 2.35 Tc(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 3.77 AREA -AVERAGED Fm(INCH/HR) AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 5.88 11.35 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN 2.29 .98 .97 .50 32 4.65 = .49 7.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) = .97 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « < » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.35 RAINFALL INTENSITY(INCH/HR) = 2.74 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 7.24 10.72 2.838 .97( .49) .50 2 7.65 11.35 2.743 .97( .49) .50 Ap Ae (ACRES) 3.42 3.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 14.8 2 14.6 Tc Intensity (MIN.) (INCH/HR) 10.72 2.838 11.35 2.743 COMPUTED CONFLUENCE ESTIMATES ARE PEAK FLOW RATE(CFS) = 14.77 EFFECTIVE AREA(ACRES) = 6.98 AREA -AVERAGED Fp(INCH/HR) = .97 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE Fp (Fm) (INCH/HR) .975( .487) .50 .975( .487) .50 AS FOLLOWS: Tc(MIN.) = AREA -AVERAGED AREA -AVERAGED SOURCE NODE 1.00 4.00 Ap Ae SOURCE (ACRES) NODE 7.0 1.00 7.2 4.00 10.72 Fm(INCH/HR) = .49 Ap = .50 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« « < »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 15.62 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .89 EFFECTIVE AREA(ACRES) = 7.87 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN .89 .98 .50 32 RATE, Fp(INCH/HR) = 98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 1.71 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 8.08 PEAK FLOW RATE(CFS) = 15.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .43 HALFSTREET FLOOD WIDTH(FEET) = 16.05 FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT/SEC.) = 1.22 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.87 EFFECTIVE AREA(ACRES) = 10. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 10.95 AREA Fp Ap (ACRES) (INCH/HR) (DECIMAL) 2.87 .98 .50 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.52 74 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 20.65 SCS CN 32 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = .47 Tc(MIN.) = 12.70 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.565 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) _ EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. 20.97 Ap (DECIMAL) SCS CN A .35 .98 .50 32 LOSS RATE, Fp(INCH/HR) = 98 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = .65 11.09 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 20.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY(FT*FT/SEC.) = 1.58 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.49 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.68 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 Ap SCS (DECIMAL) CN .50 32 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 2.91 EFFECTIVE AREA(ACRES) = 12.77 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 FLOW VELOCITY(FEET/SEC.) = .3.48 DEPTH*VELOCITY(FT*FT/SEC.) 1.61 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14. AREA -AVERAGED Fp(INCH/HR) _ TOTAL AREA(ACRES) = 15.04 AREA Fp Ap (ACRES) (INCH/HR) (DECIMAL) 2.06 .98 .50 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.57 83 AREA -AVERAGED Fm(INCH/HR) _ .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 25.72 SCS CN 32 *****************.*********************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1394.50 DOWNSTREAM(FEET) = 1391.30 FLOW LENGTH(FEET) = 234.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.48 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) = .41 Tc(MIN.) = 14.45 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < MAINLINE Tc(MIN) = 14.45 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.373 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL Ap SCS (DECIMAL) CN "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 .43 .98 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 26 AREA -AVERAGED Fm(INCH/HR) .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = .50 32 .73 .49 25.90 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » » >USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) = 1391.30 DOWNSTREAM(FEET) = 1387.20 FLOW LENGTH(FEET) = 308.40 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.39 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.90 PIPE TRAVEL TIME(MIN.) = .55 Tc(MIN.) = 14.99 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.99 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.321 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 3.70 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 3.70 EFFECTIVE AREA(ACRES) = 18.96 AREA -AVERAGED Fp(INCH/HR) = .97 TOTAL AREA(ACRES) = 19.17 Ap SCS (DECIMAL) CN .50 32 SUBAREA RUNOFF(CFS) = 6.11 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 31.29 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1387.20 DOWNSTREAM(FEET) = 1382.40 FLOW LENGTH(FEET) = 614.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 7.94 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 31.29 PIPE TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 16.28 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 19.17 EFFECTIVE AREA(ACRES) = 18.96 AREA -AVERAGED Fp(INCH/HR) = .97 PEAK FLOW RATE(CFS) = 31.29 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity NUMBER (CFS) (MIN.) (INCH/HR) 1 31.3 16.28 2.209 2 30.6 16.94 2.157 TC(MIN.) = 16.28 AREA -AVERAGED Fm(INCH/HR)= .49 AREA -AVERAGED Ap = .50 Fp.(Fm) (INCH/HR) .975( .487) .975( .487) Ap Ae SOURCE (ACRES) NODE .50 19.0 1.00 .50 19.2 4.00 END OF RATIONAL METHOD ANALYSIS Street Capacity Calculations And Catch Basin Sizing Calculations **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 11:28 5/ 3/2002 ************************** DESCRIPTION * YOUNG HOMES TRACT 16158 * 10 YEAR STREET CAPACITY FOR FAITH ST. * By: JOE RAMIREZ FILE: 10FHSC *************************************************** OF STUDY *** **************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « *********************** DAVID LN. CJ.LO(2.-, * ********************* * ************************ CONSTANT STREET GRADE(FEET/FEET) _ .010000 CONSTANT STREET FLOW(CFS) = 25.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT DISTANCE INTERIOR OUTSIDE CONSTANT CONSTANT CONSTANT CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 STREET CROSSFALL(DECIMAL) = .020000 STREET CROSSFALL(DECIMAL) = .020000 SYMMETRICAL CURB HEIGHT(FEET) = .50 SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 SYMMETRICAL GUTTER-LIP(FEET) = .03125 SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 19.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.23 PRODUCT OF DEPTH&VELOCITY = 1.63 A sump condition catch basin is proposed on the north side of the intersection of Faith St. and David Lane to pick up the halfstreet flow on Faith St. ************************** DESCRIPTION OF STUDY ************************** * YOUNG HOMES TRACT 16158�� * 10 YEAR STREET CAPCITY CALCS. FOR DAVID LANE 'e OF FAITH ST. * BY S_0E* ************************************************************************** **************************************************************************** > >STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .015500 CONSTANT STREET FLOW(CFS) = 25.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.86 PRODUCT OF DEPTH&VELOCITY = 1.82 Flows on the South half -width of Faith St. will be picked up in a pair of flow- by catch basins at the intersection of David lane and Sharon Court. C6 T 4 - C. 0 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 14:39 5/ 3/2002 ************************** DESCRIPTION OF STUDY ************************** * Young Homes tract 16158 * Catch basin calculations for sump condition no. side of Faith and David * By: Joe Ramirez file: smpcb ************************************************************************** * * * **************************************************************************** » »SUMP TYPE BASIN INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 13.60 BASIN OPENING(FEET) = .71 DEPTH OF WATER(FEET) = .51 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 12.10 LASE v.l �_ ► 4. cATc-c- S **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 11:48 5/ 3/2002 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158 * 100 YEAR STREET CAPACITY CALC AT SUMP BASIN ON THE NORTH SIDE OF FAITH S'* * BY: JOE RAMIREZ FILE: 00SMPSC ************************************************************************** **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .010000 CONSTANT STREET FLOW DEPTH(FEET) = .51 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE. STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT I S , ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = . 51 A-mir HALFSTREET FLOOD WIDTH (FEET) = 19.94 MAX. gam c -Al- HALFSTREET FLOW(CFS) = 13.64 gym"'— `��T .� `, AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.34 SC..�II/(f, c�1—t- P/� PRODUCT OF DEPTH&VELOCITY = 1.70 The Maximum street capacity at the Sup condition catch basin; -the north side of Faith street is 13.64. approximately 8 cfs crowns the top of the -street and will be picked up downstream at the intersection of David Lane and Sharon Court. Ai- tv ( `"( " - vIIZ..L /Q- b y — (2-' i y 1 ,e 1), **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 13:36 5/ 3/2002 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158 (t(, - 4r , ,, c <#)� * * 100 year Street Capacity for Flow -by Catch Basins at David and sharon ct►* * By Joe Ramirez File: fblsc ************************************************************************** **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .015500 CONSTANT STREET FLOW(CFS) = 30.50 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE -FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .48 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.33 PRODUCT OF DEPTH&VELOCITY = 2.08 * At Node no. 9 approximately 13.6' is entering sump Catch Basin on the north side of Faith Street. Subtract 13.6'',from 44.2. and : _- the remainder (30.5 cfs.) for the design run-off for flow -by Catch Basins at the intersection of David Lane and Sharon Court.«}-s1-u C D) **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 14:51 7/18/2002 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158(LATERALS C & D) * CATCH BASIN CALCULTIONS FOR FLOWBY CATCH BASINS AT DAVID AND SHARON CT. ***** ******** ** ***************************************************** **************************************************************************** » » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 15.30 GUTTER FLOWDEPTH(FEET) = .48 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 21.00 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 33.0 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 12.0 4 c **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 15: 1 7/18/2002 ************************** DESCRIPTION OF STUDY ************************** * YOUNG HOMES TRACT 16158 * STREET CAPACITY CALCULATIONS FOR LATERALS A & B * BY: JOE RAMIREZ FILE: SCABFB ************************************************************************** * * **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .014200 CONSTANT STREET FLOW(CFS) = 17.20 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 15.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.34 PRODUCT OF DEPTH&VELOCITY = 1.47 r . 2t.-JJ4 Q FF (a' . t **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1 Release Date: 01/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE FONTANA CA. TEL (909) 356 - 1815 FAX (909) 356-1795 TIME/DATE OF STUDY: 15: 7 7/18/2002 ************************** DESCRIPTION OF STUDY ************************** * YOUNG HOMES TRACT 16158 * FLOWBY CATCH BASIN CALCULTIONS FOR LATERAL A&B * BY: JOE RAMIREZ FILE: LATABFB ************************************************************************** **************************************************************************** •» » FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION« « Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 8.60 GUTTER FLOWDEPTH(FEET) = .44 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 20.30 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 20.3 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 8.6 Mr r- n I- OM I- M 11111 1111 11111- 11111 OM I Ti Young Homes Tract 16158 (Parent) 0 T2 (LINE "A")Mainline Storm Drain Analysis T3 SO 1961.2601379.000 1 1379.000 R 2200.0001382.420 2 .035 .000 WX 2200.0001382.420 3 R 2420.4601383.520 3 .013 .000 .000 0 R 2491.2201383.880 3 .013 -90.061 .000 0 R 2670.5501384.780 3 .013 .000 .000 0 R 2741.3301385.130 3 .013 90.065 .000 0 R 2812.7901387.190 3 .013 .000 .000 0 JX 2817.6901387.690 6 4 5.013 4.75 4.7501387.9401387.940 67.6 62.0 .000 R 2916.9201388.800 6 .013 .000 .000 0 R 2987.5101389.680 6 .013 89.525 .000 0 R 3049.7001390.450 6 .013 .000 .000 0 R 3120.2901391.310 6 .013 -89.525 .000 0 JX 3125.4501391.380 6 7 8.013 0.250 0.2501391.8201391.820 75.3 75.1 .000 R 3302.7401393.760 6 .013 .000 .000 0 R 3349.9901394.390 6 .013 -45.066 .000 0 R 3354.3401394.450 6 .013 .000 .000 0 WE 3354.3401394.450 10 .250 SH 3354.3401394.450 10 1394.950 CD 1 1 0 .000 9.000 10.000 .000 .000 .00 CD 2 1 0 .000 9.000 10.000 2.000 2.000 .00 CD 3 4 1 .000 3.000 .000 .000 .000 .00 CD 4 4 1 .000 1.500 .000 .000 .000 .00 CD 5 4 1 .000 1.500 .000 .000 .000 .00 CD 6 4 1 .000 2.500 .000 .000 .000 .00 CD 7 4 1 .000 1.500 .000 .000 .000 .00 CD 8 4 1 .000 1.500 .000 .000 .000 .00 CD 9 4 1 .000 2.000 .000 .000 .000 .00 CD 10 2 0 .000 7.000 14.000 .000 .000 .00 Q 43.700 0 r---- 1 i S M MI !r EN NMI - r- MN M 11111 FILE: MAINLINE.WSW HYDRAULIC Station L/Elem SF Ave' HF ********* *******I*******I********* I I I 1961.260. 1379.000 .964 1379.964 53.70 4.67 .34 1380.30 - -I- -I- -I- -I- - 8.695 .0143 .0152 .13 I I I 1969.955 1379.125 .999 1380.123 53.70 4.48 .31 1380.44 - -I- -I- -i -I- - 215.242 .0143 .0143 3.08 I I I 2185.197 1382.208 - .. .999 1383.207 53.70 4.48 .31 1383.52 -I- -I- _ _ -I- _I_ I I I 2185.197. 1382.208 .826 1383.034 53.70 5.58 .48 1383.52 -I- -I- -I- -I- - .705 ... .0143 - .0298 .02 I I II 2185.902 1382.218 .792 1383.010 53.70 5.85 .53 1383.54 - -I- -I- -I- -I- -I- - 1.025 .0143 .0344 .04 I I I I 2186 927 1382.233 .760 1382.993 53.70 6.14 .58 1383.58 - -I- -I- -I- -I- -I- - 1 066 .0143 .0397 .04 I I I 2187 993 1382.248 .728 1382.976 53.70 - - - - -I- -I- -I- -I- -I- - 1 079 .0143 .0459 .05 I I I I 2189 072 1382.264 .698 1382.962 53.70 6.75 .71 1383.67 -I- -I- -I- -I- -I- - 1.074 .0143 .0531 .06 I I I I 2190.147 1382.279 .669 1382.948 53.70 7.08 .78 1383.73 - -I- -I- -I- 1.058 .0143 .0614 .06 W S P G W CIVILDESIGN Version 12.95 PAGE 1 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 8-26-2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis Invert Elev Ch Slope ********* JUMP Depth I Water I Q (FT) I Elev I (CFS) - -I- -i- - Vel Vel I Energy (FPS) Head I Grd.El. 6.44 .64 1383.62 Super Elev SE Dpth ******* .00 .96 .00 1.00 .00 .00 .83 .00 .79 .00 .76 .00 .73 .00 .70 .00 .67 CriticallFlow Top Depth I Width Froude NINorm Dp .90 13.86 .90 1.00 .90 13.99 .85 1.00 .90 13.99 .90 13.30 1.16 1.00 .90 13.17 1.23 1.00 .90 13.04 1.32 1.00 .90 12.91 1.41 1.00 .90 12.79 1.51 1.00 .90 12.68 - -I 1.61 1.00 Height/ Dia.-FT - "N" * * * * * * * Base Wt or I.D. X-Fall ******* 9.000 10.000 .035 .00 9.000 10.000 .035 .00 9.000 10.000 9.000 10.000 .035 .00 9.000 10.000 .035 .00 9.000 10.000 .035 .00 9.000 10.000 .035 .00 9.000 10.000 .035 .00 9.000 10.000 .035 .00 ***** ******** No Wth. ZL Prs/Pip ZR Type Ch ***** ******* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 O .0 T- RAP O .0 TRAP 0 .0 O .0 T- RAP O .0 T- RAP O .0 TRAP O .0 T- RAP O .0 2.00. TRAP 2.00 O .0 2.00 TRAP 11111 - MN N- r M NS an H r- MN NM 1 N min FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 PAGE 2 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 8-26-2002 Time: 2:55:27 Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis ********************************************************************************************,ram************************* I. Invert I . Depth Water I Q Vel . Vel Energy Super Station I Elev I - (FT) Elev I (CFS) (FPS) Head Grd.E1. Elev - I -I- - - -I - - -I L/Elem ICh Slope I.- I. SF Ave HF SE Dpth *********I*********I******** *********I********* *******I *** ********* ******* I I 2191.205 1382.294 .641 1382.935 -I -I- - - -I-. 1.033 .0143 I 2192.238 1382.309 .614 1382.923 - I- -I- - - -I- 1.004 .0143 I 2193.242 1382.323 .588 1382.911 -I- - - -I- .971. .0143 I I I 2194.213 1382.337 .563 1382.901 - I I- - - .936 .0143 I 2195.150 1382.351 .540 1382.890 - I- -I- - - -I- .900 .0143 I I 2196.050 1382.364 .517 1382.880 - I- -I- .863 .0143 I I 2196.913 1382.376 .495 1382.870 - I -I- - - -I- .826 .0143 I I 2197.739 1382.388 .473 1382.861 - I . I -1- .790 .0143 I I 2198.528 - 1382.399 .453 1382.852 -I- - -I- .753. .0143 53 70 53.70 53.70 53.70 53.70 53.70 53.70 53.70 53.70 7.42 7.79 .86 1383.79 .0711 .07 .94 1383.86 .0823 .08 8.17 1.04 1383.95 8.57 .0954 1.14 .1105 8.98 1.25 - -I- .1281 9.42 1.38 - -I- - .1485 9.88 1.52 .1722 10.36 1.67 - -I- - .1998 .09 1384.04 .10 1384.14 .12 1384.26 .13 1384.39 .14 1384.53 .16 .00 .64 .00 .61 .00 .59 .00 .56 .00 .54 .00 .52 .00 .49 .00 .47 10.87 1.83 . 1384.69 .00 - -I- .2319 .17 .45 CriticallFlow ToplHeight/Base Wt Depth I Width IDia.-FTIor I.D. - -I- -I- -I- - Froude NINorm Dp I "N" I X-Fall ********1********I*******I******* I I .90 12.56 9.000 10.000 - -I- -I- -I- - 1.72 1.00 .035 - .00 I I .90 12.46 9.000 10.000 - -I- -I- -I- - 1.84 1.00 .035 .00 1 .90 12.35 9.000 10.000 - -I -I- -I- - 1.97 1.00 .035 .00 I I I .90 12.25 9.000 10.000 - -1--I- -I- 2.11 1.00 .035 .00 I I I .90 12.16 9.000 10.000 - -i- -I- -I- - 2.26 1.00 .035 .00 1 I I .90 12.07 9.000 10.000 I -I- -I- - 2.42 1.00 .035 .00 I I I .90 11.98 9.000 10.000 - -I- -I- -I- - 2.59 1.00 .035 .00 I I I .90 11.89 9.000 10.000 - -I- -I- -I- - 2.77 1.00 .035 .00 I I I .90. 11.81 9.000 10.000 - -I- -I- -I- - 2.96 1.00 .035 .00 *** ******** No Wth ZL Prs/Pip ZR Type Ch ***** ******* 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00. O .0 TRAP O .0 T- RAP O .0 T- RAP 0 .0 TRAP O .0 TRAP O .0 TRAP O .0 TRAP O .0 TRAP O .0 T- RAP - r r A MI I- S I I MO M M MN -- is FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95. For: Allard Engineering,- Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis 1 Invert I Depth Water Q Vel Vel 1 Energy 1 Super CriticallFlow Top Station 1 Elev I (FT) Elev (CFS) (FPS) Head 1 Grd.E1.1- Elev Depth 1 Width -I- -I - - - - - - -I- L/Elem ICh Slope 1 SF Ave! HF ISE Dpth Froude NlNorm Dp *********I*********I******** ********* ****************I*******I*********I******* ********I******** I I I I I 2199.282 1382.410 .433 1382.843 53.70 11.40 2.02 1384.86 .00 .90 11.73 - I- i -I- -1- -I- - - -I- - .718 .0143 .2693 .19 .43 3.17 1.00 1 1 1 I I 2200.000 1382.420 .415 1382.835 53.70 11.96 2.22 1385.05 .00 .90 11.66 1 - - - - - - -1- -I- -1- - - WALL EXIT I I I I 2200.000 1382.420 2.380. 1384.800 53.70 8.93 1.24 1386.04 .00 2.38 2.43 - 1 -I- - - -I- -I- -I- - - -I- - 8.018 .0050 .0066 .05 2.38 1.00 3.00 I 1 I I I 2208.018 1382.460 2.505 1384.965 53.70 8.51 1.13 1386.09 .00 2.38 2.23 - ! I I -I- -I- - - -I- - 43.614 .0050 .0060 .26 2.51 .89 3.00 I I I I 1 2251.632. 1382.678 2.653 1385.331 53.70 8.12 1.02 1386.35 .00 2.38 1.92 -I- -1- -I- - - -I- - 145.209 .0050. .0057 .83 2.65 .77 3.00 I ! I I I 2396.841 1383.402 2.850 1386.252 53.70 7.74. .93 1387.18 .00 2.38 1.31 !-1-I -I- - -I- - 23.619 . .0050 .0056 .13 2.85 .59 3.00 I I. I I 1 2420.460 1383.520 2.873 1386.393 53.70 7.71 .92 1387.32 .02 2.38 1.21 - I- I- -1--I- -I- - -I- - 70.760 .0051 .0057 .40 2.90 .57 3.00 I. 1 I 1 2491.220 1383.880 2.933 1386.813 53.70 7.64 .91 1387.72 .00 2.38 .88 - 1 I -I- I- I - -I- - 59.205 .0050 .0060 .35 2.93 .48 3.00 1 I I I I 2550.425 1384.177 3.000 . 1387.177 53.70 7.60 .90 1388.07 .00 2.38 .00 I- - -I- - 120.125 .0050. .0063 .76 3.00 .00 3.00 -I- I PAGE 3 Date: 8-26-2002 Time: 2:55:27 ******** Height/ Base Wt! No Wth Dia.-FT or I.D.I ZL Prs/Pip - "N" X-Falll. ZR Type Ch ******* *******I***** ******* 1 9.000 10.000 2.00 0 .0 .035 .00 2.00. T- RAP 1 9.000 10.000 2.00. 0 .0 - - - -1- 3.000 .000 .00 1 - .0 .013 .00 .00 PIPE 1 3.000 .000 .00 1 .0 .013 .00 .00 PIPE 3.000 .000 .00. 1 .0 .013 3.000 .013 3.000 .013 3.000 .013 3.000 .013. - -1- .00 .00 1 .000 .00 - -1- .00 .00 I .000 .00 - -1- .00 .00 1 .000 .00 - -I- .00 .00 I .000 .00 - -1- .00 .00 PIPE 1 . PIPE 1 .0 P- IPE 1 .0 P- IPE 1 .0 PIPE r UN- r ON - -!- all I i a 1 N-■ amp FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 For:. Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis I. Invert 1. Depth Station I Elev 1 (FT). • -I- .-I - L/Elem ICh Slope 1 *********I*********I******** 2670.550 1384.780 3.176. - I -I- - 70.780 .0049. 2741.330 1385.130 3.464 1388.594 -I- -I- 6.337 .0288 Water Elev ********* 1387.956 2747.667. 1385.313 3.321 1388.633 HYDRAULIC JUMP 2747.667. 1385.313 1.629 1386.942 - I -I- 2.867.. .0288 1 1 2750.534 1385.395 1.638 1387.033 - I- -I- 18.391 .0288. 2768.925 1385.925 1.703 1387.629 -I- -I- 13.247 .0288 2782.172 1386.307 1.771 9.752 .0288 2791.925 1386.588 1.844 -1- - .0288. 1388.078 1388.432 4 (CFS) ********* 53.70 53.70 53.70 53.70 53.70 53.70 53.70 53.70 2799.313 1386.801 1.920 1388.721 53.70 Vel Vel (FPS) Head SF Ave 7.60 .90 - -I- .0065 7.60 .90 .0065 7.60 13.70 .90 2.91 .0195 Energy Grd.E1. HF ********* 1388.85 .46 1389.49 .04 1389.53 1389.85 .06 13.59 2.87 1389.90 .0182 .33 12.96 2.61 1390.24 - -I- - - - .0161 .21 12.36 2.37 1390.45 11.78 11.23 - -1- .0142 .14 2.16 .0126 1.96 5.446 .0288 .0112 1390.59 .09 1390.68 .06. Super Elev SE Dpth ******* 00 .00 .00 3.46 .00 .00 1.63 .00 1.64 .00 1.70 .00 1.77 .00 1.84 .00 1.92 CriticaliFlow Top Depth 1 Width Froude NlNorm Dp ********I******** 2.38 .00 .00 3.00 2.38 .00 .00 1.45 2.38 .00 2.38 2.99 2.11 1.45 2.38 2.99 2.08 1.45 2.38 2.97 _1- 1.93 1.45 1 2.38 2.95 1.79 1.45 1 2.38 2.92 1.66 1.45 2.38 2.88 - -1- 1.54 1.45 PAGE 4 Date: 8-26-2002 Time: 2:55:27 Height/ Dia.-FT "N" ******* 3.000 .013 3.000 .013 3.000 3.000 .013 3.000 .013 3.000 .013 3.000 .013 3.000 .013 3.000 .013 Base Wt or I.D. X-Fall ******* *** ******** No Wth ZL Prs/Pip ZR Type Ch ***** ******* .000 .00 1 .0 .00 .00 PIPE .000 .00 .000 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1 .0 PIPE 1 .0 1 .0 P- IPE 1 .0 PIPE 1. .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 .0 .00. PIPE N SIB 111111 NS 1 MI 1 MS 111111 FILE: MAINLINE.WSW W S P G W- CIVILDESIGN Version 12.95 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis PAGE 5 Date: 8-26-2002 Time: 2:55:27 **********************************************************************************:e*********x***************************** ******** 1 Invert Depth Water Q Vel Vel Energy Super CriticaliFlow ToplHeight/Base Wt No Wth Station 1 Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth I Width IDia.-FTlor I.D. ZL Prs/Pip L/Elem I- Ch Slope I SF Ave HF SE Dpth Froude NINorm Dp I "N" I X-Fall ZR Type Ch *********I********* ******** ********* ********* *******I******* ********* ***************I********l*******l******* ***** ******* 1 2804.759 1386.958 2.002 1388.960 53.70 10.71 1.78 1390.74 .00 2.38 2.83 3.000 .000 .00 1 .. .0 I- - -- -- -- -- -I- -- -- - = 3.916 .0288 -. .0099 .04 2.00 1.42 1.45 .013 .00 .00 PIPE 2808.674. 1387.071 2.090 1389.161 53.70 10.21 1.62 1390.78 .00 2.38 2.76 3.000 .000 - .00 1 .0 I- - - - - -I- - - - - - 2.667 .0288--. .0089 .02 2.09. 1.30 1.45 .013 .00 .00 P- IPE 2811.341. 1387.148 2.184 1389.332 53.70 9.74 1.47 1390.80 .00 2.38 2.67 3.000 .000 .00 1 .0 - - -I- - - - 1.449 .0288 - .0079 .01 2.18 1 19 1.45 .013 .00 .00 PIPE 2812.790 1387.190 2.288 1389.478 53.70 9.28 1.34 1390.82 .00 2.38 2.55 3.000 .000 .00 1 .0 - -1- - - - - -I- -I- -I- - - - JUNCT STR .1020 .0094 .05 2.29 1.09 .013 .00 .00 PIPE 2817.690 1387.690 2.086 1389.776 18.687 .0112 2836.377 1387.899 2.081 1389.980 80.543 .0112 2916.920 1388.800 70.590.. .0125 2987.510. 1389.680 62.190 .0124 3049.700 1390.450 70.590 .0122. 1.977 1390.777 1.985 1391.665 1.994 1392.444 44.20 44.20 44.20 44.20 44.20 10.10 10.12 - -I- 10.62 10.58 10.53 - -I- 1.58 .0113 1.59 .0119 1.75 .0124 1.74 .0123 1.72 1391.36. .21 1391.57 .96 1392.53 .87 1393.40 .76 1394.17 .0123 .87 .00 2.09 .00 2.08 .16 2.13 .00 1.98 .15 2.15 2.21 1.86 2.500 .000 -I -I- -I- - 1.16 2.09 .013 .00 I. 2.21 1.87 2.500 .000 -I- -I- - 1.17 2.09 .013 .00 I 2.21 2.03 2.500 .000 1.31 1.97 .013 .00 I I I 2.21 2.02 2.500 .000 - -I- -I- -I- - 1.30 1.98 .013 .00 I I I 2.21 2.01 2.500 .000 - -I- -I- -1- - 1.28 2.00 .013 .00 .00 .00 1 .0 PIPE 00 PIPE .00 1. .00. PIPE .0 .0 .00 1 .0 .00 PIPE .00. 1 .0 .00 .00-. PIPE r r all r MI NM N I N 1 r r r l all - -mid • V FILE: MAINLINE.WSW Station L/Elem 3120.290 JUNCT.STR 3125.450. 57.500 3182.950. 119.790 3302.740 22.951 3325.691 24.299. 3349.990 4.350 3354.340 W S P G W- CIVILDESIGN Version 12.95 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Young Homes Tract 16158 (Parent) (LINE "A")Mainline Storm Drain Analysis Invert I- Depth Water Elev I (FT) Elev Ch Slope I 1391.310 1.981 1393.291 .0136 1391.380 1.889 1393.269 .0134 1392.152 1.889 1394.041 .0134. 1393.760 1.955 1395.715 .0133 1394.066 1.992 1396.058 .0133. 1394.390 2.099- 1396.489 .0138 1394.450 _ 2.203 1396.652 WALL ENTRANCE 3354.340 1394.450 4.837 1399.286 4 (CFS) ********* 44.20 43.70 43.70 43.70 43.70 43.70 43.70 43.70 Vel Vel (FPS) Head - -1- SF Ave *******I******* Energy Grd.E1. HF ********* 10.60 1.74 1395.03 - -I- .0129 .07 10.98 1.87 - -I- .0134 1395.14 .77 10.98 1.87 1395.91 - -I- .0129 1.55 10.61 1.75 - -I- .0122 1397.46 .28 10.42 1.68 1397.74 9.93 9.54 .65 - -I- .0114 1.53 .0105 1.41 .28 1398.02 .05 1398.07 Super Elev SE Dpth ******* .00 1.98 .00 1.89 .00 1.89 .12 2.08 .00 2.10 .00 .01 1399.29 .00 CriticallFlow Top Depth I Width Froude NiNorm Dp ********I******** 1 2.21 - I - 1.30 2.20 1.42 I 2.20 - -1- 1.42 I 2.20 _I_ 1.32 1 2.20 1.27 I 2.20 1.13 I 2.20 - -1- 2.03 PAGE 6 Date: 8-26-2002 Time: 2:55:27 Height/ Dia.-FT - "N" * * * * * * * 2.500. .013 2.15 2.500 1.89 .013 2.15 2.500 1.89 .013 2.06 2.500 1.89 .013 2.01 2.500 1.89 .013. 1.83 2.500. 1.87 .013. 1.62 2.500 I .67 14.00 - I- 7.000 Base Wt or I.D. X-Fall ******* .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 No Wth ZL Prs/Pip ZR ***** Type Ch ******* .00 1 .0 .00 PIPE .00 .00 1 .0 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00E PIPE .000 .00 - 1 .0 .00 .00 PIPE .000 .00 14.000 .00 1 .0 0 .0 T1 Young Homes TRAct 16158 T2 A T3 4r�`Y`y gig ..' �- `� SO 1002.1101387.940 1 1389.780 R 1025.9401389.130 1 .013 WE 1025.9401389.130 2 .250 SH 1025.9401389.130 2 1389.130 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 6.000 20.000 .000 .000 .00 Q 8.600 .0 0 .000 .000 0 M M i M M--! M M I = S i O-- MTN M FILE: LATA.WSW Station L/Elem ********* Invert Elev Ch Slope ********* 1002.110 1387.940 3.850 .0499 1005.960 1388.132 HYDRAULIC JUMP 1005.960 1388.132 3.505 1009.465 4.074 1013.539 3.174 1016.713 2.500 1019.213 1.978 1021.190 1.554 .0499 1388.307 .0499 1388.511 .0499 1388.669 .0499 1388.794 .0499 1388.893 .0499 1022.745 1388.970 1.198 .0499 W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 7-18-2002 Time: 4:15:59 Young Homes TRAct 16158 Depth (FT) **.****** 1.840 1.674 .727 .754 Water Elev ********* 1389.780 1389.806 1388.859 1389.062 .783 1389.294 .814 .846 .880 1389.483 1389.640 1389.773 .915 1389.886 4 (CFS) ********* 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60 Vel Vel (FPS) Head SF Ave 4.87 .37 .0067 4.87 .37 `10.13` 1.59 - .0281 9.66 1.45 .0247 9.21 8.78 1.32 .0218 1.20 .0192 Energy Grd.El. HF ********* 1390.15 .03 1390.17 1390.45 .10 1390.51 .10 1390.61 .07 1390.68 .05 8.37 1.09 1390.73 .0170 .03 7.98 .99 .0150 7.61 .90 .0133 1390.76 .02 1390.79 .02 Super Elev SE Dpth ******* .00 1.84 .00 .00 .73 00 .75 00 .78 .00 .81 .00 .85 .00 .88 .00 .92 CriticallFlow Top Depth I Width Froude NINorm Dp ********I******** 1.14 .00 .00 .63 1.14 .00 1.14 1.50 2.37 .63 1.14 1.50 2.21 .63 1.14 1.50 2.06 .63 1.14 1.49 1.91 .63 1.14 1.49 1.78 .63 1.14 1.48 1.65 .63 1.14 1.46 1.53 .63 Height/ Dia.-FT "N" ******* 1.500 .013 1.500 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 Base Wt or I.D. X-Fall ******* 000 .00 .000 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 1.500 .000 .013 .00 1.500 .000 .013 .00 ZL ZR ***** .00 .00 .00 No Wth Prs/Pip Type Ch ******* 1 .0 PIPE 1 .0 .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE .00 1 .0 .00 PIPE 1 NM all N N- I N MB 1 E i - N - r - N FILE: LATA.WSW Station L/Elem ********* Invert Elev Ch Slope ********* 1023.943 1389.030 .891 1024.833 .616 1025.449 .366 1025.816 .124 1025.940 .0499 1389.075 .0499 1389.105 .0499 1389.124 .0499 1389.130 WALL ENTRANCE 1025.940 1389.130 W S P G W- CIVILDESIGN Version 12.5 PAGE 2 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 7-18-2002 Time: 4:15:59 Young Homes TRAct 16158 Depth (FT) ******** .953 .994 1.037 1.084 Water Elev ********* 1389.984 1390.068 1390.142 1390.207 1.135 1390.265 2.068 1391.198 Q (CFS) ********* 8.60 8.60 8.60 8.60 8.60 8.60 Vel Vel (FPS) Head SF Ave *******I******* 7.26 .82 .0118 Energy Grd.E1. HF ********* 1390.80 .01 6.92 .74 1390.81 .0105 .01 6.60 .68 1390.82 .0094 .00 6.29 .61 1390.82 - -I- - 5.99 .21 .0084 .56 .00 .00 1390.82 1391.20 Super Elev S- E Dpth .00 .95 00 .99 .00 1.04 .00 1.08 .00 .00 CriticaliFlow Top Depth I Width Froude NINorm Dp 1.14 1.44 1.41 .63 1.14 1.42 1.30 .63 1.14 1.39 1.20 .63 1.14 1.34 1.10 .63 1.14 1.29 .18 20.00 Height/ Dia.-FT - "N" ******* 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 6.000 Base Wt or I.D. X-Fall ******* .000 .00 .000 .00 .000 .00 .000 .00 .000 20.000 ******** No Wth ZL Prs/Pip ZR ***** Type Ch ******* .00 1 .0 .00 P- IPE .00 .00 .00 .00 .00 .00 .00 .00 1 .0 PIPE 1 .0 PIPE 1 .0 PIPE 1 0 .0 .0 Ti Young Homes Tract 16158 0 T2 Lateral B T3 SO 1002.1801387.940 1 1389.780 R 1013.4601388.140 1 .013 .000 .000 0 WE 1013.4601388.140 2 .250 SH 1013.4601388.140 2 1388.140 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 7.000 20.000 .000 .000 .00 Q 8.600 .0 M S I - E E N M - 1 NM FILE: LATB.WSW W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 7-18-2002 Time: 4:16:24 Young Homes Tract 16158 Lateral B ************************************************************************************************************************* ******** Station L/Elem ********* Invert Elev C- h Slope ********* 1002.180 1387.940 11.280 1013.460 .0177 1388.140 WALL ENTRANCE 1013.460 1388.140 Depth (FT) ******** 1.840 1.716 2.175 Water Elev ********* 1389.780 1389.856 1390.315 Q (CFS) ********* 8.60 8.60 8.60 Vel Vel (FPS) Head SF Ave *******I******* 4.87 4.87 .20 - -I- .37 .0067 .37 .00 Energy Super CriticaliFlow Top Height/ Base Wt Grd.E1. Elev Depth I Width Dia.-FT or I.D. HF S- E Dpth Froude NINorm Dp "N" X-Fall ********* ******* ********I******** ******* ******* 1390.15 .00 1.14 .00 1.500 .000 .08 1.84 .00 .85 .013 .00 1390.22 .00 1.14 .00 1.500 .000 1390.32 .00 .18 20.00 7.000 20.000 ZL ZR ***** .00 .00 .00 .00 No Wth Prs/Pip Type Ch ******* 1 .0 PIPE 1 .0 0 .0 T1 Young Homes Tract 16158 0 T2 Lateralc T3 SO 1001.8201391.820 1 1393.290 R 1024.7801392.980 1 .013 .000 .000 0 WE 1024.7801392.980 2 .250 SH 1024.7801392.980 2 1392.980 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 6.000 20.000 .000 .000 .00 Q 12.000 .0 --- NM 1 NM r EN N MN NM N En- -- - FILE: LATC.WSW Station L/Elem ********* 1001.820 4.207 1006.027 5.169 1011.196 3.965 1015.161 3.068 1018.229 2.372 1020.601 1.790 1022.391 1.282 Invert Elev Ch Slope ********* 1391.820 .0505 1392.032 .0505 1392.294 .0505 1392.494 .0505 1392.649 .0505 1392.769 .0505 1392.859 .0505 1023.674 1392.924 .808 .0505 1024.481 1392.965 .299 .0505 W S P G W- CIVILDESIGN Version 12.5 PAGE 1 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 7-18-2002 Time: 4:16:38 Young Homes Tract 16158 Lateralc Depth (FT) ******** .886 Water Elev ********* 1392.706 .909 1392.941 .947 .986 1.029 1393.240 1393.480 1393.678 1.075 1393.844 1.125 1.180 1393.984 1394.104 1.241 1394.206 Q (CFS) ********* 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Vel Vel (FPS) Head SF Ave *******I******* 11.04 1.89 .0292 10.71 1.78 .0264 10.21 1.62 .0235 Energy Grd.E1. HF ******** 1394.60 .12 1394.72 .14 1394.86 .09 9.74 1.47 1394.95 - -I- - - .0208 .06 9.28 1.34 1395.02 .0186 .04 8.85 1.22 .0166 8.44 1.11 .0149 8.05 1.01 .0135 1395.06 .03 1395.09 .02 1395.11 .01 * 7.67 .91 1395.12 - -I- - - - .0123 .00 Super Elev SE Dpth ******* .00 .89 .00 .91 00 .95 .00 .99 .00 1.03 .00 1.08 .00 1.13 .00 1.18 .00 1.24 CriticallFlow Top Depth I Width Froude NlNorm Dp ********I******** 1.31 1.48 2.27 .76 1.31 1.47 2.16 .76 1.31 1.45 2.00 .76 1.31 1.42 1.84 .76 1.31 1.39 1.70 .76 1.31 1.35 1.56 .76 1.31 1.30 1.42 .76 1.31 1.23 1.29 .76 1.31 1.13 1.15 .76 Height/ Dia.-FT - "Nn ******* 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 1.500 .013 Base Wt or I.D. X-Fall ******* .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 .000 .00 No Wth ZL Prs/Pip ZR ***** .00 .00 .00 Type Ch ******* 1 .0 PIPE 1 .0 .00 PIPE .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1 .0 PIPE 1 .0 P- IPE 1 .0 PIPE 1 .0 P- IPE 1 .0 PIPE 1 .0 PIPE .00 1 .0 .00 P- IPE 111111 N En 111111 NM MI U NIB I NIP M FILE: LATC.WSW Station L/Elem ********* 1024.780 Invert Elev C- h Slope 1392.980 WALL ENTRANCE 1024.780 1392.980 W S P G W- CIVILDESIGN Version 12.5 PAGE 2 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Date: 7-18-2002 Time: 4:16:38 Young Homes Tract 16158 Lateralc Depth (FT) ****** 1.314 2.860 Water Elev ********* 1394.294 1395.840 0 (CFS) ********* 12.00 12.00 Vel Vel (FPS) Head SF Ave 7.31 - -I- .21 - -I- Energy Grd.E1. HF ********* .83 1395.12 .00 1395.84 Super Elev SE Dpth ******* .00 .00 CriticallFlow Top Depth I Width Froude NINorm Dp 1.31 .99 .22 20.00 Height/ Dia.-FT - nNn ******* 1.500 6.000 Base Wt or I.D. X-Fall ******* .000 20.000 ******** No Wth ZL Prs/Pip ZR Type Ch ***** ******* .00 1 .0 .00 0 .0 T1 Young Homes Tract 16158 0 T2 laterald T3 SO 1001.8101391.820 1 1393.290 R 1012.3301392.030 1 .013 .000 .000 0 WE 1012.3301392.030 2 .250 SH 1012.3301392.030 2 1392.030 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 2 0 .000 7.000 20.000 .000 .000 .00 Q 12.000 .0 NB r- r -r - 11- 1 S- r-- NS INN .ie FILE: LATERALD.WSW Station L/Elem ********* 1001.810 4.417 1006.227 4.611 1010.838 1.492 1012.330 Invert Elev C- h Slope ********* 1391.820 .0200 1391.908 .0200 1392.000 .0200 1392.030 WALL ENTRANCE 1012.330 1392.030 W S P G W- CIVILDESIGN Version 12.5 For: Allard Engineering, Fontana, California - S/N 643 WATER SURFACE PROFILE LISTING Young Homes Tract 16158 laterald Depth (FT) ******** 1.148 1.180 Water Elev ********* 1392.968 1393.088 1.241 1393.242 1.314 2.860 1393.344 1394.890 0 (CFS) ********* 12.00 12.00 Vel Vel (FPS) Head SF Ave *******I******* 8.27 1.06 .0146 8.05 1.01 .0135 12.00 7.67 .91 I 12.00 7.31 I 12.00 .21 .00 .0123 .83 Energy Grd.E1. HF ********* 1394.03 .06 1394.09 .06 1394.16 .02 1394.17 1394.89 Super Elev SE Dpth ******* .00 1.15 .00 1.18 .00 1.24 .00 .00 CriticallFlow Top Depth I Width Froude NINorm Dp 1.31 1.27 1.36 1.02 1.31 1.23 - -I- 1.29 1.02 1.31 1.13 1.15 1.02 1.31 .99 .22 20.00 PAGE 1 Date: 7-18-2002 Time: 4:16:52 Height/ Dia.-FT - "N" * * * * * * * 1.500 .013 1.500 .013 1.500 .013 1.500 7.000 Base Wt or I.D. - X-Fall ******* 000 .00 .000 .00 .000 .00 .000 20.000 ZL ZR ***** .00 .00 .00 .00 .00 .00 .00 .00 No Wth Prs/Pip Type Ch ******* 1 .0 PIPE 1 .0 P- IPE 1 .0 PIPE 1 .0 0 .0 MI U= UM- M UM- M NE r r- UM EU US UM 111111 ALLARD E `, GINEEAIG civil engineering land surveying land planning TRACT 16158-2 HYDROLOGY AND HYDRAULICS REPORT November 15, 2001 Revised January 2, 2002 Revised February 15, 2002 Revised March 12, 2002 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477-6722 Fax (909) 477-6725 Prepared under the supervision of: David 5. Hammer, A.C.E. No. 43976, Exp. 06/30/2005 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 Table of Contents Introduction Purpose Methodology Findings Summary Vicinity Map 100 Year Hydrology Calculations 10 Year Hydrology Calculations Unit Hydrograph Calculations Street Capacity Calculations Hydrology Exhibits Introduction Tract No. 16158 is a proposed 127 single-family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract No.16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract No. 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40 acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158-2), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10-year, 24-hour developed runoff from the entire 22 acre site of Tract No. 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100-year and 10-year runoff for tract 16158-2 and to verify the capacity of the proposed improvements to safely convey the runoff. Also, this report will provide additional 100-year and 10-year runoff for tract 16158, which will be verified upon the completion of grading and improvement plans for that tract. This report also provides unit hydrograph calculations to size a temporary detention basin for a 10-year, 24-hour event storm for tract 16158-2 and future tract 16158. Finally, at the request of the city, this report provides peak undeveloped 100 year event runoff for the vacant lands to the east and south of the project site. Methodology The rational method was used to determine 10-year and 100-year event storms, while the unit hydrograph was used to size the proposed detention basins as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10-year storm water runoff is conveyed in the street below the top of curb elevations while the 100-year storm water will be conveyed in the street does not exceed right-of-way elevations. The proposed detention basin is approximately 8.4 acre-ft, which is slightly larger than the 5.2 acre-ft found in unit hydrograph results. Since the basin has capacity to hold over 100% of the 10-year, 24 -hour storm runoff, a formal outlet structure designed to "meter" out flows is not necessary. Consequently basin rating calculations are not provided. Also, note that appropriate street capacity calculations, storm drain hydraulic calculations, and catch basin calculations will be provided with proposed storm drain and street improvements for the parent tract 16158. Summary Tract 16158-2 proposed improvements will adequately convey both the 100-year and 10-year runoff in accordance with County criteria. Also, the detention basin is sized to detain these flows and future improvement runoff as well. cAIE HIGHLAND AVENUE NIS SIJU AN 1 :.V= i U ALLARD ENGINEERING Civil Engineering — Lord Planning 8253 Sierra Avenue ' Fontana. California 92335 iu••.c.( 11111111111 ,".M1 H \11111�IJ \r11111t9111t11//I ■I�tt�I�� 17riVV7. 7'mot! em.:1 4.7 1.` r,�.. II IIUU IIIIIIIIW 111111ffIIIII: I-111 - LIL. 1111111111111 HII I It 111� 1111 ..s it II 1 ■ , 11 II111111111 11111111111111111111 El_�1111I1111 IIIIIIIIUII111►�_ 1■ ■ ll ISM MP 111111111111 • is III i111111 N`Lela IM?'%IlIIIr 1%t �l l Umc,t' :::s1.Aft A :Iltlllltdl gi"Ct: 4... IC • ER11111111 • 111I�Iu11 U. ..r •�•• •I �11111111111111 BF.II1111 ;InIIII III th ittrro III C ■ :: CC •• s.■■ ■■ IIII _mild :t11►' �i� �� ■. ■� i I L VICINITY MAP MY. 2001. r....., .: c:\r..1..e\w..0 renter.. Lett ce.akti1 Doter AU. 100 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158- 2. * 100 year * By: Joe RAmirez Date: 12-31-01 ************************************************************************** FILE NAME: 0016158.DAT TIME/DATE OF STUDY: 12:26 12/31/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.5000 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 kti 7- 0 0 �1� 30-MINUTES .77 1-HOUR 1.01 3-HOUR 1.83 6-HOUR 2.67 24-HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.587 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.27 .80 .50 52 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.56 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 8.56 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 2 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.23 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.58 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.248 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. A 1.15 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 1.15 SUBAREA RUNOFF(CFS) = 3.98 3.42 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 42 PEAK FLOW RATE(CFS) = 11.85 2/iir END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 12.26 FLOW VELOCITY(FEET/SEC.) = 3.68 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.58 RAINFALL INTENSITY(INCH/HR) = 4.25 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.85 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.682 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .80 .50 52 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.70 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 5.70 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .35 HALFSTREET FLOOD WIDTH(FEET) = 11.99 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 9.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 11.10 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.128 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) _ AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. Ap SCS (DECIMAL) CN A 2.29 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 2.29 SUBAREA RUNOFF(CFS) = 7.69 3.77 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 77 PEAK FLOW RATE(CFS) = 12.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 13.40 FLOW VELOCITY(FEET/SEC.) = 3.32 DEPTH*VELOCITY(FT*FT/SEC.) = 1.26 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< .» »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « « < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.10 RAINFALL INTENSITY(INCH/HR) = 4.13 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 11.85 10.58 4.248 .80( .40) .50 2 12.65 11.10 4.128 .80( .40) .50 Ap Ae SOURCE (ACRES) NODE 3.42 1.00 3.77 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 Q Tc Intensity Fp(Fm) Ap Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) 24.3 10.58 4.248 .796( .398) .50 7.0 24.1 11.10 4.128 .796( .398) .50 7.2 SOURCE NODE 1.00 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.30 Tc(MIN.) = 10.58 EFFECTIVE AREA(ACRES) = 7.01 AREA -AVERAGED Fm(INCH/HR) = .40 AREA -AVERAGED Fp(INCH/HR) = .80 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .51 HALFSTREET FLOOD WIDTH(FEET) = 20.17 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.19 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.33 Tc(MIN.) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) _ EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 8. = 25.72 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN A .89 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 .89 SUBAREA RUNOFF(CFS) = 2.85 7.90 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 08 PEAK FLOW RATE(CFS) = 25.31 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOOD WIDTH(FEET) = 19.86 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC.) = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 11.92 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.956 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.87 EFFECTIVE AREA(ACRES) = 10. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 10.95 • Fp (INCH/HR) Ap (DECIMAL) 2.87 .80 .50 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 9.19 77 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = SCS CN 52 34.50 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.20 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.00 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.10 STREET FLOW TRAVEL TIME(MIN.) = .42 Tc(MIN.) = 12.33 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.876 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. 35.04 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN A .35 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = 1.10 11.12 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 34.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.14 FLOW VELOCITY(FEET/SEC.) = 4.00 DEPTH*VELOCITY(FT*FT/SEC.) = 2.09 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION ## 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.28 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.87 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.15 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.671 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 12. A 1.68 .80 .50 52 LOSS RATE, Fp(INCH/HR) = .80 AREA FRACTION, Ap = .50 1.68 SUBAREA RUNOFF(CFS) = 4.95 12.80 AREA -AVERAGED Fm(INCH/HR) = .40 = .80 AREA -AVERAGED Ap = .50 98 PEAK FLOW RATE(CFS) = 37.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(FEET) = 21.94 FLOW VELOCITY(FEET/SEC.) = 4.01 DEPTH*VELOCITY(FT*FT/SEC.) 2.16 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.04 ******************************* FLOW PROCESS FROM NODE 9 = 3.671 AREA (ACRES) Fp (INCH/HR) 2.06 .80 RATE, Fp(INCH/HR) = FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 6.07 86 AREA -AVERAGED Fm(INCH/HR) = .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) Ap (DECIMAL) .80 SCS CN .50 52 .40 43.77 ********************************************* .00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL » »>USING COMPUTER -ESTIMATED TIME THRU SUBAREA« «< PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH(FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.52 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.77 PIPE TRAVEL TIME(MIN.) = .44 Tc(MIN.) = 13.95 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 13.95 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.600 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A .43 .80 .50 52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .80 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 SUBAREA RUNOFF(CFS) = 1.24 29 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 44.07 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.64 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 44.07 PIPE TRAVEL TIME(MIN.) = .64 Tc(MIN.) = 14.59 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.59 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.504 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 5.00 EFFECTIVE AREA(ACRES) = 20. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 20.47 Fp (INCH/HR) Ap (DECIMAL) 5.00 .80 .50 RATE, Fp(INCH/HR) = .80 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 13.98 29 AREA -AVERAGED Fm(INCH/HR) = .40 .80 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 56 73 SCS CN 52 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.1 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 10.35 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 56.73 PIPE TRAVEL TIME(MIN.) = .92 Tc(MIN.) = 15.51 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.47 EFFECTIVE AREA(ACRES) = 20.29 AREA -AVERAGED Fp(INCH/HR) = .80 PEAK FLOW RATE(CFS) = 56.73 ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 56.7 2 55.8, Tc Intensity (MIN.) (INCH/HR) 15.51 3.378 16.04 3.310 TC(MIN.) = 15.51 AREA -AVERAGED Fm(INCH/HR)= AREA -AVERAGED Ap = .50 Fp (Fm) (INCH/HR) .796( .398) .796( .398) .40 Ap Ae SOURCE (ACRES) NODE .50 20.3 1.00 .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS alk **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes). Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 8253 SIERRA AVE. FONTANA CA. 92336 TEL. (909) 356-1815 FAX (909) 356-1795 ************************** DESCRIPTION OF STUDY ************************** * TRACT 16158 * 100 YEAR OFF -SITE HYDROLOGY STUDY * BY: DAVID B. WARREN ************************************************************************** FILE NAME: 16158OFF.DAT TIME/DATE OF STUDY: 10:15 2/14/2002 * * * USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = .6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.5200 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ************************•**************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 600.00 ELEVATION DATA: UPSTREAM(FEET) = 1435.50 DOWNSTREAM(FEET) = 1422.20 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 25.878 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.518 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL GOOD COVER "GRASS" A 7.60 .94 1.00 38 25.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 10.82 TOTAL AREA(ACRES) = 7.60 PEAK FLOW RATE(CFS) = 10.82 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< 0 Q UPSTREAM NODE ELEVATION(FEET) = 1422.20 DOWNSTREAM NODE ELEVATION(FEET) = 1403.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 840.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.383 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 13.30 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.64 AVERAGE FLOW DEPTH(FEET) _ .59 FLOOD WIDTH(FEET) = 11.65 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) = 28.36 SUBAREA AREA(ACRES) = 13.30 SUBAREA RUNOFF(CFS) = 17.32 EFFECTIVE AREA(ACRES) = 20.90 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.90 PEAK FLOW RATE(CFS) = 27.22 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .67 FLOOD WIDTH(FEET) = 13.27 FLOW VELOCITY(FEET/SEC.) = 6.11 DEPTH*VELOCITY(FT*FT/SEC) = 4.12 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 1403.00 DOWNSTREAM NODE ELEVATION(FEET) = 1385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 830.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.282 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 19.10 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.50 AVERAGE FLOW DEPTH(FEET) = .78 FLOOD WIDTH(FEET) = 15.38 "V" GUTTER FLOW TRAVEL TIME(MIN.) =. 2.13 Tc(MIN.) = 30.49 SUBAREA AREA(ACRES) = 19.10 SUBAREA RUNOFF(CFS) = 23.13 EFFECTIVE AREA(ACRES) = 40.00 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.00 PEAK FLOW RATE(CFS) = 48.45 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .85 FLOOD WIDTH(FEET) = 16.77 FLOW VELOCITY(FEET/SEC.) = 6.84 DEPTH*VELOCITY(FT*FT/SEC) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 9 » »>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA« «< UPSTREAM NODE ELEVATION(FEET) = 1385.00 DOWNSTREAM NODE ELEVATION(FEET) = 1376.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 430.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = .250 PAVEMENT LIP(FEET) = .010 MANNING'S N = .0200 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .10000 MAXIMUM DEPTH(FEET) = 5.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.236 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL GOOD COVER "GRASS" A 7.20 .94 1.00 38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .94 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.79 AVERAGE FLOW DEPTH(FEET) = .89 FLOOD WIDTH(FEET) = 17.56 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.06 Tc(MIN.) = 31.54 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) = 8.42 EFFECTIVE AREA(ACRES) = 47.20 AREA -AVERAGED Fm(INCH/HR) = .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 47.20 PEAK FLOW RATE(CFS) = 55.21 END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .90 FLOOD WIDTH(FEET) = 17.88 FLOW VELOCITY(FEET/SEC.) = 6.86 DEPTH*VELOCITY(FT*FT/SEC) = 6.21 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 47.20 TC(MIN.) = 31.54 EFFECTIVE AREA(ACRES) = 47.20 AREA -AVERAGED Fm(INCH/HR)= .94 AREA -AVERAGED Fp(INCH/HR) = .94 AREA -AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 55.21 END OF RATIONAL METHOD ANALYSIS 1 V lit 10 Year Hydrology Calculations San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-1999 Version 6.2 Rational Hydrology Study Date: 03/11/02 Tract No. 16158-2 Walnut Avenue Study 100 Year Event Storm Analysis for street Capacity by: D. Hammer, File Name: Walnut Allard Engineering, Fontana, California - S/N 643 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.500 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance = 690.000(Ft.) Top (of initial area) elevation = 1439.000(Ft.) Bottom (of initial area) elevation = 1434.700(Ft.) Difference in elevation = 4.300(Ft.) Slope = 0.00623 s(%)= 0.62 TC = k(0.304)*[(length'3)/(elevation change)1A0.2 Initial area time of concentration = 11.468 min. Rainfall intensity = 4.048(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.878 Subarea runoff = 2.489(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.098(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1434.700(Ft.) End of street segment elevation = 1427.900(Ft.) Length of street segment = 740.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) 7- 0 0 z/14 Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.733(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.350(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.665(Ft.) Flow velocity = 2.35(Ft/s) Travel time = 5.25 min. TC = 16.72 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 3.229(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.873 Subarea runoff = 1.457(CFS) for 0.700(Ac.) Total runoff = 3.946(CFS) Effective area this stream = 1.40(Ac.) Total Study Area (Main Stream No. 1) = 1.40(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 3.946(CFS) Half street flow at end of street = 3.946(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.383(Ft/s) Flow width (from curb towards crown)= 12.927(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1427.900(Ft.) End of street segment elevation = 1421.900(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 18.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.110(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.791(CFS) Depth of flow = 0.251(Ft.), Average velocity = 2.616(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.591(Ft.) Flow velocity = 2.62(Ft/s) Travel time = 3.70 min. TC = 20.41 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.865(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q=KCIA) is C = 0.869 Subarea runoff = 1.035(CFS) for 0.600(Ac.) Total runoff = 4.980(CFS) Effective area this stream = 2.00(Ac.) Total Study Area (Main Stream No. 1) = 2.00(Ac.) Area averaged Fm value = 0.098(In/Hr) Street flow at end of street = 4.980(CFS) Halt street flow at end of street = 4.980(CFS) Depth of flow = 0.255(Ft.), Average velocity = 2.642(Ft/s) Flow width (from curb towards crown)= 13.788(Ft.) End of computations, Total Study Area = 2.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 10 Year Hydrology Calculations **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 6101 CHERRY AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 ************************** DESCRIPTION OF STUDY ************************** * Young Homes Tract 16158 * 10 year * By: Joe Ramirez rev. 12-31-01 ************************************************************************** FILE NAME: 1016158.DAT TIME/DATE OF STUDY: 12:24 12/31/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL* -- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .90 *USER -DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.0100 SLOPE OF INTENSITY DURATION CURVE = .6000 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 2 18.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1100 .01500 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = .14 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* UNIT-HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc USED "VALLEY UNDEVELOPED" S-GRAPH FOR DEVELOPMENTS OF 2 UNITS/ACRE AND LESS; AND "VALLEY DEVELOPED" S-GRAPH 'FOR DEVELOPMENTS OF 3-4 UNITS/ACRE AND MORE. USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 1.80 2-YR 24-HR RAINFALL DEPTH(INCH) = 3.40 100-YR 6-HR RAINFALL DEPTH(INCH) = 3.90 100-YR 24-HR RAINFALL DEPTH(INCH) = 9.20 SIERRA MADRE DEPTH -AREA FACTORS USED AREA -AVERAGED DURATION RAINFALL(INCH) 5-MINUTES .37 30-MINUTES .77 1-HOUR 1.01 3-HOUR 1.83 6-HOUR 2.67 24-HOUR 5.79 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR UNIT HYDROGRAPH METHOD* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « < »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00 ELEVATION DATA: UPSTREAM(FEET) = 1422.20 DOWNSTREAM(FEET) = 1415.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.088 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.27 .98 .50 32 9.31 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.31 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 5.31 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STREET TABLE SECTION ## 2 USED) ««< UPSTREAM ELEVATION(FEET) = 1415.50 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 272.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 9.52 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.22 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .97 STREET FLOW TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.72 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.838 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 3. 6.53 Ap SCS (DECIMAL) CN A 1.15 .98 .50 32 LOSS RATE, Fp(INCH/HR) = .98 AREA FRACTION, Ap = .50 1.15 SUBAREA RUNOFF(CFS) = 2.43 3.42 AREA -AVERAGED Fm(INCH/HR) = ,.49 = .97 AREA -AVERAGED Ap = .50 42 PEAK FLOW RATE(CFS) = 7.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.99 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) = 2.84 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.42 TOTAL STREAM AREA(ACRES) = 3.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.24 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF -CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 455.00 ELEVATION DATA: UPSTREAM(FEET) = 1430.00 DOWNSTREAM(FEET) = 1415.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.001 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.152 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.48 .98 .50 32 9.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE(CFS) = 3.54 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1415.80 DOWNSTREAM ELEVATION(FEET) = 1409.62 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.77 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = .85 STREET FLOW TRAVEL TIME(MIN.) = 2.35 Tc(MIN.) = 11.35 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" A 2.29 .98 .50 32 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .97 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 2.29 SUBAREA RUNOFF(CFS) = 4.65 EFFECTIVE AREA(ACRES) = 3.77 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) = 7.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) = .97 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.35 RAINFALL INTENSITY(INCH/HR) = 2.74 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.77 TOTAL STREAM AREA(ACRES) = 3.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.65 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) 1 7.24 10.72 2.838 .97( .49) 2 7.65 11.35 2.743 .97( .49) Ap Ae (ACRES) .50 3.42 .50 3.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 14.8 2 14.6 Tc Intensity (MIN.) (INCH/HR) 10.72 2.838 11.35 2.743 Fp (Fm) (INCH/HR) .975( .487) .975( .487) SOURCE NODE 1.00 4.00 Ap Ae SOURCE (ACRES) NODE .50 7.0 1.00 .50 7.2 4.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.77 Tc(MIN.) = 10.72 EFFECTIVE AREA(ACRES) = 6.98 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 7.19 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 3.00 = 845.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1409.62 DOWNSTREAM ELEVATION(FEET) = 1407.31 STREET LENGTH(FEET) = 255.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .44 HALFSTREET FLOOD WIDTH(FEET) = 16.29 15.62 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 8: Ap SCS (DECIMAL) CN A .89 .98 .50 32 LOSS RATE, Fp(INCH/HR) = .98 AREA FRACTION, Ap = .50 .89 SUBAREA RUNOFF(CFS) = 1.71 7.87 AREA -AVERAGED Fm(INCH/HR) = .49 = .97 AREA -AVERAGED Ap = .50 08 PEAK FLOW RATE(CFS) = 15.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = '.43 HALFSTREET FLOOD WIDTH(FEET) = 16.05 FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT/SEC.) 1.22 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 12.22 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.624 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.87 EFFECTIVE AREA(ACRES) = 10 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 10.95 AREA Fp Ap SCS (ACRES) (INCH/HR) (DECIMAL) CN 2.87 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.52 74 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 20.65 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 8.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » » >(STREET TABLE SECTION # 1 USED) « «< UPSTREAM ELEVATION(FEET) = 1407.31 DOWNSTREAM ELEVATION(FEET) = 1405.97 STREET LENGTH(FEET) 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = .47 Tc(MIN.) = 12.70 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.565 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA AREA(ACRES) = EFFECTIVE AREA(ACRES) = AREA -AVERAGED Fp(INCH/HR) TOTAL AREA(ACRES) = 11. 20.97 Ap (DECIMAL) SCS CN A .35 .98 .50 32 LOSS RATE, Fp(INCH/HR) = .98 AREA FRACTION, Ap = .50 .35 SUBAREA RUNOFF(CFS) = .65 11.09 AREA -AVERAGED Fm(INCH/HR) _ .49 = .97 AREA -AVERAGED Ap = .50 30 PEAK FLOW RATE(CFS) = 20,73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET/SEC.) = 3.52 DEPTH*VELOCITY(FT*FT/SEC.) = 1.58 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6.2 » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< »»> (STREET TABLE SECTION ## 1 USED) ««< UPSTREAM ELEVATION(FEET) = 1405.97 DOWNSTREAM ELEVATION(FEET) = 1402.50 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.49 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.61 STREET FLOW TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.415 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A 1.68 .98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .98 22.19 Ap SCS (DECIMAL) CN .50 32 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.68 SUBAREA RUNOFF(CFS) = 2.91 EFFECTIVE AREA(ACRES) = 12.77 AREA -AVERAGED Fm(INCH/HR) = .49 AREA -AVERAGED Fp(INCH/HR) = .97 AREA -AVERAGED Ap = .50 TOTAL AREA(ACRES) = 12.98 PEAK FLOW RATE(CFS) = 22.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOOD WIDTH(FEET) = 17.54 FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY(FT*FT/SEC.) = 1.61 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.03 * 10 YEAR RAINFALL INTENSITY(INCH/HR) SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL LAND USE GROUP RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 2.06 EFFECTIVE AREA(ACRES) = 14 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.04 = 2.415 AREA (ACRES) Fp Ap SCS (INCH/HR) (DECIMAL) CN 2.06 .98 RATE, Fp(INCH/HR) = FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 3.57 83 AREA -AVERAGED Fm(INCH/HR) _ .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = .98 .50 32 .49 25.72 **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 11.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1402.50 DOWNSTREAM(FEET) = 1398.70 FLOW LENGTH(FEET) = 280.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES PIPE, -FLOW VELOCITY(FEET/SEC.) = 9.45 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.72 PIPE TRAVEL TIME(MIN.) = .49 Tc(MIN.) = 14.53 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 14.53 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.365 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) RESIDENTIAL Fp Ap SCS (INCH/HR) (DECIMAL) CN 21/20 "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = .43 EFFECTIVE AREA(ACRES) = 15 AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 15.47 .43 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = .73 .26 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 25.79 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 13.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1398.70 DOWNSTREAM(FEET) = 1393.00 FLOW LENGTH(FEET) = 410.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.55 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.79 PIPE TRAVEL TIME(MIN.) = .72 Tc(MIN.) = 15.24 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 15.24 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.298 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) RESIDENTIAL "5-7 DWELLINGS/ACRE" A SUBAREA AVERAGE PERVIOUS LOSS SUBAREA AVERAGE PERVIOUS AREA SUBAREA AREA(ACRES) = 5.00 EFFECTIVE AREA(ACRES) = 20. AREA -AVERAGED Fp(INCH/HR) = TOTAL AREA(ACRES) = 20.47 Ap (DECIMAL) SCS CN 5.00 .98 .50 32 RATE, Fp(INCH/HR) = .98 FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 8.15 26 AREA -AVERAGED Fm(INCH/HR) = .49 .97 AREA -AVERAGED Ap = .50 PEAK FLOW RATE(CFS) = 33.01 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 3.1 » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< » »>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 1393.00 DOWNSTREAM(FEET) = 1387.00 FLOW LENGTH(FEET) = 570.00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES PIPE -FLOW VELOCITY(FEET/SEC.) = 9.09 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.01 PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 16.29 /0 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.47 EFFECTIVE AREA(ACRES) = 20.26 AREA -AVERAGED Fp(INCH/HR) = .97 PEAK FLOW RATE(CFS) = 33.01 ** PEAK FLOW RATE TABLE ** STREAM Q NUMBER (CFS) 1 33.0 2 32.3 Tc Intensity (MIN.) (INCH/HR) 16.29 2.208 16.97 2.154 TC(MIN.) = 16.29 AREA -AVERAGED Fm(INCH/HR)= .49 AREA -AVERAGED Ap = .50 Fp (Fm) (INCH/HR) .975( .487) .975( .488) Ap Ae SOURCE (ACRES) NODE .50 20.3 1.00 .50 20.5 4.00 END OF RATIONAL METHOD ANALYSIS 10 c64 all SW all — a-- as as a all all a WM a rya aIa — a s, div .&7_(- -(46 oak /(1I53 - z PROJECT: YOL/,(/ /-o-nzre /6'/5 S DATE: //— /5 -O/ (00A-C4ee7 ENGINEER: 4 66 4e- 0 e&c. CQ • 1. Enter the design storm return frequency (years) 2. Enter catchment lags) d• 8"G = 7D/�,3//I7i4) :- 6o 3. Enter the catchment area (acres) 4. Enter baseflow (cfs/square mile) 5. Enter S-Graph proportions (decimal) Valley: Developed Foothill Mountain Valley: Undeveloped Desert Enter aximum loss rate, Fm (in ch/har) (. 5 14, o-q 6. 7. Enter low loss fraction, Y (decimal) 62.-53 8. Enter watershed area -averaged 5-minute point rainfall (inches)* Enter watershed area -averaged 30-minute point rain- fall (inches) * Enter watershed area -averaged 1-hour point rainfall (inches)* Enter watershed area -averaged 3-hour point rainfall (niches)* Enter watershed area -averaged 6-hour point rainfall (inches)* Enter watershed area -averaged 24-hour point rainfall (inches) * 9. Enter 24-hour storm unit interval (minutes) *Note: enter values unadjusted by depth -area factors SAN BERNARDINO COUNTY HYDROLOGY MANUAL msizi a 53Z v. s7S O. 5.6 WATERSHED INFORMATION FORM t t ------f_3�_✓��. -mac 0,4._al- �1 L) [eDss rc = ©, 4 7q R.E-s -17iAL '5 0 LI C41/4-1, '� 'ire.-1A A vZ 0.1 Et -SZ, d , 6 0CeZ t t o. 5 2 , O - 'Cd, -4-- O. l tc O — o .iw4 = eqP ZOFG ReECEQS7-472pq /OY2-24�f/.� fiST ra,A/7-z).) �►5 5 x 0.5 r 5 10 25 RETURN PERIOD IN YEARS f._ :l10 /6 9.5 toe NOTE I. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR •0.95" AND 100-YEAR CNE HOUR :I.60", 25-YEAR ONE. HOUR •I.IS!. REFERENCE 'NO A A ATLAS.2, VOLUME XI-CAL.,I9T3 SAN BERNARDINO COUNTY HYDROLOGY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES D-7 FIGURE D-2 /OFZ 3.5 6.0)3( 2.5 co s.og ,2' U 1— a. J J li. 1.5 0.5 3.°� 2 j 5 10 25 RETURN PERIOD IN YEARS p kise 100 • NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10-YEAR AND 100-YEAR ONE HOUR. VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR ■ 0.95" AND 100-YEAR CNE HOUR 21.60N, 25-YEAR ONE HOUR s I.lsu. REFERENCE 'NO AA ATLAS 2, VOLUME U-CAL.,I973 SAN BERNARDINO COUNTY HYDROLOGY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES D-7 FIGURE D-2 9.0 8.0 7.0 6.0 5.0 4.0 elp 111M- --- °MEM MI zolUirilakilia=1- ITimmormilli rillailljillIKINIMIERIVIIIIII rN.r/. ArM•.I�.OwO•,� �0��..Y� r..w.M wY.r_ w. 1. �■s �i �iw.� ■ .�.. 3.0 rwrw.EwMrw.w .'rii`. ire ==--:�-:E.==fir-=-=LEA -2w-==zaM^� O a� . ...www_..:. -: .r �-- "-:ate. = E= a� `- �saia�ms= www.i..•Mrww......www...�..�.. ..._.Is'a3 '-'''ilisNil 0 =io .1::a..ilr :♦wr'nSmm.a.• m.iniri mrnTiR��w.wasria r�/•=s'• w=::: .:.■i.i'■'w..".� N ����~■rN•w.r.M.MO■M.1M■.•Nr.r.M..N•..101.■Y/wONI,�•� .M M■w Y■ .1.7 .Owww..w... .� .w. .r.y.•... .,O aR 111........,w.. wi. w........w..M1O....■,M.,w1,W1O......0,.■.Mw,,.rr1..r..MOO N.....■■W.r.,1..,w\11.W M..,.MM NM..nw ^.w.f^MMt. f.,Y,M WM LL% wW M.1......,M,rO.OtI.O....Mw„O.NI...rr.....■p...11..M.1.NO.n11yy.1.■N�..r�NN„p1lrrla.ry.�..�..1..,p_,. rr,wy • 1pA 1/w.n1/Il1� r/ .. ■■ ■r...■ YNI�®D ANI :� IIIIIV N�111fiiiR�H1 I mi Ermun Im' am s..11UnOarnisammun .w.... MI o w.N■�..11 rn,uwuuMYrnNawmwlpulMMMw.r1Y.....11.ornYl/w/Ywr.nla .p►.wM.u.al aaawl.uw.lm.wv/ma Z W Minimum III/w.Iprin.Ir aeons ne atim ■■M.pw1 1wIH.IMM111M/1.p/1f,d1..1Y11Ma111aMlIIIN11.n1w1Y,IN111 PITY.M/QQ1111a irY/1111/mall= Irvin izial se g=insis �1 IMrxx//rr��pprr nor nnus ISMISIr MUM NMI 1nN UM Mil I 1wMwn1YMYI•AMn1p slap YmNIio laxr.n11.111ww1111N11 HIHIY11rxIArnIIfIRINfaxtr �r111r/ASNNSHw1111fINN nn TWIN IVAIJI nII1111M11:g1/nrrl MUNN 111111211411111111114111 v 11H11 imilMr.11111MI fins sim mo mmom mom nom moms' IaNN11111111IIIninlaninllNlll ansieseistu ounce rN imesisiu atun11itlON11111111s111 miss immniaminti 1tinw rm >„ IMIU NRaIIIIUfH1111iN11MNrfaM/11g1111p1YN1MIIII MIIIII� INII�IIphryI X11111111111111111HIIIM f IIIMunim 11immi11111 NNIAMIRIasiiii millllMtaielNinnsai lim1Ipinnu Nmens1111NInninfr ttni fIIIa111Iiefelisentsi x71Ron 111IIumittpNIu 1-• 1.0 MIlilrnIlai Ili NIIIIdUM1��NlnILMMIMpMaminins 1111p11111!dIYHIIkIINKMI/11 IIIIIIMgiiPul tI~`v'r11I1IIIIIMIMil (/i I :fir'•-' ......-.. ._...iC 7'..�-_..::��r:::::5»....: ..::•_ -••... we :rya* s.r.:�= i.m= CO . _:. _�:.-:::= •1::. ... !• �P..r::::: ._.:: = mew::.: =>_ 0.8 iillaw`sia:slisMii liiimll iiiiii4ineg mpriti ffsaspira•�iwiingWE1 wmesaiiliiit a iiiiM�/1r f- �'�'.'.wwi-•^==-r w=-..r.�'w:.•••••• wo.%Nr .1awi•,:�::, 1i_' .,..::w:i1:i=---,F7.r.. ••....E _ w.w..w-]^.�'�1� ....w••.••..1or== =w...w•.I.Ww.1.I .rr.11'S••►Q• LIA.«1.1..•1._...n."= w ::• •.. .- «.... �'r.•w"'i : w�• Z O.i C w•..wM.rwar war..w ww. w.www. w. wYNi.ui..�r... ..i..__.r.�tA..•..: �i^':'ww w:.:•..: i:••. w«. l"w 1.r..www..o...r..ww..wwmww...r.flwhom. ._..1...�,,,.� .wu..waY.w..nnp •..w..u.ow.w.r N.n«.w ...ww w::•-.Ia'�� I..r MOM N1.., DM Ma II PM ON r•w1 ... ..■■. MI Y 1Yn IJ sin. .....■. s..•w.,N,. Y,,,,,• 11 ,.� Iwi1IKM..w.w./■.w ,NYN.I:Y 4.■ .M11I11.1 ,u1.1M�.1 .•ww.. ..■. Minn. 1.,.• _I !•na.r�m '■ii N"I'11•rr."•-'Iff"'.1..11I::N.111M'. •JUm•Iw /OUOMM el Uri *HMI1 ��'I'..•W:1"",NH" ,••, Q.6 llii�iili� !!lIY P}_•IYa NEPATHIl11711Nl=ll110M11iw111M !r1'•'1.0 u=..rw....n ■w„i/:i,awal: ._. -:--::.-zc__ ems".-- ' ---"", ..................... - -e-• =-?ate ..._ =_ tee':: -�A. _t.. �, Cr 0.4 �siiilsara.iwi5wgN1«.4.0„,.. i rsi -- •eC:�: _-• t,: •__•..... w.»•••r.»: +a�altatllsss�iilos.. - --_�::::: I_.w ..•«w~.MEM :«:..•�..:::�.::� 'w� .- YM..fw►•�1=H:fr' .....�W:.:".b ........ ••^':.: •• »s•••••••••'%:'`: .�� f..!� R1M:...R:M�C"':::.:::••:^•:w...:..:.:,.:.:.;:::8 •,r NM fI I W 1Y M.Yrw UU^r .I.w A:.11,.\.Y .•,.w.•r...N.1..M1. N.•N.^.m•.M I..nlrrl.^..M LO10M.,.a•.•wrM.•^�... 'SOS FM . !mg NY••w•r1.1w •••.•....Y■■Mn.Ma,n Q3r.N..r.M mg wMY..M r.0 ..... .1Y .�.I■►•Nw..•r N. ... II,.Iaw.•w. r... •" w•^M1 Yw„wN.na.�...■M.Y.u.w_C� �ii. .Mw:.aw. ��•.......... ,/Y/ M..�-_ - M r` s :cam-_ a- L1`7w.•.Nn■■...M.rwM.r.^-••.a^•....■.,Yn«N. =^fi�� • - »�..=-a�«� �•-•�-r=:E:�.T-_=2ii:� .;�_.--_ ..... '�' = ayz :�.- ..... V• ;ace_.-..Y:^•._ l:::o� s���. �'! • s'.-=+��= �a �,ilil xwi111a w"iix :.InR _r�N, �iaTN_��IsGyisa�liaraal`-��is�::� '-mow =sssz•=°°' '^:�-�r�'r`�-_��_�:-�:��:� ��u� .w. - 0.2 ,N '•M.MIIM ��:i see . .M7b�' aCi1«11 �i W- s2 no imamsannamai� Y••16•.....1.Yao.1..MIT■1...r.�M.■1�. *. ui �w/�a.�.•/.4 �u��..1....«w....a=wwa:E ".ww. OMIww., .OM1.11I n.w.....•M7..Ti. �V: ••N I.. N"'".«.n. ray PSne rill .2 la Mil . II l.fal wn.rrrMp 111. L.1.•.l .n fstpw nww n.f..unw NM Y.r '1j �1 i = M rim www a BMUa • 111 f = ralrwQirwilil 1i111M1d1w�LI MIN 1r.11si�111I.(WIN �ry1aa a1�r rr1�p1�1Y1 �1���1w1 un 1.11 w:.ewulnrlMCe.flnalglwR.10M elmlI♦i Iimml Iuilpllssaxel■®Meiiilainuirli Al .. �1N�1/11rOa'N911 ilIEE' l �a 11w�►�.`.•111Ir MaIe1. a 1sr.w 1I. n l,tM El rerI11eM1rm�I1osnl/NInInMninta ism noluannximaaaii11ni1i r ®uannih'�\,', nmttl1��iGsemtalmmiwran11 Ra111111ni1 insueimuula � nemisl.: ..--:IlTlnm:tom maunarmIallaliilnninmiaili i1aoa6a milnnnl iiin/1111n1wi.. ry',rum1nimimuitiU aa1NN1aNlallu1ia11/wwluUtlQlalimnluwlliulnaaaalalill/uiun I mfinnulunn�Rw 'nolillnnnuxnnll 0.1 WI1n11MAWtllOiaaliNai esumi aMfi11IlI1U11111NWaaaaiaiiiUiinsinuti minsuYaa1 IIIIlUIIi1 . - vivo I tam 11l11 mu 2 3 4 t rt' �,':a 9 10 ' ("?�030 STORM DURATION (MINUTES) DESIGN STORM °FREQUENCY= I'Cs YEARS ONE HOUR POINT RAINFALL = 4.O • INCHES *LOG -LOG SLOPE = c9,G O PROJECT LOCATION `i'.�.. `ICE 'N2�kirs5 -t- , '((E$ (s -vim NitA-P) SAN BERNARDINO COUNTY HYDROLOGY MANUAL INTENSITY - DURATION CURVES' CALCULATION SHEET D- 8 FIGURE 0- 3 PJJXJ r- P/ ter)PI- T' Jo, J 557' /DY142 - f/l2 3.5 0.5 0)147 /00 vitPrie-4.44•Z 2.9141 i /OM.--Co/iie n4 5 10 25 RETURN PERIOD IN YEARS 3.5 2.5 0 50 100 NOTE' I. FOR INTERMEDIATE RETURN PERIODS PLOT 10—YEAR AND 100 -YEAR ONE HOUR VALUES FROM MAPS, THEN CONNECT POINTS AND READ VALUE FOR DESIRED RETURN PERIOD. FOR EXAMPLE GIVEN 10-YEAR ONE HOUR • 0.95" AND 100—YEAR CNE HOUR • I.60N, 25-YEAR ONE HOUR ■ I,IBM. REFERENCE sNOAA ATLAS 2, VOLUME ZI—CAL.,1973 SAN BERNARDINO COUNTY HYDROLOGY MANUAL RAINFALL DEPTH VERSUS RETURN PERIOD FOR PARTIAL DURATION SERIES D-7 FIGURE D-2 ,,wiummia.i_igmikm.L- . . 1111 !!• •s■ ! !•• 1 II ■ I E• ...I I .r •1I sill all: .... . . . /111 . ■ . . •11 ...t111 .... ■i:iillill/I11 :■:■....I111/1 . ':l! .:::i ii11s111 ......I1i1n • mil '.;j.st ii 1.;. 1 ..... 111 tt ....11 rii.a.1111111n Hit: Rill ::� I,III!IIII1I!I ■ um MI :� /;;1;1111IIII...IIIEII111111� ■'iii i !! a-s-�� !_ lillll-.�■I����Illlil MI_PkiLimiiliiiiiiiiiiimiiiminiiiiii �E•I�I� mir EEEEuuUIlui11i =li::: s:_?s: U s'•::s.E==:1■s;ls:iiiI•:i::�:i.!!!:... ! °-----== 1�1� ipuris s-- .....:• •: iiiminiii:iii50.0 •... _.E-------=:lil..i...i---:...l...si.. • iii=:. ..C--..... :...1i :.- ..i �3 i-...i.-_:� r:•,i�j,1�,i1 i... �.N 3111113 ---�j' ..1 �I :.eIS..--...■.■ �• .I.�...I ...•� �./.�l�I �■1 �. . ..■w.i••Iu1� II:S.••s.•.. ■.. a 0.0 i UI- ■iil.i... ....../ 2..i r ••: .iii.*-■.. / .....u-. .... ..S■. ui.• .a=;s:m::is::::I:,I,I;rla....:.:.'ss:;;;�' 1.usU .......0 '�I�; =;:nE9 :::; s ......■■■.■ 1111■■■■■ .I HO 30.0 !!11!!E--c::—=E es ...ell; zcz : .:••- . _am ae! ■■._-. ` ll= ■■.1.1.1 °el�i:s _=- _ _--.1-=wi:s.....l- ... sg;-.::..1_ nie==1=== ?i; 111 !.1 i-s::::c ii:01 -_-- - si ri..ii:_:er:::sl.:::- . zs •- == !::s....s:s C.11... srssGsgi;:::•::jles=•••••iiiiiiIiiigsaii-Z:' !.s•iiiiiu ...e :1:: :a :...=iyms.s..e1!•:i/jus •.•:l„a!la::••n 1ui 1/11.. ■...... ■� 8_ .. ...■.■ •.•.11 .11.N.•.■.NIYNw�.-■■■...1• - . ■ ■ 1111.rn■■.1.■.a..■ ....•.III,1111..�...� •IIIIII..■■■. ■......■■ .... I„11■■■■■.■.M11111■■■.N■.:m-.. 1III. ■■■ ■.. ...■■■...1/111111■■ ■...■...m ■■ ■■■...■...■ 1.1.111 IH■■■.11..1 ■... ■ ■■ 111111111■■■... I.I/IIn ■.■ ■ ■111.111 11■■■■....11t{{p.11 ■■■NN iiiiiiii....■,itl■i■.a11111un1�■.■1.h Him tiil.n�itii■.11i111111111I.Ia1N111111s..61111!! IIHM11.■■■■1��11■.■■■■11111111111 ■IIIII 11111.■...111��......Il III Is.I/.1 111111 ....■1II ■ ■ 131.■ s11IIs111...11111111111111111MIII1 11111..11 IIIMMIN s1■l Il i Illnsu 1111111111iIm *s■N ■■■■ IIII!■us11/1s111u11sss1111111 11 II1111111111I1111■.11I1/IUU..u1! II11 �MI11Ia1111IImI1 ■uuI ..u111 • Iminu:Illiia!l::111111■�II�II:1:1!l11111u11llurlll1 or..3.11IlII!lIIIII::11e milluisi!l:lie enr 10.0 NIL. ■■O.•... ■.Ma.N1 ■I I. L-+ I• .■ I .� ■ ■ • M11 NI.■■ ■-.� .. ..■ slsiisi !l>t:. l iHllll:tt.sliiiii!i..■l..,aril�i<s►.:1:.ii s ilsc.=1al ulllliiis !sus �iNisk9elintilL,sui 1111....■■•■...■■..■...• 1111 ■ ■......1111 .C�.Y//"�G�I� 1.1.■ . N•N■■■■■NMI ■■ ■ ....■ 1111....■.1.......■ ■111..111/11■■.■.1 .1 111,1 tenn. l'�/C�'�.I/�II■ . 111■■■....111H ■.■ nn. 1.111 I ■ .11.11 111 ■ u.■ .J.;;1��jj 1 g 1 1 / HHIInIIIIIiisili 8.11111H1iE.Elulls ill .q■ 1l.ipii...,11'i h iiiiiia11��H iiiiii11 !!!!!!!!! 11 !!!!!!!!HNI!!!!E..1 1 11!. u ■ ■�P !!! I W. l II u!I! II! :: • '_-=== .im flit!.di .rg... 4' -EFL,.� .:.,„ . .:. �•tl =�!'._. 5.0 misssitugslssss'r pm:• 9a1_ i. _mil l ! : meg sus:m:5 .ts -LTI N.1.....•M--......u.■ .I : p■.•..IS Nf .��� 1•--....=-N••.N .M.,1-■SI. ■ .NN. 4 u.., 4.0 iHlu:::llliiauui Ik l 1.. •:Glgpit.• •iinai l�lt-,�1 •• n;;l-:: : I11..■■........■ ■....• I11.11.■� ..•■•N/N1 .■ ■ ■.. .■■•.■M•IN111 ■■• MII.'..1 .•■■•.. 1Y.............■ .II.111111.NN�:•111111 ■■ ■:1.....■ ■••■••• 1/1H11\t■■.� •1!iN11.. ■MNMn� 111...■■.■.....■.■.■■..MI Inl.■■■•rR11/1�. ■ . ....■ : ..1. ■u11 ..■ F.'.IIIum. ■■■. ■■ 3.0 1!!!!!l11HMi!!!l!IP' !!=l�11,'_,1 ■■"'�ingi �!=i!�! '�!!! !!lll�i. ! .uR!!!I smarms _ 1111 E11'.al. "i a'il._ [. i.i 7:.....I1ili11: 1'igl:�is s i '-ii{lsill!-iii!::irprllrissmir:Idaaii!s-iriri11� firlri � emit/ .i...::-•1..•mminrirL r ■. 1•M11/ .. N�IM IM ••.--•--u�H/.I.l5-SS.:-O.1.. M. MIIMMM.-:.■—g■.__M.. NN.....■•p. .. 1--- .fuss.. ■■ /' .// N•. .■SS-.....N■ ■ 2.0 UMW INN /■Vs.' �..I.w., .-..i• /�.. -. •. N..Y-..• /N•.. ■,1'1.�.!' ••1li ■■ I-_..• •. -.•-.• ..■ .....Nr i.•.M.INN •-.Ms....-IM..M-•— ...N 1III......is......■Jw■ 1IIN■ .■•••,1.1•111 S.■■ ■ ...■ I.. 1•■ ••11Y 1■ ■•.MNIYII.. M...•� ....N 1111..■■■..■...... .IIIIII■:.■•..•11..1,...■■■ 1y...Al.■..�1111I111 .••■•11N1N..N.•■....■■ II ..■■ ■.■......■■■. 111II11.■■....■►I1111 ...■.1 ....I.d■. 1■..111111111..■.....111u11...... us...... IHHIIIISIIIItti �pili 11� i bnh/S.ti f�ialuliHlliiia�iaa it iMniiYliiiii 1111.....1n��.■.s..l 1 Is ■■ 11111.I11�...11:dU...IIl1111111III11..■n111111IW .,.. ......■ 11II■■ss■llIaUUUss■11I111Ilillllll■IIIUII&u. p►:/l■m...//1.11111111111s■s■IIII i111I..■ s.11slsl.■.■ I111..11111■1111..■11IUq MIqIIII.1i111111IH ' N!4I111�U■■■/,111IIIIIIH1111.111111I111u1..fl1IUs1•■.■ 1 Vila.!:llll i■■■l::/11i111I111101:1111■Ill I•!ll: Illiiall11:111enllmh:IIIIU111mhi lln 11Ie 11i■.1I: 1.0 III.. ....... III.■ •■ ■. / .. ■ ■ ■ ■•. .I .I..)f•. ■•--- •■ iiiii11ll:s iiiil ! • li�il�N.....::lla �1 j "i >',eli .' , M�1lmiliPiii� illi'iiii!! n.ii ! iIIIitiiihII f leg 1 imiilii�i:iiriiiiiiili n iii�itii +� : iiiun:"uGG��N�N111I '1uNu»„ill■■■ Ill.......ln■...■■..IIIII uH!i ■Ill Illlllll ■ pp.1.II.■ I i' l►d .;,.......,,11I.'4■ ...1.. ■...■ 111!!..II1I!i•.....IIIIIIIII lEllllulUE1Hla IIll •.is.■I?Lf!%is.f(n,11.11^+5►i!1:1.54.$N.1.!mo... - :_;:`: -„ f igi- °i� Ee!rs"-s3=-:i-5ciii" E.-EN. 0.5 iii1.1.11"PliielliFAll:iii i�1 dill 1liMI -PI ol1/RF1 f;�.,�:1::,111� 1i t ..F.Pt�fsl� .... . —. SS•::--.■■■■•.1N:ia .i■ __.. 11371SJ:1 •.fuss...-a►.,•••N•. wS:S-M---:- — 0.4 i:iiall:::lei/%/l:::le�ell:uiilli!id1Hu us. IIInal$i...lilN,nlli::: :4( n:Ii�slniulliisill: IIII.. .. ■IMI •••N11N1 .Os. ■�■�..• 1 11/. ■••II 1 1..! •.....■ lifilblifiThiliiiquogiumill: ••.MIINII■■.■ ■■.N1 /11 .■. .■ ■ ..■ 11Np•H■■■■■...r•Y 11.. ■....■11II1 ■ ■■ ...I1.1!] ■.�:.N...II111 ■...l.■ ..q.■.■0.3 i 1l1__.! mill• : giii !lr1111 1Wiil!!1!_lloiu!l irmil_ ii!!!! •:i-.....ww.�..s'.i..l;i=P• •..:: : ..•: '� — :w.ii:- i:i••1i--1 :�.�. -.is.. �—:.--__: iii.. ■ :Millis-i%li N ='---._.- iilsss= "si Gas.-ss�ii13 �I5 1� � -- ! �! iililsiilla.■.Illla.iii�i /N..--Ns.• ... ..M . N.. 0.2 l a!MnEiilsei.ia!!:■■••!irA�i••r.•1IIIIIIISIIIIIEli..:. IMINIIMIIIIIIIIIIIMENIssimmeiromsames .IHI..■11 ■Ns....■■■■.1...�1...■.N..f 11n ryy� llllittit I5I. UNiiiia:.61 uHin.�al il�ltl�lt�i�ii618.III,111ttiiN.. iili .IlIINiiimmainu 1� IIHull NIIIu1�IOHIII.. i 111111.�.■1ll111 II II111I1I1111IIIlI - ®n®•11®eiiijIil 1 0.1 31 • ■ . N.M.■■.■N -iI'�suui::lielliiliuiuulenulmul__l:iiiasil::l� .....H■■..••11 •II ■•IINIIIN ww.....p......■ C..■■■.N•• Iu1 .•■Oulu!• ■■■■1N.....■ ■.■■■N 1.'iilu N ■Nt.•:IIInN.i..:: is.. ....■t .I�.....IlllllHyNfll.IIlu1I11111HI....IIN ®...III■ ■U ..11ll1UHWllss■ll llll 10 20 30 40 50 100 200 300 400500 1000 STORM DURATION -MINUTES PROJECT LOCATION Me./.t4G' Abj4& 'TZ. /6.1.5 3 NOTES /OY2—MC 3/.Cif P /O��~GP�//Z= Z• O SAN BERNARDINO COUNTY HYDROLOGY MANUAL AREA —AVERAGED MASS RAINFALL PLOTTING SHEET E-29 c1I_IIOc c-A **************************************************************************** NON -HOMOGENEOUS WATERSHED AREA -AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS *** (C) Copyright 1989-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 NON -HOMOGENEOUS WATERSHED AREA -AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC II: TOTAL 24-HOUR DURATION RAINFALL DEPTH = 5.80 (inches) SOIL -COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in./hr.) YIELD 1 20.50 55.00 32. .975 .442 2 4.64 100.00 78. .416 .587 TOTAL AREA (Acres) = 25.14 AREA -AVERAGED LOSS RATE, Fm (in./hr.) _ .514 AREA -AVERAGED LOW LOSS FRACTION, Y = .532 **************************************************************************** SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING, INC. 8253 SIERRA AVENUE FONTANA, CALIFORNIA 92336 (909) 899 - 5011 RATIONAL METHOD CALIBRATION COEFFICIENT = .90 TOTAL CATCHMENT AREA(ACRES) = 25.10 SOIL -LOSS RATE, Fm,(INCH/HR) = .514 LOW LOSS FRACTION = .532 TIME OF CONCENTRATION(MIN.) = 16.31 SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 10 1 1 1 1 5-MINUTE POINT RAINFALL VALUE(INCHES) = .38 30-MINUTE POINT RAINFALL VALUE(INCHES) = .75 1-HOUR POINT RAINFALL VALUE(INCHES) = 1.00 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.90 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.70 24-HOUR POINT RAINFALL VALUE(INCHES) = 5.80 TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 5.31 TOTAL CATCHMENT SOIL -LOSS VOLUME(ACRE-FEET) = 6.82 **************************************************************************** TIME VOLUME Q 0. 10.0 20.0 30.0 40.0 (HOURS) (AF) (CFS) .23 -.0963 1.41 . .51 -.0645 1.42 . .78 -.0324 1.43 . 1.05 -.0001 1.44 . 1.32 .0324 1.45 . 1.59 .0652 1.47 . 1.86 .0983 1.48 . 2.14 .1317 1.49 . 2.41 .1654 1.50 . 2.68 .1993 1.52 2.95 .2336 1.53. 3.22 .2682 1.55 . 3.50 .3031 1.56 . 3.77 .3383 1.58 . 4.04 .3739 1.59 . 4.31 .4099 1.61 . 4.58 .4462 1.62 . 4.85 .4829 1.65 . 5.13 .5200 1.66 . 5.40 .5575 1.68 . 5.67 .5954 1.69 5.94 .6338 1.72 6.21 .6726 1.74 6.49 .7119 1.76 6.76 .7517 1.78 7.03 .7921 1.81 7.30 .8329 1.83 7.57 .8743 1.86 7.85 .9163 1.88 8.12 .9590 1.92 8.39 1.0022 1.94 8.66 1.0462 1.98 8.93 1.0908 2.00 9.20 1.1362 2.04 9.48 1.1825 2.07 . 9.75 1.2295 2.12 . 10.02 1.2775 2.15 . 10.29 1.3264 2.21 • 10.56 1.3763 2.24 . 10.84 1.4273 2.30 . 11.11 1.4794 2.34 . 1 11.38 11.65 11.92 12.19 12.47 12.74 13.01 13.28 13.55 13.83 14.10 14.37 14.64 14.91 15.18 15.46 15.73 16.00 16.27 16.54 16.82 17.09 17.36 17.63 17.90 18.17 18.45 18.72 18.99 19.26 19.53 19.81 20.08 20.35 20.62 20.89 21.16 21.44 21.71 21.98 22.25 22.52 22.80 23.07 23.34 23.61 23.88 1.5329 1.5877 1.6440 1.7017 1.7588 1.8157 1.8749 1.9365 2.0012 2.0690 2.1411 2.2236 2.3174 2.4181 2.5284 2.6511 2.7771 2.9185 3.4229 3.9054 4.0175 4.1191 4.2017 4.2699 4.3317 4.3887 4.4442 4.4991 4.5513 4.6012 4.6492 4.6954 4.7401 4.7834 4.8254 4.8663 4.9061 4.9449 4.9828 5.0200 5.0563 5.0919 5.1268 5.1611 5.1947 5.2278 5.2604 2.42 2.46 2.55 2.59 2.50 2.56 2.70 2.78 2.97 3.07 3.35 3.99 4.36 4.60 5.23 5.69 5.53 7.05 37.85 5.11 4.88 4.16 3.19 2.87 2.63 2.44 2.50 2.38 2.27 2.18 2.09 2.02 1.96 1.90 1.84 1.79 1.75 1.71 1.67 1.63 1.60 1.57 1.54 1.51 1.49 1.46 1.44 Street Capacity Calculations **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 21: 3 3/11/2002 ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * Immediately South of Caroline Street (Q10 = 20.7 cfs) * by: D. Hammer, File Name: StCap ************************************************************************** **************************************************************************** » » STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .011400 CONSTANT STREET FLOW(CFS) = 20.70 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .46' HALFSTREET FLOOD WIDTH(FEET) = 17.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.30 PRODUCT OF DEPTH&VELOCITY = 1.51 <O.St�' ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * Immediately North of Caroline Street (Q10 = 15.1 cfs) * by: D Hammer ************************************************************************** **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .005000 CONSTANT STREET FLOW(CFS) = 15.10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .47 < HALFSTREET FLOOD WIDTH(FEET) = 17.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.26 PRODUCT OF DEPTH&VELOCITY = 1.06 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 21:10 3/11/2002 ************************** DESCRIPTION OF STUDY ************************** * Julian Steet Capacity Calculation * Immediately South of Caroline Street ( Q100 = 34.8 cfs) * by: D Hammer, File Name: StCap2 ************************************************************************** * * * **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .011400 CONSTANT STREET FLOW(CFS) = 34.80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = .54 c G, O _G Z I HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.71 PRODUCT OF DEPTH&VELOCITY = 2.00 •-(21� +. ************************** DESCRIPTION OF STUDY ************************** * Julian Lane Street Capacity Calculation * Immediately North of Caroline Street (Q100 = 25.3 cfs) * by: D Hammer ************************************************************************** * * * **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .005000 CONSTANT STREET FLOW(CFS) = 25.30 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) _ .11000 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLCTED.rr STREET FLOW DEPTH(FEET) _ .54< < Oh „ HALFSTREET FLOOD WIDTH(FEET) = 20.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70 �+ ` PRODUCT OF DEPTH&VELOCITY = 1.45 5 z.f 7 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.1A Release Date: 08/01/95 License ID 1400 Analysis prepared by: ALLARD ENGINEERING 6101 CHERRY AVENUE FONTANA CA. 92336 FAX (909) 899 - 5014 TEL (909) 899-5011 TIME/DATE OF STUDY: 20:15 3/11/2002 ************************** DESCRIPTION OF STUDY * Walnut Avenue Street Capacity Check * at Tailwind Avenue Intersection (Node 32) * by: D. Hammer ************************************************************************** ************************** * * * **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .007200 CONSTANT STREET FLOW(CFS) = 3.90 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH (FEET) = .37 4 HALFSTREET FLOOD WIDTH(FEET) = 12.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.25 PRODUCT OF DEPTH&VELOCITY = .82 J a 1- 0 -- --�� ************************** DESCRIPTION OF STUDY ************************** * Walnut Avenue Street Capacity Check * at West End of Project Frontage (Node 33) * by: D Hammer ************************************************************************** **************************************************************************** » »STREETFLOW MODEL INPUT INFORMATION« « CONSTANT STREET GRADE(FEET/FEET) = .010200 CONSTANT STREET FLOW(CFS) = 5.00 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020000 OUTSIDE STREET CROSSFALL(DECIMAL) = .020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .67 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03000 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .11000 * FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = .38‹ HALFSTREET FLOOD WIDTH(FEET) = 13.35 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.65 PRODUCT OF DEPTH&VELOCITY = 1.00 Hydrology Exhibits ALLARLI ENGINEERING civil engineering land surveying land pinning TRACT 16158 HYDROLOGY AND HYDRAULICS REPORT May 29, 2002 Prepared For: Young Homes 10370 Trademark Street Rancho Cucamonga, CA 91730 (909) 477-6722 Fax (909) 477-6725 Job Number 159.02.02 repi red nder the supervision of: David S Hammer ACE 43976 Exp. 06-30-05 ca w !o Exa 3976 CJV L 8253 Sierra Avenue Fontana, CA 92335 (909) 356-1815 * (909) 356-1795 by 10-7-oZ TABLE OF CONTENTS Introduction Purpose Methodology Findings Summary Hydrology Exhibits 100-Year Hydrology Calculations 10-Year Hydrology Calculations Street Capacity Calculations Appendix 16158-2 Hydrology and Hydraulics Report Introduction Tract 16158 is a proposed 127 single family lot subdivision that is located in the City of Fontana. Tract 16158 is situated south of Walnut Avenue and north of proposed Tentative Tract 16258, which is currently undeveloped vacant land. To the west, the project is bounded by existing Tract 14475. On the east, the project is bounded by 20 acres of undeveloped vacant land (see Vicinity Map Exhibit). To the south and southeast, the project is bounded by 40 acres of vacant land. The 40-acre property has an approved tentative tract map that will be developed by Young Homes in the future. Currently, the developer proposes to grade and improve the north portion of the project (Tract 16158), which is approximately 11 acres. These 11 acres will yield a total of 66 residential lots. This project proposes a temporary detention basin with the capacity to store the 10-year, 24-hour developed runoff from the entire 22-acre site of Tract 16158. Purpose The purpose of this hydrology and hydraulics report is to determine the 100-year and 10-year runoff for Tract 16158 and to verify the capacity of the proposed improvements to safely convey the runoff. The hydrology and hydraulics report for Tract 16158 introduces a storm drain system which conveys storm flows to the northeast side of the existing temporary basin. The approved hydrology report for Tract 16158-2 provided a unit hydrograph calculation to size a temporary detention basin for a 10-year, 24-hour event storm for both Tract 16158-2 and Tract 16158 improvement. Methodology The rational method was used to determine 10-year and 100-year event storms, as outlined in the San Bernardino County Hydrology Manual. Computer programs commonly used for this purpose were utilized herein. Findings The 10-year storm water runoff is conveyed in the street below the top of curb elevations while the 100-year storm water is conveyed in the street and does not exceed right-of-way elevations. A storm drain system within Tract 16158 and a portion outside of the tract will be used along with an earthen channel to convey flow to the existing basin. Summary Tract 16158 proposed improvements will adequately convey both the 100-year and 10-year runoff in accordance with County criteria. Also, the detention basin is sized to detain all storm water runoff from Tracts 16158-2 and 16158. Hydrology Exhibits