Loading...
HomeMy WebLinkAboutTract No. 16222 Hydrology StudyHYDROLOGY STUDY FOR TRACT NO. 16222 PREPARED BY: PHB ASSOC. & INC. 1620 S. GRAND AVE. GLENDORA, CA 91740 TEL : (626) 914-6256 FAX: (626) 914-6357 1/6/4- • ROBE J. OKERMAN, R.C.E. 42723 D TE //,Z/6_7 9.06.2001 TABLE OF CONTENTS GENERAL DESIGN CONCEPTS 3 RUNOFF 4 STREET ANDCATCH BASIN DESIGN 5 PIPE DESIGN 6 CONCLUSION 7 REFERANCE CHART 8 EXISTING HYDROLOGY CALCULATION 9 10 YEAR HYDROLOGY CALCULATION 10 100 YEAR HYDROLOGY CALCULATION 11 HYDROLOGY MAP 1 GENERAL THE PROJECT SITE IS LOCATED BETWEEN LIBERTY PKWY AND EAST ETIWANDA CREEK IN THE CITY OF FONTANA, COUNTY OF SAN BERNARDINO. THE AREA UNDER THIS STUDY IS APPROXIMATELY 14 ACRES. THE PROJECT SITE CONSISTS OF 91 SINGLE FAMILY HOUSES AND THE GENERAL TOPOGRAPHY OF THE ENTIRE SITE IS SLOPING TOWARDS SOUTHWEST WITH AN AVERAGE RATE 1.4 %. THERE IS A EXISTING 36" PIPE AND DROP INLET ON SITE 2 DESIGN CONCEPTS AFTER DEVELOPMENT, THE MOST OFSTORM WATER FROM THE SITE WILL FLOW SOUTHWARD THROUGH PROPOSED STREET AND THEN FLOW INTO TWO CATCH BASINS THEN DRAIN INTO EAST ETIWANDA CREEK.THRU EXISTING 36" PIPE. THE REST OF STORM WATER WILL DRAIN INTO LIBERTY PKWY . 3. RUNOFF SEE ATTACHED HYDROLOGY MAP AND CIVILCADD VERSION 2.7 RATIONAL HYDROLOGY CALULATIONS THE PROJECT SITE IS SUBDIVIDED INTO 4 SUBAREAS. THE STORM WATER FROM AREA "A" AND `B" WILL FLOW INTO PROPOSED CATCH BASIN AND DRAIN INTO EAST ETIWANDA CREEK. THE STORM WATER FROM AREA "C" WILL DRAIN INTO LIBERTY PKWY THROUGH STREET GUTTER. THE STORM WATER FROM AREA "D" WILL DRAIN INTO LIBERTY PKWY THROUGH 3" PVC CURB DRAIN. TOTAL AREA = 14 AC BEFORE DEVELOPMENT Q 100 = 18.1 CFS Q 10 = 9.1 CFS AFTER DEVELOPMENT THE ACREAGE AND RUNOFF OF EACH SUBAREA WERE CALCULATED AND SUMMARIZED AS FOLLOWS: AREA ACREAGE RUNOFF (CFS) 10 YEAR 100 YEAR A 4.32 7.2 11.4 B 7.37 12.7 20.3 C 1.72 3.2 5.0 D 0.53 1.2 1.8 4. STREET CAPACITY AND CATCH BASIN DESIGN 1) STREET CAPACITY See attached 10 year and 100 year calculations by Civilcadd/Cividdesign.1990 Version 2.1 a) At point 12 ( see hydrology map ) For Q10=7.2 CFS Max. Water Surface = 0.40 Feet Less than 0.50 (Lower than street top of curb) For Q100=11.4 CFS Max. Water Surface = 0.46 Feet Less than 0.64 (Lower than street right-of-way) OK b) At point 25 ( see hydrology map ) For Q10 = 12.7 CFS Max. Water Surface = 0.49 Feet Less than 0.50 (Lower than street top of curb) For Q100 = 20.3 CFS Max. Water Surface = 0.57 Feet Less than 0.50 (Lower than street right-of-way) OK 2) CATCH BASIN DESIGN a) CB No. I Street Flow Depth = 0.57 Feet for Q 100=20.3 CFS C.B. W=21 Feet w / 4" Gutter Depression 0.57 + 0.17 = 0.74 Feet @ C.B. From Chart D-10A Max. Q into Catch Basin = 21 CFS >20.3 CFS OK b) CB No. 2 Street Flow Depth = 0.46 Feet for Q 100 = 11.4 CFS C.B. W=14 Feet w / 4" Gutter Depression 0.46 + 0.17 = 0.63 Feet @ C.B. From Chart D-10A Max. Q into Catch Basin = 14 CFS >11.4 CFS OK PIPE CAPACITY 30" RCP CAPACITY @ 1% FULL PIPE FLOW = 41.0 CFS > Q100 (A+B) = 31.7 CFS 24" RCP CAPACITY @ 1% FULL PIPE FLOW = 22.6 CFS > Q100 (A) = 11.4 CFS 30" R•C.P ® i Manning Pipe Calculator Given Input Data: Shape Circular Solving for Flowrate Diameter 30.0000 in Depth 30.0000 in Slope 0.0100 ft/ft Manning's n 0.0130 Computed Results: Flowrate 41.0171 cfs Area 4.9087 ft2 Wetted Area 4.9087 ft2 Wetted Perimeter 94.2478 in Perimeter 94.2478 in Velocity 8.3559 fps Hydraulic Radius 7.5000 in Percent Full 100.0000 % Full flow Flowrate 41.0171 cfs Full flow velocity 8.3559 fps 24" R . G . P . @ I % Manning Pipe Calculator Given Input Data: Shape Circular Solving for Flowrate, Diameter 24.0000 in Depth 24.0000 in Slope 0.0100 ft/ft Mannings n 0.0130 Computed Results: Flowrate 22.6224 cfs Area 3.1416 ft2 Wetted Area 3.1416 ft2 Wetted Perimeter 75.3982 in Perimeter 75.3982 in Velocity 7.2009 fps Hydraulic Radius 6.0000 in Percent Full 100.0000 % Full flow Flowrate 22.6224 cfs Full flow velocity 7.2009 fps 6 CONCLUSION: AFTER ANALYSIS OF 10 AND 100 YEAR EVENT STORMS, THIS STUDY FINDS THERE IS ADEQUATE STREET CAPACITY WITH 6" CURB AND GUTTER AND CATCH BASINS AS SHOWN ON THE ATTACHED HYDROLOGY MAP. REFERANCE CHART Page G-23 4" GUTTER DEPRESSION ■tisle..i..I.IIIele:.eM11111:U UhI t to e1 :tliiltiiiimismisell:iiiliii ■1•ss11sf11111111111 ee:.elt.1111r1:11'tllf::l......elleete111111l.ltltiip:ltteetpex1111111e. a■ss■ssusumuns mmt:tttt:::ill .. ♦uumun.dimitttttt» Itiu;uuIIMI ttt■■ ■■■■ss■luIIit1111tutumt ::H::aaf r.:a:it1:1Im1milt- f tutliuitti=i■:�1..�:111 1 11111. • 11 1111 11 ■ ■ ■ 11 % 11 11111 EMI •I•i 11 1 lE '■■sussuuui_ :n_ n""1111tSln1i i_i j_e,iiseia !PUMP e1:ePm iNIEN i0 p CURB OPENING CATCH BASIN CAPACITIES STREET SLOPE ..005 Rev. 6-12-84 D-10A 1 INCHES/ HOUR 9.0 8.0 T.0 6.0 5.0 4.0 3.0 2.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 01 cgs--Mg'ME-ggi.M.5.7.1-EMENIMmg gge!ffigniagglimgmumlig-miffinsmil ISIMMENEERVI == ENNEEMOINEmEMI uma-==-,-----=miggimmwmgimmagomliggillomilmion ng-E.-7-Ew..-augammgotitImmogtaffiggamizagNimEN m...„.....„..F..„....:-...,m4„..somm..20.11..w. .,==mm=1 -..•�••1.1.•-..... WOM•.NM/ .7. .".1.''t'�MM/ r.Nr .-.�r.Y.a\ = E•�C CC\Mr yr1.r="=-iE ell ....N....►. .....MM....it.M \M. /Mi\_�1 �Mw\r IIIIIPw M1.�MNe M..Y \-. M �-�w \/Yr��1 1r..fr�r., w�\\\M�� .t..Mrww.Yr\I^� .r/M�N..:. Crelr�Yr� CCr11I� wp�r.\Y.M� ��Cmow =__.=_..„_,....:„ r. FA .... ems--- =_ °- ===='=:=: = EEr.= r...= ya=moo=== =..- - :-•.-=s�r1 • a-`ram==---:�:.--. ==Lot=- ..._:. :z w�..:.. �:,; =��.. I.O MOM ==,*irmom ammo= ..w.w..trtt. .r::.-%C==iii •�rw=.r:Y..�r W.,.tomsw. o w..,,w = 1..........0 �w..MM•�I�r\r.M1Mw\WY..........1��..� ..rrr�rr.r..Sw\ Mr �•.Yr.r N. flnL.. M/n.�==Y..... .....1 1101158 ♦.�..ICY.YwM•M•••••\.�MY.MM.1I\�IM1..Me...�r�M WIN �rtf..• w.fM1\.. M.. \YY•\...... GRIM/ • /7.\Y ....a.. r�M.f\/.A\M w1..Y rooms \\\N n.1... arms.A.tSSim NMI n..I nY.\rw\M1..M�\wm..nz.\ mesa mem II \.. ISM 1/.. w.Ir11.1� Yw1=N1.I.I.. mom meNNm emus some a us" mom Rsem MI MIS• Jt• IMill KPH �1n MIN WPM NONSUN NIS NINIMIMII I MIel INN MON MIO MMMM MMMYtNMWI1N MNIIMO/M1e1MM1 Y1�.II1M I\MI IIMI IIIII..I Nt0/MM N/.. NIM NUI MMI..■tttNN\ MMIN/ MOM trine ntYNw1 YM MOM NMINNINIMMMt M�ti`W NMIMMINMM=MtNt11NMMIMM ■rINt11INIRIM rtIMNNtMMMM OMMO MI SN MIM NUII MtNtIRNIMIINMINYwtItMMMP.�Mt/1MMl1YM=MtM tNNNN\tUM MMMM SIM/rOMISOW NM I MAI MI OM MN OMNI NMI WWII MMMMittStS SWIM INORM MIMMNSttt1I OD OMINMM MMIMN NIMS MOO NMI MM nemrreummuIMMInnnYllIAMmum meisou11lN1sins NaMrMMMHtt1Yma_ IINlnrminsmiunM1111MisuinMmom msemaimullion Iu111ming=t situ irmtism inn n1111tlminiu1maim tItltlmuuRim um1MIttf1111moi Itttn11missuibmai11Ctttenneri;I•mini Iu1mumoltlrnumumllntlumunisummif[nuiu■ammememenlutnsimuutltlHlln111 umn1umosulRgrlIY1/10 ma tttuuult11umninnuuttlleululm?1�nM111�u11uW 1UWE0MuintnHIIIIIumuBum uttl ,Imu111uI�"SAMi1MAnittum _ -^- -=- =- 1= _. =mar: --- r.= - ��= Owe. ....N.w...W.t. M MOM •••••.....rw.MMMM......M �- .WAR •no M MO.I.M.M..IM •'�• .O. WOW r...u. Mn1... 1.1 - NON IM1•Y••-..M•❖C eA�.�MI..Y~.^Y.Y. Yr..1 MM\.M.Y....YM��r..\• Y\1.04 MIIOMY.I M111 .M .M....1..IY.• M�1\�M.. 1..M c= cam'--"- -� - '-aa-� '�°�= _. c_.' oas= ��x�cc=--__r=y ._..�:_c = �.-sue _ = -� = � _--- "j�� =n =='e. -= :cam, T-'- :-.: EN ._` _�^-- ki,r=:v=..= =-_ a &E �-r=::ss-g-� -mow_ Mall".. _= w =..� ==1. »:: «won = f �W....'-."" ..r:.^..E:..-. ...-..E....... _ -Y Y�...•• M'�•.....••.•� �------r.. �..eeM�M�..�M •Y INO •.-.M. __ �M...N.M. IM..w.......w..11 �0.....'M_....:. CCw_••.1C M.rM...r..Yu.\.+-.w e.w .•... w_� wiwiu.M. Mt.1..MMMIM...N MM11..1..... ■w.t MM. MM. MHI .Ir...rw. .. Y.. •�.w. ••.1 rw • Mall i.M ... n...wrw M.. . t.... SO....r N-.'.•.•Yw.MY•w C 5..n•M1 uw IIMMI1M.�I�% ...I �,.. y.IM.•...1 m,•r.tN..YY 1\1t•tM. M1•i.•••.•.�•..nn mo••NM„.M..t....• N.•M •w.n 0.ri.•• *WI MOMS .1H Mlle lea...MCNMOrow .0 . M.._•4... 11.,.•tl .M•• mam.•n w•t a\•.■■r..... MWWMr...w....nSS. M.t..M.uW.rr.r.M.MM..w. MM1 tea r-^mm -r..7, s_ was- E=.=ram » m .s=-. . .1; .==._r.=ems- _"--=? =7 E11.11ii=gE1=: _Ea=aP.r.=s"� 6 r.W t-s:----- E=-'a?se- - ..'caroms=-- Emjea===3z l,w........r.1.r .tr..twt M. r.wl Mr r.t►-Y.-..t\.�i,�.�1. N.n=lrEa tMwMr.M. ii r._..=a 1 m�I.�.I...a0- .r.i.• . = r.C..+.1. m;A�'�iii.,'.w.,i. iCM.•.r.a .... ..�..CM111.11, t1. Y..t 1.Ne.-- ..S.....N CL.MCa..C_it 1 •• luui,1�.�... �. MN C \MII MMR �..NrtM-wIIRIICM w t1rY1t�51 �iC N_ir �M��Yetei �wWSIttWiNeNMI M�•iMf MMMINIMIS M W.Misie C I.M �y."'.t w`witi''A '. M• ioI 4MMt trite WIN MOD OeN11e N MNSrrM MOM NMI tt,1i/Y ai NM pNN MU•.• 1 Ieee� tillI�M -�r� �..\ 1M NfMM1 rMI/wr iratl III l./M Main MIMMO\IeNt� IMMO Mina MAIM= MOM MOM IZIMI M IMMM■■Mr1t � 11N MNIMNIMN S tS.`I S►\�1 MIIIMMMMSSOI Mall MIMI ORM =OmiOWIN io Miln1us�uEueuU$iuMIuS�n=�_Mnie1: iS fluNarlellmIol NIM1lulwuNMStn/nnuletIl••.uiltiiumwS5tlilUlf •mlinu1unn1n MNMuwmiwins usresmutMri f1asMars' mime t MS/1M111 111111lit1NN/rr1MI11INMMnIIN11111MWlusaMtttitnanUNNI swum Mmiss... ' vines urn uin1 2 3 4 5 6 T 8 9 10 20 ' 30 40 50 60 TO 80 90 STORM DURATION (MINUTES) I DESIGN STORM FREQUENCY= 1°q YEARS ONE HOUR POINT RAINFALL= 1.44 INCHES LOG -LOG SLOPE= 6° PROJECT LOCATION. FONTANA SAN BERNARDINO COUNTY HYDROLOGY MANUAL INTENSITY - DURATION CURVES CALCULATION SHEET I*I41.1 IItr wi T • 73N I I) I - r- TV I S T2N — L— — — IIPM ‘.41 -•:. •ze - gimip ..dialikkilii:' .;‘-7\7 4:- -ip iliLv'P ��1 PLAND .. •_s�s\town" - ,.r."=.._-..._ • 51 ),Ink,rkli MINN IIMIIIIK PONTAN AraMil - _E��� ,■ram ` 7_� �r.1r . , ... : viiiirr 4 , . -.. Nam. `�..54gri"---e— Ar TIS — T2S — t- 1-- T3S — .i I -j-.ri-1r.R6W 1- RSIDE 1111"101 R4W PROJEG I vl R7W • 10 R5 TE SAN BERNARDINO COUNTY HYDROLOGY MANUAL RIE REDUCED DRAWING SCALE I11= 4 MILES • LEGEND' ISOLINES PRECIPITATION IINCNE51 -I_. j. is • .4 • SAN BERNARDINO..CCINTY • :. FLOOD CONTROL' DISTRICT • VALLEY: AREA .. .':' 15pNYETALS • Ya - 10 YEAR I HOUR 'IUD ON 010C itc!44aLL51. TWA.;` FL 'sexrSCALIL e.t.a El- I1 FIGURE B-3 = ,= PAL NO ' w+1oi cowl; Na; 3 N 1E MINI =I MN 1E11 MIMI MN MI NMI T TIN 4• -t R8 +- 4• I R7W • WIN •- ,.• IVi - ,- -- 4 _ L 111 R6WI_i R5V I i i R2W ramie ._a_•��iS"AA - ;• mratt_ ;�. , Arta" I r•! 'ti..:<Q_i 1 43111141711111"ItilLit.,,. 4i — i0. fir•WWI — — — ikElligalimillialilli �III�il�� _WI I � ��._.:1} 10PLam � �.IIRIMINpEINW qI ra‘r ONTAN 7I',��lt�.'>iIE'iMCa irIaAI TIS — ,,�� �I L��/ A iag ��� ,ICy� COLT N pii'uI firkithi �! iaET -� IL ,_ ..dimimoraft...__ V lirilWrilig R2W , T2S 1 _ T3S t. • I r -r — • 1• 8 1 te 5 ERSIDE- + R4W R3 PROJECT SITE SAN BERNARDINO. COUNTY HYDROLOGY MANUAL REDUCED DRAWING. SCALE I" = 4 MILES LEGEMD t. Ce ISOLINE$ PRECIPITATION (INCHES) 8-12 RIE I I I.f RZE --T4N I Ir i I 1 I I a - . • rer �.�; R T R2 j1s SAN DERNARD cl INO COUNTY mO CONTROL DISTRICT ' - VALLEY AREA. I90NYETAL3 . Yo•-100 YEAR F•HOUR • 6,110 ON LLlGC!bAAiv+ A. : • • .r.•vv IT n62 raA Ib 4404 NM ._.. .4 •1 It - FIGURE B-4.+ • • •1y ' J • SAN BERNARDINO COUNTY ROAM MAC 1111111 10( SOIL GAM 00,1001,A, err suit 1.0400 Eu, titan DCSC,1•11ON towo•RY a u0001E0 SOURCE 'EN MN SCALE REDUCED BY 1/2 �;.�. .:: : • HYDROLOGIC SOILS GROUP MAP • FOR SOUTHWEST -A AREA — 6 GURNEE L amie 1000 900 800 700 • 500 0 100 90 80 70 60 50 . 35 30 350 25 E 150 100 fe 20 19 18 17 '16 I5 14 13 12 10 LIMITATIONS' 1. Maximum length .1000 Feet 2. Maximum aroa + 10 Acres N• K Undeveloped . Good Cover Undeveloped Fair Cover Undeveloped Poor Cover Single Family (5-7 DU/AC) Corp ved bl (Pa PI pm/element 9 80- Apartment 75- Mobile Home 8 65- Condominium 60-Single Family-5,000 ft2 Lot 7 40-Single Fomlly-I/4 Acre Lot 20- Single Family -I Acre Lot 6 10 - Single Family- 2 1/2 Acre Lot EXAMPLE (1) Li 5501, H=5.0', Kw Single Family (5-7 ou/AC Development, Tc=12.6 Min. (2) Li 550', H• 3.0', K+Commercial Development, Tcs9.7 min 300 too •BO •s0 40 to 10 e s 4- 3 2 1.0 .s .4 fl) KEY L-H-Tc-K-Tc' SAN BERNARDINO COUNTY HYDROLOGY MANUAL Tc 5 (min) bn *a • 10 1I 12 1. gem • E 2 25 0 30 35 40 TIME OF CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA Qinur� r1-1 EXISTING HYDROLOGY CALCULATION :an iernarcii no County Rational Hydrol oov F'r-ooram (Hvdrol:ooy Manual Date - (worst 1996 IVILCADD/CIVI.LDESICN Enoineerino Software. (c) 1990 Version ?. Rational Hydr-oi oc.2v Study Date: ' / 6/ TR 16222 10 YEAR EXIST. CONDITION. ***mn **** I-ivdr-oloav Study Control Informettion % ':*;%*+n*1'•:%r. Rational hvdrol ooe study storm event year 'is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall n 00. 80 (In. ) Slope used for rai.n-rct11 • intensity curve b -- 0,6000 Soil antecedent.moisture condition tAMCi = 2 .._.;..•�_.a--r••r-r-r-r-t•-�--�.._�...�--�-.;_..t...}...r-i....r..�..;..-�--r.�...;.._r-i..Y._�..-r-r•+-a-_r_:...r-r•-r-r.;...;...;-•;-.;....r-�--r-�...r..r.-►_..r-r•i--i.._i__�..-r-�..;..-F-r-�--H+--i--r-�•• Process from Point/Station 1.000 to Point/Station. '.000 n *.* INITIAL AREA EVALUATION *VA* 'UNDEVELOPED (Poor cover) subarea Decimal fraction soil.group A =- 1.000 Decimal fraction soil croup t( -- 0.()00 . Decimal fraction soil croup C = 0. OOC:' Decimal. fraction soil croup D = 0.000 SCS curve number for soi.1. (AMC 2) --• 67,.00 Pervious ratio(Ao) = 1.0000 Max loss rat.e(Fm)- 0.578(In/Hr) Initial subarea `data : Initial area flow distance = 480.000(f=t. ) Too (of initial area) elevation = 62.000(Ft. ) Bottom (of initial area) elevation = 55.000(Ft. ) Difference in .elevation = 7.000(Ft. )' Slope = 0.014.58 s:s(!) - 1.46 TC = L .(0.'5,`.2ti) * E (.lenot.h''3) / (elevation chance) _l`''•O.. •M Initial area time of concentration = 14.451 min. Rainfall intensity. -- • 2.Z(.)2(In7Hr) .for a 10.(.) veer storm Effective runoff coeffir_'.ient used for area (Q=KCIA) is C =: 0.674 • Subarea runoff = 2. 94•8 (CFS ) Total i.niti.al. stream area - 1. 900(Ac. Pervious areas f r-act'i. on••-- i.000 Initial. area Frn value • 0.57 (1n!Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++� Process from Point/Station 2.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** Upstream ooint elevation = 55.00(Ft.) Downstream ooint elevation = 30.00(Ft.) Channel length thru subarea = 1800.00(Ft.) Channel base width = 30.000(Ft.) Slooe or 'Z' of left channel bank = 50.000 Slooe or 'Z` of right channel bank = 50.000 Manning's 'N' = 0.020 Maximum deoth of channel = 1.000(Ft.) Flow(o) thru subarea = 2.948(CFS) Deoth of flow = 0.066(Ft.) Average velocitv = 1.342(Ft/s) Channel flow too width = 36.596(Ft.) Flow Velocitv = 1.34(Ft/s) Travel time = 22.35 min. Time of concentration =. 36.80 min. Critical deoth = 0.064(Ft.) y....}..}..}._}..}._�.�....}._1--}..}..}..{._i....}•-}•-I....�-_�--�..-4__h.i_-1_.!__1-_}. j...�...j_.}.-;.:-}...�.._�...}..i-_�_-t...}..}._F•_}...1-_!_.'r•-F--I-i...:r-t--1.._}..j...{....}._}..�.._}._r_�_..h-I-..i_-}•-S-•d--i-.�- Proces'=••from Point/Station *:,*:* SUBAREA FLOW ADDITION **** 7.000 to Point/Station 3.000 UNDEVELOPED (poor cover) •sr_toar}= •. Decimal fraction soil croup A = 1.000 Decimal fraction soil orouo B _= 0.000 0 Decimal. fraction .oil. group C = 0.000 Decimal fraction soil 1. Group D -••• 0. 000 SCS curve number for soil. (AMC 2) = 67: 00 Pervious ratio(too) =• 1.0000 Max loss rate(Fm)== 0,.578(In/Hr Y Time of concentration = 36.80 min. Rainfall intensity = 1.314(In/Hr) for a 10.0 year _storm Effective ,runoff coefficient used for area. (total. area with modified rational method) (C)==KCIA) iS C = 0.504 Subarea runoff = t,. 1 u (CFS) for 1 i.. 800 (tic. ) Total runoff = 9. 071. (CFS) Total area =_ 13 . 70 (ttc::. ) Area averaged Fm value = 0.5 78(In/Hr) End of computations. total study area = 13.70 (t c. ) The f o1. 1. otvi no f i auress ma'•v be used for a unit hvdrooraoh study of the same area. Note: These ser? figures. do not consider reduced e.f f ec t. i ven area of •f ect. s caused by confluences in the rational eouat i on. :area averaged pervious area 'fraction (rrio) = Area averaged SCS curve number = 67.0 3an Bernardino Countv Rational Hvdroloqv Program (Hvdrologv Manual -Date - August 1986) CIVILCADD/CIVILDESIGN Engineerinq Software. (c> 1990 Version 2.3 Rational Hvdrologv 8tudv Date: 9/ 6/ 1 TR 16222 100 YEAR ' �EXIST CONDITION Hvdrologv Studv Control Information ___________' . - Rational hvdrologv studv storm event vear is 100.0 Comoute6 rainfall intensitv: Storm vear = 100.00 1 hour rainfall o = 1 440(In.) Slooe used for rainfall intensitv curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 r-}•_.{.._}._}...H.{...{....}._l...i--L.._.}.__..t-_f-_h..l__}..i..a....l...{.._F.-S__F...l....}._F..1.._1....{_.{.._!.._i.._}..}...1_..}...1__r...�_..4..,_..N_h._F•.1__6.-1--1.._!.._h..i•.i._1--4--F•-l--l••-i--L._!__I_..}. j_..N Process from Point/Station 1.000 to Point/Station •2.000 **** INITIAL AREA EVALUATION *.*X«: UNDEVELOPED (Door cover) Subarea Decimal fraction soil orouo A = 1.000 Decimal fraction soil oroup E 7 0.000 Decimal fraction soil. orouo C = 0.000 Decimal. Erection soil orouo D = 0.000 SCE curve number for soil(AMC 2) = 67.00 Pervious ratio(Ao) = 1.0000 Max loss rate(Fm)- o.57F (In/Hr-) Initial subarea data: Initial area flew distance w 480.000(Ft. ) Too (of initial area) elevation = 62.000(Ft.) Bottom (of initial area) elevation = 55.000(Ft. ) Difference in elevation = 7.000(Ft. ) Slope = 0.0145E s(..)=•• 1.46 TC = k.(0.525) % E (1enotlh`•'•:3) / (el:evati.on chanoe)]'''O. Initial. area time of concentration = 14.451. rni.n. ' Rainfall intensity = 3.383(in/Hr) for a 100.0 year storm Effective runoff coefficient used for are.: (Q=-KCIA) is. C = 0.746 Subarea runoff 4.796 (CFS) Total initial str-earn .area -•- j _900.(Ac. ) F'er-•vic:rus, area fraction = 1.„000 Initial area Fm Value = 0.578(In/I-Ir) Process from Point/Station . 2.000 to Point/Station 3.000 *:* * IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 55.00(Ft.). Downstream point elevation = 30.00(Ft.) -Channel length thru subarea = 1800..00(Ft.) Channel base width w 30.000(Ft.) Slope or 'Z' .of left channel.bank = 50.000 Slope or 'Z' of rioht'channel bank = 50.000 Manning's 'N' .= 0.020 Maximum death of channel = 1.000(Ft.) Flow(a) thru subarea = 4.796(CFS) Death of flow = 0.099CFt.> Average velocity = .1.594(Ft/6) Channel flow top width.= 38.754(Ft.) Flow Velocity = 1„59(Ft/s) Travel -time = 18.32 min. Time of concentration = 33.27 min. Critical death = . 0.088(Ft.) . : 2 -}•-}...1..-_-3--F..i.-}•_(••+±-I..�....}...}.-1--F ±.+ -F+-I-..}..i-+ •!•..}...F._.•-}.-�.•-i--F-h-F•-}.i....}._}...t I l l{ l F t 1 �.. j ..�.}. �...�.._�_} ..} �.. I !.. i h i i i h h t.. Process from Point/Station 2.000 to Point/Str_ttion * ** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) 'subarea Decimal traction soil Decimal fraction soi. 1 Decimal fraction soil Decimal fraction soil. :.GCB curve number for soi. 1. (PNC 2) = 67.00 Pervious r•a:ttio(Ao) = 1.0000 Max Loss r te(Fm)-- Time o+ concentration = 3=.27 min. Rainfall intensity = '� ci51 (In/Hr) for a 100..0 year stor-crm • Effective runoff coefficient used +or area.(total area with modified rational methocl) (Q=KCIA) is C = 0.646 Subarea runoff — 13. 363 (CPS) for Total runoff = i.8.. 1 9 (CFS) Total area Area averaged Fm value = 0.59 (In/I-Ir- ) End of computations. total study area --• The following f i oures nrav be. used +or Gr unit hvdrooraoh study of the same area. Note_. These figures do not consider reduced effective area effects caused by confluences in the rational e uat7.on. orouo A =• 1.000 00 group L-c = 0.000 croup C = 0. oc)o croup D = 0.000 1 1 . f8c_r0 (Ac . ) .area averaged pervious area •{rCaction(Ao) = 1.000 Area averaged SCS curve nl.amher -- 67.0 0.578(In/Hr) 1:=.70(Ar_. ) 13.70 (Ac. ) 10 YEAR HYDROLOGY CALCULATION ::an Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986 CIVIL..CADD/CIVIL-DESIGN Cnoinec•.:+rino Software. (c) 1990 e'er -ion ._. Rational Hydrology Study Date: 9! 6/ 1 TR 16222 10 YEAR 162.:2( AREA A * c*k*T:'** Hydrology Study Control Information ****K **** Rational hvdrol cc v study storm event year is 10.0 Computed rainfall intensity Storm Year = 10.00 1 hour rainfall o = 0. 99O (I n . Slope used for rainfall intensity curve b - 0.6000 Soil antecedent moisture -condition (AMC) = 2 .4-iF...-!...!:..!...!._-1-4-h•-1-i-••!--F-! i-A-4 -F..!.+-17+-!••_F•-1--1..!..h...I.F-1-2- !....h..}._!..-1--!....!....! -!--V+-h...!--F-F-F.V -F-1...!.4...1 h..F..}.-t....!-A-i-_1-i-I-•!--1- F1- Proc:ess from Point/Station 10.000 to Point/Station '1i..000 :*,t„i INITIAL AREA EVALUATION *:***: RESIDENTIAL(8 ._ 10 dwi /ac:r • ) Decimal fraction soil orcuo A = 4.000 Deci.metl fraction soi.1. group 8 = 0.000 Decimal fraction soil.group C ..-• 0.000 Decimal fraction soil group •D = 0.000 SCS curve number for soil(AMC 2) .= 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= C?. 391 (In/Hr) Initial subarea data: Ini.tial area flow distance = 70:,•000(Ft. )• Too (of 7.niti.a]., area) elevation =- 62,,000(Ft.) Bottom (of i ni. •ti. a]. area) elevation == 43. 500 (Ft.. ) Difference in elevation :13. 3C?0(Ft. ) Slope -: 0.01929 (%) = 1.93 TC = If. (0r374) `.KI: (].enoth'3) / (elevati.on chance) ] ''0.2 initial area time of concentration - 11.: o mi.n.. F-iainfall intensity - • 2.666(In/Hr) for a 10.0 Year storm Effective runoff -coefficient used for area (0=K:CIt) i.sy C = 0.768 Subarea runoff = ,.. 767 (CFS) Total initial stream area = 1.840(Ac. ) Pervious area fraction --• 0.400 Initial area Frn value = 0 v91. (In/Hr) -1--i--i- •{_ •i- ••i--i- -t•-I--h •i--F• •i--f-•i--h-1--9-•.t•-h i-i--t--1- -h -l--i--h..h.i. _t•-i--1^�r-;--t••i--1-•{»•}. a__h•.}.-h-h i-•h -i--1--f--h -t• -I••-I--1- •i--h-h •1--t• •i--h •t• •i.. -1. •.}..I_ •L. -c.-s. Process from Point/Station 11.000 to Point/Station • 12.000 t;t ;I< *: * STREET FLOW TRAVEL TIME .I. SUBAREA FLOW ADDITION * * *: Too of street segment 'elevation = 4.8. 500 (Ft. ) End of street seomerat elevation = 3:7. 00 (Ft . ) Length of street secamsent .-.. 82CI. 000 (Ft. ) I-Iei. oht of curb above gutter f 1 o4si i. ne -•• 6. ,_, (In. ) Width of half street (curb to crown) -: 1.8..000(Ft. ) Distance -from crown to r_r oss•fal.l grade break = 16.000(Ft:. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0..020 Street flow is on -Ell side (s) of the street Distance from curb to oronerty line -- 7.000,(Ft. ) Slope from curb to property :line (v/h:_) - 0. 02.c_1 Sutter width = 2.000(Ft. ) Gutter hike from •f l ow.i. i ne ~ ='.. 000 (In. ) Mannino's N' in gutter = 0.0130 Manni.no's N from ol_ttter• to grade break = 0.0150 Mannino' s N from grade break to crown = 0.0150 Estimated mean flow rate at Midpoint of street = 6.. 05(CFS) Depth of flow :. 0.384(Ft. ) Average Velocity = y.542(Ft/s) �f). Streetow hydraulics at midpoint of street travel: Ha.lfstr-eet flow width - i.2.859(Ft. ) Flow! velocity = 3.54(Ft/s) Travel time = 3.86 min. TC -•• 15.18 min.. Adding area flow to street RESIDENTIAL (8 •-- 10 Awl/acre) Decimal fraction soil. group A = 1.000 Decimal fraction soil group 13 --• 0.000 Decimal .fraction soil group C = 0.000 Decimal fraction soil group D = 0,.ot:)o SCS curve number- for soil. (AMC 2) ••- 32.00 Pervious ratio(AD) = 0.4000 Max loss rate(Fm)= 0.391 (In/Hr) Rainfall. intensity = 2.235(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area. (total area with modified rational method) (Q=KCIA) E. C = 0.743 Subarea runoff .404 (CFS) for ^. 4.8c_r (AC. ) Total. runoff = 7. 1 71 (CFS) Total area = 4. Rom' (Pc. ) Area averaged Fm value - • 0. 391. (In /Hr- ) Street flow at end of street = 7. 171 (CF S) Half street flow at. end of street = 7.. 1.71. (CFS) Death o•4. flow = 0. •_:99 (Ft . ) Average velocity = .....la.^••.:(Ft/s) Flow width (from curb towards crown)= 13.612(Ft. ) End of computations.total study area •= 4.32 (f-ic . ) The following figures may be used for a unit hydroaraoh study of the same area. Note: These figures do not 'consider reduced effective area effects caused by confluences in the rational ecluatlon.. Area averaged pervious area -Fraction(Ap)• =•r).4•�1(} Area. averaged SCS curve number- = 2.0 :3 tr' Bernardino County Rational Hydrology Program (Hydrology Manual Dial.:e - August 1986) CIVILC(DI)/CIVILDE SIGN•• Engineering Software, (c) 19` 0 Version 2 Rational Hvdr-ol coy: Study Date: 9/ 6/ 1 TR 16222 10 YEAR 16222B AREA 1r tA** t*VL .Hydrology Study Control Information. ***VIM** Rational hydrology study storm event Year As 10.0 Computed rainfall intensity: Storm year - 10„ 00 1 hour rainfall p _ 0. 980 (In. ) Slope used for rainfall intensity curve b = 0.6000 Coil antecedent moisture condition (AMC) = i--i--F�•i--t.._�-•�..-1--i-i••-F-l--i--i....�.._t.._t~•i.._�_.�_-F._�_..F•-f--i--S--i••-�--F..�..F�_.F_�.-t._F••�_.F-I..�...t._F-I....�...F..!_•i_-I.._}. j...�..-t--i-•'{-•i--I....I--I.._�_..F-I...}..{...�__�...F._!_a_-h-F Process from Point/Station 21.000 to Point/Station 22.000 **** INITIAL AREA EVALUATION **:* : RESIDENTIAL(B -- 10 d► l /acre) Decimal fraction soil group A = 1 ,. 000 Decimal fraction soil croup B = 0. 000 Decimal fraction soil group C -= rr . 0c r tir Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC 2) 32. 00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.3 1 (I.n/Hr) Initial subarea data Initial area flow distance = 620.000(Ft. ) Top (of initial area) elevation = 59.400 (1•=t. ) Bottom (of ini.tial area) elevation = 48. _':0Cr(Ft. ) Difference in elevation :1.:1.. 100(Ft. ) Slope -- 0.01790 s (%) = 1.79 TC = I; (r_?..3 74) <L (ienoth`'•3) / (elevation chanoe) 7''..0." Initial area time of concentration = 10.946 min. Rainfall intensity -• 2.7 0(In/Hr) for a 10.0 year storm Effective runoff coefficient used +or area (0=KCI:A) is C = 0.771 Subarea runoff = . 16b (CFS) Total initial scream area = 1.510(Ac. ) Pervious area fraction = 0.400 Initial. area Fm value = r_} 91 (In/Hr) -r-r-!--!-+-r-!--t•-r-!-+-r+-r•t-+-!--r-!. _}••i--r++-r-±--!--r-ra. _F._!__r•�--r-!--!--r•�-•�--r-!--t--r•-!--E•+•!--!-•�--!--r+-r•i-+-k•+-r..r..r..r_r-!--t-••!--r-r;-�+•• Process from F'oi.nt/Stati.on 22.000 to P'oirit/St.ati.on * * c : STREET FLOW TRAVEL TIME + SUBAREA' FLOW ADDITION •* * * Rc 25.000 Top of street segment elevation == 48..300 (Ft. ) End of street set..}rnent . el evert i. an = 41. 900 (Ft . ) Length of street segment _ 340„ 000 (Ft. ) • Height of curb above gutter f 1. owl i. roe •- 6. 0 (t n. ) Width of half street (curb to crown) n) -• 18. 000 (Ft. ) Distance from crown to eras •fai 1. or .de break: = 1. . r_t00 (Ft. ) Slope from cuter to orade break: (v/hz) = 0.020 Slope from grade break to crown (v/hz) - 0. 020 Street flow is on El] side(s) of the street Distance: from curb to property line = 7.000(Ft.. ) Slope from curb to property line (v/hz) = 0.020 !Gutter- width = 2. 000 (Ft. ) Gutter hiI•::e from f1.owl.i.ne = .000(in„ ) 1lann i no' s N i. n gutter = 0.0130 M nning's N from gutter to grade break = 0.01.50 planning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street -• . 5. :97 (CFS ) Depth of flow = 0.349(F't. ) Average velocity == 3. 948 (Ft /s) Streetf 1. ow hydraulics at midpoint of street. travel.: Halfstreet flow width = 1.1. 138(Ft. ) Flow velocity = 3..95(Ft/s) Travel. time .= 1..4.4 rain. TC == 12.38 min.. Adding area flow to street RESIDENTIAL(8 - 10 dwl./ac:re) Decimal fraction soil croup A � 1.000 Decimal fraction soil croup D = 0.000 Decimal fraction soi.l, group C = 0.000 Decimal fraction soi 1 group D = 0.000 SCS curve number far sail (AMC 2) = 2.00 Pervious r•atio(Ao) = 0.4000 Max loss rate(Fm)- 0.. 9i (In/Hr) Rai.nfal.l. intensity = 2. 5 6(In/Hr) for a 1.0.0 y- tyear storm Effective runoff coefficient used for area. (total area with modified rational method) (O KCIA) is C = 0.761 Subarea runoff = 3.. 829 (CFS) for 130 (Fic. ) Total runoff = 6. 994 (CFS) Total. area -• 3.64 (Ac. Area averaaecl Fm value = r_l. -9 1. (In /Hr ) Street flow at end of street = 6. 994 (CFS) Half street •f:1. caw at end of street •= 6.. 994 (CFS) Depth of flow 0. 377 (Ft . ) Average velocity -• 4.1.18(Ft/s) Flow width (from curb towards c:rown)=• 1 ' 5 ;r (Ft. ) -!--h i--i- i--I--!- i-i••-I--F-h ^!•-F-F i--F ^!' i--h-i-i-i'i-i-i--1--F i--1- i- i--F-F-F-h i--h-F i--F-h i--h i' ^!•• i--!--i--F-1' -F• i--Fi-'h-F-F-!--!- ^1--F-h •f• i-i--'r i- Process from from Point/Station 2 . ri_r0 to Point/Station 25.000 ** * SUBAREA FLOW ADDITION * <** RESIDENTIAL.(8 - 10 dwl /acrei Decimal fraction soil group A = i. 000 Decimal fraction soil group 1i = 0.000 Decimal fraction ,oil group C = 0.000 Decimal fraction soil. cirouo D .... 0.000 SCS curve number +crr soi 7. (Ai1C '') - 32.00 Pervious ratio(A ,) = 0.4000 Max loss rate(IFm) = 0..39i (In/Hr-) Time' of concentration = 12.38 min. Rainfall intensity = 2. 26(]:n/Hr) for a 10.0 year storm -Effective runoff coefficient used for area. (total area with modified rational method) (Q=KCIA) is C = 0..761 Subarea runoff = . 8[:1�a (C1FS) for 2. 500 (Ac . ) Total runoff = 1 1 .798 (CFS) Total area = 6. 1.4• (Ac. ) Area averaged Fm value M • U.391 (]:n/Hr-) -r-r-s-••r-r•i--r-r-t--i--�•i--r••r-r-t--F•j--r-ra--r•+-•+•-t-a-•a-•�r-�-••r•-r•�--E••�--r•+-•�--r-r•�--r-r-,--}•-ra--r•�r�i--r�-•t-i--r-�-+••r•r-r--t--s--t--r-r-t--r•�--r-t.. s rS .- 5 -i - � L".� I. 2 Process from �'oi.ntl.:�ta•t.i.on ._..,..t.�?t:. to Point/Station .:.6.000 * : * n STREET FLOW TRAVEL TIME •i- SUBAREA FLOW ADDITION * i *: Top of street seonent elevation = 41..900(Ft.) Enci of street segment elevation = 7. t:at:a (Ft. ) Lenoth of street Segment =440„ 000 (Ft_. ) Hei oht of curb above cutter- f 1. owl i. ne -•• 6. i-i (l: n. ) Width of half street (curb to crown) = 18. ( i (Ft. ) Distance from crown to crossfal-1 grade break = 16. 0t_a0 (Ft... ) Slope from gutter- to oracle break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020. Street flow is On f1:1 side(s) of the street • Distance from curb to property line = 7.000(Ft.) Slope from curb to property line (v/h.z) _= 0.020 Gutter width = '. 000 (Ft. ) Gutter hike from -f 1 ov17. i n e = 2.. 00 0 (:t n . ) Manni no' s N in gutter = t_a. 01.30 Mannino's N from outte?r to oracle break = 0.015o Manni no' s N from'grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = :t .. 980 (CFS ) Depth of flow =- 0. 4.9i (Ft. ) Averaoe velocity = 3.650 (Ft/s) Note: depth of flow exceeds top of street crown. S•ttrectf 1 ow hydraulics at midpoint of street travel Halfstreet flow width = 18.000(Ft. ) Flow velocity = t . 65 (Ft/s) Travel time = ;?.C?i. min. TC = 14..39 min. Addi no area .flow to street RESIDENTIAL(8 -•• 10 dwl/acre) Decimal fraction soil. group A 7 1...000 Decimal fraction soil. croup B = 0.000. Decimal fraction soil group C = 0.000 Decimal fraction' soil croup D = 0.000 SCS curve number +or soil(AMC 2) = 32..00 Pervious ratio(An) = 0.40 0 Max loss rate(Fm)= i_?. :91 (In/Hr) Rainfall intensity = 2.308(In/Hr) for a 1.0.0 year storm Effective runoff coefficient used for .area. (total area with modified rational method) (n-KCIA) is C = 0.74' Subarea runoff =- • 0. 918 (CF a) for 1 . 30 (Ac. ) Total runoff == 12. 716 (CFS) Total area = 7. 3.7 ((-r:. ) Area averaged Fm value = 0. 391 (I n/Hr ) Street flow at end of street = 12. 716 (CFS) Half street flow at end of street = 12.. 716 (CFS) Depth of flow =• 0 .. 495 (Ft . ) Average velocity = 625(Ft/G) Note: depth of flow exceeds top of street crown.. Flow width (fr;om curb towards c:rown)= 18.000(Ft. ) End of computations, total. study area =7.37 (Ac ) The f of l owi. no f i. oures may be i.sed for a uni.t hvdrooraph study of the same area.. Note: These se f a. our es do not consider reduced of f ecti ve area effects caused by confluences in the rational enuati on . Area averaoed pervi. ous area fract.i on (Ap) = 0.400 Area averaoed SCS curve number- = 32.0 0 San Bernardino County Rational Hydrology program (Hvdrologv Manual Date - Auaust 1986) CIVILCADD/CIVILDESIGN Engineering Software. (c) 1990 Version 2.3 Rational Hydrology. Study Date: 9/ 6Z 1 TRACT 16222 10 YEAR 16222C AREA C ********t Hydrology Study Control Information ********** Rational hydrology study storm event year is . 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall o = 0.980(In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 -1--k••{--i--1..+_I--1-44. i-- -4-4• --1--1 F 1--1-1- - 1--r•-F••!--1••d-••h-F-1 .4-1-4-1-•{_j...{--h-hi•-!•....._!••-I-•}•-...{-_F- •_--t--I....r...i__1- 4-1..-.-1-?..-1-4. 4 -l.••{--1-± Process from Point/Station 31.000 to Point/Station 32.000 c* c* INITIAL AREA EVALUATION Mi( '• RESIDEINTIAL (S •-- 10 dwi /ac:re) Decimal fraction. soil group A = Decimal fraction soil oroUp B = 0.000 Decimal fraction soil croup C = 0.000 Decimal fraction soil group I) = SCS curve number for soi 1 (AMC 2) = Pervious rati.o(Ap) = 0.4000 Max loss rate(Fm)= Initial subarea data: Initial area flown distance = 620.000(Ft. ) Top (of initial area) elevation = . 9 00?(F•t. ) Bottom (of initial area) elevation = 34.300(Ft. ) I)i-fference in elevation == • 5.000(Ft. ) Slone = 0.00806 s(%) = 0.el TC = k (0.3'74) *C (lenoth• µ) / (r-_levation chanoe) :1''0.2 Initial area time of concentration = 12.838 min. Rainfall. intensity = 2.472.(In/Hr) for a 10.0 year storm Effective runoff coefficient used for• area (O=KCIA) is C = 0. t58 Subarea runoff = 3. 2%:'.1 (CFS) Total initial stream area = 1. 20(Ac. ) Pervious area fraction = 0.400 • Initial area Fm value .= + . _491 (In/Hr) End of computations. total study area. = 1.72 (Ac. ) The f of l o.ai nu •f i oure= may be used for a unit hvdrooraph study cif •thy= same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction (Ace) = 0.400 Area averaaed SCS curve number = 32..0 0.3P 1 (I n / Hr• ) 3an Bernardino Countv Rational Hvdrology Program (Hvdrologv Manual Date - August 1986) CIVILCADD/CIVILDESI8N Engineering Software. (c) 1990 Version 2.3 Rational Hvdrologv Gtudv Date: 9/ 6/ 1 TRACT 16222 10 YEAR 16222D AREA D ********* Hydrologv Studv Control Information Rational hvdrologv studv storm event vear is 10.0 Comouted rainfall intensity: Storm vear = 10.00 1 hour rainfall o = 0.980(In.) Slope used for rainfall intensitv curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 / , � .l--l--I••-}• -h-l...}..i--l. _l--h-E-•i-_l...i- •i••_h..i-••1-••i••-}•-l-�i-••h-l--h •i--1•••i--}-•i--!••-i--'r.-h• -1. •i-_h..l.. �....!_..}._h_•r _I....i...}..i--t--i.. _I- •i--h-h ••h-1....h_!..-i__}...1--h-F...N.�...{....I- •i-• •i--l.. F'roce is from Point/Station 4.1.000 to Point/Station 42.000 ***:* INITIAL. AREA EVALUATION ,**, RESIDENTIAL (t] 10 dwl!acrE. ) Decimal fraction soil orouo (a =•: 1.000 Decimal fraction soil proud E. = 0.000 Decimal fraction soil. croup C = 0.000 Dee i mal. fraction soil group D = 0.000 SCS curve number- for soi. ]. (AMC 2) •-_ 32.00 Pervious rat.i. o (Ao) = 0. 4000 Max loss r•ate (Fm) _= 0. 391 (In/Hr• ) initial subarea data: initi.al. area +l.ow distance = 80.0(0(Ft. ) Too (of, initial area) elevation:�;.£as?r=�(F=t.) Bottom (of initial area) elevation = 7,'.000(Ft. ) I)ifferenr_e in elevation == 800(Ft. ) Slope = 0.01.000 s (,,) = 1.00 TC == t:: (0.3 4•) * E (lenoth^3) / (el evc::t.i.on chance) 7''•0.2 initial area time of concentration = 10,111 min. Rainfall i ntensi t:v = • .ti.. 853 (In /I-lr) for a 10. 0 veer storm Effective runoff coefficient used for area (Q=t(CIA) is C == 0.777 Subarea runoff = 1.174(CFS) Total initial stream area = 0.530(Ac. ) Pervious area fraction = 0„400 Initial. area Fro value = 0. 391. (In/HIr) End of computations. total study area = 0.53 (etc-) The following figures may be used +or a unit hvdrograoh study or the same area. Note: These figures do not consider reduced effective area effects caused by con+luenr_es in the rational equation. Area averaged pervious area Yr acti. on (F}p) = 0.400 Area averaged SCS curve number = 32.0 100 YEAR HYDROLOGY CALCULATION iar, Bernardino County Rational Hvdr-ol oav Program (Hydrology Manual Date - August 1986) CI:VILCADD/CIVILDESIGN Engineering Software. (c) 1990 Rra•ti. ont:al Hvdro:i. rigv Study Date: 9/ 6/ 1 TR 16222 100 YEAR i.6 222A AREA A Version 2. *°f ;;n ,a, ** < Hydrology Study Control Information *** {{** ;tic*:* Rational hydrology study storm event year is 100. 0 Computed rainfall intensity: Storm near = 100.00 1 hour rainfall 0 = 1.. 44-0 (In. ) Slope used for rainfall intensity curve to = 0.6000 Soil antecedent moisture condition (AMC) = 2 .;...{..y--I--t• -1-••!--{_-t..{..{...{.-1...{..-I•• _!..-1--i....t. _t..{- i--t•-t_ _i. _}...t. _�..}..{--1--1-.+•.+. -1. _t..{...}. -t. •i.. _t•-I- •i--I-.{• .{.. _t•.{....t•-t•-I--I..i.. �.. _i..{_-{...{.. -1- •{--t.-t• _t...{.. �...}...t•.�-t•-t• Process°from Point/Station 10.000 to Point./Station 11.000 *, ;lt* INITIAL AREA EVALUATION :**:* RESIDE NTIAL (S --1.0 dal/acre) Decimal. fraction soil crow A = 1.000 Decimal fraction soi. 1 group E = il. [_l0[_l Decimal. fraction soil croup. C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soi 1 (AMC 2) ••_• 32. 00 Pervious r-ati.o(Ao) = 0.4000 Max loss r-ate(Frn)= 0.391 (In/Hr) Initial s>ubarea data: Initial. area flow distance = 700.000(Ft. ) Top (of initial area) elevation = 62.000(Ft. ) Bottom (of initial area) elevation = 48.500(Ft.) Difference in elevation = 13.500(Ft. ) Slone = 0.01929 s(/)= 1.93 TC -••k(0.,74•)*G(lenoth''3;)/(elevation c:.hanoe):1.:..0.2 Initial area time of concentration = 11.320 min. Rainfall intensity = 3.917(In/Hr) for a 100.0 year storm Effective runoff coefficient used -For area (Q==1<;CI.A) is C = 0.810 Subarea runoff = 5. 8.39 (CFS) Total initial stream area = 1.. 84•0 (Ac . ) Pervious area fraction -- 0.400 Ini'L-i.al. area Frn value = 0.391 (In/Hr) -r--r--r•7--r--r--r-r-r-r--t--r•i--r•�-•�--r-r--t--r-�--r--r-E•-t--r••r-•i-->••-r--r-r-r•i-i--r-r-i--r--r-r-s--r-r••a--r••r-r-r-•+•-r--r--r-r-r•a--r• •+•-r-r •r-r-r-r-r•�--r--r-r•-i- Process from Point/Station 11.000 to .Point/Station 12.000 * * * * STREET FLOW TRAVEL TIME. • SUBAREA FLOW ADDITION * * * Toga of street segment elevation = 48.500(Ft. ) E_ncl of st.reet segment elevation - 37.300(Ft. )' Length of street segment -• 8 0. 000 (Ft. ) Height of curb above gutter ••f i owl i ne _ Width of half street (curb to crown) _•• 18.000(Ft. ) Distance from crown to cr•osssfal. 1. grade break = 1 6. 000 (Ft. ), Slone from outter to grade break: (v/hz) _= 0.020 • .Slope from grade break.to crown (v/hz) = 0.020 Street flow is on 143 sides) of the street. Distance from curb to nrooerty line = 7. 000 (Ft . ) S).ope from curb to nr-ooerty line (v/hz) -• 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from fl.owline =• 2.000(In.) Manning's•l\l in gutter 0. 0130 Manni. no' s. - N from nutter to oracle break: = 0.0150. Mannino's.: N from .oracle. break to crown = 0.0150 Estimated mean fiov rate at midpoint of street = 9.773(CFS) Depth of flow = 0. 438 (Ft. ) Average velocity - 3„8 4(Ft/s) Streetf 1 ow hydraulics at •rni dooi. nt of street travel Hal. f street. flow width' =•• 15,. 563 (Ft. ) Flow velocity 83(Ft/s) Travel. time, _ 3.56 min. TC = 14.88 min. f ddina area flow to street R;ESIDENlTIAL. (f_i - :1.0 Owl/acre) Decimal fraction soil. group A _= 1.000 Decimal fraction soil orouo B = 0.000 Decimalfraction soil group C = 0.000 Deci.mal fraction soil•orouo•D •= 0..000 SCS curve number for soil (AMC 2) __ 32.00 Pervious r ati.o( •1n) = 0.4000 Max loss rate(Fm)= 0. 391 (In/Hr) Rainfall intensity = _ . =';24 (In /Hr) for a 100.0 sear storm Effective runoff coefficient used for area.(total area with modified rational. method) (Q=KCIA) is C = 0.794 Subarea runoff = 5.563(CFS) for 480 (hac. ) Total runoff -• 11.. 402 (CFS) •Total area = 4 _'2. (Fic. ) Area averaged Fm value = • cy. 391. (In/Hr ) • Street flow at end of street = 1.1.402 (CFS) Half street flow at. end of street. = :1. 1. 402 (CFS) Death of flow = O. 4 a9 (Ft.. ) raaver-aoe vel. oci tv ,.. „ 950 (Ft/s) Flow width (from curb tc:wards crown)= 16.61 (Ft. ) End of computations, total studs area = 4.32 (Ac„ ) •The following f i oure, may be used for a unit hvdrooraoh study of the _same area. Note: -These •fi.oures do not consider reduced effective area effects caused by confluences in the rational eau.at i. on . •Area averaged pervious area fraction ((;o) -- 0.400. Area ayeraoed SCS curve number -•• 32.0 3an Bernardino Count,/ Rational Hydrology Program (Hydrology Manual. Date - (august 1 926) CIVILCF;I)D/CIVILDJESICN Engineering Software. (r.:) 1990 Version 2. f-"tr,ati Dural Hydrology Study Date:. 9/ 6/ 1 TR 16222 100 YEAR 16222B AREA **** ** ** Hydrology Study Control Information ********* . Rational hydrology study storm event Year is 100.0 0 Computed rainfall intensity: Storm voar• = 100.00 1 hour rainfall c:r = 1 „ 1•4•0 ( Ira. ) Slope used for rainfall i. ntensi ty curve b = 0.6000 Soil" antecedent moisture condition (AMC) =- .k. -1-••1--h-{--1....1--1_ •i--h• -F-F•-1--1--I--L..i....i_ a...t. _!••-1--1•...1.._L...�...i-•i--F••i-••F•-F•-1--1....1....1..-1--F-1-_i...i..-t•-h-1-.{...h-i...l...i_. f..�_.}...}..}.:h..F••i--I--4...�._L..1..!_.�.._�_..l--l-a....l--'r Process from Point/Station. 21..000 to Point/Station 22.000 **** INITIAL. AREA EVALUATION **** RESIDENTIAL (8 -••• 10 dwi /ac::r i ) De?cimal fraction soi.l. ar-•oup A = 1..000 Decimal fraction soi 1 group' B = c_a. 0[0 Decimal fraction soil group C = 0,.000 Decimal fraction soil group 1) = 0.000 CCU curve number ;or- ssoi 1 (AMC 2) = 32.00 Pervious rati.a(Ao) = 0.4000 Max loss rate: (Fm)= 0..391 (In/ Hr) Initial subarea data: Initial area flow distance = t 20.000(Ft. ) Too (of initial area) elevation = 59.400(Ft.. ) Bottom (o; initial area) elevation = 48.7.(00(Ft. ) Difference in elevation = 11. 100(Ft. ) Slope = 0.01790 s (!) _= 1.79 TC = k (0. .74) *E (length•: 3) / (elevation chino.) Y'0.'2 Initial area time of concentration •= 10.946 min. Rainfall intensity = 3.997(In/Hr) for a- 100.0 vear storm Effective runoff coe•ffi.dient used •fc:ir area (0 KCIA) is C =0.812 Subarea runoff -•• 4.900(CFS ) Total initial stream area -• :1..5i((Ac. ) Pervious area fraction = 0.4c_yc_I Initial area Fm value = 0. =;91. (In/Hr•.) -r-r-�•-r-r-t-+•-r•a--r-�--t--s--r-�--r-r+-s-a-•i--r-s-a--r•i--!-+•;--r-s--r•+-i--r-t-+-s-1--r••r••r-s--f•+-s--s-+-r•i--r•+•-r-r+-s--s-•-s--r-rf..}...r+a--s--s--r• ••r Process from Point/Station 22.000 to Point/Station :f * * * STREET FLOW TRAVEL TIME -r SUBAREA FLOW ADDITION * * * 75.000 a0 Top of street Segment elevation = 48.300 (Ft. End of street segment elevation = 41. 900 (Ft. ) Length of street segment = 40. 000 (Ft. ) Height of curb above °utter• •f 1 owl i ne - 6. 0 (In. ) Wi. dth of half street (curb to crown) •- 18. 000 (Ft. ) Distance from crown to crossfai l grade break = 16.000 (Ft. ) Slope from clutter to grade break (v/hz) = 0.020 Slope from orade break to crown (v/hz) = 0. 020 Street flow is on• I;1.l side(s) of the street Distance -from curb to property l i rte = 7. c=r >i_r (F�:. ) Slope from curb to property 1i.ne (v/ha:) = 0.020 Gutter width = 2.000(Ft. ) Gutter hike from -flow].ine = 2.000(I.n.) =lanni ng' s hI in Cutter = fir. 01.0 • Manni no' s N from nutter to grade break: = 0.0150 Manning•'s t .from grade break to crown = 0.01.50 Estimated mean flow rate at midpoint of street. = S. 356 (CFS) Depth of -flow 0.398(Ft. ) Average velocity = 4.247 (Ft/s) Street -flow hydraulics at midpoint of street. travel: Halfstr-eet flora width = 1. .568(Ft. ) Flow velocity -•- . 4.2(Ft/s) Travel time 7 .TC ::- 12.28 min. Adding area flow to street RESIDENTI(L. (S - 10 dew/acre) Deci. mal fraction Soli oroLto A = 1.000 Decimal fraction soi 1 aroup B = 0.000 Decimal fraction soil. group C _ 0.000 Decimal fraction soil orour-r D = 0.000 SCS curve number for soil (AMC 2) - -,2.00 Pervious ratio(Ao) _ 0.4000 Max loss rate(Fm)= 0. 39'1. (In/Hr) Rainfall. intensity = _. 30(In/Hr) for a 100.0 year storm Effective -runoff coefficient used for area. (total area with modified rational method) (t =KCIA) is C. = 0.806 Subarea runoff _ 6.039 (U—S) for 2130 (Ac-. ) Total runoff = 10. 9: 9 (CFS) Total. area = 3.64 (Ac:. ) Area averaged Fm value = 0. 9'1 (I n /Hr) Street flow at end of street = 10. 9' (cr-S) Halfstreet floes at end of street = :t0. 939(CFS) Depth of flow = 0.432(Ft. ) Average veloci.ty- -• •4,.461. (Ft/ss) Flow width (from curb towards crown)= 15.249(Ft. ) -r��i--�--r•t--r•�--r-t--r-�--�•-r-�••-r-r••r-�--r-r-r-r-r-r-r•-�--r-�--�-��-•�-••r-r-�•-r-r-r-r-��•-r-z--r..=_.�....r 3--r.r..r.r..�_.r-r•a--r••r-2--r-t-��r•a-•a--t--r-t--r-r-r•�- -t.. Process from Point/S'L.sti.on 23.000 to Point/Station 25.000 **** SUBAREA FLOW ADDITION '; h: ; RESIDE:NTlAl_(S — i.0 dwl./acre) Decimal fraction soil group to = 1.000 Decimal fraction soil orcauu R = c:y„ 000 1.)ecimal fraction soil group C = 0.000 Decimal fraction soil croup D = 0. 000 SCS curve number for soi. 1 (AMC 2) _ 32.00 Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)== 0.; 91 (ln/Hr) Time of concentration _ 12.28 min. Rainfall i. ntensi t ." = 3. 730 (In/Hr) for a 100.0 vear storm Effective runoff coefficient used for area. (total area with modified rational rnpi. -loci) (O 4 C:[fl) ,. C = 0.806 Subarea runoff =•• 7. v1 (CFS) for 00 (tic. ) Total runoff == 18. 452 (CFS) Total area =. . 14 (plc. ) Area averaoed Fm value = 0. 391. (1n/Hr ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 41.900(Ft., End of street segment elevation = 37.400(Ft.) Length of street segment = 440.000(Ft.) Height of curb above gutter flowline = 6.00n,> Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 7.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 20^300(CFS) Deothof flow = 0.579(Ft.) Average velocity = 3.921(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.93(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 3.92(Ft/s) Travel time = 1.87 min. TC = 14,15 min. Adding area flow to street RESIDENTIAL(8 — 10 dwl/acre) ' Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soilD = () 0O0 group . SCS curve number for soil(AMC 2) = 32.00 � Pervious ratio(An) = 0.4000/ Max loss rate(Fm)= 0.391(In/Hr) Rainfall intensitv = 3.426(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area.(total area with modified rational method)(Q=KCIA) is C = 0.797 Subarea runoff '= 1.579(CFS> for 1.230(Ac.) Total runoff = 20.131(CFS) Total area = 7.37(Ac.) ' Area averaged Fm value = 0.391(In/Hr) Street flow at and of street = 20.131(rFS) Half street flow at end of street = 20.131(CFS) Deoth of flow = 0.577(Ft.) ' Average velocity = 3.912(Ft/s) Warning: depth of flow exceeds top of curb Note: depth f flow exceeds top of street crown. Distance that curb overflow reaches into property = 3~86(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total studv area = 7.37 (Ac') The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational eouation. Area averaged pervious area fractidn(Ap) = 0.400 Area averaged SCS curve number = 32.0 Zan Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) .CIVILCADD/CIVILDESIGN Engineering Software. (c) 1990 Rational Hvdroloov Study . Date:i9/ 6/ 1 TRACT 16222 100 YEAR 16222C . . AREA C Version 2.3 *K******* Hydrology Study Control Information ** **.***** Rational hydrology study storm event year is Commuted rainfall intensity: Storm near = 100.00 1 hour rainfall o = Slope used for rainfall intensity ©curve b = Soil antecedent moisture condition (AMC) = 2 0. 100.0 1.440(In.) 6000 , z.._r-�.._t-•i--�..-r-r•+•_r.i...�...�..•�--r-r-t..-�....r-�.._i-•i--t--i_-r-;--�--t.-r-;.-i_.+•-:•a--r-s...�_.+...�..a-•j--t.._F..�...�....r..r-r•-r-r._�.-�_.�...i__�..-r._i-+_N..r.�_.r..r. j...��.•-r-�--�-+ Process from-Point/Station 31.000 to Point/Station 3'7.000 ***$ INITIAL AREA EVALUATION '{*** RESIDENTIAL (S •- 10 dwl /acr•e) Deci.rna].-fraction oi.1 ar-ouo A = 1.000 Decimal fraction soil croup 13 = 0.000 Decimal fraction soil gr-oun C .,: 0.. 000 Deci.rnal fraction soil group D = 0.000 SCS curve number- for soil(AMC 2) -•• 32.00 ' Pervious ratio(Ao) = 0.4000 Max loss rate;+(F-m)= 0.391. (In/Hr ) Initial subarea data Initial area flow distance 620.000(Ft. ) Too (of initial area) elevation .= : 9. 00(Ft_. ) Bottom (of initial area) elevation = 34.300(Ft. ) Difference in elevation 5. 000 (Ft:,, ) Slope = 0.00806 s (%)'-= 0.81 TC = I:: (0.ti 4) *E (length•''•:) / (elevation change) 70..2 • Initial area time of concentration = 12.838 min. Rainfall. intensity = 3.6.32(In/Hr) for a 100.0 :ear storm Effective runoff coefficient used •for area (O KCI:A) is C•==• 0.803 Subarea runoff = 5. 017 (CFS) Total initial stream area = 1. 2O(Ac. ) Pervious area fraction = 0.400 Initial .area Fm value = 0. 91. (In/Hir•) End of computations total study area = 1.72 (Ac„ ) The following figures may be used for a unit hvdrooraph study of the -same area. Note: These +:i. is ur'e s do not consi der reduced effective area effects caused by 'confluences in the rational equation. Area averaged oer-vi.ous area traction (AD) -• 0.400 Area averaged SCS Curve number = 32.0 San Bernardino Countv Rational Hvdrology Program (Hydrologv Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software. (c> 1990 Version 2.3 Rational Hydrologv Studv Date: 9/ 6/ 1 TRACT 16222 100 YEAR 16222D AREA D ********* Hvdrologv Studv Control Information Rational hydrologv studv storm event vear is 100.0 Comouted rainfall intensitv: Storm vear = 100.00 1 hour rainfall o = 1.440(In.) Slone used for rainfall intensitY curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 1---t..-r-c:...-...---i--_.4-a_-t-.i._ra-1-44...r-i... --.... 4-- •-r-r-s:1-4- ....i-1-4....h..r1--s.4....4i-_r-i-.l.._f...r..r..._........i.._f-•-......4.+..-1--t..+..r-; ++ Process from Poi nt/Station 41. „ 000 to Poi rrtiStati on 42. 00 i *'* INITIAL AREA EVALUATION *:**,:• RC:S]:DENTIAL.(S .- 10 th i /acre) Dec:i.mal fraction soil group A = 1.000 Decimal fraction soil group L:i - 0.000 Decimal fraction soi.1 ciroua L: 0„000 .Decimal fraction toil group. D = o. 000 SCS curve~ number for :oi 1 (i MIC n)• _. 2. i_rci Pervious rati. o (Rey) = 0. 4.000 Max 1 oss rate (Fm) = 0..:•T<91 (In/Hr ) initial.. subarea data; ini.ti.a]. area -flow. distance = 380.000(Ft. ) Toes (of initial area) elevation - •,.. i. 80u (F"I. ) Bottom (off ini.tial area) elevation 7,2.000(F-t. ) Difference in elevation •=.. • 3..800(Ft. ) Slone = 0.01000 s(%)= 1.00. TC = k (0.374) n: (1enoth`•`') / (elevation chance) :l^0.2 Initial. area time of concentration M 10.111 min.. Rainfall intensity- == .. 192(In/Hr-) for a 100.0 year storm L_++ecti ve•runo+•f coefficient used for area (Q KCIA) is 0 -... 0.816 Subarea runoff 1. f31;= (Cf=S) Total.initial stream area - Pervious area fraction =-•0.400 Initial area Fm value•= 0.391 (In/Hr). End off computations, total etudV area := 0.5.3 (Ac. ) The following figures•mav be clued••for a unit hydroar-aph study •off the same area. !Mote: i-he:rGe 'figures.. do not consider reduced off •f ec:ti ve area effects caused by can•f 1 uences in the ra1:.i oraal equation. Area averaged pervious area rac.t ion (Ao) = 0.400 Area averaged SCS curve number = 32.0 WILLDAN Serving Public Agencies March 26, 2002 Todd Miller City of Fontana 9353 Sierra Avenue Fontana, CA 92335-3528 650 Hospitality Lane, Suite 400 San Bernardino, California 92408 909/386-0200 fax 909/888-5107 www.willdan.com Re: TR 16222 Street, Sewer, Storm Drain and Hydrology/Hydraulics Improvement Plans Dear Todd: Willdan has completed the review of the street improvement plans for TR16222. We have determined that the plans are technically correct, meet the City's standards and design policies and therefore are ready for approval and signatures, except that the City is currently reviewing the sight distance and the County flood control district has not approved the storm drain plans. The construction estimate was previously approved on 1-15-02. The electronic file of the drawings is included with the plans. The GIS fee is to paid by the engineer. Please feel free to contact me if there are any questions I can answer for you regarding this project. Sincerely, Anne Schneider, PE Division Manager Attachments HYDROLOGY STUDY FOR TRACT NO. 16222 PREPARED BY: PHB ASSOC. & INC. 1620 S. GRAND AVE. GLENDORA, CA 91740 TEL : (626) 914-6256 FAX: (626) 914-6357 BERG 07 2- . OKERMAN, R.C.E. 42723 DA E 2.25.2002 TABLE OF CONTENTS GENERAL DESIGN CONCEPTS RUNOFF 4 STREET AND CATCH BASIN DESIGN S HYDRAULIC CALCULATION i CONCLUSION 7 REFERENCE CHART EXISTING HYDROLOGY CALCULATION 10-YEAR HYDROLOGY CALCULATION 10 100 YEAR HYDROLOGY CALCULATION 11 HYDROLOGY MAP 1 GENERAL THE PROJECT SITE IS LOCATED BETWEEN LIBERTY PKWY AND EAST ETIWANDA CREEK IN THE CITY OF FONTANA, COUNTY OF SAN BERNARDINO. THE AREA UNDER THIS STUDY IS APPROXIMATELY 14 ACRES. THE PROJECT SITE CONSISTS OF 91 SINGLE FAMILY HOUSES AND THE GENERAL TOPOGRAPHY OF THE ENTIRE SITE IS SLOPING TOWARDS SOUTHWEST WITH AN AVERAGE RATE 1.4 %. THERE IS A EXISTING 30" PIPE AND DROP INLET ON SITE 2 DESIGN CONCEPTS BEFORE DEVELOP, THE MOST OF WATER FROM PROJECT SITE WILL FLOW INTO WEST LIBERTY PKWY , SEE EXISTING HYDROLOGY MAP. SO THERE IS NO IMPACT TO DOWN STREAM DRAINAGE SYSTEM. FOR LOT 1 AND LOT 2 WILL DRAIN INTO THE GUTTER OF WEST LIBERTY PARKWAY THROUGH 2 SEPARATE PARKWAY DRAIN. AFTER DEVELOPMENT, THE MOST OF STORM WATER FROM THE SITE WILL FLOW SOUTHWARD THROUGH PROPOSED STREET AND THEN FLOW INTO TWO CATCH BASINS THEN DRAIN INTO EAST ETIWANDA CREEK.THRU EXISTING 30" PIPE. THE REST OF STORM WATER WILL DRAIN INTO LIBERTY PKWY . 3. RUNOFF SEE ATTACHED HYDROLOGY MAP AND CIVILCADD VERSION 2.7 RATIONAL HYDROLOGY CALULATIONS THE PROJECT SITE IS SUBDIVIDED INTO 4 SUBAREAS. THE STORM WATER FROM AREA "A" AND "B" WILL FLOW INTO PROPOSED CATCH BASIN AND DRAIN INTO EAST ETIWANDA CREEK. THE STORM WATER FROM AREA "C" WILL DRAIN INTO LIBERTY PKWY THROUGH STREET GUTTER. THE STORM WATER FROM AREA "D"( LOT 1 AND LOT 2) WILL DRAIN INTO LIBERTY PKWY THROUGH TWO SEPARATE 3" PVC CURB DRAIN. TOTAL AREA = 14 AC BEFORE DEVELOPMENT Q 100 = 1740 CFS Q10= 9.1 CFS AFTER DEVELOPMENT THE ACREAGE AND RUNOFF OF EACH SUBAREA WERE CALCULATED AND SUMMARIZED AS FOLLOWS: AREA ACREAGE 'RUNOFF (CFS) 10 YEAR 100 YEAR A 4.32 7.1 10.8 B 7.37 12.6 19.1 C 1.72 3.2 4.8 D 0.53 1.2 1.7 STREET CAPACITY AND CATCH BASIN DESIGN 1) STREET CAPACITY See attached 10 year and 100 year calculations by CivilcaddlCividdesign.1990 Version 2.3 a) At point 12 ( see hydrology map ) For Q10=7.1 CES Max. Water Surface = 0.44 Feet Less than 0.50 (Lower than street top of curb) For Q 100=10.8 CFS Max. Water Surface = 0.50 Feet Less than 0.64 (Lower than street right-of-way) OK b) At point 26 ( see hydrology map ) For Q10 = 12.6 CFS Max. Water Surface = 0.50 Feet (equal to top of curb) For Q100 = 19.1 CFS Max. Water Surface = 0.57 Feet Less than 0.64 (Lower than street right-of-way) OK 2) CATCH BASIN DESIGN a) CB No. 1 Street Flow Depth = 0.57 Feet for Q 100=19.1 CFS C.B. W=21 Feet w / 4" Gutter Depression Street slope 1.2% use S = 1.0% 0.57 + 0.33 (local depression) = 0.90 Feet @ C.B. use L.A. CO. FLOOD CONTROL DIST. HYDRAULIC DESIGN MANUAL Chart D-10B, use 0.67 for conservative calc Max. Q into Catch Basin = 24 CFS >19.1 CFS OK MIN. V-DEPTH FROM CHART D-31 V=4.2feet V design = 8.74 feet O.K. b) CB No. 2 Street Flow Depth = 0.46 Feet for Q 100 = 10.8 CFS C.B. W=14 Feet w / 4" Gutter Depression Street slope 0.88% use s =1.0 % 0.50 + 0.33 (local depression) = 0.83 Feet @ C.B. use L.A. CO. FLOOD CONTROL DIST. HYDRAULIC DESIGN MANUAL From Chart D-10B, use 0.67 for conservative calc Max., Q into Catcli,Basin,.= 17 CFS >10.8 CFS OK MIN. V-DEPTH FROM CHART D-31 V = 3.5 feet V design = 5.50 feet O.K. **********,*****'************k*****:* **;k*:*: , **************:******4:****fit*****: * * * * * * STREET FLOW CALCULATIONS 'k.:k * *:t * *********************: ********** *****.�'�Ak**7�fit: *'*** * ****************m*'** OF FLOW GIVEN!: .012000 (Ft. /Ft.) = 1.2000 "/. 12„60 Cubic: Feet./Second treat Slone (Ft./Ft.) _ .012( Manninas :"n" value for :street = .015 ur-b Height '(In.) = 6. Street;: Ha`1>f wi dth (Ft.) = 18.00 y.1:03:stance From Crown to Crossfal l Grade Break (Ft.) = 16.50 Si•aoa: from Gutter to Grade Break (Ft. /Ft.) = .020 Tone -From Grade Break to Crown (Ft./Ft.) __ 020 II umberof;'Halfstreets Carrying Runoff = 1ni stance -from curb to property line (Ft.) = 7.00. Slope:. -From curb to property 1 i.ne . (Ft.•/ Ft.) :- .020 Gutter. width (Ft.) = 1.500 Gutter` hike from flowline (In.) = 2.000 anninos "n" value for nutter and sidewall. = .01.3 epth of flow = .498 (Ft.) ver.aoe Velocity = 3.74 (Ft./Sec.) reetflow Hydraulics alf,str. eet Flow . Width (Ft.) _= 18.00 1ot. Velocity(Ft. /Sec.) _ 3. 9 ejth *Vel oc i tv = 1.64 sal cul ated i.f l ow rate of total street channel = 12.60 (CFS ) low .rate i n .gutter = 3.37 (CFS) elocity of ;flow in gutter and sidewalk area = 5.736 (Ft./Sec.) V.'er:aae ,velocity of total street channel = =.730 (Ft./Sec.), . � �� � �� � �� Y � �� 'n / w� ��O �� � /^ / ~ FCALCULATIONS * * 'STRE T FLOW �..= ,`,' /'�� . ` ' 1p 10'� ' Feet '. Cub zc e econd nn !,.ml.-,NalUe for street pror3e'rtv line (Ft.) "n'-value for cutter and (Ft') =`16.50 .020 '.,020 � 7.00 .020 .013 EXCEEDS TOP OF CURB ow reaches into propertv is low � ` ' ^ Hvdraulics'': ^'e� 'Flow' ^�Width(Ft ) = 18^ 00 tv(Ft./Sec.) = 4.14 'total street --channel = 19.10 (CFS) putter � `=> 3. 04 (CFS) ` l'owin gutter Arid sidewalk area3.634 (Ft./Sefc.) of total street channel = 4.047 (Ft./Sec.) ' ^ ` ^ 3.348 (Ft.) C3#2 Q3o=7.IcPS. ***********4********:**:**** *****:****:* :**: ********************* :>******** ******:.STREET FLOW CALCULATIONS ***.'** ******* ******* c**At********* k*****::*X;***wok :****4**********34********** LCULATE DEPTH OF FLOW GIVEN: annel . Slape "_ 008800 (Ft./FL.) - 80Cx i Vprt F).ow' Rate= 7.10 Cubic Feet/Second c*:*• STREET FLOW *** • -reef-Slope (Ft./Ft:) = C" 88 anna nos: "n" Value for street = .015 Ur.-.b.--Height (In.) = 6. reet 'Halfwidth , (Ft.) = 18.00 i stance From Crown to Crossf al l Grade Eirea3:: (Ft .) = 16.50 1' ire from . -Gutter to.Grade Break (Ft./Ft.) _ . 20 hone from'Grade Breath; to Crown (Ft. /Ft.) -_ .020 umber <of 3Ha1 fstreets ' Carrvi no Runoff = 1 i51 ante from curb to property line (Ft.) = 7.00 loge `from curb to property line ,(Ft./Ft.) _ .020 Utter wi-dth (Ft.) = 1. 500 , Utter --hike from flowline (In.) _ '.00 0 anninas " n" value for gutter and si dewol I:: -• . i spit of. flow = .441 (Ft.) averPape ", Vel oci tv = 2.93 (Ft./Sec., reetf low:'Hydraulics al fstreet Flow Wi d•th (Ft.) = 15. :"; ow' Velocitv(Ft. /Sec.) _ 2.47 epth*Velocity .= 1.09 ll Calculated flow' rate of total. stree•t-. channel. = 7.10 (CFS) Flow rate in gutter = 2.44 (CFS) Velocity of flow in gutter and sidewalk area = 4.538 (Ft./Sec.) veraoe velocity of total street channel. _ 2.931 (Ft./Sec. i flow = .44 Feet .7 "W" C g 4 2. Q too=toAcRs ******* ******** c************* :***:: *******' *************oo**: *:****:*4 ****`K* ;'STREET FLOW CALCULATIONS ****** ************************************* t:***:„k** .******fit*fir***************** LCULATE . DEPTH OF FLOW GIVEN: annel `ySlope =- . cji>8800 (Ft./Ft.) = .8800 '/ iven ,Flow;,Rate'= 10.80 Cubic Feet/Second •A** STREET FLOW *** kr pet.,:S1'oiae .'`(Ft'.'/Ft.) = .0088 anninos. "r0 value for street = .015 ur.b Height' ; (In.) = b. Strcet HaHwidth (Ft.) = 18.00 istance From :Crown to:Crossfall Grade Break (Ft.) = 16.50 qoe From :Gutter, , to . Grade Break (Ft./Ft.) = .020 oc►e--,4r=--om Grade Break to Crown (Ft./Ft.) = .020 lumber 'of' Hal {streets Carryi nc7 Runoff = 1 instance from `curb to property line (Ft.) = 7t) l�ooe .f.r.om curb to property line' (Ft. /Ft.) _ , 2C.f utterr.wi`dth (Ft.) = 1:500 utter'hi.ke' f rom f l owl i ne (In.) = 21.000 anninas'"n" value for gutter and sidewalk = .013 epth'of f.low = .498 (Ft.) `,AverapeVelocity = 3.20 (Ft./Sec.) rtieetfrow s;Hydraulics , e alfst'reet:'Flow Width (Ft.) = 18.00 `ow .Vel'ocity (Ft. /Sec.) = 2.81 epth *Vel oci:ty -._ 1.40 a1 cul ated flow rate of total street channel. = 10.80 (CFS) ow rate:in gutter- _ 3.06 (CFI;) elocity' of;l;flow in gutter and sidewalk area = 4.913 (Ft./Sec.) veraoe evelocity of total street channel = 7...202 (Ft./Sec.) 0 0 0` 1— z DEPRESSIO (a�IGiGG1l1!![lill[IlYlff_e l'!111:[i[fli{i klElEiiNllil.... ii(Hliill! Np/0��![[M[]INIIt111MM'IMM1�1[[Y[I�tt„11/�W„:YMI[MMIIt1/1N111� - 10 50 ---__.'�i�!llll lmaptimpirmatinggimp 40 rrts uwwsarnl%wsMiiiw":iriiliiyei iiiwraw. s • EANN IIIMIu11.W rM,y 11C11111lM11<iBM11Zit .i6 .,%3113 1' .Irnrl..lrV.'.t .a.ur.1r0 • n uiuinilwwumiuwnvmuAnw _t.. rn.waruM 11.uu1111•.WI..w.rn,VAlumru.ruUIW/./ 1 • V I 'API • 20 — ......nw,l:::w .-.'MMI AM.II....II.II..r. nt.M n. 1. 1. u, '. wu.u".=1n nI .. gt1::lll.plt1111.1111.1u.. rnlrwwllle Y/11V.u.ILrA111.1r111111..A1.u...1111111.1111111ni.. r....l... .ro VL1/r11//111111111111TA.r/11.111111na11111111u. YIILIIIanN.: I • 1111 11. 11111111 1 ..2 . 3 .4 A .1 :7 .t .1 1.0 GUTTER FLOW DEPTH — D (FEET) moils. Mow rlooti mntosi District: 10 1 s z GUTTER DEP_RESSlO .A..11� ttil.•••••:tiil: :Utt:.tltS.n�Y In 21121W111ni{IiItN{iieL111tii9 rriseNEE: 110ii5l5 M•tttli110W1 1511Y s..a::nut:ntrESiic»!iiliriiiriiiKi[e 9iiiii�w:itniwci[inwuntnnei -Hill 1111/1111 Irli11i01 ......1.L-u.ur:l=II.IIIIl11IIY4.atY so 50 • i01±lM1111lr1t U 40 m_--....._...._.. x 30 20 o 1• —nma• .•...I.Iu..11111"1'n.U.u...............,Y I••••,/MI.114,1111011.11.111 Y'iIW11.114MIN .. . Q snowman/in Y •wNurnnu.....nt•wuu11V111UA11U.J......./uulu1111nw • „ ruM.Wmm�u•Wu•umUhIuhnloxwnunrmnronmo MI MI wunnu 0 wN.rnY I.IIIIIIurlul....l.nwlnllral11111UAo...l Illulo.. YWLY..u....u1w1unt111111111oo.u....rlllrul1111VI11.., 'n.aln.. I W.Il11a'.41, 0 1— n .IYIr.YiUUU ! San•t tr .I.lr 1111/. ...........n.l.. 111nrn...,I....•..11- ... 91u111111111n'. IfhIIIIR.V 111.1...r� 11111111111111111wr 11111111111111/111111a..u.. II.1111.II■ . 11 11 11 1 1111 1 J 11111111111111V 1.1111•.11111111111111 111 III 1111 10 1 3 .4 3 .1 .7 J1 .1 1.0 GUTTER FLOW DEPTH — D (FEET) . NOTE: Curves between D= 0:67' and 1.0' are not from model test data and will be revised in the future when additional model test data are available. 0` - . r6UT,TER"i' DEPRESSI W.[.r'•nwa=:3t.1ona 1Cn.An ux::.n.SY.w..... i1NNILtittliMlliilM Mllil!}NRiena..... MRi'E!!llilliiiiiltiKNii11r1!!i lMBiilillriililiRll!l11111 fi8tiil!€hill htm.ii.=!!i111i1MI: 1111 ...1111 •Illy' n1'(hrr 1 r5 it f 1 #.I 11 ljr 1t A '• its• • ij! I1'1. I" .IjII �I rJi I f; lI ` 1 • �• A IDS VA1 Ilk 1I1 1 I 4 111 1 1.:7III II ',k 1;111 ki: 1 IIlj I 1 I I ' I J .2 - 3 '.4 A .t .7 A 41 t0 GUTTER FLOW DEPTH-0 (FEET) • 30 I0 1 1 CURB OPENING CATCH BASIN CAPACITIES STREET SLOPE Y .01 - 0 -10 B .a:• . -3. 000111111110101011 111111111111111011111111111111111,01111111111101111 l�I i1 11"111111111111111100001 11111111111111 All. 1 0111111•4111 11111111 1111111 II 111�ii1I1ifl�,m�i . milmo iill I trdiiii 1 I V— DEPTH (Feet) Los Angeles County Flood Control District CATCH BASIN V-DEPTH 30 R.G. P w. S. P• G1 000. Oci 12 27. c)t:) 1 f.23+4. 1.'2 064.uo 1 ^28. '2 i . 01:: .00 .00 0_ 13:3 281228. 5.2 1 .013 .00 0 '1 :4'.''28122 8.53 1 x .. t_i1' i t:). ': 1228. 91. 47..3.. 00 00 0 16C�.'b2i.228, b1 ! .013 :?t) .00 o 178.`331228.66 1 .01'_ 41:J. C)i_) .00 0 181 9612 29. 60 1 ► i 1.:: . �:)t"� 00 t� 181.`.961228. 68 181 `:.961228. 68 3 . 0.00 2.:50 0 00 2.00 0 .00 14.00 19.1 .0 h.00 it:' ...*)0 .00 .00 .00 .00 . t:);.. •7). I.:8 .00 .00 0 '.:)t.) TRACT 16222 FILE 16222.51SF JL INVERT.:```DEPTH H.S. ELEV OF FLOW ELEV F0515F CD Vers 2.2 WATER SURFACE PROFILE LISTING 16222.WSF Study Date: 2-25- 2 Time: 16:3050. PAGE VEL i+'EL ENERGY SUPER CRITICAL HOT/ EASE/ IL 110 AVEFR HEAD GRD.EL. ELEV DEF'TI DIA ID 11O. FIEF. /FLEW SD 3F AVE HF 11OR11 DEPTH • ZR t1ltti#!t"iittt#tfttlttitttU ttf#tfti#i#ttltitltttttittttfl.tlllfittltttitltllttf!llttitttitifltt.ltlltifttlti.tllffi!!E!t!llftlltlll 000.00 UNCT STR -.005314 ; 4 1.260 . .. .00 27.9 6.+:9 .376 1235.016 .00 1.964 .2.50• .00 .00 0 .f .005314 .37 2.500 .00 133 28.";1228,52' 6.308 .1234.878 29.9 6.09 .576 :775.404 .00 1.864 2.50 .00 .90 0 .0 .00374: 0.00 .0( 6.818 1235.348 19.1 3.89 .275 1735.583 .09 1.482 7.50 .00 .0r. 0 .0 .0021E8 .06 1.761 .00 19.1 . 3.89 .275 1235.610 .00 1,.482 „ 2.50 .00 .00 0 .0 .00716E .0t 1.81: .00 1228.66 6.818 1235.478 19.1 3.87 .235 1235.713 .00 1.487 2.30 .00 .00 9 .9 .00216E .01 1.433 .00 19.1 3.89 .235 1235.721 .0.; 1.487 2.50 .00 .00 0 .0 1227.00 7.120 1234.120 29.9 6.09 .57; :2:4.676 .00 1.264 2.50 .00 .00 .02062 .00289 .01001 3.b3 .00551 1181.96 1228.68 `WALL EXIT 1181.96 1228.68 6.806 1235.486 1235.485 19.1 ti . r.33:420 ,00 2 .0( 14..00 9.69 .00 0 00 C�C!122B : 01 251'228.91. .4 °°'k 8512 60 ^ L007.11101231. 78 10O7 .101231. 78 ` 3 l 4 .0 . 00 .. 50 0 •00 c 00i. 4. 00 10 8 .0 R.C. W.S.P. �.,. 5 «� 5 • 00 .• c ic:! 00 . 00 5..00 .t_��; . 0c) . (11.:! r(,515c Ch Ver5 WATER SUFFALE FRJFIL E. UI3T11I9 File: 1622214.1a5F Sludv D;te: 2-25- 2 Time: I6:56:1t TRACT 16222 FILE 16222B.WSF JL PAGE INVERT DEPTH W.S. D '!EL ':E. :'NERDY TIFE CRITICAL HOW BATE/ 'IL 115 W"r%F ELEV OF FLOW ELEV HEAD GP.U.EL. ELEV DEPTH DIA ID NC. FIFR L/ELEN 50:'SF AVE HE !BORN DEPTH Ir rv##t#ttttttlt#tltt#ttt#tttttttlttkttlttlltttllllktll!!tklttltt.t!llitlttlit!!illtttltt!!#tkt!llt.tlt!!!!t!1l1k!!!!t!!ltttlttiitlltt► 10.8 3.44 .194 1:35. 533 .09 1.179 7.00 .00 .01 0 .0 . A0227? ".l. D •. 40C` 1228.91 6.443 1235.353 10.E 3.44 .185 1735.536 .00 1.178. 7.00 .00 .00 0 .0 .0227E .01 .350 .►:( 04 85, 1230.68 4.681 1235.361 10.8 3.44 .1E4 1235.514 .00 1.178 7.00 00277? .350 .0 10.8 .3-'4 .10d 1235.850 .00 1.113 2.OD .00. .00 4 .0 1007.10 1231.7E 3.587 1135.367 :'!.8 .05 1235. 7: .00 .473 14.00 5.50 .90 C 6, CONCLUSION: AFTER ANALYSIS OF 10 AND 100 YEAR EVENT STORMS, THIS STUDY FINDS THERE IS ADEQUATE STREET CAPACITY WITH 6" CURB AND GUTTER AND CATCH BASINS AS SHOWN ON THE ATTACHED HYDROLOGY MAP. 8. ivonfiestArg ®� - =�__-=ue a0'.—-- nin ggn a�cSggffla 0sgal� E gguaggrigogiomm-gfflomplEmEggEsom 1111-NNIONZERIEERNIERIEMOINEMEI NETI.-:-REMEr.E_EMM r-_.=0rw_�I._..M_M.M1W�1:=..=...MM�.111wM•�. Y�.M� ._._ ��M.M 1M/I1M�..1r w•�-../W., *GI: rr•�`- w�M..� �1M.�MM.�.I �IMM/Y.MY.11Y..t11 M4�1�.11���.MINMMMrt- 1.1.M1M/�11 I.OI.�M�.rM1 C�1Y- = .•=jt*. M�w��� Ir1.Y1-1i/�M•/[Mt�Mf. MMMIIiw..ee .MIi/YC�111 rrrr M.✓•rr..MYMY_.... e• Cz �F-3� � : _.i3L 'T^ ::: -- ---_ --^sex �c� i r �-• C w•.-s= . - --z-: __ ____.y :r: =- ==.= : - =�. >w M1i.••••M.MM"�M i.•w-� oW=.. �...Mr.�..•�: Ai1ir MM_16 MN NO :Y0, W... ir...:--•r..' .-..M.M �.� :�:� .�-•r:M •�M�•.�r.�..•..�-Y.-.Mr•�MM•n•_•r••Y.�•ma.•YMNM_Y..wM.rw••ram• �••� OM.M.•r•1rw'`.M� MMI= boo. •M.M IMY.M-IMMM-MY•••-.MM..M... MMMMMM•MM.•.Y.Y 1.-I MI M�M�Mw MM•r.••M>••Y•.:., M•r _nM••I-MMM .w.. M.M •-.IM.MM•I•M-MM••••MI•MI.I�.�M..M•MM....-••.••OM, YMI MI-MMM1w nn.w.•• MMM MM. \I••MI M••••YM-M.. •MMM•Y•M • •YY -••IY.MYYIMMI•••MM•M•M.....••IYM.YMI•M.M.II••••IMM.1/_MIM MMMM• M•1•• N•• WPM 1• 0111.. •.•M.MIn�•: wI•.!�•. M•Y•r•MMM-M/.•r•1I1.1MNMI MM/M-w•••MIS 1{••I1W1 f•M• 1MI�•.M•��YM.•MNM•..I•••1►�r.M11•I � MMY I.•M••.M1MIM-M•I/MMMM••1�M-••MMM••.sae 1.1MM1AYI MI MI MImMYM1w w/f •1_fM Y•.I1.•.1 tam M\"1M••Mw1I.•M11.MIN iMR• I.MII MMM 11�I IM111 M11.M•IaMII•MM� HMI IMMMMMI NMI MMien 11111I•M MMIffIN MI I M- LI, MIIMMI PUMA ••111 MMM non MO f1•II11MIM1M MMIIMf1 MIMMM ipee n,m rn M�.Iwas M M MM mow M Y Reams saw 1MMM IIIMINM111 se•'. /M/I I/MI MMI IInum Semnew MOGI MIN MtM MIYIIM IMM non um MfM MIM1MM 11Mn f11MfMM LLM NIM ism MIMMIM IW11NU1..11 M no M1MfIMm.. noes ma memos' 11Mfa*/a{IMI MaMOMMU M111MMI MMI MIN HUM! ■NoesI MO NMI 111MISM ■pf 111MM,711MRMMtM11•MMMMotMONM1tf,u If enu. gmMM W/MM it MIM NN M MI IMPI MMMM MelI/I111M11MMN M• MMM■IMes MM/11M11 SI MrMISIIM I11M:�/IItMMMIMM moo ma MIMMIM ommar am momo m lassi M ummeM IM ltus umtwo maNero mal■ eau minim nIMIIIutlul a net I emisb.mn11Mmar nue en* I/tNNM1 Nplmlttllamoliseuemlimam n1M>f11,mime worm Num umare1 mairm MmlRtllumuo/t111M111 nb.71moan erviti.1•7111111 Is/1mu1m111Mt//t/nisnti 111M0m n nsase enitPtmUmmmt:l umentnIu11t1111mtflI 1W1//nt1/1uw1e111Mr. anuii1Nlll^l//.•s m u m/mwmmlmnenu/tttl!•uminmemMlnnmu t1umemsstllut_ H>•Ienimunu:n_uNl l:umiititimoss ma•.`%AMMAMMelrlm .-:. = W.----: = w::::::-:= -- ••••• ---�: a.•� , ,•em•E•o •----•••-'•- ••-M----w•�um. see N 5eeM•Y•/ MMM�N M w�• ::= 11 1••i l•nlnl • �Nri MM. M.IM0,M M �f• nal.• 1M.. MOW I••M MrM-w•M •MM..••• MON wN w.M- 1, 1Mwietwoo o1 MmM::•NM•MM • new 'mason errs seam mew •M/w1:::•.•� M MIMIMMMIWII / �•• MY•M.1 ••M�� NNW MIS• M•MIM.M am MM• ••M/•UM1YM•M••M•MMM.1/M.1•YM..M•MMi MI M WM••• ri•r.Y M I I•YM•.MIM SS M••/.MMM••MY••.•.1 M.••M1•MM.•YM ......---s • --- •.M... -=�== =:.11::- _..._. _^ .= =ice--_ - - .. .. =---- �.» -. " ==••= ==••••••••= . MM--t� •^.M=� ::�i--�,.. u: •: �..•.•-.i•.•�•..•��.w •M .-.M-r... w...n�M•..wM •.www..rM.•. w-• .w-w-. NMI."... MIN. 011.40,04 ON MEd MN IM•IY•MfMM MM•..•: M•111.M • 1..'.•~•Z.":Z . ti YM M N.M1•= Mf m1MM M•MM.•.••MMM.M••IIIIMIIM.•MM.••••f.•.• MM•�1 M•MM•••ma f••MMIf-• rM1.MM1I•M �..••. ••.. a.•n Ms..• MM•• 1•M M1.1.•••1nM-n•.n•1•ff1MIIII•M n1IIIYM•w•f/M•I•.nl M•M .M••••MIME. -M MMIrMf MMM•II•• \•M y1lf►• Mel ••Mf.. •MM•N...IY 11N1••MIIMY M-•1•NYM•/MIM/.IMI/MMw•••M•InH M••I M.11 moles MiIImo -M rM••1rM•-•YYM••4�II•�'\../•• •••M.•nw•��•MMMuw.M• Y.M•M••M.M MMIM.M•rM f.M•MI U Mena SOWN •MM••M• woe g=-•-c sM-�:�m :s—r: Es. Cam.BEM =� �: .....=:=� -:Ma= 'M''a ri:r -.. .ate- :-M. -...Pj •».r•-••� _MINII-M•MMM� MIMI MEMO••-• ��i•••_.1• Mr •M•�YI.I MM----•MM�M�-•..wr. �I•'�•.M�•.♦. ` ��•• _M•Yf (.•MM. .:ol .M IMM.•MI ��_.MMMIM•••M•aMM•MriM.•� -�M}a••��•f�f•1M�1I•NMMMI•-•1IIMiM••fl•fI••.��•}M1•M1MM�IwYM =. '.. �Ml•• ".1�-.•� ••►Mf•1rI511= .•�1\�'.�•1f�.•111•1f= :••N.1=::IMMMIi•�.:•I..• •11•i •M•• M�yYM•11�.�•••.M=�1Ell�-IM. a Ml.•f•�1�/-�•�11.-��1=1�M/11M••�•�1•��•�1M�M1lM•.•�•1�.1M1•�=MMMM/MM.•••MI•M/•�1�I•f11fNM4151;6ZV.••.E..•N•�1•Mft•/••"•w••••I.M.•�•M.1•� ••.•• fti .imi SA arm �MaY1Y11oa1i111M�1/ misuomm am num men Nun MaIeM�MMI IM>./es=MN MINIM PI /IM.MMMYMMMM�MMOO � {I1M11ogM1M��Milum s�MtL.-4,in ►�►,...,1 �ryt 1101121112 llftf„Mel WM llulni �1 Ba lunammusimi1sirisu 111n11uni imentlina room mmuissonimmunalsaatrimsuseueisionanniniaulm11MM1meons limin �% tm/•%n IIIeMm111mt1111111 i mmi = per me es 1 111~Im ve-: �h snlnte�WtIttum{t1 MMIMINIMM MI 1 LOU M1NII,MM1M MM11W nu I III WIIIIIMWmm■ nY11//1 MINIIIMMOI W1 tiMI. - ISIn1N MUM 6T 5.910 PO 30 STORM DURATION (MINUTES) I0 DESIGN STORM FREQUENCY =� YEARS ONE HOUR POINT RAINFALL =_ • ' INCHES LOG -LOG SLOPE = 6° PROJECT LOCATION = FONTANA n_a FIGURE-0=1--' T4N - T - - • T3N T2N -4 MIN I,,,„.1- �r r c. - 7:• fir,': P liWtho It 5� �! !'ri ' - • -'- • L 4:-- - • , -t ir:_:: 7.'t-•:.% r.tt)77:1711PL*1-74:71 -141152714cilliiirsf ...r° italag i i ( I ),iM. _ Ida, IIPIL.w.w- - pl4trivr, -<,-.-, BilWil-W6111.1141MR111.1141r. FONTAN 1:1dGIE Irani 4ffglillftl _atR1�„'� TON i42 �m�mOIliAli �.:..INN - ..... . E-L —67 RWIPIF-42W ===11:11'Elia- WNW, -iwasiTtri"fi N111H�111 rs�'st! ems► - ... M t locciig nlisi AE„igilLie T2S - _ 4- - 4- - j 11w,�+ _. _ r.w�- R4W ! t 1__ T3S- - t-17_.. 1 R TW R6 RS TE SAN BERNARDINO COUNTY HYDROLOGY MANUAL REDUCED DRAWING SCALE I"= 4 MILES ' i[ecwm i'• Isou cS ►MCIPITATION ANON[$) B-11 T ;.TIN •. FIGURE-9-3 IIIIIIII MI Sill I I 1 I I • i I•'1=_ • T'= 1;' ' ` -•tee aii n hi -S'egiff'r4S4���..mumang EZap -.midi111MMILIMM111111111114AutFiDI =7-MMTMAIIIMIEM agi RighTM41..„ atiormanguirraimw � I'' �ERSIDE ` '� ;��• —. �� 3 .4Raw Irealklaihk 01.411 TIS - e i PROJECT SITE SAN BERNARDINO. COUNTY HYDROLOGY MANUAL REDUCED DRAWING. SCALE I": ! 4 MILES' CasjiL e ISOLINES netClMTATlON ; INcHZS) B-12 1 SAN OO CCQ CONTROL DISSTTRI�CT' VALLEY AREA ;• bOIfttTAL! Ya.-100 YEAR•I•HOUR ..®a ILlat...NCULILAILS!.w$- Oat ..U11i 11.11 MG ism\ Id Olt ..mar' FIGURE 13-4.1 N BERNAROINCY COU Flo -'!MA :. OUTHWEST4 ales MIN a; (1) LIMITATIONS] I. Maximum length =1000 Feet TC 2. Maximum aroa = 10 Acres 5 (min) K' Undeveloped Good Cover Undeveloped Fair Cover Undeveloped Poor Cover Single ''Family (3-7 DU/AC) Commercial a` H 300 200 logo e0 ea 40 30 20 10 e 6 4 3 2 6 7 8 • 9 10 I 12 r• n c to 13 .e `o e �14 '- .3 t,2� 15 • • 16 E 17 18 Z 19 KEY . 20 L-H-Tc-K-Tc' G 25 S PI pevelopment 80- Apartment 75 - Mobile Home 65- Condominium 60- Single Famlly-5,000 ft2 Lot 40- Single Famliy-I/4 Acre Lot 20- Single Family- I Acre. Lot 10 - Single Family- 21/2 Acre Lot EXAMPLE (I) La 550', H= 5.0', Ks Single Family (5-7 DU/AC) Development, Tc=I2.6 min. (2) L' SSO', He 5.0', K= Commercial Development, Tc=9.7 min. BERNARDINO COUNTY HYDROLOGY MANUAL 18.9 90 • u • 0 30 35 40 w 0 • TIME OF CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA . Flaunt It EXISTING HYDROLOGY CALCULATION r r r 1 Elernardi no County Rational Hvdrol oav P'rooram (Hvdrol c,av Manual Date Auoust 1986 IVILCADD/CIVILDESIGN Enoi.neerino Software. (c) 1990 .Version 2.3 Rational Hvdrol.00v Study Date: 91 6/ 1 1 b222 10;' YEAR 'EXST.CONDITION *****.*fit** Hvdroloov Study Control Information ********>( t tati'onal hvdrol oov study storm event Year is 10.0 omouted rainfall intensity: Sto-rm'.vear = 10.00 1 hour rainfall o = O. 980 (In'. ) looe.`used for rainfall intensity curvy, b = rr. 6000 oilantecedent moisture condition (AMC) _ 2 :-F-F4-4-F-1 +++-I-+-h•1--I-+-1- 1-+-F-H--F-h-F•-} 1--F•-F+-1-+++-1-+•4•-I-+•i••-1-1-•1-±-I-+++-I-4+-F 1-+-F•+-F)-+4•-1-F--h-F•i•-I••-1--h• racessfrom Point/Station 1.000 to Point/Station. 2.000 ***;'INI.T.IAL AREA EVALUATION **** UNDEVELOPED' (Door cover) subarea Deci ma1 fraction soil group A = 1.000 Decimal fraction soil .group Ec _. 0,0000 Decimal fraction soil group C = 0.000 -Decimal fraction soil group D = 0.000 SCS .curve number for soil (AMC 2) = 67.00 P'ervi bus ratio (AD) = 1.0000 Max loss rat(Fm) = 0. 578 (In/Hr ) .Initial.. subarea data: Initial area flow distance = 480.000(Ft. ) ,Too;::(of initial area) elevation = 62.000(Ft. ) Bottom (of initial area)_ elevation = 55.000(Ft. ) Difrf er. ence i n el evat i. on = 7. 000 (Ft . ) Slone; -. 0.01458 s(%)= 1.46 TC;' k(0.52 5) *C (l.ength^3) / (elevation change) ]•'0.2 .Init+ial.;area, time of concentration = 14.451 min. Rai nfal l _intensity = 2,i.302 (In!Hr) for a. 10. 0 . vear storm Effective runoff coeffti.cient used for area (Cl=t.:CIA) is C _ 0.674 Subarea runoff = 2.948(CFS) . Totanitial stream area = 1 .9UO (Ac . ) ' F'ervi ©us . area fraction = 1.000 Initial ,area Fm value = U.578(In/Hr) c-h•#•-h•4••F-i-•hi-+-{-•{--h,i•=h-hi•�i--F•i--F•-h4-h-h-h�{--hi--I--h•i-•i••h•i-i--h-h•i-•hi--h-h-h•f--h•hi--h-h-h•h-hi--h-h-1-•�•-h-h-I--I-•i--h++i-i..{-•{--t• 'rocess from Point/Station 2.000 to Point/Station 3.000 *** .;IMPROVED CHANNEL TRAVEL TIME ***•% ostream ooint elevation = 55.00(Ft. ) ownstr.eam ooint elevation = 30.00(Ft. ) Channel` lenoth thru subarea = 1800.00(Ft. ) Channel'' base width = 30. 000 (Ft. ) S1oD or ';Z' of left channel bank = 50.000 Sl ooe . or_,' Z' of right channel bank = 50. 000 Manni {in' s ' N' = 0.020 .Ma:i:mum depth of channel = 1. 000 (Ft.) :F.low(o) :'.thru subarea - 2.94.8 (CFS) Deoth of - fl ow = 0.t_)66 (Ft . ) Averaoe velocity. = 1.342 (Ft/s) ;Channel `f,low too width = 36.596(Ft.) •:Flow'Velocity = i.34(Ft/s) ``,Travel time =22. 'S min. ,Ti-me of concentration = 3.6.80 min. Critical deoth 0.064(Ft.) ++;tf+++++++++-+•++-F•+++++++++++++-f•+++ •+++++++++ 1 1.r++•+•+++++++++++++++-3-+++ r'ocess':: from Poi nt/Station 2.0010 to Poi nt /Stati. on 3.000 *** SUBAREA FLOW ADDITION **** DEVEL'QPED .(Door cover) suaarea eci'mal`.:fr-ac•tion soil group iA = 1.000 ecimal.;:fracticn: soil brouo B -= 0„000 eci.mal fraction soil group C = 0.000 eci'mai`,fraction soil orouo D -= 0.000 CS: -`,curve, number for. soil (AMC 2) = 67.00 .:>Pervi!ousrratio(Ao) = 1.0000 Maxloss rate(Fm)= 0.578(In/Hr) i me .of `concentrat i on = 36.80 min. �a? nf'al is intensity = 1. 314 (In/Hr) for a 10.0 year storm Effective runoff coefficient used for area. (totes]. area with modified rational method) (0 -I CIA) is C = 0.504 .Subarea runoff = 6. 12 (CFS) fur 1 1. 800 (Ac. ) Total' runoff, 9.071 (CFS) 'Total area = 13.70(Ac. ) Areaaveraged Fm value = 0. 57e (I n /Hr ) End.' of comoutati ons. total study area = 13.70 (Ac. ) The f of l owi no -Figures may be used for a unit hvdrooraoh, study of the same area. Note: These figures do not consider reduced effective area, effects''caused by confluences in the rational eouation Area `averaged pervious area .fraction(An) = 1.000, Area.:averaoed SCS curve number -• 67.0 :an Bernardino County Rational Hvdroloov Program (Hvdroloov Manual Date - Auoust 1906) I.VILL.CADD/CIVILDESIGN Enoineerino Software. ati onal Hvdrol ocv Stuffy Date: 16222 •EAR_ XIST CONDITION 1'6222 'i;RSB '; (c) 1990 1./ 18/ Hvdroloov Study Control Information ** C*;f **** atr'onal "hvdrol oov study storm event near is 100.0 omputed rainfall intensity: orm year = ' 100.00 1 hour rainfall u - 1.380 (Ins ) opeused forrainfall intensity curve b - 0.6000 of 1 antecedent ; moisture condition (AMC) = 2 Version 2.3 • + { _r- i- t--F' i--f {.h.:}.. } }. }..{-.}..}.. I .}.. {...i...}..}...} ..}....i...}...{...'..a...} .,�....,.}._} _�...i......t...i.._i.:.�...i...}..}.,i...i_..F,.�.._� L y t...t ..}....}..}...;_..} .. Process from Point/Station 1.000 it 0 to Point/Station ***: INITIAL (IRA • EVAt_IJATIt:}N • UNDEVELOPED. (oc:tor cover)subarea • Decimal fraction soil .rouo (-1 = 1.006 Decimal fraction soil. group D = Decimal frac-L .ort coil group •C: 0..000 Decimal frac:t:ion sail. orol.0 E'; = 0,000 SCS curve number for =poi. 1. (AI°IC ' ) t�t'r „tip Pervious rati.o((-to) _•• 1.0000 Max• loss ra.te?(Fm) 0.57S(IniHr) Initial Gst_tbar-ea data:. Initial area flow cli.slance = 4st:'.000(F=t:„) • TOD .(of initial area) el vat.i.on = 62.000(F ..'i Eottom (of initialareBa) elevation •S 5.000(Ft. ) Difference in elevation -- 7.00it_F='t.. Slope -- .01.458.•s(Y..)= • TC = 1-r.(0„525) C(.ler►ot.l-r" )/(ele'iation charIt:ie)3:.'0„.._ Initial area time of cuncentrati on -=.. 14.451 min. Riai.n'fall. intensity = •3..2 2(In Hr) for a' :.00.0 '• anar'" stor-t. Effective runoff coefficient.used f_:;r �:;r'ea (P=K:CIA) is C - u.7";:T9 Subarea runoff = •4, 555 (CI' S) Total initial stream area = Pervious area. fr-aci.i.on -= L000. Initial. area Fm value = 0,57}3(I i Fir) i-A-•{--1"1-1-r-+ -•1- 1- f•-F•{-'1-9- #- 1-A--i--1-_t..{_..{..{...I--I 4.s...h-41--} .{_.{...r..{..A-A-*1- i..c...F.{..{"4--.{...I...I.4-A -1-4- },..-i-.{..{...t l..y..{_.{..a-.+..,. Process. from point/Station 2.000..l..,_:; Point/Station - _.. 0iit_r **fit* iMF'F:OVED CI-ANNEL. 'TRPVF I._.,, ri!IE A:'.;:1. Upstream point. r.1e..ai=:i.on•- ,5.. i Ft. Downstream point elevation _.. 7,0., (0 (P , Channel. length thru subarea l 100.. 00 (c- t Channel base width -•_ 3. 0; 000 (- 1.. ) Slone or ' or left. channel 1: ?n1: ::. 50r1(j(._ Slope or ' Z' of r-i. oht channel t:1=::ir;k -- '30. `ir_;1 Manni.no' s ' hd' 0.020 Maximum depth of channel :- 1- 000 (t:: t,. . Flow(o) tt•1rt.t Subarea •.. 4.,55(C;F } Depth of flow = 0. 005, (Ft.. ) • Aver-taoe vral.oci. Lv . .I... S :5 (F't:. ' Channel 4:10 ton Width = a ,,..t r''i" (rL. ) Flow Velocity = 1.5 (F i/ )) Travel time -_ :I.7.17 rni.n. Time of concentration -• ._-... min. Critical clEec;t.h -- ; .085(F=t... .F..)-•i--h-F-I-•1-1-F-).-h.3- h-i..!...9-_ -'-I--r-h-h•.;"a 1 .t.t•-(...)...,..,}-) _h;-+ -! .(...;.{,..; .;. ?; 1-..;_i.}._; .p ,..i..i -!_ !-.; 1. 4 r-r..;....;.A r...) 1...� ..,...;. Frocesa from Point/Station ***:*: SUBAREA FLOW ADDITION :',!:; h A to ;: o n t J S- a t i c) i t .. 0 (d UNDEVELOPED moor c:oVer :t !+t?nr-' Decimal -.fraction =+C)'l 3 qr c)'un A = 1.000 Decimal fraction soil iarOL.!n 9 =- 0.. t.:)'a' Decimal. fraction..soil group F` = 0.000 Decimal. fraction soil crouu !:? SCS curvea nu.mber f car-' s.yoi l ((-'NC ) c:,'l. 00 F'ervi c t.ts r ati a (Ari) . -- :+.. Cl(Y )!::? Max loss )-a'f e r :m) r_ Time of concentration ., 62 win. Rainfal..1 i.ntenti.l-,; :=• 1... a.`1 (In/Hr" for ra 100.0 _. _t_,)...,i; Effective runoff coefficient used car area..(total a:, -ea with moulf,.fd rationral, rirethori).(Li::4(CIA) is •f;. Subarea runoff = !.:.... •'10?_ ((::F S) for 1. 1 " r r r j (Ar:. Total. runoff .= 11.S. ��,:��s_3 (CFE) i c:ti: al .:at'-� �:; := 1. S, ,!1 (aic-. value va x t (.)..7:Ji9-(1rli'I`ir ) _ Area �!v.-r-�tc�e?cl �-P fn - End of. !catnrUt<ati.C:)nr", total study area = (etc.) The •f al.1 !"'it`.ti fil:3 f 1. Qur r•?r.•ma.w, be •t_lse'd for a Unit hvdroor-; rdi study of the same Note: r"eEi> dc, not t:onsi c.ft' •r'educed effective .Argil,. effects caused bv (:oriflt.t+?r'iY_Ees i.ri the F'"o'l:.i:c+n .l i-ouat.io!"t. Area aver'aa€=?cl r7E:?r'v3. c:n.lfi area S l' icti lri (AI:1) Area .averaged SCE'. cur"v!.? Iitinibel 10 YEAR HYDROLOGY CALCULATION ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1990 Hydrology Study Date: 1/18/ 2 ^ Version '.''. ********* Hydrology Study Control Information Rational hydrology study storm event year is 10.0 .0' `.-^c rainfall intensity: Storm year' =10.00 1 hour rainfall p = . 0.980(In.) Slope usedfor rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 . ' , San Bernardino County Rational Hydrology Program (Hydrology Manual Date - Auautst. 1986) CIVILCADD/CIVILDCSIGN Cnaineer•ind Software, (c:) 1990 Rational Hydrology Study Date: 1./18/ Version 2.3 .Hydrology Study Control Information ***** **** 'Rational hydrology study storm event veer is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall p 0 980(In.) .Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 'an Bernardino County Rational Hydrology F'ru9ram (Hydrology Manual Date - Auaust 19p6)_' CIVILCADD/CIVIL'DESIGN 'Enoineerino Software. (c) 1990 Rational Hydrology Study Date: 1/18/ Version **.*.***** Hydrology Study Control Information *********S{ Rational ;•hydrology study storm event year is 10.0 Computed' rainfall intensity: ,Storm year = 10.00 1 hour- rainfall p - 0.980(In.) Slope,used for rainfall intensity curve b = 0.6000 oil: antecedent moisture condition (AMC) 1. 1. '-h•i••++ F-•1--1=-hi•-F•-1--1-+-1 ++fit•++++ 1- F••t E+- +-1 1- 4 + 1 1 + l-+ �-+ t•++ i +±»1-++ i ++++-I + I-++ I-+++++-h+ + r., rocs 'from Point/Station 10.0(111 to Point/Station 11.000 ,** INITIAL AREA EVALUATION *:**Xc ESIDENTIAL(8 ICI dwl/acre) ecimal' fractionsoil group A = 1.000 eci mat ,fraction soil group B = 0.000 Dec i mal- ,fraction soil group C = 0.000 Decimal". fraction soil oroup D .= 0.00 .SCS curve number far soi 1 (AMC 2) = 32.00 ` Pervi ousrati o (Ap) = 0.4000 Max loss rate (Fm) = 0. 391 (In/Hr ) Initial -subarea data Initial=.area flow distance = 700.000(Ft. ) ;Top ,(of, .initial area) elevation = 62.000(Ft.) Etot'tomo•f' initial area) elevation = 48.500(Ft.) `Diff;er.ence in elevation = 13.500(Ft. ) S1'ope, ,= ta, c:} 1929 s (%) = 1.93 TC = I, (<.r; 374) ACC (lenoth'`3) / (el.evai:.i on chanoe) J' 0.2 'Initial: area time of •concentration = 11.320 min. Rainf,al'1 .intensity = • 2.666(In/Hr) for a 10.0 year storm Effec:tive.runo•ff.:coefficient used for area (Q=KCIA) is C = 0.768 Subarea 'runoff. •3. 767 (CFS) ota1=; initial stream area = 1.840(Ac.) Pervious area fraction = 0.400 .nitial area Fm value = • 0.391 (In/Hr) rocess`from Point/Station 11.000 to Point/Station ***`* " STREET FLOW TRAVEL TIME -F SUBAREA FLOW ADDITION * * * street seament elevation = 48.500(Ft.).. of street segment elevation = 37. i 10 (Ft . ) ength.' of street segment = 820.000(Ft.) eight of curb above gutter f l owl i ne = 6. 0 (In. ) i.dth of :half street (curb to crown) •- 18.000(Ft. ) stance `from crown to cross•fal1 grade breaE, = 16.500(Ft. ) lope ,from' gutter to grade break (v/hz) = 0.020 lope ..,f:rom grade break to crown (v/hz) = 0.020 t'reet fIow i.s On C17 side(5) of the street . Distance ;from ' curb : to property line = 7. Crc_x (Ft. ) Slope 4,,rom curb to property line (v, hz) = 0. C12cj utter wi.dth = ).. 5i_r0 (Ft. ) utter,•... hi.Fce from flowline = 2. f:00 (In. ) :Mannz:n:g' s 'N in gutter = `0. (_ 1 0 Manninq's N from gutter to grade break: = 0.0150 Manning'•:a N: from grade break to crown = 0.0150 Es1:.i mated '.mean flow rate at midpoint of street _ 6. ,;c-1 ; (CFS) Depth of flow = ' O. 401 (Ft . ) Average velocity.= 3.41.9(Ft/s) Streetf l ow hydraulics at midpoint of street travel: Hal.fstreet flow width = 1.3. 196(Ft.) • Flow velocity = 3.42(Ft/s) Travel tirne` = .4. 00 min. TC = 1.5:32 mini .Addi'nQ area flow to street RESIDENTIAL(8'- 10 dwl/acre) Decimal 'fraction soil group A = 1.000 Dec].ma1 , fraction soil; group L•r - 0.000 Deci nial • f cacti on soil' group C = c--r, 00cl Decimal fraction soil group D = 0.000 SCS curve' number' for soil (AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max loss r-ate(Fm)= 0.: 91 (In/Hr) Rain -Fall intensi ty = 2. 22.3 (I n /Hr-) for a 10.0 year storm Effectiverunoff 'toe•f•ficient used for area;, (total area with modified rational`method)'(Q=KCIA) is C = 0.742 ubarea runoff = 3. ? 7 (CFS) for 2. 480 (Ac. ) otal runoff = 7. 124 (CFS) Total area = 4.32 (Ac. ) 'Areaveraaed Fm value = 0,391 (In/Hr.) trees flow at end of street. = 7. 124 (CFS). Haif street flow at end of street = • • 7. 124 (CFS) Depth 'of flow = 0.41 ;(Ft. ) Averrage:velocity = 3.499(Ft/s) Flow; width (from curb towards crown)= 13.904(Ft. ) End ,of: computations, total study area = 4.32 (Ac. ) The f o11 owi ng figures may be -`used for a unit hydroar aph study of the Lame area. Note:,These figures do not consider reduced effective area effects caused by confluences in the rational equation. . IF-F++ i--1.•i--F± I•+± F-I I ++- I-+ 1 -F•t + F f-I -I I 1 I F i F+ - I N ++ f-++ 4 F•++ f-•F•F-F•f -1 -F-F-F•I 1•-f--h ±-I--F-F-I-+ f+ 12000 .,Area -'averaged pervious area -fraction (Ap) = 0.400 rea averaged SCS curve number- = 32.0 Bernardino County Rational Hvdrolouy Program • (Hvdroloov Manual Date - August 1986). IVIL'CADD/CIVILDESIGN Enoineeri.no Software, (c) 1999 Version 2. 'R t i on t1 Hvdrol ocav Study Date: 1 t 18/ ********* Hvdroloav Study Control Information ***** :;h **t Rational hvdroloov study storm event near is .10.0 Computed rainfall intensity: Storm year - 10.00 1 hour rainfall d _. 0. 980 (In. ) Slope used for rainfall intensity curve to = 0.6000 0 Soil' antecedent moisture condition (AMC) __ _.. +4--I-+-h-I-•• 4 +++++-I-++++-r- -4-•t•-1 I + 1-4-4-•i_i 4.4-4- h_F•_h•i....I-»1 -W-I-i--F•-h-r-± I-±+-} +-I-+4•+ I-•1- 14 +-t +±-l-.t..t. r:,ocess from Point/Station 21..000 to Point/Station '2.000 *** 'T_) IITIAL AREA EVALUATION **** :RESIDEi•ITIAL(B - 10 dWl/acre) Decimal fraction soil proud A = 1.000 Decimal''fraction soil proud I'r = 0.000 Decimal fraction soil group C = 0.000 ' Decimal' fraction soil proup D = 0.000 SCS curve number for soil (AMC: 2) -••• 32.00 Pervious ratio(Aa) = 0.4000 Max loss rate(Fm)== 0.$91 (Iri/Hr) Initial subarea data: Initial area flow distance = o' 0.i-r0r_I(Ft:. ) Top :(of initial_area) elevation -- 39.400(I=••L-. ) Bottom. (of initial area) elevation = 43.300(Ft. ) Difference in elevation = 11. 100(Ft.) Slope = 0.01790 s(/)= 1.79 TC = 1c (0.L74) ACC (1enoth•''•,.,) / (r'].evation ch anc1e-.r) ]•:',t7.', Initial area time of concentration = 10.946 min. Rainfall intensity = 2 . 7'20 (In/Hr-) for a 10.0 year storm Effective runoff coefficient used for area (P 4 CIA) is C =_ 0.771 Subarea runoff = . 165 (CF S) '-Total initial stream area = 1 . 310 (Ac. ) Pervious area fraction = 0.400 Initial area Fm value = 0.391 (In/Hr-) 4 ± -++++++.+-+---44.4. F--1-4--h•1-4F•1-+-F-F•+-I-++++++-I--1--i--}-+ ++ +....4. f +++-h-I--M-f-•1-±-h++ +f-1--h+•t-F±±++ r,.,ocess.`from. Point/Stati.on 22,000 to Point/Station • 25.000 41(` STREET : FLOW TRAVEL TIME 4. SUBAREA FLOW ADDITION *: * * k street':-seameint elevation = 48. 300 (Ft. ) street segmentelevation = 41 900r(Ft. ) _ streetsegment = 340. 000 (Ft. ) „,:curb -utter b `. above taut •ter f l ow l i n e =6 . C> (I n . ) half ::street. -;(curb to crown) --• 18.000(Ft. ) itanc.e9.fr_om .crown' to crossf all tirade break - 16.500(Ft. ) openfr`om _;aUtter to grade break (v/hc) = 0.020 o e'' f.;r-om ;'.grade .,break , to crown (v/hz) = 0:020 reetfl'ow is `on•. C13 side(s) of the street istarice pfrom curb to property line = 7. 00C1 (Ft. ) ope ;From'.,curb to property line (v/h .) _ 0. 020 utter, width = utterhike frthm. •flowl.ine = 2.000(In. ) Manning' s N;, i n clutter = 0. 01:3f Manning's''N::+from gutter to., or-a.de break = 0.0150 Manni;ng's' N from•` Grade break to crown = 0.01:50 sti mated. mean ,flow rate at midpoint of street = 5. 397 (CFS) Depth',of flow = 0.367(Ft.) Aver age ve.l ocity = 3.792 (Fi:/sa) Streetfl c i1 ;;hydraulics at midpoint of street travel Half street .: fi ow width = 11. 493 (Ft:. ) Flow velocity = 3.79(Ft/s) Travel time, 1.49 min. TC = 12.41 min. `;Adding` area flow to street RESIDENTIAL(8 —.10 dwl/acre) Decimal: fraction soi•1 group A = 1.000 :: Decimal fraction ` soil group B = 0.000 Decimal . fr.acti on'.;soil group C = 0.000 Decimal fracti, on 'sail group I) = 0.000 CS 'curve'' number ` for soi l •(AMC 2) _ 32.00 envious'-ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.391 (In/Hr) gin -fall ;,intensity = 2.519 (ln/Hr) for a 10.0 year storm •f;fective'runoff,.coefficient used for area. (total area with modified =ational `;method) (D:F,CIA) is C 0.760 ubarea .,runoff = 3.t306 (CFS) for 2. 1.30 (Ac. ) otalHrunoff 6.971. (CFS) Total area = 3:.,. 64 (Ac. ) rea averaged FW.value = .0.391 (In/Hr) tr;eet flow at end of street = 6. 971 (CFS) • Hal`.f street flow at end of street = 6. 9`/ 1 (CFS ) Depth 'of 'flow = 0.394 (Ft. ) Aver'aae velocity = 3. 97C) (Ft/s) F1'ow-width `'(from curb towards crown)= 12 8 59 (Ft. ) ++++++++i-++++-i-+++++++++++-h-1-•1-+++•1--I-+++-I-+- }- 1-+i-++---1-+++++++++++++++++++++++ ',rocess from Point/Station 23.000 to Point/Station 25.000 At*** SUBAREA FLOW ADDITION Mk RES IDENT:IAL(8. - 1G dwl/acre) )eti male` f'racti on '!soi: l group A = 1.000 Ecl`mal fraction." soil group 13 - 0.000 eci coal fraction 'soil group C = 0.000 ecima1 -F.racti on soil aroui D - 0.000 CS -;;'.curve number for soi 1 (AMC 2) = 32.00 Pervi'ous� rati.o(Ap) = .o.4000. Max loss rate(Fm) 0.391 (In/Hr) i me of-' toncentrati on = 12.44 min. .Rainfall intensity = 2.519(tn/Hr) for a 10.0 year storm Effective runoff coefficient used for area,(total area Lath modified rational method) (Q=E CIA) is C = 0.760 ',Subarea runoff = 4.788 (CFS) for 2. SOuiAc. ) Tota-tl.runoff 11.759(CFS) Total area = 6.14(Ac.) rea averaged Fm value - 0„:9J.(In/Hr) :�:+-�-:•r-:t=H-r-+-t-�-•F•f--r--r--E-�•-r•+•�--i--r•+•+-i-..,_.+•.r_.�.�...r-i-..,...;..r..,...,__r..r...f._r...r..r..r..F..;_.h..?..�--�-+•a--r--f••�-•r•-r..r...�--r.E..�..�..t•-i--r--r-+..,. rocess f,r.om. Point/Station 5.0')u to Point/Station 26.000 * STREET FLOW :TRAVEL_ TIME -F• SU.UIiAREA FLOW ADDITION * * U. street segment elevation = 41. r1t:?0 (1= t . ; street segment:e).everti.oa ._ 37. =F00(Ft. ) enoth .'of `street 'sean rat = 44'u. (:IU(.1(I_.t:.. ) ei:aht,:` of curb above c_at't.ter- •f l ca<<+:I. i rre - 6. („) (In. ) 1dth :af I-ral`:•f street (curb tocrown)12.n()c:?(F-"t. ) ist:ar cE f r om crown .to t r ost,f � .1. 1 +:rrr:+de Care.-. =1.6. :r00 (F t:. ) '`: Slope..".f rc rn aut±t r- to oracle br-e a.i (v/hz) = 0.020 Slope 'from.grade break to r..:rovrn (t, /; r-) =: ' 0.020 Street -Flow is on C17 side(s) .of tI: ,+• ,;t:r 3et Distance from curb to property liiy00(F t. ) Siope ;::•From' c:urb to property 0.0.::0 Gutter. wi. d•lh = 1 . 00 (Ft.. ) Gutter hike from f1cwline = 2.000(in.) :' Mannina's :N':"in gutter = 0.0130 : Manning' s. N from gutter to cn ;u:_Ic'• break = 0.0150 Manni'no's N from grade break to c:r•uwn == 0.0130 Estimated mean flow rater at m:i duo). nay of street r:. :1:-2. 9+f.; (CFS) ':Depth of flow == 0.519(FL. ) .Average velocity = 3.4.52:Fl::/.=.;t Warni nca : depth of flow exceeds ton cif curb :Note:..depth of flow exceeds •i ora of :-'I:.r'•r-•:='L crown. Distance that . curb overflow r :ar:chesy i ntu property -- 0. r7:. (F t; . ) Str,eetf l ow-' hvdr-aul i. cs at midpoint of ri:.r.eet_ travelr. Ha1f street: flow. width :- 10. 000 (F't. ) Fiow'veloc:itv = 3. 4.5(r•t!F3) Tr.ave1 time = 2.12 min. T1:; :..- I.•t'.::';6 rra.r,,. Addino area flow to street , F:ESIDENTIAI_ (8 - 10 rJwl /acre) Decimal fraction soil group A =. 1.000 Decimal fraction soil group I:t = 0. _)(.:i:; Decimal fraction soil group C:: = 0.000 Decimal fraction soil group 1.) = SCS ` curve number'for soil (AH( :2) - 32.0() 00.: Pervious ratio(An) = 0.4000 Max lost, r-;te (Fm)0„ 51 (ln/ 1-Ir i ',Rainfall intensity - .._. :'.??!in/Hr-) for a 10.0 vear storm, Effective runoff coefficient_. used 4+0r• ._ir•ea. ('Lol:al. :area with m+Dd'i+•i.eci rational method) (WVCIA) is (::: Subarea .runoff = 0. 84 r (CF ) for 1 . 2.30 (Frr-:. ) Total -runoff = 1.2.606 (crs) 1'r?t l ar. mA -... .7..3r (tic:. ) Area averaged Fm value -: 0. _'••">'I. f l n r ; lr- i Street, flow at end of st.r,-!c is = .1 2. 6< (CrS .:Half: street flow at end of =:,t:ree•':. .... !.2.::,06,,':FS) Depth.,of 'flow 0. r.1.-a (F•L, ) . Average: velocity' =3.4•4 (Ft: / :,) arniwas depth of flow e>:ceede Lou of r-c.rrL. ote: depth of flow exc(-.:et:)e: tea c. s t. Fey-. c:;r (::wry. ._•'Di stance:,that curb overflow reaches into property '' Fl ow''. width . (from curb towards: c:r-•r_, ,in) :.: +.9. 0 0 (F=t:. . End .of computations:,tr_,t:� ) <: { tr+:i ; area7,.37 (sac.. ) The following figures may be 'used for-' a unit hydrooraph study c: r= the same area;.' Note:' These figures do not: consider r-ec:I' is nci' of f ect. i ve c1F"f: a effects caused by c.cDnf 7. uer•rcee i r+ Lhe .r-,?ti onal eor.rat i on. averaged pervious area. fr•c'':t.ir.!n (f-!o) = 0.400 averaged SCS curve numbSr - 32.0 *,********* C******************************************************* ****** CHANNEL FLOW CALCULATIONS ****** ?k*****i********************KKK******************************************* OF FLOW GIVEN: .010200 (Ft./Ft.) = 1.0200 19.70 Cubic Feet/Second CHANNEL FLOW -- STREET FLOW * * * PROM AWE OD) 7'O M DEO reet S1_ope.'(Ft./Ft.) = 0102 ann nqs� "n"`:,value for street = .015 urb Height'(In.) = 6. reetrHalfwidth (Ft.) = 18.00 i stance;:' From'', Crown to Crossfal l Grade Freak (Ft.) = 16.50 lope from, Gutter to Grade Break (Ft./Ft.) = .020 ape from Grade Break to Crown (Ft./Ft.) _ .020 umber_ cif Halfstreets Carrying Runoff = 2 pstance;:from curb to property. line (Ft.) = 7.00 1`ope from curb to property line (Ft. /Ft.) = .020 Gutter width,:; (Ft .') -..= 1.500 utter hike. from flowline (In.) = 2.000 Marini ngs "n" .value: ;.for gutter and sidewalk = .013 Depth of flow _ .475 (Ft.) verage'' Velocity =. 3. 32 (Ft./Sec.) reetf l ow ' Hydraulics al,fstreet..Flow .Width (Ft.) = 16.92 low Velocity(Ft/Sec.) = 2.88 epth*Velocity = 1.37 al cul ated flow rate of total street channel = 19.7E (CFS) Flow 'rate in gutter = 3.01 (CFS) Velocity of flow in gutter and sidewalk area = 5.12q (Ft./Sec.) Average velocity of -total street channel = 3.322 (Ft./Sec.) STREET FLOW CROSS SECTION TE: The following critical depth calculations are for: iannel 1. If STREET, property line to outside edge of gutter If,V-GUTTER, property line to start of V-Gutter STREET,,outside edge of gutter to crown -Gutter,' in V-Gutter itself -:V-Gutter, 2nd half of street ITICAL FLOW CALCULATIONS FOR CHANNEL NO. 1: ibchannel•'Critical : Flow Top Width (Ft.) = 8.50 ubchannel:' Critical Flow Veloci.ty(Ft./Sec.) = 2.251 ubchannel,Critical Flow Area(Sq. Ft.) = 1.34 roude :;Number, ;Calculated = 1.000 �4charne1 Crit i cal _ Depth above invert elevation .642 IT:ICAL °FLOW ' DEPTH EXCEEDS CHANNEL HEIGHT IN CHANNEL NO. 1 ITICALFLOW CALCULATIONS FOR CHANNEL NO. 2: ubchannel Critical Flow Top Width(Ft.) = 16.50 ubchannel:..Critical Flow Velocity(Ft./Sec.) = 2.372 ubchannel,Critical Flow Area(Sq. Ft.) = 2.88 roude,„Number Calculated = 1.000 Subchannel'.Critical Depth above invert elevation = .506 F, ?i-t++444=a-i-++-i--i-+F-h-h+-F++-+-h++-ti-i--I--.44.-h^h-M-hi--h^F-h-h-h-h-F-I--h+-F-I-i-+-Fi--h-F-1--h-I--F-.44+•1--M-h-F-i•-h-h-h++ 1 r CHANNEL CROSS-SECTION ' PLOT ************************ .48 Feet' = "W HALF -STREET FLOW CROSS SECTION calj''depth' for;., Channel , No.1= s- cal depth . for Channel, No.2= et) Y (Feet) `'.Y-Axis-> .64: .61 . 5U .59 3'.33 ''.57 . 17 H.56 ',5.00,'` .54 5.83 „.52 1 X I 6.67 51 I I I IX. , 7.:50. .06 1 X 1 i WI I 8.33• .15 1 XI 1 WI' '947 . 18 I IX i W 1 c 0.00 .20 ; I X ! Wic ;10.83 . .21 i I X E i 11:.67 .23 I I X I 12.50.25 I X 1 i 13.33 .26 I X 1 Wic I 1447 .28 I I X I Wlc I 15.00 .30 i i X I Wic I 15.83 ,_.. ; '. 31 1 I XI W i c i'16. 67 .33 1 I X W 1 c I :17.50 .35 '1 IX Wic 'I 18.'33: .36 1 i I X Wic I 19...17 .38 1 1 I X Wic OOU , .40 1 X w 1 c 0`..41 I I X Wic c 83 21;67'. . 43 i i I X Wic 22 50 ' . 45 1 I X Wic I 3. 33 .46 1 I ' XW 1 c I 4.17 .48 1 1 I XIc I .'25. 00 .50 1 IX I +++++++++ ++++++++++++-� +++++++++++++++++++a++++•+++ + ++ ++++++++++++++++++++++ . 64 Feet . 51 Feet , _ "c :4 • .6 X X X Bernardino County Rational Hydrology Program (Hvdraloav Manual Date - August 1986) I:VILCADD/CIVILDESIGN Engineering Software. (c) 1990 .-Rational Hydrology Study Date: 9/ 6/ 1 '1TRACT 16222 ` i 0 NEAR .16222C AREA C" Version 2.3 1 * *�k*%K�C• Hydrolagv Study Control Information *%k***** k* Rational'".hydrology study storm event year is 10.0 Computed%rain•fall intensity. Storm;"year = 10.00 1 hour rainfall D = 0. 980 (In. ) ,Slope' used for rainfall intensity curve b = 0.6000 ail. antecedent moisture condition (AMC) F-t -F-1 1 -1 -1 -h F t t-1•,ft-F-h-1-F-Ft-I- F I 1 F-I -F F h l{ t h 1 F -F'i F F F F+-t + i--I F t 1 F M t -F-F-h h h F I t i i -F h-F-F F i -M h • rocessfrom Point/Station 31.000 to Point/Station 32.000 **** INITIAL; AREA EVALUATION. **** RESIDENTIAL(8 10 dwl/acre) eci mal : fracti cin soil aroup A = 1.000 :_ Decimal' fraction soil aroup 8 = 0.000 'Decimal; fraction soil aroup C = 0.000 Decimalfracti on soil group D = 0.000 SCS '.curve' number :.for soil (AMC 2) = 32.00 F'ervi.ous ratio(Ap) = 0.4Goo Max loss rate(Fm)= , t:).391 (In/Hr) niti°al subarea' data: nitial area' flow' distance = 620.000(Ft. ) p °(of initial .area) elevation = 39.:uo(Ft. ) ottom'``• (of;?initial area) elevation = 34.300(Ft. ) ifLf.erence'. i n elevation ,= 5. 000 (Ft . ) lope_ •.,;.:0.0080b s(%)= 0.81 C•;'' (U.374) iKE (lenath•''3) / (•elevation chanoe) ]''U. 2 .•Initial area time of concentration = 1.838 min. Rainfall intensity = 2.472(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (O= CIA) is 'C == 0.758 ,Subarea: runoff = 3.221 (CFS) ';Total initial stream area = 1.720(Ac. ) 11 Pervious area fraction = 0.400 Initial area Fm value = 1:1.391 (In/Hr) :End of. `computations.. total study area = 1.72 (Ac. ) The: following fioures may e='used, for a unit hydroaraph study of the same area. ote .;These figures do not consider reduced effective area ffects:.caused by confluences in the rational equation. r.ea averaged pervious area fraction(Ap) = 0.400 r.ea averaaed SCS curve number = 32.0 Bernardino County Rational Hydrology Program (Hydrology Manual Date- Auoust 1986) IVI,L:CADD/CIVILDESIGN Enoineerina Software. (c) 1990 Version 2.3 Rational Hvdrol.oav Study Dater 9/ 6/ .1 Hydroloav Study Control Information *********fit Rational'hvdroloav study storm event year is Comouted: rainfall intensity: ,Stormyear = 10.00 1 hour rainfall o Slope used for rainfall intensity curve b Soil antecedent moisture condition (AMC) = 2 10.0 0.98G(In.) 0.6000 1. -h 7+tt1--h+-t 7F-1 - 4-+++++++4.4.+++•i-+++++++++-h+++++-h+++++-++++++-h+++-1-+++•i-+-I.. ;:oces5 -=from Poi nt/Station 41.000 to Poi nt/Station 42.000 ** ;INITIAL AREA EVALUATION **** OIDENT,IAL (8 .dwl /acre): eci mal',. f racti on ' soi l orouo A = 1.000 ec i mal fraction ; soil group B _ 0.000 Decimal fraction soil Group C = 0.000 'Decimal -fraction soil group D = 0.000 SCS curve number for soi 7. (AMC 2) =- 32. 00 Pervious : ratio (Ap) = 0.4000 Max loss rate (Fm) = 0. 391 (In/Hr ) Initial subarea data: Initial area flow distance = 380.000(Ft.) Top ;(of.initial area) elevation = 35.800(Ft.) Bottom`` (of initial area) elevation = 32.000(Ft. ) Differ'ence.'in elevation = 3.800(Ft.) lope O.01000 s (7.) = 1.00 C: F(u.374) *C (lengthr`•3) / (elevati.on chancel 3 0.2 hi ti`al; ;area .time of concentration = 10.111 min. ai of al 1 , :intensity = 2.,8 5'3 (In /Hr) for a' 10.0 year storm f-Fective runoff'. coefficient used for area (O=KCIA) is C = 0.777 ubar,.ea; runoff = 1.174(CFS) otal'r initial stream area = 0.530(Ac.) ervious..area fraction = 0.400 n tial,'area Fm value = 0.391(In/Hr) nd ofj=�computations. total study area = i 0.53 (Ac.) he f o1 l owing ,figures may eused for'. a unit hydroaraph sturdy of the same area.. Note:':These figures do not consider reduced effective area effects caused . bv.' confluences in the rational equation. Area:averaoed pervious area fraction(Ap) = 0.400 Area averaoed SCS curve number = 32. 0 100 YEAR HYDROLOGY CALCULATION ' -.San Bernardino Counts/ Rational Hydrology Program (Hydr-olooy Manual Date - August 1986) VILCADD/CIVILDESIGN Enoineerinn Software. Rational Hydrol ooy Study Date: -0Q,:YEAR 222A� AREA A (c) 1990 1/18/ Version 2.3 0.****** Hydrology Study Control information ********Ves Rational "hydrology study storm event year- is 100.0 Computed rainfall intensity: Storm year = 100.00 i. hour rainfall p = 1. Z8U (In. ) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) +4 ++++++++++ ++4 +-I-++++1 1.-i.. i..+-+•i-i-•i -( 1-•+ 1-.}..f..{.44.4..}... 4..+ 1 +-1- 1 4• 1--I.4 -1 4 -1.+4• }-+-f--I».}..t..}+ ocess; .from Point/Station 10.000 to Point/Station 11.00 ) **-INITIAL AREA EVALUATION *.**`. :ESIDENTIAL (8 10 dw1 /t-:icre) .Decimal, fraction soil aror_(p .A = ••i...(_MH) Dec,i mal fraction soil Group Es = 0.000 'D,eci ma fraction soil droop C =' O., O01:) ec:imal fraction soil Group D = 0.()()fl CS':'curve:number for soil(AMC 2) _ 32.00 er.vious ratio(Ap) = 0.4000 Max Loss rate(Fm) = 0.391 (In/Hr) `,Init,ial :subarea data: ni.ti al .area flow distance = 700. 000 (Ft . ) op -.(of'.:initial area) elevation = 62.000(Ft. ) Etottor";:(of initial area) elevation = 48.500(Ft.). i';f:fer.ence in elevation = 13.500(Ft. ) S1'ope , 0. 01979 s (/) = 1.93 C'' k (.0.374) *C (lenoth^3) / (elevation r_hanoe) ] `0.2•• nitial: •area time of concentration = 11.320 min. ai: nfal l intensity = 3. 7E,4 (I n/Hr) for a 100.0 year storm +fective, runoff coefficient used for area (Gi=k::CIA) is. C = 0.806 ubarez runoff• .5.568 (CFS) otal ini.tial stream area = 1.84.0(Ac. ) errv,i ous area fraction = 0.400 nitial;; area fFm ,value = u.391 (In/Hr) 0. +efrom ++++++-1 +++ +++ ++++++ s-• --t•-F•-++++++++--++++++±+++++-i-++++-t-+++++-I r1-+-f Point/Station 11.000 to Point/Station 12.000 ** STREET.,, FLOW TRAVEL TIME -F• SUBAREA FLOW ADDITION * * * * op of str:: eet' segment elevation = 48,. 500 (Ft . ) nd '.of,street 'segment el evert i on = erigth: of .str. eet segment = 820. 000 (Ft. ) Hei`ght`F;of :curb above. gutter f l owl i ne -= 6. Cr (In. ) 4Ji'dth ,;b f .half street ' (curb to crown) = 18. 000 (Ft . ) Di'stagce ;.from crown ,to crossfal.l oracle break = ,16. 5r_r0 (Ft. ) 'Slope:from gutter to grade break (v/hz) = 0.020 Slope from "grade - break to crown (v/hz) = 0.020 :Street f1.ow is on E1] side(s) of the street D.ist'ance from curb to property line = 7.000(Ft. ) 51-opeTf rom•. curb to property line (v/hz) = 0.020 G_ Ut.terrwidt:h 1.5CrCr(Ft.) utter;,hikefrom flowline =• 2.000(In.) Manning?.s N-in gutter = 0.0130 anninc s ''N from gutter to arade break = 0.0150 lannino's N from grade break' to crown = 0.0i,50 sti: matedL mean flow rate at •mi: dp•oi nt • of street = 9.32 1 (CFS) ]eptf,' flow = 0.448(Ft. ) Average velocity .= 5690 (Ft/s) Streetf l ow;. hydrat-tl i cs at midpoint of street travel al°fstreet flow width = 15,568(Ft: ) 10we1ocity = 3.69(Ft/s) 'r-aveltime. - - 3,.70 min, TC = 15.02 min. Addi ng area +low to street RES:IDENTIAL'(8 — 10 dwl/acre) Deci mal:.'fracti on soil group A _ 1.000 Decimal' fraction soi 1 . group B = ci, 000 Decimal ` fraction soi 1 group C = 0.000 Decimal' .:;fraction 'soil group D = 0.000 S>.cur.,ve. number .for soil (AMC 2) = 32.00 r.vious ratiolAp) = 0.4000 Max loss rate(Fm)= 0. ,91.•(In/Hr) ainf.aL1 . intensity = ::a. 167 (In/Hr) for a 1t:00. o .year storm ffective runoff" coe•ffi.cient used for area, (total area with modified ratiionalYmethod);(0=KCIA) is C = 0.789 ubarea runoff = 5. 226 (CFS) •for 2. 480 (Ac , ) cit'alrunoff 10.794(CFS), Total area = 4. ti 2 (Ac, ) Area; averaaed Fm value = 0. '391 (I n /Hr- ) Street', f l ow at end of street = 10.794(CFS) Hai.f. street- ':f 1 ow at end of street = 10.794(CFS) Depth' of ' f l ow = 0, 468 (Ft. ) ..Average velocity = 3.802(Ft/ s) Flow width (from curb towards crown)= 16.54.3(Ft, ) End of computations, total study area = 4.32 (Ac.) The f.ol l owing figures may be' used for. a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area..averaged pervious area fraction(Ap) = 0.400 Area averaged SCS curve number = 32.0 •_ 1::; r- - - 1 - uGrrl Bernardino t..:c:.lt..rr,t:'� .•�t: i...�rrtcc t. '�,c rn� t:riry Prr.;li:,r"'arr'. (Hvdr"'nl cart•. Manual. l?:tl: - August :I 9 i0 CIVILCAL)D/CIVILi)ESI6I\I (r.:) ?. 9i> ersi.orr 2.3 Rational I-tvdr-o1 oov Str.tc:l+.: Date: t / i 8/ 2 TR 16222 100 `(EAR• 16222B AREA 1r ********* Hvdrol oc v St:.udu Con Lr c:i. In I or-•rtlati an :l:?t':}:M'':: ..* • Rational hvdrol oov study storm sven . '•. c,ar is Computed rainfall intensity: Storm Year -• 100.00 1 hour rainfall n 1 . 380 (I n . ) Slope used for rainfall i nt:E'?r1s1.'t.'! ('t.!' Vie= b ,!-.)00(1 Soi ]. a.nt-.€cedrjnt.: moisture c_ondi. t:.i. on (MC) _. 1 1 1 t t 1 -l--k•-t•-F•-h-I •-1--1--f• •1••-F-1 • •i--t•• •i-•i--1:. _F...h..�...}...}_. F..r.. }_..}.._p. _P._�...�_.!_.i_..}.._�...r....}...�....�.. _�...�....i...}... F. _}_ �}...�...}..i_..}.._�..}....}....H .i...}... �.. a..-F. _}. _t...i....� ..}...}...t...i. _�.. _i...}.. _�. Process from Poi r•rL/Stati on 1..000 to Foi nt./3t.at. i.on : '2.,000 *hA* INITIAL AREA EVALUATION *.*** RESIDEFI'TIAL_ (S ._ 10 dtvi /acr-ei Decimal f racti..on soil Orot_tr_} (1 = 1.000 Decimal fraction soil group tt = 0. 000 I)ecirnal. fraction sail oroun (::: _-: 0.00(.) Oc"},'r Decimal fraction soil oroun D = 0.000 SCS curve number for so.i 1. (F•+NC: 2) = 32.00 F'ervi.ou > rat1.o(Ap) - 0.4000 Maxloss rate(Fm)= 0..391 (Ire/Hr) Initial subarea data: Initial area flow distance _-• 6'-0..00 (F L Top .(of initial area) elevation = 59..400(Fi:.. ) Bottom (of initial .rr-ea) elevation w 48.' 00(F . ) Difference in Elevation - 11. 10cr(FL. ) Slope = 0.01790 s(;!)= 1.79 TG •= I• (0•.374) 3 r.. (lenclth'••3) / (e:=1evati.cin c:hanoe) :i'''o.2 Initial area time of coctc<:rrk:r- ci::i.on -- 1.0.946' mi.n. Rainfall intensity = 3.830(In/Hr) for a 100.0 Year storm Effective runoff coefficient used Tor- area O_?-=KCIA) is C == 0.908 Subarea runoff = 4. 674 (C. E ) Total initial stream area ,= Pervious area fraction = 0.4400 Initial area Fm value = 0.39- (ln/I-lr-) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++p+l /t` Process from Point/Station 22.000 to Point/Station **** STREET FLOW TRAVEL T-ME + SUMEA FLOW ADDITION *$** 25.000 Top of street segment elevation = 48.300(Ft.) End of street segment elevation = 41.9000t.> Length of street segment = . 340.000(Ft,) Height of curb above gutter flowline - 6.0(In,) Width of half street (curb to crcwn) = 18.000(Ft.>'' Distance from crown to crossfall grade break = 16.500(Ft.) Slope from putter to grade break (v/hz) = '0.02() Slope from grade break to crown Cv/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb Lo oroberty line = Slope from curb to propertv ]inn (v/hz) = 0.020 Gutter width = 1,500(Ft.) Gutter hike from flow]ihe = 2.000(In.) Manning's N in gutter '= 0,0130 ' Manning's N from'gutter to grade break = 0.0150 ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.970(CFS) Depth of flow = U,40q(Ft.i � , Average velocity = 4.071(Ft/s) Streetflow hydraulics at midpoint of street travel: Ha]fstreet flow width =13.622(Ft.) ` Flow velocitv = 4.07(Ft/s) Travel time = 1.39 min. TC = 12.34 min. Adding area flow to street RESIDENTIAL(E - 10dwl/acry) ^ Decimal fraction soil group A = 1.060 Decimal fraction soil group B = 0.00!:� Decimal fraction soil group C = 0.000 , Decimal fraction soil group D = 0-000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.4000 Max lose rate(Fm)= 0.391(In/Hr) Rainfall.intensitv = 3.565(ln/Hr) for a 100.0 year storm Effective runoff coefficient -used for arep,itotal area with modified� rational method)(Q=KCIA) is C = 0.801 Subarea runoff = 5.723(CFS) far 2.130(Ac.) Total runoff = 10.397(CFS) Total area = 3.64(Ac,) Area averaged Fm value = . 0.391(In/Hr> . Street flow at end of street = 10,397(CFS) .Half street flow at end of street = 10'397(CFS) Depth of flow = 0.441(Ft.) ' Average velocity = 4.287(PL/s) Fll`w width (from curb towards crown)= 15.239(Ft.) 1--t•-I--t-••r-1-1-i-1-471-4 1-47 1--t-i--r.(...t.a.1 -r_..;-1- 1-4..,....;__t..;.+.t-44.1 t..i_.�.....t..}............1.i...,...,._,.._,_. .t.;...t..,....;..F.., ,...,_. .i..,-1— .,..: Process from Point/Station 2000..., !_it r.::•:a.nt ' t=:(f:.' of'i .)'() * : * SUBAREA FLOW AOD ]:'1- I JN :*. RESIDENTIi. L. (C - i.0 d'i]. i acre, I)eci.mal frac:":i(::n soil. orou.n i't = f.,.•'..'C,ry Decimal •fraci:i.ori Soil aY..bUu ( .10'.-i T)f.•:ci. ma]. fraction :,C:)]. ). 1::rC:YLtG'1 k., ... .;?.. t.>(ir_ DE3C:7. mc11. - r 3"•acf::! on Soil t:)i-C7t_lc! D = (LOW: CEE••'i ct.ti a number 'fer• s!Ai'I. rAH '.) .... .;' 0i-.! f-'(E'.rvi.ciic r'ati("(f'n) --••(.l.4(_)Q0 flax .Ir,:? r.:rtf:efr::flt= 0..: `7I {Inr'i L-: Time Of concentration = 12.. ° i mi... Rainfall in'.:Cn-5i %L -. -:r °_65(Lrii'Hr) Tcrtr a :10 . ': ;: tr storm Effective runoff coef`11L.1ent. l.t'S(::I ..bi•• area.(total ayea ,ii.t'.I1 modified rational f 't110 :i).(.[? =KCIA) is (u -... (-). @0:I Subarea runoff- = . , i.4-t “:.TS; .{ _.,t„' ..50f) (i;c. )• Total runoff •. = .{ % 1,5: i ... I . T (::) r::.. ar ..i, .. 1 '] ( A ) Area ea.k,et..;,.1oed Fn value r 0.: ;C:' i. f. n I_;.(,...) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++f+++++,4+~+++.:- Process from Point/Station 25,000 to Point/Station 76.()U(:,;, **�* STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION =� ' ----------------------------------------------------------- Too of street se�ment ele`'atic'n = 4�.�0�(Ft.� End of street segment ele^'atioo = 37,400(Ft.) Leb6th oF street sqgment =` 440.001(Ft.) ' ' Height of curb above gutter rlowlinp = . n, Width of half street (curb to crown) = 1O.000(Ft.) Distance from crown to crnssfaLl graCe break = 16.50Q(Ft,) Slone from gutter to grade break (;/hz) = 0.02(., Slope from yrade break to crown ("/hz) = 0.00) Strept f]ow is on [j] side(ol of the rtrs&t Distance from curb to nropertv ?ins = 7,900(F41) Slope from curb to prooertv ]ins !v/!,z) = 0^020 Gutter width = 1.500<Ft.> Gutter hike from f]ow]ine = 2.000<In. ' Manning's N in gutLer = 0.0130 ' Manning's H from gutter to urade broa\' = 0.0150 Manning's N from gradc+ break to crown = 0.0150 Estimated mean flow rate at nidocinL of shrbst Depth of flou = 0.281|FL,`^ ' Average velocity = =841/FL/s) Warning: depth of flow sxceeds ton o+ cu,b ' Note: depth of flowexrenJ7 too of sknect crown. Distance that curb overFlow rrachry into nrooertv = 005(pl,) Streetf]ow hydraulics at 'idoo'ni of `treet'travel: ' Halfstreet {lowwidUh Flow ve]ocity = 3.94(Fl/s) Travel time = 1.91min. TC = 14'25 min, Adding area flow to street RESTDEN71AL(8 — 10 dwl/acre> Dpcimal fraction soil oruuo A = 1.60(; Decimal fraction soil group B= 0,00� Decimal fraction soil grouo C = 0.090 Decimal fraction soil group D = 0.00` SCS curve number for soil(AMC 21 = 32.06 Pervious ratio(Au) = 0,4000 . Ma, lossrnte(Fm)= 0'351/ln/Ar) Rainfall intensity = 3.2;;(1m/Hr) for a 100.0 veer stco'm Effective runoff coefficient us3d *or area.(tota1 area with modi[ied rational meth /d)(Q=KCIA) is C = . ' Subarea runoff = 1'557(CFS> %r� Total runoff = 1c�.095(CFS) To�a] area = 7.37/Ac.� Area averagedvalue a ge F m Street {low at end of street = 19.095(CFS) _ Half street flow at end uF street Depth of flow = 0'579(Ft..: Average velocity = 3'8280t/s) ' Warning: depth of flowexceedstop of curb Note: depth of flow exreeds Luc of s{rset crown. Distance that curb overf]ow'reaches into o,operty = 3.07(FL.) Flow width (;rom cdrh toward? crown)" !8.00()(Fi,) ' End of computations, total studv ars,^= ` The following figuresmav be used for a unit hydrog,aph stud`' o; thu rams a/ea. Note: These figures do not consider ,aduc*d efFecti'e area effectm.caused by coof]oencps in the '-FL!Dnal oouatinn. ^ Area averaged pervious erpa Area averaoed SC5 curve numb',r = 37.0 . • 1. San 1-�Br L.tE-It...t:",:I. I�lr:r L,'-:)t.1.f1": `v' :c� ._ �r.:r: ..1. !}IVd r O. l,.t'_' i'i._!.11 1?.f 1t:ll!.f51_ 7.':ri3 LIvIl,c or)/CIvIL.l:?:.S1Gi1 t:.:tiatrr �-r. c:":�1 •: (::I'= (c.)) 190 VErsic.n._..._ Ration al. Ij;.,{:.ca;: 1 /:f.E3 TR C,T•1.622 400 YEAR n.-:2 AREA C ***:iA`1;q+*'.* . I_.tvdr o].(_:'13v Si.i.vdv Cc ntrt_'1 i f o.f..i(Ir.1t1 c:1fi Rational hydrology st.ud\. s1:.rlrrn event yea, - Computed rain -Call intensity: Storm veer 1 : c;T „ 0 0 :1. 1' t.:1 s..t r. rainfall Slope used fl::Ir rainfall irtL::•?nsity•.c::uc-...v.e Soi.1 antecedent moisture c:ondi.I..l.cln (AMC) • 1O_i.(' 1.. Sin (I n.. ++++++++4+/I+++-I+F++++?Off K+++++fV+*0'4+ip�++'++++++`++++++++/++0++.t~+ Process from Foint/StaLicn 11.000 to 300(/(/ **** INITIAL AREA EVALUATION !*W* RESIDENTIAL(8- 10 dwl/acre) Decimal fraction soil grouo A = Decimal Fractioo soil gruup E. = 0.000 Decimal fracfion soil g/ou! C = 0^O0C Decimal fraction soil group ^ = 1),W0 SCS curve number for suil(AMC 2) � `= 30,0C Pervious ratio(Ao) = 0.4000 Uax loss raLe(Fm)= 0,31i(ln/Hr) Initial subarea data: Initial area flow distanco = '620.000(FL.>' Top (of initial area) elevation = 39.300M,� Bottoh (of initial area) PlevaLion = 34,300(FL.) Difference in elevation = 5^000M,) Slone = 0.00806 s<%>= 0,3l TC = k(0.374)*[(length^3)/(e3evaLion change)]^0.2 Initial area time of concentration = 0.838 min. Rainfall intensity = 3.481(In/Hr) for a 100.0 vear storm Effective runoff coefficient used for area (Q=KCIA) is C= 0,7% Subarea runoff = 4,783(CFS) ' . Total initial stream area = 1.720(Ac-5 ^ Pervious area fraction = 0.400� ' Initial area Fm value = 0:-11(Ir//M End of computations, total study area = 1.�'2 W.)` The following figures may � be used for a unit hydrograph studv of thesame drea. Note: These figures do not consider rcducpd effective area ' effects caused by confluences in the rational equation. Area averaged pervious area fraciion(Au) = 0,400 Area averaged SCS curve number = 32-0 � 'San L'..((ii?1"T').':tY`C'I1,r)f_'` C/_7lrl :.v Rr.1t:7.tsr')eil Hvf11'C:)J.or}y (;l;..l')[)I"=ifr) (Hydrf.'•I. Cicy.v. tl;:l!'ti,..=i 1(;tJa ..'. t: 1906; rIV1:LCADD/CI VIL_.DyESir:iC.I ;_=r: J:i.r)t:l i.rlc.) S,7f k.Oar"c_. ;c i 1990 Vim.!,.._.,'! s: n Rational Hvclr-ul i. ov Btr_ldv >i.?r:ltr_): 1 / 1>9/ .TRACT 16222 100 YEAR 16222A..t AREA Il *:{t**{:*t** Hvdr•c)l.00v S[:udv c:c:rit;..ol !n"f(:)r('s)ai:ir) ;!.:4****V4,. Rational I'; vdI- c] L C)O\/ stud r %:.C)!'-tri r (•(.)., !.' Computed rain'f:rtl.1 i.ntt;=r) wi.t•-r, qq Storrs year = 100..00 1 hour r %.:r of a3 1 r.:t S1.Opa used for I'ai. rl'i',31. 1, intensity ?;,l..li'\: t;;- b Soil antecedent moisture condition (f`tilC) -_. .1 ++++ +++++++ I'll /++-1 l—*+++*+++'.1+, Process from to 17"01nt/3tatio1-1 **** INITIAL AREA EVALUATlO� R[SIDENTIAL(8 — 10 dwl/�cre> Decimal �ractipn soiI grouo A = 1.0�0 Decimal -fraction soil 1proup`T� Decima] {raction Decimal fri�.(ction soi] grcup SCS curve number 4:or soil/AHC Pervious ratio(Ao> = 0,4')0O lnitial subarea dita' lnitial area f]ow distance Too (o{ jnitia] a'ea) e!evat�n!` � 35.G0�(Ft,) . Bottom (of initial area> ele»ati�'n Dif+erence in elevation Slope = 0.01000 s(%)= 1.00 TC = 1.::(0.374)*[(1engthon cha,ge)]^0.2 Tnitial area time of concsntration Rainfall intehsity = 4.017(In/Hr) fo/' a ��0.0 ve�r storu Effective runofF ) is 8uLarea runo{f = 1.730(CFG) ToLal initial streem area Ac.> Pervious area fracLion Initial area Fro va1ue End of computatiuns, total stu�� The following figures may be used for aunjt hydrcgraph Note: These fiyures do not rndu'.ed pffect)ve area effects by cut fluevres in t!`e 1 np 1 egoation. Area averaged pervious Area averaged SOS* curv,, numbpr ^ ^ RMA Group GEOTECHNICAL CONSULTANTS SOIL GRADING REPORT ENGINEERED GRADING OF TRACT 16222, LOTS 1-12,15-84, AND 87-91 WEST LIBERTY PARKWAY AND MILLER AVENUE FONTANA, CA for Citation Homes 19600 Fairchild Suite 270 Irvine, CA 92612-2510 April 1, 2002 01-207-11 TRMA Group 1 GEOTECHNICAL CONSULTANTS 10851 EDISON CT., RANCHO CUCAMONGA, CA 91730 : 909-989-1751 : FAX 909-989-4287 April 1, 2002 Citation Homes 19600 Fairchild Suite 270 Irvine, CA 92612-2510 Attention: Jeff Weber Subject: Soil Grading Report Tract 16222, Lots 1-12, 15-84, and 87-91 West Liberty Parkway and Miller Avenue Fontana, CA Gentlemen: In accordance with your request, a soil grading report has been completed for the subject project. The purpose of this report is to document our observations and testing performed during rough grading of the subject project during the period beginning on February 26, 2002 and continuing through March 21, 2002. The accompanying report presents a description of our observations, the results of our soil testing, and recommendations, as well as our conclusions which are a statement of professional opinion only. The report does not constitute a guarantee or warranty of any type, and none should be inferred. We appreciate this opportunity to be of continued service to you. If you have any questions regarding this report, please do not hesitate to contact us at your convenience. Respectfully submitted Isaac Chun, P.E. Project Engineer RCE 59431 Jd r Ed on, P.E. Vice President GE 2362 RMA . Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 TABLE OF CONTENTS ISECTION PAGE 1.00 INTRODUCTION 1 I 1.01 Purpose 1 1.02 Workscope 1 1.03 Project Grading Information 1 2.00 SITE CONDITIONS 2 2.01 Original Conditions 2 I 2.02 Ground Water 2 3.00 GRADING OPERATIONS 2 3.01 Clearing 2 3.02 Original Ground Preparation 2 I 3.03 Fill Materials 3 3.04 Fill Placement 3 3.05 Abandoned Sewer Line 3 I 4.00 TESTING PROCEDURES 3 4.01 Field Testing 4 1 4.02 Laboratory Testing 4 5.00 RECOMMENDATIONS 5 1 5.01 Foundation Soil Bearing Values 5 5.02 Slabs on Grade 6 5.03 Cement Type 7 1 RMA Job N° 01-207-11 Page i 1 1 RMA Croup GEOTECHNICAL CONSULTANTS ' Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 I TABLE OF CONTENTS (Continued) SECTION PAGE ' 6.00 CONCLUSIONS 7 7.00. LIMITATIONS 7 1 PLATES Plate 1— Retaining Wall Drainage Detail Plate 2 — Compaction Test Results (Rough Grading) ' Plate 3 — Compaction Test Results (Abandoned Sewer Line Backfill) 111 APPENDICES APPENDIX A Compaction Test Results Al APPENDIX B Laboratory Test Results B 1 APPENDIX C References C 1 r RMA Job N° 01-207-11 Page ii GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 1.00 INTRODUCTION 1.01 Purpose The purpose of the grading operation was to prepare rough graded building pads and rough street grade for the proposed development. This report is to document our observations and testing performed during rough grading of the subject development during the period beginning on February 26, 2002 and continuing through March 21, 2002. 1.02 Workscope During the period indicated above, representatives of our firm performed the following professional services under the direction of the undersigned geotechnical engineer. • Observed clearing and grubbing operations. • Observed and tested the removal and backfill of existing abandoned sewerline. • Observed and approved the preparation of existing ground. • Observed the placement, processing and compaction of fills. • Performed field compaction tests of the processed existing ground and fills. • Performed laboratory testing on soils as described in this report. 1.03 Project Grading Information Grading was performed in accordance with the referenced grading plan, Reference 1, and the referenced geotechnical engineering (soils engineering) report, Reference 2. The following organizations were involved with grading of the subject site. Owner/Developer — Citation Homes Permitee — Citation Homes Grading Contractor San Bernardino Construction Design Civil Engineer — PHB and Associates Geotechnical Engineer — RMA Group RMA Job N° 01-207-11 Page 1 RMA Group GEOTECHNICAL CONSULTANTS ' Citation Homes , Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 2.00 SITE CONDITIONS 2.01 Original Conditions The site conditions, prior to rough grading, were essentially the same as those indicated in the referenced geotechnical report. Soils encountered during rough grading consisted of coarse grained silty sands to sands with gravels and cobbles. 2.02 Ground Water Ground water was not encountered during grading and the graded area did not cross any existing drainage courses. Therefore, subdrains were not constructed. 3.00 GRADING OPERATIONS 111 3.01 Clearing Our representative observed clearing and grubbing operations on a periodic basis. The areas to be graded were cleared of seasonal grasses and vegetation ' Cavities created during the clearing and grubbing process were filled and compacted during the original ground preparation phase of grading. Native grasses and/or weeds were mowed and disced in place. 3.02 Original Ground Preparation ' Prior to placing of fill the original ground was prepared as described below. Areas thus prepared are considered suitable for the support and placement of fill. tAll surficial deposits including topsoil, loose alluvium, and non -engineered fill were removed to expose competent earth material. The exposed earth material was scarified or blade mixed to a minimum depth of 12 inches. The scarified zone was then moistened to near optimum moisture and thoroughly compacted by rolling with loaded scrapers, dozers, and watertrucks. RMA Job N° 01-207-11 Page 2 RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 I Fontana, CA April 1, 2002 I Building pad areas, and an area extending a horizontal distance of five feet outside the perimeter footings, were overexcavated to a depth of approximately 1-3 feet below finished pad grade. The exposed surface was then scarified or blade mixed to a minimum depth of 12 inches. The scarified I zone was moistened to near optimum moisture and compacted by rolling with loaded scrapers, dozers, and watertrucks. I The original ground preparation, in all areas that were processed, was tested for the required compaction and approved prior to the placement of any fill. 3.03 Fill Materials Fill materials consisted of both on -site and imported soils. The on -site and imported soils consisted of coarse grained silty sands and are classified as SM by the Unified Soils Classification System. They are essentially the same materials as those encountered in the referenced geotechnical engineering report. Expansion index tests indicate these soils have an expansion classification of very low. Rocks (boulders) with a maximum dimension greater than 12 inches were not encountered during grading. ' 3.04 Fill Placement Fills were placed in relative level thin lifts, approximately 8 to 12 inches in thickness, with front- end loaders. After being placed, the fill material was moistened with water, and blade mixed until each lift of fill material was near optimum moisture content. Each lift was compacted by rolling with a vibratory drum sheepsfoot roller and a loader prior to placement of subsequent lifts. 1 3.05 Abandoned Sewer Line ' A private sewerline and manholes were placed throughout the site during the past rough grading operations of the condominiums. The sewerlines and manholes were located, removed and backfilled under the continuous observation of RMA Group. Field density testing results of the backfill operations are attached to this report in Appendix A, and approximate locations of the sewerline and tests are plotted on Plate 3. RMA Job N° 01-207-11 Page 3 1 RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 4.00 TESTING PROCEDURES 4.01 Field Testing In place density tests (compaction tests) were performed in the field by our representative by the sand volume method (ASTM D1556) and direct transmission nuclear gauge method (ASTM D2922). Compaction tests were taken at frequencies that are generally accepted as the standard practice of geotechnical engineers practicing in the area. ' Compaction test results are tabulated in Appendix A which is attached to and made a part. of this report. Compaction test locations for the rough grading operations are plotted on Plate 2 and the backfill of the abandoned sewer line are plotted on Plate 3. 4.02 Laboratory Testing g ' The maximum density - optimum moisture relationship was established in the laboratory by the ASTM D1557 test method. The maximum density - optimum moisture relationship was determined for each major soil type encountered. Expansion index tests were performed in accordance to the standard test methods of UBC Standard P 18-2 on each of the major soil types encountered. Soluble sulfate tests wereperformed on representative samples of each soil type encountered. P p major Soluble sulfate was extracted from soil with a solution of calcium phosphate (CaHPO4). The ' extract was tested for it soluble sulfate concentration in a spectrophotometer. Laboratory test results are summarized in Appendix B. r RMA Job N° 01-207-11 Page 4 1 RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 5.00 RECOMMENDATIONS 5.01 Foundation Soil Bearing Values ' Soil conditions encountered during rough h grading were essentially the same as those encountered in the referenced geotechnical engineering report. Foundations should be constructed using the ' following allowable soil bearing values: • Continuous Footings: having a minimum width of 12 inches and a minimum depth of 12 inches Footings a g p below the lowest adjacent grade — 1,500 pounds per square foot. This value may be ' increased by 20% for each additional foot of width and/or depth to a maximum value of 3,300 pounds per square foot. ' • Spread Footings: I Soil Bearing Values Footing Size Allowable Loads Depth Bearing Pressures I50 kips 18 inches 2,500 psf I• Retaining Wall Footings: Footings for retaining walls should be founded a minimum depth of 12 inches have a I minimum width of 12 inches. Footings may be designed using the allowable bearing capacity and lateral resistance values recommended for building footings. However, when calculating passive resistance, the upper 6 inches of the footings should be I ignored in areas where the footings will not be covered with concrete flatwork. Reinforcement should be provided for structural considerations as determined by the structural engineer. The above bearing values represent an allowable net increase in soil pressure over existing soil pressure and may be increased by one-third for short-term wind or seismic loads. I RMA Job N° 01-207-11 Page 5 1 RMA Group GEOTECHNICAL CONSULTANTS ' Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 ' Soils at the site are granular, non -plastic and non -expansive in nature. Therefore, reinforcement of footings for expansive soil is not required. However, in view of the seismic setting (UBC Seismic Zone 4), nominal reinforcement consisting of one #4 bar placed within 3 inches of the top of 111 footings and another placed within 3 inches of the bottom of footings is recommended. In addition, all footing excavations should be observed by the geotechnical consultant to verify that they have been excavated into competent soils. The foundation excavations should be observed prior to the placement of forms, reinforcement steel, or concrete. These excavations should be evenly trimmed and level. Prior to concrete placement, any loose or soft soils should be removed. ' Excavated soils should not be placed on slab or footing areas unless properly compacted. 5.02 Slabs on Grade Concrete floor slabs should have a minimum thickness of 4 inches and should be divided into squares or rectangles using weakened plane joints (contraction joints), each with maximum ' dimensions not exceeding 15 feet. Contraction joints should be made in accordance with American Concrete Institute (ACI) guidelines. If weakened plane joints are not used, then the slabs shall be reinforced with 6x6-10/10 welded wire fabric placed at mid -height of the slab. Special care should be taken on floors slabs to be covered with thin -set tile or other inflexible coverings. These areas may be reinforced with 6x6-10/10 welded wire fabric placed at mid -height ' of the slab, to mitigate drying shrinkage cracks. Alternatively, inflexible flooring may be installed with unbonded fabric or liners to prevent reflection of slab cracks through the flooring. A base course capillary break is not required for slabs on grade at the subject site. However, a soil moisture vapor barrier is recommended beneath all floor slabs with moisture sensitive floor coverings. The soil moisture vapor barrier should consist of a minimum of 4 inches of sand and a 10 mil visqueen liner. The liner should be placed with two inches of sand below and 2 inches of sand above the liner. The liner should be carefully fitted around service openings and should be properly lapped and sealed with a minimum 6-inch overlap at joints in accordance with the American Concrete Institute's (ACI) guidelines. It is further recommended that positive drainage away from all structures be provided. RMA Job N° 01-207-11 Page 6 � RMA Group 1 1 1 1 1 GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 5.03 Cement Type Soluble sulfate tests indicate that concrete at the subject site will have a negligible exposure to water soluble sulfate in the soil. Our recommendations for concrete exposed to sulfate -containing soils are presented below. RECOMMENDATIONS FOR CONCRETE EXPOSED TO SULFATE CONTAINING SOILS Sulfate exposure Water soluble sulfate (SO4) in soil (% by wgt) Sulfate (SO4) in water (ppm) Cement type Normal weight aggregate concrete Lightweight aggregate concrete Maximum water -cement ratio by weight Minimum compressive strength (psi) Negligible 0.00 - 0.10 0-150 -- -- -- Moderate 0.10 - 0.20 150-1,500 II, IP(MS), IS(MS) 0.50 4,000 Severe 0.20 - 2.00 1,500-10,000 V 0.45 4,500 Very Severe Over 2.00 Over 10,000 V plus pozzolan 0.45 4,500 6.00 CONCLUSIONS We conclude that to the best of our knowledge, the rough grading performed during the period beginning on February 26, 2002 and continuing through March 21, 2002, at the subject site has been performed in substantial compliance to the recommendations of the referenced soils engineering report and the requirements of Chapters 18 and 33 of the Uniform Building Code, 1997 Edition. 7.00 LIMITATIONS This report contains a statement of professional opinion based on our representatives observations during rough grading, the results of tests performed during rough grading, a review of the referenced soils engineering reports, and a geotechnical evaluation of the compiled data. Our tests and observations were made in accordance with commonly accepted procedures consistent with applicable standards of practice. This report does not constitute a guarantee or warranty of any type and none should be inferred. RMA Job N° 01-207-11 Page 7 7RMA Group PLATES GEOTECHNICAL CONSULTANTS RMA Group Retaining wall Wall waterproofing , per architect's specifications Provide open cell head joints or outlet drain at - 50 feet on center to a suitable drainage device Finished Grade \/ t v 0 0 0 �o • 0 0• C o 0 . • o o .o 0 GEOTECHNICAL CONSULTANTS 3" min. Compacted fill • Q . Wall footing v iin�� iin.. an\\ an\\ SPECIFICATIONS FOR CLASS 2 PERMEABLE MATERIAL (CAL TRANS SPECIFICATIONS) Sieve Size 1" 3/4" 3/8" No.4 No.8 No.30 No.50 No.200 % Passing 100 90-100 40-100 25-40 18-33 5-15 0-7 0-3 Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 Soil backfill, compacted to 90% relative compaction* Filter fabric envelope (Mirafi 140N or approved equivalent) -- Minimum of 1 cubic foot per linear foot of 3/4" crushed rock 3" diameter perforated PVC pipe (schedule 40 or equivalent) with perforations oriented down as depicted minimum 1% gradient to suitable outlet. Based on ASTM D1557 -- If class 2 permeable material (See gradation to left) is used in place of 3/4" -1 1/2" gravel. Filter fabric may be deleted. Class 2 permeable material compacted to 90% relative compaction. * RETAINING WALL DRAINAGE DETAIL RMA Job N° 01-207-11 Plate 1 1 e 10851 EDISON CT. RANCHO CUCAMONGA. CA. 91730 8usiness: 909.989.1751 Fax: 909.989.4287 C2II‘Li Croup GEOTECHNICAL ENGINEERING CONSTRUCTION INSPECTION MATERIALS TESTING PLAN CHANGES ITEM DESCRIPTION BY DATE APP1) 33 3 5 1' 62 30 2. �� O4 150 48 36 38.6.90104.1.1 2 45 47 01114 9 9 4 0 CD 163 162 161 9 147 156 31 . 3� 55 79 12: 0 I 33 77 126ITO 34 6 .7.1 124 ��� W O� 2 0 ® 0 rat i' 69 67 66 1 f0 r65 112 0 �' 0 114 ' 2 1 Du \ • Scale in Feet (1'. 150) 0 75 150 300 EAST ETIWANDA CREEK CITATION HOMES 19600 Fairchild, Suite 270 Irvine, CA 92612-2510 DRAWN BY: 200KMK CHECKED BY: . 520C/0--'.. APPROVED BY,',. 500LEP' DATE: <; Mar 2002 LEGEND �- Indicates Approximate Test Location TEST LOCATION MAP Rough Grading Tract No. 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA RMA Job No.: 01-207-11 SHEET No.: 1 OF 1 PLATE No.: 10851 EDISON cr. RANCHO CUCAMONGA. CA. 91730 Business: 909.989.1751 Fax: 909.989.4287 all LJ Group GEOTECHNICAL ENGINEERING CONSTRUCTION INSPECTION MA7ER/ALS TESTING 35 Abad. ewerline A J4 33l 3 0 2s 30 17i� r,�. .----c,------,...,(< • 48 39 40 41 42 43 . :1 ` 4 22 fia) 89 88 87 eza / 84 83 82 81 80 79 78 77 76 75 b� 4 1 _3 1 73 7 0 71 70 69 68 Z 66 :``, 65 64 63 B2 Bi BO 59 PLAN CHANGES ITEM DESCRIPTION BY DATE APPD 0 Scale in Feet t1'� 7S0) 150 EAST ETIWANDA CREEK CITATION HOMES 19600 Fairchild, Suite 270 Irvine, CA 92612-2510 DRAWN 8Y:: 200KMK CHECKED BY: 520C18' APPROVED BY: 500LEP DATE: Mar 2002 LEGEND - Indicates Approximate Test Location - Indicates Approximate Location of Abandoned Sewertine TEST LOCATION MAP Abandoned Sewerline Tract No. 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA RMA Job No.: 01-207-11 SHEET No.: 1 OF 1 PLATE Na: RMA Group GEOTECHNICAL CONSULTANTS APPENDIX A COMPACTION TEST RESULTS 1 7RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 MAXIMUM DENSITY - OPTIMUM MOISTURE RELATIONSHIPS 1 i 1 i 1 'Test Method M - ASTM D1557 (Maximum Density Optimum Moisture Relationship) RMA Job N° 01-207-11 Page Al Soil Test Type Method' Description 1 M Dark Brown silty sand with fine cobbles and gravel 2 M Light Brown sand with fine cobbles 3 M Light Brown sand with fine gravel 4 M Dark Brown sand with fine gravel 5 M Dark Brown sand with fine cobbles and gravel 6 M Brown sand with gravel 7 M Dark Brown sand with gravel 8 M Dark brown sand with gravel 9 M Dark Brown sand with fine cobbles and gravel 10 M Fine silty sand 11 M Dark Brown Sand with gravel Optimum Maximum Moisture Density (%) (pcf) 9.5 128.5 9.5 126.5 10.5 130.5 11.5 121.0 9.5 129.0 11.5 121.5 10.5 123.0 10.0 125.0 9.5 130.0 10.0 125.0 11.0 122.0 1 IWM Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA ' April 1, 2002 IN -PLACE DENSITIES - ABANDONED SEWER LINE BACKFILL Test Item2 Test3 Test Dry Relative Soil No. Date Tested Location Method Depth Moisture Density Compaction Type (ft) (%) (Pcf) (%) 111 1 2/26/2002 FL Abandon Sewer line "A" N 6.0 11.3 115.9 90 1 2 2/26/2002 FL Abandon Sewer line "A" N 6.0 12.5 117.1 91 1 3 2/26/2002 FL Abandon Sewer line "A" N 6.0 7.5 114.0 89 .** 1 I 4 2/26/2002 FL Retest of No. 3 N 6.0 8.7 117.3 91 1 5 2/26/2002 FL Abandon Sewer line "A" N 4.0 10.7 117.8 92 1 6 2/26/2002 FL Abandon Sewer line "A" N 4.0 9.9 115.7 90 1 I 7 2/26/2002 FL Abandon Sewer line "A" N 4.0 10.2 116.1 90 1 8 2/27/2002 FL Abandon Sewer line "A" N 2.0 8.4 119.9 93 1 9 2/27/2002 FL Abandon Sewer line "A" N 6.0 9.6 115.9 90 1 10 2/27/2002 FL Abandon sewer line "B" N 6.0 11.8 115.2 91 2 I 11 2/27/2002 FL Abandon Sewer line "B"N 6.0 7.4 117.0 92 2 12 2/27/2002 FL Abandon Sewer line "C" N 2.0 10.4 115.9 92 2 13 2/27/2002 FL Abandon Sewer line "C" N 4.0 10.4 115.4 91 2 I 14 2/27/2002 FL Abandon Sewer line "C" N 11.2 115.2 91 2 15 2/27/2002 FL Abandon Sewer line "C" N 7.0 11.9 116.5 92 2 16 2/27/2002 FL Abandon Sewer line "C" N 0.5 9.2 116.2 92 2 17 2/27/2002 FL Abandon Sewer line "C" N 6.0 9.4 117.3 93 2 I 18 2/27/2002 FL Abandon Sewer line "C" N 4.0 9.7 119.0 94 2 19 2/28/2002 FL Abandon Sewer line "B" N 2.0 7.3 116.9 92 2 20 2/28/2002 FL Abandon Sewer line "B" N 1.0 8.0 116.8 92 2 I 21 2/28/2002 FL Abandon Sewer line "B" N 4.0 6.9 116.3 92 2 22 2/28/2002 FL Abandon Sewer line "C" N 3.0 7.1 114.7 91 2 23 2/28/2002 FL Abandon Sewer line "C" N 1.0 8.0 114.2 90 2 I 24 2/28/2002 FL Abandon Sewer line "C" N 4.0 6.4 115.8 92 2 25 2/28/2002 FL Abandon Sewer line "C" N 4.0 8.1 115.1 91 2 26 2/28/2002 FL Abandon Sewer line "C" N 3.0 5.0 115.3 91 2 27 2/28/2002 FL Abandon Sewer line "C" N 1.0 7.2 115.2 91 2 I28 2/28/2002 FL Abandon Sewer line "C" N 1.0 7.1 114.7 91 2 'Item Tested: IFL - Fill 3Test Method: N - ASTM D2922 (Density of Soil In -Place by Direct Transmission Nuclear Method) I**Areas represented by these tests received additional compactive effort and were retested. RMA Job N° 01-207-11 Page A2 1 7RMA Group 1 t IN -PLACE DENSITIES - ROUGH GRADING Test Item2 No. Date Tested Location GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 Test3 Test F.G. Dry Relative Soil Method Elev. Elev. Moisture Density Compaction Type (ft) (ft) (%) (pcf) (%) 1 . 3/4/2002 OG Lot 1 N 27.0 33.0 3.2 120.7 100 4 2 3/4/2002 SZ Lot 1 N 27.0 33.0 9.5 117.6 97 4 3 3/4/2002 FL Lot 1 N 29.0 33.0 8.1 119.1 98 4 4 3/4/2002 FL Lot 1 N 31.0 33.0 9.6 116.1 96 4 5 3/5/2002 SZ Lot 2 N 33.5 35.0 9.9 118.2 98 4 6 3/5/2002 SZ Lot 3 N 35.0 37.0 9.2 116.7 96 4 7 3/5/2002 SZ Lot 4 N 35.2 37.7 8.0 116.7 96 4 8 3/5/2002 SZ Lot 6 N 36.0 38.3 10.1 115.6 96 4 9 3/5/2002 SZ Lot 4 N 35.2 37.7 9.7 116.2 96 4 10 3/5/2002 SZ Lot 91 N 36.5 38.2 9.8 118.8 92 5 11 3/5/2002 SZ Lot 89 N 37.7 39.4 9.0 118.3 92 5 12 3/5/2002 SZ Lot 91 N 37.2 38.2 9.2 118.8 92 5 13 3/5/2002 SZ Lot 2 N 34.0 33.0 10.2 117.7 97 4 14 3/5/2002 SZ Lot 3 N 36.0 33.0 9.9 118.0 98 4 15 3/5/2002 SZ Lot 8 N 36.2 38.8 10.7 114.5 95 4 16 3/5/2002 FL Lot 5 N 36.5 38.0 10.6 114.5 95 4 17 3/5/2002 FL Lot 7 N 37.0 38.3 10.2 117.3 91 5 18 3/5/2002 FL Lot 9 N 38.0 39.1 11.1 117.0 91 5 19 3/5/2002 FL Lot 11 N 39.0 40.3 8.2 116.4 90 5 20 3/6/2002 OG Lot 87 N 37.7 40.7 8.8 109.4 85 5 21 3/6/2002 SZ Lot 87 N 37.7 40.7 9.4 117.7 91 5 22 3/6/2002 FL Lot 87 N . 39.0 40.7 10.4 116.8 91 5 23 3/6/2002 FL Lot 12 N 39.0 40.9 11.4 118.5 92 5 24 3/6/2002 OG Lot 16 N 40.8 43.7 7.6 115.8 89 3 25 3/6/2002 SZ Lot 17 N 40.9 43.7 9.2 121.8 93 3 26 3/6/2002 OG lot 81 N 42.7 43.5 7.4 114.7 91 2 27 3/6/2002 SZ Lot 81 N 42.7 43.5 8.7 121.0 96 2 28 3/6/2002 SZ Lot 84 N 42.1 42.1 8.9 118.9 94 2 29 3/6/2002 FL Lot 16 N 41.9 43.7 8.9 120.5 92 3 30 3/6/2002 FL Lot 17 N 42.7 43.7 9.2 121.0 93 3 31 3/6/2002 SZ Lot 82 N 43.0 43.0 7.8 122.3 94 3 32 3/6/2002 SZ Lot 80 N 43.9 43.9 9.1 121.3 93 3 33 3/6/2002 SZ Lot 78 N 44.8 44.8 7.6 117.2 90 3 34 3/6/2002 SZ Lot 76 N 46.0 46.0 8.9 120.5 92 3 35 3/6/2002 SZ Lot 74 N 48.7 48.7 9.4 121.3 93 3 36 3/6/2002 SZ Lot 72 N 50.4 50.4 8.7 119.4 91 3 37 3/6/2002 SZ Lot 70 N 51.8 51.8 7.3 122.0 93 3 RMA Job N° 01-207-11 Page A3 RMA Group IN -PLACE DENSITIES - ROUGH GRADING Test Item2 No. Date Tested Location GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 Test' Test F.G. Dry Relative Soil Method Elev. Elev. Moisture Density . Compaction Type (ft) (ft) (%) (pcf) (%) 38 3/6/2002 SZ Lot 68 N 53.1 53.1 10.4 121.0 93 3 39 3/7/2002 OG Lot 18 N 42.2 44.9 10.6 118.5 92 5 40 3/7/2002 SZ Lot 18 N 42.2 44.9 10.8 122.2 95 5 41 3/7/2002 FL Lot 18 N 43.5 44.9 11.0 120.3 93 5 42 3/7/2002 SZ Lot 27 N 48.4 47.8 12.1 117.1 96 6 43 3/7/2002 SZ Lot 25 N 47.5 47.8 11.3 119.3 98 6 44 3/7/2002 SZ Lot 23 N 46.1 46.1 9.2 118.2 97 6 45 3/7/2002 SZ lot 21 N 45.5 45.5 11.6 116.3 96 6 46 3/7/2002 OG Lot 70 N 48.0 51.8 10.4 121.0 98 7 47 3/7/2002 OG Lot 72 N 46.5 50.4 9.7 120.2 98 7 48 3/7/2002 OG Lot 74 N 46.2 48.2 10.0 119.5 97 7 49 3/7/2002 SZ Lot 71 N 47.3 51.1 10.4 118.2 96 7 50 3/7/2002 SZ lot 73 N 46.0 49.7 10.7 118.4 96 7 51 3/7/2002 OG Lot 30 N 49.0 53.1 8.7 118.8 95 8 52 3/7/2002 OG Lot 32 N 46.5 51.0 7.7 118.2 95 8 53 3/7/2002 OG Lot 34 N 46.0 49.0 9.0 118.8 95 8 54 3/7/2002 SZ Lot 82 N 41.5 43.0 10.6 118.5 92 5 55 3/7/2002 SZ Lot 80 N 43.9 43.9 11.4 120.6 93 5 56 3/7/2002 SZ Lot 78 N 44.8 44.8 10.9 120.3 93 5 57 3/7/2002 FL Lot 84 N 41.0 42.1 11.5 117.0 95 7 58 3/7/2002 FL Lot 83 N 41.5 42.2 10.7 118.3 96 7 59 3/8/2002 FL Lot 74 N 47.5 48.7 11.9 118.5 95 8 60 3/8/2002 FL Lot 70 N 49.5 51.8 12.2 118.4 95 8 61 3/8/2002 SZ Lot 29 N 50.4 55.1 11.8 118.9 95 8 62 3/8/2002 SZ Lot 31 N 48.7 52.0 11.7 118.9 95 8 63 3/8/2002 SZ Lot 35 N 43.0 46.5 12.1 119.3 95 8 64 3/8/2002 FL Lot 29 N 52.0 55.1 11.8 117.9 94 . 8 65 3/8/2002 FL Lot 31 N 50.0 52.0 10.9 118.9 95 8 66 3/8/2002 FL Lot 33 N 49.0 50.1 10.6 119.5 92 9 67 3/8/2002 FL Lot 34 N 48.0 49.0 11.8 119.0 92 9 68 3/8/2002 FL Lot 32 N 49.0 51.0 11.5 117.3 90 9 69 3/8/2002 FL Lot29 N 54.0 55.1 10.4 120.9 93 9 70 3/8/2002 FL Lot 35 N 45.0 45.5 11.2 119.3 92 9 71 '3/8/2002 FL Lot 30 N 50.5 53.1 10.9 119.5 92 9 72 3/8/2002 OG Lot 36 N 42.0 45.1 7.9 117.3 94 8 73 3/8/2002 SZ Lot 57 N 42.5 45.6 9.7 117.1 94 8 74 3/8/2002 OG Lot 42 N 47.5 50.9 8.6 118.2 95 8 RMA Job N° 01-207-11 Page A4 t RMA Group IN -PLACE DENSITIES - ROUGH GRADING Test Item' No. Date Tested Location GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 Test3 Test F.G. Dry Relative Soil Method Elev. Elev. Moisture Density Compaction Type (R) (ft) (%) (pcf) (%) 75 3/8/2002 SZ Lot 41 N 47.0 50.1 10.1 119.1 95 8 76 3/8/2002 OG Lot 48 N 53.0 55.0 8.8 116.8 93 8 77 3/8/2002 SZ Lot 46 N 53.0 53.7 9.7 118.5 95 8 78 3/8/2002 FL Lot 42 N 48.5 50.9 12.4 118.9 95 8 79 3/9/2002 FG Lot 1 S 33.0 33.0 11.3 117.3 97 4 80 3/9/2002 FG Lot 1 S 33.0 33.0 9.5 113.7 94 4 81 3/9/2002 FG Lot 2 S 33.0 33.0 11.9 114.5 95 4 82 3/9/2002 FG Lot 2 S 33.0 33.0 11.6 117.3 97 4 83 3/9/2002 FG Lot 3 S 37.0 37.0 9.8 112.1 93 4 84 3/9/2002 FG Lot 4 S 37.7 37.7 9.5 114.2 94 4 85 3/9/2002 FG Lot 5 S 38.0 38.0 11.4 117.8 91 5 86 3/9/2002 FG Lot 6 S 38.3 38.3 10.6 124.0 96 5 87 3/9/2002 FG Lot 7 S 38.5 38.5 10.1 122.0 95 5 88 3/9/2002 FG Lot 8 S 38.8 38.8 10.4 120.4 93 5 89 3/9/2002 FG Lot 9 S 39.1 39.1 9.6 118.8 92 5 90 3/9/2002 FL Lot 10 S 44.0 45.6 9.8 119.3 92 5 91 3/9/2002 FL Lot 37 S 44.0 45.6 10.7 120.0 92 9 92 3/9/2002 FL Lot 36 S 43.5 45.1 11.0 120.4 93 9 93 3/9/2002 OG Lot 51 S 52.7 55.2 10.9 117.0 90 9 94 3/9/2002 SZ Lot 52 S 53.0 57.8 10.0 120.8 93 9 95 3/11/2002 FL Lot 51 N 53.0 55.2 6.8 113.4 91 10 96 3/11/2002 FL Lot 52 N 55.0 56.5 6.2 113.3 91 10 97 3/11/2002 FL Lot 51 N 53.0 55.2 8.9 115.4 92 10 98 3/11/2002 FL Lot 52 N 55.0 56.9 9.4 117.5 94 10 99 3/11/2002 SZ Lot 50 N 53.9 53.9 11.4 116.5 93 10 100 3/11/2002 OG Lot 53 N 53.0 57.8 7.8 117.3 94 10 101 3/11/2002 OG Lot 55 N 53.0 59.4 6.0 116.6 93 10 102 3/11/2002 OG Lot 57 N 53.0 58.7 7.5 118.0 94 10 103 3/11/2002 SZ Lot 54 N 53.0 58.7 10.2 116.5 93 10 104 3/11/2002 SZ Lot 56 N 53.0 58.6 10.8 117.1 94 10 105 3/11/2002 FL Lot 54 N 55.0 58.2 11.0 117.8 97 11 106 3/11/2002 FL Lot 53 N 56.0 57.8 9.9 117.8 97 11 107 3/11/2002 FL Lot 55 N 56.0 58.6 11.6 118.1 97 11 108 3/11/2002 FL Lot 54 N 57.0 58.7 10.6 118.3 97 11 109 3/11/2002 . FL Lot 56 N 55.0 58.6 10.6 118.2 97 11 110 3/11/2002 OG Lot 66 N 52.0 54.5 7.7 113.4 93 11 111 3/11/2002 OG Lot 63 N 53.0 56.5 6.2 116.1 95 11 RMA Job N° 01-207-11 Page A5 i 7�RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 IN -PLACE DENSITIES - ROUGH GRADING Test Item' Testa Test F.G. Dry Relative Soil No. Date Tested Location Method Elev. Elev. Moisture Density Compaction Type (ft) (ft) (%) (pcf) (%) 112 3/11/2002 SZ Lot 65 N 53.0 55.1 11.2 119.9 98 11 113 3/11/2002 SZ Lot 64 N 53.0 55.8 11.1 118.8 97 11 114 3/12/2002 SZ Lot 62 N 57.2 57.2 9.8 117.1 96 11 115 3/12/2002 SZ Lot 59 N 59.0 60.0 8.8 117.7 96 11 116 3/12/2002 FG Lot 29 N 55.1 55.1 8.4 118.0 94 8 117 3/12/2002 FG Lot 30 N 53.1 53.1 9.6 117.7 94 8 118 3/12/2002 FG Lot 48 N 55.2 55.2 8.7 116.6 93 8 119 3/12/2002 FG Lot 70 N 51.8 51.8 9.1 116.5 95 7 120 3/12/2002 FG Lot 71 N 51.1 51.1 8.8 116.0 94 7 121 3/12/2002 FG Lot 72 N 50.4 50.4 7.9 116.7 95 7 122 3/12/2002 FG Lot 73 N 49.7 49.7 8.6 116.7 95 7 123 3/12/2002 FG Lot 74 N 48.7 48.0 9.6 116.7 95 7 124 3/12/2002 FG Lot 75 N 47.2 47.2 7.3 116.2 94 7 125 3/12/2002 FG Lot 76 N 46.0 . 46.0 7.8 116.0 94 7 126 3/12/2002 FG Lot 77 N 45.3 45.3 10.5 117.3 95 7 127 3/12/2002 FG Lot 78 N 44.8 44.8 8.1 115.7 94 7 128 3/12/2002 FG Lot 79 N 44.4 44.4 9.0 115.7 94 7 129 3/12/2002 FL Lot 57 N 55.0 57.5 11.1 118.8 92 5 130 3/12/2002 FL Lot 56 N 57.0 58.6 9.8 118.1 . 92 5. 131 3/12/2002 FL Lot 55 N 57.0 59.4 10.6 119.1 92 5 132 3/12/2002 FL Lot 53 N 55.0 57.8 10.1 117.0 . 91 5 133 3/12/2002 FL Lot 57 N 56.0 56.0 10.7 120.0 93 5 134 3/12/2002 FL Lot 58 N 56.0 57.5 6.8 118.0 91 5 135 3/12/2002 FL Lot 58 N 56.0 57.5 9.4 119.3 92 5 136 3/12/2002 FG Lot 11 S 50.3 50.3 9.6 116.3 90 5 137 3/12/2002 FG Lot 12 S 40.9 40.9 10.4 118.5 92 5 138 3/12/2002 FG Lot 15 S 42.6 42.6 9.8 119.1 92 5 139 3/12/2002 FG Lot 16 S 43.1 43.1 11.1 119.0 92 5 140 3/12/2002 FG Lot 17 S 43.7 43.7 10.4 118.0 91 5 141 3/12/2002 FG Lot 91 S 38.2 38.2 9.8 117.9 91 5 142 3/12/2002 FG Lot 90 S 38.9 38.9 9.5 117.9 91 5 143 3/12/2002 FG Lot 89 S 39.4 39.4 10.1 119.6 93 5 144 3/12/2002 FG Lot 88 S 40.1 40.1 9.8 121.3 94 5 145 3/12/2002 FG Lot 87 S 40.4 40.7 10.4 120.2 93 5 146 3/12/2002 FG Lot 84 S 42.1 42.1 11.1 120.7 94 5 147 3/12/2002 FG Lot 83 S 42.7 42.7 11.7 120.5 93 5 148 3/13/2002 FG Lot 31 S 52.0 52.0 9.4 117.4 94 8 RMA Job N° 01-207-11 Page A6 1 1 t t RMA Group GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 IN -PLACE DENSITIES - ROUGH GRADING Test Item' Test3 Test F.G. Dry Relative Soil No. Date Tested Location Method Elev. Elev. Moisture Density Compaction Type (ft) (ft) (%) (NO (%) 149 3/13/2002 FG Lot 32 S 51.0 51.0 9.8 117.9 94 8 150 3/13/2002 FG Lot 33 S 50.1 50.1 10.0 118.0 94 8 151 3/13/2002 FG Lot 34 . S 49.0 49.0 10.1 116.9 . 94 8 152 3/13/2002 FG Lot 35 S 46.5 46.5 10.4 116.3 93 8 153 3/13/2002 FL Lot 63 N 55.0 56.5 10.9 119.8 93 5 154 3/13/2002 FL Lot 65 N 54.0 55.1 10.5 118.2 92 5 155 3/13/2002 FG Lot 81 N 43.0 43.5 9.8 120.5 93 5 156 3/13/2002 FG Lot 82 N 43.0 43.0 9.2 120.1 93 5 157 3/13/2002 FG Lot 36 N 45.1 45.1 10.1 118.3 95 8 158 3/14/2002 FG Lot 47 S 54.2 54.2 9.1 115.5 92 8 159 3/14/2002 FG Lot 46 S 55.3 55.3 8.8 118.2 95 8 160 3/14/2002 FG Lot 45 S 52.8 52.8 11.0 122.5 94 9 161 3/14/2002 FG Lot 44 S 52.5 52.5 9.2 117.1 94 8 162 3/14/2002 FG Lot 43 S 51.5 51.5 9.1 120.2 92 9 163 3/14/2002 FG Lot 42 S 50.9 50.9 9.2 120.4 96 8 164 3/14/2002 FG Lot 37 S 45.6 45.6 9.1 113.0 90 8 165 3/14/2002 FG Lot 38 S 46.8 46.8 10.4 115.2 92 8 166 3/14/2002 FG Lot 39 S 48.1 48.1 11.1 114.7 92 8 167 3/14/2002 FG Lot 40 S 49.3 49.3 9.8 114.7 92 8 168 3/14/2002 FG Lot 41 S 50.1 50.1 9.5 115.1 92 8 169 3/14/2002 FG Lot 69 S 52.5 52.5 9.5 114.1 94 11 170 3/14/2002 FG Lot 68 S 53.1 53.1 9.8 111.2 91 11 171 3/14/2002 FG Lot 67 S 53.8 53.8 10.1 111.7 92 11 172 3/14/2002 FG Lot 66 S 54.5 54.5 10.4 112.5 92 11 173 3/14/2002 FG Lot 65 S 55.1 55.1 10.3 114.1 94 11 174 3/15/2002 FG Lot 64 S 55.8 55.8 9.3 119.7 96 10 175 3/15/2002 FG Lot 63 S 56.5 56.5 8.5 118.5 95 10 176 3/15/2002 FG Lot 62 S 57.2 57.2 8.4 118.4 95 10 177 3/15/2002 FG Lot 61 S 58.7 58.7 10.2 118.4 95 10 178 3/15/2002 FG Lot 60 S 59.0 59.0 9.2 120.3 96 10 179 3/20/2002 FG Lot 59 S 60.0 60.0 10.9 114.7 92 10 180 3/20/2002 FG Lot 58 S 57.5 57.5 9.5 115.5 92 10 181 3/20/2002 FG Lot 57 S 57.8 57.8 9.8 118.5 95 10 182 3/20/2002 FG Lot 56 S 58.6 58.6 10.0 116.8 93 10 183 3/20/2002 FG Lot 55 S 59.4 59.4 10.4 115.1 92 10 184 3/20/2002 FG Lot 54 S 58.7 58.7 10.1 116.2 93 10 185 3/20/2002 FG Lot 53 S 57.8 57.8 9.7 117.9 94 10 RMA Job N° 01-207-11 Page A7 RMA Group IN -PLACE DENSITIES - ROUGH GRADING Test Item2 No. Date Tested Location 186 3/20/2002 FG Lot 52 187 3/20/2002 FG Lot 51 188 3/20/2002 FG Lot 50 189 3/20/2002 FG Lot 49 190 3/20/2002 FG Lot 18 191 3/20/2002 FG Lot 19 192 3/20/2002 FG Lot 20 193 3/20/2002 FG Lot 21 194 3/21/2002 FG Lot 22 195 3/21/2002 FG Lot 23 196 3/21/2002 FG Lot 24 197 3/21/2002 FG Lot 25 198 3/21/2002 FG Lot 26 199 3/21/2002 FG Lot 27 200 3/21/2002 FG Lot 28 2ltem Tested: OG - Original Ground FL - Fill GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 Test3 Test F.G. Dry Relative Soil Method Elev. Elev. Moisture Density Compaction Type (ft) (ft) (%) (pcf) (%) S 56.5 56.5 10.4 116.9 94 10 S 55.2 55.2 10.3 116.3 93 10 S 53.9 53.9 10.7 115.7 93 10 S 53.1 53.1 11.1 116.3 93 10 S 44.9 44.9 10.3 113.1 93 . 6 S 45.2 45.2 10.6 112.1 92 6 S 45.2 45.2 10.1 114.2 94 6 S 45.5 45.5 9.8 113.7 94 6 S 45.6 45.6 9.7 109.9 90 6 S 46.1 46.1 10.7 112.3 92 6 S 46.9 46.9 9.7 111.2 92 6 S 47.8 47.8 9.8 113.7 94 6 S 48.7 48.7 11.1 109.8 90 6 S 49.6 49.6 10.4 116.3 96 6 S 50.1 50.1 10.1 113.6 93 6 SZ - Scarified zone FG - Finish grade 3Test Method: S - ASTM D1556 (Density of Soil In -Place by Sand Cone Method) N - ASTM D2922 (Density of Soil In -Place by Direct Transmission Nuclear Method) **Areas represented by these tests received additional compactive effort and were retested. RMA Job N° 01-207-11 Page A8 GEOTECHNICAL CONSULTANTS APPENDIX B LABORATORY TEST RESULTS 1 TRMA Group GEOTECHNICAL CONSULTANTS ' Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 ' Fontana, CA April 1, 2002 ' EXPANSION INDEX TEST Expansion index tests were performed on representative samples of the major soil types encountered by the test methods outlined in the Uniform Building Code Standard No. 18-2. Molding Final Initial Moisture Moisture Dry Lot Content Content Density Expansion Expansion No. (Percent) (Percent) (lbs/f) Index Classification 10 7.1 17.3 122.6 0 Very Low I46 7.7 22.8 1 I8.8 0 Very Low 58 7.1 19.6 122.0 0 Very Low 81 7.2 19.1 121.7 0 Very Low I SOLUBLE SULFATES Tests were performed on representative samples encountered during rough grading using the HACH DR3 (Calcium Phosphate Extractable) procedures. Lot Soluble Sulfate Lot Soluble Sulfate No. (ppm) No. (ppm) II1 21 50 23 4 23 52 24 I 7 21 55 24 16 23 61 25 I 20 19 64 20 23 22 67 20 26 20 70 23 I29 24 73 25 32 24 76 21 111 35 27 79 26 37 24 82 21 I 40 22 87 24 43 24 90 24 RMA Job N° 01-207-11 Page B l 7RMA Group GEOTECHNICAL CONSULTANTS APPENDIX C REFERENCES RMA Group REFERENCES 1. PHB and Associates, Rough Grading Plans 21, 2002, Scale: 1"=30'. 2. RMA Group, Geotechnical Investigation, September 14, 2001, Project No. 01-207-01. GEOTECHNICAL CONSULTANTS Citation Homes Tract 16222, Lots 1-12, 15-84, and 87-91 Fontana, CA April 1, 2002 for Tract 16222, Fontana, CA, dated February Tentative Tract 16222, Fontana, CA, dated 3. International Conference of Building Officials, Uniform Building Code, 1997 Edition. RMA Job N° 01-207-11 Page Cl Lot name: LE-1 North: 5169.7411 East: 5101.4465 Line Course: S 67-10-42 E Length: 5.00. North: 5167.8018 East: 5106.0551 Line Course: S 20-03-07 W Length: 71.80 North: 5100.3541 Easti 5081.4369 Line Course: S 13-29-27 W Length: 98.26 North: 5004.8054 East: 5058.5138 Line Course: S 44-40-33 W Length: 8.66 North: 4998.6473 East: 5052.4250 Curve Length: 178.41 Radius: 748.00 Delta: 13-39-57 Tangent: 89.63 Chord: 177.98 Course: N 15-59-19 E Course In: S 80-50-39 E Course Out: N 67-10-42 W. RP North: 4879.6254 East: 5790.8949 End North: 5169.7478 East: 5101.4509 Perimeter: 362.13 Area: 1,020 sq.ft. 0.02 acres Mapcheck Closure (Uses listed courses, radii, and deltas) Error Closure: 0.0080 Course: N 33-33-12 E Error North: 0.00670 East: 0.00444 Precision 1: 45,074.63 Lot name: LE-2 North: 5258.9227 Line Course: S 62-54-46 E North: 5256.6459 Line Course: S 25-38-35 North: 5167.8024 Line Course: N 67-10-42 North: 5169.7417 Curve Length: 40.98 Delta: 3-08-20 Chord: 40.97 Course In: S 67-10-42 E RP North: 4879.6193 End North: 5207.0580 Curve Length: 57.97 Delta: 1-07-36 Chord: 57.96 Course In: S 64-02-22 E RP North: 3916.5643 End North: 5258.9254 W Length: W Length: East: 5144.2529 Length: 5.00 East: 5148.7044 98.55 East: 5106.0556 5.00. East: 5101.4470 Radius: 748.00 Tangent: 20.50 Course: N 24-23-28 E Course Out: N 64-02-22 W East: 5790.8910 East: 5118.3675 Radius: 2948.00 Tangent: 28.98 Course: N 26-31-26 E Course Out: N 62-54-46 W East: 7768.9014 East: 5144.2546 Perimeter: 207.50 Area: 551 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0032 Error North: 0.00269 Precision 1: 64,872.42 Course: N 32-47-36 E East: 0.00173 Lot name: LE-3 North: 5342.7721 Line Course: S 55-55-57 W North: 5325.1099 Curve Length: 74.83 Delta: 1-27-16 Chord: 74.83 • Course In: S 61-27-30 E RP North: 3916.5622 End North: 5258.9233 Line Course: S 62-54-46 E North: 5256.6466 Line Course: N 27-48-52 E North: 5322.7249 Line Course: N 47-17-47 E North: 5342.7794 East: 5205.2896 Length: 31.53 East: 5179.1708 Radius: 2948.00 Tangent: 37.42 Course: S 27-48-52 W Course Out: N 62-54-46 W East: 7768.9000 East: 5144.2533 Length: 5.00, East: 5148.7048 Length: 74.71 East: 5183.5652 Length: 29.57 East: 520.2954 Perimeter: 215.64 Area: 456 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0093 Course: N 38-22-32 E Error North: 0.00733 East: 0.00580 Precision 1: 23,072.51 Lot name: LE-9 North: 5597.1114 East: 5341.6005 Line Course: N 34-24-58 E Length: 40.76 North: 5630.7366 East: 5364.6380 Line Course: N 64-32-29 W Length: 5.39 North: 5633.0535 East: Curve Length: 40.28 Radius: Delta: 2-42-31 Tangent: Chord: 40.27 Course: Course In: N 64-32-29 W Course Out: RP North: 5999.2934 East: End North: 5597.1098 East: 5359.7714 852.00 20.14 S 26-48-46 W S 61-49-58 E 4590.5040 5341.6048 Perimeter: 86.43 Area: 102 sq.ft. 0.00 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0045 Course: S 68-14-11 E Error North: -0.00169 East: 0.00422 Precision 1: 19,011.01 Lot name: LE-10 North: 5630.7350 Line Course: N 23-43-16 E North: 5674.9452 Line Course: N 65-28-00 W North: 5677.1417 Curve Length: 48.21 Delta: 3-14-31 Chord: 48.20 Course In: N 67-47-00 RP North: 5999.2915 End North: 5633.0517 Line Course: S 64-32-29 E North: 5630.7347 East: 5364.6369 Length: 48.29 East: 5384.0632 Length: 5.29 East: 5379.2508 Radius: 852.00 Tangent: 24.11' Course: S 23-50-16 W W Course Out: S 64-32-29 E East: 4590.5027 East: 5359.7702 Length: 5.39 East: 5364.6368 Perimeter: 107.18 Area: 247 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0003 Course: S 19-37-17 W. Errot North: -0.00027 East: -0.00010 Precision 1: 371,520.38 Lot name: LE-11 North: 5674.9440 East: 5384.0626 Line Course: N 20-44-28 E Length: 45.10 North: 5717.1211 East: 5400.0346 Line Course: N 65-28-00 W Length: 5.33, North: 5719.3342 East: 5395.1858 Curve Length: 45.11 Radius: 852.00 Delta: 3-02-00 Tangent: 22.56 Chord: 45.10 Course: S 20-42-00 W Course In: N 70-49-00 W Course Out: S 67-47-00 E RP North: 5999.2945 East: 4590.4957 End North: 5677.1447 East: 5379.2437 Line Course: S 65-28-00 E Length: 5.29 North: 5674.9482 East: 5384.0562 Perimeter: 100.83 Area: 230 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0077 Course: N 57-02-19 W Error North: 0.00420 East: -0.00648 Precision 1: 13,050.03 Lot name: LE-12 North: 5762.5216 East: 5408.9384 Line Course: S 65-28-00 E Length: 5.35 North: 5760.3001 East: 5413.8054 Line Course: S 17-41-32 W Length: 45.32 North: 5717.1236 East: 5400.0325 Line Course: N 65-28-00 W Length: 5.33 North: 5719.3368 East: 5395.1837 Curve Length: 45.33 Radius: 852.00- Delta: 3-02-54 Tangent: 22.67 Chord: 45.33 Course: N 17-39-33 E Course In: N 70-49-00 W Course Out: S 73-51-54 E RP North: 5999.2971 East: 4590.4935 End North: 5762.5250 East: 5408.9329 Perimeter: 101.33 Area: 231 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0065 Course: N 57-59-03 W Error North: 0.00344 East: -0.00551 Precision 1: 15,606.20 Lot name: LE-13 North: 5806.7317 East: 5420.4532 Line Course: S 65=28-00 E Length: 5.42 North: 5804.4811 East: 5425.3838 Line Course: S 14-40-56 W Length: 45.67 North: 5760.3024 East: 5413.8084 Line Course: N 65-28-00 W Length: 5.35 North: 5762.5239 East: 5408.9414 Curve Length: 45.69 Radius: 852.00 Delta: 3-04-21 Tangent: 22.85 Chord: 45.69 Course: N 14-35-55 E Course In: N 73-51-54 W Course Out: S 76-56-15 E RP North: 5999.2960 East: 4590.5021 End North: 5806.7322 East: 5420.4558 Perimeter: 102.14 Area: 233 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0027 Course: N 78-07-10 E Error North: 0.00056 East: 0.00264 Precision 1: 37,847.66 Lot name: LE-14 North: 5851.9911 East: 5429.6688 Line Course: S 65-28-00 E Length: 5.48 North: 5849.7157 East: 5434.6541 Line Course: S 11-35-11 W Length: 46.17 North: 5804.4865 East: 5425.3811 Line Course: N 65-28-00 W Length: 5.42 _ 'North: 5806.7370 Curve Length: 46.20 Delta: 3-06-24 Chord: 46.19 Course In: N 76-56-15 W RP North: 5999.3008 End North: 5851.9994 East: 5420.4504 Radius: 852.00 Tangent: 23.10 Course: N 11-30-33 E Course Out: S 80-02-39 E East: 4590.4967 East: 5429.6667 Perimeter: 103.27 Area: 236 sq.ft. 0.01 acres Mapcheck Closure - (Uses listed Error Closure: 0.0085 Error North: 0.00823 Precision 1: 12,131.07 courses, radii, and deltas) Course: N 14-46-54 W East: -0.00217 Lot name: LE-15 North: 5898.3404 Line Course: S 02-09-56 North: 5849.7151 Line Course: N 65-28-00 North: 5851.9906 Curve Length: 46.85 Delta: 3-09-03 Chord: 46.85 Course In: N 80-02-39 RP North: 5999.2920 End North: 5898.3380 East: 5436.4969 W Length: 48.66 East: 5434.6582 W Length: 5.48 East: 5429.6729 Radius: 852.00 Tangent:23.43 Course: N 08-22-50 E W Course Out: S 83-11-42 E East: 4590.5029 East: 5436.5007 Perimeter: 101.00 Area: 113 sq.ft. 0.00 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0045 Course: S 57-36-45 E Error North: -0.00242 East: 0.00382 Precision 1: 22,327.42