Loading...
HomeMy WebLinkAboutTract 16678 Detention Basin Studys & Associates, Inc. Engineering • Surveying • Planning • Construction Management DETENTION BASIN STUDY FOR TRACT MAP NO. 16678 IN THE CITY OF FONTANA Prepared for: BRISTLECONE INVESTMENTS, LLC. 19 CORPORATE PLAZA, STE. 210 NEWPORT BEACH, CA 92660 Prepared by.- CROUSE/BEERS y: CROUSE/BEERS AND ASSOCIATES 2191 5T" STREET, SUITE 200 NORCO, CA 92860 Prepared under the supervision of: I OUG S N CROUSE R.C.E. # 23796 February 25, 2005 J 2191 5th Street, Suite 200 Norco, CA 92860-1967 (951)736-2040 FAX: (951) 736-5292 V ri Page 1 of 2 Felipe Molinos From: Doug Crouse [DCrouse@crousebeers.com] Sent: Wednesday, March 16, 2005 9:31 AM To: Greg Bucknell Cc: Rick Bolte; Ricardo Sandoval; Ricardo Garay; Felipe Molinos; hhovagimyan@hfinc.com Subject: RE: Fontana Tract 16678 - 48" RCP Capacity - Interim Storm drain in Cypress Greg: As we discussed on Monday over the telephone, there are two ways to look at activating the Ultimate (dry) storm drain system which has been designed per the City's request. µ.ms Kd ,� �iecvw r- —� JaWPA 0-? The first is the theoretical viewpoint. The ultimate (dry) system has been designed to discharge directly into the Declez Channel downstream of the Jurupa Box entry to the Declez Channel. To add this system into the Interim 48" RCP storm drain system being constructed in Cypress Street and discharging in to the Jurupa box would overload the 48" pipe and the water would be running in the street. Hence, this would not seem appropriate. However>>> The second is the practical viewpoint: Having water running in the street until the Ultimate System in constructed is going to happen anyway! Therefore, until such time as that portion of the ultimate (dry) storm drain system is built downstream of Cypress, the upstream watershed for which the ultimate storm drain is designed for, has a travel lag factor which impacts when the water arrives at the critical intersection of Santa Ana and Cypress. This lag factor is impacted by both the watershed area for this system being largely undeveloped and the distance this water must travel to arrive at the critical intersection. Based on this lag factor, as an interim condition, if you were to connect the ultimate (Dry) system into the interim storm drain system at the critical intersection, when the storm hits the fully developed watershed of tract 16678, the peak of the storm will arrive at the critical intersection ahead of the major discharge from ultimate (dry) system. Hence a portion of the Cypress system will take some of the water from that upstream watershed area. By accomplishing this junction, you would be assuring the 48" storm drain system in Cypress is running full during the same period there may be water running on the street above. As my previous correspondence has discussed, by maintaining the 48" Storm drain line size in Cypress, that allows Tract's 16678 drainage system to operate without the Detention Basin and downstream of the tract, the pipe sizing controls the amount of water such that the Jurupa Box will not be overloaded. Since this entire watershed is essentially without underground drainage systems at this time, connecting the ultimate storm drain system at Santa Ana and Cypress to the 48" system in Cypress will insure the maximum amount of water is taken off the streets for the longest duration possible for the DZ -5 and DZ -6 watershed areas. This will allow the City the maximum benefit of the first drainage system constructed before the others are constructed. Doug ' S Q tt �. < 0! 6,.�� t rfi -----Original Message----- r4 From: Greg Bucknell [mailto:gbucknell@fontana.org] Sent: Monday, March 14, 2005 2:41 PM v �j To: Doug Crouse / Cc: Rick Bolte; hhovagimyan@hfinc.com; Ricardo Sandoval; Ricardo Garay; Felipe Molinos Subject: RE: Fontana Tract 16678 - 48" RCP Capacity - Interim Sorm drain in cypress DC, PLEASE CLARIFY PER OUR PHONE DISCUSSION ON MONDAY, 03/14/05. -----Original Message ----- From: Doug Crouse [mailto:DCrouse@crousebeers.com] Sent: Tuesday, March 08, 2005 9:00 AM To: Greg Bucknell Cc: Rick Bolte; hhovagimyan@hfinc.com 3/16/2005 Page 2 of 2 Subject: Fontana Tract 16678 - 48" RCP Capacity - Interim Sorm drain in cypress Greg: This is in response to the question you had asked about how much additional capacity is in the interim 48" storm drain designed to be constructed from Santa Ana to the Jurupa Box. Based on the Detention Basin Study (Scenario #1) recently submitted to the City, if the Tract 16678 detention basin is eliminated, the 48" pipe at the tract will theoretically be running full in a design storm with the water surface about 1 and'/2 feet below the surface of the street. The water surface at the Jurupa box is a little above the top of box but there is still a little capacity available. Therefore, as we have discussed in the past, the 48" pipe is sized to convey as much storm flow to the Jurupa box as possible to insure the Jurupa box is not overloaded (i.e. water surface above the street). The Design discharge from Tract 16678 is 115 cfs and this then becomes the maximum capacity the pipe is capable of carrying. Doug Crouse This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. 3/16/2005 Crouse/Beers & Associates, Inc. Engineering • Surveying • Planning • Construction Management February 25, 2005 G.J. Bucknell, Principal Engineer City of Fontana 8353 Sierra Avenue Fontana, California 92335 Subject: Tract 16678 — Detention Basin Study Dear Mr. Bucknell: CBA # JX0301 The purpose of this letter to provide additional information your office had requested at our meeting on January 11, 2005 and request your approval to revise the current plans and eliminate the detention basin currently designed into the storm drain system. At the January 11 meeting, Crouse/Beers and Associates (CBA) provided your office a "Hydraulic Report for Tract Map No. 16678 Interim Condition Line "DZ - 4X in the City of Fontana". The purpose of that report was to demonstrate to the City of Fontana the storm drain system the City had requested be designed both onsite and offsite and agreed to by our Client, was sufficient to completely eliminate the temporary Detention Basin currently designed and included in CBA's plans. The results from this Report demonstrate by utilizing the capacity of the interim offsite storm drain system in Cypress currently designed to be built with the tract improvements, there is no need for the Basin to be constructed. The tract drainage system actually performs better (lower hydraulic grade -line) without the detention basin. At the January meeting, when discussing the potential of eliminating the detention by utilizing additional capacity in the Cypress Storm drain, in addition to the first scenario provided on January 11, 2005 you requested a couple of other scenarios be reviewed. Therefore, included with this report is the original report (Scenario No.1) utilizing the system as currently designed and in for plan check an the two other scenarios as requested. Therefore, the three scenarios being presented in this submittal are as follows: Scenario No.1. Test the storm drain system as designed and submitted to the City of Fontana for plan check to determine if the removal of the detention basin caused the storm drain system in Tract 16678 to perform at a lower water surface elevation or at a higher water surface elevation i.e. For better or worse. Scenario No.2. Estimate the hydrologic discharge of the tributary watershed (to the north and east of tract 16678) area in the current land development condition and convey that drainage through the currently designed upstream ultimate storm drain system to the intersection of Santa Ana Boulevard and 2191 5th Street, Suite 200 Norco, CA 92860-1967 (951)736-2040 FAX: (951) 736-5292 Cypress Avenue. At that intersection, add the full ultimate condtion design discharge (no detention) from Tract 16678 and convey the combined discharge into the interim storm system in Cypress Avenue. Determine if the interim storm drain system could handle the increased drainage and, if not, estimate. the size of pipe that would be required to convey the drainage down Cypress Street to the Jurupa Box Culvert. Scenario No. 3. Same scenario as No.2 except the estimate of hydrologic discharge for the upstream area is to be based on the ultimate land development of the tributary watershed. In providing the responses to these scenarios, Hermann Hovagimyan with Hall and Foreman was consulted. Based on our discussions and a review of the previous City Reports for the master plan of Drainage, the following responses are provided for each scenario. Response to Scenario No.1 CBA's "Hydraulic Report for Tract Map No. 16678 Interim Condition Line "DZ -4A" in the City of Fontana demonstrates that if the detention basin is removed and the storm flows are allowed to flow directly into the interim storm drain system as designed, the catch basin (No.11) at the highest elevation in the tract will operate in a design storm with a water surface under the street at a little over 1.5 feet lower than if the detention basin were to remain . This Report is included as Appendix "A". Response to Scenario No. 2 The estimated hydrologic discharge from the existing land use for the tributary watershed north and east of Tract 16678 (DZ -5 and 6) to the intersection of Santa Ana and Cypress is approximately 215 CFS. When combined with the ultimate discharge (115 cfs) from Tract 16678, assuming no lag time factor, the combined discharge is 330 cfs. The pipe required in Cypress to convey that flow from said intersection to the Jurupa Box Culvert is approximately 72" in diameter. Response to Scenario No. 3 The hydrologic discharge as a result of the ultimate land use for the tributary watershed north and east of Tract 16678 (DZ -5 and 6) to the intersection of Santa Ana and Cypress including Tract 16678 is taken directly from the Master Plan of drainage and is 410 CFS. The pipe required in Cypress to convey that flow from said intersection to the Jurupa Box Culvert is approximately 84" in diameter. Analysis: Hydraulic Gradeline: In Scenario 1, the water surface control for the interim storm drain analysis was taken at the soffitt of the 48" pipe where it joined the box culvert at Jurupa Avenue. This assured there would be no hydraulic gradeline problems for the box culvert in Jurupa. In the case of scenario' 2 and 3, with over doubling the discharge for this interim storm drain system in 2191 5th Street, Suite 200 Norco, CA 92860-1967, (951)736-2040 FAX: (951) 736-5292 Cypress, the hydraulic Gradeline for the Jurupa Box Culvert will cause the drainage to overflow on the Jurupa street pavement and cause overflow conditions for other drainage systems tributary to the Jurupa Box Culvert which would be infoluenced by the increased inflow from the Cypress Storm drainage. Cover of Pipe: In all 3 Scenarios, it appears the cover of the pipe could be held at 3 feet below street grade. Utility Issues: The Cypress street storm drain, as currently designed fits between an existing 30" sewer line and a water line. The increase in diameter size of the storm drain may cause potential conflicts between these two existing utilities as the corridor between the sewer and water line is approximately 12' wide, centerline to centerline. Storm Drainage goals: The City of Fontana's Master Plan of Drainage appears to be well founded with the construction of the Ultimate storm drain west of Cypress and discharging directly into the Declez channel. Even in the scenario would removing the ultimate drainage from the north and east sides of Tract 16678, there would still need to be a drainage system designed and constructed (albeit smaller) pick up the discharges from DZ -7 drainage area to the west of tract 16678. Appendix Information: To assist your review of these two additional scenarios 1. Appendix "B" includes a study of the City's Developed Condition Hydrology for the DZ -5 and DZ -6 drainage areas revised to project the existing land use condition. Included with this appendix is an graphical exhibit depicting the information on the ground. 2. Appendix "C" includes the information from the City's existing master plan hydrology for the Developed condition of the DZ -5 and DZ -6 drainage areas. Included with this appendix is a graphical exhibit depicting the information from the report as it lays out on the ground 3. Appendix "D" provides a preliminary catch basin analysis to capture the water into the ultimate storm drain system In Conclusion, it recommended the City of Fontana move forward with the storm drainage system as they have worked with our Client to design (Interim and ultimate off-site systems) and construct only the interim system in Cypress. Based on the studies, utilizing this system, it is recommended the detention basin for Tract 16678 and its attendant maintenance issues be eliminated and the design of the tract improvements include a direct storm drain linkage from the tract to the interim storm drain system in Cypress Avenue. If you have any questions, please do not hesitate to call. Very truly yours; 2191 5th Street, Suite 200 Norco, CA 92860-1967 (951)736-2040 FAX: (951) 736-5292 CROUSE/BEERS & ASSOCIATES, INC. AD WN.Crouse, PE President Attachments: Appendix "A" Appendix "B" Appendix "C" Appendix "D" 2191 5th Street, Suite 200 Norco, CA 92860-1967 (951)736-2040 FAX: (951) 736-5292 a lv m z V x D D m v HYDRAULIC REPORT FOR TRACT MAP NO. 16678 INTERIM CONDITION LINE "DZ -4A" IN THE CITY. OF FONTANA Prepared for: BRISTLECONE INVESTMENTS, LLC. 19 CORPORATE PLAZA, STE. 210 NEWPORT BEACH, CA 92660 Prepared by: CROUSE/BEERS AND ASSOCIATES 2191 5T" -'STREET SUITE 200 NORCO, CA 92860 Prepared under the supervision of. - DOUGLAS N. CROUSE R. C.E. # 23 796 January 11, 2005 TABLE OF CONTENTS DISCUSSION 1 FIGURE 1 — Master Storm Drain System Exhibit 3 APPENDIX • Hydraulic Calculations (WSPG) for Line DZ -4A • Hydraulic Calculations (WSPG):for Ultimate Condition Storm Drain line "B" • Hydraulic Calculations (WSPG) for On -Site Storm Drain line "C" • Hydraulic Calculations (WSPG) for On -Site Storm Drain Lateral "C-1", catch basin no. 3 n N Al _ I I {N�1 , _— -. ---- N _1f _ �'* —_—_— _ _ fi. 1 1 O O 1 V i W V V II ' O -' O I I _ - -' 1 N I , i I II _ J I. IIAi I 1a ! u _ _ L—_ _-,-OLEANDER_ _ AVENUE _ _ --- I---� U�---1------------J---- ----- ---1--------- I� I ------ SHEET ----- II g SHEET 2 g g I SHEET 31 I SHEET 14 1= N T � q7* i � � ID �Id > I � D m I z35-OIhIJ I ^p' I I i \aI I.1 1 m I T -- D'- T —_ O ' I t to I Z xss-oe7-12 I c: --l-1. m---_ I n w 255-Ost-q 1 o o o I y I I C I TRACT N0. 8788 < a s I ( -M I N o M8 119/71-72- T I m m T! SHEET - 9i SHEET 110 i I J � N N I Ili 255-061-27 23S-o5h26 ' 255-091-25 I l' I ! CYPRESS 'AVENUE e i i b I CYPRESS AVENUE ' I II yQi' ' I O w.. N —'N to to ._ N., N N �, N�' i --.1_—i —f j— i _i _ �/. _"-1; _—f_—r ��• I• _'— -i •-_�J_.. _. Ul 1 A . I 3 I I O p I O O= O I M n " ;1 7 i T _� 2 is $_ is ,� AP N~ I I � a b t o I I N m 1 1 IT7 I ( I u Z ,- --.� I u i .. m I I p e ; m -I I a I I-- -PENN _ Ii o s$�n 1 I -- -- -- -- --i I w IY - - N - u w u T Ed C) 1 255-031-003 r - O a " - TRO P255-037-004�EYw o Ii I --J ! \\ _SSR - I 255-031-005 CQU �1 i --- - - m - J - _ s. I - D i / F 9C �� .!� r-- I - 255-031-006 I I I I 1 \ C� T- 44 7 I I 255-031-025 m N o m i I - I SA�FRb IS E 1 �� ITR HETI ) __ P.M. NO `7zo m {� I m } V� n;a rn Z V : _-�•---- i I-- - �� •��. _.L_ PMB 24/33 O to 00 .i7 m I II -yl �� ` I 255-031-025 "� > - � n ;� I - II , 161 ,C1J, I ' � ! PARCEL 2 Z Z 0 0 $ I I I I I I �� I 1 i' ��� -! I 1 I I 17 �. P PM0 24720 �� Z mr117 , I ---t--F-� L` 3 m �0n`-t"IcnOc-- I •N uNi N m i �DXm OZ U ��° a p-° I I' / I I I 1 1 I I I 1 ��� 0 0 0 N 0 0 0 Dn ;0 Mm m w v� I� / I I 1 I I I I I I 1 a ;s 0' 6; A u v�� _-1___ D -`=z - - - _ _I _ I I SHEET T 18 I JUNIPER I MINo. 11 5n RB00 757/t2.13 I 255-041-001 — - I,NO. ,19ia? DISCUSSION PURPOSE The purpose of this report is to determine the possibility of removing the proposed detention basin located on Tract no. 16678. Based on the Hall & Foreman Report there is a need for a 48" storm drain line that will connect at the intersection of Jurupa Avenue and Cypress Avenue to the existing box culvert which is part of the Declez channel system, from there the storm drain line will run northbound along Cypress Avenue approximately 2,000 feet. Crouse/Beers and Associates has determined that Tract no. 166Ws storm drain system could connect to the said master storm drain system which would be determined as an Interim Condition storm drain system until the master storm drain system is fully functional. CBA has performed hydraulic calculations (WSPG) on the Interim Condition without the use of the proposed detention basin and has determined that the full 2, 5, 10, 25 and 100 year flow rates could be conveyed through the Interim Condition storm drain system. At this time CBA has only provided the 100 year storm frequency calculations Interim Condition Storm Drain Line DZ -4A, Ultimate Condition Storm Drain line "B", On -Site Storm Drain Line "C", On -Site Storm Drain Lateral C-1 (catch basin no. 3) for your reference. The Interim Condition Storm Drain plans have not been resubmitted to the plan checker pending the recommendations of the City of Fontana. VT 11 • f'�, --Ej 9 4 •f -I+' _-.rl .. 1 ll'r 1 • - _ II - I=1 Is .� F` ,,, =r_�_ ,r r •�i -_ _ '��-`u+��I' - .-- � .� _In�+ Iii __ + .ti '_•J _ �- •�I 16 d I I r- _ r _' •' — _ __ - - r __ - - '' 16 - 1'�I V J tl r _•s tl� . 11.E — ti — ,A rr_i ra�rf 1� 9,x-6.- ••�rr•,,i■■777 _� - •.1q�r1•-;} }11 �r T.•, rr �IL pr '16 r ;��— Z 0 J N N H v S ° C O U z Z 0 N H v O O U H a z 1 0 ' w H a z H C7 H Q a N y W r a Fr y � [x] E U H O V) - a w w j o - co � r w ID Io a a v 1 � F Cd � w K4 r tC F v o O I E � 3 i to Cn .y y ti z Z O 1 J Gl U z z Q Q W rSi til a = w r a _LD • H F U) M H a s• O N H [L • W •--t G � i a w z a .n -n 2 H G � � U I � I a L. a I rti N N W L U v W H C G1 0 m N 3 4: 3 0LnoLnLn Z GF] H H S O C W i H a 0 11 > 3 4 0 O H 2 LL W 3 iJ e+ i N �" U O W a• N m CT 10 tv en c LnkD go A jEH+ L) L) UU L)UUU J 1 IN O • iZ EW �O a x x o Ln 2 Z E- o a 0 y o z0 zo z Q � � wo wo E O a 0 E O -• O O a0 o :rp 4o � cno 0o rno P O O O 0 0 Q O Im O O O QCC..i a x x o Ln 2 Z Z F O a 0 E O a 0 E O -• O O a0 O U 0 ^ ,� C9 o x o C7 O = o z a a z a Q W O M O W O MCD W O M O a o o a o o a o 0 zQ0 wLo zo ao zo �o n Q n. W O 0 0 Cw N I lD co O M 0 eW O 1 0 to O 0 0 7• O NE. K, I Cl D o C q o a o O o tt o Z z z H H H M N M O M O 1 l0 1 0 1 O W ao Nw� W > CD > H z H H 0 0 0 0 0 O O O o 0 0 M M O � � M d J C M M M C M M N .-� .i '-1 -4 r.i H ,^ O Z O 2 0 Z O Z O z O Z O `J... O z 0 Z O t o 0 0 0 0 0 0 0 0 0 w a a !i c No No 1 a C -4 a N U H H I 1 0 0 o N y F" N F E * * * * * + * * * * a W F F F E E G] Wt�O U� L) U W Um E F E F W� W� f,W wC1• W a 14 Wv Co W-W W c I O W N co cn U] U) U) O W U) * * * i .Wl � �� EN FO HO EO EM EN -K -W * E -m * Erl oG co 0. c a 1n a to cx Io a o 0 o C vi a ko H w W W WW L•' > c > a 7 c W W W W W 1 •`" .--1 Z .-/ Z "'� +.+ .-I Z •-1 Z N z N Z N z N z N Z N O H O H O H O H O N O 4, O ko O M p Co O O�• O N O oo O ko O N O M O rn Ci H M H C F-1 r H L9 H r-1 H C H -W H N F+ M H N H N W Qrn � Fr r. -.r Eco Foo p - M Qrn sCrn Qrn Qa% Vic, �0 90 Ego Ego C w co m E. W F E F •-+ E-4 w a w Lo co co Q o s o a Q a Q Q �_ Q - Q Q E.~nF.0 c cc Er., F. oa E �; ,• Z LO 9a .:.^.. >^ J� tQ�� tr CA � Gln `Lo u L7 C'.D 1%C FO 5O Cp � O C �� -7 `. ti� C p Q Q Q Q Q Q Q Q Q Q Q H 1Oa V; In C7 to C^ C7 U., L7 LO O O °z _0 0 o c c_ _o _c O W W U til ' w Z W W W G] 6£,. "I E W Q c F.. � a a a w a W W W W Ica W C] W W I I zz z0 zo 0 1 2 Ho cra Ho oFQ'O CF p wo O O �o w a0 HO a0 O .o O a0 J a C) a0 LD CD mo C90 xo t7o f-4 zo ao a z w * * w o m o W O m e w o * m o 40 o a o o a o W O m o W o m o Z -H.• C, . H . Ur H O a 0 O a 0 O . FC o W O FCO aw 0 O W O �Z O W O p w p cl)O •'•o D 5 o�ocnzo o QR 0 00 I Do OO c. FD O o I o P'Oa o 1 z y > j H H H z z * x * H H m 0 m 0 m 0 x I O I O I p M O Cl) O F. E H I o I o 3 0 � p w 0 w o W O H Fz1 z H H z OH O O � OO O c D 17 O O o I a a a �' oa l * x � O ; O O O p o m m o 0 d a a a MO' z o 2 0 z O z O z O Z O •+, p Z p z 0 z 0,.., s y p O O O C7 O O C; Z GO ~ N N a a I O I O C% O N N N im < H F I O I O CY «a7 E" a x x a x a a a 1 O I O O W E4 a E.O E O 1 O * * a x * 1 a U m C• o U o U o H F E.. E., E F w Wa Wcr we' Wa Wa We GU]c co uc Utp Uc I � W Cn N Cn to W Q' m Ln * * * x x WN W m W r Ga]t: �� x Galt` x CN x aN w * Cx aw �m > NC', ,O 'p 'N 'N w W w W O z N z m ,'L 5 'a v a Ho Ho Ho `m `� M zC� F m z > r H O H O N O N O H O H O H O •-� .-a .r H U x m x m m 2 zCT� x zr x zN x y0 * 2Cn r. 20 x zm ZCD * M a �c OCT Ove OO Ow ON Qw N H N H N H m O N O r O m O F (T r' ch E. N F N F LO H m H N H m H Ln H N to 4 rS o < .-I a .•a Q .•-i � vi F co Foo Er in F u'f W w (n in m co N "` E � �-C F -4E to d 3 r O E E Q E x ' Q 0 a J Up ...p FA :zQ Fo "•4 tip _ Q L U Cj D p C: 7 \ V) zCO < [n C: L7 L� Q m C1 u-) co O O Q z z o o Q s w W W V 2 Z 2 T4 W w C�j W £ E s E Ea w w w a a a w a w W W w i z 0 z CD Z� L) °Q a + + w o z z 0 11 II � J D �o as P o H W w O O y W 7 > O O 5 W o -4 F [aao OF W o O i N H z 00 N N F F a Q W as w w F E- 2 z zz H N m Cf) as aQ 00 as W W as 00 z F H W co U)ri) 41a a L a z m m Cu% z H H z z z F�n C7 > > m zmazz No00o •"� z N N to _ F F z O N > > U) ° o o w Y FLnN a Q N F W w O F Q U U acn 5Ew a aaa s Q c co con E' U .'moo= W 33 L} 0 x N H Z W N C m z N O zz°� z aC9uai z W W 3 O LO 0* a z* w + a a # o 0 0 0 0 0 0 0 0 0 0 0 0 0 w * 0 0 0 o c O > a 4:o 0 0 0 0 0 0 0 0 0 0 0w o 0 0 0 0 0 0 0 0 0 0 a # # o 0 o 0 d o 0 0 o Cl o 0 o d o 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 # x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k \ O 0 0 0 0 0 o 0 O 0 p 0 0 00 f W z < C] k * o o O o O .i. O o p O O O O o O O in H k k 1 i \ x k O to O to O to O to O O O O O O O Cl p • F a C9 H .'i. 0 # # # N lCl to IA V' er O v� O vt O Q o Q• 0 . Q k E x 41 x W k to W OD O O O O o C O OQ* m N N M m M M m j H N m In # H cl 2 + • O V 4 U x k k rn c m Ol rn In O N to to to to to F of x Q O o o m O m O M O m O m O m O m M M M M W U # E # • C7 H W> # O p O O O O O O O O O O O O O O O O O F C/) N W * # O O O O O O O O O O p H # a t Q N ul co r C to N W a O Ln0) c N N R O m o m r OD �D 0 kO v -1 N v V' M 00 r rn N in .--1 MV' �-I rf1 OD 11 a H F -t '•� 04 W W fs x �" # M O M O v' O l!'1 O tt4 OlD Q tp N O O h N OIn N r O m r 1-4 v O H W D: •F O O O NO N N N N O r N O .•t C. LD O p 14 W# 41 6l to O O v' N N M v' O to -W v N00 v' N N h 0) O 00 N O O to r c vW O N ti v' Q to N M M M N O w r m Ln O M 0D O 61 l0 O 6l .-i N O h to N trl r r N> x * r C r -Wau In Ol to OD c h to !n cn cn O O O O m O M O t0 m to N try N v' cVO G' W # k O O O O • W F E H N ..a s # rn co m o v' c to M M O N m N o cn ca LEI en > * ••y N N N M N v N N .--1 O Ql h N N N N N .-•I r m r # to to ca to to to to o ID t0 to Ol # x NO N N O O . O O O Ccli o N N N N N ^N+, # E S U, # ry .: # w Ol m N c r N u7 1-1 LO h UI W L• O F O W # m Ol .-a I!') N to a Q t0 0D v O H til F C 1 a # L to 0 OD co m I~ z # O O OO p O O O N 04 N cli N E L-] # ~ O ~ O C) # C0 O O a g k 'r Ln ¢� No M a' m m N N h Ln s o 0 h to N N N E > # ,� o v. h c M -a"% c m N CD r O to v: lil .� N N Q M c M C M W W > a x O# -, re c Cl p O m O Ol m m Ln m O m 0 co r z W rn x v a e o o t° '•` h o o CJ 0 .-, o, 0 - o 0 0 L H # O O O O N .-1 0 -i .-1 o .--t .-t r r ,-1 ,-t •% N y .y 0 N y •-� ii r k o o o 0 Q ~ o o Q o 0 0 o J J ? k to dl C v' N Ol 00 h MM r F l0 ON r O hm O r i O C�zi w N o O 0 N o to to ca to to M a r , O to r 1 p r u t0 to N m o r 0D �o c c Cl C m F w •#k Ohl h O1 h r m r` r Ch m m '-1 N m U) a# 61 m 9 o) cn m co w m m a # H N 0 0 0 0 0 0 0 0 0 0 w * 0 0 0 0 0 0 0 0 0 0 0 D+ Z H # O O O O O O O O O O O D, # * * O O O O O O O O O O O O O O O O O O O 0 p p N N # # O O O O O O O O O O O O O O O O O O O O O p # z O O O O O O W * O O O Oen O Q D # O O O O O ,.. O O O O O O # # O O O O O O O O O F Q # O O O x D # a a �• a a �• �• a �„ * m# � E * ' a* w # 0 r 0 r o o CD CDo 0 OD* M M M M ro M M ro M M M o F r r r -4 H O # D z* z a # OU U O + O O o p � O 0 U7 N N .•-1 �"-• F a M M M M M M o M 0 M 0 M 0 M M N 1-4 c. k H c7 Cx w D # O o O O o O 0 O 0 O O O O O 1I W # 0 0 0 H -W F 1 "'"')' a m W * k O O O O O O O O O O O W N H D k k • W k N tD m m u) M M m to N M m N r M o u) LO N H a W * U7 O N O to O w O to O -4 r '-1 N '•1 M O M O M t!1 M a' a k+ O r O H •.� W O# r O r fl- Or O r O O O �1�4 W 4, 0 N N o N o N 0 N r No M 0 * 0 OwH O O) on rr U D # ^,� # O M m r .-•1 01 l0 U'1 -4 m M U) m •a r C` lD to 1 Q* N M M M N m O r v v N U') O m r M O r m O r-1 M .-, N ,-, m in t0 W a W W N Ll M N r m M tD o 7 O N O O M m r N M * a � M .-1 M .•i M .N-� H N O 0) m r O F Cn O O O r O N O N O N O 1•1 O r O V) m # O O O p p ' W m m ID CV Q V) w w k �• '� U'1 m M m r $ 1 Z 7 k t0 N LO c• M M N r ,y o a # r # ' m k lC to D t° tD to to t0 to to t0 w# w Cn d w ro o 0 0 Ny 0 N 0 0 0C; 0 c •-+ W k 'y ti .hy N N N N >4 O El N k # Z n # F�u) k I U C O k (n O N t0 Q Wm N N M m U•) r N O m r r Ln Q •--1 3 W # N N N N N 'h to O O 0 p N O C C N0 N0 O W k .•1 r r --I M r r Q L •-. D '-• O k N tD O N 1 s * M N N M C CN U) cliO ti ID c C 1)") r G r M O }1 D 4 # N N n N N N N N M M c � O k # .L O # # o m m 1�C d W Q N M M p 001 o 'h-1 o G c n UNi b V) W 'D tNo tMD O o N p N o [y 0 N 0 LnCN H O O N r N r 14O r N O N +i O o O O HO O O O OI -q O ^ �. OO O O k O r O e O • Ln 4 u•) M p C. 01 r N �t M co r p. N ` O e" x . M ^J F a y r CV M O M N M M N 10 M .-1 r M r 0) O O r O r O N V) m m F \# m m m q m oo m cc j u) a k m m D) m m co o m U m m c = h Oo O O O C O O O O O O O O O Rl y O O O O p O O W > * O O O C O O O O O O O � a * Z M 1 O O C O O O O O O p p a « - .� * a* O 0 O 0 O 0 O O O O O O C O O O O O O O O O O O 0 N N i 0 0 p o 0 p 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 * W z t o 0 00 0 0 0 0 0 o o0 0 0 0 OO In 4, o 0 0 0 Cl 0 0 0 0 0 0 ❑ N * it * r * * O O O O O O OO o O O O O O O O x ❑ •K a d' a C cT C O a' O C O V' O v� O p. * x* E * • a* W * O m O ❑ * O �7 fT Ln N 0 E hf O z 2* a U U x is m M m r~j m '-! •..! •-a ,--f .-i £ E E. a * N N N N N N M N M N M N frf N M N a a❑ k m M m M m m m m M M m W U F Z * H JU W> * * O O ClO O CD O O O O O O O 2 a a W * C O O O O p H+ rn N p o 0 0 0C; 0 0 0 0 0 H ❑ Y. 1 .7 w > * W r v l0 r. fn N m v M m m r r c rb o In rn tD 0 La z .a 1-q a W Ga i 01 O O 00 r-1 O N W .� O .-f N fp O cr O M .•i ao O O m O O r IT a f•"f r.a W O i Oz H .--i M O M .--I tf1 O N e-i r O r rf Ql 0 01 co Ol O W a k (nO O O m O M O M M M M M m .i O V� O O O O O O O O W O U ❑ * Wcn 41(n N rl In N to N N ,f1 .--I N N ,1'1 .--� N FC 01 N O 0) N l0 Ot W m 0� 1D 01 0) O cn %D 01 O 0) to 01 co s-I 0) to to s-4 01 N 00Wh�.l * N m N M N m N M N M N m N M N M N M 5 F > x r o o .{ o .-4 o '-f o r o s4 o H o � o o o EO m cn: * 0 0 0 0 0 0 0 0 0 , 0 f 0 W E j E h-f N.N-1 N N N N N N N N N 3 W N > r rn rn rn rn rn m o� m rn rn rn F 0 o a * d * OD £ r ko w ID W 0 IDID CO a m i U C. o f a * ,n O ,n N O N kD r v n !` rD OL O cW °` D co o N rn O o C W N r ^ r Q, N * Ol C)M ,--i m r r rn m m O o 0 0 c^. O o 4 3 n co Q c N �'� 'n " 'n �� N ,n O s G> * O O LO N Oi L7 kD -f N r Oto A mo toN c' N r N r r lC l4 N a O NO O ON NO O NO O NO O NO O r0'o O 10+ O rrl.. p M 0 m O O ..+ .--f ... 0 O .-. ~ O ~ O O O 0 O O O 1 O `+ O O I ,00 n PG rn r"i co '-; M a M O Ni O ,n C to C• 01 r a i } O £* ,p M M F 07 O p r F N co O 'c= ,fl M OC F W - � cli E. N .-1 MtO D, to M C� O N lD fS W* m U m N �D U �D N q1 cli E N cn m On E: 0 2 o p o Z in N ~ * t7 I-qL, .D .y .--[ h h In ti N a Oo 0 m * CD 0 W � + o c o 0 o a zH * o 0 o O a + 00 O 0 O 0 O 0 O 0 O 0 N N + t. O O O O O O O \ O + + 0 O CD O O O O O Y V d C * ;. O O O O cc N { \ k �e O O O O O tin O i!7 * x« E� A* O rn rn O + O « Q z* a U U x * M M to 1 E I -•I E E a .k N N N a H W a Q * M M M M F a 41 0 0 0 0 z 4 Cu W ' E I Ea N fn w i O O O O N Q a * O P OD O a N a W Ts. •k m M M Om N In aw i••I .a W x t o P In O 1f] 0 tf1 Ln 0 2 w M + o c 0 0 0 a 1-4c� * .� * W A U Q * m ko CA % O T o M N 1D co M a0 z0 a x;.-1 %D O O O O In En* O O * a w E4E.N E i -a N N r 'y cri .-a N N [+� H 7 + + rn rn r r W s o a i r ko � * a ko O14 O a O 2 > * U C O ko � OCD �n * o o c o El +`. O * 0) M N c M P M l0 a w + P c, kc to ko 0 a * N m �o c ko ko In w W W n W &+ M O M o O r N m N + O O M O O M O f * * i r O £ M Ln M '•' M P • m E q Lnw `y U `N P � u� \+ w h aaaraaaxaaaaxxaaaxxa�aha�a ha �a 7a ha W W 3 3 W W Z S 3 W ' w x S 3 c v W W xx W W U W U U 3 3 U U x x W U U H H W W W W W W W W W W W W W W W x W x x x X x H H W W x x x U U U S x x u x x U u 3 3 3 3 H H W W x U 3 3 x U 3 H H R H H H x U 3 H H U 3 H x H ~ x Z U 3 N x x x U 3 H H 3 H iJUU 3 H U �-a V 3 3 3 3 H H H H h m C M N O m m w 0 C M N O 01 r l0 to M N H 01 m h to C m .N O tl1 m w 0 C f� tAMrr 01r u1N Om tOCN Om til M. --i tT r- 'n mw CNOgtOM N'�OmrtD CMNOCTgrtoCM -v O61F t0 tf . ^ tRM:--iT tOCNOmlO C. --101r t.7 M.-16tr �iV Om m to v' NHOmmtDw CkD 0O-4,nmmMN.-1�m'� mt.7MN.-Y Om r tD U! C N. O C1 m W U1 C M. -i O 65 m r171C MNi-4m M r .y lA a1 M t0 O V' m N t0 O C r H to Ol M r .ti In m N l0 O C m N t0 o M r N 1P1 m M r N C m N O C m N Ul m M r .-+ 111 m M w rrM %MO% 71000x-1. OOC)C>000 t110 Ln t0 torr hm m 010%m 000.--1.-+NNNMr) r L)ul 111%0 1pr hhmm 01 a1 O7 5010101 0 0 0 0 0 000 0 0 00 0 00 0 0000 00 0 0 0 0.-t.-�,-,,y ,y ,H ,_., ,.a ..... .... ..... ..{,y „•, ,,.., ko N.••1N r-1 �-t H .-1 e-1 .y r -t .-1 H e� •y r -S e -t .--f .H .--1 1-4 .-t -41-4 '-1 .•i r•1 1-1 e-1 rd .-1 ry .-t .-! 11 .H .-{ .N r-1 .-I .--t H N .••t .--f .--1 e -I 1•1 1 l H .--1 ry e-1 1-1 .� X ha H H i. . . . . . . . . . . . . . . . N�i c CD rLn M N .^1. O, q lO Ln a. N N 'D - N G^r-,n M. --'O, r LoNOq lO CNO 4 r 1O - M N '-! O O r• l0 Ln c N .-i O m q LO 01 N 1O C O ti .-i .--� N N N M f+, v'• %P c+ to Ln N tf 1 Ln 0 .y c N r O m M O .-i O O, O1 N O .-1 in q q N 0 a E- x x w O w F O a w w m F O z P. 25 d O H D H E- -w (4 ~ O:cx _ o �Lzow O w 2 H w p q F F w a > W< U O C: p W O L. < O F< a a ao-,Z i zc waa0 >+W HwUw>OAM a>F N W w N a z J a z a w z o 4 o ,�HU3�wC?2:�� O z N ti k -� �+ , "ti , It • ti L J F7, R't.. ri iy--'ti•I�_ ISI. r,' �ti�� -• r?;.uyll •�I i��'� rI _ •! ,'i u Z • i- y r . - _ - - �� •C,rIF_,- F. tiro ti•.�-T{�+•� r � ti" �1� 7��'fi'i'�-'moi { �F� r•r •ti ti. -ti J r4ti.L r7 Its" i 2 O N E N 0 Z U N x W ` H 1 N pq E a � W to N z V) E- HO 0 W a ' w T� ' H G, O H z z w � o H w � o 3 I O w j w o x x � H >. ' U x o � � O E H 1 I N M s^O O I O W T a N z z N � Q � O a W z m w m m r 1 � l � J a z • N G ' H N F � H L•7 .-r 0 r W a� a u1 '• H q o U W i I I N W � a W O ac a • a N I W U W W F A 4 cn a13 I � E E o tn o m 3 x W H � N !n •7' P I � � I x w H ^y" 124 E - I � > I O z W O H Z 4+ W U F N U O P N C m W$ v P P n � rn F � a a 0U(�U V F v0 z = nl p Z O Z ... O _ N S S -. Z w o oa W o o c 134 CD p • w O O oFno.o ao F:C z z y 0 O o o a Z < a 14o �o # �o ao "'o 0 w wo o p c• H. o o a� R w o cC am �p Zz o �ZN v)o 0o mo 00 c o 1 o mo po aoo mo ino u)o H H D co O to CJ O DO 00 a0 DO a0 f]O OO D 9 l��i �N i Z z On+CC:.i H H .-7 r # M V * M N 1 H E. 1 � 7 0 a.. ao j u,o wQ' wa wo 1 - z� z ut H H 3 0 0 o o a aOl a N �p * k m M m o # i C7 M ...{ M t.y M H M M m m m �,.� i H ZO ZO 7.0 ry ZO •2,•O ZO~'i 2 O Z o F O O O O O O O O H a N N O O o N p E E a a N H 1 O F 11 F a EZI# F v U c U a F U F # F # F # F # # w w N u) U a. Q, L) F w F I 1 NN V)� u)N O� u1N V] 94 wN NN 1 x # # (WN WN F c v? F •r # F m # W ## a� * # # Woo am W Ln a� ao ao E- %D am Jr >arn ,Q, rn W W ca w• W W H O H J O H N O H OIy O N O H O o H O •2 Z Z ...1 .--1 •--I H 14 1-4 O H O H O F-1 p 14 * 1` # # N N Z Z ,� N 04 # N # Z �p # �D # w# 01 # O c # M Ol N u) L O .� O a• U Z. Z • Z Z Z .K N N Z O F O F O F r O O N O N O O OH O N N O N F ti H K .-� O r•C .-1 Q F `-t F •-" M F %D F O N W7 W W E"N w u) Eul ins NV) FN E. FN OHN U) 3 O O F O H H "' �." FC 04c 2: 4 Ek E. O E H E F S Ft cW. q x G1 Q F �^ = p F O VJ O H ly rt g El) m a m a o U v U a p o o x q W o W \ L•] \ 5 \ L-3\ 5 \ v) V) 4 u) rs U1 < O y :n ab aO ha aO hO FD �� E.D a a a uJ U) U] rn ^-I N M C N •'y H H ny co oN N H r-1 y 0 C Z ' 0 O ` ... ` � u y O O O .-. ... `cry, L G] c L4 W F 4.7 E4 W a a a a a w w w w W WW w W a a U W E4 .3 W .1, H N a � a z cx W F w W cn CL a o Lo q Z f U F C) Z y m a azv, W M H .z Z z H W W C9 > A W w °oo aa WE. ti H W h a U H > a W w�a i mow N W a F Q W W F P+ GG aEo 3 U y C 4�] W F G � W 3 F a a x o o 0 0 0 0 o O 0 0 0 0 0 m x 0 0 0 0 0 > d x o 0 0 0 0 0 0 0 0 0 0 W W z H k O O O O O O O O O O O W x a x x a x 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 O x x O O O O O O O O O O O O O O O O O O O O O O O O O O p p p 00 ba Z op Q a O O O O O O O O O O p • x x x *R O n O voi 10 N on E d ,� ,� Lr) r x a• -Vf7 C• M M M M . M x 2 x F w x u)q Ln cli * � O � lD .Ni 10 x x ~ N N O O O l0 O 10 p z* a d U m xto Lr) n � o r 0U')u, Ln n i H E E W x x r-1 .•q '.{ p o r N m N m N m N m N m H W a 0 x -x M M "� M M O O O O O O U x x a W x 0 0 0 0 0 0 CD 0 0 0 0 �Hn mW 0 0 O 0 0 0 0 0 i H z .7 O x l0 q. O 10 .n M N W00 m o a 2 W. '•" 1° o r o ao rn o M a+ O o M rn O M O M O M O a O E H H 4 w d W • w: ^ x Ln O Ln o Ln o Ln o .n o o in o o rn U') o o 0 to o rn o c, o o In O w W a o 0 0 0 0 ui LO mz H x x , 1 EO W U W Q W x x l0 O l0 O\ l0 t0 I0 t0 m l0 m Ln M l0 Ol l0 01 N O O ,'� d{ O m 01 M O N r In r M O M O Ln O Ln .•-� �n .-i ,y a• Ln M - O O [�y W W C W M m •••� m C O O O O O O O O O O O O a z > s w x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O H cn �' O O O O o 0 0 0 U) ,.a x 0 0 0 0 0 0 C W ' E- EQ. N N -i N ti t0 .-y r m m N �0 d fn W W ,k a• r m m rn I H > x r r to ko 0 0 0 C 0 0 W E O x d x d E • z x x �o �o rr " u� vi U� u) In F En Ot .Pi •moi u-) 0 r r r r h r z w O * L) OD C, o I0 .� \ « o rn m 0) In m m r r W w W r m 0 N rn rn m rn rn s m u! u1 :n W V s O N O o O CD a 0 0 CD 0 0 0 0 O a c ., r i x Fc 3 x o a rn ur) m ON In o T) is F a P. w x x 0) ry p Nm N N N O Ln. r -a m O OD Cl) O w x if1 to rn a c M M N N W O + W \ r w 0 O M M M to M c M O W W W x M T. :n m Ln r O ^O 0 r M D' M r M S M N M M x r T — to O O N N N N0 N� O O MC " o O CDC OO O U Cl •--� O •--I O .-� O '. O o O O .r O .y O •-J O :' y0 !• l0 r A M M -4 9 O .-1 N Q: .•-1 .-7 N C. N x N r 01 O 01 M N N M 01 W x E4 N v� t0 [-. l0 E ko O �0 M 01 N N t0 m 01 ul T O E t0 s O V' 01 M�0 01 �n �t] N h CCD W d w w O U r O M .y F N N to m N O ,� U E \ x 'r «. .--I U .� .-a .ti N N N la w a x x h h F N W * O O O O O O O C O O O m # o c O 0 0 410 0 CD 0 0 0 c c 0 0 W # 0 iL O E * 0 0 0 o O o O o o O a # o # * O O O O O O O O O O O O O OO O O N N # 0 0 0Z, 0 0 0 O 0 * O O O O O Cl O O O O O O O O O O O O O O O O 0CD * O O O O O O CD EAz O O o O O iS ❑ # O O O O O O OCD O O m H # # * # # O O U')O O o o O O E-FC # �n �n n n Ln n • 1 0 H W❑ # * f 1 M M M M M M M M M # M W # E# a # W# .-4 .-a ti N N N N N N ❑ * lD lD �O 1D l0 ID l0 �p O O O O %D t0 a * °* O C O Cl O O z a # N NN N N u'1 M E E a W W m m m m N m N co N W N W N C ❑W * O O o o O O O O p 0 W U # # C; O >CD * O O O O O CD CD W W * O O O O O O I E o m w * 0 0 0 0 0 C. 0 0 0 0 0 H 2 # a O * O O N O N C O til `C O M v O a v' O in r m OD a O1 o rn o rn o rn o rn o m o rn o C rn O o C rn O o P. H H W x# un O Ln O Ln O an O u-) in O N O N rn o m o lLnOa W W o O ` O a c a a a O �n C O vl a O ,--i C (.7 H O p p O O O O O •Es n a ` O M * k w W 1 U to ❑ W# ># tT ,-t 1D 110 In 4 V' r M W M O to N cn r N •. O , O r O .-I O W O .-1 O m N O N 1- N M N in M r 0 NO W W W o O 14 H O N> O OO O O w O o O 0 O 0 OM O1 OMw WFc # 0 , 0 ' m a O s O a N o %D co :c N W W # N N M C N I 1 3 L H * O o w E # i... O a # 7-a F" * Ln Ln in N i!1 u) E cA pi # * r r r r r r r r r r W r z W O E .. • • w a: �. # a m z W H r 3 .nID , # lD N �7 CN) C N M co r Ln CN CAQ1 C14 D1 E O Z Ln O• Ot Ol 61 , c Ln c .n C V; U E >' .. * 0 0 0 0 c 0 a o c O v o 0 0 a t 1-4 N x ' a 4 E- p . r- ID r o rn r to ti In v N M N m o N rl m W a w # r -t C O Ol W r CO 0 w •#k N N N N N N N N IW O W LD 1 E-> # M N M M Ln M kD M r M %D M to 1^ C M .-1 M a% M %D W :ai W # M M N C M In M �D M r M W M m M 41 M O M M M M El)N ti 14 W** O# M .-i M ti M N H M N .•-i M .Na M N M N N N N N N oH O C C O O 0 CD M HO C N C 4 I UO O 0 CD O ti O CD O O * .-i p O Ca) •- W p Vn r N coW O W coW coW lD O N N co O N N Ln O0 41m O r W N O r W v M O M iDco E * (n OD S �D r M r r+ �p r lD C 1D O to ip N t U ry E+ W t * N r N eD N s N D+ N o M ti M ,-, .� N ",� M M 1-4x M a O O O O O O O * O O O O O O > k O C O O O O O O O ' O W x W Z H k O O O O O O O O O O O d x x k O p Cl O O O O O O O O O O O O O O O O O O O O O p N N k O O O O O O O O O O O O O O O O O p O k x x O O O O O O O O O O O O O O O O O O O O O O -_o k p O o O 0 O 0 O 0 O 0 O O O O W z o m O k x o 0 0 0 0 0 0 o 0 p 0 O 0 p 0 n x o n 0 n 0 n 0 n 0 to 0 0 N 0 0 o E a x 0 x M M M M M M M to M n M ,pn M M 7 « xk F k p« W k N —r N .--i N r-� N H cli N N N N N A* 0 -1 ko l0 m l0 D 1 O Cl O O O O O O O tD O J 2°W .a x rs k to to m U') to to u-) to to tU+ E E W k « m co rn W W m N m N m N m N m N m H OW * o 0 0 0 0 0 0 0 0. C. 0 a U x z H a, k * 0 0 0 0 0 0 0 0 0 W 0 0 H E F H o .a m w « x 0 0 0 0 0 0 0I 0 0 0 0 H v r7 O >+ k « k Qt c O O to O N to O M U7 O u'f to O tD til O co r aU a W 61 o rn o rn o rn o rn o rn o to m Cl o tDD rn O o tDD m O %DD O to 0 a& z 0 m« « to a O N O N O to OO to O L tll L O to O N0 o rn LO o O rn N o Lo OW, E W� * O o 0 0 c 0 o O c o tr o a O v O p O H « W W« m M •"4 o M tD m to N O co c -I M M to -4 Mco C14 -7 aW RC O NO a m N N to r to N m -! O Ln N WURC W Wo k*+ , O O D O r O m .i m M C> 0O O O O O O • O O O O O O O O O O OO m a O O O O W F 1 F H N a k k mr to trD t" co coa> M N N N M tf) r 3 V) W W x O �--� N M IV N W H > * •� r -I -I .i N N N N N N N Ev E- 0 o a x to Ln to In to «) z w� O E- co m « 2 m x H r 3 to x o In 0D m m r r too W H Oa z� r+ U) W a 3 W « ul n v In U m N m to m L m m U� m 0 c c v CD c CD c cr to p O U W x ..-i Cl If co ors 3 Y x o N r N a p a. co M Ln m c F N x r lD sf» tr M c M M M m N IV N O N Wk k W ca E x Ot M to N M N MM M ID M N M ID M —t M t!1 M 41 M M M l0 M W w W k N N N M M N C M C M to M 7 M VI M to M m M In C > .a O x e' .-t a• -4 'T H v — c N -i c N N ; N N N N Z W �-•� W x c O a O 'a• C v C v O c O a .Ni O +, v O c •-i C x O •--f O p p O p +•-1 O O O O v' O O vim• O O C� O O U p O .-. O .-•� O r -f O .--t O N O to W v to O v v' O OtD to M S p W k m v tD —f c 1D M O O O a1 ch r F .7 N M M O C -W M m M N M u•1 M M M N N •a' N .�• Q. a a a a * o 0 0 0 0 0 0 0 0 0 0 0 0 0CD co * 0 0 0 0 0 0 0 0 0 0 0 w .« w * 0 0 0 0 0 0 0 0 0 0 0 a � a * rz 0 0 0 0 0 0 0 0 Co. O o 0 0 0 0 0 o C c 0 0 0 o c o N N � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c x x O O O O O O O O O O O O O O O O O O O O O O x \ O x O O O O O O O O O p Op O O O p p { W f �❑ * O O O O O O O O O O O O Llj H x . I x x x O In O In O to O N O O O O O CD F d * In In In to �• ❑ M M M M M M M M M M M z* F + W x .N -t -4 N CN N ❑ * O l0 ID lD •Ni tD lD .4 %0 14 1D r-I 1O 1N-1 I p o 0 0 0 0 0 0 0 0 O x z* a a U Z• x x to CV In N In N Ln N N In tovq LO i H F * m n co m n allo m m N n H W a Q x x o 0 0 0 0 0 0 0 0 0 0 U x x z o a a x o 0 0 0 0 0 0 0 0 0 0 0 0 0 4.o E i -A rn W * O o 0 0 o O O o 0 0 0 to ❑ x H v I-7 O U >+ x x x Dl (D o N r O r1 r d> c o .-t C to N ON Nm N to N O tT O O O m %D M to a io 0 0 o m s m ko n 1 a E a w w •k M v' v N r N m 1-1 O H N •-•I H H d Wz W In C x to O C O OOHO In O W W a -A 0 0 0 0 In 0 N 0 ID I� tD lD ID W Z C7 -I H 14 .� .-, r•I 0 •-, 0 -I o C o IIn O H 41r x r .-I r•I r -I U p ❑ x >* N •-� f^ to C n lD C N •a O O C0 CI m N N r- to .-I m n d r7 d d x •-I O N H O N M •••i m 1D N co %D M O r r m " m M N N In N H Ln r r n r m n H 01 n O m .-1 M O O O O O O .N -I O .-t O H O O ' a * O O O O O •--I O O p N O H N O .-I N O aW � n rn 0 o d w W W x r o M r H In I 3 1 iL N m O a x Zi * In U9 Ui N to to In In to to lf1 F m a * r r r r r r r r r r r Go > U a [D n ~ ID O O ID J\ x x U') co lw M %Dr N N C M r O M 4 E. r 's7 > x n O m M D1 LO N lrD In C rl d U7 w •k an to to tCo OD 1 T rn Jrj O 0 H p W U F 'r � n In n to O O W O O Cl) a s< �C —❑ 3 -' O * * O w O N N N N r r m o> N C _ 18 Da C. * '."� m O \D H lD o lD ^J an ID In •a to M to •-1 In ❑ G. x .-+ .r .--, O O O O O O O O 0 W W x fD F x O m M M In Un M to M m M tT M Cl M N M C• M M M W w w x N r N r M N M M iD M O M N M v M In M tD M N > r7 O a .a• •� C c v .�m N n N .-I rn N .O N N N N t -t W O x •a O c O �• D' C O to O N 0 If) O to O Io O s N O s J o CDOH In O * 7 O pj n Io C N O o M U H o M M v n M kD W y* M 11) ID ID C14 N N m .ti M In C 4 w *.a r N O N N O N N to r N N 'o' lD O '-I N m r tD M a M to r1 r m r U ��. V)�: * ,M..i ti ri ❑ .--I .-y N f1 N N N N N n n a x N N N c% o 0 0 0 0 0 0 0 0 0 0 m « 0 0 >w « o 0 0 0 0 0 0 0 0 * FC 4. o w z H * * 0 00 p o O O O O O a � 0 a * x 0 0 0 0 o 0 O 0 o 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p •k O O O O O O O O O O O O O O O O O O O O O O z O O O o 0 0 0 0 0 0 0 w 0 0 w 0 o 0 0 0 0 0 0 0 0 0 q� -ko c * O O O O O {n Cl 00 O O 4 00El O O 0 ' S O •k M M M M M M N N N N N S* ' F* W * w* N r N O O O O O Q* 10 t0 l0 -4 w M M M M M 0 0 0 0 0 0 o c O� a FC U 'E- * * u) N N N N N n u') M M M M M � F a * * W m m m N W N W r r r 01 r Gl r1-4� W Ca i� O 0 O O C O O O O O Ol O U�••� * z 00 x a o 0 0 0 0 0 00 0 0 0 0 0 0 W « 0 0 0 0 F rFi * O o 0 o O o o O O O 0 N z * .40 U >+ * * a v' co N N W N o (n r•1 O O tD N N O d W •~ O N O N N N N v r-1 M r N co u) M .-� c co a Z W w* r O r 'A 01 •--1 O O .--1 O a � z A S* � O O O N O N O N O N O N O N O M 0 j n O w Wiz o 0 t~O 0 0 0 0 1O 1O O M x H Co .y ,.I 0 0 0 Lo a z O N !'+ U q Q k W * '-1 l0 u) 10 .••i O co M .•i � C a% Nm N t0 C• 10 .� N f w ,'� a' V• N O M �n co O uS In 1!•1 l0 N D• a% W r N C .-1 Q• W r r1 N N , 4 10 W ! W W * O l0 O co m 01 U1 ei O 14 N 01 O r r a 0% 1 M > S •y •"� h M • u'1 M , ! •x7 41OM C `� O C .-� u) N Ln N. v� .--� C' .-1 M .--� m m a * 0 0 0 0 o p x w W F Q * cm M N m m W a1 u3i W W f•m co M r .•-I 1D ri 3 z > W rn rn o o 7 y W * o a a * zW 0 a * r r r r r r r r r r O k- >4 C q z W z � r 3 ui •k 1D O o ID M oo ID co ul -4 � > 41Go N N M r^ M N0 D' co O W .•- W W * P tD W 01 N Ln H O CG \ <C z a 3 W * * O 10 O10 0 10 0 ID 100 100• .-•� 10 '� 0 0 0 0 0 0 0 0 uO) _ W a F O m O + m m m _ M M OLn rn N n e 1n ui 5 Cw] Lai w O O p O O O O o O O O O + W W] q t ca o M co w w w * N h M N W M s M W M C M 0 p y O O N r co O V• 01 co N > a O* m -4 01 '� a N ti W N N 10 p L•V fn * O O C Ln O 01 p p O C C O O O O O O r O O O In o O l0 a O l0 r+ w .y 1D .-•� O .r 10 N V O - O O r1 � .... .•I O o N p o •--1 O O o O 0 O * O .-� N .•-� " m 0 ti W '� N u) u1 h M C w ID V1 •--� h W to M N � y* r M W O rn O W er N O M r N w * T u1 p �f1 tal T p 'T 4' e!• W •n \ Ln L7 10 10 �^ to '~ N N iJ r F 0 * N N N CJ N l0 N 10 N N ID { N N N I F D a p O m p O O O C) C OCD O � O 00 0 0 O O * o 0 0 0 0 0 0 0 w 0 0 0 Kc a O w x o 2 H x CD o 0 0 0 o ry * 0 0 0 0 • * 0 0 0 0 0 0 0 0 r7 a* o 0 0 0 0 0 0 c o 0 0 N N 0 o 0 0 0 0 0 00 0 c o 41 O O O O O O o O O O o O O O O O O o O O O o * O O O O O O O o O 0 W z * O O 0 0 00 O C O fn t. O Q❑ 4cO p O O O O O W H * O O O O • x x' \ * 0 0 0 p O O O O O t U' H * N O O O O p • M * N N N N N N N x N NCV E * a x o W* M 0 M C. MO 0 O p O ❑* p. a, M M M M O d' O O O O � r Q' r P a i O* O O O O O O O O C z* a Q * M M t F W -k °; rm rn ' H W * p a❑ * p OO O O O O Cl Cl U * p o 0 0 z z� * a o w W 0 0 o 0 0 0 0 0 N O 0 C) 0 0 00 E (OB W O O O O O O O O co ❑ * O p fJ Tf x r C' .•-� M O O r E r -f O L9 An7 N O C• N N O r N N O d) .•i N "'� O 0\ H O: W G. x C4x* O M O M O M O M O M m p ua'7 O W O O tD O O ko O O O O O O O M p f ,y a E G❑G C9 O o tM0 o tM0 ko fn tD p p Lw W O 'J * to `~ r rn N O c rn N 01 N r <D Q* M N N o N O lD M d• d' 10 M O ' W W W N .•i N �T Ql O Ol dl m r r pp tD tp tD r r .•-� r cl: a z X W * .ti NO "'� N N N Ot r d. M \O 0o tD %D H W* O .•-� O O .••� Or -1 O O O HO O O x O p O p0 O O a W* * o 14 E * N W 0 to o tD r'. CA m z co u) N 1 1 E- x p r r o a 0 x Q * z£ 4:u) `r; O u) to u7 Ln u-) i� O E wpm �-+ m r 3 �n x a* �° co 0 , 1 m 0 r cry 0 w m a F O G' \ O W ri N M C' to ko N rQ•� ''+ Q(j '� 3 w tDtD tp c N N N tclj 0 N En co cDLo u] W tf) a m * lD lD tD r w O r N r m O -+ u) ❑ O O O p O r r r r O O O O O W m C) N C C• O Lo O tD '� co l0 M W W * r r r C lD p r m 0 0 W M N M o cD H u0i o o o w o o N roi .••i O O ti O o 'o O ti O O O J '••i O p O C; 'J•' O p O * O .--i O •� O N p W O* O cn Ln m co M M p• f17 H W x M l0 Q1 u) a• S r r M tD Na, O M v' ,.y F N O co O O ry O M O O H F \ 41N to N tD N W iD •-� M N O N tD O a* N N N N N N tD N `D tD tD x N N 04 r a o 0 a # c o 0 0 0 • m > x * 0 0 0 0 0 w � � o 0 0 0 0 z" * a * * a N # a* N # 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 a 0 . * x O O O O o O o O O # -'0 Pa z * # O O O O O C/) * 0 0 0 0 0 m H * 41 * \ # * 0 0 0 0 0 0 0 0 0 0 * N N N N N S O S # E * d* O O O O W # a O # Z * .a x Q, U o x # M r M r M r M r M r H E F W # x m m m M ON as # * O O O O O U # * Z 0 a x O O O O o W * E H N W x O O O O O 00 * N ON M O N 'r LO M H r -I P M a£ a W w P O u7 0 :n O :n O N a ti a z p S a*, ID o M �D 0 ri �o 0 o H cD %D O W 0 p 11 Lnaz # O H # W W W x r N r m ,--i O - :n ID O Ww W W r.0 # :t. r `n W a m v N OD M a Z > S G. # 0 0 o O O o o O O cn rJ n (71c i u~i w r a ON 3 Z S &r > * u; H E # # 0 o a # AC Ln LO tr) LO r r r r O F •• x Ga Q. >+ x a m m # ~ r :n 3 Vi a\ # u"1 M c N M E.> CDy w• F O a .\ .4 * N M rn M M Ft Z a �c W * tD t0 tD H W O C> O c O p O to U O a 3 0 F x * m rn a N O M m M r o ON O i rn G 44 O W O W * m F # O M C M r M m M Ol w W W * O M O M O M p M y OCD al ID Oz O O w o 0 0 u ;sj _ x x M O M lD kD t0 -+ nl r OJ O .-I r 01 w: N :n N E ,W7 * C M N `n N .� :n O LD W rJ: W x w Ln tD N :n lD w a * a a h a h E zz a a a x x a a x x w m x x x x x x a z a w a G a a a a x a a z 0 H E H .Za 0 L H a w r m w H • w E H N m � xsxxz�xw Wxsxxxmxx w H 1 s x x o a xxxxxxx w w W X X X wwwwwwwwwwwwwwwwwwwwwwwwwww w w X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3$ 3 3 3 3 3 Fcn S U U U U U U U U U U U 3 O g U U U U U • [tt r $ UUU H N N N H N U U (! N co .T. H N H N N L) U H I --I H p.� V U H N N N tDO O U U H N H tD U E. "{' U U H N oar, x U U H zap H E Dw+ • • U U w CD E- M CD E V H H 4 • H H n lD N Q' O Ol frLn ODO l� rZ O 1D M M 0 N m' .-1 I- M M lD N M 10 — r� a• O to M D1 a) , 4 W v' O •� M a% � N w to r-1 I- M O w N m In H m C O to m � c• �T O 1-, m O M O (- M O w M O 3 M O tD M O �o M M to M D1 w m Dl w N m tD N m O N D1 kD N M In N m m N m o N •-•i M to lD OJ O •-+ M u'1 tD m O ,--1 M ui t0 O O . M to tD co O •--i M Ln ko f0 D1 N M v O W Ol .-� M C lD N Ol .-i M a l0 co D1 •r m a l0 co O1 '-1 M N r N a1 O •-! c ul lfl f� DD M, N M< Ln l0 W D\ O •--� N m v lD T O m O e -i M D' N lD I� O O N N M a to I� m M O N N C� 00000�0 CD, - .--i,-y ,..iH,..., N N N NNN N N M m m M M M M M Mc c�a•� h•ca, C N�J7��N�<nO O- O bLO LO H N ,••1 ,-1 N ,--I Ty N .-y N e-1 .-{ r-1 ,--1 •••1 r-1 N .1 ,--I N p•1 ri H ey ,-• .ti .-1 N .--1 a --I N N rl r•f .-1 N .ti e-1 ,--i N 'n 'n Ln o Lo 0 0 o N W H .D ,••1 I MOWN W 1f1 ,,- h- O ` m MO -w CP O- m m 10 N W ,n H h MOWN W N a% N c W Q O w m M ,7') N W C _,r_ m O w N W to N W ,n W W to e-1 W .. h a .--I h e ,y h c O h a O h c O h m O h M G h M O I- r, .a U' W n N ^-I M 'T �O W w N M -v 10 W m H m c� ,D W C1 r-1 m v� tD W c1 N M C O W m .y m C W W cl .-1 M C' �D W 01 rti M m 10 W 61 N M c� �D W 01 N M a� tD W kD W .T ^ m C' !1 �D W Ol O .-� N m ,(7 WW 01 O N m v� N t0 W W W W 01 6 0 h Jl C .-i N M •a' �D h W Ol O .r M RN l0 h W O .� N M a� ul h W 01 O r-1 N N l0 �� W 6 0 a% Al 0 0 0 0 0 0 0 0 0 0 �--, .� .--i .-y N .� 'y �-1 h WN N N N N N N N N M m m M M m M m N N N N N N N NN N N N NN N NNNNN N N N NN N N NN N N N N N a a axaaaaaaaax xxx rn N 4 O e•1 ko . m 0 Ln 0 m O H kD N l0 Ln O .-1 M O .—I r S O O N M 0) c O c xxx xxx .a M-- N-- O r M S- (\f O ti 1 .r •r M O �D N cT N St0 �OMS,LMSl0M N Sl0NS:ON SID NS N.y x dl N N •tO r S" N 0r l0 r Ol " N C UD' r S N N a kO Cl H N M G7 Lo %D co 0\ O H N M In l0 r O m O N M 'n r,ca�-Ta v aaLnLn Lnen Lno nLnLnkD meow o x W z w x W W W W ww w U U wU 33333333x3. W W U m H H H H H H U 3 H H H 3 H H H rn N 4 O e•1 ko . m 0 Ln 0 m O H kD N l0 Ln O .-1 M O .—I r S O O N M 0) c O d El M O H r� H F I - > F xF wC � >> woo z a �wz�W aa�X-+ r4Hd� z W z FC W U W v1 4 U H W OS-ciUaOE O F �. laz4=000WFa FU OF>+u1 W Czr]C,O. �.LD wrW�a`�>O.afn v1�^z4WO W cl) F a N n a u u n n n a 0 C7 HU3x �T m?+ai ;z y N c r r . . .M . CD .a M-- N-- O r M S- (\f O ti 1 .r •r M O �D N cT N St0 �OMS,LMSl0M N Sl0NS:ON SID NS N.y dl N N •tO r S" N 0r l0 r Ol " N C UD' r S N N a kO Cl H N M G7 Lo %D co 0\ O H N M In l0 r O m O N M 'n r,ca�-Ta v aaLnLn Lnen Lno nLnLnkD meow o NNNfaNNNNNNN NNNfV N N N N N N N N d El M O H r� H F I - > F xF wC � >> woo z a �wz�W aa�X-+ r4Hd� z W z FC W U W v1 4 U H W OS-ciUaOE O F �. laz4=000WFa FU OF>+u1 W Czr]C,O. �.LD wrW�a`�>O.afn v1�^z4WO W cl) F a N n a u u n n n a 0 C7 HU3x �T m?+ai ;z y N I 0- 1v. 71 ..' .�4Lr l art I I ul 0. z z x x x O O O 2 aHowopowo oW o o aE. CD E.1 `o O { a O W p z O W O z 0 a p Z p i 0 Z O' 1-4 O . ao �o .W.7o Mo ao Mo ,Wio ,W.'Io ao * Mo p a M a N Ou M z 0 x 0 O O 2 0 x 0 RC Cl, (� W M Q' O m O C O � 00 � 00 co O 'r 0 H E M N I O .'7. O O ,^7, O I O 1 O O n' O O N G; O A O C. O q O Do q O P: O H H FZ-I Z 7 M *In 1 * H am04 I �w I %D Moo' * i�rril W. 5 N CM ar7 E o !Y Qt m p z j o > o W a Z H 0 O O O p 1 d QI Ir a O N m • I + it ,K O O d a M a N ri H z 0 Z Iq O Z O $ O Z O Z O 2 O 2 0 2 0 z 0 E O m O O O O O p p p H N N 0, a I O I O N O N n Q E p U n I m ra EI a' 1 a� rSN aN EN g + * * a rC * * E.4, a a ac) co U m F F W 1-3,7W (4 We W a W W v * [rU7c * We * GU.Ia * Um 1 m W O W O N cl) c * * * * * W FO EO Eur * Ern Eti 14 ix W ~ W CV W N W (h W �, iX � a.2N 5 e -I R. ,--I fi 01 C4 at > r -I ,? N ? N 7 N 7 N 7 N W W W W W O Zcr Z.c Zvi Za za. a, zN ZM `O 7r Jr H O H O H O M ^ Z ZP Z O r-� O H p H O M O N p W 0-4 O 01 ^ '.I .s 'y ti 0.-I 00 0� m Q z a Z O N M C co HM He O� O O m Om oN 0 1 p. -e E, O O E- o E .moi F M E-4 1-4 14 E/) y � vE) s E ~ E' E [n C^ [n N < 7 3 J d Kc v E C E F O F E- a E- iS Q D JO UO ^ O F0 H p ••� x� x^ `.C) C� O !." O h O 1,✓ O ti\ [:i \ \ W L�j Q a a s o a o z n a h a a a a a a a 4 9c N M c U1 t0 r m s O O z zz o ° z o 0 0 0 E E. � " ._ Z u z z z E a a w w £ a £ z 94 u DO 53 E V W L 5a7 m L '.a] W v a rW7 G7 W x Wo- .M r2� O Q -O z O z F o v 0 E O E O F O W we Mo ao ao wo wo wo ao ao ao �Q z O a 0 U' O (.7 O U' O U' O C7 O C U' O U' O O U a a a a z az ❑ .W.10 m0 Iw70 'W.70 a o Wo WO WO Z Z a oy C7� (ajM O H a fM aC azcn o a0 acn sO � Z O a u mo O O E0 mo mom mEn Oo o En a H • H N N Q H O. H N N Q C Ln Q Q W x ❑ O ETIC O ❑ O q N O ❑ O L] N D O ❑ N ❑ O S > LrL.0 i5Q N frL.[ r7y. N i�Qi N CA H m to � ( I H I ao ao w 1 > o w o x z N co Q O d H Of F a w * Q W PF of« W z H m M .Mi �M-i m m m M m O z .tea. O z O z O Z O O •� .-I ,y IH a F O z O z 0 z O z 0 z O z C H O O Q O O C O O O O WCl I o a coa w f:7 x E * H* E * H * (� * E * * * * * a W We Um Uva E. E F F F F U' y N w N W N W N W N W N CW N CWn' N W N W N U N z co I y O o En W N z H W E. * Em * HN 41 Fm * Fr * Fm + * * * H W H Ul C� CN Cto n m C a aN F O E. Em E E� U> W >CD �O >O W W Wr"; W'n C� ato W H O zv zIn ?to >Q >o >N >N >N >a >v >W a; w W C7 C i-!O HO ZLn HO i-1unzln zin �Ln z Lo Z o HO MLn z Ln zLn O M O H O H ;Z 0 0 14 . � r o H o H Q O O W N h+ O * .. O .Oy * 4 c x ' * r0 * .-� M 4.* H N* .. m P N C iaz z V > OH N ON o MO m O O O ko Fto EFm'.N pi z (n Hko +. Oa 'y E.a,P0FN N E N F El W C C-1) W w N L7 p, F' `' H N Ems„ N Q N C a N F W i E. �� N W W [n 3 N fa-i Q a ❑c a ..a �a a M F H Q " `" H 4 4 a 4 L s o a 2 4 E- �❑ L) F❑ �❑ -o s❑ -❑ m� '� a a I-V Ac i'a U L U - c - ❑ - ❑ - ❑ W ❑ ❑ w Ell W CO h5 Ha Ca CC C7 CO C.❑ a0 eX z5 W O 4� a a a a a a a <, a a a a H � C In Q r .-. nN 1„ I W N N N N o ti o z y o o c F F N z Z z C V W zW c W W y H 5 a a a a w L£a M E ❑ a w W W w W 4a] W W a a a W 3 W w % o 0 o 0 G 0 o 0 0 0 0 0 0 0 0 0 0 PO * 0 0 0 0 0 > # x o o o 0 0 0 0 0 0 0 o W % �d z N # O O O O O O O O O O O D, x x • .a x a% O O O O O O O 0 O O O O O O O O O O O O O O O O N N O 0 O 0 O O O O O O O O 0 O o o O p O p * O O O O O O O O O p O o O O O o O o 0 0 0 0 \ O O o O 0 O 0 CD O O 0 O O 0 0 w z O # o oo O 0 O p 'o O 0 0 0 p 0 p 0 * # 1 41 Q O o 0 0 0 0 0 0 0 O O O o 0 0 x O # % w x F 41 CD koCN io zLO a I U •'1' % ON LO rn.•-1 co lD CD* N N F d % rn N ,-+ N O 1D p .-� m N m ,Ny m OD m H w a o % # N N N N N N 1 N m OD U % H j aW x C) 0 0 0 jz 0 0 0 E- F CO w* o O O O O o O O O O O rl V' to 1+ % .--� r M M v W) LO r-1 0� M N O v m N 0 O 1D .a z a W k O) O m O N O M O M O P O w r-1 m .-1 m .•-i w Lv uC z r O m O m O W O m O O O m O Lf, a O w a % x a• O P m P C m P O m P O C7 •� •--1 ,..� .--f O O p p O O O O Vo p >* M N H v .--1 lD M m M O t!') M N O\ !•r'1 to r m N M O Iaziin W ELI O M N P N N N O N O .-1 lD ,y tD N kD 5N •'� w k+ # O O O O O O O ti . O O 4 . O O p p p p O O m N % O O O O O O O O O O O O O O O O O O C x x O O O O �EHEz P P P Ol $ fn J _ F 0=1 Ize co r 1O v P `1 �o a 0 0 0 F O x r r 0 0 P v r r el O « % 1 E. OI C % 5wU N a P ° nl P r a o V CJ o O m M M M E W w % O:Ln o •"1 N M v P cli E .^.. N �I 0m P } % 0 o c ON P P cam. * '"1 •', ,-. .� 'O.r N O O O E 3 0 0 .tf W L x DD t0 f ! 3 r - l M r O N O o N N W x P W O N �� N J M O M W w x C# Ln P N O u") c S r- OD r, 0 1 Z W V% •-+ P O O N O N O N O N C N O N C M .-� { O c O C O P O O ~ O i1 N O . O OO O 7: p t Cus.. M r O F N m •� [�-i M v a N m O Ol pi t!') P N ID i ixc � ,~y E N N F M P m M •-t m 01 U O O U P O N tD O U ti '� r oz a - z O y �••� h O 1(14 h r� a W * O O O O O O o p O o q r. 9 o O o O O > Q * o0 O O O O o O O o O W c� a * • C4*,, Z" .0 0 0 0 0 C. 0 0 0 0 0 0 a * .a * a* 0 o 0 o 0 O 0 o 0 0 0 0 0 Cl 0 0 0 0 0 0 0 0 0 0 0 0 N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 * O o 0 0 0 0 0 0 0 0 0 o O o o o 0 0 . 0 0 0 • \ 0 * O O O O O 0 O 0 O O O O O E W z a o * * o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 J F * O O O O o O o o O p p O o RC O O CJ Hk R' 'R� C V' V• v eN C cT c c x* r* a + 'a * o* z* 1 U x * ,N-f N N N .� N N N N ' 1 H E E a, * * m q m m .-1 q ,y q 'i m ..•1 q ,Ni q ,Ni m U * * LD a •Y * O 0 o O o 0 0 o O E4 0 oO 0 0 a F W U) W + O O O O O O o 0 0 o O V) F w q f ul 7+ * N rn ri h rn H Nr N q N r N a W Cra u'7 O I(') O t0 O tD O tD O l0 O to O O lD O M O M f H * $* OD o c o o m Cl m o m O fp o ODo m O o m r O o a rzi a o a " a a a a a fu 0 ^� W 4 c7 * .� C. o 0 0 0 0 Sp W C ' U Q A W k * T. X11 r c m M N Ln 61 %D r r 01 N J W h '~pM .-( rn rn r-( m M m tD .-i m an .--I .-i v ON v q N NV .� rn WaQ* O O (1 M •a M to M r M O M d• ZD z> x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m fn O O O O O 0 O 0 O 0 O 0 00 C * 1 W W F N f * O a t!) r N Ol H N e r- N z W * .r M N r fT O 'y 1... g fn T F •✓ * fr7 fh M M C tl' Q' C^ V' U) zuM, (P 1 m a £ * 0 0 0 0 0 0 0 0 0 0 0 F q c' * r CO) M M M W * M M M M M M M 02pq F O * U s I 4 * * M •••� O Lr) CA O 0)u1 co q t0 a N rC'.,) M Ln N M O r tp F C N a 4. q r N N N c c q m m m m r a .. O 0 O OH r O^ O O lw O Gly Cal * N 0v' CN M M 0) N a N O Cl CO W,;a co rn N r N M ' in N N c OL * M M N N N O + * �] C-. 'm ' * Nh h c lD M 1D M Lo M M 'D M W r4a . rn rn q r m r r rn a UJ c C a o C)Ln rn H * o o . o o 0 0 0 a 0 0 0 * t z O * q lD tD N ^ In rn c M m O n { H £* W* m n Mm N Q. N c M M u9 M co O O: .a O rn c a H cn M M .�• y a # .N-i .M-f ,M.am-� fM"• f+Mj a • 0 � ^ a O O p 0 0 0 0 C O O m * 0 0 0 0 0 0 J k * p pO O O O O O o O O w k c� a k CL O w 2 * * o O O O O O O O C O 0 a * * 0: * 0 o 0 0 0 0 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N +. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * O O O O O O O O O O O O O O O O Oo , O O O ' W z * O O O O O O O p p 0 CD • N Q D * * O O O O O +. O O O O 0 O CD O * + o � o O O O o O O O O O E 4 * � Ir p. 0 Q, o N p N o N 0 N El * F 41 a * W* o tv H %D H r 0 O o * H "i U7 H N H LOO Iq O +. zCN * a L) O y 14 ti cliN^1 '4 . r o r o N m m m m '. H E cW * * m m m m r r m N � o to Ln to to %DF H W * H H H Ln H U +. a a w * +. * c 0 0 0 0 0 0 0 00 0o c n E- CF) W + 0 0 0 0 0 0 0 0 0 0 0 H t .a ul UI + c v' v H n " H C t0 m S 'n u7 S N rn O r- is r N O1 t!) a �.N-i I* z Lasj L- a r O r S r m Ul O Ol N N O V' O to 0 v' w r N S .P{ S v� IL z Q * O O S O O O O O H O N O N O N O Ln a W fY. * O p U7 0 N U) to LO to O N to N U'i O O 0 0 0 0 0 0 0 H W 0: 0 W* >* r N to N u') to Ln to r v r ko W S ON 1D m I a Q* N to H H N H H C' m m Lr) s -I Cl) '7' M m O m m fn W W * r a H r n N S S C c CO N r c r n N DM .'L V3* H Oo H oo ".t O H .--t H ri H N .-1 U7 H .k O O o O O p p O o O W W F N ELI .4 * S °� r r v' Mc M O 3 H N * a c r S H l0 O O a ' 2 L Ea > * °° m m w o r r r r O 0* n a:t� r_ « V O< * M rrt m M M •-- m O rn S rri O < W z C E s O * "'� O N n M r S N O O ts] ["' tz (V U7 � 1D H v .M.i m N m to M l0 F N C y W a * * r • O r m H p z V H S W O p c0' n.. tJ c � , i '� �i `'1 ,,�-, o ,Ht•, O tin p tNr, O EL] a * •-•� ,_,t 1 „O,� O O c Q O M to tc ID m ao o w`A r. -4-t to m � Ln0 O « j * V C * an O M r H M O m S a O m O N O r O• H r N •� O N bl N `.; C '-1 O N C' N C' c' L: e• to S Qr t ' W O* H N O c O c p gym„ Ln aO O to O 1 O .y O e -t O O .• O f1 * HO o f+J Z * * H a• n O o r r r r M H O rn O N N CL' N C N m O H H 7 a O F W* M C n v' c M N N H r H M N U, M t0 d> N Ln Q U R M n O) E O H N [-. N H H * H H H h h a a m o 0 0 0 0 C, 0 0 0 0 0 0 >k a # O p o 0 0 0 0 0 0 o O W k LD a a z w 0 0 0 0 o O o 0 0 0 0 a # a # # a# o o 0 0 0 0 0 0 0 O 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 N N # o 0 0 0 0 0 0 0 o9 o 0 C 0 0 0 0 * O O O O O O O O O O O C O O O O O O O O O O ;. # O O O O O O O O W z k C O O O O t < r A k + O o 0 0 0 0 0 0 0 O Cl Oq H # # * \ # # O O O O O O O O O O O O O O O O O O • HO 41N k N N N N N N N N N N x k F k O.# W k O N N O `� O O O O O Q in >n v' O O O • �k * ~ H � H N N N O N O N O N Ok zk a # • d E # m m U Co t� m m m m m . iU•I m U umi � Lr) N u� to ,ten H W # N • U k * r i W> # 00 O O o O o o O O O O O z a W # O o 0 0 0 0 i � 4 y W * O O O C O O Cl O O O O a � U) 1+ * * a N O in to 0) -W 01 N M N N LO a o r 2 p O '•'� N c h .--i m r CV O m m N .--, W m kD LO 1.0 H H a W W • W# x k N LO O M O Mz O 'v O Q' O to O to r-1 �0 0 W a # p to 0 to 0 to 0 to to to to N to O l0 O .-t D C9 * o p 0 0 0 0 0-4 to a W a !f U O O W k >* v to O c N N c N M O r -t M v' O IO M H O O T M u•) m •--i m tT M c' t0 tT O m M 01 W O w c 0) an 0) u'I M m m J� [y C W W # m m m r m .•-i m m m M r t0 t0 a �O N Ln O to O > x o 00 0 0 00 0 m 0 0 r 0 0 r o ntn 00 o 0 0 0 0 0 0 0 o O o 0 0 0 m * 0 0 0 o p W W F N # N N C N m < H H 2 W # M V` .-1 lb V1 to N r-1 3 Co H I `^ F # # h r r r r r 0 0 # Go C # * O O O O O O O O O O O • WF m # 6, 6l ON Q1 m 6) tT ,may '�-I 01 i.� z # ly E, U C I Q kO # # O O o .Ci Ch � Co ,-.� O m to W Cs. N m W ~ N v' Co 0) O r- ti a c m to i-• C N .] k # N N N M M C' c c 2 * O to O to O en to tf) In C to l0 117 D F W * H 'i Oy O 0 O O U) W= p 3 O # # O N OO c �n m c, m o E t :i 1 N to a to v' .•a l7 C a• to r, Co � O m Q:'�% # In " N Co 17 H N W W # m m m 0) r m 0) - O to l0 t!l 47 W l0 r 0l O m m p 'M1 Z W O * O O O O O O N O O U7 O N 01.. to 10 G H En * C) O O O O O to O InC :n O N ti f O C N O N O c O a p C �� C to O ul C U•f O O .� O O O C; H O .Oa O O .O•i C t r) ••-t h N h M h O c c �O O m ,0 m O Co v' N 01 .-i .-t N l0 m to m r 1 � O £* .-t r O h q �D � M m r•, h m c M h to FH- a# H N ti M Co M N W O � m to m N O v' in IO M t9 O W tp rZ W# l0 .ti cc .--i ONN m O .-1 N N l0 Q tf) N 10 N t"t m a # .--t •--I .� .-i ,moi �a)-1 N H N 14 # N N VA N 11 � 4 LO a o 0 � w * 0 ({ 1 W Il V 0 m * L� Irl W > * 0 0 W � t rt O W * 0 0 2 H a k a a o 0 0 N N r. k O O O • k 2 o 0 G\7 + t A « 0 0 m H * k * o 0 S \ k O O • � p N N * k Ek a k o L1 * o Q k O � k k N k O* z* a U 4clWo co H El k n n J F P. k a o * t) k * C7 W > * o 0 0 F W to W k m F k M VJ * N V. a o 0 0 a W W« H H W O N O C W a O O u') a 41 W t. a N U G o Q E a 4 N LO acn W Wk ko 0 > z W k 0 0 0 c I a caa W W E N k m E E= W Q.' H H z a W * t m $ En H > k l0 1p zc�a co r s * 0 0 \O _ y ol r W •• ot * 9 C k k j � E o k - * O E N a * kD ko H to Ln * O O Qco 3 * m N w a + OD co o * k .n F a > Ln 0 tD a O k c O c ,> W 0. * 7 O to H * O O k 4 J ry k * V z k [f) U N P F a * in Io El N N a U) a k k VA N 11 � 4 ..R W0 � (N 2 N A' ({ 1 W Il V L� Irl W E a w ha7aha a a acl�aaarxaaaaaaaaaa ID z S s H O N c t0 co C N v �C co O N c l0 CO C M :^ t` Ol M tf7 '� Q1 r -t M LR '� Ol .-i M M 10 61 N �'1 Oi N v; CO N Co -4 c r- �-. v r- O tr` Q� N C O N r O H M S � S .� M ul r C H a �O W O N c lO� O N N aC .-� �: 67 .-1 c t` .-� v 1� O M n C M t0 O M l0 01 �N O O DD 01 .--f M c tp r S e--1 N c lG � M m 'D N co Lo .--i ✓` c C l0 N T :f1 .-. O �• O r ^? O+ to N q u': N r c O tO M S all N O v' >,D N b t` t` O O m O W C.. 61 01 01 Ol 61 p� O (V a• V1 Il'I 1� M O N M 1n O m O H M U'1 l0 p O� eti M V' t0 N 6� .-i N C' N io N N M M M M M M 0 c^ M n a• M M u� M 'T N N Mun � N V lkD 0 10 N .-t 'I .-i .-1 ri H N .4 -1 .-i N H r-1 " .-1 e-1 N -4 .y N i--1 e4 e-1 N H N crzaC�aa axxaaa a a a W H c 100.^C Nv'10 bONc ID +.ONClObONNrTe-r rfmr 61H Mu'ar b.�Mlt) . . . (�. . . . v. Q. .-. a' r O c r O M t0 O M t0 N O B1 N afl N N N b '-I C b .-I c �n.-rrc O bM 0) Ln thObN41Lnr-trOlpMcr, Lo .y.• . �� N•C W r OI O N C "n r 01 O N c 1!) r W O N M� r b O .-+ M ul tp O� O ti M to 1p �rrr r rr Wb ODbbW mma%p��p�000000H �w011MNN ri � "'� "'� ON CIN N N N N N NNNN N N N N N N N N m 0 N 0 01 7 to Ln O N o+ W Ln 0 O M N Ln 0 0 r 0 N O N O .-a Q1 O r-1 O u1 r CD 0 r 0 rn N 0 0 M c 0 0 r N c 0 0 .-a Al o [U X z W- Woo a H W Ox W2HC?w0tn EFwa�" Jwz awU w��t� UN > W t C)v) CZO w0� L)tgC —gecl, a a r a a z z w��OC:iJ W Ea H U EE >+ to W W [mac. W H C' w U' W (D G: .40 > N E N W Z O 4 7.. U)azxawznatco w[iiHUSw^ W Uo7SH E O II 11 11 II II II II 11 tar OONU3S wX O]?+tp E0 0 10 ' 3 3 3 U U f U H c 100.^C Nv'10 bONc ID +.ONClObONNrTe-r rfmr 61H Mu'ar b.�Mlt) . . . (�. . . . v. Q. .-. a' r O c r O M t0 O M t0 N O B1 N afl N N N b '-I C b .-I c �n.-rrc O bM 0) Ln thObN41Lnr-trOlpMcr, Lo .y.• . �� N•C W r OI O N C "n r 01 O N c 1!) r W O N M� r b O .-+ M ul tp O� O ti M to 1p �rrr r rr Wb ODbbW mma%p��p�000000H �w011MNN ri � "'� "'� ON CIN N N N N N NNNN N N N N N N N N m 0 N 0 01 7 to Ln O N o+ W Ln 0 O M N Ln 0 0 r 0 N O N O .-a Q1 O r-1 O u1 r CD 0 r 0 rn N 0 0 M c 0 0 r N c 0 0 .-a Al o [U X z W- Woo a H W Ox W2HC?w0tn EFwa�" Jwz awU w��t� UN > W t C)v) CZO w0� L)tgC —gecl, a a r a a z z w��OC:iJ W Ea H U EE >+ to W W [mac. W H C' w U' W (D G: .40 > N E N W Z O 4 7.. U)azxawznatco w[iiHUSw^ W Uo7SH E O II 11 11 II II II II 11 tar OONU3S wX O]?+tp L •J 11. } - '�i _ r -�� _- '�_'��_i� �+•L-tip--- -- II�_�J�i 'I}I�}!_ -� :r-j�� ti '�I'-�_ __ _ ' I III �• .__ — —� —L V ups II I ji �1L .I4 —'r— r �`1 —1 'r ' •h'1 f.r. �� —,— ti - r•�L I. -,� . r i .- ti.�—IL's_. ;� ,� ,� '" � -' J- •�gr „-ti ..; - uC,; F. ,y' r _ '� ry. ••ti �r f;u � L �r-R �r~I�r.a� '�� ��, } �I IL Jti _ f ti M W a - a r ;T�- w Cr J j LL i� 0 r O N z O O 0 F wo W P O ZO U + 4 > z .1c) H O O I U) O W O W O O J O W H O H O [n I I g 0 Cir] .n+ G>7 o x a w� wo v I .-1 z 2 O • H E W a w ' a * w H en M a i z w z p z o FO pof 1 a, a o In o L z w U')U F p y fA W N 43 * F * E+ * F * w L) v N W E- to E N !n W N 1Z•1 H 1 a * as * a * to 2 W CN("D n ako a o > za > >maoc� zv zz w H o w o r 1 o w o 00 H 2 H ETI o * o mu� u� a � m * n r w> wz a c' 0 O O N O z w o a 2 a E- O H N F O H a F O W H c O W b4 F O H a H EH fir+ G:�•-+E W wn a m o o E w 0 F E 4 E Eo x 4 O to W q E U a 1: fl E U Q U Q E Q W co E C"i5 aj a5 mz E3 y v, U)0 * U 41 y H N w y N r7 'u7 N Q. EQ • 0 O O O C O s s c E. W H a W w w 63 W 0 I a o 0 0 a * 0 0 0 W * a a Z H « o 0 0 a * N O O O O O N .*k * * O Cl O O O * W 2 ie p p 0 O 0 1 41o Q « O p O Cl H * \ * O p O p O O N N N x A * • x� E * O * CA * O O a * C14 cli N H E H i C� � o 0 0 U * Z!r1 �+ W > * * * O O O O fw W t O O O 0 * H Z a 7+ iM M m a w N O N O N 1 a m O CO' o m LO O ._I a GZA a p cr Q• W) W UIq O W W ,� OO* c m ' U o r W W a* O 01 O OOl p 1 a E W O a E x W O o 0 0 0 U) w m* o W I H N si * ° � N 3 m E 14 * .•y W * N N N O 5H O= 5 m r Fa £ am m m I O 3 t I r -i W U) U O a�a Z a a E3m IH UrC ao 0 0 0 rn a ru 1 * aN w N a aaa,•�i a s^w x � co co m u a. o 0 0 O ti * n Z o F Q Lu 00 O 3 *0 -k O o 0 w t` `° an E. Ix O W * x 1\ W E * c ON N N O N i0 W W > .a + O* M O (n O M 0 M W U)* T O a• C c ?~ 'I' OO 0 O tsj * + o o m m o � _ t- m O N 00 N N q• N N o N O E \ * I a a a co . . . . . .N WL1 . . . . . . . . . . a 0 W r a. 0 m .a o N W 10 c 0 a M • a 0 In Ln ri � M 0 m n o rn U m U c U IT 0 r, rn c 0 H N H a' • H In . . . . . O O .-. M co M ri N M Ln W r M 0 1-1 M cl. li 7 r W 01 .--1 N M C l0 [� W O .••1 N C u tD W 01 O N M a lD I� W O .--� N G' O S 1O r tD N c M M N- O S W 1� O N c M N .-•� O O S W 1` l0 N C eT M N O S W r y l0 C' M N S .O� OON .-•1 eN-{ NM Ln "o co r•1 NW HS e•{ OO NN M.� rv•I VHr Nl .(-�-1 NW .S--1 eO-I Nti *ritM W Ornt� N vN tD fh W S O .I N M!fWS NO O Wr ON M C00 0 0 0 O C OO NNO O8 -� OOOOOOOOOOOOO OOOOMMOMO 14 -1r 1-1 O 4 rd Oy O- N Oi ON E-. r a E- U U X W W E- H H O a a 1 W w H O z s� c a c ti CO H < > > 5 W F _]AW00 a w� >wRt�oc�n��o apcw a E+a W c�vwya �al-.aTc�wc� v]i-�wc7�✓ oay O If II II II p II 11 II I 04 E N '- G 59 -_----10-------------�r-_-__--N--_---N ___-_ i II u N `j - o f i I II I • � I - w II to 1 -- L _ AVENUE .OLEANDFR — � it : _ _. .... _ _. - - •_ - - - - - - it-- .._ I ----------------- ------------- --- �F------- SHEET 3 N 1 I o N iu 1 SHEET 2$, N I 0 I I m m II C=I I D I N I C Ln 21 I 1 0 m > 255-061-t3 M I 1 J N~ I D - ._. �I Z I O = N 1 D- °'i I s 1 z 2s5-oe1-12 1 m I !' N I Z 1 t ti TRACT N0. 8786 1 �_-•-__ - -- _. . t0'71 a V' N N I i m Me 119/71•-72 1 1 1 +I 1 O 2s5 -on -,t a SHEETSHEET 9' 1T J—--_ _ ---- P ------ '1Q �• ' N" l N O '{i i• 255-0M-10 I , I I I I C N 1 Ilr I 1 _— g I CYPRESS AVENUE - 255 -05,-27 255-051-26 256-M-25 _ y III CYPRESS ,AVENUE �. — --- -- -_ _ _. _ - - •- - _ - -- -1- - _.. - - _ I � _ N - II �nJ I a N N ! , 1 I I I I 1 � \1 1 I .Z-1rl N 12x1 !i I INI f`-W{rY �-_� u u z 1 I 3 I e$ w $ o I• m I i 1 1 I {mill 1yi li Y a W�Y -- W GI 4' I y r I -+ -- -- �w _ �I m IN" 1 \\ 255-031-003 0 U _ ILA TRO A - w !n - _ �__� ! '� - 255-031-004 f syl EPP I /T 11 Y j --1 255-031-005 I m _yam i I -� r I % �� � _ _ -- yc � �� �CQURT I m _ ! . . 255-031-006 -• D 1 255-031-025 r 1 I rr o I IL -_1 I I I I I ` l 1 H-- ! PARCEL�20 SAFR IS EE ESE 1 I -- PPMB 2433 tn tnoom ! o�� I 1 - �q -J l--- - - -- - - - I ''f^� ; r---- Iz— e� 255-031-025 V • m A 1T1 Z O4 a .� - - --Kr- -'j -' — ! I I C \! PARCEL I �l IL't a :� I \ i _ 1 I 1 1 I 1 P.1� NO 20 D A i 1 i -- I I i i �1� f I 1 /. nj�`��. _ 1 I 1 I l I PMe 243 -- O O z l o � -- �•n ?_� Z --n 1-- I u 1 �I I I 1 \�01 1 1 • 1' Z >: N I i I----__- _ -- —_ - _.. __..... . u w N 1 11 -- .. mC3M .'SOIR71� I uU11 !r�� _ � T 0 0 0 4 4 I MCA �'p-0 '� o m m I 'i !I / 1 I I I I I 11 \�• v ao a o. �' w n D> M �TO7R1� JI N -� a _ - I _. _ --� - O m y i SHEET 18 1 JUNIPERI I AVENUE I � I � uejlNO, % 1144 255-041-001 � 2ss-oa,-001 Ri D ! I ACT N0. P862 Z ••----- - - -- �- - - X1111 I I I 16 I �I I I � I I I � I �__ �!� --•-' P-•- 1 � EXrSTDNG HYDRTD"LOKr--lY , (IPARTiIAff REVffSE 1') 1301 San Bernardino County Rational Hydrology Program (hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4 Rational Hydrology Study Date: 02/04/05 -------------------------------------------- ____________ FONTANA / LINE DZ -5 EXISTING HYDROLOGY (PARTIAL & REVISED) -- 100 YEAR STORM JN 05086-000 ---------------------------------------------------------- Hall & Forman, Inc. - SIN 950 ------------------- ******* Hydrology Study Control Information ********** ----------------------------- _ ________ ------------------ Rational hydrology study storm event year is 100.0 - 10 Year storm 1 hour rainfall = 0.930(In.) 100 Year storm 1 hour rainfall = 1.350(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.350 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 718.000 to Point/Station 719.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Initial subarea data: Initial area flow distance = 990.000(Ft.) Top (of initial area) elevation = 1085.000(Ft.) Bottom (of initial area) elevation = 1075.000(Ft.) Difference in elevation = 10.000(Ft.) Slope = 0.01010 s(%)= 1.01 TC = k(0.525)*[(length^3)/(elevation change)]^0.2 Initial area time of concentrations 20.775 min. Rainfall intensity = 2.551(In7hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.696 Subarea runoff = 8.877(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) +++++++-l-++++++++.+'}'++++++++++++++++++++'f'++'F'++++++.++++'I'++T....+... +... Process from Point/Station 719.000 to Point/Station 709.100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1075.000 Ft.) End of street segment elevation = 1068.000(Ft.) Length of street segment = 660.000(Ft.) (50z Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown. (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 13.315(CFS) Depth of flow = 0.486(Ft.), Average velocity = 3.421(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 19.546(Ft.) Flow velocity = 3.42(Ft/s) Travel time = 3.22 min. TC = 23.99 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.340(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.678 Subarea runoff = 6.978(CFS) for 5.000(Ac.) Total runoff = 15.855(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 10.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 15.855(CFS) Half street flow at end of street = 15.855(CFS) Depth of flow = 0.513(Ft.), Average velocity = 3.572(Ft/s) Flow width (from curb towards crown)= 20.897(Ft.) ++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 709.100 to Point/Station 709.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norgtal stream number 1 Stream flow area = 10.000(Ac.) Runoff from this stream = 15.855(CFS) Time of concentration = 23.99 min. Rainfall intensity = 2.340(In/Hr) Area averaged loss rate (Fm) = 0.5783(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 .f...+..h i..f. {..}. ..}..... ...{.,.'..f..F {. i...t..+..f..{..f. ...'..{....}. ..'..{.. T.{..i..'.I....i..'F..f..}.."!... .F. .. . T ....}.}..b..'f..i.+ Process from Point/Station 707.000 to Point/Station 707.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 I Jvo Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 22.42 min. Rain intensity = 2.44(In/Hr) Total area this stream = 57.50(Ac.) Total Study Area (Main Stream No. 1) = 67.50(Ac.) Total runoff = 77.94(CFS) ++++++++++++. .....++T+++++++++-{'+++++++++. .++++++....'F++++++++.. }. T 7.}. 1. Process from Point/Station 707.000 to Point/Station 709.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1072.000(Ft.) End of street segment elevation = 1069.200(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [21 side(s) of the street Distance from curb -to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 83.023(CFS) Depth of flow = 0.735(Ft.), Average velocity = 3.987(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 3.39(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 31.976(Ft.) Flow velocity = 3.99(Ft/s) Travel time = 1.38 min. TC = 23.80 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.040 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.679 Subarea runoff = 25.772(CFS) for 7.500(Ac.) Total runoff = 103.712(CFS) Effective area this stream = 65.00(Ac.) Total Study Area (Main Stream No. 1) = 75.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 103.712(CFS) Half street flow at end of street = 51.856(CFS) Depth of flow = 0.784(Ft.), Average velocity = 4.243(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. ljVA- Distance that curb overflow reaches into property = 5.86(Ft.) Flow width (from curb towards crown)= 32.000(Ft.) + T ++ T+++ + + + .............................."+ + ........................... + + + + + + ^'+ + + + + T + +T + T + + + . + T . . Process from Point/Station 709.000 to Point/Station 709.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 65.000(Ac.) Runoff from this stream = 103.712(CFS) Time of concentration = 23.80 min. Rainfall intensity = 2.351(In/Hr) Area averaged loss rate (Fm) = 0.5783(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.855 23.99 2.340 2 103.712 23.80 2.351 Qmax(1) _ 1.000 * 1.000 * 15.855) + Qmax(2) 0.994 * 1.000 * 103.712) + = 118.909 1.006 * 0.992 * 15.855) + 1.000 * 1.000 * 103.712) + = 119.540 Total of 2 streams to confluence: Flow rates before confluence point: 15.855 103.712 Maximum flow rates at confluence using above data: 118.909 119.540 Area of streams before confluence: 10.000 65.000 Effective area values after confluence: 75.000 74.921 Results of confluence: Total flow rate = 119.540 (CFS) Time of concentration = 23.799 min. Effective stream area after confluence = 74.921(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.578(In/Hr) Study area (this main stream) _ - 75.00(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from'Point/Station 30.100 to Point/Station 30.100 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil (AMC 2) = 67.02 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 23.80 min. Rain intensity = 2.35(In/Hr) Total area this stream = 24.39(Ac.) Total Study Area (Main Stream No. 1) = 99.39(Ac.) (jay Total runoff = 38.87(CFS) ................. . .'{" l i...I .. .' ....i ....F' T."."'.. ...... . .'F i".'L...... ...} ....1.. T 111. . T.. 1't .1 T... Process from Point/Station 30.100 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1061-800 Ft.) Downstream point/station elevation = 1055.800(Ft.) Pipe length = 650.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 38.870(CFS) Given pipe size = 39.00(In.) Calculated individual pipe flow = 38.870(CFS) Normal flow depth in pipe = 19.27(In.) Flow top width inside pipe = 39.00(In.) Critical Depth = 23.80(In.) Pipe flow velocity = 9.51(Ft/s) Travel time through pipe = 1.14 min. Time of concentration (TC) = 24.94 min. +..}..}..F .r {.F .j. i..l.. T i. T 1.}. i. ..}. ...f- .{...{. i..+.'}.' f...._i. ..t...f... i... . .. ..}...t. }.F. . i. i. i..i..'....F...f.. T ..}. } Process from Point/Station 31.000 to Point/Station 31.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 24.390(Ac.) Runoff from this stream = 38.870(CFS) Time of concentration = 24.94 min. Rainfall intensity = 2.286(In/Hr) Area averaged loss rate (Fm) = 0.5780(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 ...{..i..}.i.i...i...E..T.f.i..{. j...}........'.....}..F....F..{.'F.......'+...f..{..F.....i..}.i..f..i.....E .Fi.{....}'.F.i.'f.. Process from Point/Station 709.100 to Point/Station 709.100 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 67.02 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 23.80 min. Rain intensity = 2.35(In/Hr) Total area this stream = 50...61(Ac.) Total Study Area (Main Stream No. 1) = 150.00(Ac.) Total runoff = 80.67(CFS) {....{...f...i....i....F.}...+.{..F..F.}..}...F..F.f..F...}....f i... ..{..E. . i.'i..i. i...{. ..F..E..i....F.'.f 'i...{. . .'f."{.. i. .'i. Process from Point/Station 709.100 to Point/Station 710.100 **** STREET FLOW TRAVEL TIME T SUBAREA FLOW ADDITION **** Top of street segment elevation = 1086.100(Ft.) End of street segment elevation = 1084.000(Ft.) Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.890(Ft.), Average velocity = 2 939(FFt�s�S) Warning: depth of flow e d xcee s top oz curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics 11.19(Ft.) at midpoint of street travel: Halfstreet flow width = 32.000(Ft.) Flow velocity = 2.94(Ft/s) Travel time = 3.69 min. TC = 27.49 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= Rainfall intensity = 2.157(In/Hr) 0.578(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area rational method)(Q—KCIA with modified ) is C = 0.659 Subarea runoff = 20.702(CFS) for 20.750(Ac.) Total runoff = 101.372(CFS) Effective area this stream = 71.36(Ac.) Total Study Area (Main Stream No. 1) = 170.75(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 101.372(CFS) Half street flow at end of street = 50.686(CFS) Depth of flow = 0.902(Ft.), Average velocity = 2.972(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 11.78(Ft.) Flow width (from curb towards crown)= 32.000(Ft.) .}. i...}..}... j... . i..}. .'F.'f. }. t f++.... i...F.'}.. .....'F..+..}...' j. "f.'{... .... .. . "{... .......'{. .'+. .'i. ....E. Process from Point/Station 31.000 to Point/Station 31.000 **** USER DEFINED FLOW INFORMATION.AT A POINT **** V Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 67.02 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(ln/Hr) Rainfall intensity = 2.156(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 27.49 min. Rain intensity = 2.16(In/Hr) Total area this stream = • 29.81(Ac.) Total Study Area (Main Stream No. 1) = 200.56(Ac.) Total runoff = 42.35 (CES) 'E.++.F....}. {. i...F..i...F...F.... ..}.i..}. ..{.'i...F..F..F...{.'f..++++.i ..t... i.•}.i..i....i......}.'f..}.'.}...'i.'i. {. .'}..}' 1.'f. i.. Process from Point/Station 31.000 to Point/Station 31.000 IOU/ **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 29.810(Ac.) Runoff from this stream = 42.350(CFS) Time of concentration = 27.49 min. Rainfall intensity = 2. 156 (In/Hr) Area averaged loss rate (Fm) = 0.5780(In/Hr) Area averaged Pervious ratio (Ap) = 1..0000 Summary of stream data: Stream No. Flow rate TC Rainfall Intensity (CFS) (min) (In/Hr) 1 38.870 24.94 2.286 2 42.350 27.49 2.156 Qmax (1) = 1.000 * 1.000 * 38.870) + 1.082 * 0.907 * 42.350) + = 80.448 Qmax (2 ) _ 0.924 * 1.000 * 38.870) + 1.000 * 1.000 * 42.350) + = 78.267 Total of 2 streams to confluence: Flow rates before confluence point: 38.870 42.350 Maximum flow rates at confluence using above data: 80.448 78.267 Area of streams before confluence: 24.390 29.810 Effective area values after confluence: 51.433 54.200 Results of confluence: Total flow rate = 80.448(CFS) Time of concentration = 24.939 min. Effective stream area after confluence = 51.433(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.578(In/Hr) Study area (this main stream) = 54.20(Ac.) +++++++++++++++++++++++++++++++.++++++++++++++++++++++++++-r+++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1055.800(Ft.) -- Downstream point/station elevation = 1050.300(Ft.) Pipe length = 650.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 80.448(CFS) Given pipe size = 39.00(In.) Calculated individual pipe flow 80.448(CFS) Normal flow depth in pipe = 34.69(In.) Flow top width inside pipe = 24.46(ln.) Critical Depth = 33.79(in.) Pipe flow velocity = 10.33(Ft/s) Travel time through pipe = 1.05 min. Time of concentration (TC) = 25.99 min. +++++.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ )7C)ZS Process from Point/Station 32.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 32.000 Along Mair_ Stream number: 1 in normal stream number 1 Stream flow area = 51.433(Ac.) Runoff from this stream = 80.448(CFS) Time of concentration = 25.99 min. Rainfall intensity = 2.230(In/Hr) Area averaged loss rate (Fm) = 0.5780(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 .I..+.1..F..F...F. ..L.... .-'..t..t.+..{....++.....i.++.'....F.i'.{{.++++.t..f.+.t.i... f..."'F'{..{".'}... .'f.{........ Process from Point/Station 710.100 to Point/Station 710.100 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 67.02 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.156(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 27.49 min. Rain intensity = 2.16(In/Hr) Total area this stream = 41.55(Ac.) Total Study Area (Main Stream No. 1) = 242.11(Ac.) Total runoff = 59.02 (CFS) .{' . {..t..f..{. i.....}.. .....f..{..F....f ..'f.. ... .+. ..}...F. ..1..{' .'F. ...{" ...}..}...E ..i. } i..}. .. T.{ . ..{.'F. }.f. .. i. Process from Point/Station 710.100 to Point/Station 713.100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1064.000( t.) End of street segment elevation = 1058.500(Ft.) Length of street segment = 670.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manhing's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 59.482(CFS) Depth of flow = 0.652(Ft.), Average velocity = 3.793(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 27.873(Ft.) Flow velocity = 3.79(Ft/s) Travel time = 2.94 min. TC = 30.43 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 1001 Pervious ratio(Ap) = 1.0000 Max loss rate (Fm) 0.578 Y) The area added to the existing stream causes a (s,/h_ a lower flow rate of Q = 55.096(CFS) therefore the upstream flow rate of Q = 59.020(CFS) is being used Rainfall intensity =^l 2.029(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIP_) is C = 0.644 Subarea runoff = 0.000(CFS) for 0.650(Ac.) Total runoff = 59.020(CFS) Effective area this stream = 42.20(Ac.) Total Study Area (Main Stream No. 1) = 242.76(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 59.020(CFS) Half street flow at end of street = 29.510(CFS) Depth of flow = 0.651(Ft.), Average velocity = 3.786{ W & Flow width (from curb towards crown)= 27.791(Ft.) t++++++++++++++++++++++++++++++++++++++++++++++++++++++tf++++t++++++++ Process from Point/Station 713.100 to Point/Station 713.100 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Effective stream flow area = 42.200(Ac.) Total study area this main stream = 242.760(Ac.) Runoff from this stream = 59.020(CFS) Time of concentration = 30.43 min. Rainfall intensity = 2.029(In/Hr) Area averaged loss rate (Fm) = 0.5780(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Program is now starting with Main Stream No. 2 .}. ..{. ..F...l. .'.I.... {..{.. .. ...I......F.''.'{..{.'I..f.. .. ...f.'f... .'i.'.t..i' {.'t. {....i.. . i.'i..{..'}.'}.'F. . i. i..'i.. .'i.."..}"{. T T Process from Point/Station 713.000 to Point/Station 713.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 73.58 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.476(ln/Hr) Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 28.16 min. Rain intensity = 2.13(In/Hr) Total area this stream = 20:00(Ac.) Total Study Area (Main Stream No. 2) = 20.00(Ac.) Total runoff = 31.00(CFS) . ..F i..{. t..F....f.i..}..}.i. ....................................................... .F..f....i..'..}...f.+...'+}.. ..}..{....f.... ..'.j...''..{.'}......i'....}'.t.i.... .'f..{...L Process from Point/Station 713.000 to Point/Station 713.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Effective stream flow area = 20.000(Ac.) Total study area this main stream = 20.000(Ac.) Runoff from this stream = 31.000(CFS) Time of concentration = 28.16 min. Rainfall intensity = 2.125(In/Hr) I-JIU Area averaged loss rate (Fm) = 0.4760(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensitv No. (CFS) (min) (In/Hr) 59.020 30.43 2.029 2 31.000 28.16 2.125 Qmax (1) _ 1.000 * 1.000 * 59.020) + Qmax (2 ) _ 0.941 * 1.000 * 31.000) + = 88,202 1.067 * 0.925 * 59.020) + 1.000 * 1.000 * 31.000) + = 89.253 Total of 2 main streams to confluence: Flow rates before confluence point: 60.020 32.000 Maximum flow rates at confluence using above data: 88.202 89.253 Effective Area of streams before confluence: 42.200 20.000 Effective area values after confluence: 62.200 59.047 i Results of confluence: ! Total flow rate = 89.253(CFS) Time of concentration = 28.160 min. Effective stream area after confluence = 59.047(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.545(In/Hr) Steam effective area = 62.20(Ac.) +++++++++++++++++++++++-F+++++++++++++++++++++++++t..r++++'F'++++++++++r++ Process from Point/Station 32.000 to Point/Station 32.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 69.19 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.545(In/Hr) Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 28.16 min. Rain intensity = 2.13(In/Hr) Total area this stream = 23.35(Ac.) Total Study Area (Main Stream No. 1) = 43.35(Ac.) Total runoff = 33.51(CFS) ........................................ ...++++'r"+++++T'{'+++++'{'+++'i'....^- �' Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 23.350(Ac.) Runoff from this stream = 33.510(CFS) Time of concentration = 28.16 min. i61( Rain -fall intensity = 2.125(In/Hr) Area averaged loss rate (Fm) = 0.5450(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I 1 80.448 25.99 2.230 2 33.510 28.16 2.125 ' Qmax (1) _ 1.000 * 1.000 * 80.448) + Qmax(2) _ 1.066 * 0.923 * 33.510) + = 113.426 0.937 * 1.000 * 80.448) + 1.000 * 1.000 * 33.510) + = 108.852 ' Total of 2 streams to confluence: Flow rates before confluence point: 80.448 33.510 Maximum flow rates at confluence using above data: 113.426 108.852 Area of streams before confluence: 51.433 23.350 Effective area values after confluence: 72.982' 74.783 Results of confluence: Total flow -rate = 113.426(CFS) Time of concentration = 25.988 min. Effective stream area after confluence = 72.982(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.568(In/Hr) Study area (this main stream) = 74.78(Ac.) ++++++++++++++++++++++++tt++++++t+f++++++++++++++++++++++++++++++++++. Process from Point/Station 32.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1048.800(Ft.} Downstream point/station elevation = 1040.650(Ft.) Pipe length = 1315.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 113.426(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 113.426(CFS) Normal flow depth in pipe = 31.88(In.) ' Flow top width inside pipe = 59.88(In.) Critical Depth = 36.47(In.) Pipe flow velocity = 10.71(Ft/s) Travel time through pipe = 2.05 min. Time of concentration (TC) = 28.03 min. t ..... +t... T. -I .... ............. t t -F•++... t....-F++r+.... i-........ .....+.. Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 72.982(Ac.) Runoff from this stream = 113.426(CFS) Time of concentration = 28.03 min. Rainfall intensity = 2.131(Ir./Hr) Area averaged loss rate (Fin) = 0.5677(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 TTT'L T'F'F-TT"F'F'F'FT'!"F'!'......... I'."F"F'F77'Ff"{'TTt'}'T'F'TTT'L.TTTTT Process from Point/Station 731.000 to Poi **** USER DEFINED FLOW INFORMATION AT A POINT Point/Station 731.000Y'F� Soil 'classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 69.19 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.545(In/Hr) Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 28.16 min. Rain intensity = 2.13(In/Hr) Total area this stream = 8.42(Ac.) Total Study Area (Main Stream No. 1) = 51.77(Ac.) Total runoff = 12.08(CFS) .{.{..+++++.}..1..}....f...F.+++Yi...F+}... .+.}.i..}.'. -f. -j.....+.1. ...{.....f.{.. ...+.}... ..i -.........j., Process from Point/Station 731.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION 732.000 Top of street segment elevation = 1058.000(Ft.I End of street segment elevation = 1053.200(Ft.) Length of street segment = 725.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [21 side(s) of the street Distance from curb to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.797(CFS) Depth of flow = 0.418(Ft.), Average velocity = 2.391(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.140(Ft.V) Flow velocity = 2.39(Ft/s) Travel time --7 5.05 min. TC = 33.21 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 1.925(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.667 Subarea runoff = 0.022(CFS) for 1.000(Ac.) Total runoff = 12.102(CFS) Effective area this stream = 9.42(Ac.) Total Study Area (Main Stream No. 1) = 52.77(Ac.) Area averaged Fm value = 0.498(In/Hr) Street flow at end of street = 12.102(CFS) Half street flow at end of street = 6.051(CFS) Depth of flow = 0.411(Ft.), Average velocity = 2.358(Ft/s) Flow width (from curb towards crown)= 15.794(Ft.) .i. Y. Y ++ T . +1. T "7.......................... ..'...t11+T+'t... ..J..+.++'L+.l. �.............................. -�..}.+.� �...t.++++'i....�. T TT++++T T.. l .'..�. Process from Point/Station 732.000 to Point/Station 733.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ion Top of street segment elevation = 1053.200(1!'t.) End of street segment elevation = 1048.800(Ft.) Length of street segment = 595.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 14.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N -in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.616(CFS) Depth of flow = 0.505(Ft.), Average velocity = 2.948(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.515(Ft.) Flow velocity = 2.95(Ft/s) Travel time = 3.36 min. TC = 36.58 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 1.817(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.669 Subarea runoff = 0.320(CFS) for 0.800(Ac.) Total runoff = 12.422(CFS) Effective area this stream = 10.22(Ac.) Total Study Area (Main Stream No. 1) = 53.57(Ac.) Area averaged Fm value = 0.466(In/Hr) Street flow at end of street = 12.422(CFS) Half street flow at end of street = 12.422(CFS) Depth of flow = 0.503(Ft.), Average velocity = 2.936(Ft/s) Flow width (from curb towards crown)= 20.394(Ft.) ++++++....++++++++++++++++++1++++++++++++++++++++t++++++++++++++++++.+ Process from Point/Station 35.000 to Point/Station 35.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 31.61 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 1.817(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 36.58 min. Rain intensity = 1.82(In/Hr) Total area this stream = 10.22(Ac.) Total Study Area (Main Stream No. 1) = 63.79(Ac.) Total runoff = 14.00(CFS) +++++++ .+j.;.._..++T....F'++'I...++++++....+.++'F+'!-....{'++++'}-+'I....++++++.... Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.220(Ac.) Runoff from this stream = 14.000(CFS) Time of concentration = 36.58 min. Rainfall intensity = 1.817(In/Hr) Area averaged loss rate (Fm) = 0.0980(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. .(CFS) (min) (In/Hr) 1 113.426 28.03 2.131 2 14.000 36.58 1.817 Qmax (1) _ 1.000 * 1.000 * 113.426) + Qmax (2 ) _ 1.183 * 0.766 * 14.000) + = 126.118 0.799 * 1.000 * 113.426) + 1.000 * 1.000 * 14.000) + = 104.613 Total of 2 streams to confluence: Flow rates before confluence point: 113.426 14.000 Maximum flow rates at confluence using above data: 126.118 104.613 Area of streams before confluence: 72.982 10.220 Effective area values after confluence: 80.815 83.202 Results of confluence: Total flow rate = 126.118(CFS) Time of concentration = 28.035 min. Effective stream area after confluence = 80.815(Ac.) Stream Area average Pervious fraction(Ap) = 0.889 Stream Area average soil loss rate(Fm) = 0.510(In/Hr) Study area (this main stream) = 83.20(Ac.) End of computations, Total Study Area = 306.55 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.965 l�)i'D Area averaged SCS curve number = 66.3 J lio M Mv rima - - Il Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.800(Ac.) Runoff from this stream = 8.490(CFS) Time of concentration. = 39.90 min. Rainfall intensity = 1.724(In/Hr) Area averaged loss rate (Fm) = 0.0979(In/Hr) Area averaged Pervious ratio (AD) = 0.1000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (Ir -,/Hr) 1 47.248 31.78 1.977 2 8.490 39.90 1.724 Qma x (1) _ 1.000 * 1.000 * 47.248) + Qmax (2 ) _ 1.155 * 0.796 * 8.490) + = 55.059 0.837 * 1.000 * 47.248) + 1.000 * 1.000 * 8.490) + = 48.032 Total of 2 streams to confluence: Flow rates before confluence point: 47.248 8.490 Maximum flow rates at confluence using above data: 55.059 48.032 Area of streams before confluence: 35.382 5.800 Effective area values after confluence: 40.002 41.182 Results of confluence: Total flow rate = 55.059(CFS) Time of concentration = 31.782 min. Effective stream area after confluence = 40.002(Ac.) ! Stream Area average Pervious fraction(Ap) = 0.635 Stream Area average soil loss rate(Fm) = 0.383(In/Hr) Study area (this main stream) = 41.18(Ac.) +'{-++•}'++++++++++++.++++. }++++'}'++++++++++++++++++++++++++++++++++ }++++++ Process from Point/Station 733.000 to Point/Station 733.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 40.002(Ac.)'" Runoff from this stream = 55.059(CFS) Time of concentration = 31.78 min. Rainfall intensity = 1.977(In/Hr) Area averaged loss rate (Fm) = 0.3832(In/Hr) Area averaged Pervious ratio (AD) = 0.6348 ++++++}++++++}+}}++'!....-,^+}+++++++i-++++.-I--F++++++++}}++T'Y+++++++++++i" i-'• Process from Point/Station 733.000 to Point/Station 733.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 67.35 Pervious ratio(Ap) = 0.8760 Max loss rate(Fm) = 0.502(In/Hr) ) Rainfall intensity = 2.477 In/Hr for a 100.0 ear User specified values are as follows:y storm TC = 21.82 min. Rain intensity = 2.48(In/Hr) Total area this stream = 92.28(Ac.) Total Study Are (M 4 a ain Stream No. 1) = 201.63(Ac.) Total runoff = 165.81(CFS) ....+'{'+'I'+i'+'I"}'i--{-+++.+'F'h............}.+++'I-+'I .... i..........-� .. }+1�........ Process from Point/Station 733.000 to Point/Station 733.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 92.280(Ac.) Runoff from this stream = 165.810(CFS) Time of concentration = 21.82 min. Rainfall intensity = 2.477(In/Hr) Area averaged loss rate (Fm) = 0.5020(In/Hr) Area averaged Pervious ratio (Ap) = 0.8760 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 55.059 31.78 1.977 2 165.810 21.82 2.477 Qmax (1) = 1.000 * 1.000 * 55.059) + Qmax (2) _ 0.747 * 1.000 * 165.810)-+ = 178.864 1.314 * 0.687 * 55.059) + 1.000 * 1.000 * 165.810) + = 215.481 Total of 2 streams to confluence: Flow rates before confluence point: 55.059 165.810 Maximum flow rates at confluence using above data: 178.864 215.481 Area of streams before confluence: 40.002 92.280 Effective area values after confluence: 132.282 119.744 Results of confluence: Total flow rate = 215.481(CFS) Time of concentration = 21.820 min. Effective stream area after confluence = 119.744(Ac.) Stream Area average Pervious fraction(Ap) = 0.803 Stream Area average soil loss rate(Fm) = 0.466(In/Hr) Study area (this main stream) = 132.28(Ac.) End of computations, Total Study Area = 201.63 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures An not'd const er reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.866 Area averaged SCS curve number = 64.1 I j � z N Q S _ 5� a e a f5 5 a S ui Um�g LL Oa I I �CoZ� m} E LL JU.0 Q s Id wa .g i >dog U W w F- I ,� J � N =i W �— OPO V + �•{i F O C N17 Q 4S = J 100 arra �rw �Q�',• �t� V¢ C6 g -z o r7 irate t 'hi9'T ? Qp dlt)• / Z » ` ' �a`. 1 �^i m y qU N `° r or Sr 01- orca ~ oa _ 8- - 0a ,D<,Nzo a aZZ :Eon-- co z�z Z z y z meaae m -.5 "zi Z� - £H/4Z ENd , r OZL£ 'ON WdS �� -- 4Z0-L£0•-94Z NdV tFiF(d V tON _ _x— T S = maa p r I u a$ Z 4C /ti� £E/4Z ewd \ n Ii fi � a OZ.L£ 'ON Wd � I � �S O LL O � `^ i � o L Td72�lb'd a .., � � 9 3 a:$ �.y _ - 'y � - 2 lli ¢ _..1 I, _c Nd'G ,LLnYd V tON roe, � a� $ � i � � '$ � �I/ ,z P''J � � na3 ^�Y T"r: '=>: -=i •i , � _ Z LL M 60 J �^ 900-L£0-S$Z NdV tr1Vd V tON r>r ' a A:= �seY _ai _$z 00 O Q UC--0O-=-4sZ NdV ll Cvd 7 10N IL ri a q00 -LEO -95G NOV tHtfd V ION 9 R; al ash J Iegn ? '$ �s-� \ U I% Q 0-m-cNd iZ V J".f V ION _ £0 �r o �°° n$a I °`' as9 " �• ex - v a' a' - a d Q' I s oa Ys S 9 € N _Z ^ g a^ ` Cyd -� my� u2T . �� ' I ^� o�r •'I Sr de a- Q � CS p N� N N ra3 I I 7 �41� y. 1� a •, v Ss O Or Or 3C '� � _--- _ --.—_ � �� o f _ — - _ aY - -_ —_ - - -_ __ - a oex o0. 4 0 0 04 I s -..1-- -H — . z y, ISP Lmgv-°vim bq �q I a Hn� u ca I Iy R9 "y 0s`N 6 a pro I � �, � a. �`I a• � ax 5xl � »r,�Ao� N N b Q Z Q Z q 3E ^z14 1 ,� N $W ii�I I HLL o P 3 • y'n /f- (1\ III 2� ioaGi �Q� a. W I I • a I 3 � _ I � D '� m z v x ci (PAR7C:AL) San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4 ------Rational Hydrology Study Date: 02/01/05 ---------------------------------------- FONTANA / TR 16678 LINE DZ -5 EXISTING HYDROLOGY (PARTIAL) - 100 YEAR STORM JN 05086-000 ---------------------- ------------- -------------------- all & Forman, Inc. - SIN 950 *-------------------------------------------------------------- ******** Hydrology Study Control Information ********** -------------------------- --------------------------- Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 0.930(In.) 100 Year storm 1 hour rainfall = 1.350(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.350 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 +++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 700.000 to Point/Station 701.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(ln/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1104.000(Ft.) Bottom (of initial area) elevation = 1096.700(Ft.) Difference in elevation = 7.300(Ft.) Slope = 0.00730 s(%)= 0.73 TC = k(0.525)*[(length^3)/(elevation change) ]^0.2 Initial area time of concentrationp= 22.258 min. Rainfall intensity = 2.448(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.687 Subarea runoff = 8.411(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) .F.{....Tf+..-{..{..}..+..i.'I...+i.....'}.i......{f...+.+..'L'F..........{..'f...{..+.T'FF. f"{". Process from Point/Station 701.000 to Point/Station 702.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1096.700(Ft.) End of street segment elevation = 1095.000(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.617(CFS) Depth of flow = 0.432(Ft.), Average velocity = 2.168(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.849(Ft.) Flow velocity = 2.17(Ft/s) Travel time = 2.54 min. TC = 24.80 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.294(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.673 Subarea runoff = 7.030(CFS) for 5.000(Ac.) Total runoff = 15.441(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 10.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 15.441(CFS) Half street flow at end of street = 7.721(CFS) Depth of flow = 0.459(Ft.), Average velocity = 2.278(Ft/s) Flow width (from curb towards crown)= 18.214(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 703.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1095-000 Ft.) End of street segment elevation = �1092.000(Ft.) Length of street segment = 660,000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow 23.162(CFS) = 0.524(Ft.), Average velocity = Note: depth of flow exceeds top of 2.485(Ft/s) street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.49(Ft/s) Travel time = 4.43 min. TC = 29.22 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= Rainfall intensity = 2.079(In/Hr) 0.578(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area rational m th d - with modified e o )(Q-KCIA) is C = 0.650 Subarea runoff = 11.566(CFS) for 10.000(Ac.) Total runoff = 27.007(CFS) Effective area this stream = 20.00(Ac.) Total Study Area (Main Stream No. 1) = 20.00(Ac.) Area averaged Fm value = 0.578(ln/Hr) Street flow at end of street = 27.007(CFS) Half street flow at end of street = 13.504(CFS) Depth of flow = 0.547(Ft.), Average velocity = 2.641(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) i...f.. .++. +.++'{'+........................................................ +++++..}-.. ...i.... ..}.++.+++.{..}' .....'f.++.+....++'{...}' +++++..... Process from Point/Station 703.000 to Point/Station 704.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1092.000 Ft.) End of street segment elevation = 1082.000(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 40.511(CFS) Depth of flow = 0.653(Ft.), Average velocity = 5.157(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 27.900(Ft.) Flow velocity = 5.16(Ft/s) Travel time = 2.13 min. TC = 31.36 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(in/Hr) Rainfall intensity = 1.993(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.639 Subarea runoff = 23.910(CFS) for 20.000(Ac.) Total runoff = 50.917(CFS) Effective area this stream = 40.00(Ac.) Total Study Area (Main Stream No. 1) = 40.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 50.917(CFS) Half street flow at end of street = 50.917(CFS) Depth of flow = 0.712(Ft.), Average velocity = 5.284(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 2.26(Ft.) Flow width (from curb towards crown)= 30.845(Ft.) +++++++++++++++++++++++++++t+t++++++++++++++++++++++++++tt++++++++++++ Process from Point/Station 704.000 to Point/Station 30.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1076.000(Ft.) Downstream point/station elevation = 1066.000(Ft.) Pipe length 1000.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 50.917(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 50.917(CFS) Normal flow depth in pipe = 23.55(In.) Flow top width inside pipe = 34.24(ln.) Critical Depth = 27.87(In.) Pipe flow velocity = 10.39(Ft/s) Travel time through pipe = 1.60 min. Time of concentration (TC) = 32.96 min. .}..F ... }T.....}.'{.'E......f' ..}' .......... f}..F..'f....."f...{.'f.........F..f}.'f... i.....{'... f ....E. Process from Point/Station 30.000 to Point/Station 30.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 40.000(Ac.) Runoff from this stream = 50.917(CFS) Time of concentration = 32.96 min. Rainfall intensity = 1.934(In/Hr) Area averaged loss rate (Fm) = 0.5783(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 . . } .'.F T .. ..{...{.. "}..F'{.'{..''...f.l.l"..F" i..l....t.+..f. . ...{..t. ..}..}. i.. f..{'. {...}....L'}..{...}. . "'. "F.. "}....i"}.. {. {.. .. Process from Point/Station 705.000 to Point/Station 706.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1085.700(Ft.) Bottom (of initial area) elevation = 1075.300(Ft.) Difference in elevation = 10.400(Ft.) slope = 0.01040 s(%)= 1.04 TC = k(0.525)*((length^3)/(elevation change)]^0.2 . Initial area time of concentration = 20737 min. Rainfall intensity = 2.554(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.696 Subarea runoff = 17.779(CFS) Total initial stream area = 10.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) .}..}..{.++ "}.. ++++++...F. . . ..F +.+. -F.+.{. +++..}. .+.}..f.. ....{, i..++.. {.....'F....+++++ r++ -r -r++++ Process from Point/Station 706.000 to Point/Station 707.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1075.300(Ft.) End of street segment elevation = 1072.000(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2) side(s)*of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 24.445(CFS) Depth of flow = 0.478(Ft.), Average velocity = 3.276(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 19.130(Ft.) Flow velocity = 3.28(Ft/s) Travel time = 1.68 min. TC = 22.42 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr) Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.714 Subarea runoff = 12.679(CFS) for 7.500(Ac.) Total runoff = 30.457(CFS) Effective area this stream = 17.50(Ac.) Total Study Area (Main Stream No. 1) = 57.50(Ac.) Area averaged Fm value = 0.503(In/Hr) Street flow at end of street = 30.457(CFS) Half street flow at end of street = 15.229(CFS) Depth of flow = 0.508(Ft.), Average velocity = 3.514(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft. ++++T++T++++'I'..7...+++++++++++-}++++... +++J.... . +++++.. J-+++{' .F -f. L++++ T T++++ Process from Point/Station 707.000 to Point/Station 707.000 *-** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 17.500(Ac.) Runoff from this stream = 30.457(CFS) Time of concentration = 22.42 min. Rainfall intensity = 2.437(In/Hr) Area averaged loss rate (Fm) = 0.5034(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 50.917 32.96 1.934 2 30.457 22.42 2.437 Qmax(1) = 1.000 * 1.000 * 50.917) + 0.740 * 1.000 * 30.457) + = 73.448 Qmax(2) _ 1.371 * 0.680 * 50.917) + 1.000 * 1.000 * 30.457) + = 77.943 Total of 2 streams to confluence: Flow rates before confluence point: 50.917 30.457 Maximum flow rates at confluence using above data: 73.448 77.943 Area of streams before confluence: 40.000 17.500 Effective area values after confluence: 57.500 44.705 Results of confluence: Total flow rate = 77.943(CFS) Time of concentration = 22.416 min. Effective stream area after confluence = 44.705(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.556(In/Hr) Study area (this main stream) = 4 57.50(Ac.) +'i"+++.+'{"}'++'}'+.++'}'+'f".+++.+++++++.+.+++++++.++++.....+++'f"+++++++++..i ... Process from Point/Station 30.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1066.000(Ft.) Downstream point/station elevation = 1062.200(Ft.) Pipe length = 990.004t.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 77.943(CFS) Given pipe size = 39.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 7.075(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 8.819(Ft.) Minor friction loss = 2.056(Ft.) K -factor = 1.50 Pipe flow velocity = 9.40(Ft/s) Travel time through pipe = 1.76 min.Time of concentration (TC) = 24.17 min. TT+T+T'}.. . J....}.....++++......++++'L+T+++i..L...T..+.{.. .. .+++.x.111+...:..L+ Process from Point/Station 31.000 to Point/Station 31.000 *x** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 44.705(Ac.) Runoff from this stream = 77.943(CFS) Time of concentration = 24.17 min. Rainfall intensity = 2.329(In/Hr) Area averaged loss rate (Fm) = 0.5555(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 ++++++++++++++++++........'{{"{..'f.......i.}++++'F....y'++'{"'}.+.....+}T+++... Process from Point/Station 708.000 to Point/Station 709.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1072.000(Ft.) Bottom (of initial area) elevation = 1069.200(Ft.) Difference in elevation = 2.800(Ft.) Slope = 0.00280 s(%)= 0.28 TC = k(0.525)*[(length^3)/(elevation change) ]^0.2 Initial area time of concentration = 26.960 min. Rainfall intensity = 2.182(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.734 Subarea runoff = 12.003(CFS) Total initial stream area = 7.500(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.404(In/Hr) +++++++++++++++++++++++++++++++++++"+++++++++++++++++++++++++++++++++++ Process from Point/Station 709.000 to Point/Station 710.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1069.200(Ft.) End of street segment elevation = 1062.600(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.620(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 26.244(Ft.) Flow velocity = 4.02(Ft/s) Travel time = 2.73 min. TC = 29.69 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 78.00 Pervious ratio(A ) = 1 0000 28.006(CFS) 4.025(Ft/s) Rainfall intensity = 2.059(In/Hr)sforaae(F100.0 year4storm/Hr) Effective runoff coefficient used for area,(total area with modified rational th- e od m){Q-KCIA) is C = 0.724 Subarea runoff = 28.967(CFS) for 20.000(Ac.) Total runoff = 40.970(CFS) Effective area this stream = 27.50(Ac.) Total Study Area (Main Stream No. 1) = 85.00(Ac.) Area averaged Fm value = 0.404(In/Hr) Street flow at end of street = 40.970(CFS) Half street flow at end of street = 40.970(CFS) Depth of flow = 0.709(Ft.), Average velocity = 4.289(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 2.13(Ft.) Flow width (from curb towards crown)= 30.716(Ft.) +++++++++++++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.000 to Point/Station 710.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 27.500(Ac.) Runoff from this stream = 40.970(CFS) Time of concentration = 29.69 min. Rainfall intensity = 2.059(In/Hr) Area averaged loss rate (Fm) = 0.4035(In/Hr) Area averaged Pervious ratio (Ap) =-1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 77.943 24.17 2.329 2 40.970 29.69 2.059 Qmax(1) = 1.000 * 1.000 * 77.943) + 1.163 * 0.814 * 40.970) + = 116.744 Qmax(2) _ 0.848 * 1.000 * 77.943) + 1.000 * 1.000 * 40.970) + = 107.027 Total of 2 streams to confluence: Flow rates before confluence point: 77.943 40.970 Maximum flow rates at confluence using above data: 116.744 107.027 Area of streams before confluence: 44.705 27.500 Effective area values after confluence: 67.091 72.205 Results of confluence: Total flow rate = 116.744(CFS) Time of concentration = 24.172 min. Effective stream area after confluence = 67.091(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.498(In/Hr) Study area (this main stream) = 72.20(Ac.) .}..}.-f.l..I....I.. . f'...t..'....f...f.'i."I.. ..f'}.'}....{......'i..F........}...i..f'....I..{.........+..{...T Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1056.6 (Ft.) Downstream point/station elevation = 1052.000(Ft.) Pipe length = 660.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 116.744(CFS) Given pipe size = 39.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 13.203(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 13.190(Ft.) Minor friction loss = 4.613(Ft.) K -factor = 1.50 Pipe flow velocity = 14.07(Ft/s) Travel time through pipe = 0.78 min. Time of concentration (TC) = 24.95 min. ...F...f....'.}'}....{..'..i..F..i..f.T.F.}.....i...{...'f.-f..r.' f.r...i..i..i..}..f...F..i.."F...}...}......F..f..-i.'f.....{.'i..i. Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: I in normal stream number 1 Stream flow area = 67.091(Ac.) Runoff from this stream = 116.744(CFS) ' Time of concentration = 24.95 min. Rainfall intensity = 2.285(In/Hr) Area averaged loss rate (Fm) = 0.4976(In/Hr) j Area averaged Pervious ratio (Ap) = 1.0000 .... f-t.....-F-I--i-+.i•-I--F•{-.....+t-F-f-.•!-+-F-F-I-..t-F-.............t++++-I•+++t.....++++ Process from Point/Station 711.000 to Point/Station 712.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (AMC,2} = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1069.600(Ft.) Bottom (of initial area) elevation = 1062.100(Ft.) Difference in elevation = 7.500(Ft.) Slope = 0.00750 s(%)= 0.75 TC = k(0.525)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 22.138 min. Rainfall intensity = 2.455(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.752 Subarea runoff = 9.234(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.404(In/Hr) +++++++{.-}...+.+.{...+.F++++-F4+++++++++'i....++++++++++-F-+++++++++r++++++++-F+ Process from Point/Station 712.000 to Point/Station 713.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1062.100(Ft.) End of street segment elevation = 1058.000(Ft.) Length of street segment = 990.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.085(CFS) Depth of flow = 0.673(Ft.), Average velocity = 2.740(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.32(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 28.899(Ft.) Flow velocity = 2.74(Ft/s) Travel time = 6.02 min. TC = 28.16 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr) Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.729 Subarea runoff = 21.761(CFS) for 15.000(Ac.) Total runoff = 30.995(CFS) Effective area this stream = 20.00(Ac.) Total Study Area (Main Stream No. 1) = 105.00(Ac.) Area averaged Fm value = 0.404(In/Hr) Street flow at end of street = 30.995(CFS) Half street flow at end of street = 30.995(CFS) Depth of flow = 0.752(Ft.), Average velocity = 2.607(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 4.26(Ft Flow width (from curb towards crown)= 32.845(Ft.) ++++-}..+++++T+++++++t++++..._++++++ ^++++++++++++++++t..... ++r+i+}+T Process from Point/Station 713.000 to Point/Station 713.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 20.000(Ac.) Runoff from this stream = 30.995(CFS) Time of concentration = 28.16 min. Rainfall intensity = 2.125(In/Hr) Area averaged loss rate (Fm) = 0.4035(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 116.744 24.95 2 30.995 28.16 Qmax(1) _ 1.000 * 1.000 * 1.093 * 0.886 * Qmax(2) _ 0.911 * 1.000 * 1.000 * 1.000 * Rainfall Intensity (In/Hr) 2.285 2.125 116.744) + 30.995) + = 146.760 116.744) + 30.995) + = 137.299 Total of 2 streams to confluence: Flow rates before confluence point: 116.744 30.995 Maximum flow rates at confluence using above data: 146.760 137.299 Area of streams before confluence: 67.091 20.000 Effective area values after confluence: 84.814 87.091 Results of confluence: Total flow rate = 146.760(CFS) Time - of concentration = 24.954 min. Effective stream area after confluence = 84.814(Ac.) Stream Area average Pervious fraction(Ap) = 1.000 Stream Area average soil loss rate(Fm) = 0.476(In/Hr) Study area (this main stream) = 87.09(Ac.) ++++++++++++++i"+++'f'+++++'F".....++++++....+++++.++'}'++'} . .++'f".+'f'++.. .+'{ ... Process from Point/Station 32.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1052.000(Ft.) Downstream point/station elevation = 1041.000(Ft.) Pipe length = 1320.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 146.760(CFS) Given pipe size = 51.00(In.) Calculated individual pipe flow = 146.760(CFS) Normal flow depth in pipe = 39.75(In.) Flow top width inside pipe = 42.29(ln.) Critical Depth = 42.95(In.) Pipe flow velocity = 12.37(Ft/s) Travel time through pipe = 1.78 min. Time of concentration (TC) = 26.73 min. 1-..I•......}'iF. 'F"}"}"}. ."}'.{'....'Ft.t"+T......... .'f"i"J"t'T ."{"'L';"f'."F...I'........ L....... Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 84.814(Ac.) Runoff from this stream = 146.760(CFS) Time of concentration = 26.73 min. Rainfall intensity = 2.193(In/Hr) Area averaged loss rate (Fm) = 0.4760(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 End of computations, Total Study Area = 105.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged- pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 72.8 J'' yc" V c ICY Wr, %;., V , - " 1 VI San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4 Rational Hydrology Study Date: 02/01/05 ------ -------------------- ---------------------- __________ FONTANA / TR 16678 LINE DZ -6 EXISTING HYDROLOGY 100 YEAR STORM JN 05086-000 Hall & Forman, Inc. - SIN 950 ----------------------------- ********* Hydrology Study Control Information ********** -------------------------------- ------------------ Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 0.930(In.) 100 Year storm 1 hour rainfall = 1.350(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.350 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ++++++++++t+t+++++++++++++++++++++++++++++++++++++++t+t+++++++++++.... Process from Point/Station 714.000 to Point/Station 715.000 ****.INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1104-000 (Ft.) Bottom (of initial area) elevation = 1092.000(Ft.) Difference in elevation = 12.000(Ft.) Slope = 0.01200 s(%)= 1.20 TC = k(0.525)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 20.152 min. Rainfall intensity = 2.598(IntHr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 12.724(CFS) Total initial stream area = 7.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) T... ....'..i...F..{...}{... ..}..FT.F.'..'....I..h.i.i..t...f..F..}..t..{..t.l...#..I...F.}.....TTT..'..}.{..f...TT....{..{..{.''.T Process from Point/Station 715.000 to Point/Station 716.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1092.000(Ft.) End of street segment elevation = 1089-000 (Ft.) Length of street segment = 800.000(Ft.) Height of curb above gutter flowline = 8.0(In..) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 22.721(CFS) Depth of flow = 0.536(Ft.), Average velocity = 2.327(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.33(Ft/s) Travel time = 5.73 min. TC = 25.88 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.236(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.667 Subarea runoff = 14.127(CFS) for 11.000(Ac.) Total runoff = 26.851(CFS) Effective area this stream = 18.00(Ac.) Total Study Area (Main Stream No. 1) = 18.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 26.851(CFS) Half street flow at end of street = 13.425(CFS) Depth of flow = 0.561(Ft.), Average velocity = 2.487(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++++++++++t+++++++++++t++++++++++++++++++++++++++++++++++++++t Process from Point/Station 716.000 to Point/Station 717.000 **** STREET FLOW TRAVEL TIME t SUBAREA FLOW ADDITION **** Top of street segment elevation = y1089.000(Ft.) End of street segment elevation = 1081.500(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.50Q(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow 41.768(CFS) = 0.697(Ft.), Average velocity = Warning: depth of flow exceeds top 4.557(Ft/s) of curb Distance that curb overflow reaches into property = Streetflow hydraulics 1.53(Ft.) at midpoint of street travel: Halfstreet flow width = 30.117(Ft.) Flow velocity = 4.56(Ft/s) Travel time = 2.41 min. TC = 28.30 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(An) = 1 0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.119(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.654 Subarea runoff = 25.851(CFS) for 20.000(Ac.) Total runoff = 52.702(CFS) Effective area this stream = 38.00(Ac.) Total Study Area (Main Stream No. 1) = 38.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 52.702(CFS) Half street flow at end of street = 52.702(CFS) Depth of flow = 0.759(Ft.), Average velocity = 4.666(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 4.60(Ft.) Flow width (from curb towards crown)= 33.186(Ft.) .....{. .... . .. } ......'{...'f..f..F..F"}.'}.'{....t."f.i.....{.'}.'{.'{.i.....F i.. i...}...'F .i -...'i.'{.. i...{. i... . Process from Point/Station 717.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1075.000(Ft.) Downstream point/station elevation = 1061.000(Ft.) Pipe length = 990.Q0(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 52.702(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 52.702(CFS) Normal flow depth in pipe = 21.45(In.) Flow top width inside pipe = 35.3.3(In.) Critical Depth = 28.32(In.) Pipe flow velocity = 12.00(Ft/s) Travel time through pipe = 1.37 min. Time of concentration (TC) = 29.67 min. ............-+++t+++++++.....++++++++++tt++++.........++++++++++++...t Process from Point/Station 33.000 to Point/Station 33.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 38.000(Ac.) Runoff from this stream = 52.702(CFS) Time of concentration = 29.67 min. Rainfall intensity = 2.060(In/Hr) Area averaged loss rate (Fm) = 0.5783(ln/Hr) Area averaged Pervious ratio (Ap) = 1.0000 ...}..... .}. T'} ........ ...... .J... .}+.... .}TT}'}'+'I'........+T T'!}�}}^j.-Y Process from Point/Station 718.000 to Point/Station_ 719.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1082.000(Ft.) Bottom (of initial area) elevation = 1075.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.00700 s(%)= 0.70 TC = k(0.525)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 22.446 min. Rainfall intensity = 2.435(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.686 Subarea runoff = 8.356(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(ln/Hr) ++++++++++++++++++++++++++++}++++++++++}++++}}++++++++++++++}+}++++++} Process from Point/Station 719.000 to Point/Station 720.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1075.000(Ft.) End of street segment elevation = 1073.300(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) 41 Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.534(CFS) Depth of flow = 0.431(Ft.), Average velocity = 2.164(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.807(Ft.) Flow velocity = 2.16(Ft/s) Travel time = 2.54 min. TC = 24.99 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group 3 = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(_Tn/Hr) Rainfall intensity = 2.283(In/Hr) for a 10 Effective runoff coefficient used for area/ (total areaear with`orm modified rational method)(Q=KCIA) is C = 0.672 Subarea runoff = 6.990(CFS) for 5.000(Ac.) Total runoff = 15.346(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 48.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 15.346(CFS) Half street flow at end of street = 7.673(CFS) Depth of flow = 0.458(Ft.), Average velocity = 2.275(Ft/s) Flow width (from curb towards crown)= 18.170(Ft.) ++++++++++++++++++++++++++++++++++++t+++++++++++++++++++.t+++++ff+++++ Process from Point/Station 720.000 to Point/Station **** STREET FLOW TRAVEL TIME t SUBAREA FLOW ADDITION 721.000 **** Top of street segment elevation = 1073.300(Ft.) End of street segment elevation = 107O.000(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2j side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.019(CFS) Depth of flow = 0.517(Ft.), Average velocity = 2.551(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width 20.000(Ft.) Flow velocity = 2.55(Ft/s) Travel time = 4.31 min. TC = 29.30 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 2.075(T_n/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.753 Subarea runoff = 15.927(CFS) for 10.000(Ac.) Total runoff = 31.273(CFS) Effective area this stream = 20.0O(Ac.) Total Study Area (Main Stream No. 1) = 58.00(Ac.) Area averaged Fm value = 0.338(In/Hr) Street flow at end of street = 31.273(CFS) Half street flow at end of street = 15.637(CFS) Depth of flow = 0.563(Ft.), Average velocity = 2.881(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) ....J`+1"}'."..'}'....'I'.....;.+++++T++�T++'�'T''.".++`!'+`. +'+....}1+++T...... ... T�+-4--+ Process from Point/Station 721.000 to Point/Station 722.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1070.000(Ft.) End of street segment elevation = 1068.000(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to^grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 39.091(CFS) Depth of flow = 0.763(Ft,), Average velocity = 3.414(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 4.80(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 33.388(Ft.) Flow velocity = 3.41(Ft/s) Travel time = 1.61 min. TC = 30.91 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.010(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.7.13 Subarea runoff = 11.703(CFS) far 10.000(Ac.) Total runoff = 42.976(CFS) Effective area this stream = 30.00(Ac.) Total Study Area (Main Stream No. 1) = 68.00(Ac.) Area averaged Fm value = 0.418(ln/Hr) Street flow at end of street = 42.976(CFS) Half street flow at end of street = 42.976(CFS) Depth of flow = 0.787(Ft.), Average velocity = 3.460(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 6.04(Ft.) Flow width (from curb towards crown)= 34.620(Ft:) ++++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 722.000 to Point/Station 722.000 * * * * CONFLUENCE OF MINOR STREAMS * � * Along Main Stream number: 1 in normal stream number 2 Stream flow area = 30.000(Ac.) Runoff from this stream = 42.976(CFS) Time of concentration = 30.91 min. Rainfall intensity = 2.010(In/sir) Area averaged loss rate (Fm) = 0.4181(In/Hr) Area averaged Pervious ratio (Ap) = 0.7000 Summary of stream data: Stream No. Flow rate TC Rainfall Intensity (CFS) (min) (In/Hr) 1 52.702 29.67 2.060 2 42.976 30.91 2.010 Qmax (1) = 1.000 * 1.000 * 52.702) + 1.031 * 0.960 * 42.976) + = 95.250 Qmax(2) _ 0.966 * 1.000 * 52.702) + 1.000 * 1.000 * 42.976) + = 93.900 Total of 2 streams to confluence: Flow rates before confluence point: 52.702 42.976 Maximum flow rates at confluence using above data: 95.250 93.900 Area of streams before confluence: 38.000 30.000 Effective area values after confluence: 66.796 68.000 Results of confluence: Total flow rate = 95.250(CFS) Time of concentration = 29.670 min. Effective stream area after confluence = 66.796(Ac.) Stream Area average Pervious fraction(Ap) = 0.868 Stream Area average soil loss rate(Fm) = 0.508(In/Hr) Study area (this main stream) = 68.00(Ac.) +++++-1-++++++++-F++-t+++++++++++++-I-+++-F++++++++.++++++-F++. r++++++ -f-++-{--1-+++. Process from Point/Station 33.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1061.000(Ft.) Downstream point/station elevation = 1048.200(Ft.) Pipe length = 990.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 95.250(CFS) Given pipe size = 39.00(In.) Calculated individual pipe flow = 95.250(CFS) Normal flow depth in pipe = 32.53(In.) Flow top width inside pipe = 29.01(In.) Critical Depth = 35.74(In.) Pipe flow velocity = 12.89(Ft/s) Travel time through pipe = 1.28 min. Time of concentration (TC) = 30.95 min. +++'f'++++++++++++++7.+++++++++++++....++++++++ ... ++++++++++++++++t .++T. It U0 Process from Point/Station 34.000 -o Point/Station **** CONFLUENCE OF MINOR STREAMS **** 34.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 66.796(Ac.) Runoff from this stream = 95.250(CFS) Time of concentration = 30.95 min, Rainfall intensity = 2.008(In/Hr) Area averaged loss rate (Fm) = 0.5077(In/Hr) Area averaged Pervious ratio (Ap) = 0.8676 ++-1-++r+++1-++++++++r++....+r+++•!-t+++++++++....-I-.+.{.{.{.. j.+.++r+++++++r+++++ Process from Point/Station 723.000 to Point/Station_ **** INITIAL AREA EVALUATION **** 724.000 UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1072.000(Ft.) Bottom (of initial area) elevation = 1066.600(Ft.) Difference in elevation = 5.400(Ft.) Slope = 0.00540 s(%)= 0.54 TC = k(0.525)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 23.642 min. Rainfall intensity = 2.361(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.680 Subarea runoff = 8.020(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.578(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 724.000 to Point/Station 725.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1066.600(Ft.) End of street segment elevation = 1063.000(Ft.) Length of"street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.030(CFS) Depth of flow = 0.422(Ft.), Average velocity = 2.189(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.360(Ft.) Flow velocity = 2.19(Ft/s) Travel time = 5.03 mir.. TC = 28.67 min. Addir_g area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.103(in/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.652 Subarea runoff = 5.700(CFS) for 5.000(Ac.) Total runoff = 13.720(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 78.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 13.720(CFS) Half street flow at end of street = 6.860(CFS) Depth of flow = 0.439(Ft.), Average velocity = 2.261(Ft/s) Flow width (from curb towards crown)= 17.213(Ft.) ++++++++++++.++++++..F{..F+{.i..+....+++'}..{.++.+.{-...'i.....++++'{-+'{ ....+++.+'f .. Process from Point/Station 725.000 to Point/Station 729.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1063.000(Ft.) End of street segment elevation = 1056.600(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 ` Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of -street = 13.720(CFS) Depth of flow = 0.497(Ft.), Average velocity = 3.333(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.114(Ft.) Flow velocity = 3.33(Ft/s) Travel time = 3.30 min. TC = 31.97 min. Adding area flow to street COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Rainfall intensity = 1.970(In/Hr) for a 100.0 year storm rikv Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.636 Subarea runoff = 0.000(CFS) for 0.000(Ae.) Total runoff = 13.720(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 78.00(Ac.) Area averaged Fm value = 0.578(In/Hr) Street flow at end of street = 13.720(CFS) Half street flow at end of street = 13.720(CFS) Depth of flow = 0.497(Ft.), Average velocity = 3.333(Ft/s) Flow width (from curb towards crown)= 20.114(Ft.) 1... ..F . . J..f..f.. +.{.+... ...t.. ..F.F.F.f..'... . i..F..F...}..+.r.... ...h ...f. ..f..F..}..I. {..I..}..... {. ..}.. +.{..+1 .'. .. Process from Point/Station 729.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 729.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.000(Ac.) Runoff from this stream = 13.720(CFS) Time of concentration = 31.97 min. Rainfall intensity = 1.970(In/Hr) Area averaged loss rate (Fm) = 0.5783(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station - 726.000 to Point/Station 727.000 **** INITIAL AREA EVALUATION **** CONDOMINIUM subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.342(In/Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1069.200(Ft.) Bottom (of initial area) elevation = 1062.000(Ft.) Difference in elevation = 7.200(Ft.) Slope = 0.00720 s(%)= 0.72 TC = k(0.360)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 15.305 min. Rainfall intensity = 3.064(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.799 Subarea runoff = 12.249(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 0.350 Initial area Fm value = 0.342(In/Hr) +++++++++++.++++++++++++++++++++ttt+++++++++++++++++++++++++++++++++++ Process from Point/Station 727.000 to Point/Station 728.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1062.000(Ft.) End of street segment elevation = 1060.000(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2j side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 18.374(CFS) Depth of flow = 0.472(Ft.), Average velocity = 2.528(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.873(Ft.) Flow velocity = 2.53(Ft/s) Travel time = 2.18 min. TC = 17.48 min. Adding area flow to street CONDOMINIUM subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.342(In/Hr) Rainfall intensity = 2.829(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.791 Subarea runoff = 10.136(CFS) for 5.000(Ac.) Total runoff = 22.385(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 88.00(Ac.) Area averaged Fm value = 0.342(In/Hr) Street flow at end of street = 22.385(CFS) Half street flow at end of street = 11.192(CFS) Depth of flow = 0.501(Ft.), Average velocity = 2.674(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 728.000 to Point/Station 729.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1060.000(Ft.) End of street segment elevation='`1056.600(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property.line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 1112 Estimated mean flow rate at midpoint of street = 33.577(CFS) Depth of flow = 0.572(Ft.), Average velocity = 2.991(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.99(Ft/s) Travel time = 3.68 min. TC = 21.16 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.523(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.736 Subarea runoff = 14.746(CFS) for 10.000(Ac.) Total runoff = 37.131(CFS) Effective area this stream = 20.00(Ac.) Total Study Area (Main Stream No. 1) = 98.00(Ac.) Area averaged Fm value = 0.460(In/Hr) Street flow at end of street = 37.131(CFS) Half street flow at end of street = 18..565(CFS) Depth of flow = 0.590(Ft.), Average velocity = 3.112(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++++++++++-'r +++++++++++++++++++++++ .++++++++++++++ +++++++++++++ Process from Point/Station 729.000 to Point/Station 729.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 20.000(Ac.) Runoff from this stream = 37.131(CFS) Time of concentration = 21.16 min. Rainfall intensity = 2.523(In/Hr) Area averaged loss rate (Fm) = 0.4603(In/Hr) Area averaged Pervious ratio (Ap) = 0.6750 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 95.250 30.95 2.008 2 13.720 31.97 1.970 3 37.131 21.16 2.523 Qmax (1) = 1.000 * 1.000 * 95.250) + 1.028 * 0.968 * 13.720) + 0.750 * 1.000 * 37.131) + = 136.767 Qmax(2) _ 0.974 * 1.000 * 95.250) + 1.000 * 1.000 * 13.720) + 0.732 * 1.000 * 37.131) + = 133.687 Qmax(3) _ 1.343 * 0.684 * 95.250) + 1.398 * 0.662 * 13.720) + IIiJ 1.000 * Tonal of 3 streams Flow rates before 95.250 Maximum flow rates 136.767 1.000 * 37.131) t = 137.278 to confluence: confluence point: 13.720 37.131 at confluence using above data: 133.687 137.278 Area o: streams before confluence: 66.796 10.000 20.000 Effective area values after confluence: 96.478 96.796 72.284 Results of confluence: Total flow rate = 137.278(CFS) Time of concentration = 21.159 min. Effective stream area after confluence = 72.284(Ac.) Stream Area average Pervious fraction(Ap) = 0.842 Stream Area average soil loss rate(Fm) = 0.505(In/Hr) Study area (this main stream) = 96.80(Ac.) +++++++++++++++++f++++++++++++++++++.....++++++++++++++++++++++1++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1048.200(Ft.) Downstream point/station elevation = 1042.000(Ft.) Pipe length = 660.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 137.278(CFS) Given pipe size = 39.00(ln.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 18.416(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 18.238(Ft.) Minor friction loss = 6.378(Ft.) K -factor = 1.50 Pipe flow velocity = 16.55(Ft/s) Travel time through pipe = 0.66 min. Time of concentration (TC) = 21.82 min. .. f..} l+. i..{ .....i.'fiF...... }....F i.....L..'t...}'. ..'{"'{..{". .. .'i...f.. ..... y f .. ...... i. i...F .r' Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 72.284(Ac.) Runoff from this stream = 137.278(CFS) Time of concentration = 21.82 miff. Rainfall intensity = 2.477(ln/Hr) Area averaged loss rate (Fm) = 0.5052(In/Hr) Area averaged Pervious ratio (Ap) = 0.8415 *+.F.I.+.{..i.,....F.F.i.....F.F......L ............................................. i.'{. {..'}.'f.. .}'....F{....}....F.'}}..Ei...f}}..i"i.i...... Process from Point/Station 730.000 to Point/Station 731.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil (APIC 2) = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(rr-m)= 0.4? 4 Initial subarea data: 0 ,In/ ) initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1063.700(Ft.) Bottom (of initial area) elevation = 1055.800(Ft.) Difference in elevation = 7.900(Ft.) Slope = 0.00790 s(%)= 0.79 TC = k(0.525)*((length^3)/(elevation change)]^0.2 initial area time of concentration = 21.910 min. Rainfall intensity = 2.471(In/fir) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.753 Subarea runoff = 9.303(CFS) Total initial stream area = 5.000(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.404(_in/Hr) -!-++++++++t+++++++++++++++++++++++t++++++++++++.+++++++++++++++++++++++ Process from Point/Station 731.000 to Point/Station 732.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1055.800(Ft.) End of street segment elevation = 1053.600(Ft.) Length of street segment = 330.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 13.954(CFS) Depth of flow = 0.428(Ft.), Average velocity = 2.449(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.667(Ft.) Flow velocity = 2.45(Ft/s) Travel time = 2.25 min. TC = 24.16 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 0.`000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 78.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr) Rainfall intensity = 2.330(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.744 Subarea runoff = 8.038(CFS) for 5.000(Ac.) Total runoff = 17.341(CFS) Effective area this stream = 10.00(Ac.) Total Study Area (Main Stream No. 1) = 108.00(Ac.) Area averaged Fm value = 0.404(In/Hr) Street flow at end of street = 17.341(CFS) Half street flow at end of street = 8.671(CFS) Depth of flow = 0.457(Ft.), Average velocity = 2.584(Ft/s) Flow width (from curb towards crown)= 18.124(Ft.) ............................................... ....'.l..L.1..},.{.1T.i.+1..1T..+..j..t....I..F_T+.r.�..}.TT'I. .+ �. +l. ... �}..}...�. ........ ����+.t Process from Point/Station 732.000 to Point/Station, ***' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION 733.000 **** Top of street segment elevation = 1053.600(Ft.) End of street segment elevation = 1049.000(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 42.000(Ft.) Distance from crown to crossfall grade break = 40.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 26.012(CFS) Depth of flow = 0.642(Ft.), Average velocity = 3.450(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 27.327(Ft.) Flow velocity = 3.45(Ft/s) Travel time = 3.19 min. TC = 27.34 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 67.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr) Rainfall intensity = 2.163(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.696 Subarea runoff = 12.761(CF3) for 10.000(Ac.) Total runoff = 30.102(CFS) Effective area this stream = 20.00(Ac.) Total Study Area (Main Stream No. 1.) = 118.00(Ac.) Area averaged Fm value = 0.491(i'n/Hr) Street flow at end of street = 30.102(CFS) Half street flow at end of street = 30.102(CFS) Depth of flow = 0.674(Ft.), Average velocity = 3.555(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.39(Ft.) Flow width (from curb towards crown)= 28.972(Ft.) .F..I...F...F..I. ..F..}.+i...I..F ..I..i..}..}....I'.F.F.}.+....}..F'J...I..I. . {.{..}. i. ...t..F.+.I' {..I....F.F'.I.. .+.}.'I..T. ..{' .I. i. .'i.} .I..T Process from Point/Station 733.000 to Point/Station 733.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 20.000(Ac.) H16 Runoff from this stream 30.102(CFS) Time of concentration = 27,34 ; n. Rainfall intensity_ /H Area averaged loss rate 2.163 (Inn/0. Area averaged Pervious ratio (Ap) 0 190000r/H_) Summary of stream data: Stream Flow rate TC No. (CFS) Rainfall Intensity ) (min) (In/Hr) I I 1 137.278 21.82 2.477 2 30.102 27.34 2.163 i Qmax(1) = 1.000 * 1.000 * 137.278) + Qmax (2 } _ 1.187 * 0.798 * 30.102) + = 165.806 I 0.841 * 1.000 * 137.278) + 1.000 * 1.000 * 30.102) + = 145.557 iTotal of 2 streams to confluence: Flow rates before confluence point: 137.278 30.102 Maximum flow rates at confluence using above data: 165.806 145.557 j Area of streams before confluence: 72.284 20.000 Effective area values after confluence: I 88.246 92.284 Results of confluence: Total flow rate = 165.806(CFS) Time of concentration = 21.823 min. Effective stream area after confluence = Stream Area average Pervious fraction(Ap) = 0.8766(Ac.) Stream Area average soil loss rate(Fm) = 0.502(In/Hr) Study area (this main stream) = 92.28(Ac.) End of computations, Total Study Area = 118.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.869 Area averaged SCS curve number = 62.0 =o, m m m r >i T D =m —<O 0-< m �n o >0 p � p n -r-, TI r. Z m p71D000 Z z G) --i y —<O zz :zz O �r T�1 VT/ V! W m > f 4 �m N Z a; n� m � ao Z �< W �n m D � m 1" m v Z r n m z O > S VVVV� a ked Fa. Z m ITpI m<DS Z 1 ADp( 30i (3) nx roll.! -1 g 9 o � o D m .. m nn m o OM8 S m � •o OD uI I =o, m m m r >i T D =m —<O 0-< m �n o >0 p � p n -r-, TI r. Z m p71D000 Z z G) --i y —<O zz :zz O �r T�1 VT/ V! W m N Z a; n� m ao Z W �n m 1" m v Z r n m z a C) Z--4 : om M 1 ADp( 30i (3) 8 -1 o � o D v x n n m o m � •o =o, m m m r >i T D =m —<O 0-< m �n o >0 p � p n -r-, TI r. Z m p71D000 Z z G) --i y —<O zz :zz O �r T�1 VT/ V! W m -nz C,A\7(CH BAS�NS -11 Suite 203 Date Costa Mesa California 92626 Sht. 2D01 of _ (7141 754-5714 Land Planning Civil Engineering Surveying 88 12' 32' 2 / i1=o,al5 0 W10TN of 1)EP7*14 q,pFA CooO/NG, Q 5'�z 0,16 0,17 0, ar Z.s 3,$ 0, 18 0, Z¢ 3. d 4,? 0.11 0, Z1 3.5 411 0. Zo o,31 4-,0 1;, 4 d.Z1 0,35 4.5 6,1 0.20 0140 5.0 7.1 o.Z3 0,4.5 5.5 8,1 0.24 01,51 6.0 1.5 0.75 0, 57 6.5 e. V, 0, 64 7.c 0.27 0,71 7,5 la,z 0. ZS 0.T? 8,0 16,3 o. 29 0, 81 8.5 13.4 dQ,30 , o,9c 1,, 20 9 15 0.3 r 1,os 1.5 23.4 013Z !, IS (o,0 Z6.3 0,33 1.25 te,5 2q g 0 34 1. 3c II.�` �,Z.7 6,35 1,47 11.5 36.1 036 1,5q 12,E 40.0 0,37 1,7f J 2.5 44.0 6,59 1.34 11,0 48.5 o, 31 07 13,5 53,0 14,d 58.0 o,4Z 2.40 1 S,b G8.7 a. 42 Z,ss ! 5,5 14,3 0,4.4 .IV, JVUUI \-VC1JL UTAVC By Suite 203 Date Costa Mesa California 92626 Sht.2o�3 of [714) 754-5714 Land Planning Civil Engineering Surveying 11:d.0IS W107�W air DEPTW Q sA J, Sa 24,19 77,a 109-7 o, 81 24.96 78.0 1 146 o,SZ Z5.-75 19.E 1197 0,93 Z4.54 $n. 0 114'5 e. 84- 27,35 sko 1 30 a,85 ZB.1 82,0 139(- 0.86 28,94 83,0 (412 D.87 Z9, 8Z 94. a 146S 6,89 3o,G7 3G,0 1527 o, 84 3 f,51 36.0 159(, 0,90 32,39 87.0 1(,47 0,91 33.2(, 88,0 1768 FCou, EXcFEQ 5 l?/u.J 11:d.0IS (f, 6.((@ P7. 70.1 JuNtPvs . �C b , o &VQ 2 ),/z 8 4' G�6F 9 5 I.5 " 28 °. BsX O.9 4- 3 5. 8 7 eF s �u �� Ta G.�3•"/o = 119.54 - 3 8.87 _ 80, l�7 C/4c°4u7-Y Tn Geaco" s ¢55.2X X; 75.0. 39.87�l/9.54� 24,31 tee. 14y� 75,0 - 24,3'l G r3 to (?PT. 71OI ^-,1uut�E�2 to (. 3 7 ct= t-( .2 00 3 LlSr� �=28` 9x�1.�Oc.5�42:3'S Gt�S A /I C A (5, r3, # � (T (-T, !3, l - Jul -moo -g 15 tF5 Q�N z 2.°7x 3g n. ss x a.771.s� 64t4r�q 4ia4 'AV r--, 43. eon P (P 4- l4-> >q 1=v K 5 � r4 A( -u a t�v 4r--(4(,55+ 2d,�5 jx33.5(I89.Z5 "33.354c. �5z �2.Za x fZ.c8 � (F� �IZFa FoR w i2E�T + 2 .75) x 42,35 2�.si Itc (415 - 7i, 3G - 24,8( =41.55 3t. (5, r3, # � (T (-T, !3, l - Jul -moo -g 15 tF5 Q�N z 2.°7x 3g n. ss x a.771.s� 64t4r�q 4ia4 'AV r--, 43. eon P (P 4- l4-> >q 1=v K 5 � r4 A( -u a t�v 4r--(4(,55+ 2d,�5 jx33.5(I89.Z5 "33.354c. �5z �2.Za x fZ.c8 2 @ /0T 7� °.8Sx0.61 r.s i,(1 = 2 a , 7 5 � C,i 5 C 11✓ = 21 PT.72 f ^� C�Ft2 55 AVE cC��se= 70.47 eFS 5_0,0(3 CgPRGtr`' 7-6 1'-&' 04-AJO4 J � 5 f. q4 SFS 0,7�Ta n ' S rx 0 7�r.5 _ 3 2, 8 cps dQ,,d 1O C6.* 14-� d Qroo iu W'! V fIM 0 F' -t -r2rz F T 76, --7 - 5 1, `�o = (8.57 cF5 Ale re W'GY #*"F f4Ats m y 3.J Xf8.'/lo¢�- /3, Y7Qc 4P:53,ox32.1SG 7a 47 5 � (5. + . -* (,d- @ PT. 7 22 — e 1? (4 55 � lots ,5 9 G�5 yj IN '6,-# -7 19,58 -/4,5� z 5,02 �F5 Amp F02 PrPr! tzo� �T�'t✓Y _ 1.4,82- 3.80 = l(,02ae. ps-r(4,32+6,5)r5,0L 1, 53 3.8o x 2 ado= 8, 41 o_, D, 3 5 -Z, 1H" 6IJ 0.36 t.5 e16 e �) ,. 24 4F)o(zox!o,aTE- i°iP= SIZE To F�.�,o;t�dppr� UNnEv�uFFra C f�-t/ 0 t7ti Vr�a��P aN- 5!TE STa2ss� ���Jrc1 � C !tP0 e vef �cao tN CYP2�s5 AV8, 4 r S444rA ,4t-,uA4 DEvt=,_�P�t7 oN_s,T� Inc I14, 33D cis K v 2!-�� S Fie 0 JUr a c0'4 A -t/ 1✓ . a ¢ 2 c r' S Tc, 84"2cr� /4r 4g=io22.1:�= l5,nv �_ IZSt7. 8�-`ig42.ch 2e- 75. 74 -5 s = r5. otl/'ZG 75.75 r d, da 5c 4, 41:17 ����l�=n 72" 2c n