HomeMy WebLinkAboutTract 16678 Detention Basin Studys & Associates, Inc.
Engineering • Surveying • Planning • Construction Management
DETENTION BASIN STUDY
FOR
TRACT MAP NO. 16678
IN THE CITY OF FONTANA
Prepared for:
BRISTLECONE INVESTMENTS, LLC.
19 CORPORATE PLAZA, STE. 210
NEWPORT BEACH, CA 92660
Prepared by.-
CROUSE/BEERS
y:
CROUSE/BEERS AND ASSOCIATES
2191 5T" STREET, SUITE 200
NORCO, CA 92860
Prepared under the supervision of:
I OUG S N CROUSE R.C.E. # 23796
February 25, 2005
J 2191 5th Street, Suite 200
Norco, CA 92860-1967
(951)736-2040
FAX: (951) 736-5292
V ri
Page 1 of 2
Felipe Molinos
From: Doug Crouse [DCrouse@crousebeers.com]
Sent: Wednesday, March 16, 2005 9:31 AM
To: Greg Bucknell
Cc: Rick Bolte; Ricardo Sandoval; Ricardo Garay; Felipe Molinos; hhovagimyan@hfinc.com
Subject: RE: Fontana Tract 16678 - 48" RCP Capacity - Interim Storm drain in Cypress
Greg:
As we discussed on Monday over the telephone, there are two ways to look at activating the Ultimate (dry) storm
drain system which has been designed per the City's request. µ.ms Kd ,� �iecvw r- —� JaWPA 0-?
The first is the theoretical viewpoint. The ultimate (dry) system has been designed to discharge directly into the
Declez Channel downstream of the Jurupa Box entry to the Declez Channel. To add this system into the Interim
48" RCP storm drain system being constructed in Cypress Street and discharging in to the Jurupa box would
overload the 48" pipe and the water would be running in the street. Hence, this would not seem appropriate.
However>>>
The second is the practical viewpoint: Having water running in the street until the Ultimate System in constructed
is going to happen anyway! Therefore, until such time as that portion of the ultimate (dry) storm drain system is
built downstream of Cypress, the upstream watershed for which the ultimate storm drain is designed for, has a
travel lag factor which impacts when the water arrives at the critical intersection of Santa Ana and Cypress. This
lag factor is impacted by both the watershed area for this system being largely undeveloped and the distance this
water must travel to arrive at the critical intersection. Based on this lag factor, as an interim condition, if you were
to connect the ultimate (Dry) system into the interim storm drain system at the critical intersection, when the storm
hits the fully developed watershed of tract 16678, the peak of the storm will arrive at the critical intersection ahead
of the major discharge from ultimate (dry) system. Hence a portion of the Cypress system will take some of the
water from that upstream watershed area. By accomplishing this junction, you would be assuring the 48" storm
drain system in Cypress is running full during the same period there may be water running on the street above.
As my previous correspondence has discussed, by maintaining the 48" Storm drain line size in Cypress, that
allows Tract's 16678 drainage system to operate without the Detention Basin and downstream of the tract, the
pipe sizing controls the amount of water such that the Jurupa Box will not be overloaded. Since this entire
watershed is essentially without underground drainage systems at this time, connecting the ultimate storm drain
system at Santa Ana and Cypress to the 48" system in Cypress will insure the maximum amount of water is taken
off the streets for the longest duration possible for the DZ -5 and DZ -6 watershed areas. This will allow the City
the maximum benefit of the first drainage system constructed before the others are constructed.
Doug ' S Q tt �. < 0! 6,.�� t rfi
-----Original Message----- r4
From: Greg Bucknell [mailto:gbucknell@fontana.org]
Sent: Monday, March 14, 2005 2:41 PM v �j
To: Doug Crouse /
Cc: Rick Bolte; hhovagimyan@hfinc.com; Ricardo Sandoval; Ricardo Garay; Felipe Molinos
Subject: RE: Fontana Tract 16678 - 48" RCP Capacity - Interim Sorm drain in cypress
DC, PLEASE CLARIFY PER OUR PHONE DISCUSSION ON MONDAY, 03/14/05.
-----Original Message -----
From: Doug Crouse [mailto:DCrouse@crousebeers.com]
Sent: Tuesday, March 08, 2005 9:00 AM
To: Greg Bucknell
Cc: Rick Bolte; hhovagimyan@hfinc.com
3/16/2005
Page 2 of 2
Subject: Fontana Tract 16678 - 48" RCP Capacity - Interim Sorm drain in cypress
Greg:
This is in response to the question you had asked about how much additional capacity is in the
interim 48" storm drain designed to be constructed from Santa Ana to the Jurupa Box.
Based on the Detention Basin Study (Scenario #1) recently submitted to the City, if the Tract
16678 detention basin is eliminated, the 48" pipe at the tract will theoretically be running full in a
design storm with the water surface about 1 and'/2 feet below the surface of the street. The
water surface at the Jurupa box is a little above the top of box but there is still a little capacity
available. Therefore, as we have discussed in the past, the 48" pipe is sized to convey as much
storm flow to the Jurupa box as possible to insure the Jurupa box is not overloaded (i.e. water
surface above the street). The Design discharge from Tract 16678 is 115 cfs and this then
becomes the maximum capacity the pipe is capable of carrying.
Doug Crouse
This email and any files transmitted with it are confidential and intended solely for the
use of the individual or entity to whom they are addressed. If you have received this
email in error please notify the system manager. This message contains confidential
information and is intended only for the individual named. If you are not the named
addressee you should not disseminate, distribute or copy this e-mail.
This email and any files transmitted with it are confidential and intended solely for the use of the
individual or entity to whom they are addressed. If you have received this email in error please notify
the system manager. This message contains confidential information and is intended only for the
individual named. If you are not the named addressee you should not disseminate, distribute or copy this
e-mail.
3/16/2005
Crouse/Beers & Associates, Inc.
Engineering • Surveying • Planning • Construction Management
February 25, 2005
G.J. Bucknell, Principal Engineer
City of Fontana
8353 Sierra Avenue
Fontana, California 92335
Subject: Tract 16678 — Detention Basin Study
Dear Mr. Bucknell:
CBA # JX0301
The purpose of this letter to provide additional information your office had
requested at our meeting on January 11, 2005 and request your approval to
revise the current plans and eliminate the detention basin currently designed into
the storm drain system.
At the January 11 meeting, Crouse/Beers and Associates (CBA) provided your
office a "Hydraulic Report for Tract Map No. 16678 Interim Condition Line "DZ -
4X in the City of Fontana". The purpose of that report was to demonstrate to the
City of Fontana the storm drain system the City had requested be designed both
onsite and offsite and agreed to by our Client, was sufficient to completely
eliminate the temporary Detention Basin currently designed and included in
CBA's plans. The results from this Report demonstrate by utilizing the capacity
of the interim offsite storm drain system in Cypress currently designed to be built
with the tract improvements, there is no need for the Basin to be constructed.
The tract drainage system actually performs better (lower hydraulic grade -line)
without the detention basin. At the January meeting, when discussing the
potential of eliminating the detention by utilizing additional capacity in the
Cypress Storm drain, in addition to the first scenario provided on January 11,
2005 you requested a couple of other scenarios be reviewed. Therefore, included
with this report is the original report (Scenario No.1) utilizing the system as
currently designed and in for plan check an the two other scenarios as
requested. Therefore, the three scenarios being presented in this submittal are
as follows:
Scenario No.1. Test the storm drain system as designed and submitted to
the City of Fontana for plan check to determine if the removal of the detention
basin caused the storm drain system in Tract 16678 to perform at a lower water
surface elevation or at a higher water surface elevation i.e. For better or worse.
Scenario No.2. Estimate the hydrologic discharge of the tributary watershed
(to the north and east of tract 16678) area in the current land development
condition and convey that drainage through the currently designed upstream
ultimate storm drain system to the intersection of Santa Ana Boulevard and
2191 5th Street, Suite 200
Norco, CA 92860-1967
(951)736-2040
FAX: (951) 736-5292
Cypress Avenue. At that intersection, add the full ultimate condtion design
discharge (no detention) from Tract 16678 and convey the combined discharge
into the interim storm system in Cypress Avenue. Determine if the interim storm
drain system could handle the increased drainage and, if not, estimate. the size of
pipe that would be required to convey the drainage down Cypress Street to the
Jurupa Box Culvert.
Scenario No. 3. Same scenario as No.2 except the estimate of hydrologic
discharge for the upstream area is to be based on the ultimate land development
of the tributary watershed.
In providing the responses to these scenarios, Hermann Hovagimyan with Hall
and Foreman was consulted. Based on our discussions and a review of the
previous City Reports for the master plan of Drainage, the following responses
are provided for each scenario.
Response to Scenario No.1 CBA's "Hydraulic Report for Tract Map No.
16678 Interim Condition Line "DZ -4A" in the City of Fontana demonstrates that if
the detention basin is removed and the storm flows are allowed to flow directly
into the interim storm drain system as designed, the catch basin (No.11) at the
highest elevation in the tract will operate in a design storm with a water surface
under the street at a little over 1.5 feet lower than if the detention basin were to
remain . This Report is included as Appendix "A".
Response to Scenario No. 2 The estimated hydrologic discharge from the
existing land use for the tributary watershed north and east of Tract 16678 (DZ -5
and 6) to the intersection of Santa Ana and Cypress is approximately 215 CFS.
When combined with the ultimate discharge (115 cfs) from Tract 16678,
assuming no lag time factor, the combined discharge is 330 cfs. The pipe
required in Cypress to convey that flow from said intersection to the Jurupa Box
Culvert is approximately 72" in diameter.
Response to Scenario No. 3 The hydrologic discharge as a result of the
ultimate land use for the tributary watershed north and east of Tract 16678 (DZ -5
and 6) to the intersection of Santa Ana and Cypress including Tract 16678 is
taken directly from the Master Plan of drainage and is 410 CFS. The pipe
required in Cypress to convey that flow from said intersection to the Jurupa Box
Culvert is approximately 84" in diameter.
Analysis:
Hydraulic Gradeline: In Scenario 1, the water surface control for the interim
storm drain analysis was taken at the soffitt of the 48" pipe where it joined the
box culvert at Jurupa Avenue. This assured there would be no hydraulic
gradeline problems for the box culvert in Jurupa. In the case of scenario' 2 and
3, with over doubling the discharge for this interim storm drain system in
2191 5th Street, Suite 200
Norco, CA 92860-1967,
(951)736-2040
FAX: (951) 736-5292
Cypress, the hydraulic Gradeline for the Jurupa Box Culvert will cause the
drainage to overflow on the Jurupa street pavement and cause overflow
conditions for other drainage systems tributary to the Jurupa Box Culvert which
would be infoluenced by the increased inflow from the Cypress Storm drainage.
Cover of Pipe: In all 3 Scenarios, it appears the cover of the pipe could be held
at 3 feet below street grade.
Utility Issues: The Cypress street storm drain, as currently designed fits
between an existing 30" sewer line and a water line. The increase in diameter
size of the storm drain may cause potential conflicts between these two existing
utilities as the corridor between the sewer and water line is approximately 12'
wide, centerline to centerline.
Storm Drainage goals: The City of Fontana's Master Plan of Drainage appears
to be well founded with the construction of the Ultimate storm drain west of
Cypress and discharging directly into the Declez channel. Even in the scenario
would removing the ultimate drainage from the north and east sides of Tract
16678, there would still need to be a drainage system designed and constructed
(albeit smaller) pick up the discharges from DZ -7 drainage area to the west of
tract 16678.
Appendix Information: To assist your review of these two additional scenarios
1. Appendix "B" includes a study of the City's Developed Condition
Hydrology for the DZ -5 and DZ -6 drainage areas revised to project the
existing land use condition. Included with this appendix is an graphical
exhibit depicting the information on the ground.
2. Appendix "C" includes the information from the City's existing master
plan hydrology for the Developed condition of the DZ -5 and DZ -6
drainage areas. Included with this appendix is a graphical exhibit
depicting the information from the report as it lays out on the ground
3. Appendix "D" provides a preliminary catch basin analysis to capture
the water into the ultimate storm drain system
In Conclusion, it recommended the City of Fontana move forward with the storm
drainage system as they have worked with our Client to design (Interim and
ultimate off-site systems) and construct only the interim system in Cypress.
Based on the studies, utilizing this system, it is recommended the detention basin
for Tract 16678 and its attendant maintenance issues be eliminated and the
design of the tract improvements include a direct storm drain linkage from the
tract to the interim storm drain system in Cypress Avenue.
If you have any questions, please do not hesitate to call.
Very truly yours;
2191 5th Street, Suite 200
Norco, CA 92860-1967
(951)736-2040
FAX: (951) 736-5292
CROUSE/BEERS & ASSOCIATES, INC.
AD WN.Crouse, PE
President
Attachments: Appendix "A"
Appendix "B"
Appendix "C"
Appendix "D"
2191 5th Street, Suite 200
Norco, CA 92860-1967
(951)736-2040
FAX: (951) 736-5292
a
lv
m
z
V
x
D
D
m
v
HYDRAULIC REPORT
FOR
TRACT MAP NO. 16678
INTERIM CONDITION LINE "DZ -4A"
IN THE CITY. OF FONTANA
Prepared for:
BRISTLECONE INVESTMENTS, LLC.
19 CORPORATE PLAZA, STE. 210
NEWPORT BEACH, CA 92660
Prepared by:
CROUSE/BEERS AND ASSOCIATES
2191 5T" -'STREET SUITE 200
NORCO, CA 92860
Prepared under the supervision of. -
DOUGLAS N. CROUSE
R. C.E. # 23 796
January 11, 2005
TABLE OF CONTENTS
DISCUSSION
1
FIGURE 1 — Master Storm Drain System Exhibit 3
APPENDIX
• Hydraulic Calculations (WSPG) for Line DZ -4A
• Hydraulic Calculations (WSPG):for Ultimate Condition Storm Drain line "B"
• Hydraulic Calculations (WSPG) for On -Site Storm Drain line "C"
• Hydraulic Calculations (WSPG) for On -Site Storm Drain Lateral "C-1", catch
basin no. 3
n
N Al _ I I {N�1 ,
_— -. ---- N _1f _ �'*
—_—_—
_
_ fi. 1 1 O O 1 V i W V V II ' O -' O I I
_ - -' 1 N I , i I II _ J
I. IIAi I 1a ! u
_ _ L—_ _-,-OLEANDER_ _ AVENUE _ _
--- I---� U�---1------------J---- ----- ---1--------- I� I
------
SHEET
-----
II g SHEET 2 g g I SHEET 31 I SHEET 14 1= N
T � q7* i � � ID
�Id
> I �
D
m I z35-OIhIJ I ^p'
I I i
\aI I.1
1 m
I T -- D'- T —_
O ' I t to I
Z xss-oe7-12 I
c: --l-1.
m---_ I n w
255-Ost-q 1 o o o I y I I C I TRACT N0. 8788
< a s I (
-M I N o M8 119/71-72-
T
I m m T! SHEET - 9i SHEET 110 i
I J
� N N
I Ili 255-061-27 23S-o5h26 ' 255-091-25
I l' I ! CYPRESS 'AVENUE e i i b I CYPRESS AVENUE
' I II yQi' ' I O w.. N —'N to
to ._ N., N N �, N�' i --.1_—i —f j— i _i _ �/. _"-1; _—f_—r ��• I• _'— -i •-_�J_.. _.
Ul 1
A . I 3 I I O p I O O= O I
M n " ;1 7 i T _� 2 is $_ is ,� AP
N~ I I � a b t o I I N m 1 1 IT7 I ( I
u Z ,- --.� I u i .. m I I p e ; m -I I a I I-- -PENN _ Ii o
s$�n 1 I -- -- -- -- --i I w IY - - N - u w u
T Ed
C) 1
255-031-003
r
- O
a " -
TRO
P255-037-004�EYw
o Ii
I --J ! \\ _SSR - I 255-031-005
CQU
�1 i
--- - - m - J - _ s. I - D i / F 9C �� .!� r-- I - 255-031-006
I I I I 1 \ C� T- 44 7 I I 255-031-025 m
N o m i I - I SA�FRb IS E 1 �� ITR HETI ) __ P.M. NO `7zo m
{� I m }
V� n;a rn Z V : _-�•---- i I-- - �� •��. _.L_ PMB 24/33
O to
00 .i7 m I II -yl �� ` I 255-031-025
"� > - � n ;� I - II , 161 ,C1J, I ' � ! PARCEL 2
Z Z 0 0 $ I I I I I I �� I 1 i' ��� -! I 1 I I 17 �. P PM0 24720
�� Z mr117 , I ---t--F-� L` 3
m �0n`-t"IcnOc--
I
•N uNi N m
i
�DXm OZ U ��° a p-° I I' / I I I 1 1 I I I 1 ��� 0 0 0 N 0 0 0
Dn ;0 Mm m w v� I� / I I 1 I I I I I I 1 a ;s 0' 6; A u
v�� _-1___
D -`=z - - - _ _I _ I I SHEET
T 18 I JUNIPER I MINo. 11 5n RB00 757/t2.13 I 255-041-001
— -
I,NO.
,19ia?
DISCUSSION
PURPOSE
The purpose of this report is to determine the possibility of removing the proposed detention
basin located on Tract no. 16678.
Based on the Hall & Foreman Report there is a need for a 48" storm drain line that will connect
at the intersection of Jurupa Avenue and Cypress Avenue to the existing box culvert which is
part of the Declez channel system, from there the storm drain line will run northbound along
Cypress Avenue approximately 2,000 feet.
Crouse/Beers and Associates has determined that Tract no. 166Ws storm drain system could
connect to the said master storm drain system which would be determined as an Interim
Condition storm drain system until the master storm drain system is fully functional.
CBA has performed hydraulic calculations (WSPG) on the Interim Condition without the use of
the proposed detention basin and has determined that the full 2, 5, 10, 25 and 100 year flow rates
could be conveyed through the Interim Condition storm drain system.
At this time CBA has only provided the 100 year storm frequency calculations Interim
Condition Storm Drain Line DZ -4A, Ultimate Condition Storm Drain line "B", On -Site Storm
Drain Line "C", On -Site Storm Drain Lateral C-1 (catch basin no. 3) for your reference.
The Interim Condition Storm Drain plans have not been resubmitted to the plan checker pending
the recommendations of the City of Fontana.
VT 11
• f'�, --Ej 9
4
•f -I+' _-.rl .. 1 ll'r 1 • - _ II - I=1 Is
.� F` ,,, =r_�_ ,r r •�i -_ _ '��-`u+��I' - .-- � .� _In�+ Iii __ + .ti '_•J _ �- •�I
16 d
I
I
r- _ r _' •' — _ __ - - r __ - - '' 16 - 1'�I V
J tl r _•s tl� . 11.E — ti — ,A
rr_i ra�rf 1� 9,x-6.- ••�rr•,,i■■777 _� - •.1q�r1•-;} }11 �r T.•, rr �IL
pr '16
r ;��—
Z
0
J
N
N
H
v
S °
C
O
U
z
Z
0
N
H
v
O
O
U
H
a
z
1
0
'
w
H
a
z
H
C7
H
Q
a
N
y
W
r
a
Fr
y
�
[x]
E
U
H
O
V)
-
a
w
w
j
o
-
co
�
r
w
ID
Io
a
a
v
1
�
F
Cd
�
w
K4
r
tC
F
v
o
O
I
E
�
3
i
to
Cn
.y
y
ti
z
Z
O
1
J
Gl
U
z
z
Q
Q
W
rSi
til
a
=
w
r
a
_LD
•
H
F
U)
M
H
a
s•
O
N
H
[L
•
W
•--t
G
�
i
a
w
z a
.n -n 2
H G
�
� U
I
�
I
a
L.
a
I
rti
N
N
W
L
U
v
W H
C
G1 0
m
N
3
4:
3
0LnoLnLn
Z GF]
H
H
S O
C
W
i
H
a
0
11
> 3
4
0
O H
2 LL
W
3
iJ e+
i
N
�"
U O
W
a• N m CT 10
tv en c LnkD
go
A
jEH+
L) L)
UU L)UUU
J
1
IN
O
• iZ
EW
�O
a
x
x
o
Ln
2
Z
E- o
a 0
y o
z0
zo
z
Q
�
�
wo
wo
E O
a 0
E O
-• O
O
a0
o
:rp
4o
�
cno
0o
rno
P O
O O
0 0
Q O
Im O
O O
QCC..i
a
x
x
o
Ln
2
Z
Z
F O
a 0
E O
a 0
E O
-• O
O
a0
O
U 0
^ ,�
C9 o
x o
C7 O
= o
z
a
a
z
a
Q
W O
M O
W O
MCD
W O
M O
a o
o
a o
o
a o
0
zQ0
wLo
zo
ao
zo
�o
n
Q
n.
W O
0 0
Cw N
I lD
co O
M 0
eW O
1 0
to O
0 0
7• O
NE.
K,
I Cl
D o
C
q o
a o
O o
tt o
Z
z
z
H
H
H
M N
M O
M O
1 l0
1 0
1 O
W
ao
Nw�
W
> CD
>
H
z
H
H
0
0
0
0
0
O
O
O
o 0 0
M M O
� � M
d
J C M M M C M M
N .-� .i '-1 -4 r.i
H ,^ O Z O 2 0 Z O Z O z O Z O `J... O z 0 Z O
t o 0 0 0 0 0 0 0 0 0
w
a a !i c No No
1 a C -4
a
N U H H
I 1 0 0
o N y F" N F E
* * * * * + * * * * a
W F F F E E
G] Wt�O U� L) U W Um E
F E F
W� W� f,W wC1• W a 14 Wv Co
W-W W c
I
O W N co cn U] U) U) O W U)
* * *
i .Wl � �� EN FO HO EO EM EN -K
-W * E -m * Erl
oG
co 0. c a 1n a to cx Io a o 0 o C vi a ko
H w W W WW
L•' > c > a 7 c W W W W W
1 •`" .--1 Z .-/ Z "'� +.+ .-I Z •-1 Z N z N Z N z N z N Z N
O H O H O H O H O N O
4, O ko O M p Co O O�• O N O oo O ko O N O M O rn
Ci H M H C F-1 r H L9 H r-1 H C H -W H N F+ M H N H N
W Qrn � Fr r. -.r Eco Foo p - M
Qrn sCrn Qrn Qa% Vic, �0 90 Ego Ego
C w
co m E. W F E F •-+ E-4
w a w Lo co co
Q o
s o a Q a Q Q �_ Q - Q Q
E.~nF.0
c cc
Er., F. oa
E �; ,• Z LO 9a .:.^..
>^ J� tQ�� tr CA
� Gln `Lo u
L7 C'.D 1%C FO 5O Cp � O C �� -7 `. ti�
C p
Q Q Q Q Q Q Q Q Q Q Q
H 1Oa V; In C7 to C^ C7 U., L7 LO
O O °z _0 0 o c c_ _o _c O
W W U til ' w Z
W W W G] 6£,. "I E W Q c F..
� a a a w a
W W W W Ica W C] W W
I
I
zz z0 zo
0
1 2 Ho cra Ho oFQ'O CF
p wo O O �o
w a0 HO a0 O .o O a0
J a C) a0 LD CD mo C90 xo t7o
f-4
zo ao
a z w
* *
w o m o W O m e w o * m o
40 o a o o a o W O m o W o m o
Z -H.• C, . H . Ur H O a 0 O a 0 O
. FC o W O FCO aw 0 O W O �Z O W O p w p
cl)O •'•o
D 5 o�ocnzo o
QR 0 00 I Do OO
c. FD O o I o
P'Oa o
1 z y > j
H H H z z
* x * H H
m 0 m 0 m 0 x
I O I O I p M O Cl)
O
F. E H I o I o
3 0 � p w 0 w o W O
H Fz1 z
H H z
OH
O O �
OO
O
c D 17 O O o
I a a a �' oa
l
* x � O ; O O
O p o
m m o 0
d a a a MO'
z o
2 0 z O z O z O Z O •+, p Z p z 0 z 0,..,
s y p O O O C7 O O C; Z GO
~
N N
a a I O I O C% O N N
N im < H F I O I O
CY «a7 E"
a x x a x a a a
1 O I O
O W E4 a E.O E O 1 O
* * a x *
1 a
U m C• o U o U o H F E.. E., E F
w Wa Wcr we' Wa Wa We GU]c
co uc Utp Uc
I � W Cn N Cn to W Q' m Ln
* * * x x
WN W m W r Ga]t: �� x Galt` x CN x aN w
* Cx aw
�m > NC', ,O 'p 'N 'N w W w W
O z N z m ,'L 5 'a v
a Ho Ho Ho `m `� M zC� F m z > r
H O H O N O N O H O H O H O
•-� .-a .r H
U x m x m m
2 zCT� x zr x zN x y0 * 2Cn r. 20 x zm ZCD * M
a �c OCT Ove OO Ow ON Qw
N H N H N H m O N O r O m
O F (T r' ch E. N F N F LO H m H N H m H Ln H N
to 4 rS o < .-I a .•a Q .•-i � vi F co Foo Er in F u'f
W w (n in m co N "` E � �-C F -4E
to
d
3
r O E E Q E x ' Q 0 a
J Up ...p FA :zQ Fo "•4 tip _ Q
L U Cj D p
C: 7 \ V) zCO < [n C:
L7 L� Q
m C1 u-) co
O O Q
z z o o Q
s w W W V 2 Z 2
T4
W w C�j W £ E s E
Ea w w w a a a w a
w W W w
i
z
0
z
CD
Z�
L)
°Q
a
+ +
w o
z z
0
11 II
�
J D
�o
as
P o
H
W w
O O
y W
7
> O O 5
W o -4 F
[aao OF
W o O
i N H
z
00
N N
F F
a Q
W
as
w w
F E-
2 z zz
H N
m Cf)
as
aQ
00
as
W W
as
00
z
F H
W co
U)ri)
41a a
L a z m m
Cu% z H H
z z z
F�n C7 > >
m
zmazz
No00o
•"� z N N
to
_ F F
z O N > >
U) ° o o w
Y FLnN
a Q N F W w
O F Q U U
acn 5Ew
a aaa
s Q c co con
E' U
.'moo= W 33
L} 0 x N
H Z
W N C
m z
N
O zz°�
z aC9uai
z
W W 3 O
LO 0* a
z* w
+
a
a
#
o
0
0
0
0
0
0
0
0
0
0
0
0
0
w
*
0
0
0
o
c
O
>
a
4:o
0
0
0
0
0
0
0
0
0
0
0w
o
0
0
0
0
0
0
0
0
0
0
a
#
#
o
0
o
0
d
o
0
0
o
Cl
o
0
o
d
o
0
0
0
0
0
0
0
0
0
0
0
o
O
o
0
0
0
0
0
0
0
0
0
0
0
0
0
#
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
k
\ O
0
0
0
0
0
o
0
O
0
p
0
0
00
f
W z
< C]
k
*
o
o
O
o
O
.i. O
o
p
O
O
O
O
o
O
O
in H
k
k
1
i
\
x
k
O
to
O
to
O
to
O
to
O
O
O
O
O
O
O
Cl
p
•
F a
C9 H
.'i. 0
#
#
#
N
lCl
to
IA
V'
er
O
v�
O
vt
O
Q
o
Q•
0
.
Q
k
E x
41 x
W k
to
W
OD
O
O
O
O
o
C
O
OQ*
m
N
N
M
m
M
M
m
j H
N
m
In
#
H
cl
2 +
• O
V
4
U x
k
k
rn
c
m
Ol
rn
In
O
N
to
to
to
to
to
F of
x
Q
O
o
o
m
O
m
O
M
O
m
O
m
O
m
O
m
M
M
M
M
W
U
#
E
#
• C7 H
W>
#
O
p
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
F
C/) N
W
*
#
O
O
O
O
O
O
O
O
O
O
p
H
#
a
t
Q
N
ul
co
r
C
to
N
W
a
O
Ln0)
c
N
N
R
O
m
o
m
r
OD
�D
0
kO
v
-1
N
v
V'
M
00
r
rn
N
in
.--1
MV'
�-I
rf1
OD
11 a H
F -t '•�
04 W
W
fs x
�" #
M
O
M
O
v'
O
l!'1
O
tt4
OlD
Q
tp
N
O
O
h
N
OIn
N
r
O
m
r
1-4
v
O
H
W D:
•F
O
O
O
NO
N
N
N
N
O
r
N
O
.•t C.
LD
O
p
14
W#
41
6l
to
O
O
v'
N
N
M
v'
O
to
-W
v
N00
v'
N
N
h
0)
O
00
N
O
O
to
r
c
vW
O
N
ti
v'
Q
to
N
M
M
M
N
O
w
r
m
Ln
O
M
0D
O
61
l0
O
6l
.-i
N
O
h
to
N
trl
r
r
N>
x
*
r
C
r
-Wau
In
Ol
to
OD
c
h
to
!n cn
cn
O
O
O
O
m
O
M
O
t0
m
to
N
try
N
v'
cVO
G' W
#
k
O
O
O
O
•
W F
E H N
..a
s
#
rn
co
m
o
v'
c
to
M
M
O
N
m
N
o
cn ca
LEI
en
>
*
••y
N
N
N
M
N
v
N
N
.--1
O
Ql
h
N
N
N
N
N
.-•I
r
m
r
#
to
to
ca
to
to
to
to
o
ID
t0 to
Ol
#
x
NO
N
N
O
O
.
O
O
O
Ccli
o
N
N
N
N
N
^N+,
#
E S U,
#
ry .:
#
w
Ol
m
N
c
r
N
u7
1-1
LO
h
UI W L• O
F
O W
#
m
Ol
.-a
I!')
N
to
a
Q
t0
0D
v
O
H
til
F C 1
a
#
L
to
0
OD
co
m
I~ z
#
O
O
OO
p
O
O
O
N
04
N
cli
N
E L-]
#
~
O
~
O
C)
#
C0 O O a
g
k
'r
Ln
¢�
No
M
a'
m
m
N
N
h
Ln
s
o
0
h
to
N
N
N
E
>
#
,�
o
v.
h
c
M
-a"%
c
m
N
CD
r
O
to
v:
lil
.�
N
N
Q
M
c
M
C
M
W W
> a
x
O#
-,
re
c
Cl
p
O
m
O
Ol
m
m
Ln
m
O
m
0
co r
z W
rn x
v
a
e
o
o
t°
'•`
h
o
o
CJ
0
.-,
o,
0
-
o
0
0
L
H
#
O
O
O
O
N
.-1
0
-i
.-1
o
.--t
.-t
r
r
,-1
,-t
•%
N
y
.y
0
N
y
•-� ii
r
k
o
o
o
0
Q
~
o
o
Q
o
0
0
o J
J
?
k
to
dl
C
v'
N
Ol
00
h
MM
r
F
l0
ON
r
O
hm
O
r
i
O
C�zi
w
N
o
O
0
N
o
to
to
ca
to
to
M
a
r
,
O
to
r
1
p
r
u
t0
to
N
m
o
r
0D
�o
c
c
Cl
C
m
F
w •#k
Ohl
h
O1
h
r
m
r`
r Ch
m
m
'-1
N
m
U)
a#
61
m
9
o)
cn
m
co
w
m
m
a
#
H
N
0
0
0
0
0
0
0
0
0
0
w
*
0
0
0
0
0
0
0
0
0
0
0
D+
Z H
#
O
O
O
O
O
O
O
O
O
O
O
D,
#
*
*
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
p
p
N
N #
#
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
p
#
z
O
O
O
O
O
O
W *
O
O
O
Oen
O
Q D
#
O
O
O
O
O
,.. O
O
O
O
O
O
#
#
O
O
O
O
O
O
O
O
O
F Q
#
O
O
O
x D
#
a
a
�•
a
a
�•
�•
a
�„
*
m#
�
E *
'
a*
w #
0
r
0
r
o
o
CD
CDo
0
OD*
M
M
M
M
ro
M
M
ro
M
M
M
o
F
r
r
r
-4
H
O #
D
z*
z
a
#
OU
U O
+
O
O
o
p
�
O
0
U7
N
N
.•-1
�"-•
F a
M
M
M
M
M
M
o
M
0
M
0
M
0
M
M
N
1-4
c.
k
H
c7
Cx
w D
#
O
o
O
O
o
O
0
O
0
O
O
O
O
O
1I
W
#
0
0
0
H -W
F 1
"'"')' a
m W
*
k
O
O
O
O
O
O
O
O
O
O
O
W N
H D
k
k
• W
k
N
tD
m
m
u)
M
M
m
to
N
M
m
N
r
M
o
u)
LO
N
H
a W
*
U7
O
N
O
to
O
w
O
to
O
-4
r
'-1
N
'•1
M
O
M
O
M
t!1
M
a'
a
k+
O
r
O
H •.�
W
O#
r
O
r
fl-
Or
O
r
O
O
O
�1�4
W
4,
0
N
N
o
N
o
N
0
N
r
No
M
0
*
0
OwH
O
O)
on
rr
U
D
#
^,� #
O
M
m
r
.-•1
01
l0
U'1
-4
m
M
U)
m
•a
r
C`
lD
to
1
Q*
N
M
M
M
N
m
O
r
v
v
N
U')
O
m
r
M
O
r
m
O
r-1
M
.-,
N
,-,
m
in
t0
W a
W W
N
Ll
M
N
r
m
M
tD
o
7
O
N
O
O
M
m
r
N
M
*
a
�
M
.-1
M
.•i
M
.N-�
H
N
O
0)
m
r
O F
Cn
O
O
O
r
O
N
O
N
O
N
O
1•1
O
r
O
V) m
#
O
O
O
p
p
'
W
m
m
ID
CV
Q V) w
w
k
�•
'�
U'1
m
M
m
r
$ 1 Z
7
k
t0
N
LO
c•
M
M
N
r
,y
o a
#
r
#
' m
k
lC
to
D
t°
tD
to
to
t0
to
to
t0
w#
w Cn
d
w
ro
o
0
0
Ny
0
N
0
0
0C;
0
c
•-+ W
k
'y
ti
.hy
N
N
N
N
>4
O El N
k
#
Z n
#
F�u)
k
I U C O
k
(n
O
N
t0
Q
Wm
N
N
M
m
U•)
r
N
O
m
r
r
Ln
Q •--1
3 W
#
N
N
N
N
N
'h
to
O
O
0
p
N
O
C
C
N0
N0
O
W
k
.•1
r
r --I
M
r
r
Q L •-. D
'-• O
k
N
tD
O
N
1
s
*
M
N
N
M
C
CN
U)
cliO
ti
ID
c
C
1)")
r
G
r
M
O
}1
D 4
#
N
N
n
N
N
N
N
N
M
M
c
�
O
k
#
.L
O
#
#
o
m
m
1�C
d
W
Q
N
M
M
p
001
o
'h-1
o
G
c
n
UNi
b
V)
W
'D
tNo
tMD
O
o
N
p
N
o
[y
0
N
0
LnCN
H
O
O
N
r
N
r
14O
r
N
O
N
+i
O
o
O
O
HO
O
O
O
OI
-q O
^
�.
OO
O
O
k
O
r
O
e
O
•
Ln
4
u•)
M
p
C.
01
r
N
�t
M
co
r
p.
N
`
O
e" x
.
M
^J
F
a y
r
CV
M
O
M
N
M
M
N
10
M
.-1
r
M
r
0)
O
O
r
O
r
O
N
V)
m
m
F
\#
m
m
m
q
m
oo
m
cc
j
u)
a k
m
m
D)
m
m
co
o
m
U
m
m
c
=
h
Oo
O
O
O
C
O
O
O
O
O
O
O
O
O
Rl
y
O
O
O
O
p
O
O
W
>
*
O
O
O
C
O
O
O
O
O
O
O
�
a
*
Z M
1
O
O
C
O
O
O
O
O
O
p
p
a
«
-
.�
*
a*
O
0
O
0
O
0
O
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
0
N
N i
0
0
p
o
0
p
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
0
0
0
0
*
W z
t
o
0
00
0
0
0
0
0
o
o0
0
0
0
OO
In
4,
o
0
0
0
Cl
0
0
0
0
0
0
❑ N
*
it
*
r
*
*
O
O
O
O
O
O
OO
o
O
O
O
O
O
O
O
x ❑
•K
a
d'
a
C
cT
C
O
a'
O
C
O
V'
O
v�
O
p.
*
x*
E *
•
a*
W *
O
m
O
❑ *
O
�7
fT
Ln
N
0
E
hf
O
z
2*
a
U
U x
is
m
M
m
r~j
m
'-!
•..!
•-a
,--f
.-i
£
E E. a
*
N
N
N
N
N
N
M
N
M
N
M
N
frf
N
M
N
a
a❑
k
m
M
m
M
m
m
m
m
M
M
m
W
U
F
Z
*
H
JU
W>
*
*
O
O
ClO
O
CD
O
O
O
O
O
O
O
2 a
a W
*
C
O
O
O
O
p
H+
rn N
p
o
0
0
0C;
0
0
0
0
0
H ❑
Y.
1 .7 w
>
*
W
r
v
l0
r.
fn
N
m
v
M
m
m
r
r
c
rb
o
In
rn
tD
0
La z
.a 1-q
a W
Ga i
01
O
O
00
r-1
O
N
W
.�
O
.-f
N
fp
O
cr
O
M
.•i
ao
O
O
m
O
O
r
IT
a
f•"f r.a
W
O i
Oz
H
.--i
M
O
M
.--I
tf1
O
N
e-i
r
O
r
rf
Ql
0
01
co
Ol
O
W a
k
(nO
O
O
m
O
M
O
M
M
M
M
M
m
.i
O
V�
O
O
O
O
O
O
O
O
W O
U
❑
*
Wcn 41(n
N
rl
In
N
to
N
N
,f1
.--I
N
N
,1'1
.--�
N
FC
01
N
O
0)
N
l0
Ot
W
m
0�
1D
01
0)
O
cn
%D
01
O
0)
to
01
co
s-I
0)
to
to
s-4
01
N
00Wh�.l
*
N
m
N
M
N
m
N
M
N
M
N
m
N
M
N
M
N
M
5 F
> x
r
o
o
.{
o
.-4
o
'-f
o
r
o
s4
o
H
o
�
o
o
o
EO m
cn:
*
0
0
0
0
0
0
0
0
0
,
0
f
0
W E
j E h-f N.N-1
N
N
N
N
N
N
N
N
N
3 W N
>
r
rn
rn
rn
rn
rn
m
o�
m
rn
rn
rn
F
0
o a
*
d
*
OD £
r
ko
w
ID
W
0
IDID CO
a m
i
U C. o
f
a
*
,n
O
,n
N
O
N
kD
r
v
n
!`
rD
OL O
cW
°`
D
co
o
N
rn
O
o
C
W
N
r
^
r
Q,
N
*
Ol
C)M
,--i
m
r
r
rn
m
m
O
o
0
0
c^. O o 4
3
n
co
Q
c
N
�'�
'n
"
'n
��
N
,n
O
s
G>
*
O
O
LO
N
Oi
L7
kD
-f
N
r
Oto
A
mo
toN
c'
N
r
N
r
r
lC
l4
N
a
O
NO
O
ON
NO
O
NO
O
NO
O
NO
O
r0'o
O
10+
O
rrl..
p
M
0
m
O
O
..+
.--f
...
0
O
.-.
~
O
~
O
O
O
0
O
O
O
1
O
`+
O
O I
,00 n
PG
rn
r"i
co
'-;
M
a
M
O
Ni
O
,n
C
to
C•
01
r
a i
}
O
£*
,p
M
M
F
07
O
p
r
F
N
co
O
'c=
,fl
M
OC
F
W -
�
cli
E.
N
.-1
MtO
D,
to
M
C�
O
N
lD
fS
W*
m
U
m
N
�D
U
�D
N
q1 cli
E
N
cn
m
On
E:
0
2
o
p
o
Z
in
N
~
*
t7
I-qL,
.D
.y
.--[
h
h
In
ti
N
a
Oo
0
m
*
CD
0
W
�
+
o
c
o
0
o
a
zH
*
o
0
o
O
a
+
00
O
0
O
0
O
0
O
0
O
0
N
N +
t.
O
O
O
O
O
O
O
\ O
+
+
0
O
CD
O
O
O
O
O
Y
V
d C
*
;.
O
O
O
O
cc N
{
\
k
�e
O
O
O
O
O
tin
O
i!7
*
x«
E�
A*
O
rn
rn
O
+
O «
Q
z*
a
U
U x
*
M
M
to
1 E
I -•I E
E a
.k
N
N
N
a
H W
a Q
*
M
M
M
M
F
a
41
0
0
0
0
z 4
Cu W
' E I
Ea N
fn w
i
O
O
O
O
N Q
a
*
O
P
OD
O
a N
a W
Ts. •k
m
M
M
Om
N
In
aw
i••I .a
W
x t
o
P
In
O
1f]
0
tf1
Ln 0 2
w M
+
o
c
0
0
0
a 1-4c�
*
.�
*
W A
U
Q
*
m
ko
CA
%
O
T
o
M
N
1D
co
M
a0
z0
a x;.-1
%D
O
O
O
O
In En*
O
O
*
a w
E4E.N
E i -a N
N
r
'y
cri
.-a
N
N
[+� H
7
+
+
rn
rn
r
r
W
s o a
i r
ko
�
*
a
ko
O14 O
a
O 2 >
*
U C O
ko
�
OCD
�n
*
o
o
c
o
El
+`. O
*
0)
M
N
c
M
P
M
l0
a w
+
P
c,
kc
to
ko
0
a
*
N
m
�o
c
ko
ko
In
w
W W
n
W
&+
M
O
M
o
O
r
N
m
N
+
O
O
M
O
O
M
O
f
*
*
i
r
O
£
M
Ln
M
'•'
M
P
•
m
E
q
Lnw `y
U
`N
P
�
u�
\+
w
h
aaaraaaxaaaaxxaaaxxa�aha�a ha �a 7a ha
W W
3 3
W W
Z S
3
W
' w x
S 3 c v
W W
xx
W W
U
W U U
3 3 U U
x
x
W U U H H
W W W W W W W W W W W W W W
W x
W x x x X x H H
W
W x x x U U U S x x u
x x U u 3 3 3 3 H H
W
W x U 3 3
x U
3 H H R H
H H
x U 3 H H
U 3 H
x H ~
x Z U 3 N
x x x U 3 H
H
3 H
iJUU 3 H
U
�-a
V
3 3 3 3
H
H H H
h m C M N O m m w 0 C M N O 01 r l0 to M N H 01 m h to C m .N O tl1 m w 0 C f�
tAMrr 01r u1N Om tOCN Om til M. --i tT r- 'n mw CNOgtOM N'�OmrtD CMNOCTgrtoCM -v O61F t0 tf
. ^ tRM:--iT tOCNOmlO C. --101r t.7 M.-16tr �iV Om
m to v' NHOmmtDw CkD 0O-4,nmmMN.-1�m'� mt.7MN.-Y Om r tD U! C N. O C1 m W U1 C M. -i O 65 m r171C MNi-4m
M r .y lA a1 M t0 O V' m N t0 O C r H to Ol M r .ti In m N l0 O C m N t0 o M r N 1P1 m M r N C m N O C m N Ul m M r .-+ 111 m M w
rrM %MO% 71000x-1. OOC)C>000 t110 Ln t0 torr hm m 010%m 000.--1.-+NNNMr) r L)ul 111%0 1pr hhmm
01 a1 O7 5010101 0 0 0 0 0 000 0 0 00 0 00 0 0000 00 0 0 0 0.-t.-�,-,,y ,y ,H ,_., ,.a ..... .... ..... ..{,y „•, ,,.., ko N.••1N r-1 �-t
H .-1 e-1 .y r -t .-1 H e� •y r -S e -t .--f .H .--1 1-4 .-t -41-4 '-1 .•i r•1 1-1 e-1 rd .-1 ry .-t .-! 11 .H .-{ .N r-1 .-I .--t H N .••t .--f .--1 e -I 1•1 1 l H .--1 ry e-1 1-1 .�
X
ha
H H
i. . . . . . . . . . . . . . . .
N�i c CD rLn M N .^1. O, q lO Ln a. N N
'D - N G^r-,n M. --'O, r LoNOq lO CNO
4 r 1O - M N '-! O O r• l0 Ln c N .-i O m q
LO 01 N 1O
C O ti .-i .--� N N N M f+, v'• %P c+ to Ln
N
tf 1
Ln
0
.y
c
N
r
O
m
M
O
.-i
O
O,
O1
N
O
.-1
in
q
q
N
0
a
E-
x x
w
O
w
F
O
a
w
w
m
F
O
z
P.
25
d
O H D
H
E-
-w (4 ~
O:cx
_ o
�Lzow
O w 2 H w p q
F F w a
> W< U O C: p
W O L. < O F< a
a ao-,Z i
zc
waa0
>+W HwUw>OAM
a>F N W w N a z
J a z a w z o 4 o
,�HU3�wC?2:��
O
z N
ti
k -� �+ , "ti
, It
• ti L J F7,
R't.. ri iy--'ti•I�_ ISI. r,' �ti�� -• r?;.uyll •�I i��'� rI
_ •! ,'i u Z
• i- y
r .
- _ - -
�� •C,rIF_,- F. tiro ti•.�-T{�+•� r �
ti" �1� 7��'fi'i'�-'moi { �F�
r•r •ti ti. -ti J r4ti.L r7 Its"
i
2
O
N
E
N
0
Z
U
N
x
W
`
H
1
N
pq
E
a
�
W
to
N
z
V)
E-
HO
0
W
a
'
w
T�
'
H
G,
O
H
z
z
w
�
o
H
w
�
o
3
I
O
w
j
w
o
x
x
�
H
>.
'
U
x
o
�
�
O
E
H
1
I
N
M
s^O
O
I
O
W
T
a
N
z
z
N
�
Q
�
O
a
W
z
m
w
m
m
r
1
�
l
�
J
a
z
•
N
G
'
H
N
F
�
H
L•7
.-r
0
r
W
a�
a
u1 '•
H q
o U
W
i
I
I
N
W
�
a
W
O
ac
a
•
a
N
I
W
U
W
W F
A
4
cn
a13
I
�
E E
o tn o m
3
x W
H �
N !n •7' P
I
� �
I
x
w
H ^y"
124 E -
I
�
>
I
O z
W
O H
Z 4+
W
U F
N
U O
P N C m
W$
v P P n
�
rn
F �
a a
0U(�U
V F
v0
z
=
nl
p
Z
O
Z
... O
_
N
S
S
-.
Z
w o
oa
W o
o c
134 CD
p
•
w
O
O
oFno.o
ao
F:C
z
z
y
0
O
o
o
a
Z
<
a
14o
�o
#
�o
ao
"'o
0
w
wo
o
p
c•
H.
o
o
a�
R
w o
cC
am
�p
Zz o
�ZN
v)o
0o
mo
00
c o
1 o
mo
po
aoo
mo
ino
u)o
H
H
D co
O to
CJ O
DO
00
a0
DO
a0
f]O
OO
D
9
l��i
�N
i
Z
z
On+CC:.i
H
H
.-7
r
#
M V
*
M N
1 H
E.
1 �
7 0
a..
ao
j
u,o
wQ'
wa
wo
1
-
z�
z
ut
H
H
3
0
0
o
o
a
aOl
a
N
�p
*
k
m
M m
o
#
i
C7
M
...{
M
t.y
M
H
M
M
m
m
m
�,.�
i
H
ZO
ZO
7.0
ry
ZO
•2,•O
ZO~'i
2 O
Z o
F
O
O
O
O
O
O
O
O
H
a
N
N
O
O
o
N
p
E
E
a
a
N
H
1
O
F 11
F a
EZI#
F
v
U c
U a
F
U
F
#
F
#
F
#
F #
#
w
w N
u)
U a.
Q,
L)
F
w
F
I
1
NN
V)�
u)N
O�
u1N
V]
94
wN
NN
1
x
#
#
(WN
WN
F c
v?
F •r
#
F m #
W
##
a�
*
#
#
Woo
am
W
Ln
a�
ao
ao
E- %D
am
Jr
>arn
,Q,
rn
W
W
ca
w•
W
W
H O
H
J
O
H
N O
H OIy
O
N O
H O
o
H O
•2
Z
Z
...1
.--1
•--I
H
14
1-4 O
H O
H O
F-1 p
14
*
1`
#
#
N
N
Z
Z
,� N
04 # N #
Z
�p
# �D
# w#
01
#
O
c
#
M
Ol
N
u)
L
O .�
O a•
U
Z.
Z •
Z
Z
Z
.K
N
N
Z
O
F O
F O
F
r
O
O N
O N
O O
OH
O
N N
O
N
F
ti H
K .-�
O
r•C .-1
Q
F `-t
F
•-"
M
F %D
F
O N
W7
W
W
E"N
w
u)
Eul
ins
NV)
FN
E.
FN
OHN
U)
3 O
O
F
O H
H
"' �."
FC
04c
2:
4
Ek
E.
O E
H
E
F
S Ft
cW.
q
x
G1
Q
F �^ =
p
F O
VJ O
H
ly
rt
g
El)
m
a
m a
o
U v
U
a
p
o
o x
q
W o
W
\ L•]
\
5 \ L-3\
5 \
v)
V)
4
u)
rs
U1 <
O
y :n
ab
aO
ha aO
hO
FD
��
E.D
a
a
a
uJ
U)
U]
rn
^-I
N
M
C N
•'y
H
H
ny
co
oN
N
H
r-1
y
0
C
Z
'
0
O
`
... `
�
u
y
O
O
O
.-.
...
`cry,
L
G]
c L4
W
F
4.7
E4
W
a
a a
a
a
w
w
w
w
W
WW
w
W
a
a
U
W
E4
.3
W
.1,
H
N
a
� a
z cx
W
F w W
cn
CL a o
Lo q Z
f U F
C) Z y
m a
azv,
W M H
.z
Z z
H W
W C9 >
A W w
°oo
aa
WE.
ti H
W h a
U H >
a W
w�a
i mow
N W
a F Q
W W
F P+ GG
aEo
3 U y
C 4�]
W F
G �
W 3
F
a
a
x
o
o
0
0
0
0
o
O
0
0
0
0
0
m
x
0
0
0
0
0
>
d
x
o
0
0
0
0
0
0
0
0
0
0
W
W
z H
k
O
O
O
O
O
O
O
O
O
O
O
W
x
a
x
x
a x
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
N x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
O
x
x
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
p
p
p
00
ba Z
op
Q
a
O
O
O
O
O
O
O
O
O
O
p
•
x
x
x
*R
O
n
O
voi
10
N
on
E d
,�
,�
Lr)
r
x
a•
-Vf7
C•
M
M
M
M
.
M
x
2 x
F
w x
u)q
Ln
cli
*
�
O
�
lD
.Ni
10
x
x
~
N
N
O
O
O
l0
O
10
p
z*
a
d
U m
xto
Lr)
n
�
o
r
0U')u,
Ln
n
i
H E
E W
x
x
r-1
.•q
'.{
p
o
r
N
m
N
m
N
m
N
m
N
m
H W
a 0
x
-x
M
M
"�
M
M
O
O
O
O
O
O
U
x
x
a W
x
0
0
0
0
0
0
CD
0
0
0
0
�Hn
mW
0
0
O
0
0
0
0
0
i H z
.7 O
x
l0
q.
O
10
.n
M
N
W00
m
o
a
2 W.
'•"
1°
o
r
o
ao
rn
o
M
a+
O
o
M
rn
O
M
O
M
O
M
O
a
O
E
H H
4 w d
W •
w:
^ x
Ln
O
Ln
o
Ln
o
Ln
o
.n
o
o
in
o
o
rn
U')
o
o
0
to
o
rn
o
c,
o
o
In O w
W a
o
0
0
0
0
ui
LO mz
H
x
x
,
1
EO W
U W
Q
W x
x
l0
O
l0
O\
l0
t0
I0
t0
m
l0
m
Ln
M
l0
Ol
l0
01
N
O
O
,'�
d{
O
m
01
M
O
N
r
In
r
M
O
M
O
Ln
O
Ln
.•-�
�n
.-i
,y
a•
Ln
M
-
O
O
[�y W
W C
W
M
m
•••�
m
C
O
O
O
O
O
O
O
O
O
O
O
O
a z
> s
w x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O H
cn �'
O
O
O
O
o
0
0
0
U) ,.a
x
0
0
0
0
0
0
C W
' E- EQ.
N
N
-i
N
ti
t0
.-y
r
m
m
N
�0
d fn W
W
,k
a•
r
m
m
rn
I H
>
x
r
r
to
ko
0
0
0
C
0
0
W E
O
x
d
x
d E
• z
x
x
�o
�o
rr
"
u�
vi
U�
u)
In
F En
Ot
.Pi
•moi
u-)
0
r
r
r
r
h
r
z w
O
*
L)
OD
C, o
I0 .� \
«
o
rn
m
0)
In
m
m
r
r
W w
W
r
m
0
N
rn
rn
m
rn
rn
s
m
u!
u1
:n
W
V
s
O
N
O
o
O
CD
a
0
0
CD
0
0
0
0
O a c
.,
r
i
x
Fc
3
x
o
a
rn
ur)
m
ON
In
o
T)
is
F a
P. w
x
x
0)
ry
p
Nm
N
N
N
O
Ln.
r
-a
m
O
OD
Cl)
O w
x
if1
to
rn
a
c
M
M
N
N
W
O
+
W
\
r
w
0
O
M
M
M
to
M
c
M
O
W
W W
x
M
T.
:n
m
Ln
r
O
^O
0
r
M
D'
M
r
M
S
M
N
M
M
x
r
T
—
to
O
O
N
N
N
N0
N�
O
O
MC
"
o
O
CDC
OO
O
U
Cl
•--�
O
•--I
O
.-�
O
'.
O
o
O
O
.r
O
.y
O
•-J
O
:'
y0
!•
l0
r
A
M
M
-4
9
O
.-1
N
Q:
.•-1
.-7
N
C.
N
x
N
r
01
O
01
M
N
N
M
01
W
x
E4
N
v�
t0
[-.
l0
E
ko
O
�0
M
01
N
N
t0
m
01
ul
T
O
E
t0
s
O
V'
01
M�0
01
�n
�t]
N
h
CCD
W
d
w w
O
U
r
O
M
.y
F
N
N
to
m
N
O
,�
U
E
\ x
'r
«.
.--I
U
.�
.-a
.ti
N
N
N
la
w
a x
x
h
h
F
N
W
*
O
O
O
O
O
O
O
C
O
O
O
m
#
o
c
O
0
0
410
0
CD
0
0
0
c
c
0
0
W
#
0
iL
O
E
*
0
0
0
o
O
o
O
o
o
O
a
#
o
#
*
O
O
O
O
O
O
O
O
O
O
O
O
O
OO
O
O
N
N #
0
0
0Z,
0
0
0
O
0
*
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0CD
*
O
O
O
O
O
O
CD
EAz
O
O
o
O
O
iS ❑
#
O
O
O
O
O
O
OCD
O
O
m H
#
#
*
#
#
O
O
U')O
O
o
o
O
O
E-FC
#
�n
�n
n
n
Ln
n
• 1
0 H
W❑
#
*
f 1
M
M
M
M
M
M
M
M
M
#
M
W #
E#
a #
W#
.-4
.-a
ti
N
N
N
N
N
N
❑ *
lD
lD
�O
1D
l0
ID
l0
�p
O
O
O
O
%D
t0
a *
°*
O
C
O
Cl
O
O
z
a
#
N
NN
N
N
u'1
M E
E a
W
W
m
m
m
m
N
m
N
co
N
W
N
W
N
C ❑W
*
O
O
o
o
O
O
O
O
p
0
W
U
#
#
C;
O
>CD
*
O
O
O
O
O
CD
CD
W W
*
O
O
O
O
O
O
I E o
m w
*
0
0
0
0
0
C.
0
0
0
0
0
H 2
#
a O
*
O
O
N
O
N
C
O
til
`C
O
M
v
O
a
v'
O
in
r
m
OD
a
O1
o
rn
o
rn
o
rn
o
rn
o
m
o
rn
o
C
rn
O
o
C
rn
O
o
P. H H
W
x#
un
O
Ln
O
Ln
O
an
O
u-)
in
O
N
O
N
rn
o
m
o
lLnOa
W
W
o
O
`
O
a
c
a
a
a
O
�n
C
O
vl
a
O
,--i C
(.7
H
O
p
p
O
O
O
O
O
•Es
n a `
O M
*
k
w W
1 U to
❑
W#
>#
tT
,-t
1D
110
In
4
V'
r
M
W
M
O
to
N
cn
r
N
•.
O
,
O
r
O
.-I
O
W
O
.-1
O
m
N
O
N
1-
N
M
N
in
M
r
0
NO
W
W W
o
O
14
H
O
N>
O
OO
O
O
w
O
o
O
0
O
0
OM
O1
OMw
WFc
#
0
,
0
'
m
a
O
s
O
a
N
o
%D
co
:c N W
W
#
N
N
M
C
N
I
1 3 L H
*
O
o
w E
#
i... O a
#
7-a F"
*
Ln
Ln
in
N
i!1
u)
E cA
pi
#
*
r
r
r
r
r
r
r
r
r
r
W
r
z W
O E ..
•
• w a: �.
#
a m
z W
H r 3 .nID
,
#
lD
N
�7
CN)
C
N
M
co
r
Ln
CN
CAQ1
C14
D1
E O Z
Ln
O•
Ot
Ol
61
,
c
Ln
c
.n
C
V;
U E >' ..
*
0
0
0
0
c
0
a
o
c
O
v
o
0
0
a
t
1-4
N x ' a
4 E-
p
.
r-
ID
r
o
rn
r
to
ti
In
v
N
M
N
m
o
N
rl
m
W
a w
#
r -t
C
O
Ol
W
r
CO
0 w
•#k
N
N
N
N
N
N
N
N
IW
O
W
LD
1
E->
#
M
N
M
M
Ln
M
kD
M
r
M
%D
M
to
1^
C
M
.-1
M
a%
M
%D
W
:ai W
#
M
M
N
C
M
In
M
�D
M
r
M
W
M
m
M
41
M
O
M
M
M
M
El)N
ti 14
W**
O#
M
.-i
M
ti
M
N
H
M
N
.•-i
M
.Na
M
N
M
N
N
N
N
N
N
oH
O
C
C
O
O
0
CD
M
HO
C
N
C
4
I UO
O
0
CD
O
ti
O
CD
O
O
*
.-i
p
O
Ca)
•-
W
p
Vn
r
N
coW
O
W
coW
coW
lD
O
N
N
co
O
N
N
Ln
O0
41m
O
r
W
N
O
r
W
v
M
O
M
iDco
E
*
(n
OD
S
�D
r
M
r
r+
�p
r
lD
C
1D
O
to
ip
N
t
U
ry
E+
W t
*
N
r
N
eD
N
s
N
D+
N
o
M
ti
M
,-,
.�
N
",�
M
M
1-4x
M
a
O
O
O
O
O
O
O
*
O
O
O
O
O
O
>
k
O
C
O
O
O
O
O
O
O
'
O
W
x
W
Z H
k
O
O
O
O
O
O
O
O
O
O
O
d
x
x
k
O
p
Cl
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
p
N
N k
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
p
O
k
x
x
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-_o
k
p
O
o
O
0
O
0
O
0
O
0
O
O
O
O
W z
o
m O
k
x
o
0
0
0
0
0
0
o
0
p
0
O
0
p
0
n
x
o
n
0
n
0
n
0
n
0
to
0
0
N
0
0
o
E a
x 0
x
M
M
M
M
M
M
M
to
M
n
M
,pn
M
M
7
«
xk
F k
p«
W k
N
—r
N
.--i
N
r-�
N
H
cli
N
N
N
N
N
A*
0
-1
ko
l0
m
l0
D
1
O
Cl
O
O
O
O
O
O
O
tD
O
J
2°W
.a
x
rs
k
to
to
m
U')
to
to
u-)
to
to
tU+ E
E W
k
«
m
co
rn
W
W
m
N
m
N
m
N
m
N
m
N
m
H OW
*
o
0
0
0
0
0
0
0
0.
C.
0
a
U
x
z H
a,
k
*
0
0
0
0
0
0
0
0
0
W
0
0
H E
F H
o .a
m w
«
x
0
0
0
0
0
0
0I
0
0
0
0
H v
r7 O
>+
k
«
k
Qt
c
O
O
to
O
N
to
O
M
U7
O
u'f
to
O
tD
til
O
co
r
aU
a W
61
o
rn
o
rn
o
rn
o
rn
o
rn
o
to
m
Cl
o
tDD
rn
O
o
tDD
m
O
%DD
O
to
0
a&
z 0
m«
«
to
a
O
N
O
N
O
to
OO
to
O
L tll
L
O
to
O
N0
o
rn
LO
o
O
rn
N
o
Lo
OW, E
W�
*
O
o
0
0
c
0
o
O
c
o
tr
o
a
O
v
O
p
O H
«
W
W«
m
M
•"4
o
M
tD
m
to
N
O
co
c -I
M
M
to
-4
Mco
C14
-7 aW
RC
O
NO
a
m
N
N
to
r
to
N
m
-!
O
Ln
N
WURC
W
Wo
k*+
,
O
O
D
O
r
O
m
.i
m
M
C>
0O
O
O
O
O
O
•
O
O
O
O
O
O
O
O
O
O
OO
m a
O
O
O
O
W F
1 F H N
a
k
k
mr
to
trD
t"
co
coa>
M
N
N
N
M
tf)
r
3 V) W
W
x
O
�--�
N
M
IV
N
W H
>
*
•�
r -I
-I
.i
N
N
N
N
N
N
N
Ev E-
0 o a
x
to
Ln
to
In
to
«)
z w�
O E-
co m
«
2 m
x
H r 3 to
x
o
In
0D
m
m
r
r
too
W
H Oa
z� r+
U) W
a
3 W
«
ul
n
v
In
U
m
N
m
to
m
L
m
m
U�
m
0
c
c
v
CD
c
CD
c
cr
to
p
O U W
x
..-i
Cl
If co ors
3
Y
x
o
N
r
N
a
p
a.
co
M
Ln
m
c
F N
x
r
lD
sf»
tr
M
c
M
M
M
m
N
IV
N
O
N
Wk
k
W
ca
E
x
Ot
M
to
N
M
N
MM
M
ID
M
N
M
ID
M
—t
M
t!1
M
41
M
M
M
l0
M
W
w W
k
N
N
N
M
M
N
C
M
C
M
to
M
7
M
VI
M
to
M
m
M
In
C
> .a
O x
e'
.-t
a•
-4
'T
H
v
—
c
N
-i
c
N
N
;
N
N
N
N
Z W
�-•�
W x
c
O
a
O
'a•
C
v
C
v
O
c
O
a
.Ni
O
+,
v
O
c
•-i
C
x
O
•--f
O
p
p
O
p
+•-1
O
O
O
O
v'
O
O
vim•
O
O
C�
O
O
U
p
O
.-.
O
.-•�
O
r -f
O
.--t
O
N
O
to
W
v
to
O
v
v'
O
OtD
to
M
S
p
W
k
m
v
tD
—f
c
1D
M
O
O
O
a1
ch
r
F
.7
N
M
M
O
C
-W
M
m
M
N
M
u•1
M
M
M
N
N
•a'
N
.�•
Q.
a
a
a
a
*
o
0
0
0
0
0
0
0
0
0
0
0
0
0CD
co
*
0
0
0
0
0
0
0
0
0
0
0
w
.«
w
*
0
0
0
0
0
0
0
0
0
0
0
a
�
a
*
rz
0
0
0
0
0
0
0
0
Co.
O
o
0
0
0
0
0
o
C
c
0
0
0
o
c
o
N
N �
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
c
x
x
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
x
\ O
x
O
O
O
O
O
O
O
O
O
p
Op
O
O
O
p
p
{
W f
�❑
*
O
O
O
O
O
O
O
O
O
O
O
O
Llj H
x
. I
x
x
x
O
In
O
In
O
to
O
N
O
O
O
O
O
CD
F d
*
In
In
In
to
�• ❑
M
M
M
M
M
M
M
M
M
M
M
z*
F +
W x
.N -t
-4
N
CN
N
❑ *
O
l0
ID
lD
•Ni
tD
lD
.4
%0
14
1D
r-I
1O
1N-1
I
p
o
0
0
0
0
0
0
0
0
O x
z*
a
a
U Z•
x
x
to
CV
In
N
In
N
Ln
N
N
In
tovq
LO
i
H F
*
m
n
co
m
n
allo
m
m
N
n
H W
a Q
x
x
o
0
0
0
0
0
0
0
0
0
0
U
x
x
z
o
a
a
x
o
0
0
0
0
0
0
0
0
0
0
0
0
0
4.o
E i -A
rn W
*
O
o
0
0
o
O
O
o
0
0
0
to ❑
x
H v
I-7 O
U
>+
x
x
x
Dl
(D
o
N
r
O
r1
r
d>
c
o
.-t
C
to
N
ON
Nm
N
to
N
O
tT
O
O
O
m
%D
M
to
a
io
0
0
o
m
s
m
ko
n
1 a E
a w
w •k
M
v'
v
N
r
N
m
1-1
O
H
N
•-•I
H H
d Wz
W
In
C x
to
O
C
O
OOHO
In O W
W a
-A
0
0
0
0
In
0
N
0
ID
I�
tD
lD
ID
W Z
C7
-I
H
14
.�
.-,
r•I
0
•-,
0
-I
o
C
o
IIn
O H
41r
x
r
.-I
r•I
r -I
U p
❑
x
>*
N
•-�
f^
to
C
n
lD
C
N
•a
O
O
C0
CI
m
N
N
r-
to
.-I
m
n
d
r7 d
d x
•-I
O
N
H
O
N
M
•••i
m
1D
N
co
%D
M
O
r
r
m
"
m
M
N
N
In
N
H
Ln
r
r
n
r
m
n
H
01
n
O
m
.-1
M
O
O
O
O
O
O
.N -I
O
.-t
O
H
O
O
' a
*
O
O
O
O
O
•--I
O
O
p
N
O
H
N
O
.-I
N
O
aW
�
n
rn
0
o
d w W
W
x
r
o
M
r
H
In
I 3 1
iL N
m
O a
x
Zi
*
In
U9
Ui
N
to
to
In
In
to
to
lf1
F m
a
*
r
r
r
r
r
r
r
r
r
r
r
Go >
U a [D
n
~
ID O O
ID J\
x
x
U')
co
lw
M
%Dr
N
N
C
M
r
O
M 4 E. r
's7
>
x
n
O
m
M
D1 LO
N
lrD
In
C
rl
d
U7 w
•k
an
to
to
tCo
OD
1
T
rn
Jrj
O
0
H
p
W
U F 'r
�
n
In
n
to
O
O
W
O
O
Cl) a s<
�C —❑
3
-' O
*
*
O
w
O
N
N
N
N
r
r
m
o>
N
C
_
18
Da C.
*
'."�
m
O
\D
H
lD
o
lD
^J
an
ID
In
•a
to
M
to
•-1
In
❑ G.
x
.-+
.r
.--,
O
O
O
O
O
O
O
O
0
W
W
x
fD
F
x
O
m
M
M
In
Un
M
to
M
m
M
tT
M
Cl
M
N
M
C•
M
M
M
W
w w
x
N
r
N
r
M
N
M
M
iD
M
O
M
N
M
v
M
In
M
tD
M
N
> r7
O a
.a•
•�
C
c
v
.�m
N
n
N
.-I
rn
N
.O
N
N
N
N
t -t W
O x
•a
O
c
O
�•
D'
C
O
to
O
N
0
If)
O
to
O
Io
O
s
N
O
s
J
o
CDOH
In
O
*
7
O
pj
n
Io
C
N
O
o
M
U
H
o
M
M
v
n
M
kD
W
y*
M
11)
ID
ID
C14
N
N
m
.ti
M
In
C
4
w *.a
r
N
O
N
N
O
N
N
to
r
N
N
'o'
lD
O
'-I
N
m
r
tD
M
a
M
to
r1
r
m
r
U
��.
V)�:
*
,M..i
ti
ri
❑
.--I
.-y
N
f1
N
N
N
N
N
n
n
a
x
N
N
N
c%
o
0
0
0
0
0
0
0
0
0
0
m
«
0
0
>w
«
o
0
0
0
0
0
0
0
0
*
FC
4.
o w
z H
*
*
0
00
p
o
O
O
O
O
O
a
�
0
a
*
x
0
0
0
0
o
0
O
0
o
0
0
0
0
0
o
0
o
0
0
0
0
0
0
0
0
N
N
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
p
•k
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
z
O
O
O
o
0
0
0
0
0
0
0
w
0
0
w
0
o
0
0
0
0
0
0
0
0
0
q�
-ko
c
*
O
O
O
O
O
{n
Cl
00
O
O
4
00El
O
O
0
'
S O
•k
M
M
M
M
M
M
N
N
N
N
N
S*
'
F*
W *
w*
N
r
N
O
O
O
O
O
Q*
10
t0
l0
-4
w
M
M
M
M
M
0
0
0
0
0
0
o
c
O�
a
FC
U 'E-
*
*
u)
N
N
N
N
N
n
u')
M
M
M
M
M
�
F a
*
*
W
m
m
m
N
W
N
W
r
r
r
01
r
Gl
r1-4�
W
Ca
i�
O
0
O
O
C
O
O
O
O
O
Ol
O
U�••�
*
z
00
x
a
o
0
0
0
0
0
00
0
0
0
0
0
0
W
«
0
0
0
0
F rFi
*
O
o
0
o
O
o
o
O
O
O
0
N z
*
.40
U
>+
*
*
a
v'
co
N
N
W
N
o
(n
r•1
O
O
tD
N
N
O
d
W
•~
O
N
O
N
N
N
N
v
r-1
M
r
N
co
u)
M
.-�
c
co
a Z
W
w*
r
O
r
'A
01
•--1
O
O
.--1
O
a �
z A
S*
�
O
O
O
N
O
N
O
N
O
N
O
N
O
N
O
M
0
j n O w
Wiz
o
0
t~O
0
0
0
0
1O
1O
O
M
x H
Co
.y
,.I
0
0
0
Lo a z
O N
!'+ U q
Q
k
W
*
'-1
l0
u)
10
.••i
O
co
M
.•i
�
C
a%
Nm
N
t0
C•
10
.�
N
f
w
,'�
a'
V•
N
O
M
�n
co
O
uS
In
1!•1
l0
N
D•
a%
W
r
N
C
.-1
Q•
W
r
r1
N
N
, 4
10
W
! W
W
*
O
l0
O
co
m
01
U1
ei
O
14
N
01
O
r
r
a
0%
1
M
> S
•y
•"�
h
M
•
u'1
M
,
! •x7
41OM
C
`�
O
C
.-�
u)
N
Ln
N.
v�
.--�
C'
.-1
M
.--�
m
m a
*
0
0
0
0
o
p
x w
W F
Q
*
cm
M
N
m
m
W
a1
u3i W
W
f•m
co
M
r
.•-I
1D
ri
3 z
>
W
rn
rn
o
o
7
y W
*
o a
a
*
zW 0
a
*
r
r
r
r
r
r
r
r
r
r
O k-
>4
C q
z W
z
� r 3 ui
•k
1D O o
ID
M
oo
ID
co
ul -4 �
>
41Go
N
N
M
r^
M
N0
D'
co
O
W .•-
W W
*
P
tD
W
01
N
Ln
H O CG \
<C z
a
3 W
*
*
O
10
O10
0
10
0
ID
100
100•
.-•�
10
'�
0
0
0
0
0
0
0
0
uO)
_
W
a F O
m O
+
m
m
m
_
M
M
OLn
rn
N
n
e
1n
ui
5
Cw] Lai
w
O
O
p
O
O
O
O
o
O
O
O
O
+
W
W]
q
t
ca
o
M
co
w
w w
*
N
h
M
N
W
M
s
M
W
M
C
M
0
p
y
O
O
N
r
co
O
V•
01
co
N
> a
O*
m
-4
01
'�
a
N
ti
W
N
N
10
p
L•V
fn *
O
O
C
Ln
O
01
p
p
O
C
C
O
O
O
O
O
O
r
O
O
O
In
o
O
l0
a
O
l0
r+
w
.y
1D
.-•�
O
.r
10
N
V
O
-
O
O
r1
�
....
.•I
O
o
N
p
o
•--1
O
O
o
O
0
O
*
O
.-�
N
.•-�
"
m
0
ti
W
'�
N
u)
u1
h
M
C
w
ID
V1
•--�
h
W
to
M
N
�
y*
r
M
W
O
rn
O
W
er
N
O
M
r
N
w *
T
u1
p
�f1
tal
T
p
'T
4'
e!•
W
•n
\
Ln
L7
10
10
�^
to
'~
N
N
iJ
r
F
0
*
N
N
N
CJ
N
l0
N
10
N
N
ID
{
N
N
N
I
F
D
a p
O
m
p
O
O
O
C)
C
OCD
O
�
O
00
0
0
O
O
* o
0
0
0
0
0
0
0
w
0
0
0
Kc
a
O w x o
2 H x
CD
o
0
0
0
o
ry *
0
0
0
0
•
* 0 0 0 0 0 0 0 0
r7 a* o 0 0 0 0 0 0 c o 0
0
N N
0 o 0 0 0 0 0 00 0 c o
41 O O O O O O o O O O o O O O
O O
O o
O O
O o
* O
O
O
O
O
O
O
o
O
0
W z *
O
O
0
0
00
O
C
O
fn t. O
Q❑ 4cO
p
O
O
O
O
O
W H *
O
O
O
O
•
x
x'
\ * 0
0
0
p
O
O
O
O
O
t
U' H * N
O
O
O
O
p
•
M *
N
N
N
N
N
N
N
x
N
NCV
E *
a x o
W* M
0
M
C.
MO
0
O
p
O
❑* p.
a,
M
M
M
M
O
d'
O
O
O
O
�
r
Q'
r
P
a i
O*
O
O
O
O
O
O
O
O
C
z*
a
Q * M
M
t
F W -k
°;
rm
rn
'
H W * p
a❑ *
p
OO
O
O
O
O
Cl
Cl
U *
p
o
0
0
z
z�
*
a o
w W
0
0
o
0
0
0
0
0
N
O
0
C)
0
0
00
E
(OB W
O
O
O
O
O
O
O
O
co ❑
*
O
p
fJ
Tf x r C'
.•-� M
O
O
r
E
r -f O
L9 An7
N O
C• N
N O
r N
N O
d) .•i
N
"'�
O
0\
H
O: W G. x
C4x*
O
M O
M O
M O
M O
M
m p
ua'7
O
W O O
tD O
O
ko O
O
O
O
O
O
O
M p
f ,y
a E
G❑G
C9
O
o
tM0
o
tM0
ko
fn
tD
p
p
Lw
W
O 'J * to
`~ r
rn N
O c
rn N
01 N
r <D
Q*
M N
N
o
N O
lD
M d•
d' 10
M O
'
W
W W
N
.•i
N
�T
Ql O
Ol dl
m
r
r
pp tD
tp tD
r r
.•-� r
cl:
a z
X W * .ti
NO
"'� N
N N
Ot
r
d.
M
\O 0o
tD %D
H
W*
O
.•-�
O
O .••�
Or -1
O O
O HO
O
O
x
O
p
O
p0
O O
a W*
*
o
14 E
* N
W
0
to
o
tD
r'.
CA
m
z
co
u)
N
1
1
E-
x
p
r
r
o a
0
x
Q
*
z£
4:u)
`r;
O
u)
to
u7
Ln
u-)
i�
O
E
wpm
�-+
m
r 3 �n
x
a*
�°
co
0
, 1
m
0
r
cry
0
w
m
a
F
O G' \
O W
ri
N
M
C'
to
ko
N
rQ•�
''+ Q(j '�
3 w
tDtD
tp
c
N
N
N
tclj
0
N
En
co
cDLo
u]
W
tf)
a m *
lD
lD
tD
r
w
O
r
N
r
m
O
-+
u)
❑
O
O
O
p
O
r
r
r
r
O
O
O
O
O
W
m
C)
N C
C• O
Lo O
tD
'� co
l0 M
W W * r
r
r
C
lD p
r
m 0
0
W M
N M
o
cD
H u0i
o
o
o
w
o
o
N roi
.••i O
O
ti
O
o 'o
O
ti
O
O
O
J
'••i O
p
O
C;
'J•'
O
p
O
*
O
.--i O
•� O
N p
W
O* O
cn
Ln m
co
M
M p•
f17
H W x
M l0
Q1 u)
a•
S r
r M
tD Na,
O M
v' ,.y
F
N
O
co O
O
ry O
M O
O
H
F \ 41N
to
N
tD
N
W
iD
•-�
M
N O
N tD
O a*
N
N
N
N
N
N
tD
N
`D
tD
tD
x
N
N
04
r
a
o
0
a
#
c
o
0
0
0
•
m
>
x
*
0
0
0
0
0
w
�
�
o
0
0
0
0
z"
*
a
*
*
a
N
#
a*
N #
0
o
0
0
0
0
0
0
0
0
0
0
0
0
o
0
a
0
.
*
x
O
O
O
O
o
O
o
O
O
#
-'0
Pa z
*
#
O
O
O
O
O
C/)
*
0
0
0
0
0
m H
*
41
*
\
#
*
0
0
0
0
0
0
0
0
0
0
*
N
N
N
N
N
S O
S #
E *
d*
O
O
O
O
W #
a
O #
Z *
.a
x
Q,
U o
x
#
M
r
M
r
M
r
M
r
M
r
H E
F W
#
x
m
m
m
M
ON
as
#
*
O
O
O
O
O
U
#
*
Z 0
a
x
O
O
O
O
o
W
*
E H
N W
x
O
O
O
O
O
00
*
N
ON
M
O
N
'r
LO
M
H
r -I
P
M
a£
a W
w
P
O
u7
0
:n
O
:n
O
N
a ti a
z p
S a*,
ID
o
M
�D
0
ri
�o
0
o
H
cD
%D
O
W
0
p
11
Lnaz
#
O H
#
W W
W x
r
N
r
m
,--i
O
-
:n
ID
O
Ww
W W
r.0 #
:t.
r
`n
W
a
m
v
N
OD
M
a Z
> S
G. #
0
0
o
O
O
o
o
O
O
cn
rJ
n
(71c
i u~i
w
r
a
ON
3 Z
S &r
>
*
u;
H
E
#
#
0
o a
#
AC
Ln
LO
tr)
LO
r
r
r
r
O F ••
x
Ga Q. >+
x
a m
m
#
~ r :n
3
Vi a\
#
u"1
M
c
N
M
E.>
CDy
w•
F O a
.\ .4
*
N
M
rn
M
M
Ft Z a
�c W
*
tD
t0
tD
H W
O
C>
O
c
O
p
O
to
U O a
3 0
F
x
*
m rn
a
N
O
M
m
M
r
o
ON
O i
rn
G 44
O
W
O
W
*
m
F
#
O
M
C
M
r
M
m
M
Ol
w
W W
*
O
M
O
M
O
M
p
M
y
OCD
al
ID
Oz
O
O
w
o
0
0
u
;sj
_
x
x
M
O
M
lD
kD
t0
-+
nl
r
OJ
O
.-I
r
01
w:
N
:n
N
E
,W7 *
C
M
N
`n
N
.�
:n
O
LD
W
rJ:
W x
w
Ln
tD
N
:n
lD
w
a
*
a a h a h E zz a a a x x a a x x w m x x x x x x a z a w a G a a a a x a a
z
0
H
E
H
.Za
0
L
H
a
w
r
m
w
H
•
w
E
H N
m
�
xsxxz�xw Wxsxxxmxx
w H
1
s x x
o
a
xxxxxxx
w w
W X
X X
wwwwwwwwwwwwwwwwwwwwwwwwwww
w
w
X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3$ 3 3 3 3 3
Fcn
S
U U U U U U U U U U U 3
O
g
U U U U U
• [tt r
$
UUU H N N N H N
U U (! N
co
.T.
H N H N N
L) U H I --I H p.�
V U H N N N
tDO O
U
U H N H
tD
U
E.
"{'
U U
H N
oar,
x
U
U
H
zap
H
E Dw+ • •
U
U w
CD E-
M
CD
E
V
H
H
4
• H
H
n
lD N Q' O Ol frLn ODO l� rZ O 1D M M 0 N m' .-1 I- M M lD N M 10 — r� a• O to M D1 a) , 4 W v' O •� M a% � N w to r-1 I- M O w N m In H m C O to m
� c• �T O 1-, m O M O (- M O w M O 3 M O tD M O �o M M to M D1 w m Dl w N m tD N m O N D1 kD N M In N m m N m o N
•-•i M to lD OJ O •-+ M u'1 tD m O ,--1 M ui t0 O O . M to tD co O •--i M Ln ko f0 D1 N M v O W Ol .-� M C lD N Ol .-i M a l0 co D1 •r m a l0 co O1 '-1 M
N r N a1 O •-! c ul lfl f� DD M, N M< Ln l0 W D\ O •--� N m v lD T O m O e -i M D' N lD I� O O N N M a to I� m M O N N C�
00000�0 CD, - .--i,-y ,..iH,..., N N N NNN N N M m m M M M M M Mc c�a•� h•ca, C N�J7��N�<nO O- O bLO
LO
H N ,••1 ,-1 N ,--I Ty N .-y N e-1 .-{ r-1 ,--1 •••1 r-1 N .1 ,--I N p•1 ri H ey ,-• .ti .-1 N .--1 a --I N N rl r•f .-1 N .ti e-1 ,--i N 'n 'n Ln o Lo 0 0 o N W H .D ,••1
I
MOWN W 1f1 ,,- h- O ` m MO -w CP O- m m 10 N W ,n H h MOWN W N a% N c W Q O w m M ,7') N W C _,r_ m O w N W to
N
W ,n W W to e-1 W .. h a .--I h e ,y h c O h a O h c O h m O h M G h M O I-
r,
.a U' W n N ^-I M 'T �O W w N M -v 10 W m H m c� ,D W C1 r-1 m v� tD W c1 N M C O W m .y m C W W cl .-1 M C' �D W 01 rti M m 10 W 61 N M c� �D W 01 N M a� tD W
kD W .T ^ m C' !1 �D W Ol O .-� N m ,(7 WW 01 O N m v� N t0
W W W W 01 6 0 h Jl C .-i N M •a' �D h W Ol O .r M RN l0 h W O .� N M a� ul h W 01 O r-1 N N l0
�� W 6 0 a% Al 0 0 0 0 0 0 0 0 0 0 �--, .� .--i .-y N .� 'y �-1 h WN N N N N N N N N M m m M M m M m
N N N N N N N NN N N N NN N NNNNN N N N NN N N NN N N N N N
a a axaaaaaaaax
xxx
rn
N
4
O
e•1
ko
. m
0
Ln
0
m
O
H
kD
N
l0
Ln
O
.-1
M
O
.—I
r
S
O
O
N
M
0)
c
O
c
xxx
xxx
.a M-- N-- O r M S- (\f O ti 1 .r •r M O �D N cT N
St0
�OMS,LMSl0M N Sl0NS:ON SID NS N.y
x
dl N N •tO r S" N 0r l0 r Ol " N C UD' r S N N a kO
Cl H N M G7 Lo %D co 0\ O H N M In l0 r O m O N M 'n
r,ca�-Ta v aaLnLn Lnen Lno nLnLnkD meow o
x
W
z
w
x
W
W W
W
ww
w
U U
wU
33333333x3.
W
W
U
m
H
H H H H H
U
3
H
H H
3
H
H
H
rn
N
4
O
e•1
ko
. m
0
Ln
0
m
O
H
kD
N
l0
Ln
O
.-1
M
O
.—I
r
S
O
O
N
M
0)
c
O
d
El M
O H r�
H
F I -
>
F xF wC �
>>
woo
z a
�wz�W aa�X-+
r4Hd�
z W z
FC W U W v1 4 U H
W OS-ciUaOE O
F �.
laz4=000WFa
FU OF>+u1 W Czr]C,O.
�.LD
wrW�a`�>O.afn
v1�^z4WO
W cl)
F a N n a u u n n n a
0
C7 HU3x �T m?+ai
;z y N
c
r
r
. . .M
. CD
.a M-- N-- O r M S- (\f O ti 1 .r •r M O �D N cT N
St0
�OMS,LMSl0M N Sl0NS:ON SID NS N.y
dl N N •tO r S" N 0r l0 r Ol " N C UD' r S N N a kO
Cl H N M G7 Lo %D co 0\ O H N M In l0 r O m O N M 'n
r,ca�-Ta v aaLnLn Lnen Lno nLnLnkD meow o
NNNfaNNNNNNN NNNfV N N N N N N N N
d
El M
O H r�
H
F I -
>
F xF wC �
>>
woo
z a
�wz�W aa�X-+
r4Hd�
z W z
FC W U W v1 4 U H
W OS-ciUaOE O
F �.
laz4=000WFa
FU OF>+u1 W Czr]C,O.
�.LD
wrW�a`�>O.afn
v1�^z4WO
W cl)
F a N n a u u n n n a
0
C7 HU3x �T m?+ai
;z y N
I
0- 1v. 71
..' .�4Lr l art
I I
ul 0.
z z x x x
O O
O
2
aHowopowo oW o o aE. CD
E.1 `o
O
{ a O W p z O W O z 0 a p Z p i 0 Z O' 1-4 O
. ao �o .W.7o Mo ao Mo ,Wio ,W.'Io ao * Mo
p a M a N Ou M z 0 x 0 O O 2 0 x 0
RC Cl, (� W M
Q' O m O C O � 00 � 00 co O 'r 0
H E M N I O .'7. O O ,^7, O I O
1 O O n' O O N G; O A O C. O q O Do q O P: O
H H FZ-I Z
7 M *In 1 * H
am04 I �w I %D Moo' * i�rril
W. 5 N CM ar7 E
o !Y Qt
m p z j o > o W a
Z
H
0 O O
O p
1 d QI Ir
a O
N m
• I + it ,K O O
d a M
a
N ri
H z 0 Z Iq
O Z O $ O Z O Z O 2 O 2 0 2 0 z 0
E O
m O O O O O p p p
H N N
0, a I O I O N O N
n Q E p
U
n I m ra
EI a' 1
a� rSN aN EN
g + * * a rC
* * E.4, a a
ac) co U m F F
W 1-3,7W (4 We W a W W v * [rU7c * We * GU.Ia * Um
1 m W O W O N cl) c
* * *
* *
W FO EO Eur * Ern Eti
14 ix W ~ W CV W N W (h W �, iX � a.2N 5 e -I R. ,--I fi 01 C4 at
> r -I ,? N ? N 7 N 7 N 7 N W W
W W W
O Zcr Z.c Zvi Za za. a, zN ZM `O 7r Jr
H O H O H O M ^ Z ZP Z O r-� O H p H O M O N p
W 0-4
O 01 ^ '.I .s 'y ti
0.-I 00 0� m Q z a Z
O N M
C co HM He O� O O m Om oN
0 1 p. -e
E, O O E- o E .moi F M E-4
1-4
14 E/) y � vE) s E ~ E' E
[n C^ [n N
< 7
3 J d
Kc
v
E C E F O F E- a E- iS Q
D JO UO ^ O F0 H p ••� x� x^ `.C)
C� O !." O h O 1,✓ O ti\ [:i \ \ W L�j Q
a a s o a o z n a h a
a a a a a a 4 9c
N M c U1 t0 r m s O
O
z zz o ° z o 0 0 0
E E. � " ._ Z
u z z z E
a a w w £ a £ z 94 u DO 53 E
V W L
5a7 m L '.a] W v a rW7
G7 W
x
Wo-
.M r2� O Q -O
z
O
z F o v 0 E O E O F O
W we Mo ao ao wo wo wo ao ao ao
�Q z O a 0 U' O (.7 O U' O U' O C7 O C U' O U' O O U
a a a a z az ❑
.W.10 m0 Iw70 'W.70 a o Wo WO WO Z
Z a oy C7� (ajM O H
a fM aC azcn o a0 acn sO � Z O
a u
mo O O
E0 mo mom mEn
Oo o En a
H • H N N Q H O. H N N Q C Ln Q Q W
x ❑ O ETIC O ❑ O q N O ❑ O L] N D O ❑ N ❑ O
S > LrL.0 i5Q N frL.[ r7y. N i�Qi N CA
H
m to �
( I H
I ao ao w
1 > o w o x
z N
co
Q O
d H
Of F
a
w
* Q W
PF
of« W
z
H
m M
.Mi �M-i m m m M m O
z .tea. O z O z O Z O O •� .-I ,y IH a
F O z O z 0 z O z 0 z O z C
H O O Q O O C O O O O WCl
I o a
coa w
f:7 x E * H* E * H * (� * E * * * * * a
W We Um Uva E. E F F F F U'
y N w N W N W N W N W N CW N CWn' N W N W N U N z co
I y O o En W N z H
W E. * Em * HN 41 Fm * Fr * Fm + * * * H W
H Ul C� CN Cto n m C a aN F O E. Em E E� U>
W >CD �O >O W W Wr"; W'n C� ato W H
O zv zIn ?to >Q >o >N >N >N >a >v >W a; w W C7
C i-!O HO ZLn HO i-1unzln zin �Ln z Lo Z o HO MLn z Ln zLn
O M O H O H ;Z 0 0
14 . � r o H o H Q O O
W N h+
O * .. O .Oy * 4 c x ' * r0 * .-� M 4.* H N* .. m P N C
iaz z V >
OH N ON o MO m O O O ko
Fto EFm'.N pi z
(n Hko +. Oa 'y E.a,P0FN N E N F El
W
C C-1) W w N L7 p, F' `' H N Ems„ N Q N C a N F W
i
E. �� N W W [n 3 N fa-i Q
a ❑c
a ..a �a
a M F H Q " `" H 4 4 a 4 L s o
a 2 4 E-
�❑ L)
F❑ �❑ -o s❑ -❑ m� '� a a I-V Ac i'a
U L U - c - ❑ - ❑ - ❑ W ❑ ❑ w
Ell W
CO h5 Ha Ca CC C7 CO C.❑ a0 eX z5 W O 4�
a a a a a a a <, a a a a
H
� C In Q r .-.
nN 1„ I W N
N N N
o ti o z y o o c
F F N z Z z C V
W zW c W W y H 5
a a a a w L£a M E ❑ a
w W W w W 4a] W W a a a W 3
W
w
%
o
0
o
0
G
0
o
0
0
0
0
0
0
0
0
0
0
PO
*
0
0
0
0
0
>
#
x
o
o
o
0
0
0
0
0
0
0
o
W
%
�d
z N
#
O
O
O
O
O
O
O
O
O
O
O
D,
x
x
•
.a
x
a%
O
O
O
O
O
O
O
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
N
O
0
O
0
O
O
O
O
O
O
O
O
0
O
o
o
O
p
O
p
*
O
O
O
O
O
O
O
O
O
p
O
o
O
O
O
o
O
o
0
0
0
0
\ O
O
o
O
0
O
0
CD
O
O
0
O
O
0
0
w z
O
#
o
oo
O
0
O
p
'o
O
0
0
0
p
0
p
0
*
#
1
41
Q
O
o
0
0
0
0
0
0
0
O
O
O
o
0
0
x O
#
%
w x
F 41
CD
koCN
io
zLO
a
I
U •'1'
%
ON
LO
rn.•-1
co
lD
CD*
N
N
F d
%
rn
N
,-+
N
O
1D
p
.-�
m
N
m
,Ny
m
OD
m
H w
a o
%
#
N
N
N
N
N
N
1
N
m
OD
U
%
H
j
aW
x
C)
0
0
0
jz
0
0
0
E- F
CO w*
o
O
O
O
O
o
O
O
O
O
O
rl
V'
to
1+
%
.--�
r
M
M
v
W)
LO
r-1
0�
M
N
O
v
m
N
0
O
1D
.a z
a
W k
O)
O
m
O
N
O
M
O
M
O
P
O
w
r-1
m
.-1
m
.•-i
w
Lv uC
z
r
O
m
O
m
O
W
O
m
O
O
O
m
O
Lf, a O
w a
%
x
a•
O
P
m
P
C
m
P
O
m
P
O
C7
•�
•--1
,..�
.--f
O
O
p
p
O
O
O
O
Vo
p
>*
M
N
H
v
.--1
lD
M
m
M
O
t!')
M
N
O\
!•r'1
to
r
m
N
M
O
Iaziin
W ELI
O
M
N
P
N
N
N
O
N
O
.-1
lD
,y
tD
N
kD
5N
•'� w
k+ #
O
O
O
O
O
O
O
ti
. O
O
4 .
O
O
p
p
p
p
O
O
m N
%
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C
x
x
O
O
O
O
�EHEz
P
P
P
Ol
$ fn
J
_ F
0=1 Ize
co
r
1O
v
P
`1
�o
a
0
0
0
F O
x
r
r
0
0
P
v
r
r
el
O
«
%
1 E. OI
C
%
5wU N
a
P
°
nl
P
r
a
o
V
CJ
o
O
m
M
M
M
E
W w
%
O:Ln
o
•"1
N
M
v
P
cli
E .^.. N
�I
0m
P
}
%
0
o
c
ON
P
P
cam.
*
'"1
•',
,-.
.�
'O.r
N
O
O
O
E
3
0
0
.tf
W L
x
DD
t0
f !
3
r
-
l
M
r
O
N
O
o
N
N
W
x
P
W
O
N
��
N
J
M
O
M
W w
x
C#
Ln
P
N
O
u")
c
S
r-
OD
r,
0
1
Z W
V%
•-+
P
O
O
N
O
N
O
N
O
N
C
N
O
N
C
M
.-�
{
O
c
O
C
O
P
O
O
~
O i1
N
O
.
O
OO
O
7:
p
t
Cus..
M
r
O
F
N
m
•�
[�-i
M
v
a
N
m
O
Ol
pi
t!')
P
N
ID
i
ixc
�
,~y
E
N
N
F
M
P
m
M
•-t
m
01
U
O
O
U
P
O
N
tD
O
U
ti
'�
r
oz
a
-
z
O
y
�••�
h
O
1(14
h
r�
a
W
*
O
O
O
O
O
O
o
p
O
o
q
r.
9
o
O
o
O
O
>
Q
*
o0
O
O
O
O
o
O
O
o
O
W
c�
a
*
•
C4*,,
Z"
.0
0
0
0
0
C.
0
0
0
0
0
0
a
*
.a
*
a*
0
o
0
o
0
O
0
o
0
0
0
0
0
Cl
0
0
0
0
0
0
0
0
0
0
0
0
N
N
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
*
O
o
0
0
0
0
0
0
0
0
0
o
O
o
o
o
0
0
.
0
0
0
•
\ 0
*
O
O
O
O
O
0
O
0
O
O
O
O
O
E
W z
a o
*
*
o
O
o
0
0
0
0
0
0
0
0
0
0
0
0
0
J
F
*
O
O
O
O
o
O
o
o
O
p
p
O
o
RC
O
O
CJ Hk
R'
'R�
C
V'
V•
v
eN
C
cT
c
c
x*
r*
a +
'a
*
o*
z*
1
U x
*
,N-f
N
N
N
.�
N
N
N
N
' 1
H E
E a,
*
*
m
q
m
m
.-1
q
,y
q
'i
m
..•1
q
,Ni
q
,Ni
m
U
*
*
LD
a
•Y
*
O
0
o
O
o
0
0
o
O
E4
0
oO
0
0
a F W
U) W
+
O
O
O
O
O
O
o
0
0
o
O
V) F
w q
f
ul
7+
*
N
rn
ri
h
rn
H
Nr
N
q
N
r
N
a W
Cra
u'7
O
I(')
O
t0
O
tD
O
tD
O
l0
O
to
O
O
lD
O
M
O
M
f
H
*
$*
OD
o
c
o
o
m
Cl
m
o
m
O
fp
o
ODo
m
O
o
m
r
O
o a
rzi a
o
a
"
a
a
a
a
a
fu
0
^� W 4
c7
*
.�
C.
o
0
0
0
0
Sp W C
' U Q
A
W k
*
T.
X11
r
c
m
M
N
Ln
61
%D
r
r
01
N
J W
h
'~pM
.-(
rn
rn
r-(
m
M
m
tD
.-i
m
an
.--I
.-i
v
ON
v
q
N
NV
.�
rn
WaQ*
O
O
(1
M
•a
M
to
M
r
M
O
M
d•
ZD z>
x*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
m
fn
O
O
O
O
O
0
O
0
O
0
O
0
00
C
*
1 W W F N
f
*
O
a
t!)
r
N
Ol
H
N
e
r-
N
z
W
*
.r
M
N
r
fT
O
'y
1... g fn T F
•✓
*
fr7
fh
M
M
C
tl'
Q'
C^
V'
U)
zuM,
(P
1
m a £
*
0
0
0
0
0
0
0
0
0
0
0
F q
c'
*
r
CO)
M
M
M
W
*
M
M
M
M
M
M
M
02pq
F O
*
U s I
4
*
*
M
•••�
O
Lr)
CA
O
0)u1
co
q
t0
a N
rC'.,)
M
Ln
N
M
O
r
tp
F C N
a
4.
q
r
N
N
N
c
c
q
m
m
m
m
r
a ..
O
0
O
OH
r
O^
O
O
lw
O
Gly Cal
*
N
0v'
CN
M
M
0)
N
a
N
O
Cl
CO
W,;a
co
rn
N
r
N
M
'
in
N
N
c
OL
*
M
M
N
N
N
O
+
*
�]
C-.
'm '
*
Nh
h
c
lD
M
1D
M
Lo
M
M
'D
M
W
r4a
.
rn
rn
q
r
m
r
r
rn
a
UJ
c
C
a
o
C)Ln
rn
H
*
o
o
.
o
o
0
0
0
a
0
0
0
*
t
z
O
*
q
lD
tD
N
^
In
rn
c
M
m
O
n
{
H
£*
W*
m
n
Mm
N
Q.
N
c
M
M
u9
M
co
O
O:
.a
O
rn
c
a
H
cn
M
M
.�•
y
a #
.N-i
.M-f
,M.am-�
fM"•
f+Mj
a
•
0
�
^
a
O
O
p
0
0
0
0
C
O
O
m
*
0
0
0
0
0
0
J
k
*
p
pO
O
O
O
O
O
o
O
O
w
k
c�
a
k
CL
O w
2
*
*
o
O
O
O
O
O
O
O
C
O
0
a
*
*
0: *
0
o
0
0
0
0
C.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
N
N +.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
*
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Oo
,
O
O
O
'
W z
*
O
O
O
O
O
O
O
p
p
0
CD
•
N
Q D
*
*
O
O
O
O
O
+. O
O
O
O
0
O
CD
O
*
+
o
�
o
O
O
O
o
O
O
O
O
O
E 4
*
�
Ir
p.
0
Q,
o
N
p
N
o
N
0
N
El *
F 41
a *
W*
o
tv
H
%D
H
r
0
O
o
*
H
"i
U7
H
N
H
LOO
Iq
O +.
zCN *
a
L) O
y
14
ti
cliN^1
'4
.
r
o
r
o
N
m
m
m
m
'.
H E
cW
*
*
m
m
m
m
r
r
m
N
�
o
to
Ln
to
to
%DF
H W
*
H
H
H
Ln
H
U
+.
a
a w
*
+.
*
c
0
0
0
0
0
0
0
00
0o
c
n E-
CF) W
+
0
0
0
0
0
0
0
0
0
0
0
H
t .a ul
UI
+
c
v'
v
H
n
"
H
C
t0
m
S
'n
u7
S
N
rn
O
r-
is
r
N
O1
t!)
a
�.N-i
I*
z Lasj
L- a
r
O
r
S
r
m
Ul
O
Ol
N
N
O
V'
O
to
0
v'
w
r
N
S
.P{
S
v�
IL
z Q
*
O
O
S
O
O
O
O
O
H
O
N
O
N
O
N
O
Ln a
W fY.
*
O
p
U7
0
N
U)
to
LO
to
O
N
to
N
U'i
O
O
0
0
0
0
0
0
0
H
W 0:
0
W*
>*
r
N
to
N
u')
to
Ln
to
r
v
r
ko
W
S
ON
1D
m
I
a Q*
N
to
H
H
N
H
H
C'
m
m
Lr)
s -I
Cl)
'7'
M
m
O
m
m
fn
W W
*
r
a
H
r
n
N
S
S
C
c
CO
N
r
c
r
n
N
DM
.'L
V3*
H
Oo
H
oo
".t
O
H
.--t
H
ri
H
N
.-1
U7 H
.k
O
O
o
O
O
p
p
O
o
O
W W F N
ELI
.4
*
S
°�
r
r
v'
Mc
M
O
3 H N
*
a
c
r
S
H
l0
O
O
a
'
2 L Ea
>
*
°°
m
m
w
o
r
r
r
r
O 0*
n a:t�
r_
«
V
O<
*
M
rrt
m
M
M
•--
m
O
rn
S
rri
O < W
z C
E s O
*
"'�
O
N
n
M
r
S
N
O
O
ts] ["' tz (V
U7
�
1D
H
v
.M.i
m
N
m
to
M
l0
F N
C
y W
a
*
*
r
•
O
r
m
H
p
z V H
S W
O
p
c0'
n..
tJ
c
�
,
i
'�
�i
`'1
,,�-,
o
,Ht•,
O
tin
p
tNr,
O
EL]
a
*
•-•�
,_,t
1
„O,�
O
O c Q
O
M
to
tc
ID
m
ao
o
w`A
r.
-4-t
to
m
�
Ln0
O
«
j
*
V
C
*
an
O
M
r
H
M
O
m
S
a
O
m
O
N
O
r
O•
H
r
N
•�
O
N
bl
N
`.;
C
'-1
O
N
C'
N
C'
c'
L:
e•
to
S
Qr t
'
W
O*
H
N
O
c
O
c
p
gym„
Ln
aO
O
to
O 1
O
.y
O
e -t
O
O
.•
O
f1
*
HO
o
f+J
Z
*
*
H
a•
n
O
o
r
r
r
r
M
H
O
rn
O
N
N
CL'
N
C
N
m
O
H
H
7
a
O
F
W*
M
C
n
v'
c
M
N
N
H
r
H
M
N
U,
M
t0
d>
N
Ln
Q
U R
M
n
O)
E
O
H
N
[-.
N
H
H
*
H
H
H
h
h
a
a
m
o
0
0
0
0
C,
0
0
0
0
0
0
>k
a
#
O
p
o
0
0
0
0
0
0
o
O
W
k
LD
a
a
z w
0
0
0
0
o
O
o
0
0
0
0
a
#
a
#
#
a#
o
o
0
0
0
0
0
0
0
O
0
0
0
0
o
O
o
0
0
0
0
0
0
0
0
0
0
N
N #
o
0
0
0
0
0
0
0
o9
o
0
C
0
0
0
0
*
O
O
O
O
O
O
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
;.
#
O
O
O
O
O
O
O
O
W z
k
C
O
O
O
O
t
<
r A
k
+
O
o
0
0
0
0
0
0
0
O
Cl
Oq H
#
#
*
\
#
#
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
•
HO
41N
k
N
N
N
N
N
N
N
N
N
N
x k
F k
O.#
W k
O
N
N
O
`�
O
O
O
O
O
Q
in
>n
v'
O
O
O
•
�k
*
~
H
�
H
N
N
N
O
N
O
N
O
N
Ok
zk
a
#
•
d
E
#
m
m
U
Co
t�
m
m
m
m
m
.
iU•I
m
U
umi
�
Lr)
N
u�
to
,ten
H W
#
N
•
U
k
*
r
i
W>
#
00
O
O
o
O
o
o
O
O
O
O
O
z
a W
#
O
o
0
0
0
0
i � 4
y W
*
O
O
O
C
O
O
Cl
O
O
O
O
a �
U)
1+
*
*
a
N
O
in
to
0)
-W
01
N
M
N
N
LO
a
o
r
2
p
O
'•'�
N
c
h
.--i
m
r
CV
O
m
m
N
.--,
W
m
kD
LO
1.0
H H
a W
W •
W#
x k
N
LO
O
M
O
Mz
O
'v
O
Q'
O
to
O
to
r-1
�0
0
W a
#
p
to
0
to
0
to
0
to
to
to
to
N
to
O
l0
O
.-t D
C9
*
o
p
0
0
0
0
0-4
to a
W a
!f U O
O
W k
>*
v
to
O
c
N
N
c
N
M
O
r -t
M
v'
O
IO
M
H
O
O
T
M
u•)
m
•--i
m
tT
M
c'
t0
tT
O
m
M
01
W
O
w
c
0)
an
0)
u'I
M
m
m
J� [y C
W W
#
m
m
m
r
m
.•-i
m
m
m
M
r
t0
t0
a
�O
N
Ln
O
to
O
> x
o
00
0
0
00
0
m
0
0
r
0
0
r
o
ntn
00
o
0
0
0
0
0
0
0
o
O
o
0
0
0
m
*
0
0
0
o
p
W W F N
#
N
N
C
N
m
< H H 2
W
#
M
V`
.-1
lb
V1
to
N
r-1
3 Co H
I `^ F
#
#
h
r
r
r
r
r
0
0
#
Go C
#
*
O
O
O
O
O
O
O
O
O
O
O
• WF m
#
6,
6l
ON
Q1
m
6)
tT
,may
'�-I
01
i.� z
#
ly E,
U C I
Q kO
#
#
O
O
o
.Ci
Ch
�
Co
,-.�
O
m
to
W Cs. N
m W
~
N
v'
Co
0)
O
r-
ti
a
c
m
to
i-• C N
.]
k
#
N
N
N
M
M
C'
c
c
2
*
O
to
O
to
O
en
to
tf)
In
C
to
l0
117
D F W
*
H
'i
Oy
O
0
O
O
U) W= p
3
O
#
#
O
N
OO
c
�n
m
c,
m
o
E
t
:i 1
N
to
a
to
v'
.•a
l7
C
a•
to
r,
Co
�
O
m
Q:'�%
#
In
"
N
Co
17
H
N
W W
#
m
m
m
0)
r
m
0)
-
O
to
l0
t!l
47
W
l0
r
0l
O
m
m
p
'M1
Z W
O *
O
O
O
O
O
O
N
O
O
U7
O
N
01..
to
10
G
H
En
*
C)
O
O
O
O
O
to
O
InC
:n
O
N
ti f
O
C
N
O
N
O
c
O
a
p
C
��
C
to
O
ul
C
U•f
O
O
.�
O
O
O
C;
H
O
.Oa
O
O
.O•i
C t
r)
••-t
h
N
h
M
h
O
c
c
�O
O
m
,0
m
O
Co
v'
N
01
.-i
.-t
N
l0
m
to
m
r
1
�
O
£*
.-t
r
O
h
q
�D
�
M
m
r•,
h
m
c
M
h
to
FH-
a#
H
N
ti
M
Co
M
N
W
O
�
m
to
m
N
O
v'
in
IO
M
t9
O
W
tp
rZ
W#
l0
.ti
cc
.--i
ONN
m
O
.-1
N
N
l0
Q
tf)
N
10
N
t"t
m
a #
.--t
•--I
.�
.-i
,moi
�a)-1
N
H
N
14
#
N
N
VA
N
11
� 4
LO
a
o
0
�
w
*
0
({ 1
W
Il
V
0
m
*
L�
Irl
W
>
*
0
0
W
�
t
rt
O W
*
0
0
2 H
a
k
a
a
o
0
0
N
N r.
k
O
O
O
•
k
2
o
0
G\7
+
t
A
«
0
0
m H
*
k
*
o
0
S
\
k
O
O
•
� p
N
N
*
k
Ek
a k
o
L1 *
o
Q k
O
�
k
k
N
k
O*
z*
a
U
4clWo
co
H El
k
n
n
J
F P.
k
a o
*
t)
k
*
C7
W >
*
o
0
0
F W
to W
k
m F
k
M VJ
*
N
V.
a
o
0
0
a W
W«
H H
W
O
N O C
W a
O
O
u') a
41
W t.
a
N
U G
o
Q E
a
4
N
LO
acn
W Wk
ko
0
> z
W k
0
0
0
c I
a caa
W W E N
k
m
E E= W
Q.' H H z
a
W
*
t
m
$ En H
>
k
l0
1p
zc�a
co
r s
*
0
0
\O _ y
ol
r W ••
ot
*
9 C
k
k
j
�
E o
k
-
*
O
E
N
a
*
kD
ko
H
to
Ln
*
O
O
Qco
3
*
m
N
w a
+
OD
co
o
*
k
.n
F
a >
Ln
0
tD
a
O k
c
O
c
,>
W
0. *
7
O
to
H
*
O
O
k
4
J
ry
k
*
V
z
k
[f)
U
N
P
F
a *
in
Io
El
N
N
a
U)
a k
k
VA
N
11
� 4
..R
W0
�
(N
2
N
A'
({ 1
W
Il
V
L�
Irl
W
E
a
w
ha7aha a a acl�aaarxaaaaaaaaaa
ID z
S
s
H
O N c t0 co C N v �C co O N c l0 CO C M :^ t` Ol M tf7 '� Q1 r -t M LR '� Ol .-i M
M 10 61 N �'1 Oi N v; CO N Co -4 c r- �-. v r- O tr` Q� N C O N r O H M S � S .� M ul r C H a �O W O N c lO� O N
N aC .-� �: 67 .-1 c t` .-� v 1� O M n C M t0 O M l0 01 �N O O
DD 01 .--f M c tp r S e--1 N c lG � M m 'D N co Lo .--i ✓` c C l0 N T :f1 .-. O �• O r ^? O+ to N q u': N r c O tO M S all N O v' >,D N b
t` t` O O m O W C.. 61 01 01 Ol 61 p� O (V a• V1 Il'I 1� M O N M 1n O m O H M U'1 l0 p O� eti M V' t0 N 6� .-i N C' N io
N N M M M M M M 0 c^ M n a• M M u� M 'T N N Mun � N V lkD
0 10
N .-t 'I .-i .-1 ri H N .4 -1 .-i N H r-1 " .-1 e-1 N -4 .y N i--1 e4 e-1 N H N
crzaC�aa axxaaa
a a a
W
H
c 100.^C Nv'10 bONc ID +.ONClObONNrTe-r rfmr 61H Mu'ar b.�Mlt)
. . . (�. . . . v. Q. .-. a' r O c r O M t0 O M t0 N O B1 N afl N N N b '-I C b .-I c
�n.-rrc O bM 0) Ln thObN41Lnr-trOlpMcr, Lo .y.• .
�� N•C W r OI O N C "n r 01 O N c 1!) r W O N M� r b O .-+ M ul tp O� O ti M to 1p
�rrr r rr Wb ODbbW mma%p��p�000000H �w011MNN
ri � "'� "'� ON CIN N N N N N NNNN N N N N N N N N
m
0
N
0
01
7
to
Ln
O
N
o+
W
Ln
0
O
M
N
Ln
0
0
r
0
N
O
N
O
.-a
Q1
O
r-1
O
u1
r
CD
0
r
0
rn
N
0
0
M
c
0
0
r
N
c
0
0
.-a
Al
o
[U X
z W- Woo a
H W
Ox W2HC?w0tn
EFwa�" Jwz
awU w��t� UN
> W t C)v) CZO
w0� L)tgC —gecl,
a a r a a z z
w��OC:iJ W Ea
H U EE >+ to W W [mac.
W H C' w U' W (D
G: .40
> N E N W Z O 4 7..
U)azxawznatco
w[iiHUSw^ W Uo7SH
E O II 11 11 II II II II 11 tar
OONU3S wX O]?+tp
E0
0 10
'
3
3
3
U
U
f U
H
c 100.^C Nv'10 bONc ID +.ONClObONNrTe-r rfmr 61H Mu'ar b.�Mlt)
. . . (�. . . . v. Q. .-. a' r O c r O M t0 O M t0 N O B1 N afl N N N b '-I C b .-I c
�n.-rrc O bM 0) Ln thObN41Lnr-trOlpMcr, Lo .y.• .
�� N•C W r OI O N C "n r 01 O N c 1!) r W O N M� r b O .-+ M ul tp O� O ti M to 1p
�rrr r rr Wb ODbbW mma%p��p�000000H �w011MNN
ri � "'� "'� ON CIN N N N N N NNNN N N N N N N N N
m
0
N
0
01
7
to
Ln
O
N
o+
W
Ln
0
O
M
N
Ln
0
0
r
0
N
O
N
O
.-a
Q1
O
r-1
O
u1
r
CD
0
r
0
rn
N
0
0
M
c
0
0
r
N
c
0
0
.-a
Al
o
[U X
z W- Woo a
H W
Ox W2HC?w0tn
EFwa�" Jwz
awU w��t� UN
> W t C)v) CZO
w0� L)tgC —gecl,
a a r a a z z
w��OC:iJ W Ea
H U EE >+ to W W [mac.
W H C' w U' W (D
G: .40
> N E N W Z O 4 7..
U)azxawznatco
w[iiHUSw^ W Uo7SH
E O II 11 11 II II II II 11 tar
OONU3S wX O]?+tp
L •J 11. }
- '�i _ r -�� _- '�_'��_i� �+•L-tip--- -- II�_�J�i 'I}I�}!_ -� :r-j�� ti '�I'-�_ __ _
' I III �• .__ —
—� —L V ups
II I
ji
�1L .I4 —'r— r �`1 —1 'r ' •h'1 f.r. �� —,— ti - r•�L
I. -,� . r i .- ti.�—IL's_. ;� ,� ,� '" � -' J- •�gr „-ti ..; - uC,; F.
,y' r _ '� ry. ••ti �r f;u � L �r-R �r~I�r.a� '�� ��, } �I IL Jti
_ f ti
M
W
a
- a
r
;T�-
w Cr
J j
LL
i�
0
r
O
N
z O
O
0
F
wo
W
P
O
ZO
U
+
4
>
z
.1c)
H
O
O
I
U) O
W O
W
O O
J O
W
H
O
H
O
[n
I
I
g
0
Cir] .n+
G>7 o x
a
w�
wo v
I
.-1
z
2
O
•
H
E
W
a
w
'
a
* w
H
en
M
a
i
z
w
z p
z o
FO
pof
1
a,
a
o
In
o
L
z
w
U')U
F
p
y
fA
W
N
43
*
F
*
E+
*
F
* w
L) v
N
W
E-
to
E
N
!n
W N 1Z•1 H
1
a
*
as
*
a
*
to 2
W
CN("D
n
ako
a
o
>
za
>
>maoc�
zv
zz
w
H o
w o
r 1 o
w o 00
H 2 H
ETI
o
* o
mu�
u� a
�
m
* n
r w>
wz
a
c'
0 O
O N
O
z w
o a 2 a
E- O
H N
F O
H a
F O
W H c O W
b4 F O H
a H
EH
fir+
G:�•-+E W
wn
a
m
o o E w
0 F
E
4
E Eo
x 4 O to
W q
E U
a
1:
fl
E
U
Q
U Q
E Q W
co
E
C"i5
aj
a5
mz
E3
y
v,
U)0 *
U 41
y
H
N
w
y
N
r7
'u7 N
Q.
EQ •
0
O
O
O C O
s
s
c
E.
W H a
W
w
w
63
W 0
I
a
o
0
0
a
*
0
0
0
W
*
a
a
Z H
«
o
0
0
a
*
N
O O
O
O
O
N
.*k
*
*
O Cl
O
O
O
*
W 2
ie
p
p
0
O
0
1
41o
Q
«
O
p
O
Cl H
*
\
*
O
p
O
p
O
O
N
N
N
x A
*
•
x�
E *
O *
CA
*
O
O
a
*
C14
cli
N
H E
H
i
C�
�
o
0
0
U
*
Z!r1
�+
W >
*
*
*
O
O
O
O
fw
W
t
O
O
O
0
*
H Z
a
7+
iM
M
m
a w
N O
N
O
N
1 a
m O
CO'
o
m
LO O ._I a
GZA a
p
cr
Q•
W)
W UIq
O
W
W ,� OO*
c
m
'
U
o
r
W W
a*
O 01
O
OOl
p
1
a E W
O a E
x
W
O o
0
0
0
U) w
m*
o
W
I
H N si
*
°
�
N
3 m E
14
*
.•y
W
*
N
N
N
O 5H
O= 5
m
r Fa
£
am
m
m
I
O 3
t
I
r -i
W U)
U
O a�a
Z a a
E3m
IH
UrC ao
0
0
0
rn
a ru 1
*
aN
w
N
a
aaa,•�i
a
s^w
x
�
co
co
m
u
a.
o
0
0
O
ti
*
n
Z o F
Q
Lu 00 O
3
*0 -k
O
o
0
w
t`
`°
an
E.
Ix
O
W
*
x
1\
W
E
*
c ON
N
N
O
N
i0
W W
> .a
+
O*
M O
(n
O
M
0
M W
U)*
T O
a•
C
c
?~
'I'
OO
0
O
tsj
*
+
o
o m
m
o
�
_
t-
m
O N
00
N
N
q•
N
N
o
N
O
E
\ *
I
a a
a
co
. . . . . .N
WL1 . . . . . . . . . . a
0
W
r
a.
0
m
.a
o
N
W
10
c
0
a
M
• a
0
In
Ln
ri
� M
0
m
n
o
rn
U m
U c
U
IT
0
r,
rn
c
0
H N
H a'
• H
In
. . . . . O
O .-. M co M ri N M Ln W r M 0 1-1 M cl. li 7 r W 01 .--1 N M C l0 [� W O .••1 N C u tD W 01 O N M a lD I� W O .--� N G'
O S 1O r tD N c M M N- O S W 1� O N c M N .-•� O O S W 1` l0 N C eT M N O S W r y l0 C' M N S
.O� OON .-•1 eN-{ NM Ln
"o co
r•1 NW HS e•{ OO NN M.� rv•I VHr Nl .(-�-1 NW .S--1 eO-I Nti *ritM W Ornt�
N vN tD fh W S O .I N M!fWS NO O Wr ON M C00 0 0 0 O C OO NNO O8 -�
OOOOOOOOOOOOO OOOOMMOMO 14 -1r 1-1 O 4 rd Oy O- N Oi ON
E-.
r
a
E-
U U
X
W
W
E-
H H
O
a
a
1 W
w
H
O
z
s�
c
a
c
ti
CO H <
> > 5 W F
_]AW00 a
w�
>wRt�oc�n��o
apcw a E+a W
c�vwya
�al-.aTc�wc�
v]i-�wc7�✓ oay
O If II II II p II 11 II
I
04
E
N
'- G 59
-_----10-------------�r-_-__--N--_---N ___-_ i
II u N
`j
-
o f i I II I
• � I - w II to
1 -- L
_ AVENUE
.OLEANDFR
— � it : _ _. .... _ _. - - •_ - - - - - - it-- .._ I
-----------------
-------------
--- �F------- SHEET 3 N 1 I o N
iu 1 SHEET 2$, N I 0 I I m
m
II C=I I D I N
I C Ln 21 I 1 0
m > 255-061-t3 M I 1 J
N~ I D - ._. �I Z I
O = N 1
D-
°'i I s 1
z 2s5-oe1-12 1 m
I !' N I Z 1 t ti TRACT N0. 8786
1 �_-•-__ - -- _. . t0'71 a V' N N I i m Me 119/71•-72
1 1 1 +I 1 O
2s5 -on -,t a
SHEETSHEET 9'
1T J—--_ _ ----
P ------ '1Q �• '
N" l
N O
'{i i• 255-0M-10 I , I I I I C N 1
Ilr I 1 _— g I
CYPRESS AVENUE -
255 -05,-27 255-051-26 256-M-25 _
y III CYPRESS ,AVENUE �. — --- -- -_ _ _. _ - - •- - _ - -- -1- -
_.. - - _
I �
_ N - II �nJ
I
a N N ! , 1 I I I I 1 � \1 1 I .Z-1rl
N
12x1 !i I INI f`-W{rY �-_� u u
z 1 I 3 I e$ w $ o I• m I i 1 1 I {mill
1yi li Y a W�Y -- W GI 4' I
y r I -+ -- -- �w _ �I
m IN" 1 \\ 255-031-003 0
U
_ ILA TRO A -
w !n - _ �__� ! '� - 255-031-004 f syl
EPP I /T 11 Y j --1 255-031-005
I m _yam
i I -� r I % �� � _ _ -- yc � �� �CQURT I m _ ! . . 255-031-006 -•
D 1 255-031-025 r 1
I
rr o I IL -_1 I I I I I ` l 1 H-- ! PARCEL�20
SAFR IS EE ESE 1 I -- PPMB 2433
tn tnoom ! o�� I 1 - �q -J l--- - - -- - - - I
''f^� ; r---- Iz— e� 255-031-025
V • m A 1T1 Z O4 a .� - - --Kr- -'j -' — ! I I C \! PARCEL I
�l IL't a :� I \ i _ 1 I 1 1 I 1 P.1� NO 20
D A i 1 i -- I I i i �1� f I 1 /. nj�`��. _ 1 I 1 I l I PMe 243 --
O O
z l o � --
�•n ?_� Z --n 1-- I u 1 �I I I 1 \�01 1 1
• 1' Z >: N I i I----__- _ -- —_ - _.. __..... . u w
N 1 11 --
.. mC3M .'SOIR71� I uU11 !r�� _ � T 0 0 0 4 4 I
MCA
�'p-0 '� o m m I 'i !I / 1 I I I I I 11 \�• v ao a o. �' w
n D>
M �TO7R1� JI
N -� a _ - I _. _ --� -
O m y i SHEET 18 1 JUNIPERI I AVENUE I � I � uejlNO,
% 1144 255-041-001
� 2ss-oa,-001
Ri D ! I ACT N0. P862
Z ••----- - - -- �- - - X1111 I I I 16 I �I I I � I I I � I �__ �!� --•-'
P-•-
1 �
EXrSTDNG HYDRTD"LOKr--lY
,
(IPARTiIAff REVffSE 1')
1301
San Bernardino County Rational Hydrology Program
(hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 02/04/05
--------------------------------------------
____________
FONTANA / LINE DZ -5 EXISTING HYDROLOGY (PARTIAL & REVISED) --
100 YEAR STORM
JN 05086-000
----------------------------------------------------------
Hall & Forman, Inc. - SIN 950
-------------------
******* Hydrology Study Control Information
**********
----------------------------- _ ________
------------------
Rational hydrology study storm event year is 100.0 -
10 Year storm 1 hour rainfall = 0.930(In.)
100 Year storm 1 hour rainfall = 1.350(In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 718.000 to Point/Station 719.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Initial subarea data:
Initial area flow distance = 990.000(Ft.)
Top (of initial area) elevation = 1085.000(Ft.)
Bottom (of initial area) elevation = 1075.000(Ft.)
Difference in elevation = 10.000(Ft.)
Slope = 0.01010 s(%)= 1.01
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentrations 20.775 min.
Rainfall intensity = 2.551(In7hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.696
Subarea runoff = 8.877(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(In/Hr)
+++++++-l-++++++++.+'}'++++++++++++++++++++'f'++'F'++++++.++++'I'++T....+... +...
Process from Point/Station 719.000 to Point/Station 709.100
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1075.000 Ft.)
End of street segment elevation = 1068.000(Ft.)
Length of street segment = 660.000(Ft.)
(50z
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown. (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 13.315(CFS)
Depth of flow = 0.486(Ft.), Average velocity = 3.421(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.546(Ft.)
Flow velocity = 3.42(Ft/s)
Travel time = 3.22 min. TC = 23.99 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.340(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.678
Subarea runoff = 6.978(CFS) for 5.000(Ac.)
Total runoff = 15.855(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 10.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 15.855(CFS)
Half street flow at end of street = 15.855(CFS)
Depth of flow = 0.513(Ft.), Average velocity = 3.572(Ft/s)
Flow width (from curb towards crown)= 20.897(Ft.)
++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 709.100 to Point/Station 709.100
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in norgtal stream number 1
Stream flow area = 10.000(Ac.)
Runoff from this stream = 15.855(CFS)
Time of concentration = 23.99 min.
Rainfall intensity = 2.340(In/Hr)
Area averaged loss rate (Fm) = 0.5783(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
.f...+..h i..f. {..}. ..}..... ...{.,.'..f..F {. i...t..+..f..{..f. ...'..{....}. ..'..{.. T.{..i..'.I....i..'F..f..}.."!... .F. .. . T ....}.}..b..'f..i.+
Process from Point/Station 707.000 to Point/Station 707.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
I Jvo
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 22.42 min. Rain intensity = 2.44(In/Hr)
Total area this stream = 57.50(Ac.)
Total Study Area (Main Stream No. 1) = 67.50(Ac.)
Total runoff = 77.94(CFS)
++++++++++++. .....++T+++++++++-{'+++++++++. .++++++....'F++++++++.. }. T 7.}. 1.
Process from Point/Station 707.000 to Point/Station 709.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1072.000(Ft.)
End of street segment elevation = 1069.200(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [21 side(s) of the street
Distance from curb -to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(ln.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 83.023(CFS)
Depth of flow = 0.735(Ft.), Average velocity = 3.987(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 3.39(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 31.976(Ft.)
Flow velocity = 3.99(Ft/s)
Travel time = 1.38 min. TC = 23.80 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.040
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.679
Subarea runoff = 25.772(CFS) for 7.500(Ac.)
Total runoff = 103.712(CFS)
Effective area this stream = 65.00(Ac.)
Total Study Area (Main Stream No. 1) = 75.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 103.712(CFS)
Half street flow at end of street = 51.856(CFS)
Depth of flow = 0.784(Ft.), Average velocity = 4.243(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
ljVA-
Distance that curb overflow reaches into property = 5.86(Ft.)
Flow width (from curb towards crown)= 32.000(Ft.)
+ T ++ T+++ + + +
.............................."+ + ...........................
+ + + + + + ^'+ + + + + T + +T + T + + + . + T . .
Process from Point/Station 709.000 to Point/Station 709.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 65.000(Ac.)
Runoff from this stream = 103.712(CFS)
Time of concentration = 23.80 min.
Rainfall intensity = 2.351(In/Hr)
Area averaged loss rate (Fm) = 0.5783(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min)
(In/Hr)
1 15.855 23.99 2.340
2 103.712 23.80 2.351
Qmax(1) _
1.000 * 1.000 * 15.855) +
Qmax(2) 0.994 * 1.000 * 103.712) + = 118.909
1.006 * 0.992 * 15.855) +
1.000 * 1.000 * 103.712) + = 119.540
Total of 2 streams to confluence:
Flow rates before confluence point:
15.855 103.712
Maximum flow rates at confluence using above data:
118.909 119.540
Area of streams before confluence:
10.000 65.000
Effective area values after confluence:
75.000 74.921
Results of confluence:
Total flow rate = 119.540 (CFS)
Time of concentration = 23.799 min.
Effective stream area after confluence = 74.921(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.578(In/Hr)
Study area (this main stream) _ - 75.00(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from'Point/Station 30.100 to Point/Station 30.100
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil (AMC 2) = 67.02
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 23.80 min. Rain intensity = 2.35(In/Hr)
Total area this stream = 24.39(Ac.)
Total Study Area (Main Stream No. 1) = 99.39(Ac.)
(jay
Total runoff = 38.87(CFS)
.................
. .'{" l i...I .. .' ....i ....F' T."."'.. ...... . .'F i".'L...... ...} ....1.. T 111. . T.. 1't .1 T...
Process from Point/Station 30.100 to Point/Station 31.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1061-800 Ft.)
Downstream point/station elevation = 1055.800(Ft.)
Pipe length = 650.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 38.870(CFS)
Given pipe size = 39.00(In.)
Calculated individual pipe flow = 38.870(CFS)
Normal flow depth in pipe = 19.27(In.)
Flow top width inside pipe = 39.00(In.)
Critical Depth = 23.80(In.)
Pipe flow velocity = 9.51(Ft/s)
Travel time through pipe = 1.14 min.
Time of concentration (TC) = 24.94 min.
+..}..}..F .r {.F .j. i..l.. T i. T 1.}. i. ..}. ...f- .{...{. i..+.'}.' f...._i. ..t...f... i... . .. ..}...t. }.F. . i. i. i..i..'....F...f.. T ..}. }
Process from Point/Station 31.000 to Point/Station 31.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 24.390(Ac.)
Runoff from this stream = 38.870(CFS)
Time of concentration = 24.94 min.
Rainfall intensity = 2.286(In/Hr)
Area averaged loss rate (Fm) = 0.5780(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
...{..i..}.i.i...i...E..T.f.i..{. j...}........'.....}..F....F..{.'F.......'+...f..{..F.....i..}.i..f..i.....E .Fi.{....}'.F.i.'f..
Process from Point/Station 709.100 to Point/Station 709.100
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 67.02
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.351(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 23.80 min. Rain intensity = 2.35(In/Hr)
Total area this stream = 50...61(Ac.)
Total Study Area (Main Stream No. 1) = 150.00(Ac.)
Total runoff = 80.67(CFS)
{....{...f...i....i....F.}...+.{..F..F.}..}...F..F.f..F...}....f i... ..{..E. . i.'i..i. i...{. ..F..E..i....F.'.f 'i...{. . .'f."{.. i. .'i.
Process from Point/Station 709.100 to Point/Station 710.100
**** STREET FLOW TRAVEL TIME T SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1086.100(Ft.)
End of street segment elevation = 1084.000(Ft.)
Length of street segment = 650.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.890(Ft.), Average velocity = 2 939(FFt�s�S)
Warning: depth of flow e d
xcee s top oz curb
Note: depth of flow exceeds top of street
crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics
11.19(Ft.)
at midpoint of street travel:
Halfstreet flow width = 32.000(Ft.)
Flow velocity = 2.94(Ft/s)
Travel time = 3.69 min. TC = 27.49 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)=
Rainfall intensity = 2.157(In/Hr)
0.578(In/Hr)
for a 100.0 year storm
Effective runoff coefficient used for area, (total
area
rational method)(Q—KCIA
with modified
) is C = 0.659
Subarea runoff = 20.702(CFS) for 20.750(Ac.)
Total runoff = 101.372(CFS)
Effective area this stream = 71.36(Ac.)
Total Study Area (Main Stream No. 1) = 170.75(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 101.372(CFS)
Half street flow at end of street = 50.686(CFS)
Depth of flow = 0.902(Ft.), Average velocity = 2.972(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 11.78(Ft.)
Flow width (from curb towards crown)= 32.000(Ft.)
.}. i...}..}... j... . i..}. .'F.'f. }. t f++.... i...F.'}.. .....'F..+..}...' j. "f.'{... .... .. . "{... .......'{. .'+. .'i. ....E.
Process from Point/Station 31.000 to Point/Station 31.000
**** USER DEFINED FLOW INFORMATION.AT A POINT ****
V
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 67.02
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(ln/Hr)
Rainfall intensity = 2.156(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 27.49 min. Rain intensity = 2.16(In/Hr)
Total area this stream = • 29.81(Ac.)
Total Study Area (Main Stream No. 1) = 200.56(Ac.)
Total runoff = 42.35 (CES)
'E.++.F....}. {. i...F..i...F...F.... ..}.i..}. ..{.'i...F..F..F...{.'f..++++.i ..t... i.•}.i..i....i......}.'f..}.'.}...'i.'i. {. .'}..}' 1.'f. i..
Process from Point/Station 31.000 to Point/Station 31.000
IOU/
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 29.810(Ac.)
Runoff from this stream = 42.350(CFS)
Time of concentration = 27.49 min.
Rainfall intensity = 2. 156 (In/Hr)
Area averaged loss rate (Fm) = 0.5780(In/Hr)
Area averaged Pervious ratio (Ap) = 1..0000
Summary of stream data:
Stream
No.
Flow rate
TC
Rainfall Intensity
(CFS)
(min)
(In/Hr)
1
38.870
24.94
2.286
2
42.350
27.49
2.156
Qmax (1)
=
1.000 *
1.000 *
38.870)
+
1.082 *
0.907 *
42.350)
+ = 80.448
Qmax (2 )
_
0.924 *
1.000 *
38.870)
+
1.000 *
1.000 *
42.350)
+ = 78.267
Total of 2 streams to confluence:
Flow rates before confluence point:
38.870 42.350
Maximum flow rates at confluence using above data:
80.448 78.267
Area of streams before confluence:
24.390 29.810
Effective area values after confluence:
51.433 54.200
Results of confluence:
Total flow rate = 80.448(CFS)
Time of concentration = 24.939 min.
Effective stream area after confluence = 51.433(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.578(In/Hr)
Study area (this main stream) = 54.20(Ac.)
+++++++++++++++++++++++++++++++.++++++++++++++++++++++++++-r+++++++++++
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1055.800(Ft.) --
Downstream point/station elevation = 1050.300(Ft.)
Pipe length = 650.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 80.448(CFS)
Given pipe size = 39.00(In.)
Calculated individual pipe flow 80.448(CFS)
Normal flow depth in pipe = 34.69(In.)
Flow top width inside pipe = 24.46(ln.)
Critical Depth = 33.79(in.)
Pipe flow velocity = 10.33(Ft/s)
Travel time through pipe = 1.05 min.
Time of concentration (TC) = 25.99 min.
+++++.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
)7C)ZS
Process from Point/Station 32.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS **** 32.000
Along Mair_ Stream number: 1 in normal stream number 1
Stream flow area = 51.433(Ac.)
Runoff from this stream = 80.448(CFS)
Time of concentration = 25.99 min.
Rainfall intensity = 2.230(In/Hr)
Area averaged loss rate (Fm) = 0.5780(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
.I..+.1..F..F...F. ..L.... .-'..t..t.+..{....++.....i.++.'....F.i'.{{.++++.t..f.+.t.i... f..."'F'{..{".'}... .'f.{........
Process from Point/Station 710.100 to Point/Station 710.100
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 67.02
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.156(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 27.49 min. Rain intensity = 2.16(In/Hr)
Total area this stream = 41.55(Ac.)
Total Study Area (Main Stream No. 1) = 242.11(Ac.)
Total runoff = 59.02 (CFS)
.{' . {..t..f..{. i.....}.. .....f..{..F....f ..'f.. ... .+. ..}...F. ..1..{' .'F. ...{" ...}..}...E ..i. } i..}. .. T.{ . ..{.'F. }.f. .. i.
Process from Point/Station 710.100 to Point/Station 713.100
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1064.000( t.)
End of street segment elevation = 1058.500(Ft.)
Length of street segment = 670.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manhing's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 59.482(CFS)
Depth of flow = 0.652(Ft.), Average velocity = 3.793(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 27.873(Ft.)
Flow velocity = 3.79(Ft/s)
Travel time = 2.94 min. TC = 30.43 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
1001
Pervious ratio(Ap) = 1.0000 Max loss rate (Fm) 0.578 Y)
The area added to the existing stream causes a (s,/h_
a lower flow rate of Q = 55.096(CFS)
therefore the upstream flow rate of Q = 59.020(CFS) is being used
Rainfall intensity =^l 2.029(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIP_) is C = 0.644
Subarea runoff = 0.000(CFS) for 0.650(Ac.)
Total runoff = 59.020(CFS)
Effective area this stream = 42.20(Ac.)
Total Study Area (Main Stream No. 1) = 242.76(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 59.020(CFS)
Half street flow at end of street = 29.510(CFS)
Depth of flow = 0.651(Ft.), Average velocity = 3.786{ W &
Flow width (from curb towards crown)= 27.791(Ft.)
t++++++++++++++++++++++++++++++++++++++++++++++++++++++tf++++t++++++++
Process from Point/Station 713.100 to Point/Station 713.100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Effective stream flow area = 42.200(Ac.)
Total study area this main stream = 242.760(Ac.)
Runoff from this stream = 59.020(CFS)
Time of concentration = 30.43 min.
Rainfall intensity = 2.029(In/Hr)
Area averaged loss rate (Fm) = 0.5780(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Program is now starting with Main Stream No. 2
.}. ..{. ..F...l. .'.I.... {..{.. .. ...I......F.''.'{..{.'I..f.. .. ...f.'f... .'i.'.t..i' {.'t. {....i.. . i.'i..{..'}.'}.'F. . i. i..'i.. .'i.."..}"{. T T
Process from Point/Station 713.000 to Point/Station 713.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 73.58
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.476(ln/Hr)
Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 28.16 min. Rain intensity = 2.13(In/Hr)
Total area this stream = 20:00(Ac.)
Total Study Area (Main Stream No. 2) = 20.00(Ac.)
Total runoff = 31.00(CFS)
. ..F i..{. t..F....f.i..}..}.i. .......................................................
.F..f....i..'..}...f.+...'+}.. ..}..{....f.... ..'.j...''..{.'}......i'....}'.t.i.... .'f..{...L
Process from Point/Station 713.000 to Point/Station 713.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Effective stream flow area = 20.000(Ac.)
Total study area this main stream = 20.000(Ac.)
Runoff from this stream = 31.000(CFS)
Time of concentration = 28.16 min.
Rainfall intensity = 2.125(In/Hr)
I-JIU
Area averaged loss rate (Fm) = 0.4760(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream Flow rate TC Rainfall Intensitv
No. (CFS) (min)
(In/Hr)
59.020 30.43 2.029
2 31.000 28.16 2.125
Qmax (1) _
1.000 * 1.000 * 59.020) +
Qmax (2 ) _ 0.941 * 1.000 * 31.000) + = 88,202
1.067 * 0.925 * 59.020) +
1.000 * 1.000 * 31.000) + = 89.253
Total of 2 main streams to confluence:
Flow rates before confluence point:
60.020 32.000
Maximum flow rates at confluence using above data:
88.202 89.253
Effective Area of streams before confluence:
42.200 20.000
Effective area values after confluence:
62.200 59.047
i Results of confluence:
! Total flow rate = 89.253(CFS)
Time of concentration = 28.160 min.
Effective stream area after confluence = 59.047(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.545(In/Hr)
Steam effective area = 62.20(Ac.)
+++++++++++++++++++++++-F+++++++++++++++++++++++++t..r++++'F'++++++++++r++
Process from Point/Station 32.000 to Point/Station 32.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 69.19
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.545(In/Hr)
Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 28.16 min. Rain intensity = 2.13(In/Hr)
Total area this stream = 23.35(Ac.)
Total Study Area (Main Stream No. 1) = 43.35(Ac.)
Total runoff = 33.51(CFS)
........................................ ...++++'r"+++++T'{'+++++'{'+++'i'....^- �'
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 23.350(Ac.)
Runoff from this stream = 33.510(CFS)
Time of concentration = 28.16 min.
i61(
Rain -fall intensity = 2.125(In/Hr)
Area averaged loss rate (Fm) = 0.5450(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min)
(In/Hr)
I 1 80.448 25.99 2.230
2 33.510 28.16 2.125
' Qmax (1) _
1.000 * 1.000 * 80.448) +
Qmax(2) _ 1.066 * 0.923 * 33.510) + = 113.426
0.937 * 1.000 * 80.448) +
1.000 * 1.000 * 33.510) + = 108.852
' Total of 2 streams to confluence:
Flow rates before confluence point:
80.448 33.510
Maximum flow rates at confluence using above data:
113.426 108.852
Area of streams before confluence:
51.433 23.350
Effective area values after confluence:
72.982' 74.783
Results of confluence:
Total flow -rate = 113.426(CFS)
Time of concentration = 25.988 min.
Effective stream area after confluence = 72.982(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.568(In/Hr)
Study area (this main stream) = 74.78(Ac.)
++++++++++++++++++++++++tt++++++t+f++++++++++++++++++++++++++++++++++.
Process from Point/Station 32.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I Upstream point/station elevation = 1048.800(Ft.}
Downstream point/station elevation = 1040.650(Ft.)
Pipe length = 1315.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 113.426(CFS)
Given pipe size = 60.00(In.)
Calculated individual pipe flow = 113.426(CFS)
Normal flow depth in pipe = 31.88(In.)
' Flow top width inside pipe = 59.88(In.)
Critical Depth = 36.47(In.)
Pipe flow velocity = 10.71(Ft/s)
Travel time through pipe = 2.05 min.
Time of concentration (TC) = 28.03 min.
t ..... +t... T. -I .... ............. t t -F•++... t....-F++r+.... i-........ .....+..
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 72.982(Ac.)
Runoff from this stream = 113.426(CFS)
Time of concentration = 28.03 min.
Rainfall intensity = 2.131(Ir./Hr)
Area averaged loss rate (Fin) = 0.5677(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
TTT'L T'F'F-TT"F'F'F'FT'!"F'!'......... I'."F"F'F77'Ff"{'TTt'}'T'F'TTT'L.TTTTT
Process from Point/Station 731.000 to Poi
**** USER DEFINED FLOW INFORMATION AT A POINT Point/Station 731.000Y'F�
Soil 'classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 69.19
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.545(In/Hr)
Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 28.16 min. Rain intensity = 2.13(In/Hr)
Total area this stream = 8.42(Ac.)
Total Study Area (Main Stream No. 1) = 51.77(Ac.)
Total runoff = 12.08(CFS)
.{.{..+++++.}..1..}....f...F.+++Yi...F+}... .+.}.i..}.'. -f. -j.....+.1. ...{.....f.{.. ...+.}... ..i -.........j.,
Process from Point/Station 731.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION 732.000
Top of street segment elevation = 1058.000(Ft.I
End of street segment elevation = 1053.200(Ft.)
Length of street segment = 725.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [21 side(s) of the street
Distance from curb to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.797(CFS)
Depth of flow = 0.418(Ft.), Average velocity = 2.391(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.140(Ft.V)
Flow velocity = 2.39(Ft/s)
Travel time --7 5.05 min. TC = 33.21 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Rainfall intensity = 1.925(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.667
Subarea runoff = 0.022(CFS) for 1.000(Ac.)
Total runoff = 12.102(CFS)
Effective area this stream = 9.42(Ac.)
Total Study Area (Main Stream No. 1) = 52.77(Ac.)
Area averaged Fm value = 0.498(In/Hr)
Street flow at end of street = 12.102(CFS)
Half street flow at end of street = 6.051(CFS)
Depth of flow = 0.411(Ft.), Average velocity = 2.358(Ft/s)
Flow width (from curb towards crown)= 15.794(Ft.)
.i. Y. Y ++ T . +1. T "7..........................
..'...t11+T+'t... ..J..+.++'L+.l. �.............................. -�..}.+.� �...t.++++'i....�. T TT++++T T.. l .'..�.
Process from Point/Station 732.000 to Point/Station 733.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ion
Top of street segment elevation = 1053.200(1!'t.)
End of street segment elevation = 1048.800(Ft.)
Length of street segment = 595.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1) side(s) of the street
Distance from curb to property line = 14.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N -in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.616(CFS)
Depth of flow = 0.505(Ft.), Average velocity = 2.948(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.515(Ft.)
Flow velocity = 2.95(Ft/s)
Travel time = 3.36 min. TC = 36.58 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Rainfall intensity = 1.817(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.669
Subarea runoff = 0.320(CFS) for 0.800(Ac.)
Total runoff = 12.422(CFS)
Effective area this stream = 10.22(Ac.)
Total Study Area (Main Stream No. 1) = 53.57(Ac.)
Area averaged Fm value = 0.466(In/Hr)
Street flow at end of street = 12.422(CFS)
Half street flow at end of street = 12.422(CFS)
Depth of flow = 0.503(Ft.), Average velocity = 2.936(Ft/s)
Flow width (from curb towards crown)= 20.394(Ft.)
++++++....++++++++++++++++++1++++++++++++++++++++t++++++++++++++++++.+
Process from Point/Station 35.000 to Point/Station 35.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 31.61
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Rainfall intensity = 1.817(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 36.58 min. Rain intensity = 1.82(In/Hr)
Total area this stream = 10.22(Ac.)
Total Study Area (Main Stream No. 1) = 63.79(Ac.)
Total runoff = 14.00(CFS)
+++++++ .+j.;.._..++T....F'++'I...++++++....+.++'F+'!-....{'++++'}-+'I....++++++....
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 10.220(Ac.)
Runoff from this stream = 14.000(CFS)
Time of concentration = 36.58 min.
Rainfall intensity = 1.817(In/Hr)
Area averaged loss rate (Fm) = 0.0980(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. .(CFS) (min)
(In/Hr)
1 113.426 28.03 2.131
2 14.000 36.58 1.817
Qmax (1) _
1.000 * 1.000 * 113.426) +
Qmax (2 ) _ 1.183 * 0.766 * 14.000) + = 126.118
0.799 * 1.000 * 113.426) +
1.000 * 1.000 * 14.000) + = 104.613
Total of 2 streams to confluence:
Flow rates before confluence point:
113.426 14.000
Maximum flow rates at confluence using above data:
126.118 104.613
Area of streams before confluence:
72.982 10.220
Effective area values after confluence:
80.815 83.202
Results of confluence:
Total flow rate = 126.118(CFS)
Time of concentration = 28.035 min.
Effective stream area after confluence = 80.815(Ac.)
Stream Area average Pervious fraction(Ap) = 0.889
Stream Area average soil loss rate(Fm) = 0.510(In/Hr)
Study area (this main stream) = 83.20(Ac.)
End of computations, Total Study Area = 306.55 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.965
l�)i'D
Area averaged SCS curve number = 66.3
J lio
M Mv
rima -
- Il
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 5.800(Ac.)
Runoff from this stream = 8.490(CFS)
Time of concentration. = 39.90 min.
Rainfall intensity = 1.724(In/Hr)
Area averaged loss rate (Fm) = 0.0979(In/Hr)
Area averaged Pervious ratio (AD) = 0.1000
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (Ir -,/Hr)
1 47.248 31.78 1.977
2 8.490 39.90 1.724
Qma x (1) _
1.000 * 1.000 * 47.248) +
Qmax (2 ) _ 1.155 * 0.796 * 8.490) + = 55.059
0.837 * 1.000 * 47.248) +
1.000 * 1.000 * 8.490) + = 48.032
Total of 2 streams to confluence:
Flow rates before confluence point:
47.248 8.490
Maximum flow rates at confluence using above data:
55.059 48.032
Area of streams before confluence:
35.382 5.800
Effective area values after confluence:
40.002 41.182
Results of confluence:
Total flow rate = 55.059(CFS)
Time of concentration = 31.782 min.
Effective stream area after confluence = 40.002(Ac.)
! Stream Area average Pervious fraction(Ap) = 0.635
Stream Area average soil loss rate(Fm) = 0.383(In/Hr)
Study area (this main stream) = 41.18(Ac.)
+'{-++•}'++++++++++++.++++. }++++'}'++++++++++++++++++++++++++++++++++ }++++++
Process from Point/Station 733.000 to Point/Station 733.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 40.002(Ac.)'"
Runoff from this stream = 55.059(CFS)
Time of concentration = 31.78 min.
Rainfall intensity = 1.977(In/Hr)
Area averaged loss rate (Fm) = 0.3832(In/Hr)
Area averaged Pervious ratio (AD) = 0.6348
++++++}++++++}+}}++'!....-,^+}+++++++i-++++.-I--F++++++++}}++T'Y+++++++++++i" i-'•
Process from Point/Station 733.000 to Point/Station 733.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 67.35
Pervious ratio(Ap) = 0.8760 Max loss rate(Fm)
= 0.502(In/Hr)
)
Rainfall intensity = 2.477 In/Hr for a 100.0 ear
User specified values are as follows:y storm
TC = 21.82 min. Rain intensity = 2.48(In/Hr)
Total area this stream = 92.28(Ac.)
Total Study Are (M 4
a ain Stream No. 1) = 201.63(Ac.)
Total runoff = 165.81(CFS)
....+'{'+'I'+i'+'I"}'i--{-+++.+'F'h............}.+++'I-+'I .... i..........-� .. }+1�........
Process from Point/Station 733.000 to Point/Station 733.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 92.280(Ac.)
Runoff from this stream = 165.810(CFS)
Time of concentration = 21.82 min.
Rainfall intensity = 2.477(In/Hr)
Area averaged loss rate (Fm) = 0.5020(In/Hr)
Area averaged Pervious ratio (Ap) = 0.8760
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min)
(In/Hr)
1 55.059 31.78 1.977
2 165.810 21.82 2.477
Qmax (1) =
1.000 * 1.000 * 55.059) +
Qmax (2) _ 0.747 * 1.000 * 165.810)-+ = 178.864
1.314 * 0.687 * 55.059) +
1.000 * 1.000 * 165.810) + = 215.481
Total of 2 streams to confluence:
Flow rates before confluence point:
55.059 165.810
Maximum flow rates at confluence using above data:
178.864 215.481
Area of streams before confluence:
40.002 92.280
Effective area values after confluence:
132.282 119.744
Results of confluence:
Total flow rate = 215.481(CFS)
Time of concentration = 21.820 min.
Effective stream area after confluence = 119.744(Ac.)
Stream Area average Pervious fraction(Ap) = 0.803
Stream Area average soil loss rate(Fm) = 0.466(In/Hr)
Study area (this main stream) = 132.28(Ac.)
End of computations, Total Study Area = 201.63 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures An not'd
const er reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.866
Area averaged SCS curve number = 64.1
I j �
z
N
Q
S _
5� a e a
f5 5 a
S ui Um�g
LL
Oa I I �CoZ�
m} E LL JU.0
Q s Id wa
.g i >dog
U
W
w
F-
I
,� J � N =i W �— OPO V + �•{i F O C N17 Q 4S = J
100
arra �rw �Q�',• �t�
V¢
C6
g -z o r7
irate t 'hi9'T ? Qp dlt)•
/
Z » `
' �a`. 1 �^i m y qU N
`°
r or Sr 01- orca
~
oa _ 8- - 0a
,D<,Nzo
a aZZ :Eon-- co z�z Z z y
z meaae m -.5
"zi
Z� - £H/4Z ENd
, r OZL£ 'ON WdS
��
--
4Z0-L£0•-94Z NdV tFiF(d V tON
_ _x— T S = maa p r I u a$
Z
4C
/ti� £E/4Z ewd \ n
Ii fi � a OZ.L£ 'ON Wd � I � �S
O LL O � `^ i � o L Td72�lb'd a .., � � 9 3 a:$ �.y _ - 'y � -
2 lli ¢ _..1 I, _c
Nd'G ,LLnYd V tON roe, � a� $ � i � � '$ � �I/ ,z P''J � � na3 ^�Y T"r: '=>: -=i •i , � _
Z LL M 60
J �^ 900-L£0-S$Z NdV tr1Vd V tON r>r ' a A:= �seY _ai _$z
00 O Q
UC--0O-=-4sZ NdV ll Cvd 7 10N
IL ri a
q00 -LEO -95G NOV tHtfd V ION 9 R; al ash J Iegn
? '$ �s-�
\ U I% Q
0-m-cNd
iZ V J".f V ION _
£0
�r
o �°° n$a I °`' as9 " �• ex - v a' a' - a d Q' I s oa Ys S 9 € N _Z
^ g a^ ` Cyd -� my� u2T . �� ' I ^� o�r •'I Sr de a- Q � CS
p N� N N ra3 I I 7 �41� y. 1� a •, v
Ss O Or Or 3C '� � _--- _ --.—_ � ��
o f _ — - _ aY - -_ —_ - - -_ __ - a
oex o0. 4 0 0 04 I s -..1-- -H — . z y, ISP
Lmgv-°vim bq �q I a Hn� u ca I Iy R9 "y 0s`N 6
a pro I � �, � a. �`I a• � ax 5xl � »r,�Ao�
N N b Q Z Q Z
q 3E ^z14 1
,� N
$W ii�I I
HLL
o P
3 • y'n /f- (1\ III 2� ioaGi �Q� a. W I I • a
I
3 �
_ I �
D
'�
m
z
v
x
ci
(PAR7C:AL)
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
------Rational Hydrology Study Date: 02/01/05
----------------------------------------
FONTANA / TR 16678 LINE DZ -5 EXISTING HYDROLOGY (PARTIAL) -
100 YEAR STORM
JN 05086-000
----------------------
-------------
--------------------
all & Forman, Inc. - SIN 950
*--------------------------------------------------------------
******** Hydrology Study Control Information
**********
--------------------------
---------------------------
Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930(In.)
100 Year storm 1 hour rainfall = 1.350(In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
+++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 700.000 to Point/Station 701.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(ln/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1104.000(Ft.)
Bottom (of initial area) elevation = 1096.700(Ft.)
Difference in elevation = 7.300(Ft.)
Slope = 0.00730 s(%)= 0.73
TC = k(0.525)*[(length^3)/(elevation change) ]^0.2
Initial area time of concentrationp= 22.258 min.
Rainfall intensity = 2.448(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.687
Subarea runoff = 8.411(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(In/Hr)
.F.{....Tf+..-{..{..}..+..i.'I...+i.....'}.i......{f...+.+..'L'F..........{..'f...{..+.T'FF. f"{".
Process from Point/Station 701.000 to Point/Station 702.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1096.700(Ft.)
End of street segment elevation = 1095.000(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.617(CFS)
Depth of flow = 0.432(Ft.), Average velocity = 2.168(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.849(Ft.)
Flow velocity = 2.17(Ft/s)
Travel time = 2.54 min. TC = 24.80 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.294(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.673
Subarea runoff = 7.030(CFS) for 5.000(Ac.)
Total runoff = 15.441(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 10.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 15.441(CFS)
Half street flow at end of street = 7.721(CFS)
Depth of flow = 0.459(Ft.), Average velocity = 2.278(Ft/s)
Flow width (from curb towards crown)= 18.214(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 702.000 to Point/Station 703.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1095-000 Ft.)
End of street segment elevation = �1092.000(Ft.)
Length of street segment = 660,000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow
23.162(CFS)
= 0.524(Ft.), Average velocity =
Note: depth of flow exceeds top of
2.485(Ft/s)
street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.49(Ft/s)
Travel time = 4.43 min. TC = 29.22 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)=
Rainfall intensity = 2.079(In/Hr)
0.578(In/Hr)
for a 100.0 year storm
Effective runoff coefficient used for area,(total
area
rational m th d -
with modified
e o )(Q-KCIA) is C = 0.650
Subarea runoff = 11.566(CFS) for 10.000(Ac.)
Total runoff = 27.007(CFS)
Effective area this stream = 20.00(Ac.)
Total Study Area (Main Stream No. 1) = 20.00(Ac.)
Area averaged Fm value = 0.578(ln/Hr)
Street flow at end of street = 27.007(CFS)
Half street flow at end of street = 13.504(CFS)
Depth of flow = 0.547(Ft.), Average velocity = 2.641(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
i...f.. .++. +.++'{'+........................................................
+++++..}-.. ...i.... ..}.++.+++.{..}' .....'f.++.+....++'{...}' +++++.....
Process from Point/Station 703.000 to Point/Station 704.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1092.000 Ft.)
End of street segment elevation = 1082.000(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 40.511(CFS)
Depth of flow = 0.653(Ft.), Average velocity = 5.157(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 27.900(Ft.)
Flow velocity = 5.16(Ft/s)
Travel time = 2.13 min. TC = 31.36 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(in/Hr)
Rainfall intensity = 1.993(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.639
Subarea runoff = 23.910(CFS) for 20.000(Ac.)
Total runoff = 50.917(CFS)
Effective area this stream = 40.00(Ac.)
Total Study Area (Main Stream No. 1) = 40.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 50.917(CFS)
Half street flow at end of street = 50.917(CFS)
Depth of flow = 0.712(Ft.), Average velocity = 5.284(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 2.26(Ft.)
Flow width (from curb towards crown)= 30.845(Ft.)
+++++++++++++++++++++++++++t+t++++++++++++++++++++++++++tt++++++++++++
Process from Point/Station 704.000 to Point/Station 30.000
**** PIPEFLOW TRAVEL TIME (User specified size)
****
Upstream point/station elevation = 1076.000(Ft.)
Downstream point/station elevation = 1066.000(Ft.)
Pipe length 1000.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 50.917(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 50.917(CFS)
Normal flow depth in pipe = 23.55(In.)
Flow top width inside pipe = 34.24(ln.)
Critical Depth = 27.87(In.)
Pipe flow velocity = 10.39(Ft/s)
Travel time through pipe = 1.60 min.
Time of concentration (TC) = 32.96 min.
.}..F ... }T.....}.'{.'E......f' ..}' .......... f}..F..'f....."f...{.'f.........F..f}.'f... i.....{'... f ....E.
Process from Point/Station 30.000 to Point/Station 30.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 40.000(Ac.)
Runoff from this stream = 50.917(CFS)
Time of concentration = 32.96 min.
Rainfall intensity = 1.934(In/Hr)
Area averaged loss rate (Fm) = 0.5783(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
. . } .'.F T .. ..{...{.. "}..F'{.'{..''...f.l.l"..F" i..l....t.+..f. . ...{..t. ..}..}. i.. f..{'. {...}....L'}..{...}. . "'. "F.. "}....i"}.. {. {.. ..
Process from Point/Station 705.000 to Point/Station 706.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1085.700(Ft.)
Bottom (of initial area) elevation = 1075.300(Ft.)
Difference in elevation = 10.400(Ft.)
slope = 0.01040 s(%)= 1.04
TC = k(0.525)*((length^3)/(elevation change)]^0.2
.
Initial area time of concentration = 20737 min.
Rainfall intensity = 2.554(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.696
Subarea runoff = 17.779(CFS)
Total initial stream area = 10.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(In/Hr)
.}..}..{.++ "}.. ++++++...F. . . ..F +.+. -F.+.{. +++..}. .+.}..f.. ....{, i..++.. {.....'F....+++++ r++ -r -r++++
Process from Point/Station 706.000 to Point/Station 707.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1075.300(Ft.)
End of street segment elevation = 1072.000(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2) side(s)*of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 24.445(CFS)
Depth of flow = 0.478(Ft.), Average velocity = 3.276(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.130(Ft.)
Flow velocity = 3.28(Ft/s)
Travel time = 1.68 min. TC = 22.42 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr)
Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.714
Subarea runoff = 12.679(CFS) for 7.500(Ac.)
Total runoff = 30.457(CFS)
Effective area this stream = 17.50(Ac.)
Total Study Area (Main Stream No. 1) = 57.50(Ac.)
Area averaged Fm value = 0.503(In/Hr)
Street flow at end of street = 30.457(CFS)
Half street flow at end of street = 15.229(CFS)
Depth of flow = 0.508(Ft.), Average velocity = 3.514(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.
++++T++T++++'I'..7...+++++++++++-}++++... +++J.... . +++++.. J-+++{' .F -f. L++++ T T++++
Process from Point/Station 707.000 to Point/Station 707.000
*-** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 17.500(Ac.)
Runoff from this stream = 30.457(CFS)
Time of concentration = 22.42 min.
Rainfall intensity = 2.437(In/Hr)
Area averaged loss rate (Fm) = 0.5034(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream
Flow rate
TC
Rainfall Intensity
No.
(CFS)
(min)
(In/Hr)
1
50.917
32.96
1.934
2
30.457
22.42
2.437
Qmax(1)
=
1.000 *
1.000 *
50.917)
+
0.740 *
1.000 *
30.457)
+ = 73.448
Qmax(2)
_
1.371 *
0.680 *
50.917)
+
1.000 *
1.000 *
30.457)
+ = 77.943
Total of 2 streams to confluence:
Flow rates before confluence point:
50.917 30.457
Maximum flow rates at confluence using above data:
73.448 77.943
Area of streams before confluence:
40.000 17.500
Effective area values after confluence:
57.500 44.705
Results of confluence:
Total flow rate = 77.943(CFS)
Time of concentration = 22.416 min.
Effective stream area after confluence = 44.705(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.556(In/Hr)
Study area (this main stream) = 4 57.50(Ac.)
+'i"+++.+'{"}'++'}'+.++'}'+'f".+++.+++++++.+.+++++++.++++.....+++'f"+++++++++..i ...
Process from Point/Station 30.000 to Point/Station 31.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1066.000(Ft.)
Downstream point/station elevation = 1062.200(Ft.)
Pipe length = 990.004t.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 77.943(CFS)
Given pipe size = 39.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
7.075(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 8.819(Ft.)
Minor friction loss = 2.056(Ft.) K -factor = 1.50
Pipe flow velocity = 9.40(Ft/s)
Travel time through pipe = 1.76 min.Time of concentration (TC) = 24.17 min.
TT+T+T'}.. . J....}.....++++......++++'L+T+++i..L...T..+.{.. .. .+++.x.111+...:..L+
Process from Point/Station 31.000 to Point/Station 31.000
*x** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 44.705(Ac.)
Runoff from this stream = 77.943(CFS)
Time of concentration = 24.17 min.
Rainfall intensity = 2.329(In/Hr)
Area averaged loss rate (Fm) = 0.5555(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
++++++++++++++++++........'{{"{..'f.......i.}++++'F....y'++'{"'}.+.....+}T+++...
Process from Point/Station 708.000 to Point/Station 709.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1072.000(Ft.)
Bottom (of initial area) elevation = 1069.200(Ft.)
Difference in elevation = 2.800(Ft.)
Slope = 0.00280 s(%)= 0.28
TC = k(0.525)*[(length^3)/(elevation change) ]^0.2
Initial area time of concentration = 26.960 min.
Rainfall intensity = 2.182(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.734
Subarea runoff = 12.003(CFS)
Total initial stream area = 7.500(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.404(In/Hr)
+++++++++++++++++++++++++++++++++++"+++++++++++++++++++++++++++++++++++
Process from Point/Station 709.000 to Point/Station 710.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1069.200(Ft.)
End of street segment elevation = 1062.600(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.620(Ft.), Average velocity =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 26.244(Ft.)
Flow velocity = 4.02(Ft/s)
Travel time = 2.73 min. TC = 29.69 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Pervious ratio(A ) = 1 0000
28.006(CFS)
4.025(Ft/s)
Rainfall intensity = 2.059(In/Hr)sforaae(F100.0 year4storm/Hr)
Effective runoff coefficient used for area,(total area with modified
rational th-
e od
m){Q-KCIA) is C = 0.724
Subarea runoff = 28.967(CFS) for 20.000(Ac.)
Total runoff = 40.970(CFS)
Effective area this stream = 27.50(Ac.)
Total Study Area (Main Stream No. 1) = 85.00(Ac.)
Area averaged Fm value = 0.404(In/Hr)
Street flow at end of street = 40.970(CFS)
Half street flow at end of street = 40.970(CFS)
Depth of flow = 0.709(Ft.), Average velocity = 4.289(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 2.13(Ft.)
Flow width (from curb towards crown)= 30.716(Ft.)
+++++++++++++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 710.000 to Point/Station 710.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 27.500(Ac.)
Runoff from this stream = 40.970(CFS)
Time of concentration = 29.69 min.
Rainfall intensity = 2.059(In/Hr)
Area averaged loss rate (Fm) = 0.4035(In/Hr)
Area averaged Pervious ratio (Ap) =-1.0000
Summary of stream data:
Stream
Flow rate
TC
Rainfall Intensity
No.
(CFS)
(min)
(In/Hr)
1
77.943
24.17
2.329
2
40.970
29.69
2.059
Qmax(1)
=
1.000 *
1.000 *
77.943)
+
1.163 *
0.814 *
40.970)
+ = 116.744
Qmax(2)
_
0.848 *
1.000 *
77.943)
+
1.000 *
1.000 *
40.970)
+ = 107.027
Total of 2 streams to confluence:
Flow rates before confluence point:
77.943 40.970
Maximum flow rates at confluence using above data:
116.744 107.027
Area of streams before confluence:
44.705 27.500
Effective area values after confluence:
67.091 72.205
Results of confluence:
Total flow rate = 116.744(CFS)
Time of concentration = 24.172 min.
Effective stream area after confluence = 67.091(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.498(In/Hr)
Study area (this main stream) = 72.20(Ac.)
.}..}.-f.l..I....I.. . f'...t..'....f...f.'i."I.. ..f'}.'}....{......'i..F........}...i..f'....I..{.........+..{...T
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1056.6 (Ft.)
Downstream point/station elevation = 1052.000(Ft.)
Pipe length = 660.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 116.744(CFS)
Given pipe size = 39.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
13.203(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 13.190(Ft.)
Minor friction loss = 4.613(Ft.) K -factor = 1.50
Pipe flow velocity = 14.07(Ft/s)
Travel time through pipe = 0.78 min.
Time of concentration (TC) = 24.95 min.
...F...f....'.}'}....{..'..i..F..i..f.T.F.}.....i...{...'f.-f..r.' f.r...i..i..i..}..f...F..i.."F...}...}......F..f..-i.'f.....{.'i..i.
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: I in normal stream number 1
Stream flow area = 67.091(Ac.)
Runoff from this stream = 116.744(CFS)
' Time of concentration = 24.95 min.
Rainfall intensity = 2.285(In/Hr)
Area averaged loss rate (Fm) = 0.4976(In/Hr)
j Area averaged Pervious ratio (Ap) = 1.0000
.... f-t.....-F-I--i-+.i•-I--F•{-.....+t-F-f-.•!-+-F-F-I-..t-F-.............t++++-I•+++t.....++++
Process from Point/Station 711.000 to Point/Station 712.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC,2} = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1069.600(Ft.)
Bottom (of initial area) elevation = 1062.100(Ft.)
Difference in elevation = 7.500(Ft.)
Slope = 0.00750 s(%)= 0.75
TC = k(0.525)*[(length^3)/(elevation change))^0.2
Initial area time of concentration = 22.138 min.
Rainfall intensity = 2.455(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.752
Subarea runoff = 9.234(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.404(In/Hr)
+++++++{.-}...+.+.{...+.F++++-F4+++++++++'i....++++++++++-F-+++++++++r++++++++-F+
Process from Point/Station 712.000 to Point/Station 713.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1062.100(Ft.)
End of street segment elevation = 1058.000(Ft.)
Length of street segment = 990.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1) side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 23.085(CFS)
Depth of flow = 0.673(Ft.), Average velocity = 2.740(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 0.32(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 28.899(Ft.)
Flow velocity = 2.74(Ft/s)
Travel time = 6.02 min. TC = 28.16 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr)
Rainfall intensity = 2.125(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.729
Subarea runoff = 21.761(CFS) for 15.000(Ac.)
Total runoff = 30.995(CFS)
Effective area this stream = 20.00(Ac.)
Total Study Area (Main Stream No. 1) = 105.00(Ac.)
Area averaged Fm value = 0.404(In/Hr)
Street flow at end of street = 30.995(CFS)
Half street flow at end of street = 30.995(CFS)
Depth of flow = 0.752(Ft.), Average velocity = 2.607(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 4.26(Ft
Flow width (from curb towards crown)= 32.845(Ft.)
++++-}..+++++T+++++++t++++..._++++++ ^++++++++++++++++t..... ++r+i+}+T
Process from Point/Station 713.000 to Point/Station 713.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 20.000(Ac.)
Runoff from this stream = 30.995(CFS)
Time of concentration = 28.16 min.
Rainfall intensity = 2.125(In/Hr)
Area averaged loss rate (Fm) = 0.4035(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:
Stream Flow rate TC
No. (CFS) (min)
1 116.744 24.95
2 30.995 28.16
Qmax(1) _
1.000 * 1.000 *
1.093 * 0.886 *
Qmax(2) _
0.911 * 1.000 *
1.000 * 1.000 *
Rainfall Intensity
(In/Hr)
2.285
2.125
116.744) +
30.995) + = 146.760
116.744) +
30.995) + = 137.299
Total of 2 streams to confluence:
Flow rates before confluence point:
116.744 30.995
Maximum flow rates at confluence using above data:
146.760 137.299
Area of streams before confluence:
67.091 20.000
Effective area values after confluence:
84.814 87.091
Results of confluence:
Total flow rate = 146.760(CFS)
Time - of concentration = 24.954 min.
Effective stream area after confluence = 84.814(Ac.)
Stream Area average Pervious fraction(Ap) = 1.000
Stream Area average soil loss rate(Fm) = 0.476(In/Hr)
Study area (this main stream) = 87.09(Ac.)
++++++++++++++i"+++'f'+++++'F".....++++++....+++++.++'}'++'} . .++'f".+'f'++.. .+'{ ...
Process from Point/Station 32.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1052.000(Ft.)
Downstream point/station elevation = 1041.000(Ft.)
Pipe length = 1320.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 146.760(CFS)
Given pipe size = 51.00(In.)
Calculated individual pipe flow = 146.760(CFS)
Normal flow depth in pipe = 39.75(In.)
Flow top width inside pipe = 42.29(ln.)
Critical Depth = 42.95(In.)
Pipe flow velocity = 12.37(Ft/s)
Travel time through pipe = 1.78 min.
Time of concentration (TC) = 26.73 min.
1-..I•......}'iF. 'F"}"}"}. ."}'.{'....'Ft.t"+T......... .'f"i"J"t'T ."{"'L';"f'."F...I'........ L.......
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 84.814(Ac.)
Runoff from this stream = 146.760(CFS)
Time of concentration = 26.73 min.
Rainfall intensity = 2.193(In/Hr)
Area averaged loss rate (Fm) = 0.4760(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
End of computations, Total Study Area = 105.00 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged- pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 72.8
J'' yc" V c ICY Wr, %;., V , - "
1
VI
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2001 Version 6.4
Rational Hydrology Study Date: 02/01/05
------ --------------------
---------------------- __________
FONTANA / TR 16678 LINE DZ -6 EXISTING HYDROLOGY
100 YEAR STORM
JN 05086-000
Hall & Forman, Inc. - SIN 950
-----------------------------
********* Hydrology Study Control Information
**********
--------------------------------
------------------
Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.930(In.)
100 Year storm 1 hour rainfall = 1.350(In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
++++++++++t+t+++++++++++++++++++++++++++++++++++++++t+t+++++++++++....
Process from Point/Station 714.000 to Point/Station 715.000
****.INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1104-000 (Ft.)
Bottom (of initial area) elevation = 1092.000(Ft.)
Difference in elevation = 12.000(Ft.)
Slope = 0.01200 s(%)= 1.20
TC = k(0.525)*[(length^3)/(elevation change))^0.2
Initial area time of concentration = 20.152 min.
Rainfall intensity = 2.598(IntHr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.700
Subarea runoff = 12.724(CFS)
Total initial stream area = 7.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(In/Hr)
T... ....'..i...F..{...}{... ..}..FT.F.'..'....I..h.i.i..t...f..F..}..t..{..t.l...#..I...F.}.....TTT..'..}.{..f...TT....{..{..{.''.T
Process from Point/Station 715.000 to Point/Station 716.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1092.000(Ft.)
End of street segment elevation = 1089-000 (Ft.)
Length of street segment = 800.000(Ft.)
Height of curb above gutter flowline = 8.0(In..)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 22.721(CFS)
Depth of flow = 0.536(Ft.), Average velocity = 2.327(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.33(Ft/s)
Travel time = 5.73 min. TC = 25.88 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.236(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.667
Subarea runoff = 14.127(CFS) for 11.000(Ac.)
Total runoff = 26.851(CFS)
Effective area this stream = 18.00(Ac.)
Total Study Area (Main Stream No. 1) = 18.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 26.851(CFS)
Half street flow at end of street = 13.425(CFS)
Depth of flow = 0.561(Ft.), Average velocity = 2.487(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
++++++++++++++++++t+++++++++++t++++++++++++++++++++++++++++++++++++++t
Process from Point/Station 716.000 to Point/Station 717.000
**** STREET FLOW TRAVEL TIME t SUBAREA FLOW ADDITION ****
Top of street segment elevation = y1089.000(Ft.)
End of street segment elevation = 1081.500(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.50Q(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow
41.768(CFS)
= 0.697(Ft.), Average velocity =
Warning: depth of flow exceeds top
4.557(Ft/s)
of curb
Distance that curb overflow reaches into property =
Streetflow hydraulics
1.53(Ft.)
at midpoint of street travel:
Halfstreet flow width = 30.117(Ft.)
Flow velocity = 4.56(Ft/s)
Travel time = 2.41 min. TC = 28.30 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(An) = 1 0000
Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.119(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.654
Subarea runoff = 25.851(CFS) for 20.000(Ac.)
Total runoff = 52.702(CFS)
Effective area this stream = 38.00(Ac.)
Total Study Area (Main Stream No. 1) = 38.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 52.702(CFS)
Half street flow at end of street = 52.702(CFS)
Depth of flow = 0.759(Ft.), Average velocity = 4.666(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 4.60(Ft.)
Flow width (from curb towards crown)= 33.186(Ft.)
.....{. .... . .. } ......'{...'f..f..F..F"}.'}.'{....t."f.i.....{.'}.'{.'{.i.....F i.. i...}...'F .i -...'i.'{.. i...{. i... .
Process from Point/Station 717.000 to Point/Station 33.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1075.000(Ft.)
Downstream point/station elevation = 1061.000(Ft.)
Pipe length = 990.Q0(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 52.702(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 52.702(CFS)
Normal flow depth in pipe = 21.45(In.)
Flow top width inside pipe = 35.3.3(In.)
Critical Depth = 28.32(In.)
Pipe flow velocity = 12.00(Ft/s)
Travel time through pipe = 1.37 min.
Time of concentration (TC) = 29.67 min.
............-+++t+++++++.....++++++++++tt++++.........++++++++++++...t
Process from Point/Station 33.000 to Point/Station 33.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 38.000(Ac.)
Runoff from this stream = 52.702(CFS)
Time of concentration = 29.67 min.
Rainfall intensity = 2.060(In/Hr)
Area averaged loss rate (Fm) = 0.5783(ln/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
...}..... .}. T'} ........ ...... .J... .}+.... .}TT}'}'+'I'........+T T'!}�}}^j.-Y
Process from Point/Station 718.000 to Point/Station_ 719.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1082.000(Ft.)
Bottom (of initial area) elevation = 1075.000(Ft.)
Difference in elevation = 7.000(Ft.)
Slope = 0.00700 s(%)= 0.70
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 22.446 min.
Rainfall intensity = 2.435(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.686
Subarea runoff = 8.356(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(ln/Hr)
++++++++++++++++++++++++++++}++++++++++}++++}}++++++++++++++}+}++++++}
Process from Point/Station 719.000 to Point/Station 720.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1075.000(Ft.)
End of street segment elevation = 1073.300(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.) 41
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.534(CFS)
Depth of flow = 0.431(Ft.), Average velocity = 2.164(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.807(Ft.)
Flow velocity = 2.16(Ft/s)
Travel time = 2.54 min. TC = 24.99 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group 3 = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(_Tn/Hr)
Rainfall intensity = 2.283(In/Hr) for a 10
Effective runoff coefficient used for area/ (total areaear with`orm modified
rational method)(Q=KCIA) is C = 0.672
Subarea runoff = 6.990(CFS) for 5.000(Ac.)
Total runoff = 15.346(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 48.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 15.346(CFS)
Half street flow at end of street = 7.673(CFS)
Depth of flow = 0.458(Ft.), Average velocity = 2.275(Ft/s)
Flow width (from curb towards crown)= 18.170(Ft.)
++++++++++++++++++++++++++++++++++++t+++++++++++++++++++.t+++++ff+++++
Process from Point/Station 720.000 to Point/Station
**** STREET FLOW TRAVEL TIME t SUBAREA FLOW ADDITION 721.000
****
Top of street segment elevation = 1073.300(Ft.)
End of street segment elevation = 107O.000(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2j side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 23.019(CFS)
Depth of flow = 0.517(Ft.), Average velocity = 2.551(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width 20.000(Ft.)
Flow velocity = 2.55(Ft/s)
Travel time = 4.31 min. TC = 29.30 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Rainfall intensity = 2.075(T_n/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.753
Subarea runoff = 15.927(CFS) for 10.000(Ac.)
Total runoff = 31.273(CFS)
Effective area this stream = 20.0O(Ac.)
Total Study Area (Main Stream No. 1) = 58.00(Ac.)
Area averaged Fm value = 0.338(In/Hr)
Street flow at end of street = 31.273(CFS)
Half street flow at end of street = 15.637(CFS)
Depth of flow = 0.563(Ft.), Average velocity = 2.881(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
....J`+1"}'."..'}'....'I'.....;.+++++T++�T++'�'T''.".++`!'+`. +'+....}1+++T...... ... T�+-4--+
Process from Point/Station 721.000 to Point/Station 722.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1070.000(Ft.)
End of street segment elevation = 1068.000(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to^grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 39.091(CFS)
Depth of flow = 0.763(Ft,), Average velocity = 3.414(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 4.80(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 33.388(Ft.)
Flow velocity = 3.41(Ft/s)
Travel time = 1.61 min. TC = 30.91 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.010(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.7.13
Subarea runoff = 11.703(CFS) far 10.000(Ac.)
Total runoff = 42.976(CFS)
Effective area this stream = 30.00(Ac.)
Total Study Area (Main Stream No. 1) = 68.00(Ac.)
Area averaged Fm value = 0.418(ln/Hr)
Street flow at end of street = 42.976(CFS)
Half street flow at end of street = 42.976(CFS)
Depth of flow = 0.787(Ft.), Average velocity = 3.460(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 6.04(Ft.)
Flow width (from curb towards crown)= 34.620(Ft:)
++++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 722.000 to Point/Station 722.000
* * * * CONFLUENCE OF MINOR STREAMS * � *
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 30.000(Ac.)
Runoff from this stream = 42.976(CFS)
Time of concentration = 30.91 min.
Rainfall intensity = 2.010(In/sir)
Area averaged loss rate (Fm) = 0.4181(In/Hr)
Area averaged Pervious ratio (Ap) = 0.7000
Summary of stream data:
Stream
No.
Flow rate
TC
Rainfall Intensity
(CFS)
(min)
(In/Hr)
1
52.702
29.67
2.060
2
42.976
30.91
2.010
Qmax (1)
=
1.000 *
1.000 *
52.702)
+
1.031 *
0.960 *
42.976)
+ = 95.250
Qmax(2)
_
0.966 *
1.000 *
52.702)
+
1.000 *
1.000 *
42.976)
+ = 93.900
Total of 2 streams to confluence:
Flow rates before confluence point:
52.702 42.976
Maximum flow rates at confluence using above data:
95.250 93.900
Area of streams before confluence:
38.000 30.000
Effective area values after confluence:
66.796 68.000
Results of confluence:
Total flow rate = 95.250(CFS)
Time of concentration = 29.670 min.
Effective stream area after confluence = 66.796(Ac.)
Stream Area average Pervious fraction(Ap) = 0.868
Stream Area average soil loss rate(Fm) = 0.508(In/Hr)
Study area (this main stream) = 68.00(Ac.)
+++++-1-++++++++-F++-t+++++++++++++-I-+++-F++++++++.++++++-F++. r++++++ -f-++-{--1-+++.
Process from Point/Station 33.000 to Point/Station 34.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1061.000(Ft.)
Downstream point/station elevation = 1048.200(Ft.)
Pipe length = 990.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 95.250(CFS)
Given pipe size = 39.00(In.)
Calculated individual pipe flow = 95.250(CFS)
Normal flow depth in pipe = 32.53(In.)
Flow top width inside pipe = 29.01(In.)
Critical Depth = 35.74(In.)
Pipe flow velocity = 12.89(Ft/s)
Travel time through pipe = 1.28 min.
Time of concentration (TC) = 30.95 min.
+++'f'++++++++++++++7.+++++++++++++....++++++++ ... ++++++++++++++++t .++T.
It U0
Process from Point/Station 34.000 -o Point/Station
**** CONFLUENCE OF MINOR STREAMS **** 34.000
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 66.796(Ac.)
Runoff from this stream = 95.250(CFS)
Time of concentration = 30.95 min,
Rainfall intensity = 2.008(In/Hr)
Area averaged loss rate (Fm) = 0.5077(In/Hr)
Area averaged Pervious ratio (Ap) = 0.8676
++-1-++r+++1-++++++++r++....+r+++•!-t+++++++++....-I-.+.{.{.{.. j.+.++r+++++++r+++++
Process from Point/Station 723.000 to Point/Station_
**** INITIAL AREA EVALUATION **** 724.000
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1072.000(Ft.)
Bottom (of initial area) elevation = 1066.600(Ft.)
Difference in elevation = 5.400(Ft.)
Slope = 0.00540 s(%)= 0.54
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 23.642 min.
Rainfall intensity = 2.361(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.680
Subarea runoff = 8.020(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.578(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 724.000 to Point/Station 725.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1066.600(Ft.)
End of street segment elevation = 1063.000(Ft.)
Length of"street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.030(CFS)
Depth of flow = 0.422(Ft.), Average velocity = 2.189(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.360(Ft.)
Flow velocity = 2.19(Ft/s)
Travel time = 5.03 mir.. TC = 28.67 min.
Addir_g area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.103(in/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.652
Subarea runoff = 5.700(CFS) for 5.000(Ac.)
Total runoff = 13.720(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 78.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 13.720(CFS)
Half street flow at end of street = 6.860(CFS)
Depth of flow = 0.439(Ft.), Average velocity = 2.261(Ft/s)
Flow width (from curb towards crown)= 17.213(Ft.)
++++++++++++.++++++..F{..F+{.i..+....+++'}..{.++.+.{-...'i.....++++'{-+'{ ....+++.+'f ..
Process from Point/Station 725.000 to Point/Station 729.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1063.000(Ft.)
End of street segment elevation = 1056.600(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
` Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of -street = 13.720(CFS)
Depth of flow = 0.497(Ft.), Average velocity = 3.333(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.114(Ft.)
Flow velocity = 3.33(Ft/s)
Travel time = 3.30 min. TC = 31.97 min.
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Rainfall intensity = 1.970(In/Hr) for a 100.0 year storm
rikv
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.636
Subarea runoff = 0.000(CFS) for 0.000(Ae.)
Total runoff = 13.720(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 78.00(Ac.)
Area averaged Fm value = 0.578(In/Hr)
Street flow at end of street = 13.720(CFS)
Half street flow at end of street = 13.720(CFS)
Depth of flow = 0.497(Ft.), Average velocity = 3.333(Ft/s)
Flow width (from curb towards crown)= 20.114(Ft.)
1... ..F . . J..f..f.. +.{.+... ...t.. ..F.F.F.f..'... . i..F..F...}..+.r.... ...h ...f. ..f..F..}..I. {..I..}..... {. ..}.. +.{..+1 .'. ..
Process from Point/Station 729.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS **** 729.000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 10.000(Ac.)
Runoff from this stream = 13.720(CFS)
Time of concentration = 31.97 min.
Rainfall intensity = 1.970(In/Hr)
Area averaged loss rate (Fm) = 0.5783(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station - 726.000 to Point/Station 727.000
**** INITIAL AREA EVALUATION ****
CONDOMINIUM subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.342(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1069.200(Ft.)
Bottom (of initial area) elevation = 1062.000(Ft.)
Difference in elevation = 7.200(Ft.)
Slope = 0.00720 s(%)= 0.72
TC = k(0.360)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 15.305 min.
Rainfall intensity = 3.064(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.799
Subarea runoff = 12.249(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 0.350
Initial area Fm value = 0.342(In/Hr)
+++++++++++.++++++++++++++++++++ttt+++++++++++++++++++++++++++++++++++
Process from Point/Station 727.000 to Point/Station 728.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1062.000(Ft.)
End of street segment elevation = 1060.000(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2j side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 18.374(CFS)
Depth of flow = 0.472(Ft.), Average velocity = 2.528(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 18.873(Ft.)
Flow velocity = 2.53(Ft/s)
Travel time = 2.18 min. TC = 17.48 min.
Adding area flow to street
CONDOMINIUM subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.3500 Max loss rate(Fm)= 0.342(In/Hr)
Rainfall intensity = 2.829(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.791
Subarea runoff = 10.136(CFS) for 5.000(Ac.)
Total runoff = 22.385(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 88.00(Ac.)
Area averaged Fm value = 0.342(In/Hr)
Street flow at end of street = 22.385(CFS)
Half street flow at end of street = 11.192(CFS)
Depth of flow = 0.501(Ft.), Average velocity = 2.674(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 728.000 to Point/Station 729.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1060.000(Ft.)
End of street segment elevation='`1056.600(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property.line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
1112
Estimated mean flow rate at midpoint of street = 33.577(CFS)
Depth of flow = 0.572(Ft.), Average velocity = 2.991(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.99(Ft/s)
Travel time = 3.68 min. TC = 21.16 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.523(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.736
Subarea runoff = 14.746(CFS) for 10.000(Ac.)
Total runoff = 37.131(CFS)
Effective area this stream = 20.00(Ac.)
Total Study Area (Main Stream No. 1) = 98.00(Ac.)
Area averaged Fm value = 0.460(In/Hr)
Street flow at end of street = 37.131(CFS)
Half street flow at end of street = 18..565(CFS)
Depth of flow = 0.590(Ft.), Average velocity = 3.112(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
++++++++++++++++++-'r +++++++++++++++++++++++ .++++++++++++++ +++++++++++++
Process from Point/Station 729.000 to Point/Station 729.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 20.000(Ac.)
Runoff from this stream = 37.131(CFS)
Time of concentration = 21.16 min.
Rainfall intensity = 2.523(In/Hr)
Area averaged loss rate (Fm) = 0.4603(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6750
Summary of stream data:
Stream
Flow
rate
TC
Rainfall Intensity
No.
(CFS)
(min)
(In/Hr)
1
95.250
30.95
2.008
2
13.720
31.97
1.970
3
37.131
21.16
2.523
Qmax (1)
=
1.000
*
1.000 *
95.250)
+
1.028
*
0.968 *
13.720)
+
0.750
*
1.000 *
37.131)
+ = 136.767
Qmax(2)
_
0.974
*
1.000 *
95.250)
+
1.000
*
1.000 *
13.720)
+
0.732
*
1.000 *
37.131)
+ = 133.687
Qmax(3)
_
1.343
*
0.684 *
95.250)
+
1.398
*
0.662 *
13.720)
+
IIiJ
1.000 *
Tonal of 3 streams
Flow rates before
95.250
Maximum flow rates
136.767
1.000 * 37.131) t = 137.278
to confluence:
confluence point:
13.720 37.131
at confluence using above data:
133.687 137.278
Area o: streams before confluence:
66.796 10.000 20.000
Effective area values after confluence:
96.478 96.796 72.284
Results of confluence:
Total flow rate = 137.278(CFS)
Time of concentration = 21.159 min.
Effective stream area after confluence = 72.284(Ac.)
Stream Area average Pervious fraction(Ap) = 0.842
Stream Area average soil loss rate(Fm) = 0.505(In/Hr)
Study area (this main stream) = 96.80(Ac.)
+++++++++++++++++f++++++++++++++++++.....++++++++++++++++++++++1++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1048.200(Ft.)
Downstream point/station elevation = 1042.000(Ft.)
Pipe length = 660.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 137.278(CFS)
Given pipe size = 39.00(ln.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
18.416(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 18.238(Ft.)
Minor friction loss = 6.378(Ft.) K -factor = 1.50
Pipe flow velocity = 16.55(Ft/s)
Travel time through pipe = 0.66 min.
Time of concentration (TC) = 21.82 min.
.. f..} l+. i..{ .....i.'fiF...... }....F i.....L..'t...}'. ..'{"'{..{". .. .'i...f.. ..... y f .. ...... i. i...F .r'
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 72.284(Ac.)
Runoff from this stream = 137.278(CFS)
Time of concentration = 21.82 miff.
Rainfall intensity = 2.477(ln/Hr)
Area averaged loss rate (Fm) = 0.5052(In/Hr)
Area averaged Pervious ratio (Ap) = 0.8415
*+.F.I.+.{..i.,....F.F.i.....F.F......L .............................................
i.'{. {..'}.'f.. .}'....F{....}....F.'}}..Ei...f}}..i"i.i......
Process from Point/Station 730.000 to Point/Station 731.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (APIC 2) = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(rr-m)= 0.4? 4
Initial subarea data: 0 ,In/ )
initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1063.700(Ft.)
Bottom (of initial area) elevation = 1055.800(Ft.)
Difference in elevation = 7.900(Ft.)
Slope = 0.00790 s(%)= 0.79
TC = k(0.525)*((length^3)/(elevation change)]^0.2
initial area time of concentration = 21.910 min.
Rainfall intensity = 2.471(In/fir) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.753
Subarea runoff = 9.303(CFS)
Total initial stream area = 5.000(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.404(_in/Hr)
-!-++++++++t+++++++++++++++++++++++t++++++++++++.+++++++++++++++++++++++
Process from Point/Station 731.000 to Point/Station 732.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1055.800(Ft.)
End of street segment elevation = 1053.600(Ft.)
Length of street segment = 330.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 13.954(CFS)
Depth of flow = 0.428(Ft.), Average velocity = 2.449(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.667(Ft.)
Flow velocity = 2.45(Ft/s)
Travel time = 2.25 min. TC = 24.16 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.`000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In/Hr)
Rainfall intensity = 2.330(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.744
Subarea runoff = 8.038(CFS) for 5.000(Ac.)
Total runoff = 17.341(CFS)
Effective area this stream = 10.00(Ac.)
Total Study Area (Main Stream No. 1) = 108.00(Ac.)
Area averaged Fm value = 0.404(In/Hr)
Street flow at end of street = 17.341(CFS)
Half street flow at end of street = 8.671(CFS)
Depth of flow = 0.457(Ft.), Average velocity = 2.584(Ft/s)
Flow width (from curb towards crown)= 18.124(Ft.)
...............................................
....'.l..L.1..},.{.1T.i.+1..1T..+..j..t....I..F_T+.r.�..}.TT'I. .+ �.
+l. ... �}..}...�. ........ ����+.t
Process from Point/Station 732.000 to Point/Station,
***' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION 733.000
****
Top of street segment elevation = 1053.600(Ft.)
End of street segment elevation = 1049.000(Ft.)
Length of street segment = 660.000(Ft.)
Height of curb above gutter flowline = 8.0(In.)
Width of half street (curb to crown) = 42.000(Ft.)
Distance from crown to crossfall grade break = 40.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 26.012(CFS)
Depth of flow = 0.642(Ft.), Average velocity = 3.450(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 27.327(Ft.)
Flow velocity = 3.45(Ft/s)
Travel time = 3.19 min. TC = 27.34 min.
Adding area flow to street
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 67.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.578(In/Hr)
Rainfall intensity = 2.163(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.696
Subarea runoff = 12.761(CF3) for 10.000(Ac.)
Total runoff = 30.102(CFS)
Effective area this stream = 20.00(Ac.)
Total Study Area (Main Stream No. 1.) = 118.00(Ac.)
Area averaged Fm value = 0.491(i'n/Hr)
Street flow at end of street = 30.102(CFS)
Half street flow at end of street = 30.102(CFS)
Depth of flow = 0.674(Ft.), Average velocity = 3.555(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 0.39(Ft.)
Flow width (from curb towards crown)= 28.972(Ft.)
.F..I...F...F..I. ..F..}.+i...I..F ..I..i..}..}....I'.F.F.}.+....}..F'J...I..I. . {.{..}. i. ...t..F.+.I' {..I....F.F'.I.. .+.}.'I..T. ..{' .I. i. .'i.} .I..T
Process from Point/Station 733.000 to Point/Station 733.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 20.000(Ac.)
H16
Runoff from this stream 30.102(CFS)
Time of concentration = 27,34 ;
n.
Rainfall intensity_ /H
Area averaged loss rate 2.163 (Inn/0.
Area averaged Pervious ratio (Ap) 0 190000r/H_)
Summary of stream data:
Stream Flow rate TC
No. (CFS) Rainfall Intensity
) (min) (In/Hr)
I
I
1 137.278 21.82 2.477
2 30.102 27.34 2.163
i Qmax(1) =
1.000 * 1.000 * 137.278) +
Qmax (2 } _ 1.187 * 0.798 * 30.102) + = 165.806
I
0.841 * 1.000 * 137.278) +
1.000 * 1.000 * 30.102) + = 145.557
iTotal of 2 streams to confluence:
Flow rates before confluence point:
137.278 30.102
Maximum flow rates at confluence using above data:
165.806 145.557
j Area of streams before confluence:
72.284 20.000
Effective area values after confluence:
I 88.246 92.284
Results of confluence:
Total flow rate = 165.806(CFS)
Time of concentration = 21.823 min.
Effective stream area after confluence =
Stream Area average Pervious fraction(Ap) = 0.8766(Ac.)
Stream Area average soil loss rate(Fm) = 0.502(In/Hr)
Study area (this main stream) = 92.28(Ac.)
End of computations, Total Study Area = 118.00 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.869
Area averaged SCS curve number = 62.0
=o, m
m
m r
>i T
D =m
—<O
0-< m �n
o >0
p � p
n -r-, TI r. Z
m p71D000
Z z G) --i
y —<O
zz :zz
O
�r
T�1
VT/
V!
W
m
> f
4
�m
N Z
a; n� m
�
ao Z
�<
W �n m
D
�
m
1" m
v
Z
r
n
m
z
O > S
VVVV�
a
ked
Fa.
Z
m ITpI m<DS
Z
1
ADp(
30i (3)
nx
roll.!
-1
g
9
o
�
o D
m
..
m
nn
m o
OM8 S
m
�
•o
OD
uI
I
=o, m
m
m r
>i T
D =m
—<O
0-< m �n
o >0
p � p
n -r-, TI r. Z
m p71D000
Z z G) --i
y —<O
zz :zz
O
�r
T�1
VT/
V!
W
m
N Z
a; n� m
ao Z
W �n m
1" m
v
Z
r
n
m
z
a
C) Z--4
: om M
1
ADp(
30i (3)
8
-1
o
�
o D
v
x
n
n
m o
m
�
•o
=o, m
m
m r
>i T
D =m
—<O
0-< m �n
o >0
p � p
n -r-, TI r. Z
m p71D000
Z z G) --i
y —<O
zz :zz
O
�r
T�1
VT/
V!
W
m
-nz
C,A\7(CH BAS�NS
-11
Suite 203 Date
Costa Mesa California 92626 Sht. 2D01 of _
(7141 754-5714
Land Planning
Civil Engineering
Surveying
88
12'
32'
2 /
i1=o,al5
0
W10TN of
1)EP7*14
q,pFA
CooO/NG,
Q 5'�z
0,16
0,17
0, ar
Z.s
3,$
0, 18
0, Z¢
3. d
4,?
0.11
0, Z1
3.5
411
0. Zo
o,31
4-,0
1;, 4
d.Z1
0,35
4.5
6,1
0.20
0140
5.0
7.1
o.Z3
0,4.5
5.5
8,1
0.24
01,51
6.0
1.5
0.75
0, 57
6.5
e. V,
0, 64
7.c
0.27
0,71
7,5
la,z
0. ZS
0.T?
8,0
16,3
o. 29
0, 81
8.5
13.4
dQ,30
,
o,9c
1,,
20 9 15
0.3 r
1,os
1.5
23.4
013Z
!, IS
(o,0
Z6.3
0,33
1.25
te,5
2q g
0 34
1. 3c
II.�`
�,Z.7
6,35
1,47
11.5
36.1
036
1,5q
12,E
40.0
0,37
1,7f
J 2.5
44.0
6,59
1.34
11,0
48.5
o, 31
07
13,5
53,0
14,d
58.0
o,4Z
2.40
1 S,b
G8.7
a. 42
Z,ss
! 5,5
14,3
0,4.4
.IV, JVUUI \-VC1JL UTAVC By
Suite 203 Date
Costa Mesa California 92626 Sht.2o�3 of
[714) 754-5714
Land Planning
Civil Engineering
Surveying
11:d.0IS
W107�W air
DEPTW
Q sA
J, Sa
24,19
77,a
109-7
o, 81
24.96
78.0
1 146
o,SZ
Z5.-75
19.E
1197
0,93
Z4.54
$n. 0
114'5
e. 84-
27,35
sko
1 30
a,85
ZB.1
82,0
139(-
0.86
28,94
83,0
(412
D.87
Z9, 8Z
94. a
146S
6,89
3o,G7
3G,0
1527
o, 84
3 f,51
36.0
159(,
0,90
32,39
87.0
1(,47
0,91
33.2(,
88,0
1768
FCou,
EXcFEQ 5
l?/u.J
11:d.0IS
(f, 6.((@ P7. 70.1 JuNtPvs .
�C b , o &VQ 2 ),/z
8 4'
G�6F
9
5 I.5
"
28 °. BsX O.9 4- 3 5. 8 7 eF s
�u
�� Ta G.�3•"/o = 119.54 - 3 8.87 _ 80,
l�7 C/4c°4u7-Y Tn Geaco" s ¢55.2X
X; 75.0. 39.87�l/9.54� 24,31 tee. 14y� 75,0 - 24,3'l
G r3 to (?PT. 71OI ^-,1uut�E�2
to (. 3 7 ct=
t-( .2 00 3
LlSr� �=28`
9x�1.�Oc.5�42:3'S Gt�S
A /I C A
(5, r3, # � (T (-T, !3, l - Jul -moo -g
15 tF5
Q�N z 2.°7x 3g n. ss x a.771.s�
64t4r�q 4ia4 'AV r--, 43.
eon P (P 4- l4-> >q 1=v K 5 � r4 A( -u a t�v
4r--(4(,55+ 2d,�5 jx33.5(I89.Z5 "33.354c.
�5z �2.Za x fZ.c8
� (F�
�IZFa FoR
w i2E�T
+ 2 .75)
x 42,35 2�.si Itc
(415 - 7i, 3G -
24,8( =41.55 3t.
(5, r3, # � (T (-T, !3, l - Jul -moo -g
15 tF5
Q�N z 2.°7x 3g n. ss x a.771.s�
64t4r�q 4ia4 'AV r--, 43.
eon P (P 4- l4-> >q 1=v K 5 � r4 A( -u a t�v
4r--(4(,55+ 2d,�5 jx33.5(I89.Z5 "33.354c.
�5z �2.Za x fZ.c8
2 @ /0T 7�
°.8Sx0.61 r.s
i,(1 = 2 a , 7 5 � C,i 5 C 11✓ = 21
PT.72 f ^� C�Ft2 55 AVE
cC��se= 70.47 eFS
5_0,0(3
CgPRGtr`' 7-6 1'-&' 04-AJO4
J � 5 f. q4 SFS
0,7�Ta
n ' S rx 0 7�r.5 _ 3 2, 8 cps
dQ,,d 1O C6.* 14-�
d Qroo iu W'! V fIM 0 F' -t -r2rz F T 76, --7 - 5 1, `�o = (8.57 cF5
Ale re W'GY #*"F f4Ats m
y
3.J Xf8.'/lo¢�- /3, Y7Qc 4P:53,ox32.1SG 7a 47
5 �
(5. + . -* (,d- @ PT. 7 22 — e 1? (4 55 �
lots ,5 9 G�5
yj
IN
'6,-# -7 19,58 -/4,5� z 5,02 �F5
Amp F02 PrPr! tzo� �T�'t✓Y
_ 1.4,82- 3.80 = l(,02ae. ps-r(4,32+6,5)r5,0L
1, 53 3.8o x
2 ado= 8, 41
o_,
D, 3 5
-Z, 1H" 6IJ 0.36 t.5
e16 e �) ,. 24
4F)o(zox!o,aTE- i°iP= SIZE To F�.�,o;t�dppr� UNnEv�uFFra
C
f�-t/ 0 t7ti Vr�a��P aN- 5!TE STa2ss� ���Jrc1 � C
!tP0 e vef �cao tN CYP2�s5 AV8, 4 r S444rA ,4t-,uA4
DEvt=,_�P�t7 oN_s,T�
Inc I14,
33D cis
K v 2!-�� S Fie 0 JUr a c0'4 A -t/ 1✓ . a ¢ 2 c r' S Tc,
84"2cr�
/4r 4g=io22.1:�= l5,nv
�_ IZSt7. 8�-`ig42.ch
2e- 75. 74
-5 s = r5. otl/'ZG 75.75 r d, da 5c
4, 41:17
����l�=n 72" 2c n