Loading...
HomeMy WebLinkAboutMango Ave Storm Drain Preliminary DesignCOMPREHENSIVE MASTER STORM DRAIN PLAN AMENDMENT AND MANGO AVENUE STORM DRAIN PRELIMINARY DESIGN FOR THE CITY OF FONTANA Submitted to The Civil Engineering Department School of Engineering California State Polytechnic University Pomona, California By Robert G. Eisenbeisz E.I.T #xE077122 Department Student, Civil Engineering In Partial Fulfillment of the Requirements for A Senior Project April 3, 1990 Project Advisor: Prof. Morales k�,, ABSTRACT This amendment to the Rialto Channel Comprehensive Storm Drain Plan will provide the City of Fontana with the necessary information required when planning facilities for the additional runoff generated by the previously omitted area located along Mango Avenue between Highland Avenue and Baseline Road. The excess runoff could be carried eastward to the Rialto Channel or westward to the San Sevine Channel via the planned Baseline Road storm drain. The City of Rialto will charge Fontana for the excess flow into Rialto should the eastward route be chosen. The amount would be base upon the percentage of excess flow. The flow increased by approximately 47% at Alder Avenue. It should be noted that there is a significant difference between the Civil CADD and the AES software packages with the Civil CADD yielding the more conservative storm hydrograph results. A more reasonable approximation is an increase of about 30%. The most economically feasible route would therefore appear to be westward using their own facilities which, consequently, would need to be scaled up in size when the general plan is revised in the near future. This project will also provide Fontana with a preliminary storm drain plan for Mango Avenue such that the existing detention basins may be eliminated. The elimination of the detention basins will allow the land to serve other functions as prescribed in the Walnut Village specific plan. These detention basins are unsightly and their transformation would improve the aesthetic appearance of this residential community. The preliminary plan is sensitive to the existing and proposed catch basins along Mango Avenue. i TABLE OF CONTENTS 1 INTRODUCTION ............................................ 1 2 GENERAL HYDROLOGY ....................................... 3 2.1 RATIONAL METHOD .............................. 3 2.2 UNIT HYDROGRAPH METHOD ....................... 7 3 MONTGOMERY REPORT AMENDMENT ............................ 10 3.1 GENERAL DESIGN CRITERIA ..................... 11 3.2 HYDROLOGIC CRITERIA ......................... 12 3.2.1 Rational ............................. 12 3.2.2 Unit Hydrograph ...................... 18 3.2.3 Hydrograph Routing ................... 27 3.3 STORM DRAIN PLAN ............................ 28 3.3.1 Mango Feeder - (DO) .................. 28 3.3.2 Baseline Lateral - (D)............*.. 29 4 MANGO AVENUE PRELIMINARY STORM DRAIN PLAN .............. 38 4.1 GENERAL DESIGN CRITERIA ..................... 38 4.2 HYDROLOGY ................................... 41 4.3 STORM DRAIN PLAN ............................ 46 APPENDIX A - COMPREHENSIVE PLAN AMENDMENT ANALYSES IIDDWWnTV R - A/D U$ln MtWhITTV DT AIV 7%MAT VOLVO LIST OF EXHIBITS 1.1 WATERSHED BOUNDARY .................................... 2 2.1 INITIAL SUBBASIN T, NOMOGRAPH ......................... 5 2.2 I -D -F CURVES FOR VALLEY - DEVELOPED ................... 6 2.3 TYPICAL ISOHYETAL MAP ................................. 8 3.1 SUBBASIN BOUNDARY MAP ................................ 14 3.2 ANNEX AREA STREAM CHARACTERISTICS .................... 15 3.3 10 -YEAR RATIONAL ANALYSIS SUMMARY .................... 16 3.4 25 -YEAR RATIONAL ANALYSIS SUMMARY .................... 17 3.5 DEPTH -AREA REDUCTION FACTOR CURVE .................... 20 3.6 UNIT HYDROGRAPH BASIN/STREAM DATA .................... 22 3.7 WATERSHED ISOHYETAL MAP .............................. 23 3.8 UNIT HYDROGRAPH BASIN/STREAM DATA .................... 25 LIST OF TABLES 3.1 ORIGINAL BASIN LOSS CHARACTERISTICS .................. 19 3.2 MODIFIED BASIN LOSS CHARACTERISTICS .................. 24 3.3 PEAK FLOW COMPARISON ................................. 32 4.1 STORM DRAIN REQUIREMENTS ............................. 45 1 INTRODUCTION This project is primarily intended to provide Fontana with an amendment to the Montgomery comprehensive storm drain plan to include an area which was omitted. The previously omitted area is located adjacent to the watershed boundary, which was established from prior studies, between Sierra Avenue and Mango Avenue, and between Highland Avenue and Baseline Road (see Exhibit 1.1). Development has altered the direction of drainage in the area to drain eastward instead of the previously assumed westward pattern. The secondary intention of this project is to provide Fontana with a preliminary storm drain design for Mango Avenue which would allow the elimination of the existing detention basins. This preliminary storm drain design for Mango Avenue will differ from the Montgomery report amendment due to a change of design criteria as set forth by the City of Fontana. The hydrology calculations will also differ in that the Montgomery study was a broad brush master plan intended to be used as a general guide by the various agencies affected, while the hydrology involved with this preliminary storm drain design will be much more detailed. 1 2 GENERAL HYDROLOGY This project uses two different hydrologic methods for determining particular design storm flow rates. The rational method is used to estimate the peak design storm runoff from small subbasins which is handled by the feeder drains. The area for a rational analysis is limited to 10 sq. miles. The unit hydrograph method should be used for any watershed greater than 10 sq. miles. Since the area which contributes storm runoff to the feeder drains is less than 10 sq. miles it is suitable to use the rational method in estimating the storm runoff which the feeders should be designed to handle. The unit hydrograph method incorporates much larger basin areas in the analysis and is primarily used in estimating the flows contributing to the major drains. A design storm hydrograph is generated for each subbasin at its nodal point. Each of the storm hydrographs can then be routed downstream. 2.1 RATIONAL METHOD The rational method is based on the relationship between peak discharge and rainfall intensity, drainage area, and a runoff coefficient which represents the ratio of runoff to rainfall. This relationship is expressed by the equation: Q = CIA where; Q = peak discharge (cfs) C = the runoff coefficient I = the time -average rainfall intensity for a storm duration that is equal to the time of concentration. ("/hr) A = drainage area (acres) The values of the runoff coefficient and the rainfall intensity are based upon the characteristics of the subbasin such as the ground cover type and condition and the time of concentration which is initially a function of the land use and the slope of the subbasin. The rainfall intensity is obtained from depth -duration curves using the time of concentration. The Civil CADD system performs this function automatically and the user simply enters the subbasin characteristics along with the return year (10,25,100,etc.) and the area averaged point rainfall for the subbasin in inches. The general sequence for the rational method is to start with a time of concentration (initially obtained from the nomograph in the Hydrology Manual) and obtain the rainfall intensity from the appropriate duration -frequency curve (see Exhibits 2.1 and 2.2). The intensity is then put in the rational equation to obtain the peak runoff. This peak runoff is then routed overland or through a drain and the m m c ic' LIMITATIONS' L 100 I, Maximum length = 1000 Feet Tc 1000 90 2. Maximum area = 10 Acres (mn)7 —900 80 a. - 800 70 -. H 500 6 4 00 -700 60 c > .. c 300 200 7 _ m oa6 0 N EDc oo -600 a 50 o ° '- +- 0 �� 0 so 60 8 m m m a= E a-- „ 40 30 -500 0) m 20 9 _ 0 m CL 35 o a 4m� 10 10 -4000 N 30 `3 K fL�Q 6 a l�) 3 1 1 Undeveloped 0 Good Cover o 2 12 ' 350 " 25 _ Undeveloped 0 c I80 13 EFair Cover E 2 6 �14 300 Undeveloped .3 1 �2 15 9 Poor Cover 0 o 20 —2 l6 -U 18 Single Family 17 250 �' 17 (5-7 DU/AC) c 16 15 / Commercial ��5 18 19 14 (Paved) m KEY 200 O = 13 L - H - Tc - K - Tc' 20 0 12 � l2l w 25 0 10 P1 Development 150 w E 9 80- Apartment F- 75- Mobile Home 30- 8 65- Condominium 60- Single Family -5,000 ft 2 Lot 7 40- Single Family -1/4 Acre Lot 35 _ 20- Single Family - I Acre Lot 6 10 - Single Family -2 1/2 Acre Lot 100 40 - EXAMPI-E: 5 ( I ) L= 550' H= 5,0' K= Sln 9 le Fami (5-7 DU/AC) IY /A Development, Tc=12.6 min. (2) L= 550', H= 5.0', K= Commercial 4 Development, Tc=9.7 min. U Q ti c m E 0 0 m 0 0 LL m c 0 �h m _c E U c 0 0 `c m C 0 U w � 0 E TI►ar- nr ^^&I ►iTnnrtnu travel time is calculated based on the avera a velocit and an average flow rate. The travel time is then added to the old time of concentration to obtain the new time of concentration and the process repeats itself until the end of the stream is met or the stream confluences with another stream. This sequence of steps is also done automatically by the Civil CADD system by simply entering the various basin characteristics. 2.2 UNIT HYDROGRAPH METHOD The unit hydrograph method assumes that the watershed discharge is related to the total volume of runoff and that, for a given duration rainfall, the hydrograph time base remains constant. The unit hydrograph is defined as the time distribution of rates of runoff which results from one inch of effective rainfall during a unit period of time. The watershed's unit hydrograph is predicted by the watershed's lag time, drainage area, and dimensionless "S" curves which are summations of hydrographs modified so that percent of ultimate discharge is related to time expressed as percent of lag. The U.S. Army Corps of Engineers has determined "S" curves for various areas of S.B. County. The area averaged point rainfall is obtained from the isohyetal Figures in Section B of the Hydrology Manual (see Exhibit 2.3). The area between isohyetals within the basin are determined and the average rainfall is estimated based upon topography and spacing of the isohyetals (Note: the I —i - — �R7c R 51+f 6. ;ON -OL T3S `AjA l o A SAN BERNARDINO COUNTY • � a!o i i-.RBW , i % - R7W R6 - HYDROLOGY MANUAL .......................... REDUCED DRAWING SCALE 1"=4 MILES LEG EN t CISOLINES PRICIPITATION (INCHES) SAN BERNARDINO COUNTY FLOOD CONTROL I TR VALLEY AREA ISOHYETALS YID - 10 YEAR I HOUR MEED ON U.SD� NAAA /TLAS 2, 1973 A,rf'RE YrD BY FL t u • DATE {GALE ,FILE dD m*%L NO. 1982 ('•2K VeRO-I f 3 Rf 12 • �-\�a 1ry I.; R W R6W R5W P4W `v - — — — R2W — — - VALLIT %kLL - RIW RIE -� R2E s wc9celz _ — - — — - — — - = — - — - — T4N ro ' WENT IT ,c -'! • �y 1.2� �l I a I ' I "s � � IwuL...A+L. �wu• _ x DY I I ''/ aG i - 1 Y vuirl A�.�.w�•� 1 O'I r, I. I '— ' ptE{lore 3 '`s' •- DIDY,Y �- — — I- . — 1 — �-, — — •-�- t � I — - - RA �ESNA � ' � � •' .f� T3 N — I •,�, s ! I. ., I t•p � r° �1 _ I ice': I I. . < •. � — — — — — — — -- — � ,�f.__. L _ i is a � •) ,i ,' / 14 _ ' L{ \ '� •� �x9 � � � °` __ .._ .� _ _ \ ...-_.��.T.�iT' IJ° -}- -� L ;� - - _ � I - .1_ .-1 - � f - •<•..cc-- -°� T - - �•.- _ ! __ _ I ._ . - '1 - I- l ) -i �/1 N ''n. - dAr � - - {< ,mar L� -- r I 'T;1NIO 32 !• � • r•\. I `6 Iil/-� .I r. 7r.•1. r..°, I - + � - - -� - - ) _ - - 1.7_ -g �p -_ -�-r 7� - - _ I _ ,e�i.�•1 ' I I I 4T J' I - I \ � j }-_ � :D .c W, . ��� , Ila- ' S S* � ode i - •--� - - r_ +1.3� • :T Y � ' °=1.. v � • • i - . .% , Ir7! � i r! V � r '` 0 _ - I `\ � -•I• �tI•--. r- � .-:_ .1 -r ._.•. ��-c - ` - - '- - \�.w. �- - - •,- I - _- __ < 'I.f -_ IA - - � _ _ 4•.. • L ARRO.NCAO _ - J c EAR : rc. • • • i • _ .LD -1 I- C) T2N —�• — — — — �' 4 f q :T I.z + rV.1. . _ = Jy�T,-- - - - - — — - — — IR — — — — - - I i — — -N-T? N 4 A � - � .I.D J-:. /•� �i..L - __ Y. - .�<L! �� -_ - - ..... _� DN LDRC A /� /!'° , � .- -_ �. -, IQ,_ I y 1.4 y � I I � � i L4 1 �.t - ' � t or 1 - f •' _ r I � r`f% _ /•' i- -r -- �/ `_,f_ J- �I.S " \ 3( ;•�_ �- T''��_. - ��� .r ,• I n ` ,I.i IM�Nos I , r; •q{,°P•1 LS `\ \__ ' \r _ - - - �Y-'- F-- :- - ... S 1_ .. -- -�- "J ' t �+'l --' �- - 744�y .^c i'� - _ ••�' �1 ,Sl _ _ _ _ i �� t � — i— _� ;- ':! F- l` Q"ELR y ter\ '`''' �— — — -- - --'` •l 1- 1 . - •� ,-- - � � c.La. � I \ � 1. `t ( fi .' z — '.I � -- -- i 7 - -� + w — -' • -- ` AL TLATD _�` ''•- - - — ;— - ,� '+� a•, I � I - - - -- Sr" --- - - I.I 1 _. _ 41 \\` f• . ;i ..• ••1 - `I ...,` '. < "i.l ye9/ _CT' -�• _ -J __ _ _ , J r � .� `- _ ��f - _ r y' e`%'� i .q + '• y� -` I f ai D-- ..1LEy4T.. -+ �- \ e +� -. �� -. _ �:. `.(.%rte i --,,,. T I IN T ;,.fr;\: -TN°•'_ f /I l Nf` J GJ � - - I -�- _� ?�-,- T _'Ci _- " _� - Y- -1 , -.�9Dhn .Y � �+-. v. 't- - - t - ---' `--r •T�- �•Y �F 1 I I i ♦L'TI ----• LO -MA_ - - T•' :Oh.�' _ I NL-' ` t J • - T- - ° J - --: ' S \ -: - \ UPLAND r = _/ • ' Y• SAN RIARD,4 '•A -- C"D'art — -._ .a wc• °• R 1 A LT^ - FON TAN - �: •. iNP MAS 1- L- 6'� t <:� ` �` I, r '•;- ` •»'�5?�, _ . * �' - t - - - - •`'L ''rte ^ �• J, • y TIS • • • & _ • _1 Y -tea.`". • '� '• '• - - • - 7 - - r ONT lOti±'•' - C TONS - n „ - - — i -- — - - _ -�•iS _ - = _ - _ �. _ -•+ -- _ REDLANDS °. I \ _ • —., •� •�„� R ,�. ( ?'• ., CREST 40R[ - -�- ” - - - .., _ i * /: _ _ - `I►A - 1.1 .. .. __t _ ►� - ell I yi )ry - ILI• I' - I'' +ukuPt -^: ✓�� t .a..R I '1 •RANO TCRRAC[ 4. TU I �I I ' -G. ` — �., , . I J I 1`L I T I � I CHINO I • ""�• j.r - -�r- - ? -t \ � -- - - - • ..L i — _ -� .� _ i .1. .- - -i -1'• ' I. .•o- `y I - - -+ - 1- '•�- p' ± ° �cd s R E \ - -- Ar ii- --� - _` i RAN i DcnNADww Ou4 RIE 1 ! T25'_ - - - i AIVt RDIDC. CDUN,T 1 _ �r i�.•00' R SID E «'b"•� R4W- •! R3 R2W \\ 1 •;Oc R1 Exhibit 2.3 I —i - — �R7c R 51+f 6. ;ON -OL T3S `AjA l o A SAN BERNARDINO COUNTY • � a!o i i-.RBW , i % - R7W R6 - HYDROLOGY MANUAL .......................... REDUCED DRAWING SCALE 1"=4 MILES LEG EN t CISOLINES PRICIPITATION (INCHES) SAN BERNARDINO COUNTY FLOOD CONTROL I TR VALLEY AREA ISOHYETALS YID - 10 YEAR I HOUR MEED ON U.SD� NAAA /TLAS 2, 1973 A,rf'RE YrD BY FL t u • DATE {GALE ,FILE dD m*%L NO. 1982 ('•2K VeRO-I f 3 Rf 12 3.1 GENERAL DESIGN CRITERIA The general criteria for formulating the hydrologic and hydraulic analyses in the original Montgomery Comprehensive Storm Drain Plan are as follow: 1. At the concentration point where the street section is inadequate to carry a 10 -year design storm flow, a storm drain will be provided to convey such. 2. The minimum pipe size to be used is limited to a 36 - inch diameter such that the pipe is at least 1/3 full during a 10 -year design storm. 3. The combined storm drain and street capacity at any point must be adequate to handle runoff from a 25 - year design storm. The difference between the 10 - year design peak discharge and the 25 -year design peak discharge is to be carried in the street. The storm drain is increased accordingly should this difference exceed the street capacity. This requires a minimum 25 -year design storm for all the major lateral drains because of their inadequate street capacity. The feeder lines required a 10 - year design storm. (Baseline Rd. is considered a major lateral drain and Mango Ave. is considered a feeder line.) 11 4. Manning's equation is to be used in sizing the pipe sections. Assume the pipes are flowing full but not under pressure. The pipe size is then determined using the next larger standard pipe size. The pipes are to be reinforced concrete (RCP) having a roughness value of n = 0.013 and a minimum diameter of 36 inches. 3.2 HYDROLOGIC CRITERIA The Montgomery procedures are briefly outlined at this point to ensure a continuity between the original report and this amendment. The Montgomery report used both the rational method and the unit hydrograph method to estimate storm runoff in the master plan. The feeder drains were sized using the rational method as outlined in the S.B. County Hydrology Manual. The major lateral drains were sized using the unit hydrograph method as outlined in the S.B. County Hydrology Manual. 3.2.1 Rational Method - The rational method was used to estimate the 10 -year design storm runoff to be carried by the feeders. Antecedent moisture condition II was used for a 10 - year design storm. Montgomery typically uses an initial subbasin area of 5.2 acres having a stream length of 1000 ft. and a land use of residential (1/4 acre lots) with soil type "A". Typically, for the second subbasin the area is 74.8 acres having a stream length of 2960 ft. and a similar land 12 use and soil type. The peak runoff was then carried through a reinforced concrete pipe to the Baseline lateral. The area from the final reach (pipe flow) was not included because its runoff contribution flows directly into the Baseline lateral which is designed based upon a 25 -year design storm hydrograph. This is covered in the unit hydrograph section hereafter. This method is acceptable for a "planning tool", but it is somewhat inappropriate for design because it is more desirable to keep the subbasins at a relatively equal area. In chapter 4 of this report the subbasin areas are more consistent (see MANGO AVENUE STORM DRAIN PLAN). The subbasins in the annex area are labeled 3001 and 3002, with nodal points 17 and 18, and they will precede subbasins 3101 and 3102 in the Montgomery report (see Exhibit 3.1). The annex area analysis has relatively the same stream lengths, areas, and concentration points as the other feeder subbasins which contribute to the Baseline lateral. Exhibit 3.2 shows the annex area stream characteristics. The rational method analysis revealed that for the annex area the estimated 10 -year design storm peak runoff is 78 cfs with a time of concentration of 27.8 minutes at node 18 (see Exhibit 3.3). A 25 -year design storm analysis was done to determine the time of concentration which was used to calculate the basin roughness "n" factor for the initial subbasin in the 25 -year unit hydrograph analysis. The "n" factor is based on a "lag" time which is 80% of the time of concentration. The 13 SUMMIT AVENUE DRAM HIGHLAND AVENUE CHANNELS ': Ilwell •`3s � INI y1 3001 • Ali _ MATCH LINE / ANNEX AKFA • •.��' � � •��fLl�le.-'moi`'- �-/ t ^ \ l - - eek � ` ,�=•' �.��,' � u, �t,Dr+ _ a1 Glen elen •?:•^: :':�:' . ! �'�+�• �'r , �6 : R bdrtal,on Fac,f{ly, cp DRAINAGE SYSTEM LEGEND ---- PROPOSED REINFORCED CONCRETE PIPE SUB13ASIN BOUNDARY --y— +r —X PROPOSED TRAPEZOIDAL CHANNEL 5� NODE AND NODE NUMBER 1 1/2 : 1 SIDES B - 12 FT. 0 .0-6—e EXISTING REINFORCED CONCRETE PIPE tue SUBBASIN NUMBER EXISTING TRAPEZOIDAL CHANNEL HYDROLOGIC LMT BOUNDARY �' xt •�-?'� ''fir' ,- - ,r,Q_3y, .-� �� _ •- • ! UNE •_ �1 f�1,Rv(If3. •,. ��.•: /JleY .ANIGHLAN -i F �9ole.trr _ F riyFart r`�:� •�• Pa 1 CIO Exhibit 3.1 SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT COMPREHENSIVE STORM DRAIN PLAN RIALTO CHANNEL ISMITTED By MILFS E WOLLAM R.C.E. 13975 DATE SUBBASIN AND NODE MAP FIGURE12-1 JAMES M. IAONTGOMERY [uu r[[r COM3ULTING ENGINEERS, INC. "'O"�r••bo—.w.....�+u�,�� DATE DEC. 1988 SHEET _L_OF_ 3.._ 1 r- MATCH LINE ffijrc b 1 ; _ Prraton S ..tr,....... •C� 1 '•.� i P 73001 , 3101 3201 3401 3501 3601 3602 701 X702 ° ; Y Sch ' 'd l F� b '_'v r t• �; s �• 1400 ' • f� : 1 V�. v. Y•'' x-i t �+ ` _ ,well t 3 Iv1 48 3 t� 1• 1A� 31 __ �: i• F ali � n .IEw •__" •I 6U:ri-1(-7C� i �`•'n za5 �'� 133 b1orR.nrr-li • 2G`-iiyt'hIRP�Rt�d I `•-a= �S / ScAr = I- '� ••r i _ '.a$1tR0 FIE I I Jr H Sel ♦,. SAP t31 :w. �32 ; 1: �" �� i _ I i 34; `h 35 Imo `351 - ----1 R) ' i s /-'• 1 q • ' n ( / a' Elvnlw.v t :/• 36 4.0< - • 4 7.6' 8.0' g ' 9.U' 0 ,,aoQ p• I tc I . _�. �i 4 QA?' ice*':, _��� ��1 '7•F�.. ,y..q .. �4 .� �r.+rer--' I ,.,oa, . _ ,.. <,< -. .. .•- », ew .tst115s +-in �'� � � >.. �:,. •�� •Base• i • ! jl. _ Res �•- --_-_- ' y.. gpOtQ ,... _ " ¢ - ' a � � ; .' - IAJL zi • t I • 1� 1 !- w > Jr t Hi h Sch . ' r. ...: I 9;.•oclr rr , •• -- '• ^4101 - 420] 4309 4401 "1501.., 4601 4701 !48 4901 4010 •' y / _--- �Y"y. ... .. ! •A.. t -, w D ,•0- j-Y�/p% I @ 1 > _ Yrers He er• .t ,� � � - -- �• 4 . )`., / t w Dunn.; 1 se ts�`liemi� P; Sch . �: • •'. ^�.... ! n n Sch ' H r - t4 ty •r 2, ETIMA l Sl=1 AVE - » L _ �1 Pm 136a =y.' :. - 1 I n j A c"AN sr two Y Ats< : i i1sJ Q CIi0OTHl r .: :ft 2 - 5...... .0 \L==. •._ .: 1 t ! 1 _ jl 7 k= �. -- ' 1 P LLSLVD'DRAIts ---- 15.0' 1 ti .7 �:; .' (f .t I�-- I �'„ I �i� F j !-_Srowr. __� _ A��..q /• 1 :rrw• a'• .. ..... 3,. ::' - --8 �• •> .' I 1 •�=.�= - i 'I AAS �. a=t itHl-' .1.."! : �:.: 1.: _ e • t aA [ �y • y a 1" o m 1 ? ' ae ..• _�� » o- •�■lanorth u (lid H C_-- �. (��� " u •+I - cobwrLi vw Pas oo: a r- - t •1 : _ ...._;.} : •i, rwwl �a �. rtr• _ :. ?'" _�,+,f•..: '= -HT - `.; r 1 a s [i. I L �. •�MIIMI �. _ �' _ 9il - :a'• ':: •( " ..... �L _ ate" 13 _ --- :r»° to.a•-t-yas�• ...o.0 • ~ a :.' `� 1 .i.: t (-/ ..1� `az is .ii {• ■1. ► : i t . ,} +:'`. r 'r. •t!• .:ri • "1.�_ rt I 7 �r ia.rct' ...-t i-6..a. 'c�«�.. •. t r cvo 8201 n 4 LANEc r 11.11 . y _ •rr C' ; '. - _r7m <.NE •a �•■a •; "t 5201 y. 5301 c •01 • - - vo: • u�a 1. r .. as i 551Xi�;'• + • _..- .t • 1t 4 II • {{ r• ...` - ........_:f Ai7o•nt 2 :I _.L-r� r - H.•R, ' �� i i aF 131. ther�i •a ,�•"7� G'1, _•. .••.:....+•10 a -gin r i` i >: • q �.• rvr Av[ � _;r _ :t '+ w t. - -Km ,1 _ �: Pyr Trader 2 �o-�`� fA 2- 7�a�%� u. E�a�E; 5601" Pa�$0� y 5901 5010 5020 b_:Flre _ 5701•, L I," CnY. t' �� Y ... µ✓ -s 7 <, f� c 6 `+Ailsa �^ '� IHjlt a :702:x. i • :: Q _ a.• - ScTi ,rrrp x l}r�sxr -Pa - il StaQoa' >� =rte 5302 5402 I - _-___ _-_ SOu 1iERN _ __ PAG/FIQ 811T'F� T 1 f .$Z70E77171 1� PACIFIC -ter _ _ •` _ - _ -_ ._ -- _ mmugnS - ,. - _ -^- 7 - - - . . • �ai'• •_ ( r c 1 '' lanau.n v _ s •'�-_ :::=aS.i•�-' ' ; - :...amu . _I 1 ., ' _ ' }:A1.fb 'rat YO -_1,179 T,, AVE ? ' II a;. ^:,.;j{:....&: Jr 23 .a '•uth•..m tta .. t4 •Y•r. 4 :s 22 - I '.ill. t•. 1'M 'g21t3 eYr _ A,,rTD �'�---p yr- ... !r�l t : i'tlrl til•h i r' 11 1 • ( _ ( a " , ■' • _ dp8 i •Tr Icr �'' Trader Put _ - sem".: •'»..... _ m : ; i r i .� �_ 1 f ! • •I m 1 I j �I �1i 1!5 c �� P 1 Pafk • DEKA e tl i 'i ` 6.='^_0'+ _ «� zs ••� c8.o• . 23 - -v P , if' O ANGE ,).-.t._...»_. t.. �1.._..._.._.. .._ _ �..Y,. a9 ....._.. ... ....... 17 P� 3ell EAST FONTANA DAM. •plir_-- - ra•�ro.:.c.•o�A. '• ..,.._. .„,w,,....,..... ,� _ e�� :a :- •^ xa:t`" ..�.,......: ••5;sE ='= =`" '� •�: :...• .. ' i! �••� ci ' Yr+ 3081 `Je� . c �i1'. •_-..7•Y�• ••�f• F�2A�IAi �� •0 : " _ • ... Pa.tr . a - Or� lc 82041 ^J S3 t1 i .I1 C ■ . wa i : • f:(• b i r _1 811 • w h ! p�; ;:' •_:. a a i ........ € _� _ AV £ !S: I f'arh I ' _ rb _ / A II�Itl 1 1• X11.@2Di. 1.t•83Q1 » °6+ M 6�6Dprt :'660: :->t i __W` _ .. .�..z c^�, y.i(... i _ .FPPIEI y .�aVE�^ FI od y' y 4g. - _ M- . •A o _ �'.I il_ Funtataa t - 16,..1 '.' / 1 y 13305- F 1 /9 Baan t�,<--pRElt NOT STUDIED r■p �--' < o Y i p� :%s. 0i I' _' ',rr_'�=�:. 1 � _A. %1 • ' 1 t o- AT = •mm Sf - •, .. '1 .......». .. l; 1 •t3, - ; a- ;� :--^ . Q�`� 7711 • .. I Res _=3� a✓L_ _ ' ' + L._.µL a:• • N! •'i•* aacvvx - -'� I p A .1 �1.• .6�. iO2- Synl' .vt ••oil I�,SeA: �. - I .WT P•i)4' 'I• » .t well 1 •f 8308 11{ J)} • -� /// \ i 18 o k' :tact j J.5' j X8.5 90' •10.Oi 6' l 70.6 =a0:6' .^�I;tii • ^ 'RAND �C DRAIN / t 14 <'� 1i46' , 1. 13 ! fa 11 moi. _ 'ry1 v. x>x €'. _ p l4. AAA SAN BEIF�►AT�NMb-xOt-;OM/l 2 �.+:- l- .........<....-. 8, �r Y t 4 mx �-�,`.�x,,�,,���i, ...r. ,. .1 ' �Q7_: Tom_ - 4vf _ 1_ �7' 1 • 11 Y• Os:... .\..a wsa• 1:$.aw _ ...:. e.•^yr 11...^ <.vYJ-1i :, r '-o' ..+.� • , •1': +� • 8011 DARY-.-'--__� ' +�• •,W a cti?_--o::. cs-----a`- „ y c♦ 1 ! Sc l S i• �'• •1±F:78401- Q... -1 { :� _t i C 8 _ 1 ". 1 ° t 'nt::' f I: i• :s;= 0 1 8401-1_. .».•r•.•. : "'.•«» :>it - - � _ I ! i• ( q,. ? _ � �-»����' I � ��.•` � � .� ( l ORP'r i s . Re{•.r..�'---" - MATCH LINE Exhibit 3. 1 SAN BERNARDINO COUNTY DRAINAGE SYSTEM LEGEND FLOOD CONTROL DISTRICT COMPREHENSNE STORM ORA1N PLAN ------ PROPOSED REINFORCED CONCRETE PIPE SUBBASIN BOUNDARY-�¢ RIALTO CHANNEL -X PROPOSED TRAPEZOIDAL CHANNEL 57 NODE AND NODE NUMBER SusuirTED e•r MILES E. WO-LA" R.C. E. 13975 DATE SU88ASIN ADD NODE MAP 1 112 : 1 SIDES B=12 FT. FIGURE 12-1 -o-o- e-a EXISTING REINFORCED CONCRETE PIPE 144e SUBBASIN NUMBER c EXISTING TRAPEZOIDAL CHANNEL HYDROLOGIC UNIT BOUNDARY JAMES M. &(ONTGOMERY IC1l rttt CONBULTING E'{iGINEERS, INC. .ow.�y..,.,o,,,,,<•...oe..�.,_� DEC. 198 DATE6 SHEiT OF__3__ 4[Ci4ALANb AVE.. 1530) 3000.00 ' I - 1000 Y4 AC. 5, Z qc. I I 1_LI I 4 (I508) - 300099 0 v w 4 d L' Z9(o0� Q INALNVT AVE. s 5TizEET FLOW-- (1473) 3000.17 5. F. Y,+ AG, L= zoo 1t0 ` SO.�ac. FIVE FLOW xXXX Xx = CONC. POINT (XXXX) = E LE.YATION AVEA (I L+37) j BASELINE 12D. Exhibit 3.2 --------------------------q------------------------------------------- ------------------------------------------------ I Rango Hydrology - UNIT 3, FREDER 0 I MONTGOXKRY ANRNDBRNT , File: D010A.111 ---------------------------------------------------------------------------------------------------------------------- ?ro;ect: D010A.rsb Page 1 Calculated By: Study )ate: 3;30!90 Xo:sture Cond:tion(ANC): 2 Checked By: 10.0 Year Stora : hour rainfall = 0.97 i"n.) Intensity Slope = 0,600 RATIONAL DY3ROa0GY-SAN 3&RNARDIR0 CO. (Manual Date - Auqust 1986) Station/ Soil Type Devel,' Area 1 : Fa IF' avgl Q Q ,S1ope;Sectionl V ! L I T : Pc 1 ?ydraulics ipo:nt Vo.1 A,B,C,D ;Type !iAcres),:n/h;_a/br ;:n/hr 1(subh Total 1v/hz I Fps ft -lain,! min.1 or notes -------- ----------------------- ------ --- -----I------!-----!------'------------------ --- ---1-----!--------------- ------ -------!._--I_-----`-----+;---- ;----- -----------;-----i--------------- -------------- 3000.391 A-:001,4 ;ac 5.2:2.32; 0.591 0.59; 8,11 ------ 1-----(------- I--------!----!-14.0!--------------- --------- ----------------1------ --- i----- i -----I-----i 8,;24.0121 Street! 5.0129601 9,81-----I gavq= 66.32 40.0 aide street ) ! ! ! I I I do=0,8 Flow hw=20.0 i f i 1 : flow to pt,4 ; I ; ; Wdth Ctr-Brk= 12.01 Ix -fall= 0,0400 Os -fall= 0,0200 ; 1 3000,17! A-1001;4 lac i 74.811.671 0,531 0.59! 69.91 ------ I-----!-------I----!----I----! 24,31---------------) I Vo. Pipes = ' Pipe flow travel tine --- 'N' = 0.013 ------ I ----- I 78.010,01414= 36112.6126401 3,51 27,81hg1= 2.5(Ft.) 1 ---------! ----------------i ------ -------- ---- ------ I ------I -----! ------I -----I ------ ----! ----! ---- ------------------- Effective area = 30,00 (Ac.) Total study area - 87.00 (Ac.) Peak flow rate = 78.008 (CFS) I I t...:...:*t,:..,::�.. AP = 0.600 SCS Curve (AXC II)= 32.00 •::,:<<.�.�..:,+.�t « �tt>?:�t::! !--------!----------------------- !------- !----I------ I------ 1-----I------;--•--I----------;--- I----I-----1--------------I I :--------,----------------'------------- {----I------ I------ )------ •-----I-----!-------j---- I --------I-----;--------------- ► I 1 I--------- ----------------!------ !------- )----'------ )...... )-----I------ 1-----i------- i ----I-- 1----I-----)-------------- I ------ ;- ----- ------ -------1-------i----!------1------1-----I------I-----1-------1----1----1----I-----!---------------- --------------- --------1--------------- !------:-------;----------J------I-----I------I-----J-------!----1----1----j-----I-------------- ---------;---------------! ------ ------ ----! -----) ------ -----! ------I -----; ------ --- ----1 _.--! ----- I ------------- ---------------- I---------,I-----.-------,----I------I-----`i_----J------I---- ;------;----I----I----)-----I---------------! i --I------I----- ----1 I i ------- --------!----I-----I---------------c I I -_---------------._--------- ;------- I._ --I------ I------ I-... .--- --. ------I-- I _- .- --_--------------- ----------------I , : I!-------------!----)------1------1-----;------I-----1-------I----'----I ---I ----I ---------- ------ ,----------- -----;...............1----I------)------I-----1------I-----I------ . -- I -- I -- ----1 ------------- !--------- ---------------- I------ I------- I =----- - -- II ---- ------1-----)------1-----1-------I----)----)----)-- ;------------; I I-------------------------!------)-------I----------I------J-----1------i-----1-------I----I----1----1----=1---------------i I -- -----I----------------!----- ;------I----1------1------)----I------I----1-------)----1----1----1-----(------- ------- --------------------I --------!---------------- j----- -) ----- ---I ---- ---- ' --- I----- I ----1 ----- !--- ' -- 1 - --I --- ! --------------J 1 ---------I----------------I------J-------I----I------1------1-----1------I-----1-------1----1----1----1-----1---------------1 -----I---------------- i------ I------- 1----1...... )------ 1-----I------ 1---- ----- -- --- ---- ---------;----------------I------I-------J----1------1------1-----1------J-----J-------I----I----I----1-----1---------------1 ) ----- I ---------------- I ------1------- J ---- I ------ I ------ I ----- I ------1-----1-------1----1----; ---- ! -- - - I --------------- ---------------- ------ ------- ------------------------------1------1-------------1------)-----1------1-----)-------1----I----1----I -----I---------------I I !---------1----------------J------1-------J----1------1------1-----1------J-----1-------1----1----1----!-----I---------------I 1 ' Version 2.2 Copyright (c) CivilCADD/Civi1D&SIGI, 1990 I I I----------------------------------------------------------------------------------------------------------------------------1 Exhibit 3.3 ------------------------------------------------------------------------------------------------------------------------------ +- Kaago Hydrology UNIT 3, 111DER 0 KONTGOM&RY AHBNDKINT File: 302S.F11 ' Protect: d025.rsh ?age Calculated By: ; Stcdy Date: 3/3L50 Moisture Conditioa[AKC): 2 Checked By: ! 25.0 Year Story : ao�.r :a.afa;l = :.20 (In,) Intensity Slope = 0,600 ! :'tV"" RA":ORAL RYDR0 0 G Y - 3 A N 33RNARDIN0 CO, (Manual Date -August 1986) Station/ Sci: Pyre Devel,' Area I i Pa !Fm avq! Q ; Q ;S1ope,Sectionl V 1 L T is ! Hydraulics ;Point Ra. A,B,C,D .7yae .(Acres) in/h;io/hr lin/hr I(suh)ITotal 1v/uz 1 :Fps 1 ft.;210.: aio.; or notes ----------------------'------ ------- ------------ ------ ----;- -- I -----!------- ----, ---- -: --------------- -------------------------'------ •------'---- ----!- ----� : ,----•;-----;------;-----i-------�----'---------I- ---------------------- ------ -------'------_j_._--�------- ----�- •1- ' ;---------- -----,----- , , -- -- ------ --------------- -------------------------- A-;'03%.4 ;ac 5.212,871 0.591 0,59; 10,7I ------ ) --- ,iI----01- _____________ ---- ----' -------------- -------------- ------ ------ 1 10.7010,0:21 Street) 5,5129601 9.01-----I gavq= 81,63 YC,C y:we sire? 1 ! I I j ; 1 do=0,8 Flow hw=20,0 flow to ot.f I ! i ; Ndth Ctr-Brk= 12,Oj It -fall= 0.0400 Or -fall= 0,0200 3C00,:7 A -:O0% 4 /ac 14,812,10; 0,591 0.591 98.61 ------ I ----- 1 I ---- I ;----! 23,51---------------1 Yo. P_pes = 1 Pare flow travel t:ae --- N' = 0.013 ------!-----1 109.310.014ldc 42113,9126401 3.2; 26,71hg1= 2,7(Ft,) I ;Ra. Pipes = 1 Pipe flay travel t:ie --- 'N' 0,013 ------ 109.310,004Id= 1201 8,7139601 7.61 34,31hgl= 2.2(Ft.) 1 --------- ----------------;------ I-------I----------I------1----I----- ,----(-------I----I----I----;-----j------ ---- ----( Effective area = 90.00 (Ac.) Total study area = 80.00 (Ac.) Peak flow rate 109.297 (C?S) ! AP = 0,600 SCS Curve (AHC II)= 32,00 " `•'::• " '•", ",,,x,,,,•*tt�j ------- I------- I ----i------ I------ ;----- 1------ j ----_j ------- j----j----1----j-----!--------------- --------- ,---------------- (------ ,------- !----i------ I------ -----j------j-----j-------1----I----I----j-----)•--------------! ---------------------------------,-------'---------- I------ )---_-I------j-----I-------I----I---- 1---- 1----- ;--------------- --------- --------------- ,----,------- I ----j------ I...... ;-----j------ ------- I----j-----j-------------- --------- ----------------;------.-------;----1------I----- . ----!------;-----1-------I----j----)----I-----I-------------- -------------------------;----- ;----------- )------I------I-----j------I----- I------- I ----i----)----;-----! ---------------- ----------- -- - ------;------)-------;----1------(------I-----I------1-----j--------------------- , --- -------------------.------------ ;---------!------!-----f------I-----I-------1--------'----'-----I---------------' ------------ --------- -----I....... )----1------1------I•----j------ I----- j------- I ----I----1----!- ---(-------------- 1 - ------------------ ;------ ;------- ;----I------ 1------I-----j-----•1-----j-------I---I----;----;-----j--------------- i -- --------------------- ;------ ;------- j ----j...... ;------ 1-----I------ j----- I------- I---- !----(----; ------------------ 1 -------- .--------------;------)-------j----!------I------I-----1------I-----j-------1----I----1----1-----j---------------I i ------------------------------ ------- ------ ------ ----- ------- --------------- 1 -------------------------- ------ ------- ------ ------ ------ ------- --------------- I !-------------------------- ------;------- j ----1------ I ------; ---- I ------j -----I ------- j ----I ----I ---- j -----I ---------------! -----;Ij--j----i- ---- I-----I------I-----j------- --------------- ------ -----I----1----I----)-----1---------------! , ---------:---------------- I------I-------I----I------I------j----I------I-----j-------I----I----(----(----- j --------------- I i- -----(---------------- I ------I------ j----I------I------j-----j------I-----j-------I----1----I----j-----1---------------, ----- •---------------I------I-------I--- I------ 1------ 1-----I------ 1-----I------- I----I----;----j-----I--------------- ---------------- I f I I I I -----I I -----I I I I I I 1 1 )- -- -----------------I------I-------I----I------1------I-----1------j-----j-------j----i----I----j-----I---------------1 ; ---------- --- 1----I------------I----- ------ ----- ----- ;- --------- I I I-------j----)----)----j I ---------------i I 1 Version 2.2 Copyright (c) Civi1CADD/Civi1DISIGN, 1990 i ----------------------------------------------------------------------------------------------------------------------------I I Exhibit 3.4 rational analysis of the annexed area showed that the 25 -year estimated design storm peak runoff is 109 cfs with a time of GOnCe t�a�bpn 9f 26,7 minutes at node 18 �Baseline�. The flow is then carried by a 10 ft. diameter reinforced concrete pipe and the new time of concentration of 34.3 minutes at node 19 is found for use in the unit hydrograph lag time and subbasin roughness calculations (see Exhibit 3.4). Node 19 corresponds with node 1 in the unit hydrograph analysis. Refer to Appendix A for the detailed calculations and evaluations. 3.2.2 Unit Hydrograph - The unit hydrograph was used to design the major lateral drains for a 25 -year storm with antecedent moisture condition II. Montgomery breaks the Baseline drain tributary area into three large subbasins (3301,3302,3303) each with different characteristics and point rainfall depths. The unmodified subbasin characteristics are summarized in Table 3.1 and Exhibit 3.6. Each of the three subbasins has a node and there is a separate routing model for each node. A storm hydrograph is generated for the first area allowing the computer to generate the depth -area reduction (D -A -R) factors. This is called Model 1 and it terminates at the first node with no routing necessary. Model 2 terminates at second node and begins with the same initial subbasin (3301) but the D -A -R factors are obtained from figure E-4 in the Hydrology Manual (see Exhibit 3.5) using the sum of the areas for subbasins 18 TABLE 3.1 ORIGINAL BASIN LOSS CHARACTERISTICS Area Soil Pervious Fraction Basin Land Use Fraction Type Runoff Index Impery A(i) 3301 Lt. Indust. .63 A 32 .80 Residential .37 A 32 .50 3302 Lt. Indust. 1.0 A 32 .80 3303 Lt. Indust. .92 A 32 .80 Park .03 B 56 .10 Park .02 A 32 .10 Residential .03 A 32 .50 19 100 24-HOUR 90 6 -HOUR Q w cr Q z w 80 U) cr O z �_- 70 i 3 -HOUR _a U w a Ilk 60 z I 0 a LL O z 50 w U w a 40 I -HOUR 30 -MINUTE 30 TE 20 20 0 50 100 150 AREA (SQUARE MILES) Exhibit 3.6 SAN BERNARDINO COUNTY DESIGN DEPTH STORM AREA HYDROLOGY MANUAL CURVES E-18 Figure E-4 3301 and 3302. The hydrograph from subbasin 3301 is then routed through a 10 ft diameter reinforced concrete pipe to the second node where the second subbasin (3302) is added to the stream. Model 3 follows the same procedure now using the sum of the areas of all three subbasins to determine the D -A- R factors. Model 3 starts with subbasin 3301, generates a storm hydrograph, routes through a 10 ft. diameter reinforced concrete pipe, combines with subbasin 3302, the combined hydrograph is then routed through a 12 ft. reinforced concrete pipe to the third node where it is combined with the storm hydrograph for subbasin 3303. Exhibit 3.6 is figure 13-1 in the Montgomery report and shows the subbasins of the watershed which were used in the unit hydrograph analysis. To develop a synthetic critical storm pattern, the area - averaged rainfall intensity data is obtained from the isohyetal map (see Exhibit 3.7). The addition of the subject annex area did not significantly alter the rainfall data for the initial subbasin (3301). The initial subbasin characteristics (land use, soil type, and the perviousness of the ground cover) were modified because they changed with the addition of the relatively small subject area annexation. The low loss rate percentage and the adjusted loss percentage depend upon these characteristics. The modified subbasin infiltration characteristics are summarized in Table 3.2. The drainage data for the initial subbasin was revised to reflect the inclusion of the subject area (see Exhibit 3.8). 21 • ' '• i' • • •,'..'ti �j CMA CL W a U° w W , r Z I w m O J ! '" .'�� , ,,, ...7,''^[.a'.l``•i•,��•�'t,'d`•;}�_ti•�s. , c7 3LL F ui O moo= o m j i. '�_ �::^.' 1 tiii,•b ' LL 0O z -1 z a' L °° t t.'�`'« , w"4y y �•� - ` i 1 O a o O LL to Q f uj w = w w z m o CL LLI t w° J p V) Q 7 E} . .. _• i'_ _T O _ w y1.(. r- J J J 1- U W d V7 � m :CY o m . L_zt 700' 't :—LcA=s,eao' "' ' • N J J 0 o N mums- .. t---• y .r,J sr. - i, r,� t O C7I 27 Of =I I. goo, �-LCA=3800' i �:. i 26 �',` ,•\ i n ...■ 1=- ,. x N °. N {` r' �i : 2' a :I 11 1J1:� j! tD <•< „iiMinIt •;:.f�I y��J3i UtaO 3 � .� t . (,I��• . • ��• .,1: ��•'v - �—. � C :. 'I � �t,u 1 - • m . T pry � -. _ _ �' = �•r� �r � � rA 7�� 1 L._ •II ■ _ tp. = T•' �•' . ' + i. . v t_JM. T'D '� x: to F Ir - i 31 • µ'YS �__� t A*: ••d•2 ' � ,uvsa � ^` '�� •�+ f-' � C :1 ' , sid+v:!FG,,,�r•• •'i'-�-J�'./v«r.... � li'sTiA tom• � �� I• F..i I•',.t "-�� .�...��1....r.L:uV� ..vt_ �...~' + 1 _�•�J ,i- J n:: r7 _t .F. l ,/IM■i -1 iCA=3'4001 _a.. •�li.+ I��.�� .t 1 IrttAL i �.i• 1yts»..; /• : 'r' '-i' y i i c� '; ! . .. x �, ALT :g.. ort ` Ji tot sn w �.. T_ .,- } �} iib ''N�k... - Rte-.. [ .. ;.10 IFC' 1^ ■ .. ' r:;c,� ! O• •.• •' 1'i2•'• ,• _ � �O �'�' Il i'I, �� Ill <W �Li4■ Y/ 1 K •F•i�•.1?-tr �•?" ljan W l' `'i'/• t ... 47_...;� ..F- T U� s1. ■ �i i ', L t..._ I ! , =n _.. ,tr1,1■�■,*2■OU 1.2.1.1 vM■ • •a• ., , ■2■! _ _ FUYT 1NA ( ....il: ,.• �• �. -. 17 ' _ T,,-sw i m �. ,•�•i t 1 i o 0. ' j r 1"' • - �."� : •�Lr? J /`/—y-•- Be�.. rt •ON- _ di'=•■:i �k ■ :... t p �t ;_ ' e A .i �I a.:..-•.-•.• y I ptriii " - . ! . � fAJi <a $_ ♦ � " 11 ^ ■ � t 000= f«= LCA. i 8 of 2 w6lI JA :.? i _ Q .:'.' •. !; n �.. r't 11n■IMy - - I ' .Ia cl i2+2rru I T r•�- 17 L.11.SOQ' a LCA=4 1 a -■ .. "I�eV, ... - ..' u�+■+auu: n.0 ...u•vu�.�v, _.r :d ... ... I ;• i� ; t : � • +� • .._._. , .....i,tl - .• <....•!r •} C 1' � - • .. s' - - ..... viii _ " - _ W • . -• 7-) j ••� - = is 'rrurra,atr,r, irrtarr+ -rueal t. . '•t"•..� - - tr .- � •.tiltl •• � • i .i. -v.�'' .. i %\ 1 • . : �i. ^ +ri.nrrrrrfw trtwtwwrizrnr,.,rren+ntinrt+' r f • a y«= . N. 1<1 •- -: ... � - ! T Ti. 1 ^ F. �G[1�c^ : }- ^ :i: j r� 1 t'f�rtt1Y11i'f11Y1tl11CYf9�1Gf}y7ZTj ar.,rtatatst.,.,st.r • I., on uu.rrwrJ ' .�,• - ..�' Frfitrtrt.rartr .`^ • ,alrrrr� ' } r 1 t '\. - � • ! ci• V �'•},{ �• , : a 1rS11/M !Islr,r,r er{lilr,ll - , . .. t rs, ■ , r 1 � ` / -� t:.: -{' !„ ! ,`{ e l r '}: rt�� �' .:_ —i..>,• � i!` y 111 � ; 4S• .' 1A� �- .( zvr�: .,. %�', .i•.».. M e ..1-S i '►.,� �•�:"'rte j •. 1 ' � v \ `i�c' N, ±• !� ■ tiF,- ••,j t '�• u•��.t ...�1� .� «,< W • 111 „ � \\� _a (t :;�*; i :•,* ;•. t �i,: - 1`!!tw.�:: ' 1 •!.r N I ( � /-7 \ 07 r I 7 •: L a i s c f '•' _ `. .� i! i l��;tr `� of .} y +1 l �' t i ti\\ i� •• . - •b 'f " •_tea"_' r..N1 + _ pp 2.. •t -i l! i i:i i?ii=i. ' wvi."•sj� 70. 1, - ! 111 -•• _x. .._ .I.I I h• •'% •fes.: + rM-� Tei - a•• .1:-1- II: I:: "•."•,�_ ""•w. _ . I 111 l • �. • l , , .I •,_ +.., ', r;' t :.yh 'i .- _ •���:. i t. 4i �,�•tA-a.lti., 7 r •:r1 1 t' - ` 111 • 44.% _ ,.i• < _! • .,,,,�' : � < }. � _ ,' ; F� :. .o:- tt �I �'"""""`...,,,� � 1 � _ Q � A j .. 1 ■ i' yl_ wi4-' + N. �� •' "''1 11.. Y t !: I 4$ 1} • * \ L 7 _ ...•• I r :. �' >.•` . "ten,;-'_'-t:'fc f_'i+ �. ` f »t:�! .. I;`^'••._•r It , w ,�+ . �F ` .. !h•� "`Z " ._ I'. •a' w-. .; ••'•�i}ice � r y � - ^-� � '� - .�' .'Lti� .►. _t h _j 1111 --- •� ::: ti 1 : ; 3'.x•1: _- - �+,�- - i:; c: 111 ^ 1 ', � ;_ N, • '... "� i. ._ - - _ e, ,• " al .11 :y •'f.1,r:'!- a •. . �I - .wj _ 4: • • "- i ' I ' l 1 A it �.;,..f•. f _ � 55 .-•� , _ ■i T - � '.: • 11t5 ...�s:. :y --'on. j. :t — - li" ; .. ' 8- '', o •` r �d mak;: ., ��, E� • ' • • �. ''`' '•"_ ♦ ! . .. ), j• til f"-.;.1: ""^crt-i'"5i;i �:� - • r -tom• , gay, I:i 1 `',�\ '�Sa , al 1 {••! •� 1•k `•. >, <'t.'•� 111 •��, w` �• 11 ' • .�7, ,` .�� ... . ........•. ... •tl !. ' t�t'-, ' +S<'i:`' •" u 'o .- .o :i •�U' _ _t_:� - ,.i. •t.'".`+•4.. 11 � _ I' n , s "�.• !• - ti�•�: f+' ?'• �_ • ? `', + i `G�• ii r.l(i "--•_,�r:�:. •i i• "y' �-lt, _. _, `: _..__'_'. ..\, .. ...:r f..... _... .. .'(- �• �.., i�Y� ,.,-�-'.•i•:. � �'y`�' At co ca • 'rte► i . .:_ \ 11 Y • '! • to ! . _ :?•.r' ..i''• i + • a i ,><11 > a It .,t : �i 1 •` it ,�"sf-•wttauuut.eruii,i.. Iwo''+•.* ./ a �• 1\, a fi a gal •,\.... .'`+. .^•...1 'i+'-; ?I-••-ri5-�,_„�, ♦ - '-/ :: •: ' • ' \'•q; . Il:y a , uauur.r.urrurrertirsr t.epouutLut.:.r.i. } ^ to _ •,• "; - •� ruot.r. IIaJs•Oe :.Y i " "'r i 11 v v 1111 � 1 �� 't '•E �r \ \ { ''"4s !r • >, `�{�.. :ii �� tf t.. ••I. -� \ f j- !� !' �` •I ,' 111 "q' z cql�_ ..>,i.f.r.r.t�ri� t,. `-.... 'a �a,. \r- r-t_..'t.•r . 1��,'Yt _U -'rj d •\'t! ��-.••ue'r '•It' i_�' J'..., u - • j 'Ilii I..! ! f �.�•� -� _t••'; '••* g 111; \ . �eG+,::• �ea?.' cc y ` �!,'. ` k ''a w, .. - ' •I '� ... '-� • S .' 1'r ' 1 111011 �• ` ! • i i " I . �' /: / _ ".•,,." } 111 i �~ - • nyt.,.rrr�........ rrf Ill' • = ti ... ... �•. ��\ i , A A ............ ul.rrn ' •• •�,1'• 111 C+- if ♦ �� u r. - `\• (r -f I i.ti11• ili s... E'.• } . -j _ : '4+'r� ,}: ..- .a r�' f, ' LE�C:�D G `: - - ,•i.rerti�. _ - - - - 1_'- - r - - - r-r,nc - - - MtalrII.t�. �..: - _;•�` a' ^ a I / ` YEAR 111 .a. !.. - - _ - j -. �' i • •� ;: • , ._ • ' 1 , i •,) ' `•.+ , i ; - \ ` ,..,` .i' • ^: ~ ` - ` ! 1 terra. • It rite j' ' -• �t: -- `� t 1 HOUR RAINFALL '�'' ' rl is •O 1 e,a� t% s�^ - _ , iFt, - �•: C n��•..T 1ti1� _ ��• :I nu,nnrnnr"'"' 100 YEAR - a - +' _a=�I 1-- - "r - iia.: < :, I x��:.,� iw': 1 :3< r `1 1 C i 1 HOUR RAINFALL a :� '�, ;r �, 1'1 f - ,,.�.r.etit.i.rq•.. :1`, a z _ !• T_i _ .,o_•��_e 100 YEAR - 17 Aik u.t.ur.rwr.r.r-t:.�.-..• +�+ 6 HOUR RAINFALL y ti tprur.loiureP ( l.ut.utoatrt.t■,a,■r.,.,i' 111A• �11 '^ .. 1C `' �• ��11 ;�.•a'� ;.r...r.r.rej. - -w, 1�1�• _ ,. - low t _. !111D 1.:l.�� a----- 100 YEAR - ' �'*Q i-1- . _��: �'1; `}�'�I 24 HOUR RAINFALL- - -r- +I.+.....rS ------ 1 - ' _. "- us,.. � Vit,...: ' -, ` ., : t� � •i. r j= HYDROLOGIC � 1 1 i ,,,it; •_-•, .. _ :� 17.11 II - Dr + :..F- yid_ SOIL GROUPS Exhibit 3.7 RIALTO BASIN TABLE 3.2 MODIFIED BASIN LOSS CHARACTERISTICS Area soil Pervious Fraction Basin Land Use Fraction Type Runoff Index Impery A(i) 3301 Lt. Indust. .54 A 32 .80 Residential .46 A 32 .50 3302 Lt. Indust. 1.0 A 32 .80 3303 Lt. Indust. .92 A 32 .80 Park .03 B 56 .10 Park .02 A 32 .10 Residential .03 A 32 .50 DEVORE, CALIF. NW/4 SAN BERNARDINO 15'QUADRA.40L: �--=—; 34117.84-TF-024 I - • �` �— � \ �`• 1966 � ' �• - _ T \ PHOTOREVISED 1988 �_� =_•: = — i DMA 2552 III NW—SERIES :395 VO u 28 _________=___ =___________ n=c— i��• J�pY't.'_ rT_. WIC `• • ` i{ IIS 1111 '! •..ter. �:' .��. � .v=a` �%—�_" —_ � .Z Z�tu WI U tis Y• ^f I? HIGHLAND /500 ' Substz ,Well li II ' ' li s u i 11 1. eservo.lrs �I �i II Il II II�' •' I� u It /480 _ .......... . i —lab, it 133 •''ctL=10,3201 •i W ti z 1 well 32 •''. ---331 •-- .. �`- (1407) ;� 14- /4 4 4 • -mmmwuv•• S ' j:•• �� i ResAlder : ' • ;-------t ` ■8-10; w'� JrHigh Sch Exhibit 3-8— i (YJO 00 0 1000 2000 3000 4000 5000 6000 ' 5 0 1 K!�.1-I'zT ? The revisions include: 1. The watercoarse length was increased by 1320' for a total of 10,320 ft. 2. The elevation difference was increased by 2' for a total of 123 ft. 3. The watershed area was increased by 155 acres for a total of 640 acres. 4. A roughness "n" value was calculated to be 0.033 from the time of concentration obtained in the 25 - year rational analysis. In the original Montgomery report the basin roughness (n) values were modified to define an appropriate lag time. Roughness values were determined so as to equate the lag time to 80% of the time of concentration for each of the three subbasins. The rational method was used to obtain the times of concentration. This procedure was followed for the new initial subbasin which includes the subject annexation. Using the rational method the 25 -year design storm runoff was routed through the 10 ft. diameter pipe to node 1 in order to obtain the time of concentration (see Exhibit 3.4). The "n" values are then determined from the equation: lag = 24n[(LLCA)/S• a ]. 3e 26 where; lag = lag time (hrs) n = roughness coefficient L = length of longest watercourse (miles) Lch = length along longest watercourse to a point opposite the centroid of the subbasin (miles) S = slope of watercourse (ft/mile) For basin 1, 80% of the time of concentration is substituted for the lag time and the "n" factor is then back calculated: n = (.8*34.3)/24[(10320*5200)/(123/10320)0.5].38 n = 0.033 A detailed unit hydrograph analysis report for each basin is found in Appendix A. 3.2.3 Hydrogra h Routing - The initial subbasin (3301) was routed, using the Soil Conservation Service Convex method, through the Baseline lateral and combined with the design storm hydrograph from subbasin 3302 at node 2. A 10 ft. diameter reinforced concrete pipe was originally used in the Montgomery Report. After the revisions, this size was found to be adequate for routing purposes. The combined storm hydrograph was then routed through the Baseline lateral and combined with the storm hydrograph from subbasin 3303 at node 3. A 12 ft, diameter reinforced concrete pipe was originally used in the Montgomery Report and it also was found to be adequate, with the additional runoff, for routing purposes. The Baseline lateral need not be increased for either of the reaches due to the increased runoff. Node 3 is 27 at the entrance to the Cactus basin which empties into the Rialto Channel. The storm hydrograph should be routed through the detention basin and on down the channel. This, however, is beyond the scope of this project. Refer to Appendix A for a detailed report of the hydrograph routing. 3.3 STORM DRAINS The inclusion of the subject area in the drainage analysis resulted in a need for an additional feeder line on Mango Avenue and an extension of the major lateral on Baseline Road. The drains were sized according to the design criteria outlined in section 3.2. This criteria required that the 10 -year design storm runoff govern the size of the Mango feeder drain and that the 25 -year design storm runoff govern the size of the Baseline Road major lateral. 3.3.1 Mango Feeder (DO) - The 10 -year design storm peak runoff was estimated using the rational method along Mango Avenue. The Civil CADD system estimates the pipe size for the peak runoff at the concentration point where the pipe is to begin. The pipe length, upstream elevation, downstream elevation, and friction factors are entered and the estimated pipe size is then calculated. The calculated pipe size is rounded up to the nearest standard pipe size and this size is used for the pipe flow travel time calculations. The 10 -year design storm peak runoff at node 17 (see Exhibits 3.1 and 3.2) was estimated to be 78 cfs as indicated W in section 3.2.1, This flow rate reiuired a 36" diameter reinforced concrete pipe as estimated by the Civil CADD system. Refer to Appendix A for the details of the calculations. The proposed pipe sizes and other relative hydraulic data for the Mango feeder are shown with the profile in Exhibit 3.9 which was formatted to conform to the Montgomery Report. 3.3.2 Baseline Lateral (D) - The 25 -year design storm peak runoff was estimated using the unit hydrograph method in conjunction with the Soil Conservation Service Convex routing method. The Civil CADD system performs this routing and allows the user to either let the program estimate the pipe size or specify the pipe size. If the specified pipe size is under sized the program will calculate the upstream storage requirements as well as the pressure flow data. Initially, the program was allowed to estimate the pipe sizes for each of the three reaches in the routing. These calculated pipe sizes were slightly smaller than the sizes used for the routing in the original Montgomery Report. These original pipe sizes were therefore specified in the final routing calculations. It should be noted that these specified pipe sizes are for routing purposes only and the actual sizing will be based upon the routing results. The convex routing method produces inflow and outflow hydrographs for the pipe between concentration points. For the detailed calculations and results report, refer to NO 9 0 10 Zo -30 S Q'. L TYPE SIZE O.DeD 78 2G 4.O �Gh 3lv" Exhibit 3. w a N San Bernardino County FLOOD CONTROL DISTRICT COMPREHENSIVE STORM DRAIN PLAN PROJECT NO. 3-3DO. DATE HORIZ. 1' = 1000` DRAWING NO. VERT. 1' = 40' 1 of 1 Appendix A. The routing results report shows two pipe flow evaluations for each reach. The first evaluation uses the mean flow rate of the hydrograph while the second uses the peak flow rate. Thus the 25 -year peak flow rate is estimated at the three nodes. The convex routing resulted in a peak flow of 848 cfs at node 1 (Alder Avenue). The peak flow at node 2 (Locust Avenue) was estimated to be 1283 cfs. The peak flow at node 3 (Cactus Basin) was estimated to be 1778 cfs. As expected, these peak flow rates are larger than the rates found in the original Montgomery Report. The comparison of the peak flow before and after the subject annexation is shown for each node in Table 3.3 with the increases expressed as a percentages. The percent increase in peak flow at each node was a result of the subject annex area and the result of a difference between the software packages used. The Civil CADD yields more conservative results for the unit hydrograph analyses than the AES software originally used in the Comprehensive Storm Drain Plan. Thus the 47% increase noted at Alder Avenue (node 1) is probably more realistically about 30%. The results are also graphically portrayed in the charts following Table 3.3 (see Exhibits 3.10, 3.11, & 3.12) keeping in mind that the increase percentages somewhat larger than a realistic increase. There are a number of feeder drains joining the Baseline lateral so the peak flow was therefore distributed between the feeders in each reach. This was done by dividing the 31 TABLE 3.3 PEAK FLOW COMPARISON 1 Analysis done using AES software package. 2 Analysis done using Civil CADD software package. ORIGINAL1 MODIFIED2 NODE LOCATION RUNOFF RUNOFF INCREASE 1 Alder Ave. 577 848 47% 2 Locust Ave. 964 1283 33% 3 Cactus Basin 1309 1778 36% 1 Analysis done using AES software package. 2 Analysis done using Civil CADD software package. FLOW COMPAR SON ORIGIN 7% Increase NAL FLOW z71 Exhibit 3,10 ORIGINAL 984 33% Increase TIONAL FLOW 319 Exhibit 3.11 FLOW COMPAR SON ORIGINAL 1301C 6% Increase TIONAL FLOW 489 Exhibit 3.12 total flow -to be added to the stream in each reach by the number of feeders joining the stream between nodes. This flow was then added to the stream at each feeder junction. This process was used through all three reaches to determine the peak pipe flow in the Baseline lateral between feeder junctions. The size of the Baseline lateral was thereby increased gradually according to the different flow rates along the stream. The proposed pipe sizes and other relative hydraulic data for the Baseline lateral drain are shown with the profile in Exhibit 3.13 which was again formatted to conform to the original Montgomery Report. Refer to Appendix A for the detailed pipe flow calculations. 36 40 50 --- 60.. T__.. 70 - 80 90 100 i ' I - I i i 1420: , t Jr- 2L 1400; ' I 1380 - I i f � � Cm7 co w Q Ld W Uj M Q W > Q Q ~Z W J Z Q W Z? W � J W J W a o� a� 9 8 N CO M S D04 .005 .004 025 j Q83 : 10rk 4*8 L ; 2640 1320 1320 TYPE, RCP RCP RCP SIZE ' �ZCD� �✓(�." 10Sh San Bernardino County FLOOD CONTROL DISTRICT COMPREHENSIVE STORM DRAIN PLAN JAMES M. MONTGOMERY, PROJECT NO. 3-30 CONSULTING ENGINEERS, INC. P.O. BOX 7009, 250 K MADISON AVE.. PASADENA, CA 91109-7009 DATE HORIZ. 1'= 1000` DRAWING NO. 12-86 VERT. 1' = 40` 2 of 3 4 MANGO AVENUE DRAINAGE/PRELIMINARY STORM DRAIN PLAN Mr. Felipe Molinos from the City of Fontana Public Works expressed the desire for a more detailed study on Mango Avenue, between Highland Avenue and Baseline Road, than what is found in the Comprehensive Master Storm Drain Plan. This desire stems from the considerable developmental activity in this vicinity. Exhibit 4.1 shows the existing and tentative tracts as well as the existing or proposed detention basins in the area. The City of Fontana desires in the future to phase these detention basins into parks and buildable lots. This will require a storm system sufficient to handle the runoff directly without detention. 4.1 GENERAL DESIGN CRITERIA The City of Fontana desired to add to the general criteria for formulating the hydrologic and hydraulic analyses in the Comprehensive Master Storm Drain Plan. Therefore, the Mango Avenue storm drain was planned using the following criteria as set forth by the City of Fontana: 1. At the concentration point where the street section is inadequate to carry a 10 -year design storm flow, 38 t ' 3 t W zsiszs��� fS=o?d- sits -dszt J Q U ss s N f• a e a e t r C F C r F r K C k TF, 3nN3AY M3SIY)r [7fI6G( M O ct W i z 10 W I = I` 3nN3AY ohyH3NVle <� --'-T i -- -� �-.- f } I I 3nN3Ad OU3W-lHd _ _ 3nN3AY M351YY, LD O N --. 1 •- 3nN3AY 4351 V)fcJ<ii— J Z: I - �; <: aerNONrla 3nN3AY �� \ I I ' 3: I I I I I co 1- - I J I I _� .. • N -i 3nN3AY 2l3l SdY13H 3nN3',r 0- YY10N05 _ .�D-iu r, •. �. .< a l —�- '17 HUSd 3M tz=u i _ — I _-_� N '� ON �< -- ON 1 mzj} - -``Ln —=_ = - I 2131.Sd Y13Ni 1^ I _3NYl H315dYt31l �•. < I N - , rr.. < }-�', CD 17, cm 0 H�:I \ =�14 ! ` U F r-� I I• I cry F F M �W — `{ _—�NI--�\ME `' r` en I I r r I (b f — I j ty I )c�y� � I �; .O _._ W 1J ~- it I Y I ( J = - b39Nr _ ~ -- i N ldnoo, < 3NY-1 a39NIV J — I'- 73 - a3aN!� • J < - - z I 3ArIN olovd — n�r� l � W 3nN3AV — 09NYM '1J 30Yf �� �( 7 N -` w _ o u— cr -- N I — l I / m I N lalVN3Yt? -- —_ 3nN3AY alrH3tY3 I I rl)lD l- _ I — I 3nN3AY - YIOY]Y�•�� (D CD I 0 --, '17 1tlOdM3N M � f7 < 1Nnao 1tladM.3N �— N r _T— _ Ii \ � J 0 tl3133HM. lifn07 ' tl3133HM , i J 3nN3nd dda3ls T W —------------- - - '3/•Y _ll39Nt5 , • 6 �LL 1 1 - 0 [D _� W O �r ~ .ZI - W '-- F- I Q �\�Msi\'~' -- 09NYF( -- uJ F_ F U W m cn O 0 O j 1 I. .v N N 0 �r F- F- F_ F U m m F- O 0 O j Z1- w z �'o~ W F FU z Q W a W W W W � cr F- W J �u�� 1 I. .v N 3 � Y * iaff�isiifxs€r�"� U }} • � � x a� z w R x x >r R x t x R e� x������ k ' 3nN3AV a3SIY)f 'D 1 cc W I I — - 3 k3AV T• OaVH]kvlef —1 T K ;r ' al 7 W ---. .. O N : W '- .._ W O 1N - Li — cr 1 p J 1,0 z W 1 O- F' -- [L ..... ,. 0 0 n W J ,a J 311.+11 a3SIYX ; J J 'x 00 Y W W p F Z � F U w r W O J 3nN3AV 0113W-1dd OtlVH]NYlB 3nN3AV 1 _I YWONOS I 3nN r I - - w N z \� - N—JZ , •;r I I .. LL �•. . < l_—��`- l� tl31S M' - O_3NY'1 tl31Sdn3H 113 14 I `cr . 1 - i l ^� N �_ O 1 '_ 7 F- - 1iJ .�-=N �- -= (�3 a a3nH V3aHIO \�K" < _ Z t� 3AY O yi 1�L•IpYd _ — w l fn i--'-•^�J�f 2, Plr ® I W -T I i \ 3 \\\ �. J -'- J j� Jj -- 3nN3Ar A&-�- =- — 1%9 -.iz) aoyr a J:!r I I LSr , N ` / N 1] 3nN3AY OlYtl3n3 I / M m ~ in - WMAV co Id 7 I /• I I - O m •1 � I _ F- C' 'O 1i 1 I z_ F - i ( -- •l� ] ia0dM3N ,ry ;D lino] la N,3N J - N 4' � i l -- J t I l Ltln00 ^d3133Han0] tl3l' J 3TM 1'X 3nN3AV Vb831S _' N i...l j r I W ¢ — � I 3nN3 Y a351Yx al 7 w ---. CD an < '- F- F- O 1N - -- — cr 1 p J 1,0 z W s` Lcr _ 0 0 n W OtlVH]NYlB 3nN3AV 1 _I YWONOS I 3nN r I - - w N z \� - N—JZ , •;r I I .. LL �•. . < l_—��`- l� tl31S M' - O_3NY'1 tl31Sdn3H 113 14 I `cr . 1 - i l ^� N �_ O 1 '_ 7 F- - 1iJ .�-=N �- -= (�3 a a3nH V3aHIO \�K" < _ Z t� 3AY O yi 1�L•IpYd _ — w l fn i--'-•^�J�f 2, Plr ® I W -T I i \ 3 \\\ �. J -'- J j� Jj -- 3nN3Ar A&-�- =- — 1%9 -.iz) aoyr a J:!r I I LSr , N ` / N 1] 3nN3AY OlYtl3n3 I / M m ~ in - WMAV co Id 7 I /• I I - O m •1 � I _ F- C' 'O 1i 1 I z_ F - i ( -- •l� ] ia0dM3N ,ry ;D lino] la N,3N J - N 4' � i l -- J t I l Ltln00 ^d3133Han0] tl3l' J 3TM 1'X 3nN3AV Vb831S •- _ 1 _ 3nN3AV tl31SdrQM N I w\\ N r p .. i ; . — y M — r"CJcr cr IPL - 7lIY�AV —. w w `r N _' N i...l j r I W ¢ — � I 3nN3 Y a351Yx al 7 w ---. CD an O II U 1 �•< '- F- F- � cr 1 p J o U z W s` Lcr _ 0 0 n W J ,a � U jD H 00 Y W W p F Z I F U w r W (((n �nI¢ F� ~ U J IJ •- _ 1 _ 3nN3AV tl31SdrQM N I w\\ N r p .. i ; . — y M — r"CJcr cr IPL - 7lIY�AV —. w w `r N _' N i...l j r I W ¢ — � I 1 W I p al 7 w ---. CD an O II U 1 �•< '- F- F- cr 1 p J 2 o s` _ 0 0 n W J W � U jD H W Y W W p F Z F U w r W (((n �nI¢ F� ~ U J IJ I I I 1 N W . '3/r d39N:9 w 1 W I p al 7 w ---. cn [D �_'' N'1 - <I O II U 1 �•< '- F- F- cr 1 p J IaI T� � � En a a a m r � z z 0 0 n W - — 0ONYn — G11 U) w _.. I w ---. m > > G11 NEI 0 U) 02 > > F- F- Z z F U En a a a m r � z z 0 0 n W F -r w jD H W Y W W p F Z F U w r W (((n �nI¢ F� ~ U J IJ NEI 0 improvement plans indicated varying right-of-way setbacks and curb separations. Therefore, a standard street section which best fit these conditions was chosen, from the City of Fontana standards, to be used in the rational analysis (see Exhibit 4.3). The initial analyses used street flow through every reach of the stream to estimate the total flows without storm drains. The street capacity within the curbs was calculated to be 52 cfs while the capacity within the right-of-way was calculated to be 163 cfs (see Appendix B). The event which governs the storm drain size was determined for each reach by comparing the required pipe flows, as set forth by the design criteria, for each event at each concentration point. A summary of this comparison is presented in Table 4.1 with the governing flows indicated. This comparison shows that the 10 -year design storm governs up to node 5 at which point the 25 -year design storm governs while the 100 -year design storm governs from node 6 to node 11 (Baseline Rd.). The final analyses used the same basin characteristics as the initial analyses up to node 11, however, this time the appropriate channel flow (inlet, pipe, and/or street flow) was used through each reach. This was done as follows: 1. The 10 -year design storm was analyzed from node 1 to node 5 using pipe flow and allowing the program to calculate the nearest standard pipe size. The reach from node 2 to node 3 required a smaller 43 R 8 Curb 9 Gutter LEVEL SECTION COLLECTOR STREET COLLECTOR STREETS SECTION A-1 8 C I D IE TILTED -,62 -.79' -,31'1-.43'10.001 LEVEL 0.00` -.30 -.06 -.30 0.061 Sidewalk/ Exhibit 4.3 CITY OF FONTANA, CALIFORNIA Drown By 0. Navarro STD. COLLECTOR STREETS - Chocked By 161.1. TYPICAL SECTION approved DETAIL 7-Is-ITTENGINEER 100 CHotTo Sole s TABLE 4.1 STORM DRAIN REQUIREMENTS 100 -YR 25 -YR 10 -YR Street; Pipe; Total Node' (cfs) '(cfs); (cfs) (cfs) 0 ; 51* ; 2 ; 84 ; 0 ; 84 64 0 ; 75" ; 3 ; 139 ; 0 ; 139 104 52 ; 113 ; 4 ; 163 ; 61 ; 224 235 1 5 ; 163 ; 163 ; 326 283 52 ; 271 ; 6 ; 163 ; 233* ; 396 7 ; 163 ; 293* ; 456 365 52 ; 358 ; 8 ; 163 ; 357*; 520 52 ; 405 ; 9 ; 163 ; 427*; 590 10 ; 163 ; 500* ; 663 Street; Pipe; Total (cfs) ;(cfs)! (cfs) 0 ; 51* ; 51 52 ; 12 ; 64 0 ; 75" ; 75 52 ; 52 ; 104 52 ; 113 ; 165 52 ; 183* ; 235 1 0 52 ; 231 ; 283 52 ; 271 ; 323 ; 247 ; 247 52 ; 313 ; 365 52 ; 358 ; 410 ; 309 ; 309 52 ; 405 ; 457 45 Street; Pipe; Total (cfs) ;(cfs); (cfs) 0 ; 51* ; 51 0 ; 75" ; 75 i i; 0 ; 130* 130 0 ; 183 ; 183 1 0 ; 218 ; 218 0 ; 247 ; 247 0 ; 277 ; 277 0 ; 309 ; 309 0 ; 342 ; 342 pipe than 36" so the pipe was specified to be 36" 2. The 25 -year design storm was analyzed from node 1 to node 6 using the inlet + pipe flow parallel to street flow + subarea addition option. The previous 10 -year flows and pipe sizes were specified up to node 5 where the pipe size was then calculated based upon the 25 -year contribution. 3. The 100 -year design storm was analyzed from node 1 to node 11 using the inlet + pipe flow parallel to street flow + subarea addition option. The previous flows and pipe sizes were specified up to node 6 where the pipe size was then calculated by the program based upon the 100 -year contribution for the remaining reaches. 4. The 10 -year design storm analysis was continued from node 5 to node 11 specifying the calculated pipe sizes from the 25 -year and 100 -year storm analyses. 5. The 25 -year design storm analysis was continued from node 6 to node 11 specifying the calculated pipe sizes from the 100 -year storm analysis. 4.3 STORM DRAIN PLAN The proposed storm drain plan is shown in Exhibit 4.4 with the size and slope indicated for each pipe along with 46 Y 7f Y Y _ 1t rHIM, i l X S E E R .3 ^ x >r A L t t r X A P� 77 1a « « C R R A R ' •3f1N3AV 1l3SIVM .�%� I0 It �N � N = z 1�50(( d351Y)l l3nN3AY OFlVNJNYIB I- - -. I I I Jw I 11 3nN3AV 0113WIVd 3nN3AV VU)J31 S X Vj •w 1 w J' 1 `\ Z LLJ r Clj Y 7f Y Y _ 1t rHIM, i l X S E E R .3 ^ x >r A L t t r X A P� 77 1a « « C R R A R ' •3f1N3AV 1l3SIVM .�%� I0 It �N � N = z 1�50(( d351Y)l l3nN3AY OFlVNJNYIB I- - -. I I I Jw I 11 3nN3AV 0113WIVd 3nN3AV VU)J31 S X Vj •w 1 w J' 1 `\ Z LLJ r Clj the governing event and its respective flow rate at each node. Exhibit 4.5 is the proposed profile showing existing and future catch basins as well as the hydraulic data for each reach. This preliminary storm drain plan will effectively allow the City of Fontana to eliminate the existing detention basins along Mango Avenue enabling their land to be used as prescribed in the Walnut Village Specific Plan. 48 ' 40 0.018 0.018 O.OZZ 0.OZ2 0.020 O.Ots O.OZG O.OZO 0.025 6x 4Z7 357 293 233 130 183 1 52 1250 G50 980 500 450 500 1050 500 360 - RCP 9(- izGP owRGP Z&F RGP 75 Is 72'� 123 Cs0" 57" 0 3l0f - - u zCLLl- J W d. LL O O 4 = W Lf) O O - — LL O O O LU O O M N LO Y p O — _ w rn F J 14400- LLRi Allyi Lu QIr",LU 0- O co U';co v .L co I- FL J 0- LL. Q = W MrT f J O m M rn Ld O `c - F— J cD M CL LL O d W C1LO L M co O d' M lD O O 1- i u+ u fib+ u 4;-2+ UO 58+00 PROFILE SCALE VERT; 1 " = 40' HORZ : 1 " 1000' w Q a � o � LU 0 p z 0 + +4. Lo Exhibit 4.5 0.018 0.018 O.OZZ 0.OZ2 0.020 O.Ots O.OZG O.OZO 0.025 6x 4Z7 357 293 233 130 183 83 52 1250 G50 980 500 450 500 1050 500 360 RCP 9(- izGP owRGP Z&F RGP 75 Is 72'� 123 Cs0" 57" 0 3l0f - - u