HomeMy WebLinkAboutMango Ave Storm Drain Preliminary DesignCOMPREHENSIVE MASTER STORM
DRAIN PLAN AMENDMENT
AND
MANGO AVENUE STORM DRAIN
PRELIMINARY DESIGN
FOR THE CITY OF FONTANA
Submitted to
The Civil Engineering Department
School of Engineering
California State Polytechnic University
Pomona, California
By
Robert G. Eisenbeisz
E.I.T #xE077122 Department
Student, Civil Engineering
In Partial Fulfillment of the Requirements
for A Senior Project
April 3, 1990
Project Advisor: Prof. Morales
k�,,
ABSTRACT
This amendment to the Rialto Channel
Comprehensive Storm Drain Plan will provide
the City of Fontana with the necessary
information required when planning facilities
for the additional runoff generated by the
previously omitted area located along Mango
Avenue between Highland Avenue and Baseline
Road. The excess runoff could be carried
eastward to the Rialto Channel or westward to
the San Sevine Channel via the planned
Baseline Road storm drain. The City of Rialto
will charge Fontana for the excess flow into
Rialto should the eastward route be chosen.
The amount would be base upon the percentage
of excess flow. The flow increased by
approximately 47% at Alder Avenue. It should
be noted that there is a significant
difference between the Civil CADD and the AES
software packages with the Civil CADD yielding
the more conservative storm hydrograph
results. A more reasonable approximation is
an increase of about 30%. The most
economically feasible route would therefore
appear to be westward using their own
facilities which, consequently, would need to
be scaled up in size when the general plan is
revised in the near future.
This project will also provide Fontana
with a preliminary storm drain plan for Mango
Avenue such that the existing detention basins
may be eliminated. The elimination of the
detention basins will allow the land to serve
other functions as prescribed in the Walnut
Village specific plan. These detention basins
are unsightly and their transformation would
improve the aesthetic appearance of this
residential community. The preliminary plan
is sensitive to the existing and proposed
catch basins along Mango Avenue.
i
TABLE OF CONTENTS
1 INTRODUCTION ............................................ 1
2 GENERAL HYDROLOGY ....................................... 3
2.1 RATIONAL METHOD .............................. 3
2.2 UNIT HYDROGRAPH METHOD ....................... 7
3 MONTGOMERY REPORT AMENDMENT ............................ 10
3.1 GENERAL DESIGN CRITERIA ..................... 11
3.2 HYDROLOGIC CRITERIA ......................... 12
3.2.1 Rational ............................. 12
3.2.2 Unit Hydrograph ...................... 18
3.2.3 Hydrograph Routing ................... 27
3.3 STORM DRAIN PLAN ............................ 28
3.3.1 Mango Feeder - (DO) .................. 28
3.3.2 Baseline Lateral - (D)............*.. 29
4 MANGO AVENUE PRELIMINARY STORM DRAIN PLAN .............. 38
4.1 GENERAL DESIGN CRITERIA ..................... 38
4.2 HYDROLOGY ................................... 41
4.3 STORM DRAIN PLAN ............................ 46
APPENDIX A - COMPREHENSIVE PLAN AMENDMENT ANALYSES
IIDDWWnTV R - A/D U$ln MtWhITTV DT AIV 7%MAT VOLVO
LIST OF EXHIBITS
1.1 WATERSHED BOUNDARY .................................... 2
2.1 INITIAL SUBBASIN T, NOMOGRAPH ......................... 5
2.2 I -D -F CURVES FOR VALLEY - DEVELOPED ................... 6
2.3 TYPICAL ISOHYETAL MAP ................................. 8
3.1 SUBBASIN BOUNDARY MAP ................................ 14
3.2 ANNEX AREA STREAM CHARACTERISTICS .................... 15
3.3 10 -YEAR RATIONAL ANALYSIS SUMMARY .................... 16
3.4 25 -YEAR RATIONAL ANALYSIS SUMMARY .................... 17
3.5 DEPTH -AREA REDUCTION FACTOR CURVE .................... 20
3.6 UNIT HYDROGRAPH BASIN/STREAM DATA .................... 22
3.7 WATERSHED ISOHYETAL MAP .............................. 23
3.8 UNIT HYDROGRAPH BASIN/STREAM DATA .................... 25
LIST OF TABLES
3.1 ORIGINAL BASIN LOSS CHARACTERISTICS .................. 19
3.2 MODIFIED BASIN LOSS CHARACTERISTICS .................. 24
3.3 PEAK FLOW COMPARISON ................................. 32
4.1 STORM DRAIN REQUIREMENTS ............................. 45
1 INTRODUCTION
This project is primarily intended to provide Fontana
with an amendment to the Montgomery comprehensive storm drain
plan to include an area which was omitted. The previously
omitted area is located adjacent to the watershed boundary,
which was established from prior studies, between Sierra
Avenue and Mango Avenue, and between Highland Avenue and
Baseline Road (see Exhibit 1.1). Development has altered the
direction of drainage in the area to drain eastward instead
of the previously assumed westward pattern. The secondary
intention of this project is to provide Fontana with a
preliminary storm drain design for Mango Avenue which would
allow the elimination of the existing detention basins. This
preliminary storm drain design for Mango Avenue will differ
from the Montgomery report amendment due to a change of
design criteria as set forth by the City of Fontana. The
hydrology calculations will also differ in that the
Montgomery study was a broad brush master plan intended to be
used as a general guide by the various agencies affected,
while the hydrology involved with this preliminary storm
drain design will be much more detailed.
1
2 GENERAL HYDROLOGY
This project uses two different hydrologic methods for
determining particular design storm flow rates. The rational
method is used to estimate the peak design storm runoff from
small subbasins which is handled by the feeder drains. The
area for a rational analysis is limited to 10 sq. miles. The
unit hydrograph method should be used for any watershed
greater than 10 sq. miles. Since the area which contributes
storm runoff to the feeder drains is less than 10 sq. miles
it is suitable to use the rational method in estimating the
storm runoff which the feeders should be designed to handle.
The unit hydrograph method incorporates much larger
basin areas in the analysis and is primarily used in
estimating the flows contributing to the major drains. A
design storm hydrograph is generated for each subbasin at its
nodal point. Each of the storm hydrographs can then be
routed downstream.
2.1 RATIONAL METHOD
The rational method is based on the relationship between
peak discharge and rainfall intensity, drainage area, and a
runoff coefficient which represents the ratio of runoff to
rainfall. This relationship is expressed by the equation:
Q = CIA
where;
Q = peak discharge (cfs)
C = the runoff coefficient
I = the time -average rainfall intensity for a
storm duration that is equal to the time of
concentration. ("/hr)
A = drainage area (acres)
The values of the runoff coefficient and the rainfall
intensity are based upon the characteristics of the subbasin
such as the ground cover type and condition and the time of
concentration which is initially a function of the land use
and the slope of the subbasin. The rainfall intensity is
obtained from depth -duration curves using the time of
concentration.
The Civil CADD system performs this function
automatically and the user simply enters the subbasin
characteristics along with the return year (10,25,100,etc.)
and the area averaged point rainfall for the subbasin in
inches.
The general sequence for the rational method is to start
with a time of concentration (initially obtained from the
nomograph in the Hydrology Manual) and obtain the rainfall
intensity from the appropriate duration -frequency curve (see
Exhibits 2.1 and 2.2). The intensity is then put in the
rational equation to obtain the peak runoff. This peak
runoff is then routed overland or through a drain and the
m
m
c
ic' LIMITATIONS'
L 100 I, Maximum length = 1000 Feet Tc
1000 90 2. Maximum area = 10 Acres (mn)7
—900
80
a.
- 800
70
-. H
500
6
4 00
-700
60
c > ..
c
300
200
7
_
m
oa6
0
N
EDc
oo
-600
a 50
o
° '-
+- 0 �� 0
so
60
8
m
m m a=
E a-- „
40
30
-500
0) m
20
9
_
0
m
CL
35
o a 4m�
10
10
-4000
N
30
`3
K fL�Q
6
a l�)
3
1 1
Undeveloped 0
Good Cover o
2 12
' 350
"
25
_
Undeveloped 0 c
I80
13
EFair
Cover
E
2
6
�14
300
Undeveloped
.3 1
�2
15
9
Poor Cover 0 o
20
—2
l6
-U
18
Single Family
17
250
�'
17
(5-7 DU/AC)
c
16
15
/
Commercial ��5
18
19
14
(Paved) m
KEY
200
O
=
13
L - H - Tc - K - Tc'
20
0
12
�
l2l w
25
0
10
P1 Development
150
w
E
9
80- Apartment
F-
75- Mobile Home
30-
8
65- Condominium
60- Single Family -5,000
ft 2 Lot
7
40- Single Family -1/4 Acre Lot
35 _
20- Single Family - I Acre
Lot
6
10 - Single Family -2 1/2 Acre Lot
100
40 -
EXAMPI-E:
5
( I ) L= 550' H= 5,0' K= Sln 9
le Fami (5-7 DU/AC)
IY /A
Development, Tc=12.6 min.
(2) L= 550', H= 5.0', K= Commercial
4
Development, Tc=9.7 min.
U
Q
ti
c
m
E
0
0
m
0
0
LL
m
c
0
�h
m
_c
E
U
c
0
0
`c
m
C
0
U
w �
0
E
TI►ar- nr ^^&I ►iTnnrtnu
travel time is calculated based on the avera a velocit and
an average flow rate. The travel time is then added to the
old time of concentration to obtain the new time of
concentration and the process repeats itself until the end of
the stream is met or the stream confluences with another
stream. This sequence of steps is also done automatically by
the Civil CADD system by simply entering the various basin
characteristics.
2.2 UNIT HYDROGRAPH METHOD
The unit hydrograph method assumes that the watershed
discharge is related to the total volume of runoff and that,
for a given duration rainfall, the hydrograph time base
remains constant. The unit hydrograph is defined as the time
distribution of rates of runoff which results from one inch
of effective rainfall during a unit period of time. The
watershed's unit hydrograph is predicted by the watershed's
lag time, drainage area, and dimensionless "S" curves which
are summations of hydrographs modified so that percent of
ultimate discharge is related to time expressed as percent of
lag. The U.S. Army Corps of Engineers has determined "S"
curves for various areas of S.B. County.
The area averaged point rainfall is obtained from the
isohyetal Figures in Section B of the Hydrology Manual (see
Exhibit 2.3). The area between isohyetals within the basin
are determined and the average rainfall is estimated based
upon topography and spacing of the isohyetals (Note: the
I
—i - — �R7c R 51+f
6. ;ON -OL
T3S `AjA
l o A SAN BERNARDINO COUNTY
• � a!o
i i-.RBW , i % - R7W R6 - HYDROLOGY MANUAL
..........................
REDUCED DRAWING
SCALE 1"=4 MILES
LEG EN t
CISOLINES PRICIPITATION (INCHES)
SAN BERNARDINO COUNTY
FLOOD CONTROL I TR
VALLEY AREA
ISOHYETALS
YID - 10 YEAR I HOUR
MEED ON U.SD� NAAA /TLAS 2, 1973
A,rf'RE YrD BY
FL t u •
DATE {GALE ,FILE dD m*%L NO.
1982 ('•2K VeRO-I f 3 Rf 12
• �-\�a 1ry
I.;
R W
R6W
R5W
P4W `v - — — —
R2W —
— -
VALLIT
%kLL
- RIW RIE
-�
R2E
s
wc9celz _
— - — —
- — — - = —
- — - — T4N
ro
'
WENT IT
,c
-'!
• �y
1.2�
�l I a
I ' I "s
�
� IwuL...A+L.
�wu•
_
x
DY I I
''/ aG i
-
1 Y
vuirl A�.�.w�•�
1 O'I r,
I.
I
'— '
ptE{lore 3 '`s' •-
DIDY,Y
�- — — I- . —
1
— �-, — — •-�- t
� I
— - -
RA �ESNA
�
' �
� •'
.f�
T3 N
—
I
•,�, s !
I.
.,
I
t•p �
r°
�1
_
I ice':
I
I. . < •. �
— — — — —
— — -- — � ,�f.__. L _
i
is a �
•)
,i ,' /
14 _
'
L{ \ '� •�
�x9 � �
�
°` __ .._ .� _ _
\
...-_.��.T.�iT' IJ° -}- -�
L ;�
- - _
� I
- .1_ .-1
- �
f
-
•<•..cc--
-°�
T - - �•.-
_ ! __
_ I ._ . -
'1 -
I- l )
-i
�/1 N ''n. -
dAr
� - - {<
,mar L�
--
r
I
'T;1NIO
32 !•
� • r•\. I
`6
Iil/-� .I r. 7r.•1.
r..°, I - +
�
- - -� - -
) _ - -
1.7_ -g �p -_ -�-r
7�
-
- _
I _ ,e�i.�•1
'
I I
I
4T
J'
I - I
\
� j }-_
� :D
.c W,
. ���
, Ila-
' S
S*
� ode i -
•--� - -
r_
+1.3�
•
:T
Y �
'
°=1..
v � • • i
- . .% ,
Ir7! � i r!
V
�
r
'` 0
_ -
I `\
� -•I•
�tI•--. r-
� .-:_
.1
-r ._.•. ��-c
-
` - -
'- -
\�.w. �-
-
- •,- I
- _-
__
< 'I.f -_
IA
- -
�
_
_
4•..
• L ARRO.NCAO _ -
J c
EAR
: rc.
• •
• i • _
.LD -1 I- C)
T2N
—�•
— — — —
�' 4 f q :T
I.z
+
rV.1.
. _
= Jy�T,-- - -
- - — — -
— — IR
— — — — - -
I
i
—
—
-N-T? N
4 A
� - �
.I.D
J-:. /•� �i..L - __ Y. -
.�<L! �� -_
- - ..... _�
DN LDRC A /�
/!'° ,
� .-
-_ �.
-,
IQ,_
I y
1.4
y
� I
I � �
i
L4
1 �.t -
'
� t or
1 - f
•' _ r I
� r`f%
_
/•'
i-
-r --
�/
`_,f_ J- �I.S
"
\ 3( ;•�_ �-
T''��_.
- ��� .r ,• I n
`
,I.i IM�Nos I
,
r;
•q{,°P•1
LS
`\
\__
'
\r _ - - - �Y-'- F-- :- -
... S
1_ .. -- -�-
"J
' t
�+'l
--' �- -
744�y
.^c i'�
- _ ••�' �1 ,Sl _ _ _
_ i
��
t
� — i— _� ;-
':! F- l` Q"ELR
y
ter\
'`''' �— — — -- - --'`
•l 1-
1
.
-
•�
,--
-
� �
c.La.
� I
\
�
1.
`t
(
fi .' z —
'.I �
-- --
i 7
-
-�
+ w
— -' • --
` AL TLATD _�`
''•- - -
— ;— -
,�
'+� a•,
I �
I -
- - -- Sr" --- -
- I.I
1
_.
_ 41 \\` f• . ;i ..•
••1 - `I
...,` '.
< "i.l ye9/ _CT'
-�• _ -J __ _ _
, J r � .�
`- _ ��f - _
r
y' e`%'� i .q
+
'• y�
-` I f ai
D--
..1LEy4T..
-+
�- \ e +�
-. �� -. _ �:.
`.(.%rte
i --,,,. T I IN
T
;,.fr;\:
-TN°•'_ f
/I l Nf` J GJ
� -
- I -�- _� ?�-,-
T
_'Ci _- " _�
-
Y- -1
,
-.�9Dhn
.Y
�
�+-.
v.
't- - - t
-
---'
`--r
•T�- �•Y
�F
1
I I
i
♦L'TI
----•
LO -MA_
- -
T•'
:Oh.�'
_ I NL-'
` t
J
• -
T- -
° J
- --: '
S \
-: -
\
UPLAND r
= _/ •
'
Y• SAN RIARD,4
'•A
--
C"D'art
— -._
.a
wc•
°• R 1 A LT^ -
FON TAN -
�:
•. iNP
MAS
1-
L-
6'�
t <:� `
�`
I, r
'•;-
` •»'�5?�,
_
.
* �'
- t
- - - - •`'L
''rte ^ �• J,
• y
TIS
•
• •
&
_
•
_1 Y -tea.`".
•
'�
'•
'• -
-
• - 7 - -
r ONT
lOti±'•'
-
C
TONS
- n
„
- - —
i
-- — - - _ -�•iS
_
-
= _
-
_ �.
_
-•+ --
_ REDLANDS
°.
I \ _ • —.,
•�
•�„�
R ,�.
(
?'•
., CREST 40R[
- -�- ” - - - ..,
_ i *
/:
_ _ -
`I►A
- 1.1 .. .. __t _ ►� -
ell
I
yi )ry
-
ILI•
I'
-
I''
+ukuPt -^:
✓��
t
.a..R I
'1 •RANO TCRRAC[
4.
TU
I
�I I '
-G. `
—
�.,
,
.
I J
I
1`L
I
T
I �
I CHINO
I • ""�•
j.r - -�r- - ?
-t
\ � -- - - -
• ..L i
—
_ -� .� _ i .1. .- -
-i -1'• '
I. .•o- `y
I -
- -+ -
1-
'•�-
p'
± °
�cd s
R E
\
-
-- Ar ii- --� - _` i
RAN i DcnNADww Ou4
RIE 1
!
T25'_
-
-
- i AIVt RDIDC. CDUN,T
1 _
�r
i�.•00'
R SID E
«'b"•�
R4W-
•!
R3
R2W \\
1
•;Oc R1
Exhibit 2.3
I
—i - — �R7c R 51+f
6. ;ON -OL
T3S `AjA
l o A SAN BERNARDINO COUNTY
• � a!o
i i-.RBW , i % - R7W R6 - HYDROLOGY MANUAL
..........................
REDUCED DRAWING
SCALE 1"=4 MILES
LEG EN t
CISOLINES PRICIPITATION (INCHES)
SAN BERNARDINO COUNTY
FLOOD CONTROL I TR
VALLEY AREA
ISOHYETALS
YID - 10 YEAR I HOUR
MEED ON U.SD� NAAA /TLAS 2, 1973
A,rf'RE YrD BY
FL t u •
DATE {GALE ,FILE dD m*%L NO.
1982 ('•2K VeRO-I f 3 Rf 12
3.1 GENERAL DESIGN CRITERIA
The general criteria for formulating the hydrologic and
hydraulic analyses in the original Montgomery Comprehensive
Storm Drain Plan are as follow:
1. At the concentration point where the street section
is inadequate to carry a 10 -year design storm flow,
a storm drain will be provided to convey such.
2. The minimum pipe size to be used is limited to a 36 -
inch diameter such that the pipe is at least 1/3
full during a 10 -year design storm.
3. The combined storm drain and street capacity at any
point must be adequate to handle runoff from a 25 -
year design storm. The difference between the 10 -
year design peak discharge and the 25 -year design
peak discharge is to be carried in the street. The
storm drain is increased accordingly should this
difference exceed the street capacity. This
requires a minimum 25 -year design storm for all the
major lateral drains because of their inadequate
street capacity. The feeder lines required a 10 -
year design storm. (Baseline Rd. is considered a
major lateral drain and Mango Ave. is considered a
feeder line.)
11
4. Manning's equation is to be used in sizing the pipe
sections. Assume the pipes are flowing full but not
under pressure. The pipe size is then determined
using the next larger standard pipe size. The pipes
are to be reinforced concrete (RCP) having a
roughness value of n = 0.013 and a minimum diameter
of 36 inches.
3.2 HYDROLOGIC CRITERIA
The Montgomery procedures are briefly outlined at this
point to ensure a continuity between the original report and
this amendment. The Montgomery report used both the rational
method and the unit hydrograph method to estimate storm
runoff in the master plan. The feeder drains were sized
using the rational method as outlined in the S.B. County
Hydrology Manual. The major lateral drains were sized using
the unit hydrograph method as outlined in the S.B. County
Hydrology Manual.
3.2.1 Rational Method - The rational method was used to
estimate the 10 -year design storm runoff to be carried by the
feeders. Antecedent moisture condition II was used for a 10 -
year design storm. Montgomery typically uses an initial
subbasin area of 5.2 acres having a stream length of 1000 ft.
and a land use of residential (1/4 acre lots) with soil type
"A". Typically, for the second subbasin the area is 74.8
acres having a stream length of 2960 ft. and a similar land
12
use and soil type. The peak runoff was then carried through
a reinforced concrete pipe to the Baseline lateral. The area
from the final reach (pipe flow) was not included because its
runoff contribution flows directly into the Baseline lateral
which is designed based upon a 25 -year design storm
hydrograph. This is covered in the unit hydrograph section
hereafter. This method is acceptable for a "planning tool",
but it is somewhat inappropriate for design because it is
more desirable to keep the subbasins at a relatively equal
area. In chapter 4 of this report the subbasin areas are
more consistent (see MANGO AVENUE STORM DRAIN PLAN).
The subbasins in the annex area are labeled 3001 and
3002, with nodal points 17 and 18, and they will precede
subbasins 3101 and 3102 in the Montgomery report (see Exhibit
3.1). The annex area analysis has relatively the same stream
lengths, areas, and concentration points as the other feeder
subbasins which contribute to the Baseline lateral. Exhibit
3.2 shows the annex area stream characteristics.
The rational method analysis revealed that for the annex
area the estimated 10 -year design storm peak runoff is 78 cfs
with a time of concentration of 27.8 minutes at node 18 (see
Exhibit 3.3).
A 25 -year design storm analysis was done to determine
the time of concentration which was used to calculate the
basin roughness "n" factor for the initial subbasin in the
25 -year unit hydrograph analysis. The "n" factor is based on
a "lag" time which is 80% of the time of concentration. The
13
SUMMIT AVENUE DRAM
HIGHLAND AVENUE CHANNELS ':
Ilwell •`3s
� INI
y1 3001
• Ali _
MATCH LINE /
ANNEX AKFA
• •.��' � � •��fLl�le.-'moi`'- �-/ t ^ \ l
-
- eek � ` ,�=•' �.��,' � u, �t,Dr+ _
a1 Glen elen •?:•^: :':�:' .
! �'�+�• �'r , �6 : R bdrtal,on Fac,f{ly,
cp
DRAINAGE SYSTEM LEGEND
---- PROPOSED REINFORCED CONCRETE PIPE SUB13ASIN BOUNDARY
--y— +r —X PROPOSED TRAPEZOIDAL CHANNEL 5� NODE AND NODE NUMBER
1 1/2 : 1 SIDES B - 12 FT.
0 .0-6—e EXISTING REINFORCED CONCRETE PIPE tue SUBBASIN NUMBER
EXISTING TRAPEZOIDAL CHANNEL HYDROLOGIC LMT BOUNDARY
�' xt •�-?'� ''fir' ,-
- ,r,Q_3y, .-� �� _ •- • ! UNE •_
�1 f�1,Rv(If3. •,. ��.•: /JleY .ANIGHLAN
-i F �9ole.trr _ F
riyFart r`�:� •�• Pa
1 CIO
Exhibit 3.1
SAN BERNARDINO COUNTY
FLOOD CONTROL DISTRICT
COMPREHENSIVE STORM DRAIN PLAN
RIALTO CHANNEL
ISMITTED By MILFS E WOLLAM R.C.E. 13975 DATE SUBBASIN AND NODE MAP
FIGURE12-1
JAMES M. IAONTGOMERY
[uu r[[r
COM3ULTING ENGINEERS, INC.
"'O"�r••bo—.w.....�+u�,�� DATE DEC. 1988 SHEET _L_OF_
3.._
1 r-
MATCH LINE
ffijrc
b 1 ; _ Prraton S ..tr,....... •C� 1 '•.� i
P 73001 , 3101 3201 3401 3501 3601 3602 701 X702 ° ; Y Sch ' 'd l F� b '_'v r t• �; s
�• 1400 ' • f� : 1 V�. v. Y•'' x-i t �+ ` _ ,well
t 3 Iv1 48 3 t� 1• 1A�
31 __ �: i• F ali � n
.IEw •__" •I 6U:ri-1(-7C� i �`•'n za5 �'� 133 b1orR.nrr-li
• 2G`-iiyt'hIRP�Rt�d I `•-a= �S / ScAr = I- '� ••r i _
'.a$1tR0 FIE
I I Jr H Sel
♦,. SAP
t31 :w. �32 ; 1: �" �� i _ I i 34; `h 35 Imo `351 - ----1 R) '
i s /-'• 1 q • ' n ( / a' Elvnlw.v t :/• 36
4.0< - • 4 7.6' 8.0' g ' 9.U' 0 ,,aoQ p• I tc I . _�. �i 4
QA?' ice*':, _��� ��1 '7•F�.. ,y..q .. �4 .� �r.+rer--' I
,.,oa, . _ ,.. <,< -. .. .•- », ew .tst115s +-in �'� � � >.. �:,. •�� •Base• i
• ! jl. _ Res �•- --_-_- ' y.. gpOtQ ,... _ " ¢ -
' a � � ; .' - IAJL
zi
• t I • 1� 1 !- w >
Jr t Hi h Sch . ' r. ...: I 9;.•oclr rr , •• --
'• ^4101 - 420] 4309 4401 "1501.., 4601 4701 !48 4901 4010
•' y / _---
�Y"y. ... .. ! •A.. t -, w D ,•0- j-Y�/p% I @ 1 > _ Yrers
He
er• .t ,� � � - -- �• 4 . )`., / t w Dunn.; 1 se ts�`liemi�
P; Sch . �: • •'. ^�.... ! n n Sch ' H
r - t4 ty •r 2, ETIMA l Sl=1 AVE
- » L _ �1 Pm 136a =y.' :. - 1 I n j A c"AN sr two Y Ats< : i i1sJ Q
CIi0OTHl r .: :ft 2 - 5...... .0 \L==. •._ .: 1 t ! 1 _ jl 7 k= �. -- ' 1
P LLSLVD'DRAIts ---- 15.0' 1 ti .7 �:; .' (f .t I�-- I �'„ I �i� F j !-_Srowr. __� _ A��..q /• 1 :rrw•
a'• .. ..... 3,. ::' - --8 �• •> .' I 1 •�=.�= - i 'I AAS
�. a=t itHl-' .1.."! : �:.: 1.: _ e • t aA [ �y • y a 1" o m 1 ? ' ae ..• _��
» o- •�■lanorth u (lid H C_-- �. (��� " u •+I - cobwrLi vw Pas oo: a r- - t
•1 : _ ...._;.} : •i, rwwl �a �. rtr• _ :. ?'" _�,+,f•..: '= -HT - `.; r 1 a s [i. I L
�. •�MIIMI �. _ �' _ 9il - :a'• ':: •( " ..... �L _
ate" 13 _ ---
:r»° to.a•-t-yas�• ...o.0
• ~ a :.' `� 1
.i.: t (-/ ..1� `az is .ii {• ■1. ► : i t . ,} +:'`. r 'r. •t!• .:ri • "1.�_ rt I 7 �r ia.rct' ...-t i-6..a. 'c�«�.. •. t r cvo 8201 n 4 LANEc r 11.11 . y _ •rr C' ; '. - _r7m
<.NE •a �•■a •; "t 5201 y. 5301 c •01 • - - vo: • u�a 1. r ..
as i 551Xi�;'• + • _..- .t • 1t
4 II • {{ r• ...` - ........_:f Ai7o•nt 2 :I _.L-r� r - H.•R, ' �� i i aF 131. ther�i •a ,�•"7� G'1, _•. .••.:....+•10
a -gin r i` i >:
• q �.• rvr Av[ � _;r _ :t '+ w t. - -Km ,1
_ �: Pyr
Trader 2 �o-�`� fA 2-
7�a�%� u. E�a�E; 5601" Pa�$0� y 5901 5010 5020 b_:Flre
_ 5701•,
L I," CnY. t' �� Y ... µ✓ -s 7 <, f� c 6 `+Ailsa
�^ '� IHjlt a :702:x. i • :: Q _ a.• - ScTi ,rrrp x l}r�sxr -Pa -
il StaQoa' >� =rte 5302 5402 I - _-___ _-_ SOu 1iERN _ __ PAG/FIQ 811T'F� T 1 f .$Z70E77171 1� PACIFIC -ter
_ _ •` _ - _ -_ ._ -- _ mmugnS - ,. - _
-^- 7 - - - . . • �ai'• •_ ( r c 1 '' lanau.n v _ s •'�-_ :::=aS.i•�-' ' ; - :...amu . _I 1 ., ' _ '
}:A1.fb 'rat YO -_1,179 T,, AVE
? ' II a;. ^:,.;j{:....&: Jr 23 .a '•uth•..m tta .. t4 •Y•r. 4 :s 22 - I '.ill. t•. 1'M 'g21t3 eYr _ A,,rTD �'�---p yr- ... !r�l
t : i'tlrl til•h i r' 11 1 • ( _ ( a " , ■' • _ dp8 i •Tr Icr �'' Trader Put
_ - sem".: •'»..... _ m : ; i r i .� �_ 1 f ! • •I m 1 I j �I �1i 1!5 c �� P 1 Pafk • DEKA
e tl i 'i ` 6.='^_0'+
_ «�
zs ••�
c8.o• . 23 - -v
P ,
if'
O ANGE ,).-.t._...»_. t.. �1.._..._.._.. .._ _ �..Y,. a9 ....._.. ... ....... 17 P� 3ell
EAST FONTANA DAM. •plir_-- - ra•�ro.:.c.•o�A. '• ..,.._. .„,w,,....,..... ,� _ e�� :a :- •^
xa:t`" ..�.,......: ••5;sE ='= =`" '� •�: :...• .. ' i! �••� ci ' Yr+ 3081 `Je� .
c �i1'. •_-..7•Y�• ••�f•
F�2A�IAi �� •0 : " _ • ... Pa.tr . a - Or� lc 82041 ^J S3 t1
i .I1 C ■ . wa i : • f:(• b i r _1 811 • w h ! p�; ;:' •_:.
a a i ........ € _� _ AV £ !S: I f'arh I ' _ rb _ / A II�Itl
1 1• X11.@2Di. 1.t•83Q1 » °6+ M 6�6Dprt :'660: :->t i __W` _ .. .�..z c^�, y.i(... i _ .FPPIEI y .�aVE�^ FI od
y' y 4g. - _ M- . •A o _ �'.I il_ Funtataa t - 16,..1 '.' / 1 y 13305- F 1 /9 Baan
t�,<--pRElt NOT STUDIED r■p �--' < o Y i p� :%s. 0i I' _'
',rr_'�=�:. 1 � _A. %1 • ' 1 t o-
AT = •mm Sf - •, .. '1 .......». .. l; 1 •t3, - ; a- ;� :--^ . Q�`� 7711 • .. I Res _=3�
a✓L_ _ ' ' + L._.µL a:• • N! •'i•* aacvvx - -'� I p A .1 �1.• .6�. iO2-
Synl' .vt ••oil I�,SeA: �. - I .WT P•i)4' 'I•
» .t well 1 •f 8308 11{ J)} • -� /// \
i 18 o k' :tact j J.5' j X8.5 90' •10.Oi 6' l 70.6 =a0:6' .^�I;tii • ^ 'RAND �C DRAIN / t 14 <'� 1i46' , 1. 13 ! fa 11 moi.
_ 'ry1 v. x>x €'. _ p l4. AAA
SAN BEIF�►AT�NMb-xOt-;OM/l 2 �.+:- l- .........<....-. 8, �r Y t 4 mx �-�,`.�x,,�,,���i, ...r. ,. .1 ' �Q7_: Tom_ - 4vf _ 1_
�7' 1 • 11 Y• Os:... .\..a wsa• 1:$.aw _ ...:. e.•^yr 11...^ <.vYJ-1i :, r '-o' ..+.� • , •1': +� • 8011 DARY-.-'--__�
' +�• •,W a cti?_--o::. cs-----a`- „ y c♦ 1 !
Sc
l S i• �'• •1±F:78401-
Q...
-1
{ :� _t i C 8 _ 1 ". 1 ° t 'nt::' f I: i• :s;= 0 1 8401-1_.
.».•r•.•. : "'.•«» :>it - - � _ I ! i• ( q,. ? _ � �-»����' I � ��.•` � � .� ( l ORP'r i s . Re{•.r..�'---" -
MATCH LINE Exhibit 3. 1
SAN BERNARDINO COUNTY
DRAINAGE SYSTEM LEGEND FLOOD CONTROL DISTRICT
COMPREHENSNE STORM ORA1N PLAN
------ PROPOSED REINFORCED CONCRETE PIPE SUBBASIN BOUNDARY-�¢ RIALTO CHANNEL
-X PROPOSED TRAPEZOIDAL CHANNEL 57 NODE AND NODE NUMBER SusuirTED e•r MILES
E. WO-LA" R.C. E. 13975 DATE SU88ASIN ADD NODE MAP
1 112 : 1 SIDES B=12 FT. FIGURE 12-1
-o-o- e-a EXISTING REINFORCED CONCRETE PIPE 144e SUBBASIN NUMBER c
EXISTING TRAPEZOIDAL CHANNEL HYDROLOGIC UNIT BOUNDARY JAMES M. &(ONTGOMERY IC1l rttt
CONBULTING E'{iGINEERS, INC.
.ow.�y..,.,o,,,,,<•...oe..�.,_� DEC. 198
DATE6 SHEiT OF__3__
4[Ci4ALANb AVE..
1530)
3000.00 '
I
- 1000
Y4 AC.
5, Z qc.
I
I 1_LI
I 4
(I508)
- 300099
0
v
w
4
d
L' Z9(o0�
Q
INALNVT AVE.
s
5TizEET FLOW-- (1473)
3000.17
5. F. Y,+ AG,
L= zoo 1t0 `
SO.�ac.
FIVE FLOW
xXXX Xx = CONC. POINT
(XXXX) = E LE.YATION
AVEA
(I L+37) j BASELINE 12D.
Exhibit 3.2
--------------------------q------------------------------------------- ------------------------------------------------
I
Rango Hydrology
-
UNIT 3, FREDER 0
I MONTGOXKRY ANRNDBRNT ,
File: D010A.111
----------------------------------------------------------------------------------------------------------------------
?ro;ect: D010A.rsb Page 1 Calculated By:
Study )ate: 3;30!90 Xo:sture Cond:tion(ANC): 2 Checked By:
10.0 Year Stora : hour rainfall = 0.97 i"n.) Intensity Slope = 0,600
RATIONAL DY3ROa0GY-SAN 3&RNARDIR0 CO. (Manual Date - Auqust 1986)
Station/ Soil Type Devel,' Area 1 : Fa IF' avgl Q Q ,S1ope;Sectionl V ! L I T : Pc 1 ?ydraulics
ipo:nt Vo.1 A,B,C,D ;Type !iAcres),:n/h;_a/br ;:n/hr 1(subh Total 1v/hz I Fps ft -lain,! min.1 or notes
--------
----------------------- ------ --- -----I------!-----!------'------------------ --- ---1-----!---------------
------ -------!._--I_-----`-----+;---- ;----- -----------;-----i---------------
--------------
3000.391 A-:001,4 ;ac 5.2:2.32; 0.591 0.59; 8,11 ------ 1-----(------- I--------!----!-14.0!---------------
--------- ----------------1------ --- i----- i -----I-----i 8,;24.0121 Street! 5.0129601 9,81-----I gavq= 66.32
40.0 aide street ) ! ! ! I I I do=0,8 Flow hw=20.0
i f i
1 : flow to pt,4 ; I ; ; Wdth Ctr-Brk= 12.01 Ix -fall= 0,0400 Os -fall= 0,0200 ; 1
3000,17! A-1001;4 lac i 74.811.671 0,531 0.59! 69.91 ------ I-----!-------I----!----I----! 24,31---------------) I
Vo. Pipes = ' Pipe flow travel tine --- 'N' = 0.013 ------ I ----- I 78.010,01414= 36112.6126401 3,51 27,81hg1= 2.5(Ft.) 1
---------! ----------------i ------
-------- ---- ------ I ------I -----! ------I -----I ------ ----! ----! ---- -------------------
Effective area = 30,00 (Ac.) Total study area - 87.00 (Ac.) Peak flow rate = 78.008 (CFS) I I
t...:...:*t,:..,::�.. AP = 0.600 SCS Curve (AXC II)= 32.00 •::,:<<.�.�..:,+.�t « �tt>?:�t::!
!--------!----------------------- !------- !----I------ I------
1-----I------;--•--I----------;--- I----I-----1--------------I I
:--------,----------------'------------- {----I------ I------ )------ •-----I-----!-------j---- I --------I-----;---------------
► I
1 I--------- ----------------!------ !------- )----'------ )...... )-----I------ 1-----i-------
i ----I-- 1----I-----)-------------- I
------ ;- ----- ------ -------1-------i----!------1------1-----I------I-----1-------1----1----1----I-----!----------------
---------------
--------1--------------- !------:-------;----------J------I-----I------I-----J-------!----1----1----j-----I--------------
---------;---------------! ------ ------ ----! -----) ------ -----! ------I -----; ------ --- ----1 _.--! ----- I -------------
---------------- I---------,I-----.-------,----I------I-----`i_----J------I---- ;------;----I----I----)-----I---------------! i
--I------I----- ----1 I i ------- --------!----I-----I---------------c
I I -_---------------._--------- ;------- I._ --I------ I------ I-... .--- --. ------I-- I _- .- --_---------------
----------------I ,
: I!-------------!----)------1------1-----;------I-----1-------I----'----I ---I ----I ----------
------ ,----------- -----;...............1----I------)------I-----1------I-----I------ . -- I -- I -- ----1 -------------
!--------- ---------------- I------ I------- I =----- - --
II ---- ------1-----)------1-----1-------I----)----)----)-- ;------------; I
I-------------------------!------)-------I----------I------J-----1------i-----1-------I----I----1----1----=1---------------i I
-- -----I----------------!----- ;------I----1------1------)----I------I----1-------)----1----1----1-----(------- -------
--------------------I
--------!---------------- j----- -) ----- ---I ---- ---- ' --- I----- I ----1 ----- !--- ' -- 1 - --I --- ! --------------J
1
---------I----------------I------J-------I----I------1------1-----1------I-----1-------1----1----1----1-----1---------------1
-----I---------------- i------ I------- 1----1...... )------ 1-----I------ 1---- ----- -- --- ----
---------;----------------I------I-------J----1------1------1-----1------J-----J-------I----I----I----1-----1---------------1 )
----- I ---------------- I ------1------- J ---- I ------ I ------ I ----- I ------1-----1-------1----1----; ---- ! -- - - I ---------------
---------------- ------ -------
------------------------------1------1-------------1------)-----1------1-----)-------1----I----1----I -----I---------------I I
!---------1----------------J------1-------J----1------1------1-----1------J-----1-------1----1----1----!-----I---------------I 1
' Version 2.2 Copyright (c) CivilCADD/Civi1D&SIGI, 1990 I I
I----------------------------------------------------------------------------------------------------------------------------1
Exhibit 3.3
------------------------------------------------------------------------------------------------------------------------------ +-
Kaago Hydrology
UNIT 3, 111DER 0
KONTGOM&RY AHBNDKINT
File: 302S.F11
' Protect: d025.rsh ?age Calculated By: ;
Stcdy Date: 3/3L50 Moisture Conditioa[AKC): 2 Checked By: !
25.0 Year Story : ao�.r :a.afa;l = :.20 (In,) Intensity Slope = 0,600 !
:'tV"" RA":ORAL RYDR0 0 G Y - 3 A N 33RNARDIN0 CO, (Manual Date -August 1986)
Station/ Sci: Pyre Devel,' Area I i Pa !Fm avq! Q ; Q ;S1ope,Sectionl V 1 L T is ! Hydraulics
;Point Ra. A,B,C,D .7yae .(Acres) in/h;io/hr lin/hr I(suh)ITotal 1v/uz 1 :Fps 1 ft.;210.: aio.; or notes
----------------------'------ ------- ------------ ------ ----;-
-- I -----!------- ----, ---- -: ---------------
-------------------------'------ •------'---- ----!- ----�
: ,----•;-----;------;-----i-------�----'---------I-
---------------------- ------ -------'------_j_._--�------- ----�- •1- '
;---------- -----,----- , , -- -- ------ ---------------
--------------------------
A-;'03%.4 ;ac 5.212,871 0.591 0,59; 10,7I ------ ) --- ,iI----01-
_____________
---- ----' -------------- --------------
------ ------ 1 10.7010,0:21 Street) 5,5129601 9.01-----I gavq= 81,63
YC,C y:we sire? 1 ! I I j ; 1 do=0,8 Flow hw=20,0
flow to ot.f I ! i ; Ndth Ctr-Brk= 12,Oj It -fall= 0.0400 Or -fall= 0,0200
3C00,:7 A -:O0% 4 /ac 14,812,10; 0,591 0.591 98.61 ------ I ----- 1 I ---- I ;----! 23,51---------------1
Yo. P_pes = 1 Pare flow travel t:ae --- N' = 0.013 ------!-----1 109.310.014ldc 42113,9126401 3.2; 26,71hg1= 2,7(Ft,) I
;Ra. Pipes = 1 Pipe flay travel t:ie --- 'N' 0,013 ------ 109.310,004Id= 1201 8,7139601 7.61 34,31hgl= 2.2(Ft.) 1
--------- ----------------;------ I-------I----------I------1----I----- ,----(-------I----I----I----;-----j------ ----
----(
Effective area = 90.00 (Ac.) Total study area = 80.00 (Ac.) Peak flow rate 109.297 (C?S) !
AP = 0,600 SCS Curve (AHC II)= 32,00 " `•'::• " '•", ",,,x,,,,•*tt�j
------- I------- I ----i------ I------ ;----- 1------ j ----_j ------- j----j----1----j-----!---------------
--------- ,---------------- (------ ,------- !----i------ I------ -----j------j-----j-------1----I----I----j-----)•--------------!
---------------------------------,-------'---------- I------ )---_-I------j-----I-------I----I---- 1---- 1----- ;---------------
--------- --------------- ,----,------- I ----j------ I...... ;-----j------ ------- I----j-----j--------------
--------- ----------------;------.-------;----1------I----- . ----!------;-----1-------I----j----)----I-----I--------------
-------------------------;----- ;----------- )------I------I-----j------I----- I------- I ----i----)----;-----! ----------------
----------- -- - ------;------)-------;----1------(------I-----I------1-----j--------------------- ,
--- -------------------.------------ ;---------!------!-----f------I-----I-------1--------'----'-----I---------------'
------------ --------- -----I....... )----1------1------I•----j------ I----- j-------
I ----I----1----!- ---(-------------- 1
- ------------------ ;------ ;------- ;----I------ 1------I-----j-----•1-----j-------I---I----;----;-----j--------------- i
-- --------------------- ;------ ;------- j ----j...... ;------ 1-----I------ j----- I------- I---- !----(----; ------------------ 1
-------- .--------------;------)-------j----!------I------I-----1------I-----j-------1----I----1----1-----j---------------I i
------------------------------ ------- ------ ------ ----- ------- --------------- 1
-------------------------- ------ ------- ------ ------ ------ ------- --------------- I
!-------------------------- ------;------- j ----1------ I ------; ---- I ------j -----I ------- j ----I ----I ---- j -----I ---------------!
-----;Ij--j----i- ---- I-----I------I-----j-------
--------------- ------ -----I----1----I----)-----1---------------!
,
---------:---------------- I------I-------I----I------I------j----I------I-----j-------I----I----(----(----- j ---------------
I
i- -----(----------------
I ------I------ j----I------I------j-----j------I-----j-------I----1----I----j-----1---------------,
----- •---------------I------I-------I--- I------ 1------ 1-----I------ 1-----I------- I----I----;----j-----I---------------
---------------- I f I I I I -----I I -----I I I I I I 1 1
)- -- -----------------I------I-------I----I------1------I-----1------j-----j-------j----i----I----j-----I---------------1 ;
---------- --- 1----I------------I----- ------ ----- -----
;- --------- I I I-------j----)----)----j I ---------------i I
1 Version 2.2 Copyright (c) Civi1CADD/Civi1DISIGN, 1990 i
----------------------------------------------------------------------------------------------------------------------------I I
Exhibit 3.4
rational analysis of the annexed area showed that the 25 -year
estimated design storm peak runoff is 109 cfs with a time of
GOnCe t�a�bpn 9f 26,7 minutes at node 18 �Baseline�. The
flow is then carried by a 10 ft. diameter reinforced concrete
pipe and the new time of concentration of 34.3 minutes at
node 19 is found for use in the unit hydrograph lag time and
subbasin roughness calculations (see Exhibit 3.4). Node 19
corresponds with node 1 in the unit hydrograph analysis.
Refer to Appendix A for the detailed calculations and
evaluations.
3.2.2 Unit Hydrograph - The unit hydrograph was used to
design the major lateral drains for a 25 -year storm with
antecedent moisture condition II. Montgomery breaks the
Baseline drain tributary area into three large subbasins
(3301,3302,3303) each with different characteristics and
point rainfall depths. The unmodified subbasin
characteristics are summarized in Table 3.1 and Exhibit 3.6.
Each of the three subbasins has a node and there is a
separate routing model for each node. A storm hydrograph is
generated for the first area allowing the computer to
generate the depth -area reduction (D -A -R) factors. This is
called Model 1 and it terminates at the first node with no
routing necessary. Model 2 terminates at second node and
begins with the same initial subbasin (3301) but the D -A -R
factors are obtained from figure E-4 in the Hydrology Manual
(see Exhibit 3.5) using the sum of the areas for subbasins
18
TABLE 3.1
ORIGINAL BASIN LOSS CHARACTERISTICS
Area Soil Pervious Fraction
Basin Land Use Fraction Type Runoff Index Impery A(i)
3301 Lt. Indust.
.63
A
32
.80
Residential
.37
A
32
.50
3302 Lt. Indust.
1.0
A
32
.80
3303 Lt. Indust.
.92
A
32
.80
Park
.03
B
56
.10
Park
.02
A
32
.10
Residential
.03
A
32
.50
19
100
24-HOUR
90
6 -HOUR
Q
w
cr
Q
z
w
80
U)
cr
O
z
�_- 70
i
3 -HOUR
_a
U
w
a
Ilk
60
z
I
0
a
LL
O
z 50
w
U
w
a
40
I -HOUR
30 -MINUTE
30
TE
20 20
0
50
100
150
AREA
(SQUARE
MILES)
Exhibit
3.6
SAN
BERNARDINO
COUNTY
DESIGN
DEPTH
STORM
AREA
HYDROLOGY
MANUAL
CURVES
E-18 Figure E-4
3301 and 3302. The hydrograph from subbasin 3301 is then
routed through a 10 ft diameter reinforced concrete pipe to
the second node where the second subbasin (3302) is added to
the stream. Model 3 follows the same procedure now using the
sum of the areas of all three subbasins to determine the D -A-
R factors. Model 3 starts with subbasin 3301, generates a
storm hydrograph, routes through a 10 ft. diameter
reinforced concrete pipe, combines with subbasin 3302, the
combined hydrograph is then routed through a 12 ft.
reinforced concrete pipe to the third node where it is
combined with the storm hydrograph for subbasin 3303.
Exhibit 3.6 is figure 13-1 in the Montgomery report and shows
the subbasins of the watershed which were used in the unit
hydrograph analysis.
To develop a synthetic critical storm pattern, the area -
averaged rainfall intensity data is obtained from the
isohyetal map (see Exhibit 3.7). The addition of the subject
annex area did not significantly alter the rainfall data for
the initial subbasin (3301). The initial subbasin
characteristics (land use, soil type, and the perviousness of
the ground cover) were modified because they changed with the
addition of the relatively small subject area annexation.
The low loss rate percentage and the adjusted loss percentage
depend upon these characteristics. The modified subbasin
infiltration characteristics are summarized in Table 3.2.
The drainage data for the initial subbasin was revised to
reflect the inclusion of the subject area (see Exhibit 3.8).
21
• ' '• i' • • •,'..'ti �j CMA
CL
W a U° w
W , r
Z I
w m O
J ! '" .'�� , ,,, ...7,''^[.a'.l``•i•,��•�'t,'d`•;}�_ti•�s. , c7 3LL F ui O
moo= o m
j i. '�_ �::^.' 1 tiii,•b ' LL 0O z -1 z a' L
°° t t.'�`'« , w"4y y �•� - ` i 1 O a o O LL to Q f
uj
w = w w z m
o CL LLI t
w° J p V)
Q 7 E} . .. _• i'_ _T O _ w y1.(. r- J J J 1- U W d V7 �
m :CY o
m . L_zt 700' 't :—LcA=s,eao' "' ' • N J J 0 o N
mums-
.. t---• y .r,J sr. -
i, r,� t O C7I
27
Of
=I I. goo,
�-LCA=3800' i �:. i 26 �',` ,•\
i n
...■ 1=- ,. x N °. N {` r' �i : 2' a :I
11 1J1:� j! tD <•< „iiMinIt •;:.f�I y��J3i UtaO 3
� .� t . (,I��• .
• ��• .,1: ��•'v - �—. � C :. 'I � �t,u 1 - • m . T pry � -. _ _ �' = �•r� �r � � rA 7�� 1 L._
•II ■ _ tp. = T•' �•' . ' + i. . v t_JM. T'D '� x:
to
F
Ir - i 31 • µ'YS �__� t
A*:
••d•2 ' � ,uvsa � ^` '�� •�+ f-'
� C :1
' , sid+v:!FG,,,�r•• •'i'-�-J�'./v«r.... � li'sTiA tom• � �� I• F..i I•',.t "-�� .�...��1....r.L:uV� ..vt_ �...~' + 1 _�•�J
,i- J n:: r7 _t .F. l ,/IM■i -1 iCA=3'4001 _a.. •�li.+ I��.�� .t 1
IrttAL i �.i• 1yts»..; /•
:
'r' '-i'
y i i c� '; ! . .. x �, ALT :g..
ort `
Ji tot
sn w �.. T_ .,- } �}
iib ''N�k... - Rte-.. [ .. ;.10 IFC' 1^ ■ .. ' r:;c,� ! O• •.• •' 1'i2•'•
,• _ � �O �'�' Il i'I, �� Ill <W �Li4■ Y/ 1 K •F•i�•.1?-tr �•?" ljan W l' `'i'/• t ...
47_...;� ..F- T U� s1. ■ �i i ', L t..._ I ! ,
=n _.. ,tr1,1■�■,*2■OU 1.2.1.1 vM■ • •a• ., , ■2■! _ _
FUYT 1NA (
....il:
,.• �• �. -. 17 ' _ T,,-sw i m �. ,•�•i t 1 i o
0.
' j r 1"' • - �."� : •�Lr? J
/`/—y-•- Be�.. rt •ON- _ di'=•■:i �k ■ :... t p �t ;_ ' e
A .i �I a.:..-•.-•.• y I ptriii
" - . ! . � fAJi <a $_ ♦ � " 11 ^ ■ � t
000= f«= LCA.
i 8 of 2 w6lI JA
:.? i _ Q .:'.' •. !; n �.. r't 11n■IMy - - I ' .Ia cl i2+2rru
I T r•�- 17 L.11.SOQ' a LCA=4 1 a
-■ .. "I�eV, ... - ..' u�+■+auu: n.0 ...u•vu�.�v, _.r :d ... ... I
;• i� ; t : � • +� • .._._. , .....i,tl - .• <....•!r •} C 1' � - • .. s' - - ..... viii _ " - _ W •
. -• 7-) j ••� - = is 'rrurra,atr,r, irrtarr+ -rueal t. . '•t"•..� - - tr .- � •.tiltl •• � •
i .i. -v.�'' .. i %\ 1 • . : �i. ^ +ri.nrrrrrfw trtwtwwrizrnr,.,rren+ntinrt+' r
f • a y«= . N. 1<1 •- -: ... � - ! T Ti. 1 ^ F. �G[1�c^ : }- ^ :i: j r� 1 t'f�rtt1Y11i'f11Y1tl11CYf9�1Gf}y7ZTj ar.,rtatatst.,.,st.r
•
I., on uu.rrwrJ ' .�,• - ..�' Frfitrtrt.rartr .`^ • ,alrrrr� ' } r 1 t
'\. - � • ! ci• V �'•},{ �• , : a 1rS11/M !Islr,r,r er{lilr,ll - , . .. t rs, ■ , r 1 � `
/ -� t:.: -{' !„ ! ,`{ e l r '}: rt�� �' .:_ —i..>,• � i!` y 111 � ; 4S• .' 1A� �-
.( zvr�: .,. %�', .i•.».. M e ..1-S i '►.,� �•�:"'rte j •. 1 ' � v \ `i�c' N,
±• !� ■ tiF,- ••,j t '�• u•��.t ...�1� .� «,< W • 111 „ � \\�
_a (t :;�*; i :•,* ;•. t �i,: - 1`!!tw.�:: ' 1 •!.r N I ( � /-7 \
07 r I 7 •: L a i s c f '•' _ `. .� i! i l��;tr `� of .} y +1 l �' t i ti\\
i� •• . - •b 'f " •_tea"_' r..N1 + _ pp 2.. •t -i l! i i:i i?ii=i. ' wvi."•sj� 70. 1, - ! 111
-•• _x. .._ .I.I I h• •'% •fes.: + rM-� Tei - a•• .1:-1- II: I:: "•."•,�_ ""•w. _ . I 111 l • �.
• l , , .I •,_ +.., ', r;' t :.yh 'i .- _ •���:. i t.
4i �,�•tA-a.lti., 7 r •:r1 1 t' - `
111 • 44.% _ ,.i• < _! • .,,,,�' : � < }. � _ ,' ; F� :. .o:- tt �I �'"""""`...,,,� � 1 � _ Q � A j ..
1 ■ i' yl_ wi4-' + N. �� •' "''1 11.. Y t !: I 4$ 1} • * \ L
7 _ ...•• I r :. �' >.•` . "ten,;-'_'-t:'fc f_'i+ �. ` f »t:�! .. I;`^'••._•r It , w ,�+ . �F `
.. !h•� "`Z " ._ I'. •a' w-. .; ••'•�i}ice � r y � - ^-� � '� - .�'
.'Lti� .►. _t
h _j 1111 --- •� ::: ti 1 : ; 3'.x•1: _- - �+,�- - i:; c: 111 ^ 1 ', � ;_ N,
• '... "� i. ._ - - _ e, ,• " al .11 :y •'f.1,r:'!- a
•. . �I - .wj _ 4: • • "- i ' I ' l 1 A it �.;,..f•. f _
� 55
.-•� , _ ■i T - � '.: • 11t5 ...�s:.
:y --'on. j. :t — - li" ; .. ' 8- '', o •` r �d mak;: ., ��, E�
• ' • • �. ''`' '•"_ ♦ ! . .. ), j• til f"-.;.1: ""^crt-i'"5i;i �:� -
• r -tom• , gay, I:i 1 `',�\ '�Sa , al 1 {••! •� 1•k `•. >, <'t.'•� 111 •��, w`
�• 11 ' • .�7, ,` .�� ... . ........•. ... •tl !. ' t�t'-, ' +S<'i:`' •" u 'o .-
.o :i •�U' _ _t_:� - ,.i. •t.'".`+•4.. 11 � _ I' n , s "�.• !• - ti�•�: f+' ?'• �_ • ? `',
+ i `G�• ii r.l(i "--•_,�r:�:. •i i• "y' �-lt, _. _, `: _..__'_'. ..\, .. ...:r f..... _... .. .'(- �• �.., i�Y� ,.,-�-'.•i•:. � �'y`�'
At
co
ca
• 'rte► i . .:_ \ 11 Y • '! • to
! . _ :?•.r' ..i''• i + • a i ,><11 > a
It
.,t : �i 1 •` it ,�"sf-•wttauuut.eruii,i.. Iwo''+•.* ./ a �• 1\, a fi
a gal •,\.... .'`+. .^•...1 'i+'-; ?I-••-ri5-�,_„�,
♦ - '-/ :: •: ' • ' \'•q; . Il:y a , uauur.r.urrurrertirsr t.epouutLut.:.r.i. } ^ to _ •,• "; - •�
ruot.r. IIaJs•Oe :.Y i " "'r i 11 v v
1111 � 1 �� 't '•E �r \ \ { ''"4s !r • >, `�{�.. :ii �� tf t.. ••I. -� \ f j- !� !' �` •I ,' 111 "q' z
cql�_ ..>,i.f.r.r.t�ri� t,. `-.... 'a �a,. \r- r-t_..'t.•r . 1��,'Yt _U -'rj d •\'t! ��-.••ue'r '•It' i_�' J'..., u - • j 'Ilii I..! ! f �.�•� -� _t••'; '••* g 111; \ .
�eG+,::• �ea?.' cc
y ` �!,'. ` k ''a w, .. - ' •I '� ... '-� • S .' 1'r ' 1
111011 �• ` ! • i i " I . �' /: / _ ".•,,." } 111
i �~ - • nyt.,.rrr�........ rrf Ill' • = ti ... ... �•. ��\ i , A A ............
ul.rrn
' •• •�,1'• 111 C+- if ♦ �� u r. - `\• (r -f I i.ti11• ili s... E'.• } . -j _ : '4+'r� ,}: ..- .a r�' f, ' LE�C:�D
G `: - - ,•i.rerti�. _ - - - - 1_'- - r - - - r-r,nc - - - MtalrII.t�. �..: - _;•�` a' ^ a I /
` YEAR
111 .a. !.. - - _ - j -. �' i • •� ;: • , ._ • ' 1 , i •,) ' `•.+ , i ; - \ ` ,..,` .i' • ^: ~ ` - ` ! 1
terra. • It rite j' ' -• �t: -- `� t 1 HOUR RAINFALL
'�'' ' rl is •O 1 e,a� t% s�^ - _ , iFt, - �•: C n��•..T 1ti1� _ ��• :I nu,nnrnnr"'"' 100 YEAR -
a
- +' _a=�I 1-- - "r - iia.: < :, I x��:.,� iw': 1 :3< r `1 1 C i 1 HOUR RAINFALL
a :� '�, ;r �, 1'1 f - ,,.�.r.etit.i.rq•.. :1`, a z _ !• T_i _ .,o_•��_e 100 YEAR -
17 Aik
u.t.ur.rwr.r.r-t:.�.-..• +�+ 6 HOUR RAINFALL
y ti tprur.loiureP ( l.ut.utoatrt.t■,a,■r.,.,i' 111A• �11 '^ .. 1C `' �•
��11 ;�.•a'� ;.r...r.r.rej. - -w, 1�1�• _ ,. -
low
t _. !111D 1.:l.�� a----- 100 YEAR -
' �'*Q i-1- . _��: �'1; `}�'�I 24 HOUR RAINFALL-
- -r- +I.+.....rS ------ 1 - ' _. "- us,.. � Vit,...: ' -, ` ., : t� � •i. r j= HYDROLOGIC � 1
1 i ,,,it; •_-•, .. _ :� 17.11 II - Dr + :..F- yid_ SOIL GROUPS
Exhibit 3.7 RIALTO BASIN
TABLE 3.2
MODIFIED BASIN LOSS CHARACTERISTICS
Area soil Pervious Fraction
Basin Land Use Fraction Type Runoff Index Impery A(i)
3301 Lt. Indust.
.54
A
32
.80
Residential
.46
A
32
.50
3302 Lt. Indust.
1.0
A
32
.80
3303 Lt. Indust.
.92
A
32
.80
Park
.03
B
56
.10
Park
.02
A
32
.10
Residential
.03
A
32
.50
DEVORE, CALIF.
NW/4 SAN BERNARDINO 15'QUADRA.40L:
�--=—; 34117.84-TF-024
I - • �` �— � \ �`• 1966
� ' �• - _ T \ PHOTOREVISED 1988
�_� =_•: = — i DMA 2552 III NW—SERIES :395
VO u
28
_________=___ =___________ n=c— i��• J�pY't.'_ rT_. WIC `• • `
i{ IIS 1111
'! •..ter. �:' .��. � .v=a` �%—�_" —_ � .Z
Z�tu WI U tis
Y• ^f
I?
HIGHLAND /500
' Substz
,Well
li II '
' li s u i
11 1. eservo.lrs
�I �i II Il II II�' •' I�
u
It
/480 _ ..........
.
i —lab, it
133
•''ctL=10,3201
•i W ti
z
1 well 32 •''. ---331
•-- .. �`- (1407) ;�
14-
/4 4
4 • -mmmwuv•• S
' j:•• �� i ResAlder
: ' • ;-------t `
■8-10; w'� JrHigh Sch Exhibit 3-8—
i (YJO
00 0 1000 2000 3000 4000 5000 6000
' 5 0 1 K!�.1-I'zT ?
The revisions include:
1. The watercoarse length was increased by 1320' for a
total of 10,320 ft.
2. The elevation difference was increased by 2' for a
total of 123 ft.
3. The watershed area was increased by 155 acres for a
total of 640 acres.
4. A roughness "n" value was calculated to be 0.033
from the time of concentration obtained in the 25 -
year rational analysis.
In the original Montgomery report the basin roughness
(n) values were modified to define an appropriate lag time.
Roughness values were determined so as to equate the lag time
to 80% of the time of concentration for each of the three
subbasins. The rational method was used to obtain the times
of concentration. This procedure was followed for the new
initial subbasin which includes the subject annexation.
Using the rational method the 25 -year design storm runoff was
routed through the 10 ft. diameter pipe to node 1 in order to
obtain the time of concentration (see Exhibit 3.4). The "n"
values are then determined from the equation:
lag = 24n[(LLCA)/S• a ]. 3e
26
where;
lag = lag time (hrs)
n = roughness coefficient
L = length of longest watercourse (miles)
Lch = length along longest watercourse to a point
opposite the centroid of the subbasin (miles)
S = slope of watercourse (ft/mile)
For basin 1, 80% of the time of concentration is substituted
for the lag time and the "n" factor is then back calculated:
n = (.8*34.3)/24[(10320*5200)/(123/10320)0.5].38
n = 0.033
A detailed unit hydrograph analysis report for each basin is
found in Appendix A.
3.2.3 Hydrogra h Routing - The initial subbasin (3301)
was routed, using the Soil Conservation Service Convex
method, through the Baseline lateral and combined with the
design storm hydrograph from subbasin 3302 at node 2. A 10
ft. diameter reinforced concrete pipe was originally used in
the Montgomery Report. After the revisions, this size was
found to be adequate for routing purposes. The combined
storm hydrograph was then routed through the Baseline lateral
and combined with the storm hydrograph from subbasin 3303 at
node 3. A 12 ft, diameter reinforced concrete pipe was
originally used in the Montgomery Report and it also was
found to be adequate, with the additional runoff, for routing
purposes. The Baseline lateral need not be increased for
either of the reaches due to the increased runoff. Node 3 is
27
at the entrance to the Cactus basin which empties into the
Rialto Channel. The storm hydrograph should be routed
through the detention basin and on down the channel. This,
however, is beyond the scope of this project. Refer to
Appendix A for a detailed report of the hydrograph routing.
3.3 STORM DRAINS
The inclusion of the subject area in the drainage
analysis resulted in a need for an additional feeder line on
Mango Avenue and an extension of the major lateral on
Baseline Road. The drains were sized according to the design
criteria outlined in section 3.2. This criteria required
that the 10 -year design storm runoff govern the size of the
Mango feeder drain and that the 25 -year design storm runoff
govern the size of the Baseline Road major lateral.
3.3.1 Mango Feeder (DO) - The 10 -year design storm peak
runoff was estimated using the rational method along Mango
Avenue. The Civil CADD system estimates the pipe size for
the peak runoff at the concentration point where the pipe is
to begin. The pipe length, upstream elevation, downstream
elevation, and friction factors are entered and the estimated
pipe size is then calculated. The calculated pipe size is
rounded up to the nearest standard pipe size and this size is
used for the pipe flow travel time calculations.
The 10 -year design storm peak runoff at node 17 (see
Exhibits 3.1 and 3.2) was estimated to be 78 cfs as indicated
W
in section 3.2.1, This flow rate reiuired a 36" diameter
reinforced concrete pipe as estimated by the Civil CADD
system. Refer to Appendix A for the details of the
calculations. The proposed pipe sizes and other relative
hydraulic data for the Mango feeder are shown with the
profile in Exhibit 3.9 which was formatted to conform to the
Montgomery Report.
3.3.2 Baseline Lateral (D) - The 25 -year design storm
peak runoff was estimated using the unit hydrograph method in
conjunction with the Soil Conservation Service Convex routing
method. The Civil CADD system performs this routing and
allows the user to either let the program estimate the pipe
size or specify the pipe size. If the specified pipe size is
under sized the program will calculate the upstream storage
requirements as well as the pressure flow data. Initially,
the program was allowed to estimate the pipe sizes for each
of the three reaches in the routing. These calculated pipe
sizes were slightly smaller than the sizes used for the
routing in the original Montgomery Report. These original
pipe sizes were therefore specified in the final routing
calculations. It should be noted that these specified pipe
sizes are for routing purposes only and the actual sizing
will be based upon the routing results.
The convex routing method produces inflow and outflow
hydrographs for the pipe between concentration points. For
the detailed calculations and results report, refer to
NO
9 0 10 Zo -30
S
Q'.
L
TYPE
SIZE
O.DeD
78
2G 4.O
�Gh
3lv"
Exhibit 3.
w
a
N
San Bernardino County
FLOOD CONTROL DISTRICT
COMPREHENSIVE STORM DRAIN PLAN
PROJECT NO. 3-3DO.
DATE HORIZ. 1' = 1000` DRAWING NO.
VERT. 1' = 40' 1 of 1
Appendix A. The routing results report shows two pipe flow
evaluations for each reach. The first evaluation uses the
mean flow rate of the hydrograph while the second uses the
peak flow rate. Thus the 25 -year peak flow rate is estimated
at the three nodes. The convex routing resulted in a peak
flow of 848 cfs at node 1 (Alder Avenue). The peak flow at
node 2 (Locust Avenue) was estimated to be 1283 cfs. The
peak flow at node 3 (Cactus Basin) was estimated to be 1778
cfs. As expected, these peak flow rates are larger than the
rates found in the original Montgomery Report. The
comparison of the peak flow before and after the subject
annexation is shown for each node in Table 3.3 with the
increases expressed as a percentages. The percent increase
in peak flow at each node was a result of the subject annex
area and the result of a difference between the software
packages used. The Civil CADD yields more conservative
results for the unit hydrograph analyses than the AES
software originally used in the Comprehensive Storm Drain
Plan. Thus the 47% increase noted at Alder Avenue (node 1)
is probably more realistically about 30%. The results are
also graphically portrayed in the charts following Table 3.3
(see Exhibits 3.10, 3.11, & 3.12) keeping in mind that the
increase percentages somewhat larger than a realistic
increase.
There are a number of feeder drains joining the Baseline
lateral so the peak flow was therefore distributed between
the feeders in each reach. This was done by dividing the
31
TABLE 3.3
PEAK FLOW COMPARISON
1 Analysis done using AES software package.
2 Analysis done using Civil CADD software package.
ORIGINAL1
MODIFIED2
NODE
LOCATION
RUNOFF
RUNOFF
INCREASE
1
Alder Ave.
577
848
47%
2
Locust Ave.
964
1283
33%
3
Cactus Basin
1309
1778
36%
1 Analysis done using AES software package.
2 Analysis done using Civil CADD software package.
FLOW COMPAR SON
ORIGIN
7% Increase
NAL FLOW
z71
Exhibit 3,10
ORIGINAL
984
33% Increase
TIONAL FLOW
319
Exhibit 3.11
FLOW COMPAR SON
ORIGINAL
1301C
6% Increase
TIONAL FLOW
489
Exhibit 3.12
total flow -to be added to the stream in each reach by the
number of feeders joining the stream between nodes. This
flow was then added to the stream at each feeder junction.
This process was used through all three reaches to determine
the peak pipe flow in the Baseline lateral between feeder
junctions. The size of the Baseline lateral was thereby
increased gradually according to the different flow rates
along the stream. The proposed pipe sizes and other relative
hydraulic data for the Baseline lateral drain are shown with
the profile in Exhibit 3.13 which was again formatted to
conform to the original Montgomery Report. Refer to Appendix
A for the detailed pipe flow calculations.
36
40
50 ---
60.. T__..
70 - 80
90 100
i
' I
-
I
i
i
1420:
,
t Jr- 2L
1400;
'
I
1380
-
I
i
f
�
�
Cm7
co
w
Q
Ld
W
Uj
M
Q
W
>
Q
Q
~Z
W
J
Z
Q
W
Z?
W
�
J
W
J
W
a
o�
a� 9
8
N
CO
M
S
D04
.005
.004
025 j
Q83
:
10rk
4*8
L ;
2640
1320
1320
TYPE,
RCP
RCP
RCP
SIZE '
�ZCD�
�✓(�."
10Sh
San
Bernardino County
FLOOD
CONTROL DISTRICT
COMPREHENSIVE STORM DRAIN PLAN
JAMES M.
MONTGOMERY,
PROJECT NO. 3-30
CONSULTING ENGINEERS, INC.
P.O. BOX 7009,
250 K MADISON AVE.. PASADENA, CA 91109-7009
DATE
HORIZ. 1'= 1000`
DRAWING NO.
12-86
VERT. 1' = 40`
2 of 3
4 MANGO AVENUE DRAINAGE/PRELIMINARY STORM DRAIN PLAN
Mr. Felipe Molinos from the City of Fontana Public Works
expressed the desire for a more detailed study on Mango
Avenue, between Highland Avenue and Baseline Road, than what
is found in the Comprehensive Master Storm Drain Plan. This
desire stems from the considerable developmental activity in
this vicinity. Exhibit 4.1 shows the existing and tentative
tracts as well as the existing or proposed detention basins
in the area. The City of Fontana desires in the future to
phase these detention basins into parks and buildable lots.
This will require a storm system sufficient to handle the
runoff directly without detention.
4.1 GENERAL DESIGN CRITERIA
The City of Fontana desired to add to the general
criteria for formulating the hydrologic and hydraulic
analyses in the Comprehensive Master Storm Drain Plan.
Therefore, the Mango Avenue storm drain was planned using the
following criteria as set forth by the City of Fontana:
1. At the concentration point where the street section
is inadequate to carry a 10 -year design storm flow,
38
t
' 3 t
W zsiszs��� fS=o?d-
sits
-dszt
J
Q
U ss s
N
f• a e a e t r C F C r F r K C k
TF,
3nN3AY M3SIY)r [7fI6G(
M O
ct
W i
z
10 W
I = I`
3nN3AY ohyH3NVle <�
--'-T i -- -� �-.- f }
I I
3nN3Ad OU3W-lHd _
_ 3nN3AY M351YY,
LD
O
N --. 1
•-
3nN3AY 4351 V)fcJ<ii—
J Z: I
- �;
<:
aerNONrla
3nN3AY �� \ I I ' 3:
I I I I I co 1- - I J I I
_� .. • N -i
3nN3AY 2l3l SdY13H
3nN3',r 0- YY10N05
_ .�D-iu r, •. �. .< a l —�- '17 HUSd 3M tz=u i _ — I _-_�
N '� ON �< -- ON 1 mzj} - -``Ln
—=_ = - I 2131.Sd Y13Ni 1^ I _3NYl H315dYt31l �•. < I N - , rr..
< }-�', CD 17, cm
0
H�:I \ =�14 ! ` U F r-� I I• I cry F F M �W — `{ _—�NI--�\ME
`' r` en I I r r
I (b f — I j ty I )c�y� � I �; .O _._ W 1J ~- it
I Y I ( J = - b39Nr _ ~ -- i
N ldnoo, < 3NY-1 a39NIV J — I'-
73 - a3aN!� • J < - -
z I 3ArIN
olovd — n�r�
l � W
3nN3AV — 09NYM
'1J 30Yf ��
�( 7
N -`
w _
o
u— cr -- N I — l I / m
I N
lalVN3Yt? -- —_ 3nN3AY alrH3tY3
I
I rl)lD
l- _
I — I
3nN3AY - YIOY]Y�•�� (D
CD
I 0
--, '17 1tlOdM3N M � f7 < 1Nnao 1tladM.3N
�— N r
_T— _
Ii \
� J
0 tl3133HM. lifn07 ' tl3133HM
, i J
3nN3nd dda3ls
T
W
—-------------
-
-
'3/•Y _ll39Nt5
,
• 6
�LL
1
1 -
0
[D _� W O
�r
~ .ZI -
W
'--
F-
I
Q
�\�Msi\'~'
-- 09NYF( --
uJ
F_
F U
W
m
cn
O
0
O j
1
I.
.v
N
N
0
�r
F-
F-
F_
F U
m
m
F-
O
0
O j
Z1-
w
z
�'o~
W
F
FU z
Q W
a W
W W W
� cr F-
W
J
�u��
1
I.
.v
N
3 � Y
* iaff�isiifxs€r�"�
U }}
• � � x a� z w R x x >r R x t x R e� x������ k
'
3nN3AV a3SIY)f
'D 1
cc
W I
I — - 3 k3AV T• OaVH]kvlef
—1
T
K
;r '
al
7
W
---.
.. O
N : W
'-
.._
W
O
1N -
Li
—
cr
1
p
J
1,0
z
W
1 O-
F' --
[L .....
,.
0 0 n W
J
,a
J
311.+11 a3SIYX
;
J
J
'x
00
Y W W p
F Z
�
F U
w
r
W
O
J
3nN3AV 0113W-1dd
OtlVH]NYlB
3nN3AV 1
_I
YWONOS
I 3nN r I -
- w N z \� - N—JZ , •;r I I .. LL �•. . < l_—��`- l� tl31S M' -
O_3NY'1 tl31Sdn3H
113
14
I `cr
.
1 - i l ^� N �_ O 1 '_ 7 F- -
1iJ .�-=N �- -= (�3 a a3nH V3aHIO \�K" < _
Z t� 3AY O yi 1�L•IpYd _ —
w l fn i--'-•^�J�f 2, Plr ® I W -T I i \ 3
\\\ �.
J -'-
J j� Jj
-- 3nN3Ar A&-�-
=- —
1%9 -.iz) aoyr a
J:!r I I
LSr ,
N ` / N
1] 3nN3AY OlYtl3n3 I / M
m
~
in
- WMAV
co
Id 7
I /• I I - O
m
•1 �
I _
F-
C'
'O 1i 1 I z_ F -
i ( -- •l� ] ia0dM3N ,ry ;D lino] la N,3N J -
N 4' �
i l --
J t
I l Ltln00 ^d3133Han0] tl3l' J
3TM 1'X
3nN3AV Vb831S
_' N
i...l
j
r I W
¢ —
� I
3nN3 Y a351Yx
al
7
w
---.
CD
an
<
'-
F- F-
O
1N -
--
—
cr
1
p
J
1,0
z
W
s`
Lcr
_
0 0 n W
OtlVH]NYlB
3nN3AV 1
_I
YWONOS
I 3nN r I -
- w N z \� - N—JZ , •;r I I .. LL �•. . < l_—��`- l� tl31S M' -
O_3NY'1 tl31Sdn3H
113
14
I `cr
.
1 - i l ^� N �_ O 1 '_ 7 F- -
1iJ .�-=N �- -= (�3 a a3nH V3aHIO \�K" < _
Z t� 3AY O yi 1�L•IpYd _ —
w l fn i--'-•^�J�f 2, Plr ® I W -T I i \ 3
\\\ �.
J -'-
J j� Jj
-- 3nN3Ar A&-�-
=- —
1%9 -.iz) aoyr a
J:!r I I
LSr ,
N ` / N
1] 3nN3AY OlYtl3n3 I / M
m
~
in
- WMAV
co
Id 7
I /• I I - O
m
•1 �
I _
F-
C'
'O 1i 1 I z_ F -
i ( -- •l� ] ia0dM3N ,ry ;D lino] la N,3N J -
N 4' �
i l --
J t
I l Ltln00 ^d3133Han0] tl3l' J
3TM 1'X
3nN3AV Vb831S
•- _ 1 _ 3nN3AV tl31SdrQM
N I w\\
N r
p
.. i ; . — y M —
r"CJcr
cr
IPL
- 7lIY�AV —.
w
w
`r
N
_' N
i...l
j
r I W
¢ —
� I
3nN3 Y a351Yx
al
7
w
---.
CD
an
O
II U
1 �•<
'-
F- F-
�
cr
1
p
J
o
U
z
W
s`
Lcr
_
0 0 n W
J
,a
� U
jD
H
00
Y W W p
F Z
I
F U
w
r
W
(((n �nI¢
F� ~
U
J
IJ
•- _ 1 _ 3nN3AV tl31SdrQM
N I w\\
N r
p
.. i ; . — y M —
r"CJcr
cr
IPL
- 7lIY�AV —.
w
w
`r
N
_' N
i...l
j
r I W
¢ —
� I
1
W I
p
al
7
w
---.
CD
an
O
II U
1 �•<
'-
F- F-
cr
1
p
J
2
o
s`
_
0 0 n W
J
W
� U
jD
H
W
Y W W p
F Z
F U
w
r
W
(((n �nI¢
F� ~
U
J
IJ
I I I 1
N
W
.
'3/r d39N:9
w
1
W I
p
al
7
w
---.
cn
[D �_''
N'1 - <I
O
II U
1 �•<
'-
F- F-
cr
1
p
J
IaI
T� �
�
En
a a a
m r
�
z z
0 0 n W
-
— 0ONYn —
G11
U)
w
_.. I
w
---.
m
> >
G11
NEI
0
U)
02
> >
F- F-
Z z F U
En
a a a
m r
�
z z
0 0 n W
F -r w
jD
H
W
Y W W p
F Z
F U
w
r
W
(((n �nI¢
F� ~
U
J
IJ
NEI
0
improvement plans indicated varying right-of-way setbacks and
curb separations. Therefore, a standard street section which
best fit these conditions was chosen, from the City of
Fontana standards, to be used in the rational analysis (see
Exhibit 4.3).
The initial analyses used street flow through every
reach of the stream to estimate the total flows without storm
drains. The street capacity within the curbs was calculated
to be 52 cfs while the capacity within the right-of-way was
calculated to be 163 cfs (see Appendix B). The event which
governs the storm drain size was determined for each reach
by comparing the required pipe flows, as set forth by the
design criteria, for each event at each concentration point.
A summary of this comparison is presented in Table 4.1 with
the governing flows indicated. This comparison shows that
the 10 -year design storm governs up to node 5 at which point
the 25 -year design storm governs while the 100 -year design
storm governs from node 6 to node 11 (Baseline Rd.).
The final analyses used the same basin characteristics
as the initial analyses up to node 11, however, this time the
appropriate channel flow (inlet, pipe, and/or street flow)
was used through each reach. This was done as follows:
1. The 10 -year design storm was analyzed from node 1
to node 5 using pipe flow and allowing the program
to calculate the nearest standard pipe size. The
reach from node 2 to node 3 required a smaller
43
R
8 Curb 9 Gutter
LEVEL SECTION
COLLECTOR STREET
COLLECTOR STREETS
SECTION A-1 8 C I D IE
TILTED -,62 -.79' -,31'1-.43'10.001
LEVEL 0.00` -.30 -.06 -.30 0.061
Sidewalk/
Exhibit 4.3
CITY OF FONTANA, CALIFORNIA Drown By 0. Navarro
STD.
COLLECTOR STREETS - Chocked By
161.1.
TYPICAL SECTION approved
DETAIL
7-Is-ITTENGINEER 100
CHotTo Sole s
TABLE 4.1
STORM DRAIN REQUIREMENTS
100 -YR 25 -YR 10 -YR
Street; Pipe; Total
Node'
(cfs)
'(cfs);
(cfs)
(cfs)
0
;
51*
;
2
;
84
; 0 ;
84
64
0
;
75"
;
3
;
139
; 0 ;
139
104
52
;
113
;
4
;
163
; 61 ;
224
235
1
5
;
163
; 163 ;
326
283
52
;
271
;
6
;
163
; 233* ;
396
7
;
163
; 293* ;
456
365
52
;
358
;
8
;
163
; 357*;
520
52
;
405
;
9
;
163
; 427*;
590
10
;
163
; 500* ;
663
Street; Pipe; Total
(cfs)
;(cfs)!
(cfs)
0
;
51*
;
51
52
;
12
;
64
0
;
75"
;
75
52
;
52
;
104
52
;
113
;
165
52
;
183*
;
235
1
0
52
;
231
;
283
52
;
271
;
323
;
247
;
247
52
;
313
;
365
52
;
358
;
410
;
309
;
309
52
;
405
;
457
45
Street; Pipe; Total
(cfs)
;(cfs);
(cfs)
0
;
51*
;
51
0
;
75"
;
75
i
i;
0
;
130*
130
0
;
183
;
183
1
0
;
218
;
218
0
;
247
;
247
0
;
277
;
277
0
;
309
;
309
0
;
342
;
342
pipe than 36" so the pipe was specified to be 36"
2. The 25 -year design storm was analyzed from node 1
to node 6 using the inlet + pipe flow parallel to
street flow + subarea addition option. The
previous 10 -year flows and pipe sizes were
specified up to node 5 where the pipe size was
then calculated based upon the 25 -year
contribution.
3. The 100 -year design storm was analyzed from node 1
to node 11 using the inlet + pipe flow parallel to
street flow + subarea addition option. The
previous flows and pipe sizes were specified up to
node 6 where the pipe size was then calculated by
the program based upon the 100 -year contribution
for the remaining reaches.
4. The 10 -year design storm analysis was continued
from node 5 to node 11 specifying the calculated
pipe sizes from the 25 -year and 100 -year storm
analyses.
5. The 25 -year design storm analysis was continued
from node 6 to node 11 specifying the calculated
pipe sizes from the 100 -year storm analysis.
4.3 STORM DRAIN PLAN
The proposed storm drain plan is shown in Exhibit 4.4
with the size and slope indicated for each pipe along with
46
Y 7f Y Y _ 1t
rHIM, i
l X S E E R .3 ^ x >r A L t t r X A P� 77 1a
« « C R R A R
' •3f1N3AV 1l3SIVM .�%� I0 It �N
� N =
z
1�50(( d351Y)l
l3nN3AY OFlVNJNYIB I- - -. I I I
Jw I
11
3nN3AV 0113WIVd
3nN3AV VU)J31 S
X
Vj
•w
1
w
J'
1
`\
Z
LLJ
r
Clj
Y 7f Y Y _ 1t
rHIM, i
l X S E E R .3 ^ x >r A L t t r X A P� 77 1a
« « C R R A R
' •3f1N3AV 1l3SIVM .�%� I0 It �N
� N =
z
1�50(( d351Y)l
l3nN3AY OFlVNJNYIB I- - -. I I I
Jw I
11
3nN3AV 0113WIVd
3nN3AV VU)J31 S
X
Vj
•w
1
w
J'
1
`\
Z
LLJ
r
Clj
the governing event and its respective flow rate at each
node. Exhibit 4.5 is the proposed profile showing existing
and future catch basins as well as the hydraulic data for
each reach. This preliminary storm drain plan will
effectively allow the City of Fontana to eliminate the
existing detention basins along Mango Avenue enabling their
land to be used as prescribed in the Walnut Village Specific
Plan.
48
' 40
0.018
0.018
O.OZZ
0.OZ2
0.020
O.Ots
O.OZG
O.OZO
0.025
6x
4Z7
357
293
233
130
183
1
52
1250
G50
980
500
450
500
1050
500
360
-
RCP
9(-
izGP
owRGP
Z&F
RGP
75 Is
72'�
123
Cs0"
57"
0
3l0f -
- u
zCLLl-
J W
d.
LL O
O
4
=
W
Lf)
O
O -
—
LL
O O
O
LU
O
O
M N
LO
Y
p
O
—
_
w
rn
F
J
14400-
LLRi
Allyi
Lu
QIr",LU
0-
O
co
U';co
v
.L
co
I-
FL
J
0-
LL.
Q
=
W
MrT
f
J
O
m
M
rn
Ld
O
`c
-
F—
J
cD
M
CL
LL
O
d
W
C1LO
L
M
co
O d'
M
lD
O
O
1-
i u+ u fib+ u 4;-2+ UO 58+00
PROFILE SCALE
VERT; 1 " = 40'
HORZ : 1 " 1000'
w
Q
a
� o �
LU 0 p z 0
+ +4.
Lo
Exhibit 4.5
0.018
0.018
O.OZZ
0.OZ2
0.020
O.Ots
O.OZG
O.OZO
0.025
6x
4Z7
357
293
233
130
183
83
52
1250
G50
980
500
450
500
1050
500
360
RCP
9(-
izGP
owRGP
Z&F
RGP
75 Is
72'�
123
Cs0"
57"
0
3l0f -
- u