Loading...
HomeMy WebLinkAboutJurupa Business Park Bldg BPROPOSED HYDROLOGY AND HYDRAULICS REPORT FOR PHELAN BUSINESS PARK - BULDING B BOUNDED By JURUPA AVENUE (SOUTH), HEMLOCK AVE. (WEST) (EAST), BEECH AVENUE (EAST) AND SANTA ANA AVENUE (FARTHER NORTH) CITY OF FONTANA SAN BERNARDINO COUNTY CALIFORNIA PREPARED FOR: SP U.S. OPPORTUNITY 5 JURUPA, L.P. 515 S. Flower Street Suite #3100 Los Angeles, CA 90071 (213) 683-4326 JANUARY 2006 APPROVED BY: ALBERT A. WEBB ASSOCIATES 'ROF ESs/ 0.1 H I L rn No.. 4F61 �EXP. 3-31-10 C1 Vj ACI vi Scott'k. Hildebrafidt, PE Vice President PREPARED BY: Tesfaye Demissie Assistant Engineer SECTION I - SUMMARY INTRODUCTION METHODOLOGY PROPOSED DRAINAGE CONDITIONS HYDRAULIC CALCULATIONS FINDINGS SECTION 2 - PROPOSED HYDROLOGY- RATIONAL METHOD 10 -YEAR STORM 100 -YEAR STORM SECTION 3 - PROPOSED HYDRAULICS WSPG FOR PROPOSED STORM DRAINS LINE B AND LINE B-1 CATCH BASIN AND INLET SIZING CALCULATIONS HYDRAULIC ROUTING FOR LINE B SYSTEM SToRmTECH CRAMBER (LINE B & LINE B-1) APPENDIX A - LOCATION MAP APPENDIX B - REFERENCES HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA (C-5) SBFCD VALLEY AREA ISOHYETALS 10 YEAR I HOUR (B-3) SBFCD VALLEY AREA ISOHYETALS 100 YEAR I HOUR (B-4) SOIL PERCOLATION INVESTIGATION BACK POCKETS PROPOSED HYDROLOGY MAP ALBERT A.WEBBASSOCIATES E SECTION 1 - SUMMARY INTRODUCTION The following hydrology study has been prepared for Building B of Phelan Business Park located in the City of Fontana in San Bernardino County, California. The project site is bounded by Jurupa Ave. in the south, Elm Avenue in the east and Beech Avenue. in the west as shown in Appendix A of this report. The approximate hydrologic area of the project site is 20.63 acres. This project site does not receive any offsite runoff in the proposed condition (i.e. the drainage beyond the limits of the property line of this project is away from the project itself). There are two drainage zones for this project: Subareas B 1, B2 and B3 that drain toward the StormTech Chamber System at the western edge of the project, and Subareas B4 and B5 that drain away from the project along landscaped portion. The latter comprises a total of 1.33 acres that is densely vegetated with less runoff potential along the periphery of the'project (west, south and east). Subareas that drain toward the StormTech chambers consisted of roof drainage (9.95 acres), parking lots, landscaped area, etc. Treated BMP runoff water and/or runoff from higher 6 storm events will be discharged to a 36" storm drain for ultimate discharge into an existing 60" Storm Drain (see Onsite Drainage Plan or Hydrology Map) at approximate SD stations of 3+00± in Beech Avenue. The objective of this report is to present the method used and engineering calculations carried out to size onsite storm drain systems for safe runoff conveyance without affecting the surrounding properties. METHODOLOGY For the proposed conditions, the 10 and 100 -year peak storm discharges of the sub -areas were calculated using Civil Design' Computer Software, which incorporates the San Bernardino County Flood Control District (SBCFCD) Rational Method. Although the calculation included both 10 and 100 year storm events, it is the 100 -year peak storm runoff that was used to size storm drain system. The Los Angeles County Water Surface Pressure Gradient Program (WSPGW) was utilized to evaluate the water surface elevation of the proposed storm drain facilities. Unit Hydrograph (which is also incorporated SBCFCD methods) and routing calculations were carried out using Unit Hydrograph and Flood Hydrograph Routing Programs of the Civil Design Computer Software for SormTech Chamber Systems equipped with Rock Filtration System (Subsurface Stormwater Management System). a PROPOSED DRAINAGE CONDITIONS The proposed Building B of Phelan Business Park has two drainage zones: subareas B 1, B2 and B3 that drain toward the StormTech Chamber System at the western edge of the project, and Subareas B4 and B5 that drain away from the project along landscaped portion. The latter comprises a total of 1.33 acres that is densely vegetated with less runoff potential along the periphery of the project (west, south and east). Subareas that drain toward the StormTech chambers at the western edge of the project consisted of roof drainage, parking lots, landscaped area, etc. The combined roof drainage area is 9.95 acres which generates relatively clean runoff water. Runoff generated from subareas B1, B2 and B3 is collected by means of catch basins or storm drain inlets and conveyed to the StormTech Chamber by means of proposed storm drain pipes. The runoff is further conveyed to the Underground Stormwater Management System (StormTech Chamber System equipped with Filtration/Infiltration System) where the BMP design runoff is treatment takes place. The centralized BMP treatment location is shown on the hydrology map or onsite drainage plans. CALBERT AWEBBASSOCIATES d The 100 -year peak flow was utilized in the hydraulic analysis of the storm drain analysis including the StormTech chamber system. The output obtained from the Rational Method of SBCFCD is summarized in the table below for both 10 -year and 100 -year storm events under proposed conditions. All calculations can be found in Section 2 of this report. SUMMARY OF PEAK FLOw RATES FOR BUILDING B - PHELAN BUSINESS PARK I (RATIONAL METHOD) �11 r1l H H H I H L Sub Area Area (Acres) Storm Runoff (cfs) Time of Concentration (Minutes) 10 -year 100 -year 10 -year 100 -year BI 11.87 24.0 36.5 12.2 12.2 B2 1.38 3.4 5.2 8.8 8.8 B3 6.05 12.2 18.5 12.2 12.2 Drainage Zone 1 Subtotal 19.30 38.8 59.0 13.1 13.0 B4 1.29 0.3 1.0 36.8 36.8 B5 0.04 0.1 0.1 13.3 13.3 Drainage Zone 2 Subtotal 1.33 0.4 1.1 Total 20.63 39.2 60-+ HYDRAULIC CALCULATIONS As stated earlier, WSPGW Program is utilized to evaluate the water surface pressure gradient for the proposed storm drains. For storm drain Line B system (Subareas B 1, B2 and 133), a downstream water surface elevation (W.S.) of 965.7± was utilized for the hydraulic analysis as obtained from Jurupa Industrial Park Storm Drain Plans for Beech Avenue (Drawing Number 979, Sheet 3 of 9 at approximate SD Station of 3+00±). The 100 year peak flow of 59 cfs was used to size the storm drains that discharged to and from the StormTech Chamber System. The maximum water surface elevation in the system obtained by this analysis during a 100 -year storm event is 974.3± which is below the elevation of any opening in the system. This indicates that the proposed storm drain system conveys the 100 -year storm event without inundating the surrounding or pondinor. The routed peak outflow for this storm drain system is much less than the design 59 cfs due to peak flow attenuation capacity of the StormTech Chamber System (see routing calculations for Line B system: RoutBldB.out). C, Hydrologic Routing for Conveyance (100 -year Storm) Flood hydrograph routing method based on unit hydrograph for the contributing tributary area was utilized to determine if the proposed stormdrain system (Line B System) is capable of conveying 100 -year storm. The input data used in the analysis and outlet obtained from the analysis are included in Section 3. The input data for the StormTech Chamber System is shown the table below. The analysis was carried out using Civil Design Computer Software that incorporates SBCFCD methods. An average porosity of 50% was used in the determination of the Volume of the filter rock media beneath the StormTech chambers. The routing indicated that Ell ALBEqr AWEBBASSOCIATFS I the proposed BMPs are capable of conveying the 100 year storm without inundating, the surrounding properties. The percolation test result obtained from Soil Percolation Investigation (see Reference Section) Is utilized to determine the infiltration rate of the rock filter media for the proposed BMP site as shown at the end of this section. 0 0 - FINDINGS StormTech Chamber System at the western edge of Building B (Line B Storm Drain System) Depth (feet) Volume (Ac.Ft.) Outflow (cfs) --6.-00 0.00 0.0 1.00 0.08 0.8 2.00 0.17 0.9 3.00 0.24 0.9 4.00 0.32 1.0 5.00 0.40 1.2 6.00 0.45 2.5 7.50 0.53 40.0 The hydrology and hydraulic analyses prepared in this report are comprehensive and evaluate the drainage impacts associated with the development of this project. More impervious surface will cover the proposed site under proposed condition than the existing condition. Onsite proposed stormdrain systems will be constructed to convey the runoff generated after development of proposed project. The proposed Subsurface Stormwater Management System (StormTech Chambers with Rock Filter System) will be constructed to treat the first flush of runoff via. filtration/Infiltration system. At each location of the StormTech Chamber system, there is one row of StormTech Isolator which receives BMP runoff to intercept sediments, tra shes. etc. prior to other rows of chambers. This row is provided with AASHTO Class I woven geotextile over the rock filter system to keep the trashes or sediments for required maintenance works. The sole purpose of the isolator row is for regular maintenance and regular inspection of trash, debris, sediments, etc. (See details of the StormTech System on onsite drainage plan). Higher storm events from the project site will be safely conveyed to the existing storm drains (60" RCP storm drain in Beech Avenue) for further conveyance. The calculations (hydrologic and hydraulic analyses) within this report substantiate that this project can be developed as proposed with no substantial effect to the surrounding properties. H E H -1 - W ALBERT AWEBB ASSOCIATES L I A E H F H 9 Building B Calculated BMP Design Volume BMP design volume = Subrareas B1, B2 and B3 BMP bottom area 0.158 Acre Infiltration rate 20 Inches/hr (see soil report dated January 9, 2007) Safety Factor 4.0 5.0 Qinfiltration 0.8 CFS Vinfiltration (24 hours) 1.59 Ac. Ft. Calculated BMP Design Volume BMP design volume = 1.88 Ac.Ft. Required BMP Volume = 0.29 Ac. Ft. Provided BMP Design Roch Filter Depth, D 5.0 Feet Provided BMP Volume = 0.48 Ac. Ft. (which meets or exceeds BMP requirement) Total BMP volume provided 2.1 ac. ft. (which meets or exceeds BMP requirement) E I SECTION 2 - PROPOSED HYDROLOGY (RATIONAL METHOD) I 10 -YEAR STORM m N H m I 100 -YEAR STORM ALBERT k WEBBASSOCIATES H �l I A p P'l H Hit RATIONAL METHOD - 10 -YEAR STORm EVENT BUILDING B (BUILDING, PARKING LOTS, LANDSCAPING, ETC.) N �r B1B2B3HYD10.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 -------- --------- ----- ----- -------- PROPOSED HYDROLOGY FOR JURUPA BUSINESS PARK W.O. 06-0386 B1B2B3HYD10.OUT 01/16/07 TD ------------------------------------------------------------------------ Program License Serial Number 4010 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ------------------------------------------------------------------------ Rational hydrology study storm event year is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall 0.900 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ...................................................................... Process from P . oint/Station 30.000 to Point/Station 31.000 INITIAL AREA EVALUATION COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= Initial subarea data: Initial area flow distance 995.000(Ft.) Top (of initial area) elevation = 84.550(Ft.) Bottom (of initial area) elevation 75.000(Ft.) Difference in elevation = 9.550(Ft.) Slope = 0.00960 s(%)= 0.96 TC = k(0.304)*[(length'3)/(elevation change)1^0.2 Initial area time of concentration = 12.178 min. Rainfall intensity = 2.343(In/Hr) for a 10, Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 20.208(CFS) Total initial stream area = 10.000(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) 0.098(In/Hr) 0 year storm is C = 0.862 ...................................................................... Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= Time of concentration 12.18 min. Rainfall intensity = 2.343(In/Hr) for a 10 Effective runoff coefficient used for area,(total rational method)(Q=KCIA) is C = 0.862 Subarea runoff 3.779(CFS) for 1.870(Ac.) Total runoff = 23.987(CFS) Effective area this stream 11.87(Ac.) Page 1 0.098(In/Hr) .0 year storm area with modified H f�llt 1, HIR J11 [11 BlB2B3HYD10.out Total Study Area (Main Stream No. 1) = 11.87(Ac.) Area averaged Fm value = 0.098(In/Hr) ...................................................................... Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 75.000(Ft.) Downstream point/station elevation 74.500(Ft.) Pipe length = 235.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.987(CFS) Nearest computed pipe diameter 33.00(In.) Calculated individual pipe flow 23.987(CFS) Normal flow depth in pipe 26.58(In.) Flow top width inside pipe 26.13(In.) Critical Depth = 19.46(In.) Pipe flow velocity = 4.68(Ft/s) Travel time through pipe = 0.84 min. Time of concentration (TC) 13.01 min. ...................................................................... Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 11.870(Ac.) Runoff from this stream = 23.987(CFS) Time of concentration 13.01 min. Rainfall intensity = 2.252(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 ...................................................................... Process from Point/Station 32.500 to Point/Station 32.000 **** INITIAL AREA EVALUATION **** -0 Bottom (of initial area) elevation = 7S.560(Ft.) Difference in elevation 3.220(Ft.) Slope 0.00805 s(%)= 0.80 TC = k(O.304)*[(length'3)/(elevation change)1'0.2 Initial area time of concentration 8.761 min. Rainfall intensity 2.855(In/Hr) for a 10.0 year storn�-,� Effective runoff coefficient used for area (Q=KCIA) is C = 0.869 Subarea runoff 3.424(CFS) Total initial stream area = 1.380(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 41- Decimal fraction soil group C = 0.000 Decimal fraction soil group D SCS curve number for soil(AMC = 0.000 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial Initial subarea data: area flow distance 4 0 0. 0 0 0 LFt---�- Top (of initial area) elevatio�-�- �-0-027t-."\- -0 Bottom (of initial area) elevation = 7S.560(Ft.) Difference in elevation 3.220(Ft.) Slope 0.00805 s(%)= 0.80 TC = k(O.304)*[(length'3)/(elevation change)1'0.2 Initial area time of concentration 8.761 min. Rainfall intensity 2.855(In/Hr) for a 10.0 year storn�-,� Effective runoff coefficient used for area (Q=KCIA) is C = 0.869 Subarea runoff 3.424(CFS) Total initial stream area = 1.380(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) -0 t ...................................................................... Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.380(Ac.) Runoff from this stream 3.42"(CFS) Time of concentration 8.76 min. Rainfall intensity = 2.855(In,'Hr� Area averaged loss rate (Fm) = 0.0978�In/'Hr) Area averaged Pervious ratio (Ap) = 0.1000 Page 2 41- -0 t ...................................................................... Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.380(Ac.) Runoff from this stream 3.42"(CFS) Time of concentration 8.76 min. Rainfall intensity = 2.855(In,'Hr� Area averaged loss rate (Fm) = 0.0978�In/'Hr) Area averaged Pervious ratio (Ap) = 0.1000 Page 2 H Fit H H H H B1B2B3HYD10.out summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 23.99 11.870 13.01 0.098 2.252 2 3.42 1.380 8.76 0.098 2.855 Qmax (1) = Qmax (2) = 1.000 * 1.000 * 23.987) + 0.781 * 1.000 * 3.424) + 26.662 1.280 * 0.673 * 23.987) + 1.000 * 1.000 * 3.424) + 24.096 Total of 2 streams to confluence: Flow rates before confluence point: 23.987 3.424 ........................... ........................................... Maximum flow rates at confluence using above data: 26.662 24.096 Area of streams before confluence: 11.870 1.380 Effective area values after confluence: 13.250 9.370 Results of confluence: Total flow rate = 26.662(CFS) Time of concentration = 13.014 min. Effective stream area after confluence 13.250(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.098(In/Hr) Study area total (this main stream) = 13.25(Ac.) ........................... ........................................... Process from Point/Station 32.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) Upstream point/station elevation = 72.000(Ft.) Downstream point/station elevation t. F� f, Pipe length = aing's\N = =001� 90 . 00 (Ft . Mani No. of pipes = 1 Required pipe flow FS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 26.662(CFS) Normal flow depth in pipe 16.05(In.) Flow top width inside pipe 17.82(In.) Critical depth could not be calculated. Pipe flow velocity = 13.51(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.13 min. ...................................................................... Process from Point/Station 35.006 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 13.250(Ac.) Runoff from this stream = 26.662(CFS) Time of concentration 13.13 min. Rainfall intensity = 2.240(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 ...................................................................... Process from Point/Station 33.000 to Point/Station 34.000 **** INITIAL AREA EVALUATION COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Page 3 B132B3HYD10.out scS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: initial area flow distance 99S.000(Ft.) Top (of initial area) elevation = 84.000(Ft.) Bottom (of initial area) elevation 74.720(Ft.) Difference in elevation = 9.280(Ft.) Slope = 0.00933 s(%)= 0.93 TC = k(0.304)*[(length^3)/(elevation change)1^0.2 Initial area time of concentration = 12.248 min. Rainfall intensity = 2.335(In/Hr) for a 10.0 year storm Ei Effective runoff coefficient used for area (Q=KCIA) is C = 0.862 Subarea runoff = 12.182(CFS) Total initial stream area = 6.050(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) ...................................................................... Process from Point/Station 34.000 to Point/Station 3S.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 70.000(Ft.) Downstream point/station elevation = 69.500(Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.182(CFS) Nearest computed pipe diameter 27.00(In.) Calculated individual pipe flow 12.182(CFS) Normal flow depth in pipe 20.13(In.) Flow -top width inside pipe 23.52(In.) Critical Depth = 14.53(In.) Pipe flow velocity = 3.83(Ft/s) Travel time through pipe = 1.15 min. Time of concentration (TC) 13.40 min. Total of 2 streams to confluence: Flow rates before confluence point 26.662 12.182 Maximum flow rates at confluence using above data: 38.750 38.499' Area of streams before confluence: 13.250 6 .050 Effective area values after confluence: 19.176 19.300 Results of confluence: Total flow rate 38.750(CFS) Page 4 ...................................................................... Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.050(Ac.) Runoff from this stream 12.182(CFS) Time of concentration 13.40 min. Rainfall intensity = 2.212(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 26.66 13.250 13.13 0.098 2.240 2 12.18 6.050 13.40 0.098 2.212 Qmax(l) = 1.000 * 1.000 * 26.662) + 1.013 * 0.979 * 12.182) + = 38.750 Qmax(2) = 0.987 * 1.000 * 26.662) + 1.000 * 1.000 * 12.182) + = 38.499 Total of 2 streams to confluence: Flow rates before confluence point 26.662 12.182 Maximum flow rates at confluence using above data: 38.750 38.499' Area of streams before confluence: 13.250 6 .050 Effective area values after confluence: 19.176 19.300 Results of confluence: Total flow rate 38.750(CFS) Page 4 N H H k-' LIU- B1B2B3HYD10.out Time of concentration 13.125 min. Effective stream area after confluence 19.176(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.098(In/Hr) Study area total (this main stream) = 19.30(Ac.) End of computations, Total Study Area = 19.30 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 Page 5 B4HYD10.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 ------------------------------------------------------------------------ Program License Serial Number 4010 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ------------------------------------------------------------------------ Rational hydrology study storm event year is 10.0 Computed rainfall intensity: Storm year = 10.00 1 hour rainfall 0.900 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ...................................................................... Process from Point/Station 38.000 to Point/Station 39.000 **** INITIAL AREA EVALUATION **** Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 H j F H E Page 1 UNDEVELOPED (dense cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 38.00 Pervious ratio(Ap� = 1.0000 Max loss rate(Fm)= 0.934(In/Hr) Initial subarea data: Initial area flow distance 995.000(Ft.) Top (of initial area) elevation = 80.500(Ft.) Bottom (of initial area) elevation 70.000(Ft.) Difference in elevation = 10.500(Ft.) Slope = 0.01055 s(%)= 1.06 TC = k(0.935)*[(length^3)/(elevation change)1'0.2 Initial area time of concentration = 36.751 min. Rainfall intensity = 1.208(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.204 Subarea runoff = 0.317(CFS) Total initial stream area = 1.290(Ac.) Pervious area fraction 1.000 Initial area Fm value 0.934(In/Hr) End of computations, Total Study Area 1.29 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 H j F H E Page 1 B5HYD10.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 ------------------------------------------------------------------------ Program License Serial Number 4010 ------------------------------------------------------------------------ Hydrology Study Control Information ------------------------------------------------------------------------ Rational hydrology study storm event year is 10.0 El Computed rainfall intensity: Storm year = 10.00 1 hour rainfall 0.900 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ...................................................................... Process from Point/Station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 Page 1 UNDEVELOPED (dense cover) subarea Decimal fraction soil group A = 1.000 Decimal friction soil group B � 0,000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 38.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr) Initial subarea data: Initial area flow distance 100.000(Ft.) Top (of initial area) elevation = 85.400(Ft.) Bottom (of initial area� elevation 83.700(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.01700 s(%)= 1.70 TC = k(O.935)*[(length^3)/(elevation change)1'0.2 Initial area time of concentration = 13.327 min. Rainfall intensity = 2.220(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.521 Subarea runoff = 0.046(CFS) Total initial stream area = 0.040(Ac.) Pervious area fraction 1.000 Initial area Fm value 0.934(In/Hr) End of computations, Total Study Area 0.04 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 Page 1 IRATIONAL METHOD - 100 -YEAR STORm EVENT N BUILDING B (BUILDING, PARKING LOTS, LANDSCAPING, ETC.) H H H m B1B2B3HYD100.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 ------------------------------------------------------------------------ PROPOSED HYDROLOGY FOR JURUPA BUSINESS PARK W.O. 06-0386 B1B2B3HYD100.OUT 01/16/07 TD ------------------------------------------------------------------------ IProgram License Serial Number 4010 ----------------------------------------------------------- I********* Hydrology Study Control Information Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall 1.350 (In.) Slope used for rainfall intensity curve b 0.6000 Soil antecedent moisture condition (AMC) 2 ...................................................................... Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 curve number for soil(AMC 2) = 32.00 -SCS Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance 995.000(Ft.) Top (of initial area) elevation = 84.550(Ft.) Bottom (of initial area) elevation 75.000(Ft.) Difference in elevation = 9.550(Ft.) Slope = 0.00960 s(%)= 0.96 TC = k(O.304)*[(length^3)/(elevation change) ]A0 .2 Initial area time of concentration = 12.178 min. Rainfall intensity = 3.515(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.875 Subarea runoff = 30.752(CFS) Total initial stream area = 10-OOO(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) ...................................................................... Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group 3 = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Time of concentration '12.18 min. Rainfall intensity = 3.515(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(Lotal area with modified rational method)(Q=KCIA) is C = 0.875 Subarea runoff 5.751(CFS) for 1.870(Ac.) Total runoff = 36.503(C�S) Effective area this stream 11.87(Ac.) Page 1 "a 0 B1B2B3HYD100.out Total Study Area (Main stream No. 1) = 11.87(Ac.) oft Area averaged Fm value = 0.098(In/Hr) ...................................................................... Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 75.000(Ft.) Downstream point/station elevation 74.500(Ft.) Pipe length = 235.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 36.503(CFS) Nearest computed pipe diameter 39.00(In.) Calculated individual pipe flow 36.503(CFS) Normal flow depth in pipe 30.61(In.) Flow top width inside pipe 32.05(In.) Critical Depth = 23.00(In.) Pipe flow velocity = 5.23(Ft/s) Travel time throu gh pipe = 0.75 min. Time of concentration (TC) 12.93 min. ...................................................................... Process from Point/Station 32.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** am Along Main Stream number: 1 in normal stream number 1 Stream flow area = 11.870(Ac.) IN Runoff from this stream 36.503(CFS) Time of concentration 12.93 min. 4M Rainfall intensity = 3.391(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) W Area averaged Pervious ratio (Ap) = 0.1000 ...................................................................... Process from Point/Station 32.500 to Point/Station 32.000 **** INITIAL AREA EVALUATION **** oft COMMERCIAL subarea type 60 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 on Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 W Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance 400.000(Ft.) Top (of initial area) elevation = 78.800(Ft.) Bottom (of initial area) elevation 75.580(Ft.) Difference in elevation = 3.220(Ft.) Slope = 0.00805 s(�)= 0.80 TC = k(O.304)*[(length'3)/(elevation change)1'0.2 Initial area time of concentration = 8.761 min. Rainfall intensity = 4.283(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.879 Subarea runoff = 5.197(CFS) Total initial stream area = 1.380(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) IN ...................................................................... Process from Point/Station 32.000 to Point/Station 32.000 9ft **** CONFLUENCE OF MINOR STREAMS **** to Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.380(Ac.) 4W Runoff from this stream 5,197(CFS) Time of concentration 8.76 min. to Rainfall intensity = 4.283(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) 4M Area averaged Pervious ratio (Ap) = 0.1000 Page 2 im 40 16 B1B2B3HYD100.out oft Summary of stream data: IN Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 36.50 11.870 12.93 0.098 3.391 #0 2 5.20 1.380 8.76 0.098 4.283 Qmax (1) = 1.000 * 1.000 * 36.503) + 0.787 * 1.000 * 5.197) + = 40.593 Qmax(2) = 1.271 * 0.678 * 36.503) + 1.000 * 1.000 * 5.197) + = 36.633 W Total of 2 streams to confluence: Flow rates before confluence point: 36.503 5.197 Maximum flow rates at confluence using above data: 40.593 36.633 Area of streams before confluence: 11.870 1.380 Effective area values after confluence: 13.250 9.424 Results of confluence: Total flow rate = 40.593(CFS) Time of concentration = 12.927 min. Effective stream area after confluence 13.250(Ac.) Study area average Pervious fraction(Ap) 0.100 Study area average soil loss rate(Fm) 0.098(In/Hr) Study area total (this main stream) 13.25(Ac.) ...................................................................... Process from Point/Station 32.000 to Point/Station 35.000 PIPEFLOW TRAVEL TIME (Program estimated size) Upstream point/station elevation 72.000(Ft.) Downstream point/station elevation 69.500(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 40.593(CFS) Nearest computed pipe diameter 24.00(In.) Calculated individual pipe flow 40.593(CFS) Normal flow depth in pipe 19.55(In.) Flow top width inside pipe 18.66(In.) Critical depth could not be calculated. Pipe flow velocity = 14.82(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) 13.03 min. ...................................................................... Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 13.250(Ac.) Runoff from this stream 40.593(CFS) Time of concentration 13.03 min. Rainfall intensity = 3.375(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 ...................................................................... Process from Point/Station 33.000 to Point/Station 34.000 **** INITIAL AREA EVALUATION COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 4M Decimal fraction soil group D = 0.000 Page 3 ON E H d ld H H! �11 B1B2B3HYD100.out scs curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 max loss rate(Fm)= 0.098(In/Hr) Initial subarea data: Initial area flow distance 995.000(Ft.) Top (of initial area) elevation = 84.000(Ft.) Bottom (of initial area) elevation 74.720(Ft.) Difference in elevation = 9.280(Ft.) Slope = 0.00933 s(%)= 0.93 TC = k(O.304)*[(length^3)/(elevation change) ]A0 .2 Initial area time of concentration = 12.248 min. Rainfall intensity = 3.503(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.87S Subarea runoff = 18.539(CFS) Total initial stream area = 6.050(Ac.) Pervious area fraction 0.100 Initial area Fm value 0.098(In/Hr) ...................................................................... Process from Point/Station 34.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 70.000(Ft.) Downstream point/station elevation 69.500(Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.539(CFS) Nearest computed pipe diameter 33.00(In.) Calculated individual pipe flow 18.539(CFS) Normal flow depth in pipe 22.48(In.) Flow top width inside pipe 30.76(In.) Critical Depth = 16.99(In.) Pipe flow velocity = 4.30(Ft/s) Travel time through pipe = 1.03 min. Time of concentration (TC) 13.27 min. ...................................................................... Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.050(Ac.) Runoff from this stream 18.539(CFS) Time of concentration 13.27 min. Rainfall intensity = 3.338(In/Hr) Area averaged loss rate (Fm) = 0.0978(In/Hr) Area averaged Pervious ratio (Ap) = 0.1000 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 40.59 13.250 13.03 0.098 3.375 2 18.54 6.050 13.27 0.098 3.338 Qmax(l) = 1.000 * 1.000 * 40.593) + 1.012 * 0.981 * 18.539) + = 59.000 Qmax(2) = 0.989 * 1.000 * 40.593) + 1.000 * 1.000 * 18.539) + = 58.666 Total of 2 streams to confluence: Flow rates before confluence point: 40.593 18.539 Maximum flow rates at confluence using above data: 59.000 58.666 Area of streams before confluence: 13.250 6.050 Effective area values after confluence: 19.188 19.300 Results of confluence: Total flow rate = 59.000(CFS) Page 4 B1B2B3HYD10O.out' Time of concentration 13.028 min. Effective stream area after confluence 19.188(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.098(In/Hr) study area total (this main stream) = 19.30(Ac.) End of computations, Total Study Area = 19.30 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0 L F�',' H H 1-4 Page 5 P d [I I I H H- 0 F I j H N B4HYD10O.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 ------------------------------------------------------------------------ Program License Serial Number 4010 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall 1.350 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ...................................................................... Process from Point/Station 38.000 to Point/Station 39.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (dense cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 38.00 Pervio ' us ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr) Initial subarea data: Initial area flow distance 995.000(Ft.) Top (of initial area) elevation = 80.500(Ft.) Bottom (of initial area) elevation 70.000(Ft.) Difference in elevation = 10.500(Ft.) Slope = 0.01055 s(%)= 1.06 TC = k(0.935)*[(length^3)/(elevation change)1'0.2 Initial area time of concentration = 36.751 min. Rainfall intensity = 1.812(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.436 Subarea runoff = 1.018(CFS) Total initial stream area = 1.290(Ac.) Pervious area fraction 1.000 Initial area Fm value 0.934(In/Hr) End of computations, Total Study Area 1.29 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 Page 1 ...................................................................... Process from Point/Station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (dense cover) subarea B5HYD10O.out San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 01/16/07 ------------------------------------------------------------------------ Program License Serial Number 4010 --------- --------- ----- ------- ----------- ---------- ********* Hydrology Study Control Information ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 10 Year storm 1 hour rainfall = 0.900(In.) 100 Year storm 1 hour rainfall = 1.350(In.) Computed rainfall intensity: Storm year = 100.00 1 hour rainfall 1.350 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 ...................................................................... Process from Point/Station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** j d h I Page 1 UNDEVELOPED (dense cover) subarea Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 38-00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr) Initial subarea data: Initial area flow distance 100.000(Ft.) Top (of initial area) elevation = 85.400(Ft.) Bottom (of initial area) elevation 83.700(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.01700 s(%)= 1.70 TC = k(O.935)*[(length'3)/(elevation change)1^0.2 Initial area time of concentration = 13.327 min. Rainfall intensity = 3.330(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.647 Subarea runoff = 0.086(CFS) Total initial stream area = 0.040(Ac.) Pervious area fraction 1.000 Initial area Fm value 0.934(In/Hr) End of computations, Total Study Area 0.04 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 38.0 j d h I Page 1 SECTION 3 - ONSITE PROPOSED HYDRAULICS WSPG FOR PROPOSED STORM DRAINS LINE B AND LINE B- I CATCH BASIN AND INLET SIZING CALCULATIONS HYDRAULIC ROUTING FOR LINE Al AND LINE A2 STORmTECH CHAMBER (LINE B AND B- 1) ALBERT A.WEBBASSOCIATES H Lil hl�l H H H WSPG FOR PROPOSED STORM DRAINS LINE B AND LINE B- I ALBERT A.WEBBASSOCIATES 77 111 7" 1, INS Tl HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION 0 T2 BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 T3 LINE B (WESTERN PORTION OF THE BUILDING); LINE-B.OUT; TD; 01/23/07 so 100.000 962.100 1 965.700 R 172 .010 964.000 1 .013 .000 -60.000 0 R 231.430 965.500 1 .012 .000 -60.000 0 TS 237.430 965.505 2 .013 .000 R 280.430 965.510 2 .013 .000 45.000 0 TS 283.430 965.530 3 .013 .000 R 451.430 965.550 3 .013 .000 45.000 0 TS 456.430 965.580 1 .012 .000 * 461.430 965.600 1 .012 .000 45.000 0 * 499.520 966.360 1 .012 .000 45.000 0 ix 504.520 966.424 1 4 .012 18.400 967.300 90.0 .000 * 537.610 966.850 1 .012 .000 45.000 0 * 584.870 967.328 1 .012 .000 .000 0 ix 589.870 967.378 1 5 .013 4.100 968.660 90.0 .000 * 697.880 968.460 1 .012 .000 45.000 0 * 726.160 968.740 1 .012 .000 45.000 0 * 803.160 969.534 1 .012 .000 45.000 0 TS BOB . 160 970.085 6 .012 .000 R 818.750 970.500 6 .012 .000 -90.000 0 ix 821.750 971.025 4 5 .012 18.250 971.720 90.0 -90.000 R 824.750 971.030 4 .012 .000 -90.000 0 SH 824.750 971.030 4 971.030 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 3 4 2.000 2.500 27.000 .000 .000 .00 CD 3 3 4 2.000 2.500 32.250 .000 .000 .00 CD 4 4 1 .000 2.000 .000 .000 .000 .00 CD 5 4 1 .000 1.500 .000 .000 .000 .00 CD 6 4 1 .000 2.500 .000 .000 .000 .00 Q 18.250 .0 FILE: LINE-B.WSW W S P G W - EDIT LISTING - Version 14.06 Date: 1-25-2007 Time: 8:41:35 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 3.000 CD 2 3 4 2.000 2.500 27.000 .000 .000 .00 CD 3 3 4 2.000 2.500 32.250 .000 .000 .00 CD 4 4 1 2.000 CD 5 4 1 1.500 CD 6 4 1 2.500 W S P G W PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION HEADING LINE NO 2 IS - BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 HEADING LINE NO 3 IS - LINE B (WESTERN PORTION OF THE BUILDING); LINE-B.OUT; TD; 01/23/07 W S P G W PAGE NO 2 WATER SURFACE PROFILE ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 100.000 962.100 1 965.700 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 172.010 964.000 1 .013 .000 -60.000 0 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 231.430 965.500 1 .012 .000 .000 -60.000 0 ELEMENT NO 4 IS A TRANSITION U/S DATA STATION INVERT SECT N RADIUS ANGLE 237.430 965.505 2 .013 .000 .000 ELEMENT NO 5 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 280.430 965.510 2 .013 .000 .000 45.000 0 ELEMENT NO 6 IS A TRANSITION U/S DATA STATION INVERT SECT N RADIUS ANGLE 283.430 965.530 3 .013 .000 .000 ELEMENT NO 7 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 451.430 965.550 3 .013 .000 .000 45.000 0 ELEMENT NO 8 IS A TRANSITION U/S DATA STATION INVERT SECT N RADIUS ANGLE 456.430 965.580 1 .012 .000 .000 ELEMENT NO 9 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 461.430 965.600 1 .012 .000 .000 45.000 0 ELEMENT NO 10 IS A REACH ............ RADIUS ANGLE ANG PT U/S DATA STATION INVERT SECT N 0 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 499.520 966.360 1 .012 .000 ELEMENT NO 11 IS A JUNCTION .000 .000 RADIUS ANGLE ANG PT U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 PAGE NO 3 504.520 966.424 1 4 0 .012 18.400 ELEMENT NO 12 IS A REACH Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 .000 968.660 .000 90.000 .000 U/S DATA STATION INVERT SECT N .000 .000 537.610 966.850 1 .012 .000 .000 45.000 0 RADIUS ANGLE W S P G W MAN H .000 .000 45.000 0 WATER SURFACE PROFILE ELEMENT CARD LISTING ANG PT MAN H ELEMENT NO 13 IS A REACH RADIUS ANGLE .000 .000 U/S DATA STATION INVERT SECT N MAN H .000 .000 -90.000 0 584.870 967.328 1 .012 .000 ELEMENT NO 14 IS A JUNCTION RADIUS ANGLE 1.910 -90.000 U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 .000 .000 -90.000 0 W 589.870 967.378 1 5 0 .013 4.100 ELEMENT NO 15 IS A REACH PAGE NO 4 U/S DATA STATION INVERT SECT N 697.880 968.460 1 .012 ELEMENT NO 16 IS A REACH U/S DATA STATION INVERT SECT N .726.160 968.740 1 .012 ELEMENT NO 17 IS A REACH U/S DATA STATION INVERT SECT N 803.160 969.534 1 .012 ELEMENT NO 18 IS A TRANSITION U/S DATA STATION INVERT SECT N 808.160 970.085 6 .012 ELEMENT NO 19 IS A REACH U/S DATA STATION INVERT SECT N 818.750 970.500 6 .012 ELEMENT NO 20 IS A JUNCTION U/S DATA STATION INVERT SECT LAT -1 LAT -2 N Q3 821.750 971.025 4 5 0 .012 18.250 ELEMENT NO 21 IS A REACH U/S DATA STATION INVERT SECT N 824.750 971.030 4 .012 ELEMENT NO 22 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 824.750 971.030 4 W S P G W WATER SURFACE PROFILE ELEMENT CARD LISTING RADIUS ANGLE ANG PT MAN H .000 .000 45.000 0 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 .000 967.300 .000 90.000 .000 RADIUS ANGLE .000 .000 RADIUS ANGLE ANG PT MAN H .000 .000 45.000 0 PAGE NO 3 RAI)IUS ANGLE ANG PT MAN H .000 .000 .000 0 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 .000 968.660 .000 90.000 .000 RADIUS ANGLE .000 .000 RADIUS ANGLE ANG PT MAN H .000 .000 45.000 0 RADIUS ANGLE ANG PT MAN H .000 .000 45.000 0 RADIUS ANGLE ANG PT MAN H .000 .000 45.000 0 RADIUS ANGLE .000 .000 RADIUS ANGLE ANG PT MAN H .000 .000 -90.000 0 Q4 INVERT -3 INVERT -4 PHI 3 PHI 4 .000 971.720 .000 90.000 .000 RADIUS ANGLE 1.910 -90.000 RADIUS ANGLE ANG PT MAN H .000 .000 -90.000 0 W S ELEV 971.030 PAGE NO 4 4 ....... ............ IMF FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:41:40 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B (WESTERN PORTION OF THE BUILDING); LINE B.OUT; TD; 01/23/07 Invert Depth Water Q Vel Vel I Energy I Super ICriticalIFlow ToplHeight/lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch 100.000 962.100 3.600 965.700 59.00 8.35 1.08 966.78 .00 2.48 .00 3.000 .000 .00 1 .0 2.545 .0264 .0078 .02 3.60 .00 1.58 .013 .00 .00 PIPE 102.545 962.167 3.565 965.732 59.00 8.35 1.08 966.81 .00 2.48 .00 3.000 .000 .00 1 .0 HYDRAULIC JUMP 102.545 962.167 1.651 963.818 59.00 14.80 3.40 967.22 .00 2.48 2.98 3.000 .000 .00 1 .0 37.570 .0264 .0217 .82 1.65 2.26 1.58 .013 .00 .00 PIPE 140.115 963.158 1.699 964.85B 59.00 14.28 3.17 968.02 .00 2.48 2.97 3.000 .000 .00 1 .0 31.895 .0264 .0195 .62 1.70 2.13 1.58 .013 .00 .00 PIPE 172.010 964.000 1.768 965.768 59.00 13.61 2.88 968.65 .00 2.48 2.95 3.000 .000 .00 1 .0 13.039 .0252 .0150 .20 1.77 1.98 1.52 .012 .00 .00 PIPE 185.049 964.329 1.817 966.146 59.00 13.17 2.69 968.84 .00 2.48 2.93 3.000 .000 .00 1 .0 14.491 .0252 .0135 .20 1.82 1.88 1.52 .012 .00 .00 PIPE 199.540 964.695 1.892 966.587 59.00 12.56 2.45 969.04 .00 2.48 2.90 3.000 .000 .00 1 .0 10.762 .0252 .0120 .13 1.89 1.74 1.52 .012 .00 .00 PIPE 210.302 964.967 1.972 966.939 59.00 11.97 2.23 969.16 .00 2.48 2.85 3.000 .000 .00 1 .0 8.046 .0252 .0107 .09 1.97 1.60 1.52 .012 .00 .00 PIPE 218.348 965.170 2.057 967.227 59.00 11.42 2.02 969.25 .00 2.48 2.79 3.000 .000 .00 1 .0 5.840 .0252 .0095 .06 2.06 1.48 1.52 .012 .00 .00 PIPE F FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:41:40 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B (WESTERN PORTION OF THE BUILDING); LINE B.OUT; TD; 01/23/07 Invert Depth water Q Vel Vel I Energy I Super ICriticaljFlow ToplHeight/lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width jDia.-FTjor I.D.1 ZL jPrs/Pip L/Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fallj ZR IType Ch 224.188 965.317 2.149 967.466 59.00 10.88 1.84 969.31 .00 2.48 2.70 3.000 .000 .00 1 .0 4.014 .0252 .0085 .03 2.15 1.35 1.52 .012 .00 .00 PIPE 228.202 965.419 2.249 967.668 59.00 10.38 1.67 969.34 .00 2.48 2.60 3.000 .000 .00 1 .0 2.443 .0252 .0076 .02 2.25 1.24 1.52 .012 .00 .00 PIPE 230.645 965.480 2.358 967.838 59.00 9.90 1.52 969.36 .00 2.48 2.46 3.000 .000 .00 1 .0 .785 .0252 .0069 .01 2.36 1.12 1.52 .012 .00 .00 PIPE 231.430 965.500 2.483 967.983 59.00 9.43 1.38 969.36 .00 2.48 2.27 3.000 .000 .00 1 .0 TRANS STR .0008 .0002 .00 2.48 1.00 .013 .00 .00 PIPE 237.430 965.505 4.198 969.703 59.00 1.24 .02 969.73 .00 .67 27.00 2.500 27.000 .00 4 2.0 43.000 .0001 .0002 .01 4.20 .17 2.42 .013 .00 .00 BOX 280.430 965.510 4.204 969.714 59.00 1.24 .02 969.74 .00 .67 27.00 2.500 27.000 .00 4 2.0 TRANS STR .0067 .0002 .00 4.20 .17 .013 .00 .00 BOX 283.430 965.530 4.196 969.726 59.00 .97 .01 969.74 .00 .57 32.25 2.500 32.250 .00 4 2.0 168.000 .0001 .0001 .02 4.20 .13 1.88 .013 .00 .00 BOX 451.430 965.550 4.194 969.744 59.00 .97 .01 969.76 .00 .57 32.25 2.500 32.250 .00 4 2.0 TRANS STR .0060 .0034 .02 4.19 .13 .012 .00 .00 BOX 456.430 965.580 3.647 969.227 59.00 8.35 1.08 970.31 .00 2.48 .00 3.000 .000 .00 1 .0 5.000 .0040 .0067 .03 3.65 .00 3.00 .012 .00 .00 PIPE FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:41:40 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B (WESTERN PORTION OF THE BUILDING); LINE B.OUT; TD; 01/23/07 Invert Depth Water Q Vel Vel I Energy I super ICriticalIFlow ToplHeight/lBase Wtj INo, Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL jPrs/Pip L/Elem ICh Slope I I I SF Avel HF ISE Dpt1jIFroude NINorm Dp I --N" I X-Fallj ZR IType Ch 461.430 965.600 3.821 969.421 59.00 8.35 1.08 970.50 .00 2.48 .00 3.000 .000 .00 1 .0 38.090 .0200 .0067 .25 3.82 .00 1.64 .012 .00 .00 PIPE 499.520 966.360 3.476 969.836 59.00 8.35 1.08 970.92 .00 2.48 .00 3.000 .000 .00 1 .0 JUNCT STR .0128 .0049 .02 3.48 .00 .012 .00 .00 PIPE 504.520 966.424 4.575 970.999 40.60 5.74 .51 971.51 .00 2.07 .00 3.000 .000 .00 1 .0 33 .090 .0129 .0032 .10 4.58 .00 1.49 .012 .00 .00 PIPE 537.610 966.850 4.330 971.180 40.60 5.74 .51 971.69 .00 2.07 .00 3.000 .000 .00 1 .0 47.260 .0101 .0032 .15 4.33 .00 1.60 .012 .00 .00 PIPE 584.870 967.328 4.001 971.329 40.60 5.74 .51 971.84 .00 2.07 .00 3.000 .000 .00 1 .0 JUNCT STR .0100 .0033 .02 4.00 .00 .013 .00 .00 PIPE 589.870 967.378 4.164 971.542 36.50 5.16 .41 971.96 .00 1.96 .00 3.000 .000 .00 1 .0 108.010 .0100 .0026 .28 4.16 .00 1.51 .012 .00 .00 PIPE 697.880 968.460 3.419 971.879 36.50 5.16 .41 972.29 .00 1.96 .00 3.000 .000 .00 1 .0 28.280 .0099 .0026 .07 3.42 .00 1.51 .012 .00 .00 PIPE 726.160 968.740 3.273 972.013 36.50 5.16 .41 972.43 .00 1.96 .00 3.000 .000 .00 1 .0 43.118 .0103 .0025 .11 3 .27 .00 1.50 .012 .00 .00 PIPE 769.278 969.185 3.000 972.185 36.50 5.16 .41 972.60 .00 1.96 .00 3.000 .000 .00 1 .0 12.934 .0103 .0024 .03 3.00 .00 1.50 .012 .00 .00 PIPE FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 4 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:41:40 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B (WESTERN PORTION OF THE BUILDING); LINE - B.OUT; TD; 01/23/07 Invert Depth Water Q Vel Vel I Energy I super ICriticalIFlow ToplHeight/lBase wtj INQ Wth Station I Elev (FT) Elev (CPS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I SP Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch 782.211 969.318 2.886 972.204 36.50 5.23 .42 972,63 .00 1.96 1.15 3.000 .000 .00 1 .0 HYDRAULIC JUMP '182.211 969.318 1.296 970.614 36.50 12.48 2.42 973.03 .00 1.96 2.97 3.000 .000 .00 1 .0 20.949 .0103 .0179 .38 1.30 2.22 1.50 .012 .00 .00 PIPE 803.160 969.534 1.259 970.793 36.50 12.97 2.61 973.40 .00 1.96 2.96 3.000 .000 .00 1 .0 TRANS STR .1102 .0156 .08 1.26 2.34 .012 .00 .00 PIPE 808.160 970.085 1.603 971.688 36.50 10.98 1.87 973.56 .00 2.05 2.40 2.500 .000 .00 1 .0 1.555 .0392 .0120 .02 1.60 1.64 1.12 .012 .00 .00 PIPE 809.715 970.146 1.629 971.775 36.50 10.77 1.80 973.58 .00 2.05 2.38 2.500 .000 .00 1 .0 3 . 333 .0392 .0110 .04 1.63 1.59 1.12 .012 .00 .00 PIPE B13.048 970.277 1.699 971.976 36.50 10.27 1.64 973.61 .00 2.05 2.33 2.500 .000 .00 1 .0 2.484 .0392 .0098 .02 1.70 1.47 1.12 .012 .00 .00 PIPE 815.532 970.374 1.775 972.149 36.50 9.79 1.49 973.64 .00 2.05 2.27 2.500 .000 .00 1 .0 1.789 .0392 .0088 .02 1.78 1.35 1.12 .012 .00 .00 PIPE 817.321 970.444 1.856 972.300 36.50 9.34 1.35 973.65 .00 2.05 2.19 2.500 .000 .00 1 .0 1.056 .0392 .0079 .01 1.86 1.23 1.12 .012 .00 .00 PIPE 818.377 970.485 1.946 972.432 36.50 8.90 1.23 973.66 .00 2.05 2.08 2.500 .000 .00 1 .0 .373 .0392 .0071 .00 1.95 1.12 1.12 .012 .00 .00 PIPE FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 5 Program Package Serial Number: 1585 WATER SURFACE P90FILE LISTING Date: 1-25-2007 Time: 8:41:40 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B (WESTERN PORTION OF THE BUILDING); LINE B.OUT; TD; 01/23/07 Invert Depth water Q Vel Vel I Energy I Super ICriticalIFlow TopiHeight/lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I width IDia.-FTIor I.D.1 ZL IPrs/Pip LjElem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch 818.750 970.500 2.047 972.547 36.50 8.48 1.12 973.66 2.50 2.05 1.93 2.500 000 00 1 .0 JUNCT STR 1750 .0062 .02 2.50 1.00 .012 .00 00 PIPE 821.750 971.025 3.240 974.265 18.25 5.81 52 974.79 00 1.54 00 2.000 000 00 1 .0 3.000 0017 .0055 .02 3.24 .00 2.00 .012 .00 00 PIPE 824.750 971.030 3.407 974.437 18.25 5.81 .52 974.96 .00 1.54 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- i;4 K 71��*'lll III Tl HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION 0 T2 BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 T3 LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE_B-1.OUT so 499.520 966.860 1 971.000 * 563.430 968.200 1 .012 .000 45.000 0 * 762.810 971.000 1 .012 .000 -45.000 0 TS 772.710 971.220 2 .012 .000 R 775.710 971.745 2 .012 .000 -45.000 0 SH 781.710 971.770 2 974.770 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 4 1 .000 1.500 .000 .000 .000 .00 Q 18.500 .0 FILE: LINE-B-1.WSW W S P G W - EDIT LISTING - Version 14.06 Date: 1-25-2007 Time: 8:56:56 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(l) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 1 2.000 CD 2 4 1 1.500 W S P G W PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION HEADING LINE NO 2 IS - BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 HEADING LINE NO 3 IS - LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE-B-1.OUT W S P G W PAGE NO 2 WATER SURFACE PROFILE ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 499.520 966.860 1 971.000 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 563.430 968.200 1 .012 .000 .000 45.000 0 ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 762.810 971.000 1 .012 .000 .000 -45.000 0 ELEMENT NO 4 IS A TRANSITION U/S DATA STATION INVERT SECT N RADIUS ANGLE 772.710 971.220 2 .012 .000 .000 ELEMENT NO 5 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 775.710 971.745 2 .012 .000 .000 -45.000 0 ELEMENT NO 6 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV 781.710 971.770 2 974.770 FILE: LINE-B-1.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:56:59 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE B-1.OUT Invert Depth water Q Vel Vel I Energy I super ICriticalIFlow ToplHeight/lBase Wtj INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.I Elev I Depth I width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I I I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch 499.520 966.860 4.140 971.000 18.50 5.89 .54 971.54 .00 1.55 .00 2.000 .000 .00 1 .0 63.910 .0210 .0057 .36 4.14 .00 1.03 .012 .00 .00 PIPE 563.430 968.200 3.244 971.444 18.50 5.89 .54 971.98 .00 1.55 .00 2.000 .000 .00 1 .0 135.204 .0140 .0057 .77 3.24 .00 1.16 .012 .00 .00 PIPE 698.634 970.099 2.183 972.282 18.50 5.89 .54 972.82 .00 1.55 .00 2.000 .000 .00 1 .0 HYDRAULIC JUMP 698.634 970.099 1.049 971.147 18.50 11.09 1.91 973.06 .00 1.55 2.00 2.000 .000 .00 1 .0 11.005 .0140 .0198 .22 1.05 2.14 1.16 .012 .00 .00 PIPE 709.639 970.253 1.036 971.289 18.50 11.25 1.97 973.26 .00 1.55 2.00 2.000 .000 .00 1 .0 21.145 .0140 .0215 .46 1.04 2.19 1.16 .012 .00 .00 PIPE 730.784 970.550 .998 971.548 18.50 11.80 2.16 973.71 .00 1.55 2.00 2.000 .000 .00 1 .0 17.207 .0140 .0245 .42 1.00 2.35 1.16 .012 .00 .00 PIPE 747.991 970.792 .961 971.753 18.50 12.38 2.38 974.13 .00 1.55 2.00 2.000 .000 .00 1 .0 14.819 .0140 .0278 .41 .96 2.52 1.16 .012 .00 .00 PIPE 762.810 971.000 .927 971.927 18.50 12.98 2.62 974.54 .00 1.55 1.99 2.000 .000 .00 1 .0 TRANS STR .0222 .0296 .29 .93 2.71 .012 .00 .00 PIPE 772.710 971.220 1.160 972.380 18.50 12.62 2.47 974.85 .00 1.46 1.26 1.500 .000 .00 1 .0 .864 .1750 .0286 .02 1.16 2.06 .65 .012 .00 .00 PIPE A FILE: LINE-B-1.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1585 WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:56:59 HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386 LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE B-1.OUT Invert Depth water Q Vel Vel I Energy I super ICriticalIFlow ToplHeight/lBase Wtj INo Wth Station I Elev (FT) Elev (CPS) I (FPS) Head I Grd.El.j Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch 773.574 971.371 1.202 972.573 18.50 12.18 2.31 974.88 .00 1.46 1.20 1.500 .000 .00 1 .0 .972 .1750 .0263 .03 1.20 1.91 .65 .012 .00 .00 PIPE 774.547 971.541 1.267 972.808 18.50 11.62 2.10 974.90 .00 1.46 1.09 1.500 .000 .00 1 .0 .753 .1750 .0242 .02 1.27 1.69 .65 .012 .00 .00 PIPE 775.299 971.673 1.344 973.017 18.50 11.08 1.91 974.92 .00 1.46 .92 1.500 .000 .00 1 .0 .411 .1750 .0233 .01 1.34 1.45 .65 .012 .00 .00 PIPE 775.710 971.745 1.456 973.201 18.50 10.56 1.73 974.93 .00 1.46 .51 1.500 .000 .00 1 .0 781.710 971.770 1.456 973.226 18.50 10.56 1.73 974.96 .00 1.46 .51 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- H ICATCH BASIN AND INLET SIZING CALCULATIONS d H H d H H -VT ALBERT A.WEBBASSOCIATES I I I I F" N U I I I I W.O. 2006-0386 Storm Drain Inlets Design at Selected Nodes - Building B Discharge Coefficient, C 0.6 Clogging Factor*, f 0.5 Gravity Acceleration, g 32.2 Inlet # Node # on Hydrology map Design Storm (CFS) Length (FT) Width (FT) Number of Inlets (Gross Area SO. FT Grate Opening Area (%) Ponding Depth (FT) 0i00 3, 4& 16 36.5 3 2 3 18 50 0.7 5 & 6 34 18.5 3 2 2 12 50 0.4 010 3, 4 & 16 31 24 2 3 18 50 0.3 5&6 34 12.2 3 2 2 12 50 0.2 Used Orifice Formula: Q 2 2 gC2 A 2f2 Inlets #10 is a catch basin at Node 32 per Hydrology map. Please refer to the sizing calculation in this section. HYDRAULIC ROUTING FOR LINE B SYSTEM STORmTECH CHAMBER (LINE B AND B- 1) ALBERT A.WEBBASSOCIATES ROUTBLDB.out FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 2004 Study date: 01/19/07 Graph values: III= unit inflow; 1.01=outflow at time shown --------------------------------------------------------------------- Time Inflow Outflow Storage Depth (Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.) --------------------------------------------------------------------- depth -outflow -storage data ---- HYDRAULIC ROUTING OF PROPOSED STORMTECH CHAMBERS DURING A 100 -YEAR 0.010 STORM EVENT FOR DEVELOPED CONDITION --------------------- of inflow JURRUPA BUSINESS PARK, W.O. 06-0386 intervals = BUILDING B; ROUTBLDB.OUT; TD 19 JAN 07 -------------------------------------------------------------------- 0.48 Program License Serial Number 4010 unit = -------------------------------------------------------------------- HYDROGRAPH INFORMATION ... From study/file name: BLDA.rte 3.38 ****************************HYDROGRAPH in storage Number of* intervals = 101 0.00(Ft.) Time interval = 15.0 (Min.) 1.000 Maximum/Peak flow rate = 35.605 (CFS) depth = Total volume = 11.716 (Ac.Ft) 0 1 Status of hydrographs being held in storage Stream I Stream 2 Stream 3 Stream 4 Stream 5 storage Peak (CFS) 0.000 0.000 0.000 0.000 0.000 (Ac.Ft) Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 2.55 ...................................................................... outflow Process from Point/Station 14.000 to Point/Station 1S.000 0.91 **** RETARDING BASIN ROUTING **** Graph values: III= unit inflow; 1.01=outflow at time shown --------------------------------------------------------------------- Time Inflow Outflow Storage Depth (Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.) user entry of depth -outflow -storage data ---- 0.10 0.010 ---- ----- -- Total number --------------------- of inflow hydrograph intervals = 101 0.48 Hydrograph time unit = 15.000 (Min.) 0.750 3.38 Initial depth -------------------------------------------------------------------- in storage basin = 0.00(Ft.) 1.000 -------------------------------------------------------------------- Initial basin depth = 0.00 (Ft.) 0 1 1.84 Initial basin storage = 0.00 (Ac.Ft) 0 1 2.55 Initial basin --------------------------------------------------------------------- outflow = 0.00 (CFS) 0.91 0.262 -------------------------------------------------------------------- Depth vs. Storage and Depth vs. Discharge data: 1.750 Ba*sin Depth (Ft.) Storage (Ac.Ft) Outflow (CFS) (S-O*dt/2) (Ac.Ft) (S+O*dt/2) (Ac.Ft) --------------------------------------------------------------------- 0.000 0.000 0.000 0.000 0.000 4.58 1.000 0.080 0.800 0.072 0.088 10 1 2.000 0.170 0.850 0.161 0.179 0.446 3.000 0.240 0.900 0.231 0.249 4.000 0.320 0.950 0.310 0.330 5.000 0.400 1.200 0.388 0.412 6.000 0.450 2.500 0.424 0.476 7.500 0.530 40.000 0.117 0.943 --------------------------------------------------------------------- ---------- Hydrograph --------- Detention -------------------------------- Basin Routing Graph values: III= unit inflow; 1.01=outflow at time shown --------------------------------------------------------------------- Time Inflow Outflow Storage Depth (Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.) 0.250 1.10 0.10 0.010 0 0.13 0.500 3.15 0.48 0.048 0 1 0.60 0.750 3.38 0.81 0.102 0 1 1.25 1.000 3.42 0.84 0.1S5 0 1 1.84 1.250 3.45 0.88 0.209 0 1 2.55 1.500 3.48 0.91 0.262 0 1 3.27 1.750 3.51 0.95 0.315 0 1 3.94 2.000 3 .54 1.10 0.367 0 1 4.58 2.250 3.56 1.53 0.413 10 1 5.25 2.500 3.59 2.40 0.446 1 01 5.92 Page 1 H 19-1 j A 14 I j - rl H H- H ROUTBLDB.out 2.750 3 .62 4 .10 0.453 0 6.06 3.000 3 .65 3 .33 0.452 01 6.03 3.250 3.67 3.88 OAS3 0 6.06 3.500 3.71 3.57 0.452 0 6.04 3.750 3.74 3.82 0.453 0 6.05 4.000 3.77 3.71 0.453 0 6.05 4.250 3.80 3.84 0.453 0 6.05 4.500 3.83 3.81 0.453 0 6.05 4.750 3.87 3.88 0.453 0 6.06 5.000 3.91 3.89 0.453 0 6.06 5.250 3.94 3.95 0.453 0 6.06 5.500 3.98 3.97 0.453 0 6.06 5,750 4.02 4.02 0.453 0 6.06 6.000 4.06 4.06 0.453 0 6.06 6.250 4.10 4.10 0.453 0 6.06 6.500 4.15 4.14 0.454 0 6.07 6.750 4.19 4.19 0.454 0 6.07 7.000 4.24 4.24 0.454 0 6.07 7.250 4.29 4.28 0.454 0 6.07 7.500 4.34 4.33 0.454 0 6.07 7.750 4.39 4.39 OAS4 0 6.08 8.000 4.45 4.44 0.454 0 6.08 8.250 4.51 4.50 0.454 0 6.08 8.500 4.57 4.56 0.454 0 6.08 8.750 4.63 4.62 0.455 0 6.08 9.000 4.70 4.69 0.455 0 6.09 9.250 4.77 4.76 0.455 0 6.09 9.500 4.84 4.83 0.455 0 6.09 9.750 4.92 4.91 0.455 0 6.10 10.000 5.00 4.99 0.455 0 6.10 10.250 5.08 5.07 0.455 0 6.10 10.500 5.18 5.17 0.456 0 6.11 10.750 5.27 5.26 0.456 0 6.11 11.000 5.38 5.36 0.456 0 6.11 11.250 5.49 S.47 0.456 0 6.12 11.500 5.60 5.S9 0.457 0 6.12 11.750 5.73 5.72 0.457 0 6.13 12.000 5.87 5.85 0.457 0 6.13 12.250 5.92 5.92 0.457 o 6.14 12.500 S.91 5.91 0.457 0 6.14 12.750 6.07 6.04 0.458 0 6.14 13.000 6.27 6.25 0.458 0 6.15 13.250 6.49 6.46 0.458 0 6.16 13.500 6.75 6.72 0.459 0 6.17 13.750 7.03 7.00 0.460 0 6.18 14.000 7.37 7.33 0.460 0 6.19 14.250 7.76 7.72 0.461 0 6.21 14.500 8.23 8.18 0.462 01 1 6.23 14.750 8.80 8.74 0.463 01 6.25 15.000 9.52 9.44 0.465 0 6.28 15.250 10.47 10.37 0.467 10 6.31 15.500 11.09 11.05 0.468 10 6.34 15.750 11.57 11.51 0.469 0 6.36 16.000 17.20 16.28 0.479 oil 1 1 6.55 16.250 32.86 30.79 0.510 0 1 1 7.13 16.500 35.60 36.50 0.523 0 7.36 16.750 13.65 16.82 0.481 1 ol 1 6.57 17.000 9.91 8.46 0.463 oi 6.24 17.250 8.48 9.67 0.465 io 6.29 17.SOO 7.S2 6.90 0.459 0 6.18 17.750 6.81 7.34 0.460 0 6.19 18.000 6.31 6.05 0.458 0 6.14 18.250 6.02 6.24 0.458 0 6.15 18.500 5.88 5.75 0.457 0 6.13 18.750 5.62 5.75 0.457 0 6.13 19.000 5.39 5.35 0.456 0 6.11 19.250 5.19 5.25 0.456 0 6.11 19.500 5.01 5.00 OAS5 0 6.10 19.750 4.85 4.89 OAS5 0 6.10 20.000 4.71 4.71 0.455 0 6.09 20.250 4 .58 4 .60 0.454 0 6.08 20.500 4.46 4.46 0.454 0 6.08 20.750 4 .35 4 .36 0.454 0 6.07 21.000 4.2S 4.26 0.454 0 6.07 21.250 4.15 4.17 0.454 0 6.07 21.500 4.07 4.08 0.453 0 6.06 21.750 3.99 4.00 0.453 0 6.06 22.000 3.91 3.92 0.453 0 6.06 22.250 3.84 3.85 0.453 0 6.05 22.500 3.77 3.78 OAS3 0 6.05 22.750 3.71 3.72 0.453 0 6.05 23.000 3.65 3.66 0.452 0 6.05 Page 2 Remaining water in basin = 0.01 (Ac.Ft) ****************************HYDROGRAPH DATA**************************** Number of intervals = 127 Time interval = 15.0 (Min.) Maximum/Peak flow rate = 36.499 (CFS) Total volume = 11.709 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 -------------------------------------------------------------------- Page 3 ROUTBLDB.out 23.250 3.59 3 .60 0.452 0 6.04 23.500 3.54 3.54 0.452 0 6.04 23.750 3.49 3.49 0.452 0 6.04 24.000 3.44 3.44 0.452 0 6.04 24.250 2.31 2.50 0.450 0 6.00 24.500 0.25 1.98 0.430 10 5.60 24.750 0.03 1.20 0.400 10 5.00 25.000 0.01 1.13 0.376 10 4.71 25.250 0.01 1.06 0.354 0 4.43 25.500 0.00 0.99 0.333 0 4.16 25.750 0.00 0.95 0.313 0 3.91 26.000 0.00 0.93 0.294 0 3.67 26.250 0.00 0.92 0.274 0 3.43 26.500 0.00 0.91 0.256 0 3.19 26.750 0.00 0.90 0.237 0 2.96 27.000 0.00 0.88 0.218 0 2.69 27.250 0.00 0.87 0.200 0 2.43 27.500 0.00 0.86 0.182 0 2.18 27.750 0.00 0.85 0.165 0 1.94 28.000 0.00 0.84 0.147 0 1.75 28.250 0.00 0.83 0.130 0 1.56 28.500 0.00 0.82 0.113 0 1.37 28.750 0.00 0.81 0.096 0 1.18 29.000 0.00 0.80 0.080 0 1.00 29.250 0.00 0.65 0.065 0 0.81 29.500 0.00 0.53 0.053 0 0.66 29.750 0.00 0.43 0.043 0 0.54 30.000 0.00 0.3S 0.035 0 0.44 30.250 0.00 0.28 0.028 0 0.35 30.500 0.00 0.23 0.023 0 0.29 30.750 0.00 0.19 0.019 0 0.23 31.000 0.00 0.15 0.015 0 0.19 31.250 0.00 0.12 0.012 0 0.15 31.500 0.00 0.10 0.010 0 0.13 31.750 0.00 0.08 0.008 0 0.10 Remaining water in basin = 0.01 (Ac.Ft) ****************************HYDROGRAPH DATA**************************** Number of intervals = 127 Time interval = 15.0 (Min.) Maximum/Peak flow rate = 36.499 (CFS) Total volume = 11.709 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 -------------------------------------------------------------------- Page 3 di H I H blda. out U n i t H y d r o g r a p h A n a 1 y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 01/19/07 ........................................................................ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 4010 --------------------------------------------------------------------- UNIT HYDROGRAPH ANALYSIS FOR DEVELOPED CONDITION BUILIND B - FOR SUBAREAS THAT DRAIN TO STORMTECH CHAMBERS 01/19/07 W.O. 06-0386 TD -------------------------------------------------------------------- Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub -Area Duration Isohyetal (Ac.) (hours) (In) Rainfall data for year 100 19.30 1 1.35 -------------------------------------------------------------------- Rainfall data for year 100 19.30 6 3.60 -------- ---- --- ---- --- Rainfall data for year 100 19.30 24 8.00 -------------------------------------------------------------------- .................................................................... ******** Area -averaged max loss rate, Fm ******** SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 32.0 52.0 19.30 1.000 0.785 0.100 0.079 Area -averaged adjusted loss rate Fm (In/Hr).= 0.079 ********* Area -Averaged low loss rate fraction, Yb Area Area SCS CN SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 1.93 0.100 32.0 52.0 9.23 0.308 17.37 0.900 98.0 98.0 0.20 0.970 Area -averaged catchment yield fraction, Y = 0.904 Area -averaged low loss fraction, Yb 0.096 User entry of time of concentration 0.217 (hours) .................................................................... Watershed area = 19.30(Ac.) Catchment Lag time 0.174 hours Unit interval = 15.000 minutes Unit interval percentage of lag time = 144.0092 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.079(In/Hr) Average low loss rate fraction (Yb) = 0.096 (decimal) VALLEY DEVELOPED S -Graph proportion = 0.900 VALLEY UNDEVELOPED S -Graph proportion = 0.100 FOOTHILL S -Graph proportion = 0.000 MOUNTAIN S -Graph proportion = 0.000 Page 1 H H H I Ll H L�ld H H H-1 H H 0 blda. out DESERT S -Graph proportion = -0.000 computed peak 5 -minute rainfall 0.500(In) computed peak 30 -minute rainfall 1.023(In) Specified peak 1 -hour rainfall = 1.350(In) Computed peak 3 -hour rainfall = 2.463(In) Specified peak 6 -hour rainfall = 3.600(In) Specified peak 24-hour rainfall 8.000(In) Rainfall depth area reduction factors: using a total area of 19.30(Ac.) (Ref: fig. E-4) 5 -minute factor 0.999 Adjusted rainfall = 0.499(In) 30 -minute factor 0.999 Adjusted rainfall = 1.022(In) 1 -hour factor = 0.999 Adjusted rainfall = 1.349(In) 3 -hour factor = 1.000 Adjusted rainfall = 2.463(In) 6 -hour factor = 1.000 Adjusted rainfall = 3.600(In) 24-hour factor = --------------------------------------------------------------------- 1.000 Adjusted rainfall = 8.000(In) U n i t H y d r o g r a p h ..................................................................... Interval IS' Graph Unit Hydrograph Number Mean values ((CFS)) Page 2 (K = 77.80 (CFSH 1 32.376 25.190 2 92.802 47.013 3 99.068 4.875 4 99.575 0.394 5 99.840 0.206 6 100.000 0.125 --------------------------------------------------------------------- Peak Unit Adjusted mass rainfall Unit rainfall Number (In) (In) 1 0.7747 0.1160 2 1.0222 0.0719 3 1.2022 0.0553 4 1.3488 0.0461 5 1.5243 0.0566 6 1.6845 0.0520 7 1.8330 0.0484 8 1.9722 0.0455 9 2.1037 0.0431 10 2.2288 0.0410 11 2.3483 0.0393 12 2.4630 0.0377 13 2.5733 0.0363 14 2.6799 0.0351 15 2.7831 0.0340 16 2.8832 0.0330 17 2.9805 0.0321 18 3.0752 0.0313 19 3.1676 0.0305 20 3.2578 0.0298 21 3.3460 0.0292 22 3.4323 0.0286 23 3.5169 0.0280 24 3.5998 0.0275 25 3.6854 0.0284 26 3.7696 0.0279 27 3.8525 0.0275 28 3.9340 0.0270 29 4.0144 0.0266 30 4.0935 0.0263 31 4.1716 0.0259 32 4.2486 0.0255 33 4.3246 0.0252 34 4.3996 0.0249 35 4.4737 0.0246 36 4.5468 0.0243 37 4.6192 0.0240 38 4.6907 0.0237 39 4.7614 0.023S 40 4.8313 0.0232 41 4.9005 0.0230 42 4.9690 0.0228 43 5.0369 0.0225 44 5.1040 0.0223 45 5.1705 0.0221 Page 2 H H j 11 H r-7 I U H, H FIT Page 3 blda.out 46 5.2364 0.0219 47 5.3017 0.0217 48 5.3663 0.0215 49 5.4305 0.0213 50 S.4940 0.0211 51 5.5570 0.0210 52 5.6196 0.0208 53 5.6816 0.0206 54 5.7431 0.0204 55 5.8041 0.0203 56 5.8646 0.0201 57 5.9247 0.0200 58 5.9844 0.0198 59 6.0436 0.0197 60 6.1024 0.0196 61 6.1608 0.0194 62 6.2188 0.0193 63 6.2763 0.0192 64 6.3335 0.0190 65 6.3904 0.0189 66 6.4468 0.0188 67 6.5029 0.0187 68 6.5586 0.0185 69 6.6140 0.0184 70 6.6690 0.0183 71 6.7238 0.0182 72 6.7782 0.0181 73 6.8322 0.0180 74 6.8860 0.0179 75 6.9394 0.0178 76 6.9926 0.0177 77 7.0454 0.0176 78 7.0980 0.0175 79 7.1503 0.0174 80 7.2023 0.0173 81 7.2540 0.0172 82 7.3054 0.0171 83 7.3566 0.0170 84 7.4075 0.0169 85 7.4582 0.0169 86 7.5086 0.0168 87 7.5588 0.0167 88 7.6087 0.0166 89 7.6584 0.0165 90 7.7079 0.0165 91 7.7571 0.0164 92 7.8061 0.0163 93 7.8548 0.0162 94 7.9034 0.0162 95 7.9517 0.0161 96 7.9998 0.0160 --------------------------------------------------------------------- Unit Unit Unit Effective Period Rainfall Soil -Loss Rainfall (number) (In) (In) (In) --------------------------------------------------------------------- 1 0.0481 0.0046 0.0435 2 0.0484 0.0047 0.0438 3 0.0488 0.0047 0.0441 4 0.0491 0.0047 0.0444 5 0.0495 0.0048 0.0447 6 0.0498 0.0048 0.0450 7 0.0502 0.0048 0.0454 8 0.0506 0.0049 0.0457 9 0.0510 0.0049 0.0461 10 0.0513 0.0049 0.0464 11 0.0518 0.0050 0,0468 12 0.0522 0.0050 0.0471 13 O.OS26 0.0051 0.0475 14 0.0530 0.0051 0.0479 15 0.0535 0.0051 0.0483 16 0.0539 0.0052 0.0487 17 0.0544 0.0052 0.0492 18 0.0549 0.0053 0.0496 19 0.0554 0.0053 0.0501 20 0.0559 0.0054 0.0505 21 0.0565 0.0054 0.0511 22 0.0570 0.0055 0.0515 23 0.0576 0.0055 0.0521 24 0.0582 0.0056 0.0526 25 0.0588 0.0057 0.0532 26 0.0595 0.0057 0.0537 Page 3 j H H N H J -------------------------------------------------------------------- Total soil rain loss = 0.71(In) Total effective rainfall 7.29(In) Peak flow rate in flood hydrograph = 35.60(CFS) --------------------------------------------------------------------- .................................................................... 24 - H 0 U R S T 0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) Page 4 blda.out 27 0.0601 0.0058 0.0544 28 0.0608 0.0059 0.0550 29 0.0616 0.0059 0.0556 30 0.0623 0.0060 0.0563 31 0.0631 0.0061 0.0570 32 0.0639 0.0061 0.0577 33 0.0648 0.0062 0.0585 34 0.0656 0.0063 0.0593 3S 0.0666 0.0064 0.0602 36 0.0675 0.0065 0.0610 37 0.0686 0.0066 0.0620 38 0.0696 0.0067 0.0629 39 0.0708 0.0068 0.0640 40 0.0720 0.0069 0.0650 41 0.0733 0.0071 0.0662 42 0.0746 0.0072 0.0674 43 0.0761 0.0073 0.0688 44 0.0776 0.0075 0.0701 45 0.0793 0.0076 0.0717 46 0.0810 0.0078 0.0732 47 0.0830 0.0080 0.0750 48 0.0850 0.0082 0.0768 49 0.0831 0.0080 0.0751 50 0.0855 0.0082 0.0773 51 0.0884 0.0085 0.0799 52 0.0914 0.0088 0.0826 53 0.0950 0.0091 0.0859 54 0.0988 0.0095 0.0893 55 0.1035 0.0100 0.0936 56 0.1086 0.0105 0.0982 57 0.1152 0.0111 0.1042 58 0.1225 0.0118 0.1108 59 0.1324 0.0127 0.1196 60 0.1442 0.0139 0.1303 61 0.1619 0.01S6 0.1463 62 0.1533 0.0147 0.1385 63 0.1869 0.0180 0.1689 64 0.3566 0.0196 0.3370 65 0.6587 0.0196 0.6391 66 0.1671 0.0161 0.1510 67 0.1426 0.0137 0.1289 68 0.1215 0.0117 0.1098 69 0.1079 0.0104 0.0975 70 0.0983 0.0095 0.0888 71 0.0910 0.0088 0.0822 72 0.0852 0.0082 0.0770 73 0.0847 0.0081 0.0766 74 0.0808 0.0078 0.0730 75 0.0774 0.0074 0.0699 76 0.0744 0.0072 0.0672 77 0.0718 0.0069 0.0649 78 0.0695 0.0067 0.0628 79 0.0674 0.0065 0.0609 80 0.0655 0.0063 0.0592 81 0.0638 0.0061 0.0576 82 0.0622 0.0060 O.OS62 83 0.0607 0.0058 0.0549 84 0.0594 0.0057 0.0537 85 0.0581 0.0056 0.0525 86 0.0569 0.0055 0.0515 87 0.0559 0.0054 0.0505 88 O.OS48 0.0053 0.0496 89 0.0539 0.0052 0.0487 90 0.0530 0.0051 0.0479 91 0.0521 0.00SO 0.0471 92 0.0513 0.0049 0.0463 93 0.0505 0.0049 0.0456 94 0.0498 0.0048 0.0450 95 0.0491 0.0047 0.0443 96 -------------------------------------------------------------------- 0.0484 0.0047 0.0437 -------------------------------------------------------------------- Total soil rain loss = 0.71(In) Total effective rainfall 7.29(In) Peak flow rate in flood hydrograph = 35.60(CFS) --------------------------------------------------------------------- .................................................................... 24 - H 0 U R S T 0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) Page 4 blda.out -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft ------ Q(CFS) ---- -- 0 10.0 20.0 30.0 40.0 ---- 0+15 0.0226 1.10 VQ 0+30 0.0877 3.15 V Q 0+45 0.1575 3.38 V Q 1+ 0 0.2282 3.42 V Q 1+1s 0.2996 3.45 V Q 1+30 0.3716 3.48 IV Q 1+45 0.4441 3.51 IV Q 2+ 0 0.5172 3.54 IV Q 2+15 0.5908 3.56 VQ 2+30 0.6649 3.59 VQ 2+45 0.7397 3.62 VQ 3+ 0 0.8150 3.65 VQ 3+15 0.8909 3.67 Q EA 3+30 0.9675 3.71 Q 3+45 1.0446 3.74 Q 4+ 0 1.1225 3.77 Q 4+15 1.2010 3.80 QV 4+30 1.2803 3.83 QV 4+45 1.3602 3.87 QV 5+ 0 1.4409 3.91 QV 5+15 1.5224 3.94 Q V 5+30 1.6046 3.98 Q V 5+45 1.6877 4.02 QV 6+ 0 1.7716 4.06 Q V 6+15 1.8564 4.10 Q V 6+30 1.9421 4.15 Q V 6+45 2*0287 4,19 Q V 7+ 0 2.1163 4.24 Q V I 7+15 2.2049 4.29 Q V I 7+30 2.2946 4.34 Q V I 7+45 2.3854 4.39 Q V I 8+ 0 2.4773 4.45 Q V I 8+15 2.5704 4.51 Q V I 8+30 2.6648 4.57 1 Q VI 8+45 2.7605 4.63 Q V1 9+ 0 2.8575 4.70 Q VI 9+15 2.9560 4.77 Q V 9+30 3.0560 4.84 Q V 9+45 3.1575 4.92 Q V 10+ 0 3.2608 5.00 Q V 10+15 3.3658 5.08 Q IV 10+30 3.4727 5.18 Q IV E 10+45 3.5817 5.27 Q I v 11+ 0 3.6927 5.38 Q I v 11+15 3.8060 5.49 Q I V 11+30 3,9218 5,60 Q I V 11+45 4.0403 5.73 Q I v 12+ 0 4.1615 5.87 Q I V 12+15 4.2839 5.92 Q I V 12+30 4.4059 5.91 Q I v 12+45 4.5313 6.07 Q V EA 13+ 0 4.6608 6.27 Q V 13+15 4.7950 6.49 Q V I 13+30 4.9344 6.75 Q V I 13+45 5.0797 7.03 Q V I 14+ 0 5.2320 7.37 Q v I 14+15 5.3923 7.76 Q V I 14+30 S.5623 8.23 Q I V I 14+45 5.7441 8.80 Q I VI 15+ 0 5,9408 9.52 QI V 15+15 6.1572 10.47 Q V 15+30 6.3863 11.09 IQ IV 15+45 6.6253 11.57 IQ I V 16+ 0 6.9808 17.20 Q I v 16+15 7,6598 32,86 V I Q 16+30 8.3954 35.60 V I Q 16+45 8.6775 13.65 Q V1 17+ 0 8.8821 9.91 Q1 V 17+15 9.0574 8.48 Q V 17+30 9.2127 7.52 Q IV 17+45 9.3534 6.81 Q IV 18+ 0 9.4839 6.31 Q I V 18+15 9.6082 6.02 Q I V 18+30 9.7296 5.88 Q I V 18+45 9.8458 5.62 Q I V 19+ 0 9.9572 5.39 Q I V 19+15 10.0644 5.19 Q v 19+30 10.1680 5.01 Q v 19+45 10.2682 4.85 Q V Page 5 d 0 D u �L I Page 6 blda,out 20+ 0 10,3655 4,71 Q v 20+15 10.4601 4.58 Q v 20+30 10.5522 4.46 Q v 20+45 10.6420 4.35 Q v 21+ 0 10.7298 4.25 Q v 21+15 10,8156 4*15 Q V 21+30 10.8996 4.07 Q v 21+45 10.9820 3.99 Q v 22+ 0 11.0628 3.91 Q v 22+15 11.1421 3.84 Q v 22+30 11.2201 3.77 Q v 22+45 11.2967 3.71 Q v 23+ 0 11.3721 3.65 Q v 23+15 11.4464 3.59 Q v 23+30 11.5195 3.54 Q v 23+45 11.5916 3.49 Q v 24+ 0 11.6626 3.44 Q v 24+15 11.7103 2.31 Q v 24+30 11.7153 0.25 Q v 24+45 11.7160 0.03 Q v 25+ 0 11.7163 0.01 Q v 25+15 11.7164 0.01 ----- ------- ---- - v d 0 D u �L I Page 6 E I APPENDIX A - LOCATION MAP H �111 Ht E H H �J p d H h H El ALBEPT XWEBBASSOCIATES H H -11 H 17 H SITE- -VICINITY MAP NOT TO SCALE SECTION 25, TlS, R6W, SBMAO SAN BERNARDINO AVE. VALLEY BLVD. SLOVER AVE. U P RAI LROAD Li Li Li > U-1 cr_ Li Ljj m > < < of SANTA ANA AVE. of a_ 0 a- m < cn LLJ 0 0 __j :2 L.J 3: < — A B C Lli > bi JURUPA AVE. 7 SITE- -VICINITY MAP NOT TO SCALE SECTION 25, TlS, R6W, SBMAO I APPENDIX B - REFERENCES HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA (C-5) SBFCD VALLEY AREA ISOHYETALS 10 YEAR 1 HOUR (B-3) SBFCD VALLEY AREA ISOHYETALS 100 YEAR 1 HOUR (B-4) SOIL PERCOLATION INVESTIGATION Fi l, H H H IALBERT A.WEBBASSOCIATES --------- -- - ---------- 20 D N 1. :% k 0", .......... 4� M, A zn r mux 71 V D 0 :y, J '_7 "Y �7 + A, A A 4� -6 L L A ';T 71 F L A T !bb Z:1:7 Z, ----------- 471, +A: A. 21. .4 7 I"i r4 T Ir %A� r L& - SOIL GROUP BOUNDARY A SOIL GROUP DESIGNATION SCALE 1 48,000 C-1 C-2 BOUNDARY OF INDICATED SOURCE SAN BERNARDINO COUNTY 'k w r) Ir) I A ir enil c M RAAC SCALE REDUCED BY 1/2 SAN BERNARDINO COUNTY vu FOR HYDROLOGY MANUAL C-7 C-8 C-41 INDEX MAP SOUTHWEST -A AREA C -in ;rlrlipF r.- WILLEY R2 Vil W R W' R I w RIE R2E REIW� R5 4Y, 3c T—�4 N T4N SKRIA 7 T —T 4� 9 WEST IT 6 N -7 T- T3N "T 1.4 N t 17- It, e- 1.5 -Z 10 3 - BERNAR 1 2 T2N --5T2 N LAKE 10 iVILL X\ 'fp '\4 If Su ARLO- r TN I CN - FLATS ON I N r T I N N. RO'N IL TA L 6PLAND 0 BE IN ADI R AL .1 -G-O C'L CXAW !MA A N A, FONT 7 2, TIS of -f- C TON REDLANDS LI DA its SAN CA E ST MON E ORANI TERRACE 7 - CHINO SAN RIE 7 1 BERNANDINO OUNTLY R E -00 RIVIASIDE COUNT If T2S I RSIDE e I,NC4001 Xb fag R4W I R3 R2W SAN BERNARDINO COUNTY --7 FLOOD CONTROL DISTRICT R 5 W-' VALLEY AREA REDUCED DRAWING ISOHYETALS T3S SCALE I"= 4 rilLES Yio — 10 YEAR I HOUR BASED ON U SOC, K0 A.A. ATLAS 2,1973 F I R2E T, IT 9 SAN BERNARDINO COUNTY to A ArpIvvED By LO LEGEND. F QD UUNIRUL 8 w R7W I R6� HYDROLOGY MANUAL ISOLINES PRECIPITATION (INCHESI DAT E I SCALE ILE NOL DRWG 1982 C -2m. WRO-I �3*1 I" t L6 1.9 1.7 R 1-30 4W Rlw -7 4 T 4 5 1 1 tIE 121 R 8 R7W R6W 5 --���R 2 w 10 F EMA Tw, —1 2 I.A + 2 WST IT 15 7 cot —2 A 7- T TSN 9 z It. 1. 3 eXl- L BE Y) T Ep— L -T -sT 2 N A40 12 7 17 4 LAKE 14, - /VS. .jD 2�4 1.4 2 3 2 2 MA" NO 15- 20 k A -4 '7 — Is 4 *t,, FLAT$ (4 7 T1 N 64 ­ WAWA yi� 6, SAN R­D,po P L AU-&�- DI ;x TA J/ IN yk 0 I CLAM r RIALT CUCAWW —S Z, NTAN TIE F ON A 104-1- 1 3 N -7 1 -- EDLANDS �7 I -Is -JAL-, ir 1 5! 2- - Ell GRANP rtmptAcE YUCAIPA cHh6io R2 :OUNT -13.-00 T2S P E S I'D E R - - - - - - - r%r— �,e 'R I REGI Y, .......... Do r R4W R3 R2W SAN BERNARDINO COLNTY —FLOOO CONTROL DISTRICT - Z -R 5 .00 0 VALLEY AREA s I REDUCED DRAWING T3S - ISOMYETALS SCALE 1 4 WILES Ymc -100 YEAR I HOUR 15 t 4 BASED ON USDA, KOAA. WLAS 2. WS A SAN BERNARDINO COUNTY APPOKNEO 8T 8 w HYDROLOGY MANUAL .6iuxL FLOOD rij WEER .............................. cl 8 iSOLINES PRECIPITATION (INCHES) DATE (WALK FU "a I OML "a 1982 1 -ROL wm-f 4 .0 02 I I I I I I I I I I I I I F I I H CoHmL Incorporated 1355 E. Cooley Drive, Colton, CA 92324 * Phone (909) 824-7210 * Fax (909) 824-7209 15345 Anacapa Road, Suite D, Victorville, CA 92392 * Phone (760) 243-0506 + Fax (760) 243-1225 January 9, 2007 Mr. Dennis Bean 3204 Broad Street Newport Beach, California 92663 Subject: Soil Percolation Investigation Jurupa B�isiness Park Fontana, California Reference: Geotechnical Investigation Proposed Jurupa Business Park Jurupa Avenue Fontana, California Report Prepared by C.H.J., Incorporated Dated June 10, 2005, Job No. 05446-3) Dear Mr. Bean: Job No. 061101-2 As requested, we have performed percolation/infiltration testing at the subject site in or6er to evaluate the infiltration potential of the soils on the site for storrn water disposal. It is our understanding that storrn ,N,ater runoff's proposed to be collected within indi vidual trench drain systems located on the northwest comer of each of the three blocks and also in the southwest comer of the westerly block, The approxi- inate location of the Jurupa Business Park is indicated on the attached Index Map (Enclosure "A- I"). It is our understanding that the proposed storm xN ater disposal systern being considered consists ot open - bottom polN roplylene corrugated wall stom-, \� ater collec, lon chambers. Based on the manufacturer's Yp (Ston-ntech) information pro\ ided to our fimi bv Albert A.\Vcbb Associates. we Lindcrstaiid that (lie open bottom storm Aater chambers are t%pIcall,, ',()= Inches ir helylit and Installed %%ith IS to 96 Inchos of co-,er. Beneath and arCLind the chambers. th�-- 11�allutacturer recoirmenis �1)1- OfMiS!10.1 I_(1(A_- GEOTECHNICAL ENGINEERING * MATERIALS TESTING * CONSTRUCTION INSPECTION * ENVIRONMENTAL CONSULTING ­__ 'kii., - Page No. Job No. O�61101--2 Our percolation tests �vere perfon-ned at depths of approximately 4 to 5 and 6 to 7 feet below the existing ground surface. Based on the uniformity of soils encountered during the referenced geotechnical investigation, we anticipate similar conditions and percolation rates at depths of 2 to 40 feet below the existing ground surface. I - Our report is not intended to specify the desig I gn or manufacturer of the storm water collection chambers. We do recommend that the installation of chambers be in accordance with the manufacturer's latest design recommendations. FIELD INVESTIGATION AND SUBSURFACE SOIL CONDITIONS Subsurface soils conditions underlying the site were explored duning the referenced geotechnical investi- gation perforined by our firin. Information obtained from the previous geotechnical investigation indicated that the upper soils, consisting of silty sand and sandy silt, extended to depths of 5 to 6 feet. Beneath these upper soils, soils consisting of silty sands and poorly graded sands, some with appreciable concentrations of gravel to 3) inches in size, were encountered to the maximum depths attained. Soils encountered in the percolation test pits are classified as poorly graded sands and are generally consistent with the soils encountered during the referenced investigation. Neither bedrock nor groundwater was encountered norwas refusal experienced within the geotechnical borings to depths of 50± feet or within the percolation test pits. ITEST PROCEDURES Four test pits vvere excavated within the subject slite on January 2. 2007. The locations of the test pits are indicated on the attached Plat (Enc]OSUre ".A-2"). Pood-y graded sands were encountered within all of our test Pits. IFollo%�-M2 exca\ ation. percolation testing %% as perfon-ned within each of the test pits. I I I Id I 11 I I I I I I I I I I I I I I cjs� Pa2e 'No. 3, Job No. 061101-2 Test holes, approximately 6 inches in diameter and 12 inches in depth, were excavated in the bottom of each pit. A perforated 6 -inch diameter plastic container was inserted into each test hole. In order to prepare the soils for testing, pre-soaking was performed by inverting a full 5 -gallon water bottle over the top of the perforated plastic container. The time for the water bottle to empty and for the hole to drain was recorded. Due to the relatively short time for the test holes to accept the water, perco- lation testing was perfon-ned immediately following the pre-soak. The tests were perfon-ned by measur- ing the time required for the water level inside the container to drop I inch. The measurement was repeated four times for each of the tests. Based upon the time required for a I -inch drop, an infiltration rate was calculated. The infiltration rates obtained are presented in the following table. Test Location/ Depth (ft.) Infiltration Rate Soil Type (in./min.) (in./hr.) TP- 1 /6.0 0.3 17 SP TP -2/4.0 0.2 14 SP TP -3/6.0 0.5 30 SP TP -4/4.0 0.4 24 SP Testing indicated infiltration rates ranging from 17 to 30 inches per hour, with an average rate of 21 inches per hour. It is our opinion that an infiltration rate of 20 inches per hour could be used as the infiltration rate in the design of the storm water retention systems, provided that proper maintenance is perfon-ned. It should be cautioned that the rates were obtained in native soils, and rates for compacted soils would be anticipated to have lesser values. It should be noted that infiltration rates measured are ultimate rates based on short -duration field test results UtiliZing clear v,-ater. Infiltration rates can be affected b -v silt build -Lip. debris. degree of soil saturation. and other factors. An appropriate safety factor should be applied prior to Lise In desi�!fl to I I I I I 1� I I P I I I I I I I I I 4 S� Page No. 4 Job No. 061101-2 account for subsoil inconsistencies, possible compaction related to site grading, and potential silting of Z) the percolating soils. The safety factor should also be determined with consideration given to other factors in the storin water retention system design, particularly storrn water volume estimates and the safety factors associated with those desig ,n components. LIMITATIONS C.H.J., Incorporated has stniven to perform our sei-vices within the limits prescribed by our client, and in a manner consistent with the usual thoroughness and competence of reputable geotechnical engineers and engineering geologists practicing under similar circumstances. No other representation, express or implied, and no warranty or guarantee is included or intended by virtue of the services perfon-ned or reports, opinion, documents, or otherwise supplied. This report reflects the testing conducted on the site as the site existed duning the investigation, which is the subject of this report. However, changes in the conditions of a property can occur with the passage of time, due to natural processes or the works of man on this or adjacent properties. Changes in applicable or appropriate standards may also occur whether as a result of legislation, application, or the broadeninp- of knowledge. Therefore, this report is indicative of only those conditions tested at the time of the subject investigation, and the findings of this report may be invalidated fully orpartiallyby changes outside of the control of C.H.J.. Incorporated. This report is therefore subject to review and should not be relied upon after a period of one year. The conclusions and recommendations in this report are based upon obsen,ations performed and data collected at separate locations, and interpolation betxeen these locations, carried out for the project and the scope of services described. It is assumed and expected that the conditions between locations observed and'or sampled are similar to those encountered at the individual locations where obsen,ation and sampling were performed. However. conditions between these locations inay vary significantly. Should conditions be encountered in the field. by the client or any firin performing services for the client or the client's assign, that appears different From those described herein. this firrn should be contacted I T c T is report or po i immediately in order that %\ e might c\ aluLttc flieIr ef C - If thi rt'ons tliereof are provided I I I I I I I 11 I I I I I I #IF S� Pa2e No. 5 Job No. 061101-2 to contractors or included in specifications, it should be understood by all parties that they are provided for information only and should be used as such. The report and its contents resulting from this investigation are not intended or represented to be suitable for reuse on extensions or modifications of the project, or for use on any other project. CLOSURE We appreciate this opportunity to be of service and trust this letter provides the inforination desired at this time. Should you have any questions or comments, please do not hesitate to contact this firm at your convenience. F S Slo','� OF B%V,'ADE:tlw,,sra Enclosures: "A- I" - Index Map "A-2" - Plat "A-3" - Gradation Curves DistribLition.- Nir. Denn I s Bean Albert A. Webb Associates Respectfully submitted, C.H.J., fNCOR-PORATED Ben Williams, P.G. Senior Staff Geologist Allen D. Evans, G.E. 2060 Vice President -4� s —4ft's v 14— iz� L 6L VV f -147 I' - ot -AV* F" A VE' k on -U J. South F --442� Him Aseb --N-t ty di i 1E fob :z; SITE PA 411 ?Ak'. AlkV Res DisWS&I Ins, " t-fL A VE r? 77 Bird Pa.,k i �4 Aft P.RX RWX4 -OUL -mvI I p's 7 pi 121 `7 WA INDEX MAP MR. DENNIS BEAN SOIL PERCOLATION INVESTIGATION EMLM "A-1 JURUPA BUSINESS PARK DATE JANUARY 2007 FONTANA, CALIFORNIA JOB mumso 061101-2 100 90 80 70 W 60 Cn Cr W �) 0 40 Z W 30 U I (71- 20 1 n 0 1000 Cobbles & Boulders 100 Sieve Sizes - U.S.A. Standard Series (ASTM C136) 3" 2" 1 5" 3/4' 3/8" 4 10 20 40 60 100 200 t t 10 1 0.1 GRAIN SIZE IN MILLIMETRES Gravel Sand Silt Coarse I Fine Coarse Medium Fine 0.01 Clav 0001 Symbol Boring No Depth (ft) Classification D,o (--) D3. (mm) D50 (mm) D., (mm) C� C, SE 1 6 (SIP) Sand, fine to coarse with gravel to 3/4" 0.2205 0467 0.882 1 235 5599 0800 2 4 (SP) Sand, fine to medium with coarse 016011 0.288 0419 0.563 3514 &919 A 3 6 (SP) Sand, fine to coarse with gravel to 3/4" 0.1857 0.435 1,058 2.223 11.972 0.459 4 1 4 1 (SP) Sand, fine to coarse-, Gravel to 1 1/2" 1 02312 , 0.678 , 1.873 1 2.981 1 12889 0,667 GRADATION CURVES Project Jurupa Business Park Location Jurupa Avenue, Fontana Job Number 061101-2 Enclosure A-3 I i � , i - ­­­­,, I I. f1fograninied by Fir Fied Yi CopyrightK) C It J Incorporated 2005 - 2007 All righl r ",erved -N- I SCALE: 1"= 240' V. V *K -%W -1 t �-. - I �� ,-rm 1 .1 ' ... i : rlllffl_�" rmw couk"AmM PAX= &&r 4,14 Z: MR. DENNIS BEAN PERCOLATION TRENCH LOCATION DATE JANUARY 2007 PLAT SOIL PERCOLATION INVESTIGATION JURUPA BUSINESS PARK FONTANA, CALIFORNIA McLosufm -A-2- JOB Nummm 061101-2 C.H.J. incorporated 117. 'lit A 17 406 .3 -MA A t" Y F 4' MR. DENNIS BEAN PERCOLATION TRENCH LOCATION DATE JANUARY 2007 PLAT SOIL PERCOLATION INVESTIGATION JURUPA BUSINESS PARK FONTANA, CALIFORNIA McLosufm -A-2- JOB Nummm 061101-2 C.H.J. incorporated to tn Ci 0 it 0 o.c c T c c cl cl Q c c c v c c c c PR OPOSED HYDROLOGY MAP FOR PHELAN BUSINESS PARK (BU.ILDING B n *b 3- qj'\ 71.3 FG �71.01 Tc ............ PROPOSED PEAK FLOW 72.08 Tc �73.63 �74.81 �7 5.5 4 �76.18 TC TC TC JURUPA A AND BMP DESIGN RUNOFF CALCULATIONS BUILDING B INCLUDED ROOF DRAINAGE FOR BUILDING B IS 9.95 ACRES. THIS REPRESENTS RELATIVELY CLEAN RUNOFF WATER. LENGTH, WDITH AND DEPTH ARE AVERAGED VALUES. SUBAREAS B4 AND B5 ARE VEGETATED UNDER PROPOSED CONDITION. PROPOSED VOLUME INCLUDES FILTRATION VOLUME OF 1.59 ACRE FEET (REFERJO APPENDIX F IN THE WQMP REPORT) 0?'ooce LL. U 1c, a cy 4 cn (n LJ6. LA - U u Lo t-0) CR R c'j i- 03 a 0 v- v- cy a c� F- 00 z 00 00 LL 00 03 t2 03 04 0 ;I ol? SAN BERNARDINO REQUIRED BMP PROPOSED BMP DESIGN TRIBUTARAY SUBAREA DESIGN (STORM TECH CHAMBERS WITH ROCK. FILTERS)" DRAINAGE SUBAREA AREA WITH 100 -YEAR Q (CFS) FLOW VOLUME VOLUME ROCK FILTER LENGTH. WIDTH DEPTH ROOF DRAINAGE* (CFS) (AC. FT-) Bmps (AC.FT.) (FT) (FT) (FT) BI 11.87 36.5 STORMTECH B2 1.38 5.2 4.32 1.88 CHAMBERS 2.1 218 27 5.0 (UM B 0 Li '3 jZ m < SYSTEM) < SANTA ANA AVE. B3 6.05 18.5 a- 0 cn :D B4 1.29 1.0 0.02 0.01 VEGETATED DENSE COVER/LANDSCAPED AREA WITH NEGLIGBLE BMP RUNOFF B5 0.04 0.1 0.00 0.00 TOTAL 20.63 61± JURUPA AVE. INCLUDED ROOF DRAINAGE FOR BUILDING B IS 9.95 ACRES. THIS REPRESENTS RELATIVELY CLEAN RUNOFF WATER. LENGTH, WDITH AND DEPTH ARE AVERAGED VALUES. SUBAREAS B4 AND B5 ARE VEGETATED UNDER PROPOSED CONDITION. PROPOSED VOLUME INCLUDES FILTRATION VOLUME OF 1.59 ACRE FEET (REFERJO APPENDIX F IN THE WQMP REPORT) 0?'ooce LL. U 1c, a cy 4 cn (n LJ6. LA - U u Lo t-0) CR R c'j i- 03 a 0 v- v- cy a c� F- 00 z 00 00 LL 00 03 t2 03 04 0 ;I ol? VICINITY MAP NOT TO SCALE SECTION 25, TlS, R6W, SBmA0 LEGEND Ql 00= 5.2 CFS Q 10 =3.4 CFS 32.5 78.80 (B'2-1.38 100 YEAR PEAK FLOW IN CFS 10 YEAR PEAK FLOW IN CFS NODE ELEVATION .SUBAREA -ACREAGE FLOW DISTANCE FLOW DIRECTION DRAINAGE AREA HYDROLOGIC BOUNDARY GRAPHIC SCALE 1"=50- 0 50 100 150 SAN BERNARDINO AVE. VALLEY BLVD. SLOVER AVE. UP RAILROAD 0 Li '3 jZ m < < SANTA ANA AVE. 0 a- 0 cn :D j JURUPA AVE. JE. VICINITY MAP NOT TO SCALE SECTION 25, TlS, R6W, SBmA0 LEGEND Ql 00= 5.2 CFS Q 10 =3.4 CFS 32.5 78.80 (B'2-1.38 100 YEAR PEAK FLOW IN CFS 10 YEAR PEAK FLOW IN CFS NODE ELEVATION .SUBAREA -ACREAGE FLOW DISTANCE FLOW DIRECTION DRAINAGE AREA HYDROLOGIC BOUNDARY GRAPHIC SCALE 1"=50- 0 50 100 150