HomeMy WebLinkAboutJurupa Business Park Bldg BPROPOSED HYDROLOGY AND HYDRAULICS REPORT
FOR
PHELAN BUSINESS PARK - BULDING B
BOUNDED By JURUPA AVENUE (SOUTH), HEMLOCK AVE. (WEST)
(EAST), BEECH AVENUE (EAST) AND SANTA ANA AVENUE
(FARTHER NORTH)
CITY OF FONTANA
SAN BERNARDINO COUNTY
CALIFORNIA
PREPARED FOR:
SP U.S. OPPORTUNITY 5 JURUPA, L.P.
515 S. Flower Street
Suite #3100
Los Angeles, CA 90071
(213) 683-4326
JANUARY 2006
APPROVED BY:
ALBERT A. WEBB ASSOCIATES
'ROF ESs/ 0.1
H I L
rn
No.. 4F61
�EXP. 3-31-10
C1 Vj
ACI vi
Scott'k. Hildebrafidt, PE
Vice President
PREPARED BY:
Tesfaye Demissie
Assistant Engineer
SECTION I - SUMMARY
INTRODUCTION
METHODOLOGY
PROPOSED DRAINAGE CONDITIONS
HYDRAULIC CALCULATIONS
FINDINGS
SECTION 2 - PROPOSED HYDROLOGY- RATIONAL METHOD
10 -YEAR STORM
100 -YEAR STORM
SECTION 3 - PROPOSED HYDRAULICS
WSPG FOR PROPOSED STORM DRAINS
LINE B AND LINE B-1
CATCH BASIN AND INLET SIZING CALCULATIONS
HYDRAULIC ROUTING FOR LINE B SYSTEM
SToRmTECH CRAMBER (LINE B & LINE B-1)
APPENDIX A - LOCATION MAP
APPENDIX B - REFERENCES
HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA (C-5)
SBFCD VALLEY AREA ISOHYETALS 10 YEAR I HOUR (B-3)
SBFCD VALLEY AREA ISOHYETALS 100 YEAR I HOUR (B-4)
SOIL PERCOLATION INVESTIGATION
BACK POCKETS
PROPOSED HYDROLOGY MAP
ALBERT A.WEBBASSOCIATES
E
SECTION 1 - SUMMARY
INTRODUCTION
The following hydrology study has been prepared for Building B of Phelan Business Park
located in the City of Fontana in San Bernardino County, California. The project site is bounded
by Jurupa Ave. in the south, Elm Avenue in the east and Beech Avenue. in the west as shown in
Appendix A of this report. The approximate hydrologic area of the project site is 20.63 acres.
This project site does not receive any offsite runoff in the proposed condition (i.e. the drainage
beyond the limits of the property line of this project is away from the project itself). There are
two drainage zones for this project: Subareas B 1, B2 and B3 that drain toward the StormTech
Chamber System at the western edge of the project, and Subareas B4 and B5 that drain away
from the project along landscaped portion. The latter comprises a total of 1.33 acres that is
densely vegetated with less runoff potential along the periphery of the'project (west, south and
east). Subareas that drain toward the StormTech chambers consisted of roof drainage (9.95
acres), parking lots, landscaped area, etc. Treated BMP runoff water and/or runoff from higher
6 storm events will be discharged to a 36" storm drain for ultimate discharge into an existing 60"
Storm Drain (see Onsite Drainage Plan or Hydrology Map) at approximate SD stations of 3+00±
in Beech Avenue. The objective of this report is to present the method used and engineering
calculations carried out to size onsite storm drain systems for safe runoff conveyance without
affecting the surrounding properties.
METHODOLOGY
For the proposed conditions, the 10 and 100 -year peak storm discharges of the sub -areas were
calculated using Civil Design' Computer Software, which incorporates the San Bernardino
County Flood Control District (SBCFCD) Rational Method. Although the calculation included
both 10 and 100 year storm events, it is the 100 -year peak storm runoff that was used to size
storm drain system. The Los Angeles County Water Surface Pressure Gradient Program
(WSPGW) was utilized to evaluate the water surface elevation of the proposed storm drain
facilities. Unit Hydrograph (which is also incorporated SBCFCD methods) and routing
calculations were carried out using Unit Hydrograph and Flood Hydrograph Routing Programs
of the Civil Design Computer Software for SormTech Chamber Systems equipped with Rock
Filtration System (Subsurface Stormwater Management System).
a PROPOSED DRAINAGE CONDITIONS
The proposed Building B of Phelan Business Park has two drainage zones: subareas B 1, B2 and
B3 that drain toward the StormTech Chamber System at the western edge of the project, and
Subareas B4 and B5 that drain away from the project along landscaped portion. The latter
comprises a total of 1.33 acres that is densely vegetated with less runoff potential along the
periphery of the project (west, south and east). Subareas that drain toward the StormTech
chambers at the western edge of the project consisted of roof drainage, parking lots, landscaped
area, etc. The combined roof drainage area is 9.95 acres which generates relatively clean runoff
water. Runoff generated from subareas B1, B2 and B3 is collected by means of catch basins or
storm drain inlets and conveyed to the StormTech Chamber by means of proposed storm drain
pipes. The runoff is further conveyed to the Underground Stormwater Management System
(StormTech Chamber System equipped with Filtration/Infiltration System) where the BMP
design runoff is treatment takes place. The centralized BMP treatment location is shown on the
hydrology map or onsite drainage plans.
CALBERT AWEBBASSOCIATES
d
The 100 -year peak flow was utilized in the hydraulic analysis of the storm drain analysis
including the StormTech chamber system. The output obtained from the Rational Method of
SBCFCD is summarized in the table below for both 10 -year and 100 -year storm events under
proposed conditions. All calculations can be found in Section 2 of this report.
SUMMARY OF PEAK FLOw RATES FOR BUILDING B - PHELAN BUSINESS PARK
I (RATIONAL METHOD)
�11
r1l
H
H
H
I
H
L
Sub Area
Area
(Acres)
Storm Runoff (cfs)
Time of Concentration (Minutes)
10 -year
100 -year
10 -year
100 -year
BI
11.87
24.0
36.5
12.2
12.2
B2
1.38
3.4
5.2
8.8
8.8
B3
6.05
12.2
18.5
12.2
12.2
Drainage Zone 1
Subtotal
19.30
38.8
59.0
13.1
13.0
B4
1.29
0.3
1.0
36.8
36.8
B5
0.04
0.1
0.1
13.3
13.3
Drainage Zone 2
Subtotal
1.33
0.4
1.1
Total
20.63
39.2
60-+
HYDRAULIC CALCULATIONS
As stated earlier, WSPGW Program is utilized to evaluate the water surface pressure gradient for
the proposed storm drains. For storm drain Line B system (Subareas B 1, B2 and 133), a
downstream water surface elevation (W.S.) of 965.7± was utilized for the hydraulic analysis as
obtained from Jurupa Industrial Park Storm Drain Plans for Beech Avenue (Drawing Number
979, Sheet 3 of 9 at approximate SD Station of 3+00±). The 100 year peak flow of 59 cfs was
used to size the storm drains that discharged to and from the StormTech Chamber System. The
maximum water surface elevation in the system obtained by this analysis during a 100 -year
storm event is 974.3± which is below the elevation of any opening in the system. This indicates
that the proposed storm drain system conveys the 100 -year storm event without inundating the
surrounding or pondinor. The routed peak outflow for this storm drain system is much less than
the design 59 cfs due to peak flow attenuation capacity of the StormTech Chamber System (see
routing calculations for Line B system: RoutBldB.out).
C,
Hydrologic Routing for Conveyance
(100 -year Storm)
Flood hydrograph routing method based on unit hydrograph for the contributing tributary area
was utilized to determine if the proposed stormdrain system (Line B System) is capable of
conveying 100 -year storm. The input data used in the analysis and outlet obtained from the
analysis are included in Section 3. The input data for the StormTech Chamber System is shown
the table below. The analysis was carried out using Civil Design Computer Software that
incorporates SBCFCD methods. An average porosity of 50% was used in the determination of
the Volume of the filter rock media beneath the StormTech chambers. The routing indicated that
Ell ALBEqr AWEBBASSOCIATFS
I
the proposed BMPs are capable of conveying the 100 year storm without inundating, the
surrounding properties. The percolation test result obtained from Soil Percolation Investigation
(see Reference Section) Is utilized to determine the infiltration rate of the rock filter media for
the proposed BMP site as shown at the end of this section.
0
0 -
FINDINGS
StormTech Chamber System at the western edge of Building B
(Line B Storm Drain System)
Depth
(feet)
Volume
(Ac.Ft.)
Outflow
(cfs)
--6.-00
0.00
0.0
1.00
0.08
0.8
2.00
0.17
0.9
3.00
0.24
0.9
4.00
0.32
1.0
5.00
0.40
1.2
6.00
0.45
2.5
7.50
0.53
40.0
The hydrology and hydraulic analyses prepared in this report are comprehensive and evaluate the
drainage impacts associated with the development of this project. More impervious surface will
cover the proposed site under proposed condition than the existing condition. Onsite proposed
stormdrain systems will be constructed to convey the runoff generated after development of
proposed project. The proposed Subsurface Stormwater Management System (StormTech
Chambers with Rock Filter System) will be constructed to treat the first flush of runoff via.
filtration/Infiltration system. At each location of the StormTech Chamber system, there is one
row of StormTech Isolator which receives BMP runoff to intercept sediments, tra shes. etc. prior
to other rows of chambers. This row is provided with AASHTO Class I woven geotextile over
the rock filter system to keep the trashes or sediments for required maintenance works. The sole
purpose of the isolator row is for regular maintenance and regular inspection of trash, debris,
sediments, etc. (See details of the StormTech System on onsite drainage plan). Higher storm
events from the project site will be safely conveyed to the existing storm drains (60" RCP storm
drain in Beech Avenue) for further conveyance. The calculations (hydrologic and hydraulic
analyses) within this report substantiate that this project can be developed as proposed with no
substantial effect to the surrounding properties.
H
E
H -1 -
W ALBERT AWEBB ASSOCIATES
L
I
A
E
H
F
H
9
Building B
Calculated BMP Design Volume
BMP design volume =
Subrareas B1, B2 and B3
BMP bottom area
0.158
Acre
Infiltration rate
20
Inches/hr (see soil report dated January 9, 2007)
Safety Factor
4.0
5.0
Qinfiltration
0.8
CFS
Vinfiltration (24 hours)
1.59
Ac. Ft.
Calculated BMP Design Volume
BMP design volume =
1.88
Ac.Ft.
Required BMP Volume =
0.29
Ac. Ft.
Provided BMP Design
Roch Filter Depth, D
5.0
Feet
Provided BMP Volume =
0.48
Ac. Ft. (which meets or exceeds BMP requirement)
Total BMP volume provided
2.1
ac. ft. (which meets or exceeds BMP requirement)
E
I SECTION 2 - PROPOSED HYDROLOGY (RATIONAL METHOD)
I 10 -YEAR STORM
m
N
H
m
I
100 -YEAR STORM
ALBERT k WEBBASSOCIATES
H
�l I
A
p
P'l
H
Hit
RATIONAL METHOD - 10 -YEAR STORm EVENT
BUILDING B
(BUILDING, PARKING LOTS, LANDSCAPING, ETC.)
N
�r
B1B2B3HYD10.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
-------- --------- ----- ----- --------
PROPOSED HYDROLOGY FOR JURUPA BUSINESS PARK
W.O. 06-0386
B1B2B3HYD10.OUT
01/16/07 TD
------------------------------------------------------------------------
Program License Serial Number 4010
------------------------------------------------------------------------
********* Hydrology Study Control Information
------------------------------------------------------------------------
Rational hydrology study storm event year is 10.0
Computed rainfall intensity:
Storm year = 10.00 1 hour rainfall 0.900 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
......................................................................
Process from P . oint/Station 30.000 to Point/Station 31.000
INITIAL AREA EVALUATION
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
Initial subarea data:
Initial area flow distance 995.000(Ft.)
Top (of initial area) elevation = 84.550(Ft.)
Bottom (of initial area) elevation 75.000(Ft.)
Difference in elevation = 9.550(Ft.)
Slope = 0.00960 s(%)= 0.96
TC = k(0.304)*[(length'3)/(elevation change)1^0.2
Initial area time of concentration = 12.178 min.
Rainfall intensity = 2.343(In/Hr) for a 10,
Effective runoff coefficient used for area (Q=KCIA)
Subarea runoff = 20.208(CFS)
Total initial stream area = 10.000(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
0.098(In/Hr)
0 year storm
is C = 0.862
......................................................................
Process from Point/Station 30.000 to Point/Station 31.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
Time of concentration 12.18 min.
Rainfall intensity = 2.343(In/Hr) for a 10
Effective runoff coefficient used for area,(total
rational method)(Q=KCIA) is C = 0.862
Subarea runoff 3.779(CFS) for 1.870(Ac.)
Total runoff = 23.987(CFS)
Effective area this stream 11.87(Ac.)
Page 1
0.098(In/Hr)
.0 year storm
area with modified
H f�llt
1,
HIR
J11
[11
BlB2B3HYD10.out
Total Study Area (Main Stream No. 1) = 11.87(Ac.)
Area averaged Fm value = 0.098(In/Hr)
......................................................................
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 75.000(Ft.)
Downstream point/station elevation 74.500(Ft.)
Pipe length = 235.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 23.987(CFS)
Nearest computed pipe diameter 33.00(In.)
Calculated individual pipe flow 23.987(CFS)
Normal flow depth in pipe 26.58(In.)
Flow top width inside pipe 26.13(In.)
Critical Depth = 19.46(In.)
Pipe flow velocity = 4.68(Ft/s)
Travel time through pipe = 0.84 min.
Time of concentration (TC) 13.01 min.
......................................................................
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 11.870(Ac.)
Runoff from this stream = 23.987(CFS)
Time of concentration 13.01 min.
Rainfall intensity = 2.252(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
......................................................................
Process from Point/Station 32.500 to Point/Station 32.000
**** INITIAL AREA EVALUATION ****
-0
Bottom (of initial area) elevation = 7S.560(Ft.)
Difference in elevation 3.220(Ft.)
Slope 0.00805 s(%)= 0.80
TC = k(O.304)*[(length'3)/(elevation change)1'0.2
Initial area time of concentration 8.761 min.
Rainfall intensity 2.855(In/Hr) for a 10.0 year storn�-,�
Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
Subarea runoff 3.424(CFS)
Total initial stream area = 1.380(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
COMMERCIAL subarea type
Decimal
fraction soil group A
= 1.000
Decimal
fraction soil group B
= 0.000
41-
Decimal
fraction soil group C
= 0.000
Decimal fraction soil group D
SCS curve number for soil(AMC
= 0.000
2) = 32.00
Pervious
ratio(Ap) = 0.1000
Max loss rate(Fm)=
0.098(In/Hr)
Initial
Initial
subarea data:
area flow distance
4 0 0. 0 0 0 LFt---�-
Top (of
initial area) elevatio�-�- �-0-027t-."\-
-0
Bottom (of initial area) elevation = 7S.560(Ft.)
Difference in elevation 3.220(Ft.)
Slope 0.00805 s(%)= 0.80
TC = k(O.304)*[(length'3)/(elevation change)1'0.2
Initial area time of concentration 8.761 min.
Rainfall intensity 2.855(In/Hr) for a 10.0 year storn�-,�
Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
Subarea runoff 3.424(CFS)
Total initial stream area = 1.380(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
-0
t
......................................................................
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.380(Ac.)
Runoff from this stream 3.42"(CFS)
Time of concentration 8.76 min.
Rainfall intensity = 2.855(In,'Hr�
Area averaged loss rate (Fm) = 0.0978�In/'Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Page 2
41-
-0
t
......................................................................
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.380(Ac.)
Runoff from this stream 3.42"(CFS)
Time of concentration 8.76 min.
Rainfall intensity = 2.855(In,'Hr�
Area averaged loss rate (Fm) = 0.0978�In/'Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Page 2
H
Fit
H
H
H
H
B1B2B3HYD10.out
summary of stream data:
Stream Flow rate Area TC Fm Rainfall Intensity
No. (CFS) (Ac.) (min) (In/Hr) (In/Hr)
1 23.99 11.870 13.01 0.098 2.252
2 3.42 1.380 8.76 0.098 2.855
Qmax (1) =
Qmax (2) =
1.000 * 1.000 * 23.987) +
0.781 * 1.000 * 3.424) + 26.662
1.280 * 0.673 * 23.987) +
1.000 * 1.000 * 3.424) + 24.096
Total of 2 streams to confluence:
Flow rates before confluence point:
23.987 3.424
........................... ...........................................
Maximum flow rates at confluence using above data:
26.662 24.096
Area of streams before confluence:
11.870 1.380
Effective area values after confluence:
13.250 9.370
Results of confluence:
Total flow rate = 26.662(CFS)
Time of concentration = 13.014 min.
Effective stream area after confluence
13.250(Ac.)
Study area average Pervious fraction(Ap)
= 0.100
Study area average soil loss rate(Fm) =
0.098(In/Hr)
Study area total (this main stream) = 13.25(Ac.)
........................... ...........................................
Process from Point/Station 32.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (Program estimated size)
Upstream point/station elevation = 72.000(Ft.)
Downstream point/station elevation t.
F�
f,
Pipe length = aing's\N = =001�
90 . 00 (Ft . Mani
No. of pipes = 1 Required pipe flow FS)
Nearest computed pipe diameter 21.00(In.)
Calculated individual pipe flow 26.662(CFS)
Normal flow depth in pipe 16.05(In.)
Flow top width inside pipe 17.82(In.)
Critical depth could not be calculated.
Pipe flow velocity = 13.51(Ft/s)
Travel time through pipe = 0.11 min.
Time of concentration (TC) = 13.13 min.
......................................................................
Process from Point/Station 35.006 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 13.250(Ac.)
Runoff from this stream = 26.662(CFS)
Time of concentration 13.13 min.
Rainfall intensity = 2.240(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
......................................................................
Process from Point/Station 33.000 to Point/Station 34.000
**** INITIAL AREA EVALUATION
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
Page 3
B132B3HYD10.out
scS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Initial subarea data:
initial area flow distance 99S.000(Ft.)
Top (of initial area) elevation = 84.000(Ft.)
Bottom (of initial area) elevation 74.720(Ft.)
Difference in elevation = 9.280(Ft.)
Slope = 0.00933 s(%)= 0.93
TC = k(0.304)*[(length^3)/(elevation change)1^0.2
Initial area time of concentration = 12.248 min.
Rainfall intensity = 2.335(In/Hr) for a 10.0 year storm
Ei Effective runoff coefficient used for area (Q=KCIA) is C = 0.862
Subarea runoff = 12.182(CFS)
Total initial stream area = 6.050(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
......................................................................
Process from Point/Station 34.000 to Point/Station 3S.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 70.000(Ft.)
Downstream point/station elevation = 69.500(Ft.)
Pipe length = 265.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 12.182(CFS)
Nearest computed pipe diameter 27.00(In.)
Calculated individual pipe flow 12.182(CFS)
Normal flow depth in pipe 20.13(In.)
Flow -top width inside pipe 23.52(In.)
Critical Depth = 14.53(In.)
Pipe flow velocity = 3.83(Ft/s)
Travel time through pipe = 1.15 min.
Time of concentration (TC) 13.40 min.
Total of 2 streams to confluence:
Flow rates before confluence point
26.662 12.182
Maximum flow rates at confluence using above data:
38.750 38.499'
Area of streams before confluence:
13.250 6 .050
Effective area values after confluence:
19.176 19.300
Results of confluence:
Total flow rate 38.750(CFS)
Page 4
......................................................................
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 6.050(Ac.)
Runoff from this stream 12.182(CFS)
Time of concentration 13.40 min.
Rainfall intensity = 2.212(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate Area TC Fm Rainfall Intensity
No. (CFS) (Ac.) (min) (In/Hr) (In/Hr)
1 26.66 13.250 13.13 0.098 2.240
2 12.18 6.050 13.40 0.098 2.212
Qmax(l) =
1.000 * 1.000 * 26.662) +
1.013 * 0.979 * 12.182) + = 38.750
Qmax(2) =
0.987 * 1.000 * 26.662) +
1.000 * 1.000 * 12.182) + = 38.499
Total of 2 streams to confluence:
Flow rates before confluence point
26.662 12.182
Maximum flow rates at confluence using above data:
38.750 38.499'
Area of streams before confluence:
13.250 6 .050
Effective area values after confluence:
19.176 19.300
Results of confluence:
Total flow rate 38.750(CFS)
Page 4
N
H
H
k-'
LIU-
B1B2B3HYD10.out
Time of concentration 13.125 min.
Effective stream area after confluence 19.176(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.098(In/Hr)
Study area total (this main stream) = 19.30(Ac.)
End of computations, Total Study Area = 19.30 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged SCS curve number = 32.0
Page 5
B4HYD10.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
------------------------------------------------------------------------
Program License Serial Number 4010
------------------------------------------------------------------------
********* Hydrology Study Control Information
------------------------------------------------------------------------
Rational hydrology study storm event year is 10.0
Computed rainfall intensity:
Storm year = 10.00 1 hour rainfall 0.900 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
......................................................................
Process from Point/Station 38.000 to Point/Station 39.000
**** INITIAL AREA EVALUATION ****
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
H
j
F
H
E Page 1
UNDEVELOPED (dense cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 38.00
Pervious ratio(Ap� = 1.0000 Max loss rate(Fm)= 0.934(In/Hr)
Initial subarea data:
Initial area flow distance 995.000(Ft.)
Top (of initial area) elevation = 80.500(Ft.)
Bottom (of initial area) elevation 70.000(Ft.)
Difference in elevation = 10.500(Ft.)
Slope = 0.01055 s(%)= 1.06
TC = k(0.935)*[(length^3)/(elevation change)1'0.2
Initial area time of concentration = 36.751 min.
Rainfall intensity = 1.208(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C 0.204
Subarea runoff = 0.317(CFS)
Total initial stream area = 1.290(Ac.)
Pervious area fraction 1.000
Initial area Fm value 0.934(In/Hr)
End of computations, Total Study Area 1.29 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
H
j
F
H
E Page 1
B5HYD10.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
------------------------------------------------------------------------
Program License Serial Number 4010
------------------------------------------------------------------------
Hydrology Study Control Information
------------------------------------------------------------------------
Rational hydrology study storm event year is 10.0
El Computed rainfall intensity:
Storm year = 10.00 1 hour rainfall 0.900 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
......................................................................
Process from Point/Station 40.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION ****
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
Page 1
UNDEVELOPED (dense cover) subarea
Decimal fraction soil group A = 1.000
Decimal friction soil group B � 0,000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 38.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr)
Initial subarea data:
Initial area flow distance 100.000(Ft.)
Top (of initial area) elevation = 85.400(Ft.)
Bottom (of initial area� elevation 83.700(Ft.)
Difference in elevation = 1.700(Ft.)
Slope = 0.01700 s(%)= 1.70
TC = k(O.935)*[(length^3)/(elevation change)1'0.2
Initial area time of concentration = 13.327 min.
Rainfall intensity = 2.220(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C 0.521
Subarea runoff = 0.046(CFS)
Total initial stream area = 0.040(Ac.)
Pervious area fraction 1.000
Initial area Fm value 0.934(In/Hr)
End of computations, Total Study Area 0.04 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
Page 1
IRATIONAL METHOD - 100 -YEAR STORm EVENT
N
BUILDING B
(BUILDING, PARKING LOTS, LANDSCAPING, ETC.)
H
H
H
m
B1B2B3HYD100.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
------------------------------------------------------------------------
PROPOSED HYDROLOGY FOR JURUPA BUSINESS PARK
W.O. 06-0386
B1B2B3HYD100.OUT
01/16/07 TD
------------------------------------------------------------------------
IProgram License Serial Number 4010
-----------------------------------------------------------
I********* Hydrology Study Control Information
Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall 1.350 (In.)
Slope used for rainfall intensity curve b 0.6000
Soil antecedent moisture condition (AMC) 2
......................................................................
Process from Point/Station 30.000 to Point/Station 31.000
**** INITIAL AREA EVALUATION
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
curve number for soil(AMC 2) = 32.00
-SCS
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Initial subarea data:
Initial area flow distance 995.000(Ft.)
Top (of initial area) elevation = 84.550(Ft.)
Bottom (of initial area) elevation 75.000(Ft.)
Difference in elevation = 9.550(Ft.)
Slope = 0.00960 s(%)= 0.96
TC = k(O.304)*[(length^3)/(elevation change) ]A0 .2
Initial area time of concentration = 12.178 min.
Rainfall intensity = 3.515(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.875
Subarea runoff = 30.752(CFS)
Total initial stream area = 10-OOO(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
......................................................................
Process from Point/Station 30.000 to Point/Station 31.000
**** SUBAREA FLOW ADDITION
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group 3 = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Time of concentration '12.18 min.
Rainfall intensity = 3.515(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(Lotal area with modified
rational method)(Q=KCIA) is C = 0.875
Subarea runoff 5.751(CFS) for 1.870(Ac.)
Total runoff = 36.503(C�S)
Effective area this stream 11.87(Ac.)
Page 1
"a
0 B1B2B3HYD100.out
Total Study Area (Main stream No. 1) = 11.87(Ac.)
oft Area averaged Fm value = 0.098(In/Hr)
......................................................................
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 75.000(Ft.)
Downstream point/station elevation 74.500(Ft.)
Pipe length = 235.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 36.503(CFS)
Nearest computed pipe diameter 39.00(In.)
Calculated individual pipe flow 36.503(CFS)
Normal flow depth in pipe 30.61(In.)
Flow top width inside pipe 32.05(In.)
Critical Depth = 23.00(In.)
Pipe flow velocity = 5.23(Ft/s)
Travel time throu gh pipe = 0.75 min.
Time of concentration (TC) 12.93 min.
......................................................................
Process from Point/Station 32.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
am Along Main Stream number: 1 in normal stream number 1
Stream flow area = 11.870(Ac.)
IN Runoff from this stream 36.503(CFS)
Time of concentration 12.93 min.
4M Rainfall intensity = 3.391(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
W Area averaged Pervious ratio (Ap) = 0.1000
......................................................................
Process from Point/Station 32.500 to Point/Station 32.000
**** INITIAL AREA EVALUATION ****
oft
COMMERCIAL subarea type
60
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
on
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
W
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In/Hr)
Initial subarea data:
Initial area flow distance 400.000(Ft.)
Top (of initial area) elevation = 78.800(Ft.)
Bottom (of initial area) elevation 75.580(Ft.)
Difference in elevation = 3.220(Ft.)
Slope = 0.00805 s(�)= 0.80
TC = k(O.304)*[(length'3)/(elevation change)1'0.2
Initial area time of concentration = 8.761 min.
Rainfall intensity = 4.283(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
Subarea runoff = 5.197(CFS)
Total initial stream area = 1.380(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
IN ......................................................................
Process from Point/Station 32.000 to Point/Station 32.000
9ft **** CONFLUENCE OF MINOR STREAMS ****
to Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.380(Ac.)
4W Runoff from this stream 5,197(CFS)
Time of concentration 8.76 min.
to Rainfall intensity = 4.283(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
4M Area averaged Pervious ratio (Ap) = 0.1000
Page 2
im
40
16
B1B2B3HYD100.out
oft Summary of stream data:
IN Stream Flow rate Area TC Fm Rainfall Intensity
No. (CFS) (Ac.) (min) (In/Hr) (In/Hr)
1 36.50 11.870 12.93 0.098 3.391
#0
2 5.20 1.380 8.76 0.098 4.283
Qmax (1) =
1.000 * 1.000 * 36.503) +
0.787 * 1.000 * 5.197) + = 40.593
Qmax(2) =
1.271 * 0.678 * 36.503) +
1.000 * 1.000 * 5.197) + = 36.633
W
Total of 2 streams to confluence:
Flow rates before confluence point:
36.503 5.197
Maximum flow rates at confluence using above data:
40.593 36.633
Area of streams before confluence:
11.870 1.380
Effective area values after confluence:
13.250 9.424
Results of confluence:
Total flow rate = 40.593(CFS)
Time of concentration = 12.927 min.
Effective stream area after confluence 13.250(Ac.)
Study area average Pervious fraction(Ap) 0.100
Study area average soil loss rate(Fm) 0.098(In/Hr)
Study area total (this main stream) 13.25(Ac.)
......................................................................
Process from Point/Station 32.000 to Point/Station 35.000
PIPEFLOW TRAVEL TIME (Program estimated size)
Upstream point/station elevation 72.000(Ft.)
Downstream point/station elevation 69.500(Ft.)
Pipe length = 90.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 40.593(CFS)
Nearest computed pipe diameter 24.00(In.)
Calculated individual pipe flow 40.593(CFS)
Normal flow depth in pipe 19.55(In.)
Flow top width inside pipe 18.66(In.)
Critical depth could not be calculated.
Pipe flow velocity = 14.82(Ft/s)
Travel time through pipe = 0.10 min.
Time of concentration (TC) 13.03 min.
......................................................................
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 13.250(Ac.)
Runoff from this stream 40.593(CFS)
Time of concentration 13.03 min.
Rainfall intensity = 3.375(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
......................................................................
Process from Point/Station 33.000 to Point/Station 34.000
**** INITIAL AREA EVALUATION
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
4M
Decimal fraction soil group D = 0.000
Page 3
ON
E
H
d
ld
H
H!
�11
B1B2B3HYD100.out
scs curve number for soil(AMC 2) = 32.00
Pervious ratio(Ap) = 0.1000 max loss rate(Fm)= 0.098(In/Hr)
Initial subarea data:
Initial area flow distance 995.000(Ft.)
Top (of initial area) elevation = 84.000(Ft.)
Bottom (of initial area) elevation 74.720(Ft.)
Difference in elevation = 9.280(Ft.)
Slope = 0.00933 s(%)= 0.93
TC = k(O.304)*[(length^3)/(elevation change) ]A0 .2
Initial area time of concentration = 12.248 min.
Rainfall intensity = 3.503(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C 0.87S
Subarea runoff = 18.539(CFS)
Total initial stream area = 6.050(Ac.)
Pervious area fraction 0.100
Initial area Fm value 0.098(In/Hr)
......................................................................
Process from Point/Station 34.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 70.000(Ft.)
Downstream point/station elevation 69.500(Ft.)
Pipe length = 265.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 18.539(CFS)
Nearest computed pipe diameter 33.00(In.)
Calculated individual pipe flow 18.539(CFS)
Normal flow depth in pipe 22.48(In.)
Flow top width inside pipe 30.76(In.)
Critical Depth = 16.99(In.)
Pipe flow velocity = 4.30(Ft/s)
Travel time through pipe = 1.03 min.
Time of concentration (TC) 13.27 min.
......................................................................
Process from Point/Station 35.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 6.050(Ac.)
Runoff from this stream 18.539(CFS)
Time of concentration 13.27 min.
Rainfall intensity = 3.338(In/Hr)
Area averaged loss rate (Fm) = 0.0978(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
Area
TC
Fm
Rainfall Intensity
No. (CFS)
(Ac.)
(min)
(In/Hr)
(In/Hr)
1 40.59 13.250
13.03
0.098
3.375
2 18.54
6.050
13.27
0.098
3.338
Qmax(l) =
1.000
*
1.000
*
40.593) +
1.012
*
0.981
*
18.539) +
= 59.000
Qmax(2) =
0.989
*
1.000
*
40.593) +
1.000
*
1.000
*
18.539) +
= 58.666
Total of 2 streams to confluence:
Flow rates before confluence point:
40.593 18.539
Maximum flow rates at confluence using above data:
59.000 58.666
Area of streams before confluence:
13.250 6.050
Effective area values after confluence:
19.188 19.300
Results of confluence:
Total flow rate = 59.000(CFS)
Page 4
B1B2B3HYD10O.out'
Time of concentration 13.028 min.
Effective stream area after confluence 19.188(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.098(In/Hr)
study area total (this main stream) = 19.30(Ac.)
End of computations, Total Study Area = 19.30 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged SCS curve number = 32.0
L
F�','
H
H
1-4 Page 5
P
d
[I
I
I
H
H-
0
F
I
j
H
N
B4HYD10O.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
------------------------------------------------------------------------
Program License Serial Number 4010
------------------------------------------------------------------------
********* Hydrology Study Control Information
------------------------------------------------------------------------
Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
......................................................................
Process from Point/Station 38.000 to Point/Station 39.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (dense cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 38.00
Pervio ' us ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr)
Initial subarea data:
Initial area flow distance 995.000(Ft.)
Top (of initial area) elevation = 80.500(Ft.)
Bottom (of initial area) elevation 70.000(Ft.)
Difference in elevation = 10.500(Ft.)
Slope = 0.01055 s(%)= 1.06
TC = k(0.935)*[(length^3)/(elevation change)1'0.2
Initial area time of concentration = 36.751 min.
Rainfall intensity = 1.812(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C 0.436
Subarea runoff = 1.018(CFS)
Total initial stream area = 1.290(Ac.)
Pervious area fraction 1.000
Initial area Fm value 0.934(In/Hr)
End of computations, Total Study Area 1.29 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
Page 1
......................................................................
Process from Point/Station 40.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (dense cover) subarea
B5HYD10O.out
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1
Rational Hydrology Study Date: 01/16/07
------------------------------------------------------------------------
Program License Serial Number 4010
--------- --------- ----- ------- ----------- ----------
********* Hydrology Study Control Information
------------------------------------------------------------------------
Rational hydrology study storm event year is 100.0
10 Year storm 1 hour rainfall = 0.900(In.)
100 Year storm 1 hour rainfall = 1.350(In.)
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall 1.350 (In.)
Slope used for rainfall intensity curve b = 0.6000
Soil antecedent moisture condition (AMC) = 2
......................................................................
Process from Point/Station 40.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION ****
j
d
h
I Page 1
UNDEVELOPED (dense cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 38-00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.934(In/Hr)
Initial subarea data:
Initial area flow distance 100.000(Ft.)
Top (of initial area) elevation = 85.400(Ft.)
Bottom (of initial area) elevation 83.700(Ft.)
Difference in elevation = 1.700(Ft.)
Slope = 0.01700 s(%)= 1.70
TC = k(O.935)*[(length'3)/(elevation change)1^0.2
Initial area time of concentration = 13.327 min.
Rainfall intensity = 3.330(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C 0.647
Subarea runoff = 0.086(CFS)
Total initial stream area = 0.040(Ac.)
Pervious area fraction 1.000
Initial area Fm value 0.934(In/Hr)
End of computations, Total Study Area 0.04 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 38.0
j
d
h
I Page 1
SECTION 3 - ONSITE PROPOSED HYDRAULICS
WSPG FOR PROPOSED STORM DRAINS
LINE B AND LINE B- I
CATCH BASIN AND INLET SIZING CALCULATIONS
HYDRAULIC ROUTING FOR LINE Al AND LINE A2
STORmTECH CHAMBER (LINE B AND B- 1)
ALBERT A.WEBBASSOCIATES
H
Lil
hl�l
H
H
H
WSPG FOR PROPOSED STORM DRAINS
LINE B AND LINE B- I
ALBERT A.WEBBASSOCIATES
77
111 7" 1, INS
Tl
HYDRAULIC ANALYSIS
FOR STORM DRAIN IN THE
NORTH
EASTERN PORTION
0
T2
BUILDING B,
JURUPA
BUSINESS
PARK,
W.O. 06-0386
T3
LINE B (WESTERN PORTION OF
THE
BUILDING);
LINE-B.OUT;
TD;
01/23/07
so
100.000
962.100
1
965.700
R
172 .010
964.000
1
.013
.000
-60.000
0
R
231.430
965.500
1
.012
.000
-60.000
0
TS
237.430
965.505
2
.013
.000
R
280.430
965.510
2
.013
.000
45.000
0
TS
283.430
965.530
3
.013
.000
R
451.430
965.550
3
.013
.000
45.000
0
TS
456.430
965.580
1
.012
.000
*
461.430
965.600
1
.012
.000
45.000
0
*
499.520
966.360
1
.012
.000
45.000
0
ix
504.520
966.424
1 4
.012
18.400
967.300
90.0
.000
*
537.610
966.850
1
.012
.000
45.000
0
*
584.870
967.328
1
.012
.000
.000
0
ix
589.870
967.378
1 5
.013
4.100
968.660
90.0
.000
*
697.880
968.460
1
.012
.000
45.000
0
*
726.160
968.740
1
.012
.000
45.000
0
*
803.160
969.534
1
.012
.000
45.000
0
TS
BOB . 160
970.085
6
.012
.000
R
818.750
970.500
6
.012
.000
-90.000
0
ix
821.750
971.025
4 5
.012
18.250
971.720
90.0
-90.000
R
824.750
971.030
4
.012
.000
-90.000
0
SH
824.750
971.030
4
971.030
CD
1 4 1
.000
3.000
.000 .000
.000
.00
CD
2 3 4
2.000
2.500
27.000
.000
.000
.00
CD
3 3 4
2.000
2.500
32.250
.000
.000
.00
CD
4 4 1
.000
2.000
.000 .000
.000
.00
CD
5 4 1
.000
1.500
.000 .000
.000
.00
CD
6 4 1
.000
2.500
.000 .000
.000
.00
Q
18.250
.0
FILE: LINE-B.WSW
W S P G
W - EDIT LISTING - Version 14.06
Date: 1-25-2007
Time: 8:41:35
WATER SURFACE PROFILE
- CHANNEL DEFINITION LISTING
PAGE
1
CARD SECT
CHN
NO OF AVE PIER HEIGHT 1 BASE
ZL
ZR INV Y(l) Y(2) Y(3) Y(4)
Y(5) Y(6)
Y(7) Y(8) Y(9) Y(10)
CODE NO
TYPE
PIER/PIP WIDTH DIAMETER WIDTH
DROP
CD
1
4
1 3.000
CD
2
3
4 2.000 2.500
27.000
.000
.000 .00
CD
3
3
4 2.000 2.500
32.250
.000
.000 .00
CD
4
4
1 2.000
CD
5
4
1 1.500
CD
6
4
1 2.500
W S
P G W
PAGE NO
1
WATER SURFACE
PROFILE -
TITLE
CARD LISTING
HEADING LINE
NO
1
IS
-
HYDRAULIC ANALYSIS FOR STORM
DRAIN IN THE NORTH EASTERN PORTION
HEADING LINE
NO
2
IS
-
BUILDING B,
JURUPA BUSINESS
PARK, W.O. 06-0386
HEADING LINE
NO
3
IS
-
LINE B (WESTERN PORTION
OF THE BUILDING); LINE-B.OUT; TD; 01/23/07
W S
P G W
PAGE NO
2
WATER SURFACE
PROFILE
ELEMENT
CARD LISTING
ELEMENT
NO
1
IS
A
SYSTEM OUTLET
U/S DATA STATION
INVERT
SECT
W
S ELEV
100.000
962.100
1
965.700
ELEMENT
NO
2
IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
ANG PT
MAN H
172.010
964.000
1
.013
.000
-60.000
0
ELEMENT
NO
3
IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
ANG PT
MAN H
231.430
965.500
1
.012
.000
.000
-60.000
0
ELEMENT
NO
4
IS
A
TRANSITION
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
237.430
965.505
2
.013
.000
.000
ELEMENT
NO
5
IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
ANG PT
MAN H
280.430
965.510
2
.013
.000
.000
45.000
0
ELEMENT
NO
6
IS
A
TRANSITION
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
283.430
965.530
3
.013
.000
.000
ELEMENT
NO
7
IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
ANG PT
MAN H
451.430
965.550
3
.013
.000
.000
45.000
0
ELEMENT
NO
8
IS
A
TRANSITION
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
456.430
965.580
1
.012
.000
.000
ELEMENT
NO
9
IS
A
REACH
U/S DATA STATION
INVERT
SECT
N
RADIUS
ANGLE
ANG PT
MAN H
461.430
965.600
1
.012
.000
.000
45.000
0
ELEMENT
NO
10
IS
A
REACH
............
RADIUS
ANGLE
ANG PT
U/S DATA
STATION
INVERT
SECT
N
0
Q4
INVERT -3 INVERT
-4
PHI 3 PHI 4
499.520
966.360
1
.012
.000
ELEMENT
NO
11
IS
A JUNCTION
.000
.000
RADIUS
ANGLE
ANG PT
U/S DATA
STATION
INVERT
SECT LAT -1 LAT -2
N
Q3
PAGE NO
3
504.520
966.424
1 4 0
.012
18.400
ELEMENT
NO
12
IS
A REACH
Q4
INVERT -3 INVERT -4
PHI 3 PHI 4
.000
968.660
.000
90.000
.000
U/S DATA
STATION
INVERT
SECT
N
.000
.000
537.610
966.850
1
.012
.000
.000
45.000
0
RADIUS
ANGLE
W S P G W
MAN H
.000
.000
45.000
0
WATER SURFACE
PROFILE
ELEMENT CARD LISTING
ANG PT
MAN H
ELEMENT
NO
13
IS
A REACH
RADIUS
ANGLE
.000
.000
U/S DATA
STATION
INVERT
SECT
N
MAN H
.000
.000
-90.000
0
584.870
967.328
1
.012
.000
ELEMENT
NO
14
IS
A JUNCTION
RADIUS
ANGLE
1.910
-90.000
U/S DATA
STATION
INVERT
SECT LAT -1 LAT -2
N
Q3
.000
.000
-90.000
0
W
589.870
967.378
1 5 0
.013
4.100
ELEMENT
NO
15
IS
A REACH
PAGE NO
4
U/S DATA
STATION
INVERT
SECT
N
697.880
968.460
1
.012
ELEMENT
NO
16
IS
A REACH
U/S DATA
STATION
INVERT
SECT
N
.726.160
968.740
1
.012
ELEMENT
NO
17
IS
A REACH
U/S DATA
STATION
INVERT
SECT
N
803.160
969.534
1
.012
ELEMENT
NO
18
IS
A TRANSITION
U/S DATA
STATION
INVERT
SECT
N
808.160
970.085
6
.012
ELEMENT
NO
19
IS
A REACH
U/S DATA
STATION
INVERT
SECT
N
818.750
970.500
6
.012
ELEMENT
NO
20
IS
A JUNCTION
U/S DATA
STATION
INVERT
SECT LAT -1 LAT -2
N
Q3
821.750
971.025
4 5 0
.012
18.250
ELEMENT
NO
21
IS
A REACH
U/S DATA
STATION
INVERT
SECT
N
824.750
971.030
4
.012
ELEMENT
NO
22
IS
A SYSTEM HEADWORKS
U/S DATA
STATION
INVERT
SECT
824.750
971.030
4
W S P G W
WATER SURFACE
PROFILE
ELEMENT CARD LISTING
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
45.000
0
Q4
INVERT -3 INVERT
-4
PHI 3 PHI 4
.000
967.300
.000
90.000
.000
RADIUS
ANGLE
.000
.000
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
45.000
0
PAGE NO
3
RAI)IUS
ANGLE
ANG PT
MAN H
.000
.000
.000
0
Q4
INVERT -3 INVERT -4
PHI 3 PHI 4
.000
968.660
.000
90.000
.000
RADIUS
ANGLE
.000
.000
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
45.000
0
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
45.000
0
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
45.000
0
RADIUS
ANGLE
.000
.000
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
-90.000
0
Q4
INVERT -3 INVERT -4
PHI 3 PHI 4
.000
971.720
.000
90.000
.000
RADIUS
ANGLE
1.910
-90.000
RADIUS
ANGLE
ANG PT
MAN H
.000
.000
-90.000
0
W
S ELEV
971.030
PAGE NO
4
4 ....... ............ IMF
FILE: LINE-B.WSW
W S P
G W -
CIVILDESIGN Version
14.06
PAGE 1
Program
Package Serial
Number:
1585
WATER
SURFACE PROFILE LISTING
Date: 1-25-2007
Time:
8:41:40
HYDRAULIC ANALYSIS FOR STORM
DRAIN IN THE
NORTH EASTERN PORTION
BUILDING B,
JURUPA BUSINESS
PARK, W.O.
06-0386
LINE B (WESTERN PORTION
OF
THE BUILDING); LINE
B.OUT;
TD; 01/23/07
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticalIFlow
ToplHeight/lBase
Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
IDia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem ICh
Slope I
I
I
SF Avel
HF ISE DpthIFroude
NINorm
Dp
I 'IN" I
X-Fallj
ZR
IType Ch
100.000
962.100
3.600
965.700
59.00
8.35
1.08
966.78
.00
2.48
.00
3.000
.000
.00
1 .0
2.545
.0264
.0078
.02
3.60
.00
1.58
.013
.00
.00
PIPE
102.545
962.167
3.565
965.732
59.00
8.35
1.08
966.81
.00
2.48
.00
3.000
.000
.00
1 .0
HYDRAULIC
JUMP
102.545
962.167
1.651
963.818
59.00
14.80
3.40
967.22
.00
2.48
2.98
3.000
.000
.00
1 .0
37.570
.0264
.0217
.82
1.65
2.26
1.58
.013
.00
.00
PIPE
140.115
963.158
1.699
964.85B
59.00
14.28
3.17
968.02
.00
2.48
2.97
3.000
.000
.00
1 .0
31.895
.0264
.0195
.62
1.70
2.13
1.58
.013
.00
.00
PIPE
172.010
964.000
1.768
965.768
59.00
13.61
2.88
968.65
.00
2.48
2.95
3.000
.000
.00
1 .0
13.039
.0252
.0150
.20
1.77
1.98
1.52
.012
.00
.00
PIPE
185.049
964.329
1.817
966.146
59.00
13.17
2.69
968.84
.00
2.48
2.93
3.000
.000
.00
1 .0
14.491
.0252
.0135
.20
1.82
1.88
1.52
.012
.00
.00
PIPE
199.540
964.695
1.892
966.587
59.00
12.56
2.45
969.04
.00
2.48
2.90
3.000
.000
.00
1 .0
10.762
.0252
.0120
.13
1.89
1.74
1.52
.012
.00
.00
PIPE
210.302
964.967
1.972
966.939
59.00
11.97
2.23
969.16
.00
2.48
2.85
3.000
.000
.00
1 .0
8.046
.0252
.0107
.09
1.97
1.60
1.52
.012
.00
.00
PIPE
218.348
965.170
2.057
967.227
59.00
11.42
2.02
969.25
.00
2.48
2.79
3.000
.000
.00
1 .0
5.840
.0252
.0095
.06
2.06
1.48
1.52
.012
.00
.00
PIPE
F
FILE:
LINE-B.WSW
W S P
G W - CIVILDESIGN Version
14.06
PAGE 2
Program
Package Serial
Number: 1585
WATER SURFACE PROFILE
LISTING
Date: 1-25-2007
Time:
8:41:40
HYDRAULIC ANALYSIS FOR STORM
DRAIN IN THE
NORTH EASTERN PORTION
BUILDING B,
JURUPA BUSINESS
PARK, W.O.
06-0386
LINE B (WESTERN PORTION
OF THE BUILDING); LINE
B.OUT;
TD; 01/23/07
Invert
Depth
water
Q
Vel Vel I
Energy I
Super
ICriticaljFlow
ToplHeight/lBase
Wtj
INo Wth
Station
I
Elev
(FT)
Elev
(CFS) I
(FPS) Head I
Grd.El.1
Elev
I Depth
I Width
jDia.-FTjor
I.D.1
ZL
jPrs/Pip
L/Elem
ICh
Slope I
I
I I
SF Avel
HF ISE
DpthIFroude
NINorm
Dp
I "N"
I X-Fallj
ZR
IType Ch
224.188
965.317
2.149
967.466
59.00
10.88 1.84
969.31
.00
2.48
2.70
3.000
.000
.00
1 .0
4.014
.0252
.0085
.03
2.15
1.35
1.52
.012
.00
.00
PIPE
228.202
965.419
2.249
967.668
59.00
10.38 1.67
969.34
.00
2.48
2.60
3.000
.000
.00
1 .0
2.443
.0252
.0076
.02
2.25
1.24
1.52
.012
.00
.00
PIPE
230.645
965.480
2.358
967.838
59.00
9.90 1.52
969.36
.00
2.48
2.46
3.000
.000
.00
1 .0
.785
.0252
.0069
.01
2.36
1.12
1.52
.012
.00
.00
PIPE
231.430
965.500
2.483
967.983
59.00
9.43 1.38
969.36
.00
2.48
2.27
3.000
.000
.00
1 .0
TRANS
STR
.0008
.0002
.00
2.48
1.00
.013
.00
.00
PIPE
237.430
965.505
4.198
969.703
59.00
1.24 .02
969.73
.00
.67
27.00
2.500
27.000
.00
4 2.0
43.000
.0001
.0002
.01
4.20
.17
2.42
.013
.00
.00
BOX
280.430
965.510
4.204
969.714
59.00
1.24 .02
969.74
.00
.67
27.00
2.500
27.000
.00
4 2.0
TRANS
STR
.0067
.0002
.00
4.20
.17
.013
.00
.00
BOX
283.430
965.530
4.196
969.726
59.00
.97 .01
969.74
.00
.57
32.25
2.500
32.250
.00
4 2.0
168.000
.0001
.0001
.02
4.20
.13
1.88
.013
.00
.00
BOX
451.430
965.550
4.194
969.744
59.00
.97 .01
969.76
.00
.57
32.25
2.500
32.250
.00
4 2.0
TRANS
STR
.0060
.0034
.02
4.19
.13
.012
.00
.00
BOX
456.430
965.580
3.647
969.227
59.00
8.35 1.08
970.31
.00
2.48
.00
3.000
.000
.00
1 .0
5.000
.0040
.0067
.03
3.65
.00
3.00
.012
.00
.00
PIPE
FILE: LINE-B.WSW
W S P
G W -
CIVILDESIGN Version 14.06
PAGE 3
Program
Package Serial Number: 1585
WATER
SURFACE PROFILE
LISTING
Date: 1-25-2007
Time:
8:41:40
HYDRAULIC ANALYSIS
FOR STORM DRAIN IN THE
NORTH EASTERN PORTION
BUILDING B,
JURUPA BUSINESS PARK, W.O.
06-0386
LINE B (WESTERN PORTION
OF
THE BUILDING);
LINE
B.OUT;
TD; 01/23/07
Invert
Depth Water Q
Vel
Vel I
Energy
I super ICriticalIFlow
ToplHeight/lBase
Wtj
INo, Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.1
Elev
I Depth
I Width
IDia.-FTIor
I.D.1
ZL
jPrs/Pip
L/Elem ICh
Slope I
I
I
SF Avel
HF
ISE Dpt1jIFroude
NINorm
Dp
I --N"
I X-Fallj
ZR
IType Ch
461.430
965.600
3.821
969.421
59.00
8.35
1.08
970.50
.00
2.48
.00
3.000
.000
.00
1 .0
38.090
.0200
.0067
.25
3.82
.00
1.64
.012
.00
.00
PIPE
499.520
966.360
3.476
969.836
59.00
8.35
1.08
970.92
.00
2.48
.00
3.000
.000
.00
1 .0
JUNCT STR
.0128
.0049
.02
3.48
.00
.012
.00
.00
PIPE
504.520
966.424
4.575
970.999
40.60
5.74
.51
971.51
.00
2.07
.00
3.000
.000
.00
1 .0
33 .090
.0129
.0032
.10
4.58
.00
1.49
.012
.00
.00
PIPE
537.610
966.850
4.330
971.180
40.60
5.74
.51
971.69
.00
2.07
.00
3.000
.000
.00
1 .0
47.260
.0101
.0032
.15
4.33
.00
1.60
.012
.00
.00
PIPE
584.870
967.328
4.001
971.329
40.60
5.74
.51
971.84
.00
2.07
.00
3.000
.000
.00
1 .0
JUNCT STR
.0100
.0033
.02
4.00
.00
.013
.00
.00
PIPE
589.870
967.378
4.164
971.542
36.50
5.16
.41
971.96
.00
1.96
.00
3.000
.000
.00
1 .0
108.010
.0100
.0026
.28
4.16
.00
1.51
.012
.00
.00
PIPE
697.880
968.460
3.419
971.879
36.50
5.16
.41
972.29
.00
1.96
.00
3.000
.000
.00
1 .0
28.280
.0099
.0026
.07
3.42
.00
1.51
.012
.00
.00
PIPE
726.160
968.740
3.273
972.013
36.50
5.16
.41
972.43
.00
1.96
.00
3.000
.000
.00
1 .0
43.118
.0103
.0025
.11
3 .27
.00
1.50
.012
.00
.00
PIPE
769.278
969.185
3.000
972.185
36.50
5.16
.41
972.60
.00
1.96
.00
3.000
.000
.00
1 .0
12.934
.0103
.0024
.03
3.00
.00
1.50
.012
.00
.00
PIPE
FILE: LINE-B.WSW
W S P
G W -
CIVILDESIGN Version
14.06
PAGE 4
Program
Package Serial Number: 1585
WATER
SURFACE PROFILE LISTING
Date: 1-25-2007
Time:
8:41:40
HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE
NORTH EASTERN PORTION
BUILDING B,
JURUPA BUSINESS
PARK, W.O.
06-0386
LINE B (WESTERN PORTION
OF THE BUILDING); LINE - B.OUT;
TD; 01/23/07
Invert
Depth
Water
Q
Vel
Vel I
Energy I
super ICriticalIFlow
ToplHeight/lBase wtj
INQ Wth
Station I
Elev
(FT)
Elev
(CPS) I
(FPS)
Head I
Grd.El.1
Elev I
Depth I
Width
IDia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem ICh
Slope
I
SP Avel
HF ISE DpthIFroude
NINorm
Dp
I 'IN" I
X-Fallj
ZR
IType Ch
782.211
969.318
2.886
972.204
36.50
5.23
.42
972,63
.00
1.96
1.15
3.000
.000
.00
1 .0
HYDRAULIC
JUMP
'182.211
969.318
1.296
970.614
36.50
12.48
2.42
973.03
.00
1.96
2.97
3.000
.000
.00
1 .0
20.949
.0103
.0179
.38
1.30
2.22
1.50
.012
.00
.00
PIPE
803.160
969.534
1.259
970.793
36.50
12.97
2.61
973.40
.00
1.96
2.96
3.000
.000
.00
1 .0
TRANS STR
.1102
.0156
.08
1.26
2.34
.012
.00
.00
PIPE
808.160
970.085
1.603
971.688
36.50
10.98
1.87
973.56
.00
2.05
2.40
2.500
.000
.00
1 .0
1.555
.0392
.0120
.02
1.60
1.64
1.12
.012
.00
.00
PIPE
809.715
970.146
1.629
971.775
36.50
10.77
1.80
973.58
.00
2.05
2.38
2.500
.000
.00
1 .0
3 . 333
.0392
.0110
.04
1.63
1.59
1.12
.012
.00
.00
PIPE
B13.048
970.277
1.699
971.976
36.50
10.27
1.64
973.61
.00
2.05
2.33
2.500
.000
.00
1 .0
2.484
.0392
.0098
.02
1.70
1.47
1.12
.012
.00
.00
PIPE
815.532
970.374
1.775
972.149
36.50
9.79
1.49
973.64
.00
2.05
2.27
2.500
.000
.00
1 .0
1.789
.0392
.0088
.02
1.78
1.35
1.12
.012
.00
.00
PIPE
817.321
970.444
1.856
972.300
36.50
9.34
1.35
973.65
.00
2.05
2.19
2.500
.000
.00
1 .0
1.056
.0392
.0079
.01
1.86
1.23
1.12
.012
.00
.00
PIPE
818.377
970.485
1.946
972.432
36.50
8.90
1.23
973.66
.00
2.05
2.08
2.500
.000
.00
1 .0
.373
.0392
.0071
.00
1.95
1.12
1.12
.012
.00
.00
PIPE
FILE: LINE-B.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 5
Program Package Serial Number: 1585
WATER SURFACE P90FILE LISTING Date: 1-25-2007 Time: 8:41:40
HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION
BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386
LINE B (WESTERN PORTION OF THE BUILDING); LINE B.OUT; TD; 01/23/07
Invert Depth water Q Vel Vel I Energy I Super ICriticalIFlow TopiHeight/lBase Wtj INo Wth
Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I width IDia.-FTIor I.D.1 ZL IPrs/Pip
LjElem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch
818.750 970.500 2.047 972.547 36.50 8.48 1.12 973.66 2.50 2.05 1.93 2.500 000 00 1 .0
JUNCT STR 1750 .0062 .02 2.50 1.00 .012 .00 00 PIPE
821.750 971.025 3.240 974.265 18.25 5.81 52 974.79 00 1.54 00 2.000 000 00 1 .0
3.000 0017 .0055 .02 3.24 .00 2.00 .012 .00 00 PIPE
824.750 971.030 3.407 974.437 18.25 5.81 .52 974.96 .00 1.54 .00 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
i;4
K 71��*'lll III
Tl HYDRAULIC ANALYSIS
FOR STORM DRAIN IN THE NORTH EASTERN PORTION 0
T2 BUILDING B,
JURUPA
BUSINESS PARK, W.O. 06-0386
T3 LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE_B-1.OUT
so 499.520
966.860
1 971.000
* 563.430
968.200
1 .012
.000 45.000 0
* 762.810
971.000
1 .012
.000 -45.000 0
TS 772.710
971.220
2 .012
.000
R 775.710
971.745
2 .012
.000 -45.000 0
SH 781.710
971.770
2 974.770
CD 1 4 1
.000
2.000 .000 .000 .000 .00
CD 2 4 1
.000
1.500 .000 .000 .000 .00
Q 18.500
.0
FILE: LINE-B-1.WSW
W S P G W - EDIT LISTING
- Version 14.06
Date: 1-25-2007
Time: 8:56:56
WATER SURFACE PROFILE -
CHANNEL DEFINITION LISTING
PAGE
1
CARD SECT
CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR
INV Y(l) Y(2) Y(3) Y(4)
Y(5) Y(6)
Y(7) Y(8) Y(9) Y(10)
CODE NO
TYPE PIER/PIP WIDTH DIAMETER WIDTH
DROP
CD 1
4
1 2.000
CD 2
4
1 1.500
W S P G
W
PAGE NO
1
WATER SURFACE PROFILE - TITLE CARD
LISTING
HEADING LINE
NO 1 IS
-
HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION
HEADING LINE
NO 2 IS
-
BUILDING B, JURUPA BUSINESS PARK,
W.O. 06-0386
HEADING LINE
NO 3 IS
-
LINE B-1 (WESTERN PORTION OF THE
BUILDING); 01/23/07; TD; LINE-B-1.OUT
W S P G
W
PAGE NO
2
WATER SURFACE PROFILE ELEMENT CARD LISTING
ELEMENT NO
1 IS A
SYSTEM OUTLET
U/S DATA STATION INVERT SECT
W
S ELEV
499.520 966.860 1
971.000
ELEMENT NO
2 IS A
REACH
U/S DATA STATION INVERT SECT
N
RADIUS
ANGLE
ANG PT
MAN H
563.430 968.200 1
.012
.000
.000
45.000
0
ELEMENT NO
3 IS A
REACH
U/S DATA STATION INVERT SECT
N
RADIUS
ANGLE
ANG PT
MAN H
762.810 971.000 1
.012
.000
.000
-45.000
0
ELEMENT NO
4 IS A
TRANSITION
U/S DATA STATION INVERT SECT
N
RADIUS
ANGLE
772.710 971.220 2
.012
.000
.000
ELEMENT NO
5 IS A
REACH
U/S DATA STATION INVERT SECT
N
RADIUS
ANGLE
ANG PT
MAN H
775.710 971.745 2
.012
.000
.000
-45.000
0
ELEMENT NO
6 IS A
SYSTEM HEADWORKS
U/S DATA STATION INVERT SECT
W
S ELEV
781.710 971.770 2
974.770
FILE: LINE-B-1.WSW
W S P
G W - CIVILDESIGN Version
14.06
PAGE 1
Program
Package Serial
Number: 1585
WATER
SURFACE PROFILE LISTING
Date: 1-25-2007 Time:
8:56:59
HYDRAULIC ANALYSIS FOR STORM DRAIN
IN THE
NORTH EASTERN PORTION
BUILDING B,
JURUPA BUSINESS
PARK,
W.O.
06-0386
LINE B-1
(WESTERN PORTION OF
THE BUILDING); 01/23/07;
TD; LINE
B-1.OUT
Invert
Depth
water
Q
Vel
Vel I
Energy I
super
ICriticalIFlow
ToplHeight/lBase
Wtj
INo Wth
Station I
Elev
(FT)
Elev
(CFS) I
(FPS)
Head I
Grd.El.I
Elev
I Depth
I width
IDia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem ICh
Slope
I I
I I
SF Avel
HF ISE DpthIFroude
NINorm
Dp
I 'IN"
I X-Fallj
ZR
IType Ch
499.520
966.860
4.140
971.000
18.50
5.89
.54
971.54
.00
1.55
.00
2.000
.000
.00
1 .0
63.910
.0210
.0057
.36
4.14
.00
1.03
.012
.00
.00
PIPE
563.430
968.200
3.244
971.444
18.50
5.89
.54
971.98
.00
1.55
.00
2.000
.000
.00
1 .0
135.204
.0140
.0057
.77
3.24
.00
1.16
.012
.00
.00
PIPE
698.634
970.099
2.183
972.282
18.50
5.89
.54
972.82
.00
1.55
.00
2.000
.000
.00
1 .0
HYDRAULIC
JUMP
698.634
970.099
1.049
971.147
18.50
11.09
1.91
973.06
.00
1.55
2.00
2.000
.000
.00
1 .0
11.005
.0140
.0198
.22
1.05
2.14
1.16
.012
.00
.00
PIPE
709.639
970.253
1.036
971.289
18.50
11.25
1.97
973.26
.00
1.55
2.00
2.000
.000
.00
1 .0
21.145
.0140
.0215
.46
1.04
2.19
1.16
.012
.00
.00
PIPE
730.784
970.550
.998
971.548
18.50
11.80
2.16
973.71
.00
1.55
2.00
2.000
.000
.00
1 .0
17.207
.0140
.0245
.42
1.00
2.35
1.16
.012
.00
.00
PIPE
747.991
970.792
.961
971.753
18.50
12.38
2.38
974.13
.00
1.55
2.00
2.000
.000
.00
1 .0
14.819
.0140
.0278
.41
.96
2.52
1.16
.012
.00
.00
PIPE
762.810
971.000
.927
971.927
18.50
12.98
2.62
974.54
.00
1.55
1.99
2.000
.000
.00
1 .0
TRANS STR
.0222
.0296
.29
.93
2.71
.012
.00
.00
PIPE
772.710
971.220
1.160
972.380
18.50
12.62
2.47
974.85
.00
1.46
1.26
1.500
.000
.00
1 .0
.864
.1750
.0286
.02
1.16
2.06
.65
.012
.00
.00
PIPE
A
FILE: LINE-B-1.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 2
Program Package Serial Number: 1585
WATER SURFACE PROFILE LISTING Date: 1-25-2007 Time: 8:56:59
HYDRAULIC ANALYSIS FOR STORM DRAIN IN THE NORTH EASTERN PORTION
BUILDING B, JURUPA BUSINESS PARK, W.O. 06-0386
LINE B-1 (WESTERN PORTION OF THE BUILDING); 01/23/07; TD; LINE B-1.OUT
Invert Depth water Q Vel Vel I Energy I super ICriticalIFlow ToplHeight/lBase Wtj INo Wth
Station I Elev (FT) Elev (CPS) I (FPS) Head I Grd.El.j Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip
L/Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I 'IN" I X-Fallj ZR IType Ch
773.574 971.371 1.202 972.573 18.50 12.18 2.31 974.88 .00 1.46 1.20 1.500 .000 .00 1 .0
.972 .1750 .0263 .03 1.20 1.91 .65 .012 .00 .00 PIPE
774.547 971.541 1.267 972.808 18.50 11.62 2.10 974.90 .00 1.46 1.09 1.500 .000 .00 1 .0
.753 .1750 .0242 .02 1.27 1.69 .65 .012 .00 .00 PIPE
775.299 971.673 1.344 973.017 18.50 11.08 1.91 974.92 .00 1.46 .92 1.500 .000 .00 1 .0
.411 .1750 .0233 .01 1.34 1.45 .65 .012 .00 .00 PIPE
775.710 971.745 1.456 973.201 18.50 10.56 1.73 974.93 .00 1.46 .51 1.500 .000 .00 1 .0
781.710 971.770 1.456 973.226 18.50 10.56 1.73 974.96 .00 1.46 .51 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
H
ICATCH BASIN AND INLET SIZING CALCULATIONS
d
H
H
d
H
H -VT
ALBERT A.WEBBASSOCIATES
I
I
I
I
F"
N
U
I
I
I
I
W.O. 2006-0386
Storm Drain Inlets Design at Selected Nodes - Building B
Discharge Coefficient, C 0.6
Clogging Factor*, f 0.5
Gravity Acceleration, g 32.2
Inlet #
Node #
on Hydrology
map
Design
Storm
(CFS)
Length
(FT)
Width
(FT)
Number
of
Inlets
(Gross
Area
SO. FT
Grate Opening
Area
(%)
Ponding
Depth
(FT)
0i00
3, 4& 16
36.5
3
2
3
18
50
0.7
5 & 6
34
18.5
3
2
2
12
50
0.4
010
3, 4 & 16
31
24
2
3
18
50
0.3
5&6
34
12.2
3
2
2
12
50
0.2
Used Orifice Formula:
Q 2
2 gC2 A 2f2
Inlets #10 is a catch basin at Node 32 per Hydrology map. Please refer to the sizing
calculation in this section.
HYDRAULIC ROUTING FOR LINE B SYSTEM
STORmTECH CHAMBER (LINE B AND B- 1)
ALBERT A.WEBBASSOCIATES
ROUTBLDB.out
FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 2004
Study date: 01/19/07
Graph values: III= unit inflow; 1.01=outflow at time shown
---------------------------------------------------------------------
Time Inflow Outflow Storage Depth
(Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.)
---------------------------------------------------------------------
depth -outflow -storage data
----
HYDRAULIC ROUTING OF PROPOSED STORMTECH CHAMBERS DURING A 100 -YEAR
0.010
STORM EVENT FOR DEVELOPED CONDITION
---------------------
of inflow
JURRUPA BUSINESS PARK, W.O. 06-0386
intervals =
BUILDING B; ROUTBLDB.OUT; TD 19 JAN 07
--------------------------------------------------------------------
0.48
Program License Serial Number 4010
unit =
--------------------------------------------------------------------
HYDROGRAPH INFORMATION ...
From study/file name: BLDA.rte
3.38
****************************HYDROGRAPH
in storage
Number of* intervals = 101
0.00(Ft.)
Time interval = 15.0 (Min.)
1.000
Maximum/Peak flow rate = 35.605 (CFS)
depth =
Total volume = 11.716 (Ac.Ft)
0 1
Status of hydrographs being held in storage
Stream I Stream 2 Stream 3 Stream 4 Stream 5
storage
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
(Ac.Ft)
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
2.55
......................................................................
outflow
Process from Point/Station 14.000 to Point/Station 1S.000
0.91
**** RETARDING BASIN ROUTING ****
Graph values: III= unit inflow; 1.01=outflow at time shown
---------------------------------------------------------------------
Time Inflow Outflow Storage Depth
(Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.)
user entry of
depth -outflow -storage data
----
0.10
0.010
---- ----- --
Total number
---------------------
of inflow
hydrograph
intervals =
101
0.48
Hydrograph time
unit =
15.000 (Min.)
0.750
3.38
Initial depth
--------------------------------------------------------------------
in storage
basin =
0.00(Ft.)
1.000
--------------------------------------------------------------------
Initial basin
depth =
0.00 (Ft.)
0 1
1.84
Initial basin
storage
= 0.00
(Ac.Ft)
0 1
2.55
Initial basin
---------------------------------------------------------------------
outflow
= 0.00 (CFS)
0.91
0.262
--------------------------------------------------------------------
Depth vs. Storage
and
Depth vs. Discharge data:
1.750
Ba*sin Depth
(Ft.)
Storage
(Ac.Ft)
Outflow
(CFS)
(S-O*dt/2)
(Ac.Ft)
(S+O*dt/2)
(Ac.Ft)
---------------------------------------------------------------------
0.000
0.000
0.000
0.000
0.000
4.58
1.000
0.080
0.800
0.072
0.088
10 1
2.000
0.170
0.850
0.161
0.179
0.446
3.000
0.240
0.900
0.231
0.249
4.000
0.320
0.950
0.310
0.330
5.000
0.400
1.200
0.388
0.412
6.000
0.450
2.500
0.424
0.476
7.500
0.530
40.000
0.117
0.943
---------------------------------------------------------------------
----------
Hydrograph
---------
Detention
--------------------------------
Basin Routing
Graph values: III= unit inflow; 1.01=outflow at time shown
---------------------------------------------------------------------
Time Inflow Outflow Storage Depth
(Hours) (CFS) (CFS) (Ac.Ft) .0 8.9 17.80 26.70 35.60 (Ft.)
0.250
1.10
0.10
0.010
0
0.13
0.500
3.15
0.48
0.048
0 1
0.60
0.750
3.38
0.81
0.102
0 1
1.25
1.000
3.42
0.84
0.1S5
0 1
1.84
1.250
3.45
0.88
0.209
0 1
2.55
1.500
3.48
0.91
0.262
0 1
3.27
1.750
3.51
0.95
0.315
0 1
3.94
2.000
3 .54
1.10
0.367
0 1
4.58
2.250
3.56
1.53
0.413
10 1
5.25
2.500
3.59
2.40
0.446
1 01
5.92
Page 1
H
19-1
j
A
14
I
j
- rl
H
H-
H
ROUTBLDB.out
2.750
3 .62
4 .10
0.453
0
6.06
3.000
3 .65
3 .33
0.452
01
6.03
3.250
3.67
3.88
OAS3
0
6.06
3.500
3.71
3.57
0.452
0
6.04
3.750
3.74
3.82
0.453
0
6.05
4.000
3.77
3.71
0.453
0
6.05
4.250
3.80
3.84
0.453
0
6.05
4.500
3.83
3.81
0.453
0
6.05
4.750
3.87
3.88
0.453
0
6.06
5.000
3.91
3.89
0.453
0
6.06
5.250
3.94
3.95
0.453
0
6.06
5.500
3.98
3.97
0.453
0
6.06
5,750
4.02
4.02
0.453
0
6.06
6.000
4.06
4.06
0.453
0
6.06
6.250
4.10
4.10
0.453
0
6.06
6.500
4.15
4.14
0.454
0
6.07
6.750
4.19
4.19
0.454
0
6.07
7.000
4.24
4.24
0.454
0
6.07
7.250
4.29
4.28
0.454
0
6.07
7.500
4.34
4.33
0.454
0
6.07
7.750
4.39
4.39
OAS4
0
6.08
8.000
4.45
4.44
0.454
0
6.08
8.250
4.51
4.50
0.454
0
6.08
8.500
4.57
4.56
0.454
0
6.08
8.750
4.63
4.62
0.455
0
6.08
9.000
4.70
4.69
0.455
0
6.09
9.250
4.77
4.76
0.455
0
6.09
9.500
4.84
4.83
0.455
0
6.09
9.750
4.92
4.91
0.455
0
6.10
10.000
5.00
4.99
0.455
0
6.10
10.250
5.08
5.07
0.455
0
6.10
10.500
5.18
5.17
0.456
0
6.11
10.750
5.27
5.26
0.456
0
6.11
11.000
5.38
5.36
0.456
0
6.11
11.250
5.49
S.47
0.456
0
6.12
11.500
5.60
5.S9
0.457
0
6.12
11.750
5.73
5.72
0.457
0
6.13
12.000
5.87
5.85
0.457
0
6.13
12.250
5.92
5.92
0.457
o
6.14
12.500
S.91
5.91
0.457
0
6.14
12.750
6.07
6.04
0.458
0
6.14
13.000
6.27
6.25
0.458
0
6.15
13.250
6.49
6.46
0.458
0
6.16
13.500
6.75
6.72
0.459
0
6.17
13.750
7.03
7.00
0.460
0
6.18
14.000
7.37
7.33
0.460
0
6.19
14.250
7.76
7.72
0.461
0
6.21
14.500
8.23
8.18
0.462
01
1
6.23
14.750
8.80
8.74
0.463
01
6.25
15.000
9.52
9.44
0.465
0
6.28
15.250
10.47
10.37
0.467
10
6.31
15.500
11.09
11.05
0.468
10
6.34
15.750
11.57
11.51
0.469
0
6.36
16.000
17.20
16.28
0.479
oil
1 1
6.55
16.250
32.86
30.79
0.510
0 1 1
7.13
16.500
35.60
36.50
0.523
0
7.36
16.750
13.65
16.82
0.481
1 ol
1
6.57
17.000
9.91
8.46
0.463
oi
6.24
17.250
8.48
9.67
0.465
io
6.29
17.SOO
7.S2
6.90
0.459
0
6.18
17.750
6.81
7.34
0.460
0
6.19
18.000
6.31
6.05
0.458
0
6.14
18.250
6.02
6.24
0.458
0
6.15
18.500
5.88
5.75
0.457
0
6.13
18.750
5.62
5.75
0.457
0
6.13
19.000
5.39
5.35
0.456
0
6.11
19.250
5.19
5.25
0.456
0
6.11
19.500
5.01
5.00
OAS5
0
6.10
19.750
4.85
4.89
OAS5
0
6.10
20.000
4.71
4.71
0.455
0
6.09
20.250
4 .58
4 .60
0.454
0
6.08
20.500
4.46
4.46
0.454
0
6.08
20.750
4 .35
4 .36
0.454
0
6.07
21.000
4.2S
4.26
0.454
0
6.07
21.250
4.15
4.17
0.454
0
6.07
21.500
4.07
4.08
0.453
0
6.06
21.750
3.99
4.00
0.453
0
6.06
22.000
3.91
3.92
0.453
0
6.06
22.250
3.84
3.85
0.453
0
6.05
22.500
3.77
3.78
OAS3
0
6.05
22.750
3.71
3.72
0.453
0
6.05
23.000
3.65
3.66
0.452
0
6.05
Page
2
Remaining water in basin = 0.01 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 127
Time interval = 15.0 (Min.)
Maximum/Peak flow rate = 36.499 (CFS)
Total volume = 11.709 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
--------------------------------------------------------------------
Page 3
ROUTBLDB.out
23.250 3.59 3 .60 0.452 0
6.04
23.500 3.54 3.54 0.452 0
6.04
23.750 3.49 3.49 0.452 0
6.04
24.000 3.44 3.44 0.452 0
6.04
24.250 2.31 2.50 0.450 0
6.00
24.500 0.25 1.98 0.430 10
5.60
24.750 0.03 1.20 0.400 10
5.00
25.000 0.01 1.13 0.376 10
4.71
25.250 0.01 1.06 0.354 0
4.43
25.500 0.00 0.99 0.333 0
4.16
25.750 0.00 0.95 0.313 0
3.91
26.000 0.00 0.93 0.294 0
3.67
26.250 0.00 0.92 0.274 0
3.43
26.500 0.00 0.91 0.256 0
3.19
26.750 0.00 0.90 0.237 0
2.96
27.000 0.00 0.88 0.218 0
2.69
27.250 0.00 0.87 0.200 0
2.43
27.500 0.00 0.86 0.182 0
2.18
27.750 0.00 0.85 0.165 0
1.94
28.000 0.00 0.84 0.147 0
1.75
28.250 0.00 0.83 0.130 0
1.56
28.500 0.00 0.82 0.113 0
1.37
28.750 0.00 0.81 0.096 0
1.18
29.000 0.00 0.80 0.080 0
1.00
29.250 0.00 0.65 0.065 0
0.81
29.500 0.00 0.53 0.053 0
0.66
29.750 0.00 0.43 0.043 0
0.54
30.000 0.00 0.3S 0.035 0
0.44
30.250 0.00 0.28 0.028 0
0.35
30.500 0.00 0.23 0.023 0
0.29
30.750 0.00 0.19 0.019 0
0.23
31.000 0.00 0.15 0.015 0
0.19
31.250 0.00 0.12 0.012 0
0.15
31.500 0.00 0.10 0.010 0
0.13
31.750 0.00 0.08 0.008 0
0.10
Remaining water in basin = 0.01 (Ac.Ft)
****************************HYDROGRAPH DATA****************************
Number of intervals = 127
Time interval = 15.0 (Min.)
Maximum/Peak flow rate = 36.499 (CFS)
Total volume = 11.709 (Ac.Ft)
Status of hydrographs being held in storage
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Peak (CFS) 0.000 0.000 0.000 0.000 0.000
Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000
--------------------------------------------------------------------
Page 3
di
H
I
H
blda. out
U n i t H y d r o g r a p h A n a 1 y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 01/19/07
........................................................................
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
San Bernardino County Synthetic Unit Hydrology Method
Manual date - August 1986
Program License Serial Number 4010
---------------------------------------------------------------------
UNIT HYDROGRAPH ANALYSIS FOR DEVELOPED CONDITION
BUILIND B - FOR SUBAREAS THAT DRAIN TO STORMTECH CHAMBERS
01/19/07
W.O. 06-0386 TD
--------------------------------------------------------------------
Storm Event Year = 100
Antecedent Moisture Condition = 3
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
Area averaged rainfall intensity isohyetal data:
Sub -Area Duration Isohyetal
(Ac.) (hours) (In)
Rainfall data for year 100
19.30 1 1.35
--------------------------------------------------------------------
Rainfall data for year 100
19.30 6 3.60
-------- ---- --- ---- ---
Rainfall data for year 100
19.30 24 8.00
--------------------------------------------------------------------
....................................................................
******** Area -averaged max loss rate, Fm ********
SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm
No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr)
32.0 52.0 19.30 1.000 0.785 0.100 0.079
Area -averaged adjusted loss rate Fm (In/Hr).= 0.079
********* Area -Averaged low loss rate fraction, Yb
Area Area SCS CN SCS CN S Pervious
(Ac.) Fract (AMC2) (AMC3) Yield Fr
1.93 0.100 32.0 52.0 9.23 0.308
17.37 0.900 98.0 98.0 0.20 0.970
Area -averaged catchment yield fraction, Y = 0.904
Area -averaged low loss fraction, Yb 0.096
User entry of time of concentration 0.217 (hours)
....................................................................
Watershed area = 19.30(Ac.)
Catchment Lag time 0.174 hours
Unit interval = 15.000 minutes
Unit interval percentage of lag time = 144.0092
Hydrograph baseflow = 0.00(CFS)
Average maximum watershed loss rate(Fm) = 0.079(In/Hr)
Average low loss rate fraction (Yb) = 0.096 (decimal)
VALLEY DEVELOPED S -Graph proportion = 0.900
VALLEY UNDEVELOPED S -Graph proportion = 0.100
FOOTHILL S -Graph proportion = 0.000
MOUNTAIN S -Graph proportion = 0.000
Page 1
H
H
H
I Ll
H
L�ld
H
H
H-1
H
H
0
blda. out
DESERT S -Graph proportion = -0.000
computed peak 5 -minute rainfall 0.500(In)
computed peak 30 -minute rainfall 1.023(In)
Specified peak 1 -hour rainfall = 1.350(In)
Computed peak 3 -hour rainfall = 2.463(In)
Specified peak 6 -hour rainfall = 3.600(In)
Specified peak 24-hour rainfall 8.000(In)
Rainfall depth area reduction factors:
using a total area of 19.30(Ac.) (Ref: fig. E-4)
5 -minute factor
0.999
Adjusted
rainfall =
0.499(In)
30 -minute factor
0.999
Adjusted
rainfall =
1.022(In)
1 -hour factor =
0.999
Adjusted
rainfall =
1.349(In)
3 -hour factor =
1.000
Adjusted
rainfall =
2.463(In)
6 -hour factor =
1.000
Adjusted
rainfall =
3.600(In)
24-hour factor =
---------------------------------------------------------------------
1.000
Adjusted
rainfall =
8.000(In)
U n i t H y d r o g r a p h
.....................................................................
Interval IS' Graph Unit Hydrograph
Number Mean values ((CFS))
Page 2
(K =
77.80 (CFSH
1
32.376
25.190
2
92.802
47.013
3
99.068
4.875
4
99.575
0.394
5
99.840
0.206
6
100.000
0.125
---------------------------------------------------------------------
Peak Unit
Adjusted mass
rainfall Unit rainfall
Number
(In)
(In)
1
0.7747
0.1160
2
1.0222
0.0719
3
1.2022
0.0553
4
1.3488
0.0461
5
1.5243
0.0566
6
1.6845
0.0520
7
1.8330
0.0484
8
1.9722
0.0455
9
2.1037
0.0431
10
2.2288
0.0410
11
2.3483
0.0393
12
2.4630
0.0377
13
2.5733
0.0363
14
2.6799
0.0351
15
2.7831
0.0340
16
2.8832
0.0330
17
2.9805
0.0321
18
3.0752
0.0313
19
3.1676
0.0305
20
3.2578
0.0298
21
3.3460
0.0292
22
3.4323
0.0286
23
3.5169
0.0280
24
3.5998
0.0275
25
3.6854
0.0284
26
3.7696
0.0279
27
3.8525
0.0275
28
3.9340
0.0270
29
4.0144
0.0266
30
4.0935
0.0263
31
4.1716
0.0259
32
4.2486
0.0255
33
4.3246
0.0252
34
4.3996
0.0249
35
4.4737
0.0246
36
4.5468
0.0243
37
4.6192
0.0240
38
4.6907
0.0237
39
4.7614
0.023S
40
4.8313
0.0232
41
4.9005
0.0230
42
4.9690
0.0228
43
5.0369
0.0225
44
5.1040
0.0223
45
5.1705
0.0221
Page 2
H
H
j
11
H
r-7 I
U
H,
H
FIT
Page 3
blda.out
46
5.2364
0.0219
47
5.3017
0.0217
48
5.3663
0.0215
49
5.4305
0.0213
50
S.4940
0.0211
51
5.5570
0.0210
52
5.6196
0.0208
53
5.6816
0.0206
54
5.7431
0.0204
55
5.8041
0.0203
56
5.8646
0.0201
57
5.9247
0.0200
58
5.9844
0.0198
59
6.0436
0.0197
60
6.1024
0.0196
61
6.1608
0.0194
62
6.2188
0.0193
63
6.2763
0.0192
64
6.3335
0.0190
65
6.3904
0.0189
66
6.4468
0.0188
67
6.5029
0.0187
68
6.5586
0.0185
69
6.6140
0.0184
70
6.6690
0.0183
71
6.7238
0.0182
72
6.7782
0.0181
73
6.8322
0.0180
74
6.8860
0.0179
75
6.9394
0.0178
76
6.9926
0.0177
77
7.0454
0.0176
78
7.0980
0.0175
79
7.1503
0.0174
80
7.2023
0.0173
81
7.2540
0.0172
82
7.3054
0.0171
83
7.3566
0.0170
84
7.4075
0.0169
85
7.4582
0.0169
86
7.5086
0.0168
87
7.5588
0.0167
88
7.6087
0.0166
89
7.6584
0.0165
90
7.7079
0.0165
91
7.7571
0.0164
92
7.8061
0.0163
93
7.8548
0.0162
94
7.9034
0.0162
95
7.9517
0.0161
96
7.9998
0.0160
---------------------------------------------------------------------
Unit
Unit
Unit
Effective
Period
Rainfall
Soil -Loss
Rainfall
(number)
(In)
(In)
(In)
---------------------------------------------------------------------
1
0.0481
0.0046
0.0435
2
0.0484
0.0047
0.0438
3
0.0488
0.0047
0.0441
4
0.0491
0.0047
0.0444
5
0.0495
0.0048
0.0447
6
0.0498
0.0048
0.0450
7
0.0502
0.0048
0.0454
8
0.0506
0.0049
0.0457
9
0.0510
0.0049
0.0461
10
0.0513
0.0049
0.0464
11
0.0518
0.0050
0,0468
12
0.0522
0.0050
0.0471
13
O.OS26
0.0051
0.0475
14
0.0530
0.0051
0.0479
15
0.0535
0.0051
0.0483
16
0.0539
0.0052
0.0487
17
0.0544
0.0052
0.0492
18
0.0549
0.0053
0.0496
19
0.0554
0.0053
0.0501
20
0.0559
0.0054
0.0505
21
0.0565
0.0054
0.0511
22
0.0570
0.0055
0.0515
23
0.0576
0.0055
0.0521
24
0.0582
0.0056
0.0526
25
0.0588
0.0057
0.0532
26
0.0595
0.0057
0.0537
Page 3
j
H
H
N
H
J
--------------------------------------------------------------------
Total soil rain loss = 0.71(In)
Total effective rainfall 7.29(In)
Peak flow rate in flood hydrograph = 35.60(CFS)
---------------------------------------------------------------------
....................................................................
24 - H 0 U R S T 0 R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CFS))
Page 4
blda.out
27
0.0601
0.0058
0.0544
28
0.0608
0.0059
0.0550
29
0.0616
0.0059
0.0556
30
0.0623
0.0060
0.0563
31
0.0631
0.0061
0.0570
32
0.0639
0.0061
0.0577
33
0.0648
0.0062
0.0585
34
0.0656
0.0063
0.0593
3S
0.0666
0.0064
0.0602
36
0.0675
0.0065
0.0610
37
0.0686
0.0066
0.0620
38
0.0696
0.0067
0.0629
39
0.0708
0.0068
0.0640
40
0.0720
0.0069
0.0650
41
0.0733
0.0071
0.0662
42
0.0746
0.0072
0.0674
43
0.0761
0.0073
0.0688
44
0.0776
0.0075
0.0701
45
0.0793
0.0076
0.0717
46
0.0810
0.0078
0.0732
47
0.0830
0.0080
0.0750
48
0.0850
0.0082
0.0768
49
0.0831
0.0080
0.0751
50
0.0855
0.0082
0.0773
51
0.0884
0.0085
0.0799
52
0.0914
0.0088
0.0826
53
0.0950
0.0091
0.0859
54
0.0988
0.0095
0.0893
55
0.1035
0.0100
0.0936
56
0.1086
0.0105
0.0982
57
0.1152
0.0111
0.1042
58
0.1225
0.0118
0.1108
59
0.1324
0.0127
0.1196
60
0.1442
0.0139
0.1303
61
0.1619
0.01S6
0.1463
62
0.1533
0.0147
0.1385
63
0.1869
0.0180
0.1689
64
0.3566
0.0196
0.3370
65
0.6587
0.0196
0.6391
66
0.1671
0.0161
0.1510
67
0.1426
0.0137
0.1289
68
0.1215
0.0117
0.1098
69
0.1079
0.0104
0.0975
70
0.0983
0.0095
0.0888
71
0.0910
0.0088
0.0822
72
0.0852
0.0082
0.0770
73
0.0847
0.0081
0.0766
74
0.0808
0.0078
0.0730
75
0.0774
0.0074
0.0699
76
0.0744
0.0072
0.0672
77
0.0718
0.0069
0.0649
78
0.0695
0.0067
0.0628
79
0.0674
0.0065
0.0609
80
0.0655
0.0063
0.0592
81
0.0638
0.0061
0.0576
82
0.0622
0.0060
O.OS62
83
0.0607
0.0058
0.0549
84
0.0594
0.0057
0.0537
85
0.0581
0.0056
0.0525
86
0.0569
0.0055
0.0515
87
0.0559
0.0054
0.0505
88
O.OS48
0.0053
0.0496
89
0.0539
0.0052
0.0487
90
0.0530
0.0051
0.0479
91
0.0521
0.00SO
0.0471
92
0.0513
0.0049
0.0463
93
0.0505
0.0049
0.0456
94
0.0498
0.0048
0.0450
95
0.0491
0.0047
0.0443
96
--------------------------------------------------------------------
0.0484
0.0047
0.0437
--------------------------------------------------------------------
Total soil rain loss = 0.71(In)
Total effective rainfall 7.29(In)
Peak flow rate in flood hydrograph = 35.60(CFS)
---------------------------------------------------------------------
....................................................................
24 - H 0 U R S T 0 R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CFS))
Page 4
blda.out
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft
------
Q(CFS)
---- --
0 10.0
20.0
30.0
40.0
----
0+15
0.0226
1.10 VQ
0+30
0.0877
3.15 V
Q
0+45
0.1575
3.38 V
Q
1+ 0
0.2282
3.42 V
Q
1+1s
0.2996
3.45
V Q
1+30
0.3716
3.48 IV
Q
1+45
0.4441
3.51 IV
Q
2+ 0
0.5172
3.54 IV
Q
2+15
0.5908
3.56
VQ
2+30
0.6649
3.59
VQ
2+45
0.7397
3.62
VQ
3+ 0
0.8150
3.65
VQ
3+15
0.8909
3.67
Q
EA
3+30
0.9675
3.71
Q
3+45
1.0446
3.74
Q
4+ 0
1.1225
3.77
Q
4+15
1.2010
3.80
QV
4+30
1.2803
3.83
QV
4+45
1.3602
3.87
QV
5+ 0
1.4409
3.91
QV
5+15
1.5224
3.94
Q V
5+30
1.6046
3.98
Q V
5+45
1.6877
4.02
QV
6+ 0
1.7716
4.06
Q V
6+15
1.8564
4.10
Q V
6+30
1.9421
4.15
Q V
6+45
2*0287
4,19
Q V
7+ 0
2.1163
4.24
Q V I
7+15
2.2049
4.29
Q V I
7+30
2.2946
4.34
Q V I
7+45
2.3854
4.39
Q V I
8+ 0
2.4773
4.45
Q V I
8+15
2.5704
4.51
Q V I
8+30
2.6648
4.57 1
Q VI
8+45
2.7605
4.63
Q V1
9+ 0
2.8575
4.70
Q VI
9+15
2.9560
4.77
Q V
9+30
3.0560
4.84
Q V
9+45
3.1575
4.92
Q V
10+ 0
3.2608
5.00
Q V
10+15
3.3658
5.08
Q IV
10+30
3.4727
5.18
Q IV
E
10+45
3.5817
5.27
Q I v
11+ 0
3.6927
5.38
Q I v
11+15
3.8060
5.49
Q I V
11+30
3,9218
5,60
Q I V
11+45
4.0403
5.73
Q I v
12+ 0
4.1615
5.87
Q I V
12+15
4.2839
5.92
Q I V
12+30
4.4059
5.91
Q I
v
12+45
4.5313
6.07
Q
V
EA
13+ 0
4.6608
6.27
Q
V
13+15
4.7950
6.49
Q
V I
13+30
4.9344
6.75
Q
V I
13+45
5.0797
7.03
Q
V I
14+ 0
5.2320
7.37
Q
v I
14+15
5.3923
7.76
Q
V I
14+30
S.5623
8.23
Q I
V I
14+45
5.7441
8.80
Q I
VI
15+ 0
5,9408
9.52
QI
V
15+15
6.1572
10.47
Q
V
15+30
6.3863
11.09
IQ
IV
15+45
6.6253
11.57
IQ
I V
16+ 0
6.9808
17.20
Q I v
16+15
7,6598
32,86
V
I Q
16+30
8.3954
35.60
V
I Q
16+45
8.6775
13.65
Q
V1
17+ 0
8.8821
9.91
Q1
V
17+15
9.0574
8.48
Q
V
17+30
9.2127
7.52
Q
IV
17+45
9.3534
6.81
Q
IV
18+ 0
9.4839
6.31
Q
I V
18+15
9.6082
6.02
Q
I V
18+30
9.7296
5.88
Q
I V
18+45
9.8458
5.62
Q
I V
19+ 0
9.9572
5.39
Q
I V
19+15
10.0644
5.19
Q
v
19+30
10.1680
5.01
Q
v
19+45
10.2682
4.85
Q
V
Page 5
d
0
D
u
�L
I Page 6
blda,out
20+ 0 10,3655 4,71
Q
v
20+15 10.4601 4.58
Q
v
20+30 10.5522 4.46
Q
v
20+45 10.6420 4.35
Q
v
21+ 0 10.7298 4.25
Q
v
21+15 10,8156 4*15
Q
V
21+30 10.8996 4.07
Q
v
21+45 10.9820 3.99
Q
v
22+ 0 11.0628 3.91
Q
v
22+15 11.1421 3.84
Q
v
22+30 11.2201 3.77
Q
v
22+45 11.2967 3.71
Q
v
23+ 0 11.3721 3.65
Q
v
23+15 11.4464 3.59
Q
v
23+30 11.5195 3.54
Q
v
23+45 11.5916 3.49
Q
v
24+ 0 11.6626 3.44
Q
v
24+15 11.7103 2.31
Q
v
24+30 11.7153 0.25
Q
v
24+45 11.7160 0.03
Q
v
25+ 0 11.7163 0.01
Q
v
25+15 11.7164 0.01
----- ------- ----
-
v
d
0
D
u
�L
I Page 6
E
I APPENDIX A - LOCATION MAP
H
�111
Ht
E
H
H
�J
p
d
H
h
H
El ALBEPT XWEBBASSOCIATES
H
H
-11
H
17
H
SITE-
-VICINITY MAP
NOT TO SCALE
SECTION 25, TlS, R6W, SBMAO
SAN
BERNARDINO
AVE.
VALLEY
BLVD.
SLOVER
AVE.
U P RAI
LROAD
Li
Li
Li
>
U-1
cr_
Li
Ljj
m
>
<
<
of
SANTA ANA
AVE.
of
a_
0
a-
m
<
cn
LLJ
0
0
__j
:2
L.J
3:
<
—
A
B
C
Lli
>
bi
JURUPA AVE.
7
SITE-
-VICINITY MAP
NOT TO SCALE
SECTION 25, TlS, R6W, SBMAO
I APPENDIX B - REFERENCES
HYDROLOGIC SOILS GROUP MAP FOR SOUTHWEST -A AREA (C-5)
SBFCD VALLEY AREA ISOHYETALS 10 YEAR 1 HOUR (B-3)
SBFCD VALLEY AREA ISOHYETALS 100 YEAR 1 HOUR (B-4)
SOIL PERCOLATION INVESTIGATION
Fi
l,
H
H
H
IALBERT A.WEBBASSOCIATES
--------- --
- ----------
20
D
N
1.
:%
k 0",
..........
4�
M,
A
zn
r
mux
71
V
D
0
:y,
J '_7
"Y
�7 +
A,
A
A
4�
-6 L
L
A
';T 71
F
L A
T
!bb
Z:1:7 Z,
-----------
471,
+A:
A.
21. .4
7
I"i r4 T
Ir
%A�
r
L& -
SOIL GROUP BOUNDARY
A SOIL GROUP DESIGNATION SCALE 1 48,000
C-1 C-2 BOUNDARY OF INDICATED SOURCE
SAN BERNARDINO COUNTY 'k w r) Ir) I A ir enil c M RAAC
SCALE REDUCED BY 1/2
SAN BERNARDINO COUNTY vu
FOR
HYDROLOGY MANUAL C-7 C-8 C-41
INDEX MAP SOUTHWEST -A AREA
C -in ;rlrlipF r.-
WILLEY
R2 Vil
W R W' R I w RIE R2E
REIW� R5 4Y,
3c
T—�4 N
T4N
SKRIA
7
T —T
4� 9
WEST IT
6
N
-7
T-
T3N "T
1.4
N
t
17- It,
e-
1.5
-Z
10 3
- BERNAR
1 2
T2N
--5T2 N
LAKE
10 iVILL
X\
'fp
'\4 If Su ARLO-
r
TN I
CN -
FLATS
ON
I N
r T I N
N.
RO'N
IL TA
L
6PLAND
0
BE IN ADI
R AL
.1 -G-O
C'L CXAW !MA A N A,
FONT
7
2,
TIS
of -f- C TON
REDLANDS
LI DA
its
SAN
CA E ST MON E
ORANI TERRACE 7 -
CHINO SAN RIE
7 1 BERNANDINO OUNTLY R E
-00
RIVIASIDE COUNT
If
T2S
I RSIDE
e I,NC4001
Xb
fag
R4W I R3 R2W
SAN BERNARDINO COUNTY
--7 FLOOD CONTROL DISTRICT
R 5 W-' VALLEY AREA
REDUCED DRAWING ISOHYETALS
T3S SCALE I"= 4 rilLES Yio — 10 YEAR I HOUR
BASED ON U SOC, K0 A.A. ATLAS 2,1973
F I
R2E
T,
IT
9
SAN BERNARDINO COUNTY
to A ArpIvvED By
LO
LEGEND. F QD UUNIRUL
8 w R7W I R6� HYDROLOGY MANUAL ISOLINES PRECIPITATION (INCHESI DAT E I SCALE ILE NOL DRWG
1982 C -2m. WRO-I �3*1 I"
t
L6 1.9
1.7
R
1-30 4W Rlw -7 4
T 4 5 1 1 tIE 121
R 8 R7W R6W 5 --���R 2 w
10 F
EMA
Tw,
—1 2
I.A +
2 WST IT
15
7
cot
—2 A 7-
T
TSN
9 z
It. 1. 3
eXl-
L BE Y)
T
Ep— L
-T -sT 2 N
A40
12 7 17 4 LAKE
14,
- /VS.
.jD
2�4 1.4
2 3
2
2 MA" NO 15-
20 k A
-4
'7
— Is 4 *t,, FLAT$
(4 7
T1 N
64
WAWA yi� 6,
SAN RD,po
P L AU-&�-
DI ;x
TA J/ IN yk 0
I CLAM r RIALT
CUCAWW —S Z,
NTAN
TIE F
ON A 104-1- 1 3 N -7 1
-- EDLANDS �7 I -Is
-JAL-,
ir
1 5!
2-
- Ell
GRANP rtmptAcE YUCAIPA
cHh6io
R2
:OUNT
-13.-00
T2S P
E S I'D E
R
- - - - - - - r%r— �,e
'R I
REGI Y,
.......... Do r
R4W R3 R2W
SAN BERNARDINO COLNTY
—FLOOO CONTROL DISTRICT
- Z -R 5
.00
0 VALLEY AREA
s I REDUCED DRAWING
T3S -
ISOMYETALS
SCALE 1 4 WILES Ymc -100 YEAR I HOUR
15
t 4 BASED ON USDA, KOAA. WLAS 2. WS
A SAN BERNARDINO COUNTY
APPOKNEO 8T
8 w HYDROLOGY MANUAL .6iuxL FLOOD rij WEER
.............................. cl 8 iSOLINES PRECIPITATION (INCHES) DATE (WALK FU "a I OML "a
1982 1 -ROL wm-f 4 .0 02
I
I
I
I
I
I
I
I
I
I
I
I
I
F
I
I
H
CoHmL Incorporated
1355 E. Cooley Drive, Colton, CA 92324 * Phone (909) 824-7210 * Fax (909) 824-7209
15345 Anacapa Road, Suite D, Victorville, CA 92392 * Phone (760) 243-0506 + Fax (760) 243-1225
January 9, 2007
Mr. Dennis Bean
3204 Broad Street
Newport Beach, California 92663
Subject: Soil Percolation Investigation
Jurupa B�isiness Park
Fontana, California
Reference: Geotechnical Investigation
Proposed Jurupa Business Park
Jurupa Avenue
Fontana, California
Report Prepared by C.H.J., Incorporated
Dated June 10, 2005, Job No. 05446-3)
Dear Mr. Bean:
Job No. 061101-2
As requested, we have performed percolation/infiltration testing at the subject site in or6er to evaluate
the infiltration potential of the soils on the site for storrn water disposal. It is our understanding that storrn
,N,ater runoff's proposed to be collected within indi vidual trench drain systems located on the northwest
comer of each of the three blocks and also in the southwest comer of the westerly block, The approxi-
inate location of the Jurupa Business Park is indicated on the attached Index Map (Enclosure "A- I").
It is our understanding that the proposed storm xN ater disposal systern being considered consists ot open -
bottom polN roplylene corrugated wall stom-, \� ater collec, lon chambers. Based on the manufacturer's
Yp
(Ston-ntech) information pro\ ided to our fimi bv Albert A.\Vcbb Associates. we Lindcrstaiid that (lie open
bottom storm Aater chambers are t%pIcall,, ',()= Inches ir helylit and Installed %%ith IS to 96 Inchos of
co-,er. Beneath and arCLind the chambers. th�-- 11�allutacturer recoirmenis �1)1- OfMiS!10.1 I_(1(A_-
GEOTECHNICAL ENGINEERING * MATERIALS TESTING * CONSTRUCTION INSPECTION * ENVIRONMENTAL CONSULTING
__ 'kii., -
Page No.
Job No. O�61101--2
Our percolation tests �vere perfon-ned at depths of approximately 4 to 5 and 6 to 7 feet below the existing
ground surface. Based on the uniformity of soils encountered during the referenced geotechnical
investigation, we anticipate similar conditions and percolation rates at depths of 2 to 40 feet below the
existing ground surface.
I -
Our report is not intended to specify the desig
I gn or manufacturer of the storm water collection chambers.
We do recommend that the installation of chambers be in accordance with the manufacturer's latest
design recommendations.
FIELD INVESTIGATION AND SUBSURFACE SOIL CONDITIONS
Subsurface soils conditions underlying the site were explored duning the referenced geotechnical investi-
gation perforined by our firin. Information obtained from the previous geotechnical investigation
indicated that the upper soils, consisting of silty sand and sandy silt, extended to depths of 5 to 6 feet.
Beneath these upper soils, soils consisting of silty sands and poorly graded sands, some with appreciable
concentrations of gravel to 3) inches in size, were encountered to the maximum depths attained. Soils
encountered in the percolation test pits are classified as poorly graded sands and are generally consistent
with the soils encountered during the referenced investigation.
Neither bedrock nor groundwater was encountered norwas refusal experienced within the geotechnical
borings to depths of 50± feet or within the percolation test pits.
ITEST PROCEDURES
Four test pits vvere excavated within the subject slite on January 2. 2007. The locations of the test pits are
indicated on the attached Plat (Enc]OSUre ".A-2"). Pood-y graded sands were encountered within all of our
test Pits.
IFollo%�-M2 exca\ ation. percolation testing %% as perfon-ned within each of the test pits.
I
I
I
Id
I
11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
cjs�
Pa2e 'No. 3,
Job No. 061101-2
Test holes, approximately 6 inches in diameter and 12 inches in depth, were excavated in the bottom of
each pit. A perforated 6 -inch diameter plastic container was inserted into each test hole.
In order to prepare the soils for testing, pre-soaking was performed by inverting a full 5 -gallon water
bottle over the top of the perforated plastic container. The time for the water bottle to empty and for the
hole to drain was recorded. Due to the relatively short time for the test holes to accept the water, perco-
lation testing was perfon-ned immediately following the pre-soak. The tests were perfon-ned by measur-
ing the time required for the water level inside the container to drop I inch. The measurement was
repeated four times for each of the tests.
Based upon the time required for a I -inch drop, an infiltration rate was calculated. The infiltration rates
obtained are presented in the following table.
Test Location/
Depth (ft.)
Infiltration Rate
Soil Type
(in./min.)
(in./hr.)
TP- 1 /6.0
0.3
17
SP
TP -2/4.0
0.2
14
SP
TP -3/6.0
0.5
30
SP
TP -4/4.0
0.4
24
SP
Testing indicated infiltration rates ranging from 17 to 30 inches per hour, with an average rate of 21
inches per hour. It is our opinion that an infiltration rate of 20 inches per hour could be used as the
infiltration rate in the design of the storm water retention systems, provided that proper maintenance is
perfon-ned. It should be cautioned that the rates were obtained in native soils, and rates for compacted
soils would be anticipated to have lesser values.
It should be noted that infiltration rates measured are ultimate rates based on short -duration field test
results UtiliZing clear v,-ater. Infiltration rates can be affected b -v silt build -Lip. debris. degree of soil
saturation. and other factors. An appropriate safety factor should be applied prior to Lise In desi�!fl to
I
I
I
I
I
1�
I
I
P
I
I
I
I
I
I
I
I
I
4 S�
Page No. 4
Job No. 061101-2
account for subsoil inconsistencies, possible compaction related to site grading, and potential silting of
Z)
the percolating soils. The safety factor should also be determined with consideration given to other
factors in the storin water retention system design, particularly storrn water volume estimates and the
safety factors associated with those desig
,n components.
LIMITATIONS
C.H.J., Incorporated has stniven to perform our sei-vices within the limits prescribed by our client, and
in a manner consistent with the usual thoroughness and competence of reputable geotechnical engineers
and engineering geologists practicing under similar circumstances. No other representation, express or
implied, and no warranty or guarantee is included or intended by virtue of the services perfon-ned or
reports, opinion, documents, or otherwise supplied.
This report reflects the testing conducted on the site as the site existed duning the investigation, which
is the subject of this report. However, changes in the conditions of a property can occur with the passage
of time, due to natural processes or the works of man on this or adjacent properties. Changes in
applicable or appropriate standards may also occur whether as a result of legislation, application, or the
broadeninp- of knowledge. Therefore, this report is indicative of only those conditions tested at the time
of the subject investigation, and the findings of this report may be invalidated fully orpartiallyby changes
outside of the control of C.H.J.. Incorporated. This report is therefore subject to review and should not
be relied upon after a period of one year.
The conclusions and recommendations in this report are based upon obsen,ations performed and data
collected at separate locations, and interpolation betxeen these locations, carried out for the project and
the scope of services described. It is assumed and expected that the conditions between locations
observed and'or sampled are similar to those encountered at the individual locations where obsen,ation
and sampling were performed. However. conditions between these locations inay vary significantly.
Should conditions be encountered in the field. by the client or any firin performing services for the client
or the client's assign, that appears different From those described herein. this firrn should be contacted
I T c T is report or po i
immediately in order that %\ e might c\ aluLttc flieIr ef C - If thi rt'ons tliereof are provided
I
I
I
I
I
I
I
11
I
I
I
I
I
I
#IF S�
Pa2e No. 5
Job No. 061101-2
to contractors or included in specifications, it should be understood by all parties that they are provided
for information only and should be used as such.
The report and its contents resulting from this investigation are not intended or represented to be suitable
for reuse on extensions or modifications of the project, or for use on any other project.
CLOSURE
We appreciate this opportunity to be of service and trust this letter provides the inforination desired at
this time. Should you have any questions or comments, please do not hesitate to contact this firm at your
convenience.
F S Slo','�
OF
B%V,'ADE:tlw,,sra
Enclosures: "A- I" - Index Map
"A-2" - Plat
"A-3" - Gradation Curves
DistribLition.- Nir. Denn I s Bean
Albert A. Webb Associates
Respectfully submitted,
C.H.J., fNCOR-PORATED
Ben Williams, P.G.
Senior Staff Geologist
Allen D. Evans, G.E. 2060
Vice President
-4�
s —4ft's v
14— iz�
L
6L VV
f -147
I' -
ot -AV*
F"
A VE'
k
on -U J.
South F
--442� Him
Aseb
--N-t
ty
di i
1E
fob
:z; SITE
PA 411
?Ak'. AlkV
Res
DisWS&I
Ins,
" t-fL
A VE
r? 77
Bird Pa.,k i �4
Aft
P.RX RWX4
-OUL
-mvI I p's
7
pi
121
`7
WA
INDEX MAP
MR. DENNIS BEAN
SOIL PERCOLATION INVESTIGATION
EMLM
"A-1
JURUPA BUSINESS PARK
DATE
JANUARY 2007
FONTANA, CALIFORNIA
JOB mumso
061101-2
100
90
80
70
W
60
Cn
Cr
W �) 0
40
Z
W
30
U I
(71-
20
1 n
0
1000
Cobbles & Boulders
100
Sieve Sizes - U.S.A. Standard Series (ASTM C136)
3" 2" 1 5" 3/4' 3/8" 4 10 20 40 60 100 200
t
t
10 1 0.1
GRAIN SIZE IN MILLIMETRES
Gravel Sand Silt
Coarse I Fine Coarse Medium Fine
0.01
Clav
0001
Symbol Boring No
Depth (ft)
Classification
D,o (--)
D3. (mm)
D50 (mm)
D., (mm)
C�
C, SE
1
6
(SIP) Sand, fine to coarse with gravel to 3/4"
0.2205
0467
0.882
1 235
5599
0800
2
4
(SP) Sand, fine to medium with coarse
016011
0.288
0419
0.563
3514
&919
A 3
6
(SP) Sand, fine to coarse with gravel to 3/4"
0.1857
0.435
1,058
2.223
11.972
0.459
4
1 4
1 (SP) Sand, fine to coarse-, Gravel to 1 1/2"
1 02312
, 0.678 ,
1.873 1
2.981 1
12889
0,667
GRADATION CURVES
Project Jurupa Business Park
Location Jurupa Avenue, Fontana
Job Number 061101-2 Enclosure A-3
I i � , i - ,, I I. f1fograninied by Fir Fied Yi CopyrightK) C It J Incorporated 2005 - 2007 All righl r ",erved
-N-
I
SCALE: 1"= 240'
V. V *K -%W -1 t �-. - I �� ,-rm 1 .1 ' ... i :
rlllffl_�" rmw couk"AmM PAX= &&r
4,14
Z:
MR. DENNIS BEAN
PERCOLATION TRENCH LOCATION DATE JANUARY 2007
PLAT
SOIL PERCOLATION INVESTIGATION
JURUPA BUSINESS PARK
FONTANA, CALIFORNIA
McLosufm
-A-2-
JOB Nummm
061101-2
C.H.J. incorporated
117.
'lit
A
17
406 .3
-MA
A
t" Y
F
4'
MR. DENNIS BEAN
PERCOLATION TRENCH LOCATION DATE JANUARY 2007
PLAT
SOIL PERCOLATION INVESTIGATION
JURUPA BUSINESS PARK
FONTANA, CALIFORNIA
McLosufm
-A-2-
JOB Nummm
061101-2
C.H.J. incorporated
to
tn
Ci 0
it
0
o.c
c
T
c
c
cl
cl
Q
c
c
c
v
c
c
c
c
PR OPOSED HYDROLOGY MAP FOR PHELAN BUSINESS PARK (BU.ILDING B
n
*b
3-
qj'\
71.3
FG
�71.01
Tc
............
PROPOSED PEAK FLOW
72.08
Tc
�73.63 �74.81 �7 5.5 4 �76.18
TC TC
TC JURUPA A
AND BMP DESIGN RUNOFF CALCULATIONS BUILDING B
INCLUDED ROOF DRAINAGE FOR BUILDING B IS 9.95 ACRES. THIS REPRESENTS RELATIVELY CLEAN RUNOFF WATER.
LENGTH, WDITH AND DEPTH ARE AVERAGED VALUES. SUBAREAS B4 AND B5 ARE VEGETATED UNDER PROPOSED CONDITION.
PROPOSED VOLUME INCLUDES FILTRATION VOLUME OF 1.59 ACRE FEET (REFERJO APPENDIX F IN THE WQMP REPORT)
0?'ooce
LL.
U
1c,
a cy
4
cn (n
LJ6. LA -
U u
Lo t-0)
CR R
c'j i-
03
a 0
v- v-
cy a
c� F-
00
z
00
00
LL
00
03
t2
03
04
0
;I ol?
SAN
BERNARDINO
REQUIRED BMP
PROPOSED BMP DESIGN
TRIBUTARAY
SUBAREA
DESIGN
(STORM TECH CHAMBERS WITH ROCK. FILTERS)"
DRAINAGE
SUBAREA
AREA WITH
100 -YEAR
Q (CFS)
FLOW
VOLUME
VOLUME
ROCK FILTER
LENGTH.
WIDTH
DEPTH
ROOF DRAINAGE*
(CFS)
(AC. FT-)
Bmps
(AC.FT.)
(FT)
(FT)
(FT)
BI
11.87
36.5
STORMTECH
B2
1.38
5.2
4.32
1.88
CHAMBERS
2.1
218
27
5.0
(UM B
0 Li
'3 jZ
m
<
SYSTEM)
<
SANTA ANA
AVE.
B3
6.05
18.5
a- 0
cn
:D
B4
1.29
1.0
0.02
0.01
VEGETATED DENSE COVER/LANDSCAPED AREA
WITH NEGLIGBLE BMP RUNOFF
B5
0.04
0.1
0.00
0.00
TOTAL
20.63
61±
JURUPA AVE.
INCLUDED ROOF DRAINAGE FOR BUILDING B IS 9.95 ACRES. THIS REPRESENTS RELATIVELY CLEAN RUNOFF WATER.
LENGTH, WDITH AND DEPTH ARE AVERAGED VALUES. SUBAREAS B4 AND B5 ARE VEGETATED UNDER PROPOSED CONDITION.
PROPOSED VOLUME INCLUDES FILTRATION VOLUME OF 1.59 ACRE FEET (REFERJO APPENDIX F IN THE WQMP REPORT)
0?'ooce
LL.
U
1c,
a cy
4
cn (n
LJ6. LA -
U u
Lo t-0)
CR R
c'j i-
03
a 0
v- v-
cy a
c� F-
00
z
00
00
LL
00
03
t2
03
04
0
;I ol?
VICINITY MAP
NOT TO SCALE
SECTION 25, TlS, R6W, SBmA0
LEGEND
Ql 00= 5.2 CFS
Q 10 =3.4 CFS
32.5
78.80
(B'2-1.38
100 YEAR PEAK FLOW IN CFS
10 YEAR PEAK FLOW IN CFS
NODE
ELEVATION
.SUBAREA -ACREAGE
FLOW DISTANCE
FLOW DIRECTION
DRAINAGE AREA
HYDROLOGIC BOUNDARY
GRAPHIC SCALE 1"=50-
0 50 100 150
SAN
BERNARDINO
AVE.
VALLEY
BLVD.
SLOVER
AVE.
UP RAILROAD
0 Li
'3 jZ
m
<
<
SANTA ANA
AVE.
0
a- 0
cn
:D
j
JURUPA AVE.
JE.
VICINITY MAP
NOT TO SCALE
SECTION 25, TlS, R6W, SBmA0
LEGEND
Ql 00= 5.2 CFS
Q 10 =3.4 CFS
32.5
78.80
(B'2-1.38
100 YEAR PEAK FLOW IN CFS
10 YEAR PEAK FLOW IN CFS
NODE
ELEVATION
.SUBAREA -ACREAGE
FLOW DISTANCE
FLOW DIRECTION
DRAINAGE AREA
HYDROLOGIC BOUNDARY
GRAPHIC SCALE 1"=50-
0 50 100 150