HomeMy WebLinkAboutDeclez Channel Design Memorandum4
g 19 1991
SOLITHRIDGE VILLAGE
SOUTHRIDGE VILLAGE DEVELOPMENT
FONTANA, CALIFORNIA
DESIGN MEMORANDUM.
Declez Chanel-
Phase I
Prepared By
BOYLE ENGINEERING CORPORATION
August 1982
p>
+ 0owle Englneerinq Cdrporation
' - consultlnq enolneers . a,cnitects
'"• 118 Airport Drive. Suite 212 718 Eugene Road
San Bernardino. California 92408 Palm Springs. California 92264
714 / 824.5580 714 / 323-1761
i. Mr. Richard Ashby August 30, 1982
Southridge Village Partners
7072 Garfield Avenue
Huntington Beach, California 92648
Transmitted herewith is a copy of the design memorandum for the DeClez Channel
in Phase I and a copy of the reconnaissance investigation for Fontana Lateral
Improvements. A copy of the design memorandum has been forwarded to Santosh
Verma of the Los Angeles HUD office as requested by Rick Andrews and three
copies of the Fontana Lateral investigation report have been submitted to
Robert Nelson of the Riverside County Flood Control District as they ,have
requested.
w
' The Chino Basin Municipal.Water District (CBMWD) Board of Directors at its
_ regular meeting of August 25, 1982, gave its final approval to our request,;
as submitted by the City of Fontana, for four permanent connections to the
Fontana Interceptor Sewer within the Phase I area. The Board conditioned its
approval upon the dedication of sufficient easement within Southridge Village
for CBMWD to build this sewer interceptor line.
As a point of information, we will need to receive building floor plans for
your proposed residential units prior to any street construction within tract
areas in order to establish driveway locations if the cost of future curb,
gutter, and sidewalk cutting and removal to install driveways is to be avoided.
To proceed with needed approvals for your initial proposed developments, we
will need your incremental phasing plan, building elevations, front yard
landscaping plans, and model home sites for recently approved Tentative Tracts
12245, 12246, and 12247, as well as site plans for your proposed townhome and
garden home developments on Parcels 17 and 21 of Tentative Tract 12064.
I" If you have any questions or if we can be of assistance, please call.
BOYLE ENGINEE ING CORPORATION
_ M. Victor Rol i er, PE
Senior Engineer
SB-CO8-100-29
go
TABLE OF CONTENTS
io
Pa ge
a
r Introduction . . . . . . . . . . . . . . . . . . . 1
Hydrologic Analysis for the Declez Channel Watershed. . . . . . . . . . 4
Flood Flow Bulking Factor Evaluation for Declez Channel
and Tributaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hydraulic Design of the Declez Channel --Phase I . . . . . . . . . . . . 8
TABLES
No.
1 Hydrologic Parameters . . . . . . . . . . . . . . . . . . . . 5
2 Estimated Peak Flows . . . . . . . . . . . . . . . . . . . . . . . 6
;i
4
4t. FIGURES
No.
1 Declez Channel, Drainage Boundaries and Proposed Facilities . . . 3
APPENDICES
No.
f 1 Flood Flow Bulking Factor Evaluation for Declez Channel and
Tributaries
i !
2 HEC -2 Computer Program Output
•Iq A:
A '61: _71i, # -Its z
LEY7 C'J
BLVD -
V 0
:7 P -ter
7s: r
2 4.91 .
•Ii II�3 -ji . . , I - ';,: m
24
0
Well I—
g.
f.dusloral W m 1!S ca
22 2
P4pd, ::5
<
aop•
1111101• T
LIJ
_j
< < cc
............ I
10
• PACIFIC
Act IC I-10W)•A 7-
0
039.11
K p•
7;••• .......... _;E• U
SLOVE
I-11&— AVE
��14_ - -
99.1
..........
P-,
-----------
South FQn ------- 7;
......... ..
L. z
rQ is
Iq
IL 0
-77
to
All -
7 ---------- tiur Pa Hills
40.
....... ....
Radio. 2
4,
27 F
nz 26 1
939 8 959•
%
VA ?4 TA -AWA* 25
C
"fig
1p,
7 --------- 4
qj: us
SIM
qjj . ........... I
L
we
................ .
- ----- -----
Of
Re, wen
JURUPA
W— /000
?2
- - - - - - - - - - - - - - - - - - -
. .............
6:
7
Well
00
I Ott
167
xm 41
33
1AARLAY
AVE 3� P
F6ittina
Well --------
Bud -Park P
1r
z
w t,�
eyo U.
_j
C)
( �I, \ >�I �: is \ j w
t
z
Z a:
A LN BERNMIR
Co 1.
k RIVERSI
Tr*
RIVE i'(u
Y z U_
3
:., _ ` :•;,' ;�i ri�� f1 ;;,i , ; '- �`', `{''� t'°� ` I .� SCALE
IN FEET
N 0 a
z w M Uj
2000 0 2000 4000 to
v". LE
3
114 cl�
Pa
r
ws,
_J Ul
0
10
A_
w LEGEND a Z 0
4 Z ":i %DRAINAGE AREA BOUNDARY <
cc
< r
fl"Rho A AREA Rnl1K1nADV
LLT 4WI Qws?
'0.
<
P
Ha-lborn. chi-ioptian =I=--
0 1 VC
-------------
'Rs,
w1wob bell
S, It
V
7,4- • - f
e 5 vqr
1 ri A U r -
EXISTING FONTANA LATERAL CHANNEL
PROPOSED CONCRETE CHANNEL PHASE I
PROPOSED CONCRETE CHANNEL PHASE 11
OCONCENTRATION POINT NUMBER
DRAINAGE BOURSE FIGURE
1
INTRODUCTION
The Southridge Village Development Project will require the installation of flood
control and drainage facilities. These facilities will include a trapezoidal section
concrete lined main channel (Declez Channel); a tributary channel to drain the low
area between the main channel and the Jurupa Mountains; and storm drain facilities to
collect local runoff and deliver to the main channel.
The total drainage area into the channel system is about 7,550 acres (11.79 square
N,
y
miles). It is bounded on the north by the San Bernardino Freeway, on the east by
Palmetto Avenue, on the south by the ridge of the Jurupa Mountains, and on the west
by the slope break east of the San Sevaine Channel. The major drainageway through
this area is the Declez Channel which extends from Palmetto Avenue to the junction
with the Fontana Channel, which is a continuation of the Declez Channel in Riverside
County.
The Southridge Village Development will occupy approximately 2,560 acres in the
southern portion of the drainage area. This development will be bounded on the north
by Jurupa Avenue, on the west by Mulberry Avenue, on the south by the San Bernardino/
Riverside County line, and on the east by Sierra Avenue.
g -
The construction of the development
was divided in
two phases. Phase I of the dev-
elopment is bounded on the north by
Jurupa Avenue,
on the west by Mulberry Avenue,
on the east by Cherry Avenue and on
the south by the
proposed Declez Channel. This
Phase will include the construction
of the Declez
Channel from its connection with
the Fontana Lateral Channel (Station
22+10 of the
Declez Channel Improvement Plans)
to Cherry Avenue (station 111+00).
,z
�•
1
j
Its
This Design Memorandum has been prepared primarily to summarize the analyses made to
prepare the Improvement Plans for Phase 1 of the Declez Channel. These analyses
include:
1. -Hydrologic Analysis for Declez Channel Watershed
2. -Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries
3. -Hydraulic Design of the Declez Channel --Phase I.
The location of the Declez Channel, its watershed boundaries and the limits of
Phase I of the Development are shown in figure 1.
N
a
HYDROLOGIC ANALYSIS FOR THE DECLEZ CHANNEL WATERSHED
This hydrologic analysis has been made primarily to determine the channel
.,, capacity requirements for the Declez Channel and tributary to contain the
' 100 year return period peak flood flows under conditions of ultimate develop-
ment. The city of Fontana anticipates that the total drainage area except the
Jurupa Mountain area will be in urban development ultimately.
The total drainage area of 11.79 square miles was divided into five subdrainage
areas as shown on Figure 1. The parameters for hydrologic analysis were deter-
mined for each subdrainage area in accordance with criteria specified by the
Riverside County Flood Control and Water Conservation District Hydrology Manual.
>� These parameters were used as input for computer analysis using Los Angeles
i
District Flood Hydrograph Package Computer Program.
HYDROLOGIC PARAMETERS
Parameters were determined as required for developing hydrographs by the
Synthetic Unit Hydrograph Method described in the Riverside County Flood
Control and Water Conservation District (RCFC&WCD) Hydrology Manual.
Basin Physical Factors
t The drainage area (D.A.), length of the longest watercourse (L), length
along the longest watercourse measured upstream to a point opposite to
the centroid of the area (LCA), elevation of headwater (Hl) and the ele-
vation of concentration point (H2) were obtained from U.S.G.S., 7-1/2
minute quads. The overall slope of longest watercourse (S) was completed
by the formula S = (H1 - H2)/L.
3
Mannings "n" Values
The n values for use in the Lag formula were calculated on a weighted
basis depending on -the development conditions assumed.
The values used for lands were:
n
ol
Valley area - developed 0.015
Mountain area - undeveloped 0.040
(assumed no developed mountain area)
Infiltration Rates
The weighted infiltration rates (I) for each drainage area were estimated in
accordance with criteria specified by the RCFC&WCD Hydrology Manual.
The Soil Survey of San Bernardino County Southwestern Part, California,
prepared by the USDA Soil Conversation Service, "et al.", issued in January 1980
was used to determine the hydrological soil groups. The soils in this watershed
are almost entirely in hydrologic soil groups A and B and have depths generally
in excess of 5 feet except for the Jurupa Mountain area. These soil groups are
very permeable.
The city of Fontana General Plan and the Southridge Village Specific Plan,
included in Ordinance 712 and adopted by the Fontana City Council on December
15, 1981, was used to determine future land uses.
Table 1 shows the above specified parameters used in the analysis.
4
1Concentration Point No.
2Elevation of Headwater
3Elevation of Concentration Point
5
TABLE 1
HYDROLOGIC PARAMETERS
s
C. P.1
D.A.
(sq.mi.)
L
(mi.)
LCA H 2
H22 3
S
n
I
(mi.) (R.)
(fi.)
(ft/mi)
(in/hr)
1
5.33
4.55
2.00 1120
935
41
.019
.378
2
1.36
2.48
1.27 1768
935
336
.026
.352
3
6.69
4.55
1.53 1120
935
41
.020
.372
4
10.97
6.66
2.75 1120
817
46
.020
.375
,i 5
11.79
7.16
3.02 1120
793
46
.019
.364
1Concentration Point No.
2Elevation of Headwater
3Elevation of Concentration Point
5
l
The estimated peak flows for each concentration point are listed in Table 2.
TABLE 2
ESTIMATED PEAK FLOWS
i_.
100 -yr. Peak Flows for
Conc. D. A. Ultimate Cond. of Devel.
Pt. (sq. mi.) (cfs)
i
1 5.33 3,000
2 1.36 920
3 6.69 3,890
4 10.97 5,370
{ 5 11.79 5,810
f
y
Rainfall
-
The rainfall intensity for the 100 -year return period, 6 -hour duration storm,
was determined as 3.3 inches. This was based on statisti-cal analyses of rain-
fall records for the Fontana #18 and Miraloma Q.M. Depot 21A stations, as
i
shown in bulletin No. 195, Rainfall Analysis for Drainage Design, State of
California, Department of Water Resources. The storm pattern used was as
shown in the RCFC&WCD Hydrology Manual.
RESULTS
a
The above specified parameters were input to Los Angeles District Flood Hydrograph
`;.
Package Computer Program to obtain estimated peak flows that would result from the
100 year return period, 6 -hour duration storm. It has been determined that the
6 -hour duration storm generated higher peak flood flows than either the 3 -hour
duration or the 24-hour duration storms.
l
The estimated peak flows for each concentration point are listed in Table 2.
TABLE 2
ESTIMATED PEAK FLOWS
i_.
100 -yr. Peak Flows for
Conc. D. A. Ultimate Cond. of Devel.
Pt. (sq. mi.) (cfs)
i
1 5.33 3,000
2 1.36 920
3 6.69 3,890
4 10.97 5,370
{ 5 11.79 5,810
f
14:
I
FLOOD FLOW BULKING FACTOR EVALUATION
i
FOR DECLEZ CHANNEL AND TRIBUTARIES
`fig The San Bernardino County Flood Control District'(SBCFCD) requires the use of a
' bulking factor in the design of major waterways. For this reason, Boyle
Engineering Corporation (BEC) made an analysis to estimate the amounts of sedi-
ment that will be produced and transported to the Declez Channel system during
the period of runoff of a major storm (100 -year return period). This volume of
N .d sediment could be considered in relationship to the estimated volume of water
.' It runoff to determine the need for additional capacity to contain the sediment
content. The required additional capacity is expressed as a bulking factor to
be applied to the estimated capacity required for water runoff.
The final report of this analysis is presented in Appendix 1 of this Design
Memorandum. This report concluded that the Declez Channel Watershed would not
produce a significant volume of sediment and that no bulking factor would be
required in the design of the flood control facilities.
This report was reviewed by the SBCFCD staff and its conclusions were verbally
approved by them in a meeting with the City of Fontana and BEC staff, on May 5,
1982.
Md
i
.L
7
HYDRALIC DESIGN OF THE
DECLEZ CHANNEL -- PHASE I
DESIGN CRITERIA
The following hydrualic design criteria were used in the sizing of the Declez
channel:
1. Design Flow. The 100 -year, 6 -hour discharge flow for ultimate conditions
of development was used in the design of the Declez Channel and tributary.
Design flows between concentration points shown in Figure 1 were computed
based on contributing drainage areas.
2. Roughness. A 0.015 Manning's Roughness coefficient "n" was used for
concrete channels.
3. Side Slopes. Side slopes of 1.5:1 were used for concrete trapezoidal sec-
tion concrete -lined channels.
4. Unstable Flow. In the hydraulic design the unstable flow zone was avoided.
The unstable zone is defined as:
0.9dc < d < 1.1dc
where do = critical depth
d = normal depth of flow
5. Freeboard.
a. TreeFoard above the calculated water surface was provided in accordance
with the following criteria:
Subcriticai Flow
Rectangular Section 0.1 He
Trapezoidal Section 0.2 He
Where He = specific energy head
d = normal depth of flow
Supercritical Flow
0.2 d
0.25 d
However, for major waterways, freeboard less than 2.5 feet for trape-
zoidal sections and less than 2.0 feet for rectangular sections was
not used under either flow condition.
b. On major sections with curving alignments, freeboard of at least one
R
foot above the calculated maximum elevation of superelevated water
surface was provided. This permited encroachment upon the free-
board specified under (a) above.
6. Bridges. All bridges within Phase I of the project are single span
bridges. They were located above the top of the channel walls and
create -no interferenece to the channel flow or freeboard.
CHANNEL SIZING.
The initial channel geometry was developed using normal depth calculations.
Final channel sections were developed using the U.S. Army Corps of Engineer
HEC -2, water surface profile, computer program. A HEC -2 profile was devel-
oped using the geometry shown in the Declez Channel Improvement Plans for
Phase I, station 22+10 to station 111+00, and preliminary Phase II channel
geometry for stations 111+00 to 137+00.. -Appendix 2 of this Design Memoran-
dum contains the HEC -2 computer program output.
BOX AND PIPE CULVERT INLETS.
The angle of entrance of -side culverts discharging into the Declez channel
were designed according to the criteria suggested in the U.S. Army Corps of
Engineers' manual titled Hydraulic Design of Flood Control Channels. The ef-
fects of the side culverts on the Declez Channel water surface profile were
analyzed using the methodology outlined in the Los Angeles Flood Control
District Hydraulic Design Manual.
FONTANA LATERAL CHANNEL
The Fontana Lateral Channel is located immediately downstream of the proposed
Declez Channel. The present capacity of the Fontana Lateral is inadequate to
contain the peak flows estimated for ultimate development conditions, or even
the 100 year peak flows estimated for existing conditions. Boyle Engineering
Corporation is presently studying alternative plans to increase the capacity
of the existing channel. The proposed Declez channel was designed to match
9
the existing dimensions of the Fontana Lateral Channel.
The portion of the channel between the Fontana Lateral -channel and Country
Village Road, might be changed somewhat if the dimensions of the existing
channel are modified. This change, however, should not affect the hydraulic
design of the Declez Channel since, for supercritical flow, changes downstream
would not affect flow conditions upstream.
10
APPENDIX 1
e
SOUTHRIDGE VILLAGE DEVELOPMENT
FONTANA, CALIFORNIA
FLOOD FLOW BULKING FACTOR EVALUATION
FOR
DECLEZ CHANNEL AND TRIBUTARIES
1 PREPARED FOR
CREATIVE COMMUNITIES
PREPARED BY
BOYLE ENGINEERING CORPORATION
SAN DIEGO, CALIFORNIA
APRIL 1982
A
TABLE OF CONTENTS
s Page No.
INTRODUCTION 1
DESCRIPTION OF THE WATERSHED 3
ESTIMATED SEDIMENT PRODUCTION AND
TRANSPORT WITHIN THE WATERSHED
CONCLUSIONS
FIGURES
No.
1 Declez Channel Watershed Showing Declez
Channel Alignment
APPENDIX
. Sediment Production Computations
Revised Flaxman Method
Lr Universal Soil Loss Equation
T
12
2
INTRODUCTION
The Southridge Village project being planned by Creative Communities will
require the installation of flood control and drainage facilities. These
facilities will include a trapezoidal section concrete lined main channel
(Declez Channel); a tributary channel to drain the low area between the main
channel and the Jurupa Mountains; and storm drain facilities to collect local
runoff and deliver to the main channel. The planned layout for these facil-
ities is shown on Figure 1. The locations of the storm drain facilities
indicated on this figure are subject to change.
In areas where large amounts of sediment• are produced by major storms and
delivered to the channel system the sediment content of the flood flows
becomes a significant part of the flood volume that is transported by the
channel system. Consequently, the required channel capacities have to be
increased to contain this additional bulking caused by the sediment content.
The purpose of this study is to estimate the amounts of sediment that will be
produced and transported to the channel system during the period of runoff of
a major storm (100 -year return period). This volume of sediment will be con-
sidered in relationship to the estimated volume of water runoff to determine
the need for additional capacity to contain the sediment content. The required
additional capacity is expressed as a bulking factor to be applied to the
estimated capacity required for water runoff.
-1-
49'-0- .- .\-rte - :::�I L _ .- . ;�• ..S 4 ' �. �.
—:--:l .R• } �l , 22
•1077 - �,�•,- QL VO •'•ti .' - .j =
i •22
f � , q _ �'� .w -!' •Z�`.� 2�T 't7 �i =!• nT, ;7t
IWustryl W ste - - 1 -y �' . ,\ I Tr.1H ~ - _ rte' : • ■a �: • S: �b i-�• ` vary i' e , + ?l� f
- �` • _.� � Oji Vin- i -• � p,}Z_t�...:;, �'� {'...'� .• • �� ::... �"in' �_-�` � `•:- i - • ''•�A t -- n a.
' • o o r O �� t ,' 1 LCL—i 9 �� 1� _. ��it- _...•- • i....[' �r.5 N '- BERNAROINOe.
-- •�•r"- -_-F'EWJf1►-. tl ' _ --. _ 1 -.
` • - i -
- ._._.. - r PAGl ! 1 .... . i..t IT i
• ACIFIC a r000 1 SOUTHERN • - '• • •.\ .. i-�•" 1 aoo. tJ
tt� 1t�Kaiser t� •::: �;, .. ...: ' s\ I - 1 ;, Y •;�. "'�_ _ R .: •-,»;-•�.....•�c _ -= -tiy
• l /O ' •'rad Y,. = li ~71 • -- r- I,
�"� AVE - •• -� - �. 1t .. ..019., ,•1' ��• r' •� .w_ - _•
. - - 9 _ 9t11• . ^` •• . �' .-� 1 y ...
"L=5t.OvCR • 91M 9 • ' VE' •i067• 11� • - •� t �� i•s
■ _ - i ` ` ' j _ 1 S1o..r-_ 1• lisp••• _ - .r :� :• r-_ rte`
-• _� - r South Fqn •t! :a -------_---= ol•=•• .. :I`:.,.. t , ��
4.
Or
1-00
m 4L
.Y 0 �d • � !
O 2000 4000 FEET V ..... Cc -J
�. •• .... a -='� --------ervp•ils. N _27 27 •9 .. �. i : �Rad,o.i *ell
.. ....
„t
i l
sso 8?6�
•'' ' : �� ti rx�•avil' AVE • ,�” � 25 . •J
• `�.
..JJJ1 - - 7 - - - \ -11 �,i:. ' / i , �F•-I . -M _ _"_� O�. t 0!910 + 54N...•�-�,.,•1-. _• �1 . •.,•��r . _ • _ ,,,�- - I � -.�`�1:72 r�N
W.ttru v R � \ _ -•-' ,•• ' ••'�• -.�/. �J•.-2-�_: t - �. 1%1 -.oww...�..a-.�.,'.,_.-�-�___-
_ i1
-----_ -_
--
. ��-- (�. Wdt w Ori •_ rO1p ' _^�_s�
= 4 m
900 --- -- - z--- -•- - �- ----- . _.. --- ._.
p , well too
MARGAY 33 AVE 60 F---34,a�A� '...,.VE - 914 }- - - =_.�•J:-3 �-_'. _ -r-•
`. 113-' •�Ontlnl • l .p O ..` _' -.•. .� •r, _._ �. --_ - '! • /
B,rd Parw =t•� - _' j •- ;fir ..
W�i _- Z� •Q •\f`�� i ., ,,p I� ;-'- . _ a I`' ``�'� (- 1 (\• s`�r• -a �..: b` er .`, •� _ •V �� ��
t`�`-. - •}• �'i:� �y_... • •' ''\ 'fit �/ _'-�: W.;•_ -:j' (. .�' _ _�
sae _ _ _A _ _� Ii ess' a -+- -SAN BERNARD _ CO _ 1 _ `t' ' -f _ -�� f`"`;
� RIVE DE CO .e� --=�- -r --. R VERSI I ♦ ,« \ s 1: � -.y'• r !
_S40 ISO
,_ a a � � (` :• a / %� - v oO V� : Op � .t; f 1 /T• - -�-�:: :. ,t i,.; .,F , • l ,e- � .
` � i!I =.. .. J,/ , -J'• _ . __ - ``1 � "�� ', ( ' ,• - (•�� = ` !�•: -.` Arlt .rj t -
' 1 s s.. _ i `i _ ••'1 GG ' 1/ 4 1 • % �
p', �J •1,•'rG `' - - ,•
4}` it t= it //., fi ,1 3 _ I -�'' t,� �/, ►Q••/�/ J rj t,l� -:� =! :.� �. ^.
-:. (.t: .�~. //f'~ ` '� '; .Pit! • '•n C� .1 _- - _ _ _ :�: J� f ':, i.( ..•,,,:�_ i
"00 -
_ _ • 1 _��i 7, jJ 15.;- • = avT ; —_ _ ; _ LEGEND FIGURE i
CO��CP.ETLINED ' SOUTNRIOGE VILLAGE
i � � � � t�t � � ,� : � 1 - -• E '
• •�� f:
•/: H..ir.t.lwrry f Ar. t ��i�:: i tt't -- = •i-�' -•• -rI - _ [ -�- ~ • ���L�,� �TRAPEZOIDAL CHANNEL pECLEZ CHANNEL ALIGNMENT
-u.n 46 _L REINFORCED CONCRETE PIPE
• = 1' - - , = =_ _ DRAINAGE BOUNDARY _ ALTERNATIVE
• �M ~' ' "i'•. ''.-
.O CONCENTRATION POINT N0.
;� "c,,, • • :.� 'I . • •---..'` ."',� :... . - - �? ?•..... REINFORCED CONCRETE BOX e�
_ cosur.q
t C �� I�• i T. _.' 1 • • - n.t- f WT � tKti
a
DESCRIPTION OF THE WATERSHED
a The total drainage area into the channel system is about 7,000 acres (10.91
square miles). It is bounded on the north by the San Bernardino Freeway, on
the east by Palmetto Avenue, on the south by the ridge of the Jurupa Moun-
tains, and on the west by the slope break east of the San Sevaine Channel.
The major drainageway through this area is the Declez Channel which extends
from Palmetto Avenue to the junction with the Fontana Channel, which is a
k. continuation of the Declez Channel in Riverside County.
The area south of Jurupa Avenue is characterized by a variety of land uses
including agricultural but is primarily open space and fallow land. Low-
density residential development is presently underway within the northwest
portion with clusters of residential development and agricultural uses north
T of Jurupa Avenue.
The Southridge Village development being planned by Creative Communities will
occupy approximately 2560 acres in the southern portion of the area. This
e development will be bounded on the north by Jurupa Avenue, on the west by
Mulberry Avenue, on the south by the San Bernardino/Riverside County line and
on the east by Sierra Avenue.
a
The city of Fontana anticipates that the total drainage area except the Jurupa
•� Mountain area will be in urban development ultimately.
FQ,
j
The land slopes within the area are generally within the range of one to two
percent except for the Jurupa Mountain area where slopes are generally 25 to
J
35 percent.
The soils in the valley area with gentle slopes are predominantly Delhi fine
sand (Db) and Tujunga loamy sand (TuB). Small areas of other sandy soil
types are included in the area with similar characteristics. These soils are
generally described for this slope category as somewhat excessively drained
to excessively drained, very deep soils on alluvial fans or alluvial valley.
floors.
The Soil Survey of San Bernardino County Southwestern Part, California, pre-
pared by the USDA Soil Conservation Service, et al, describes these soils in
part as follows:
Delhi fine sand (Db) - This nearly level,to strongly sloping soil is on
alluvial fans that have been reworked by wind action. Runoff is very slow,
and the hazard of soil blowing is generally moderate. -
Estimated soil properties:
Depth to bedrock or hardpan - greater than 5 feet
Depth from surface of typical profile -
0-18 inches -fine sand
18-60 inches -sand
Percentage passing sieve
No. 4 (4.7 mm) - 100
No. 10 (2.0 mm) - 90-100
No. 40 (0.42 mm) - 50-70
No. 200 (0.074 mm) - 5-10
Permeability - 6.0 to 20.0 inches/hour
_ Hydrologic Soil Group - B (above average infiltration rate)
-4-
4
i
d
9
'i
Tujunga loamy sand (TuB) - This nearly level to gently sloping soil is
on broad, long alluvial fans. Runoff is slow to very slow. The hazard of
P
water erosion is slight, but the soil will blow if left unprotected. The
hazard to soil blowing is moderate to high on bare soil.
Estimated soil properties:
Depth to bedrock or hardpan - greater than 5 feet
Depth from surface of typical profile
0-60" loamy sand and coarse sand
Coarse fraction greater than 3 inches - 0-5 percent
Percentage less than 3 inches passing sieve
No. 4 (4.7mm) - 100
-'� No. 10 (2.0 mm) - 55-100
No. 40 (0.42 mm) - 25-50
No. 200 (0.074 mm) - 5-20
The soils in the Jurupa Mountain area are predominantly Cieneba-Rock outcrop
complex (Cr). This steep complex is described as occupying areas on uplands.
It is about 60 percent Cieneba sandy loam, and has 30 to 50 percent slopes
and 30 percent granitic rock outcrops. The Cieneba soil has the profile
described as representative of the series.
' Included with this PP
complex in mapping are small areas of soils that have
P
moderate sheet and rill erosion, places where slopes exceed 50 percent, and
small areas where slopes are 15 to 25 percent. Also included are small areas
' that consist mainly of rock outcrop.
' -5-
Runoff is rapid and the hazard of erosion is moderate if soils are burned
over or overgrazed.
Estimated soil properties:
Depth to rock or hardpan - 1-1/2 feet
Depth from surface of typical profile
0-14 inches - sandy loam
14 inches - weathered granitic rock
Coarse fraction greater than 3 inches - 0-10 percent
Percentage less than 3 inches passing sieve
No. 4 (4.7 mm) - 90-100
No. 10 (2.0 mm) - 90-100
No. 40 (0.42 mm) - 50-65
No. 200 (0.074 mm) - 25-35
C
1
A , --a ESTIMATED SEDIMENT PRODUCTION AND TRANSPORT WITHIN THE WATERSHED
n Eroded materials from a drainage area may be transported through the flood
channels and compose a large percentage of the volume of the total flow.
Under these conditions the estimated peak flood flows of clear water determined
in the hydrologic analysis must be increased by a bulking factor because of .
the transported sediment to determine the required capacity of flood channels.
A large percentage of the gross erosion from a watershed may be transported
to the channel location if the grades are sufficiently steep to transport the
materials in the flood flows. The transport capability of the flood flows is
dependent on the velocity of the flow and -the characteristics of the eroded
materials including size, shape, density, etc.
1 x+
i Various methods have been used to estimate sediment bulking factors for flood
flows. These methods are largely based on the gross erosion characteristics
of a watershed.
The Los Angeles County Flood Control District (LACFCD) procedure for estimating
T. bulking factors is based on runoff and sediment produced by a major storm on
a recently burned watershed. The bulking factor was determined as 100 percent
with a sediment production rate of 120,000 cubic yards per square mile. The
formula used for estimating bulking factor for a particular watershed is:
1/2 rmass debris potential - cu. yds./sq. mi._ + 1) x 100
\ 120,000
If the rate of sediment production is 120,000 cu.yds/sq.mi. the bulking factor
'
would be 100 percent which is the case on which the formula is based.
-7-
This formula includes a large safety factor for watersheds with low sediment
production rates. If the watershed is determined as having no sediment produc-
tion the computed bulking factor would still be 50 percent.
However, it is stated in their procedures that "This percentage increase is.
applied to the peak flow rate, where the entire watershed area is considered
to be debris productive, and on a proportionate basis with respect to produc-
tive and non-productive areas where debris control structures or developments
within the watershed would cause a decrease in transportable debris.quantities."
The Declez Channel watershed_ has two portions having different characteristics.
The alluvial valley area with slopes generally in the range of one to two
percent has an -area of about 5700 acres (8.9 square miles). The Jurupa
Mountain area with slopes generally in the range of 25 to 35 percent has an
area of about 1300 acres (2.0 square miles).
The alluvial valley area has soils that are very erosion resistant on the
prevailing slopes with slow rates of runoff. The soil particle sizes tend to
r: be primarily coarse sand with very small percentages that would be classified
as silt. with the slow rates of runoff and low velocities sheet and rill
erosion will not dislodge large amounts of sediment and the sand particles
would not be transported in large quantities to the stream system.
The Jurupa Mountain area has soils that are moderately erosion resistant even
on the prevailing steep slopes. The subdrainage areas are very small and
large concentrations of runoff do not occur. There are no raw gullies in the
area. Shallow rills in
the drainageways are checked from eroding deeper' by
- 8 -
rock outcrops. There is no evidence of sediment discharge and deposition
onto the flatter areas at the base of the hills. It is not planned that
this area will be developed or used in a way that will cause soil disturbance.
Several methods are available for estimating the mass debris potential or
sediment yields from natural watersheds. Of these Elliott M. Flaxman's
revised method is considered appropriate for southern California as it was
developed from data compiled from 11 western states: Arizona, California,
Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and
Wyoming.
Applying the revised Flaxman method, the estimated mean annual sediment yield
for the 5700 acre alluvial plain portion of the watershed was estimated as
26 cu. yds./square mile (see Appendix). The 100 -year return period flood
generally produces from 8 to 10 times the mean annual sediment production.
Assuming a multiple of 10, the sediment yield would be 260 cu. yds./square
mile. For the total 5700 acre (8.9 sq. mi.) drainage area, the 100 -year
return period flood is estimated to produce a total of 2314 cu. yds., or
1.43 acre-feet.
For the 1300 acre Jurupa Mountain area the estimated mean annual sediment
yield was estimated as 645 cu. yds./square mile. The 100 -year return period
flood would produce 6450 cu. yds./sq. mi. (10 x 6450). For the total 1300
acre (2.0 sq. mi.) drainage area the 100 -year return period flood is estimated
to produce 12,900 cu. yds., or 8.0 acre-feet.
-9-
The
only significant
soil
disturbance in
the area at present in from roads
.,�
and
motorcycle tracks
at
the base of the
hills.
Several methods are available for estimating the mass debris potential or
sediment yields from natural watersheds. Of these Elliott M. Flaxman's
revised method is considered appropriate for southern California as it was
developed from data compiled from 11 western states: Arizona, California,
Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and
Wyoming.
Applying the revised Flaxman method, the estimated mean annual sediment yield
for the 5700 acre alluvial plain portion of the watershed was estimated as
26 cu. yds./square mile (see Appendix). The 100 -year return period flood
generally produces from 8 to 10 times the mean annual sediment production.
Assuming a multiple of 10, the sediment yield would be 260 cu. yds./square
mile. For the total 5700 acre (8.9 sq. mi.) drainage area, the 100 -year
return period flood is estimated to produce a total of 2314 cu. yds., or
1.43 acre-feet.
For the 1300 acre Jurupa Mountain area the estimated mean annual sediment
yield was estimated as 645 cu. yds./square mile. The 100 -year return period
flood would produce 6450 cu. yds./sq. mi. (10 x 6450). For the total 1300
acre (2.0 sq. mi.) drainage area the 100 -year return period flood is estimated
to produce 12,900 cu. yds., or 8.0 acre-feet.
-9-
On the basis of these estimates the total drainage area (10.9 sq. mi.) would
t produce 9.4 acre-feet of sediment during a storm having a 100 -year return
period. The estimated volume of runoff that is estimated to occur with a 6 -
hour duration, 100 -year return period flood is 690 acre-feet. The estimated
total gross sediment production is 1.36 percent of the estimated runoff volume
(9.4/690).
A large part of the sediment produced, especially from the Jurupa Mountain
area will be deposited within the area and will not be transported to the
channel system.
Using the LACFCD bulking factor formula, the required bulking factor would be:
1/2 t 1396 + 1) x 100 = 50.58 percent.
\120 , 000
Without the factor of safety, the bulking factor would be:
'9•" 1396
20,000 x 100 - 1.08 percent.
This would be reduced to insignificance when the low delivery rates over the
alluvial plain are considered.
.x� The Universal Soil Loss Equation is a method for predicting rainfall erosion
losses with consideration of the various parameters which affect erosion on
a particular watershed. This procedure is explained in a publication "Pre-
. Y dicting Rainfall Erosion Losses" developed by the USDA in cooperation with
Purdue Agriculture Experiment Station, December, 1978.
' - 10 -
This procedure may be used for predicting gross erosion from a storm of
specified return period but is considered more accurate for prediction of
longtime averages.
For conditions affecting the equation parameters for the alluvial plain por-
tion of this watershed the estimated average annual rate of sediment produc-
tion is 74 tons/sq. mi., or 659 tons/yr. for 8.9 sq. mi. area. For the
Jurupa Mountain portion of the area the estimated average annual rate of
sediment production is 426 tons/sq. mi. or 852 tons per year for the 2.0
square mile area. The total estimated sediment production per year for the
total drainage area of 10.9 square miles is 1511 tons/year, or about 0.94
acre-feet. Assuming that the 100 -year return period storm produces 10 times
the average annual amounts a total of 9.4 acre-feet would be produced.
CONCLUSIONS
Gross sediment production in the drainage area of the Declez Channel is
estimated to be very small as compared to the volume of runoff produced by
the 6 -hour duration 100 -year return period flood flow (volume of sediment
' produced is about 1.4 percent of the runoff volume). The major portion of
this sediment is produced by the Jurupa Mountain area included in the drainage
area. However, sediment produced by the mountain area must be transported
over considerable lengths of relatively flat alluvial plain area before it
can enter the channel system. The particle size distribution of all soils in
the drainage area into Declez Channel indicates that all but a small portion
is relatively coarse sand that could not be transported effectively over the
alluvial plain with the velocities of flow that would prevail. Consequently,
'u these analyses have indicated that an extremely small amount of sediment in
relationship to the flood volume will enter the channel system, thus adding an
insignificant amount of volume to the flood flows.
Furthermore, as the land use in this area is changed from agriculture and
open space to urban use even the small amounts of sediment produced at present
will be greatly reduced. Studies have indicated that with mature urban
development sediment production rates will be reduced by about 90 percent of
that produced by land uses now current in this area.
The hydrologic analyses for this area have indicated that peak flood flows
that will occur with full urban development will be about 20 percent greater
than occur under existing land use. *The channel system will be constructed to
Icontain capacities required for these ultimate development conditions. On
the basis that these channels will have excess capacities of 20 percent for
R41
- 12 -
1
�7
present land use, and as urban development occurs sediment production will
be reduced progressively, it appears inappropriate to provide any additional
capacity because of possible bulking by the sediment content of the flood
P Y _
� flows.
T
The velocities of overland flows with the
more frequently occurring storm
runoff will
be very low and these flows will
be able to transport only very
fine sand or
silt particles. When these
particles enter the storm drain
system very
low velocities will continue
to transport the particles entering
the system.
Providing a minimum velocity
of 5 feet/sec. with the more
't
frequently
occurring flows appears to be
more than sufficient.
;6J
{ r
- 13 -
SEDIMENT PRODUCTION COMPUTATIONS
ALLUVIAL PLAIN AREA 5700 ACRES (8.9 SQ. MI.)
(EXCLUDING JURUPA MOUNTAIN AREA)
Revised Flaxman Method
The equation used in the revised Flaxman method is:
log (Y+100) = 524.37231 - 270.65625 log (X1 + 100)
+ 6.41730 log (X2 + 100)
- 1.70177 log (X3 + 100)
+ 4.03317 log (X4 + 100)
+ 0.99248 log (X5 + 100)
in which
Y = mean annual sediment production - tons/sm
X1= ay. an. precip. (in.)/ay. an. temp. (°F)
X2= weighted average slope
X3= percentage of soil particles coarser than 1.0 mm
X4= 0 (when more than 25 percent of soil particles are
coarser than 1.0 mm)
X5= 50% chance of occurrence flood flow-csm
For the Shay Meadow watershed the following values of the variable parameters
were determined as follows:
X1= 22"/64°F = 0.344
X2= 1.25%
X3= 40%
X4= 0
X5= 50 csm
Using these parameters sediment production was computed:
log (Y +
100)
=
524.37231
-270.65625 log
(0.344
+ 100)
-541.71616
+6.41730
log
(1.25
+ 100)
+12.86922
-1.70177
log
(40 +
100)
-3.65222
+4.03317
log
(0 +
100)
+8.06634
+0.99248
log
(50 +
100)
+2.15973
i
Y +
100
= 126
Y = 26 tons/sm
2.51935
= 26 cu. yds./sm (approx.)
- mean annual sediment
production
SEDIMENT PRODUCTION COMPUTATIONS
JURUPA MOUNTAIN AREA - 1300 ACRES (2.0 SQ. MI.)
Revised Flaxman Method
The equation used in the revised Flaxman method is:
log (Y+100) = 524.37231 - 270.65625 log (X1 + 100)
+ 6.41730 log (X2 + 100)
- 1.70177 log (X3 + 100)
+ 4.03317 log (X4 + 100)
+ 0.99248 log (X5 + 100)
in which
Y = mean annual sediment production - tons/sm
Xl= ay. an. precip. (in.)/ay. an. temp. (°F)
X2= weighted average slope
X3= percentage of soil particles coarser than 1.0 mm
X4= 0 (when more than 25 percent of soil particles are
coarser than 1.0 mm)
X5= 50% chance of occurrence flood flow-csm
For the Shay Meadow watershed the following values of the variable parameters
were determined as follows:
X1= 22"/64°F = 0.344
X2= 30%
X3= 40%
X4= 0
X5= 55 csm
Using these parameters sediment production was computed:
log (Y +
100)
=
524.37231
-270.65625 log
(0.344 + 100)
-541.71616
+6.41730
log
30 + 100)
+13.56581
-1.70177
log
�40 + 100)
-3.65222
+4.03317
log
(0 + 100)
+8.06634
+0.99248
log
(55 + 100)
+2.17386
2.80994
Y +
100
= 330 Y = 645 tons/sm
= 645 cu. yds./sm (approx.)
= mean annual sediment
production
• w
SEDIMENT PRODUCTION COMPUTATIONS
ALLUVIAL PLAIN AREA - 5100 ACRES (8.9 SQ. MI.)
(EXCLUDING JURUPA MOUNTAIN AREA)
Universal Soil Loss Equation
The Universal Soil Loss Equation, is:
=
A RKLSCP
in which the parameters for Shay Meadow watershed were
a determined as follows:
A = Computed soil loss - tons/ac./yr.
E,
r R = Rainfall factor = 50
.w
K = Soil erodibility factor = 0.24
LS = Topographic factor = 0.23
.ti
Slope length assumed - 500 feet
Slope steepness = 1.25 percent
C = Cover and management factor = 0.042
Idle land with 60% ground cover
P = Support practice factor = 1
A = 50 x 0.24 x 0.23 x 0.042 x 1 = 0.11592 tons/ac./yr.
= 0.11572 x 640 = 74 tons/sm/yr. (estimated average annual rate)
Assume 100 year flood produces 10 times the average annual
sediment production
Estimated sediment yield for 100 -year flood = 10 x 74 = 740 tons/sm
740 cu. yds./sm (approx.)
i�
1
SEDIMENT PRODUCTION COMPUTATIONS
JURUPA MOUNTAIN AREA - 1300 ACRES (2.0 SQ. MI.)
Universal Soil Loss Equation
The Universal Soil Loss Equation is:
A = RKLSCP
in which the parameters for Shay Meadow watershed were
determined as follows:
A = Computed soil loss - tons/ac./yr.
R = Rainfall factor = 50
K = Soil erodibility factor = 0.24
LS = Topographic factor = 18.5
Slope length assumed - 500 feet
Slope steepness = 30 percent
C = Cover and management factor = 0.003
Range with 95+% ground cover
P = Support practice factor = 1
A = 50 x 0.24 x 18.5 x 0.003 x 1 = 0.666 tons/ac./yr.
= 0.666 x 640 =-426 tons/sm/yr. (estimated average annual rate)
Assume 100 year flood produces 10 times the average annual
sediment production
Estimated sediment yield for 100 -year flood = 10 x 426 = 4260 tons/sm
4260 cu. yds./sm (approx.)
AMWOM
--m�.1►,i�i�il��.b��:���;�.���,1�t.
SAT, AUG 21, 1982, 2:36 PH
PAGE 2
.000
INVERT
GRADE BREAK
93,000
Xi
itlS93.000
.000
.000
Xi
12SO0.000
.000
.000
Xi
12300.000
.000
.000
Xi
i4i00.n00
.000
.000
Xi
it9o0.000
.000
.000
Xi
11700.000
.000
.000
Xi
11500.000
.000
.000
Xi
11300.000
.000
.000
200,000
INVERT
GRADE BREAK
.000
X1
ijiuo.0o0
.000
.000
XS
10950.000
4,000
.000
GR
9iS.650
1000
90S.6SO
Xi
10900.000
4.000
.000
GR
914.910
.000
904,910
Xi
10870.000
.one
.000
QT
t.0oo
4090.000
.000
C11LIMY
AVE. JUNCTION PIPE
Xi
SOEimono
1000
,000
PAGE 2
.000
93.000
93.000
93,000
.000
-.68S
.000
.000
200.000
200.000
200.000
.000
-.7S3
.000
.000
200.000
2oo,00n
200.000
.000
-1.620
.000
.000
200.000
200.000
200.000
.000
-1.620
.001
1000
200.000
200.000
200.000
,000
-1.620
.000
.000
200,000
200.000
200.000
.000
-1.620
OOD
,000
200,000
200,000
200,000
,000
-1.620
.000
.000
200.000
200.000
200,000
.000
-1.620
.000
.000
i50.000
i5o.nnn
i50.000
.000
-1.620
.000
42.000
SO.000
Saloon
Saloon
.000
.000
.000
i5.000
90S.6SO
27,000
91.S.6SO
42.000
.000
000
42.000
30,000
30.000
30.000
000
.000
.001
15.000
904.9i0
27,0no
914.910
42.000
.000
.000
,000
So.ono
So.000
Saloon
.000
-.444
.001
,000
.000
,000
.000
.000
.000
.000
,000 20.000
40.000 2o.noo .000 ••.740 .ono
SAT, ALIG 21, 1982, 2 t 36 PM
X1
108n0.000
.000
.000
X1
10750.000
noo
.000
QT
1.000
4100.000
.000
-.740
LINE
'D'JUNCTION
PIPE
Xi
101/00.000
.000
.000
X1
10600.000
i
1', .000
.000
Xi
1OS00.000
t�� 4.000
.000
GR
908.990
.000
898.990
Xi
10400.000
.000
.000
xi
10200.000
.000
1000
x1
i0o00.000
.000
.000
X1
9900.000
.000
.000
Xi
9800.000
4.000
.000
GR
898.630
.000
888,630
Xi
9600,000
.000
.000
XI
94SO.000
.000
.000
QT
1.000
4160.000
.000
-2.960
LINE 'C'
JUNCTION
PIPE
Xi
9400.000
.000
1000
xi
9200.000
.nnn
.000
PAGE 3
.000
50.000
50.000
SO.000
.000
-.296
.000
.000
50.000
50.000
50.000
.000
-.740
.000
.000
.000
.000
.000
.000
.000
000
.000
100.000
100.000
100.000
.000
-.740
.000
.000
100.000
100.000
100.000
.000
-1.480
.001
40,000
'!00.000
in0.000
100.000
.000
.000
.000
Mono
898.990
Mono,
908.990
40.000
.000
.000
.000
200.000
200.000
200.000
.000
-1.400
.000
.000,
200.000
200.000
200.000
.000
-2.960
.000
,000
i00.000
100.000
100.000
.000
-2.960
.000
,000
100.000
100.000
100.000
.000
-1.480
.000
38.000
200.000
200,000
200.000
.000
.000
.000
i5. 000
888.630
23.000
898,630
38.000
000.
001
1000
150.000
150.000
iso .000
000
••2.960
.000
,000
50.000
50.000
50,000
000
-2.220
.000
,000
.000
.ono
.nnn
.ono
.000
.000
1000
200.000
200,000
200,000
0 n 0
-.740
.000
1000
200,000
200.Ono
2.00,000
n 0 0
-2.960
.001
in --
L.:9 U h. L.:.➢ Lr` lam! :<.,;: �: -�, , L L -11M L_" LTM LW AW [-..M- L -r (^'.
SA1, AUG 21, 1982, 2;36 PM
Xi
9000.000
.000
.000
xi
8800.000
.000
.000
Xi
8600.000
.000
.000
--2.960
INVUR1
GRADE: PRL AK
50.000
xi
t:SSn.0UD
•1.000
.000
1;R
OE11.130
non
070.130
x1
844.1, OUO
000
.000
E11
1.000
4210.000
.000
41 , 000
ALMOND
AVE. JUNCTION
PIPE
XS
E1;SY4.000
.000
.000
Xi
0200.000
.000
.000
XS
00SO.Ooo
.0110
.000
xi
3000.000
.000
.000
x1
7LiU0.000
000
000
xi
7600.000
.000
.000
x1
74E1.1.000
000
000
UI
1.000
4:00.000
.000
1.665
LINE 1D'
JUNCTION P 111
200,000
XS
'/4s4. UUO
.00i1
.00U
1'Acc 4
.000
200.000
200,000
200.000
.000
--2.960
0 c 0
000
200,000
.20n.ono
200.000
Ono
--2.960
0�.0
.noo
50.000
So.000
SO,000
.000
-2.960
.001
41.000
106.000
106,000
106,000
.000
.000
.9.1
16,500
070. 130
24, 500
801. 130
41 , 000
000
,000
50.000
SO.000
.50.000
.ono
--1.177
u.
000
non
Ono
Ono
0;;0
.000
.661
000
194.0n0
194.000
.194,000.0190
S S 3
OUn
,000
iso, non
iso. noo
isn,000
.000
-•2.iS3
.000
000
So non
s•o.on0
So Ono
000
1.665
Ui.P
.000
200,000
200. non
200. Ono
0110
-.sss
o;)o
.000
2on.000
2nn,non
200, non
Ono
:.:1 0
n,l
loon
116.000
116.000
M. 000
.000
-2.720
000
.000
SO 000
So Ono
!;a 000
0019
-1 ,280
nun
o o n
Ono
ano
Ono
nc0
noo
1900
000
34.00o
34.000
34, 0 b 0
01IL'
SAT, AUG 21, 1982, 2;36 PM
X1
7400.000
U00
.000
Xi
/530,000
Ono
.000
Xi
7230.000
4.000
.000
GR
866.480
.000
BSS.480
X1
72,'0.000
.000
.000
W1
1.000
4760.000
.000
866,480
DANANA
JUNCTION PIPE
Cr,)
X1
/5'.'0.000
.000
.000
xi
7000.000
.000
000
11
61jou.000
.000
.000
X1
6600.000
.000
non
Xf
:)400.000
.000
.000
X1
62SO.000
.000
.000
X1
6150.000
4.000
.000
c;R
054.490
.000
043.490
X1
6125.000
.000
.000
QT
1.000
48710.000
.000
000
CALABASH
JUNCTION
PIPE
X1
1.0%S.Ooo
.000
.000
X1
60'1'/.111)0
Olin
non
PAGE !•
,000
70,000
70,000
70,000
UOn
-.377
.000
.000
100,000
100,000
100.000
.000
-,777
101
43,000
10.000
i0,On0
in.coo
000
.000
000
16.500
BSS.400
21).50n
866,480
43.000
000
Cr,)
000
50,000
50.000
50.000
.000
-.111
.000
.000
.000
Ono
.1100
COO
C,:1
000
170.000
170.0On
170.000
.CCIO
- .SSS
.0„)
.000
2n0.000
2.0O.Onn
ICO.000
Ono
-1.087
.000
000
200 Ono
":00,000
12()0.000
.000
2.12;?0
0 ..,
000
200.000
200.000
200.000
000
--1 LID
000
150.000
ISO Dan
iS0.Ono
.0^0
,000
100.000
1.00 non
100.000
000
-1,66,
C,:1
49, coo
es.0on
2 ,OOn
25.0c0
n 0 01
Ono
16.500
843.490
20. SO
DN's4.4?0
4'.;,nno
0011
c,t
000
SO.Ono
SO.000
50.000
OOC
277
L'GG
000
.000
, non
.Ono
(ton
000
.000
16.000
i6.0n0
16.000
cnn
-.SSS
.000
. non
i6. uon
Ill. onn
16.000
1.1;0
1 11
uo1
1_ Lm L= t ► 5M L==t..�m_a. � - L,= L..P-M c. r M it -10 a-.$= • wi -AM t..' ... �.
SAI, AUC 2i, 1982, 2:36 PM
x1
604.I.000
.000
.000
.000
43.000
43.000
43.000
xi
6000.000
.000
.000
.000
i5o.000
15n.000
150.000
.000
LINE 'A'
JUNCTION
PIPC
.000
000
-2.220
.0';:;
xi
M$tj0.000
.000
.000
.000
50.000
50.000
50.000
.000
, 000
2..2n
i
Xi
S800.000
.000
.000
.000
200.000
200.000
200.000
RIVEk6IDC
COUNTY L1NC
AT STATION
S7+67
x1
!•600.000
.000
.000
.000
200.000
200,000
200.000
x1
5400.000
Ono
coo
coo
200.000
11-300, 000
200.000
x
5::00.000
.000
.000
.000
12n.000
120.000
12.0.()00
x1
Sofia coo
000
.000,
000
'100.000
100.n0,0
i00.000
x(
47(10.000
4.000
coo
45.000
ion.000
io.n,non
ion 900
CR
041.SOO
.000
030.SOO
16.500
030.500
20.Sa0
041.500
xi
4000.000
.000
.000
.000
200.000
200;000
200,000
ki
4600.000
.000
.000.
000
2on.Ono
ion .,a().a
200.000
xi
4400.000
ono
.000
.000
200.000.
200.;'(1.00
:.00 nr,o
xi
4200.000
000
.ono
aon
2ao,00a
;.;yan,;ono
.!on.na0
xi
4000.000
.000
;000
.000
200.000.
no .,.Don
200,00.0
x1
3000,nuo
nun
non
,coo
200.000
2an.na0
.2n0 an
PAGE 6
.000
17(S
. 0011
.000
-.477
000
.000
-1.655
.000
Goo
-.555
.0101
000
-2.2?0
.OG+''
.000
-111..220
G00
.Ono
-2,220
Gni
.000
-1.332
;at
000
.000
^;•o
4!:.003
.000
iL:
000
-5.990
.000
000
-2.220
.0';:;
1000
•-2.220'
.000
000
-2.420
nc;0
.nrn
-2.2r.o
.000
, 000
2..2n
, 0!10
SAI,
AUG 21, 1982, 2136 PM
PAGE 7
X1
3600.000 .000
.000
.000
•200.000
200.000
200.000
.000
-2.220
.000
Xi
3400.000 .000
.000
.000
200.000
200.000
200.000
.000
-2.220
.000
X1
3200.000 .000
.000
.000
200.000
200.000
200•.000
.000
-2.220
.000
Xi
3000.000 .000
.000
.000
136.000
136.000
536.000
.000
-2.220
.000
COUNTRY VILLAGE ROAD N STATION 29+30
X1
X181-4.000 1000
.000
.000
SO.000
50.000
50.000
.000
-i.Sio
.000
OT
1.000 S370.000
.000
.000
.000
.000
.000
.000
.000
.000
INVERT GRADE BREAK/
MULBERRY
JUNCTION PIPE
Xi
LUiA ,000 .000
.000
.000
i50.000
ISO.000
150.000
.000
-.SSS
coo
Xi
2664.000 4.000
.000
48.000
50.000
50.000
5O.o00
.000
.000
.000
GR
816.710 .000
130S.7i0
16.S00
805.710
31.S00
816.710
48.000
.000
.00n
Xi
2614.000 .000
.000
.000
200.000
200.000
200.000
.000
-.2SO
.000
Xi
2414.000 .000
.000
.000
iS4.000
iS4.000
iS4.000
.000
-1.000
.000
Xi
2260.000 .000
.000
.000
50.000
So.000
50,000
.000
-.770
.001
EXISIING FONTANA CHANNEL
X1
k210.coo 6.000
.000
39.000
i00.000
i00.000
100.000
coo
.000
con
GR
817.440 .000
811.440
.0iO
803.440
12.000
803.440
27.nno
Dii.440
39.001
GR
857.440 39..010
.000
.000
.000
.000
.000
Don
.000
.Olin
Xi
2110.000 .000
.000
.000
110.000
110.000
110.000
.000
-.SOO
.001
QT
1.000 SS90,000
.000
.000
.000
.000
.000
.000
.000
ono
X1
20oO.000 .000
.000
.000
SO.000
SO.000
SO.000
on()
--.440
%00"
SAI, AUG 21, 1992, 2:36 PM
Xi
1950.000
.000
Xi
1793.000
.000
Xi
1637.000
.000
Xi
!400.000
.000
X1
1200.000
.000
fit
i.000
S0i0.000
xi
iono.000
.000
xi
800.000
.000
Xi
620.000
.000
Xi
4S6.000
.000
X1
2S6.000
.000
Xi
76.000
.000
EJ
.000
.000
'iff imp. i M -e atm
PAGE 8
.000
.000
IS7.000
iS7.000
1S7.000
.000
-.200
.000
.000
.000
iS6.000
iS6.000
iS6.000
.000
-.630
.000
.000
.000
237.000
237.000
237.000
.000
-2.100
.000
.000
.000
200.000
200.000
200.000
.000
-.950
.000
.000
.000
200.000
200,000
200.000
.000
-.800
.001
.000
.000
•.000
.000
.000
Ono
.000
.000
.000
.000
200.000
200.000
200.000
.000
-.800
.001
.000
.000
180.000
iso .Ono
i80.Ono
.000
-.000
.000
.000
.000
164,000
164.000
164.000
.000
-.720
.000
.000
.000
200.000
200.000
200,000
.000
-2.17n
.000
.000
.000
190.000
180.000
180.00n
Ono
-.800
.000
.000
.000
.000
'.000
.000
.000
-.720
.000
.000
,000
.000
.Ono
,noo
onn
.000
.000
SAI, AUG 21, 1962, 2:36 PM
SECNO DEPTH CWSEL
Q QLUB QCH
TIME VLOB VCH
SLUFL XLOBL XLCH
CRIWS W8ELK EG HV HL GLOSS BANK ELEV
QROB ALOE HACH AROB VOL TWA LEFT/RIGHT
VROB XNL XNCH XNR WTN ELMIN SSTA
XLOBR ITRIAL IDC ICONT CORAR 1OPWID ENDST
*PROF i
CRITICAL DEPTH 10 BE CALCULATED AT ALL CROSS SECTIONS
CCHV= .too CEHV=
.300
S.Oi
*SLL:NU 13700.000
934.79
93S.79
.00
939.23
4.44
.26
.12
936.41
3720 CRI1ICAL DEPTH
ASSUMED
390S.
0.
0.
231.
0.
1.
0.
13700.00 9.374
936.42
936.42
940.00
939.61
3.20
.00
.00
937.OS
390S. 0.
390S.
0.
0,
272.
0.
0.
0.
937.OS
.00 .00
14.34
.00
.015
.015
.015
.000
927.OS
.95
.002118 O.
0.
0.
0
18
0
.00
43.11
44.05
*SECHO 13500.000
164S )N1 SEC ADDED BY RAISING SEC 13SO0.00, .640FT AND MULTIPLYING BY i.000
3301 HV CHANGED MORE
THAN HVINS
S.Oi
8.38•
934.79
93S.79
.00
939.23
4.44
.26
.12
936.41
390S.
0.
390S.
0.
0.
231.
0.
1.
0.
936.41
00
.00
16.91
.00
,cis
lois
.0i5
.Ois
926.41
2.44
.003313
too,
100.
100.
7
S
0
.00
40.13
42.S6
164S 1NT SEC
ADDED BY
RAISING
SEC
1.01,
-.640FT AND
MULTIPLYING BY
1.000
i3S00.09
8.06-
933.83
93S.iS
.00
938.82
4,99
.36
.OS
93S.77
390S.
0.
:S9US.
0.
0.
218.
0,
i.
0.
93S.77
.00
.00
17.93
.00
.01s
.OSS
lois
.015
925.77•
2,93
.003HtQ
100.
100.
100.
6
8
0
,00
39.14
42,07
*!;ECNO 13300.000
13300.00
7.67 932.ib
933.89
.00
937,89
S.73
,85
.07
934.49
390S.
0.
3905.
0.
0.
203,
0.
2.
0.
934.49
.01
.00
i9.2i,
.00
,01S
lois
lots
.015
924.49•
3.SO
.004687
200.
200.
200.
6
8
14
.00
38.01
41.50
u
PAGE 9
1
BREAK
14593.00
SAT, AUG 21,
1982,
2136 PM
.00
933.97
6.77
,62
.01
929.97
3905.
SkCNO
DEPTH
CWSEL
CRIWS
WSELK
EG
11V
HL
OLOSS
SANK ELEV
Q
QLE1B
QCH
QROB
ALOB
HACH
AROB
VOL
TWA
LEFT/RICHT
TIME
VLOB
VCH
VROB
XNL.
XNCH
XNR
WTN
ELMIN
SSTA
SLOPL
XLOHL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
*S9CNO 13100,000
926.35
928.S6
.00
933.38
7.03
.S6
.03
929.21
13100.00
7.47
930,68
932.58
.00
936.86
6.i8
.99
.04
933.21
390S.
0.
390S.
0.
0.
196.
0.
3.
i.
933.21
.01
.00
19.95
.00
.015
.015
.015
.0ts
923.21
3.80
.00Si97
200.
200.
200.
S
11
0
.00
37,41
41.20
*SEL11U 12900.000
7.00
9'24.59
926,96
.00
932.OS
7:46
1.29
,04
927.59
12900.00
7.3S
929.28
931.30
.00
935.76
6.47
1.07
.03
931.93
3905.
0.
3905.
0.
0.
191,
0.
4.
1.
931.93
01
.00
20.42
.00
.015,
.015
tots
.015
921.93
3.98
.00S530
200.
200.
200.
4
11
0
.00
37.OS
41.0'2
1 *SUCNU 12700.000
12700.00
7.27
927.92
930.02
.00
934.60
6,69
1.13
..02
930.6S
390S.
0.
3905.
0.
0.
188.
O.
S..
1.
930.65
.01
.00
20.7S
.00
.015
.015
.015
.OiS
920.65
4.10
.00S707
200.
200.
200.
4
it
0
.00
36,80
40.90
*SECNU 12593.000
[NVEkl GRADE
BREAK
14593.00
7.23•
92/.20
929.34
.00
933.97
6.77
,62
.01
929.97
3905.
0.
390S.
0.
0,
187.
0.
S,
,_1.
929.97
.02
.00
20.88
.00
.0i5
.015
.015
tots
919:.97
4.iS
.00S889
107.
107.
W.
4
11
0
.00
36.70
40.85
*SECNO 12SO0.000_
12500.00
7.14
926.35
928.S6
.00
933.38
7.03
.S6
.03
929.21
390S.
0.
3905.
0.
0.
154.
0•.
>6,
i.
929,21
.02
.00
21.28
.00
lois
,015
.015
.01s
919G21
4.29
.006198
93.
93.
93.
4
11
0
.00
36,42
40.71
*SECNU 12300.000
12300.00
7.00
9'24.59
926,96
.00
932.OS
7:46
1.29
,04
927.59
390S.
0.
3905.
0.
0..
178.
0,
6.,
1.
927.S9
.02
.00
21.91
.00
,015
.015
.Cis
.OiS
917.S9
4.St
00675;
:!n 0.
200.
200,
4
11
0 ...
.00
3S.97
40.4P
NAGE 10
WL Ow aw
r.
,
1
SAT AUG 21 1982
2136 PM
F AIGE i.1
SECNO DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q QLOB
QCH
QROB
ALOE
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME VLOB
VCH
VROB
XNL
XNCH
XNR
WTN
ELMIN
SSTA
SLOPE XLEIDL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
*sVCNO 12100.000
i2i00.00 6.89
922,87
92S.3S
.00
930.64
7.77
1.30
.03
925.97
3905. 0.
3905.
0.
0.
17S.
0.
7.
i.
925.97
.02 .00
22.37
.00
.015
.015
.Ois
.015
9iS.97
4.66
.007111 200.
200.
200.
4
ii
0
.00
35.67
40.31
*SECNu 11900.000
• ti90U.0U 6.82
92i.i8
923.73
.00
929.16
7.99
i.4S
.02
924.35
3905. 0.
3905.
0.
0.
172,
0.
8,
2.
924.35
.02 .00
22.68
.00
.015
.Ois
,.0i5
.0is
914.35
4.77
.007387 200.
200.
200.
4
ii
0
.00
35.47
40,23
*SECt40 11700.000
t1700.00 6.78
9i9.Si
922.11
,00
927,65
8.14
i.SO
..02
922,73
3905. 0.
3905.
0.
0,
171.
0.
9.
2.
922.73
.03 .00
22.90
,00
.015
lois
.015
,015
912.73
4,84
.007584 200.
200.
200.
4
!i
0
.00
35,33
4A.i6
*SECNO iiS00.000
11500.00 6.74
917.86
920.49
.00
926.11
8.25
i.S3
.01
921.11
3905. 0.
3905.
0.
0.
169,
0,
10.
2.
921.11.
.03 .00
23.06
.00
lois
,015
,015
.cis
911,11
4,88
.007726 200.
200.
200.
4
11
0
.00
35.23
40.12
*SECNU 11300.000
51300.00 6.72•.
9161.21
918.88
.00
924,SS
8.33
i.S6
,01
919.49
3905. 0.
3905.
0.
0.
169,
O,
i0i
2.
919,41
,03 .00
23.1'/
.00
.015
,cis
.015
,015
909,49
4,92
.0078,•29 200.
200,
200.
4
ii
0
.00 •,,
35.16
40.Of
*SECNU ili00.000
INVLRI GKADE
BREAK
!1100,00 6.70,
9t4.S8
917.26
.00
922.97
8.39
i.S7
.01
917.87
3905. 0.
3905,
0.
0,
ib8,
0,
ii.,
2.
917.8%
.03 .00
23.25
.00
.Ois
.015
.O1S
,OiS
907.87
4,94
.007903 200.
200.
200.
4
11
0
.00
3S.i1
40.06
SAT, AUG 21, 1982, 2136 PM PAGE 12
SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV
Q QLUB QCH QROB ALOB HACH AROB VOL TWA LEFT/RIGHT
TIME VLOB VCH VROS XNL XNCH XNR WTN ELMIN SSTA
SLUPL XI.OBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST
*SECNO iO9SO.000
10950.00 7.17 912.82 9iS.62.00 921.70 0.88 i.2i .0S 9i5.6S
3905. 0. 3905. 0. 0, i63.0 0. 12. 2. 9iS.65
.04 .00 2.91 .00 lois .015 .Ois .cis 90S.6s 4.24
.008301 ISO. ISO, ISO. 5 14 0 .00 33.52 37.76
*SE.CNC1 10900.000
10900.00 7.08•• 911.99 914.9i .00 921.24 9.25 .43 .04 914.91
3905. 0. 3905. 0. 0. 160. O. 12. 2. 914.91
.04 .00 24.41 .00 .01S lois .CIS .ois 904.91 4.39
.008775 SO. SO. SO. 4 it 0 .00 33.23 37.61
*SEC14U 10870.000
10870.00
7.02
• 911.49
914.47
.00
920.95
9.46
.27
.02
914.47
3905.
0.
3905.
0.
0.
i58.
O.
12.
2.
914.47
.04
.00
24.69
.00
.015
.015
leis
.OiS
904.47
4.47
.00905i
30.
30.
30.
4
11
O
.00
33.06
37.53
*SECNU 10820.000
CHERRY AVE.
JUNCTION
PIPE
10020.00
7.22•
910.95
913.95
.00
920.50
9.55
.4S
,01
913.73
40901
0.
4090.
0.
0.
165;
0.
12.
2.
913.73
.04
00
24.80
00
.0i5
lois
.015
lois
903.73
4.16
.008860
SO.
50.
SO..
4
11,
0
.00
33.67
37.84
*SEC14(i i000u.ono
i0E:100.00
7.i9
910.62
913.63
.00
920.30
9.68
.18
.01
913.43
4090.
0.
4090.
0.
0.
164.
01.
12.
2.
913.43
04
.00
24.97
.00
.015
.0is
.015
.n1►
903.43
4.22
.009034
20.
20.
20.
4
It
0
.00
33,57
37.70
*SECNtG 10750.000
10750.00
7.11-
909.80
912.89
100
9i9.81
10.01, `.
.46
.03
912.69
4090.
0.
4090.
0.
0/
161,
1, 1 0. '.:
12.
2.
912.65'
.04
.00
25.39
.00
MS
1015
.015
;015
902.69
4.34
00')44x;
S0.
SO.
50.
4
!1
n
.nn'
33.33
37,66
SAT, AUG 21, 1982, 2t36 PM
SECNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q
QL0B
UCH
QR00
ALOB
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME
VLOB
VCH
VROH
XNL
XNCH
XNR
WTN
ELNIN
SSTA
SLU1IL
XLOBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
*SECNO 10700.000
LINE
'D'JUNCTION PIPE
906.36
909.S6
.00
917.0
10.83
1.04
.00
10700.00
7,05
909.00
912.17
.00
919.30
i0.30
.48
.03
91i.9S
4100.
0.
4100.
0.
0,
iS9.
0.
13.
2.
911.9S
.04
.00
25.75
.00
.OiS
.0i5
.015
.OiS
90i.95
4.42
.009000
SO.
SO.
So.
4
11
0
.00
33.16
37.50
*SECNCI 10600.000
10600.00
6.94
907.41
910.70
.00
918.23
!0082
1.01
.OS
910.47
41on.
0.
4100.
0.
0.
iSS.
0.
i3.
3.
910.47
.04
.00
26.40
.00
.015
.015
0015
.015
900.47
4.60
010A86
i00,
100,
100.
4
11
0
.00
32.80
37.40
*SECNU 10500.000
10900.00
7.37
906.36
909.S6
.00
917.0
10.83
1.04
.00
908.99
4100.
O.
4100.
0.
0.
iSS.
0.
13.
3.
908.9P
04
00
26.41
.00
.OiS
.OiS
.OSS
.015
698:99 3.94
.010340
100.
500.
100.
S
14
0
.00
32.12
36.06
*SECNO 10400.000
10400.00
7.28
904.79
908.13
.00
916.08
11.29
1.06
.0S
907.Si
4100.
0.
4100,
0.
0.
iS2.
0.
14.
3.
907.Si
.04
.00
26.97
.00
.OiS
.015
.OSS
,OiS
"'997, Si
4.09
01094S
100.
1,00,
i0o,
4
ii
0
.00
31.81
3S.9i
4SECUD 102200.000
10200.00
7.12
901.67
90S.i6
.On
913.72
12.05
2.29
.08
904.SS
4100,
n,
4100.
o.
O.
147.
0,
1.4.
3.
•904.SS
.04
.00
27,86
.00
.015
.015
.015
.015
894.SS
4.32
.011947
200.
200.
200.
S
11
0
.00
3i.3S
3S.68
'%SECNU 10000.000
10000.00
7.02 -
898.61
902.23
.00
911.20
12.S9
2.46
.05
901.59
4100.
0,
4100.
0.
0.
144.
0.
15,
31
901.S9
.OS
.00
26.48
.00
.01S
.015
.015
.015
891.59
4,48
.ni?6711
2nn,
200.
200,
4
11
0
.00
31.OS
35.52
PALL 13
SAT, AUG 21, 002, 2:36 PM
SE -U40 DCPTH
CW:;EL
CRIWS
WSELK
EG
HV
NL
GLOSS
DANT( ELEV
Q QLC1D
UC11
QR00
ALOD
MACH
AR OD
V0L
1WA
LEf i/PIGHT
TIME VLOD
VCH
VROD
XNL
XNCH
XNR
W'i'N
ELMIN
S IA
SLUNL XLURL
XLCH
XLODR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
;!;t.040 99(10. uon
YY00.00 6.9£1
(197.01/
1700.611
.00
909.9n
12.01
1.'.10
ur
Y00.ii
4100. 0.
4100,
0.
0.
143.
n,
1f;.
3.
17,00. ii
0s 0o
1090;11
28.73
00
ois
0is,
nis
Oi5
4.s4
012970 100.
100.
100.
4
14
0
On
3.0.92
35.46
*bCt.NU 91100.000
4000.00 7.S4
896.17
099.63
.00
9n0.5o
12.33
1,26
14
09(1.63
4100. n.
4100.
0,
0.
14S.
D.
14-
3.
(190.63
.OS .00
28.io
.00
,Ois
.01S
nts
AiS
800.63
3.71
.012107 t00.
100.
100.
6
14
0
On
30.61
.',4.30
4:3FUNU 9bO0.000
96110.00 7.4s
1.193.12
896,74
.00
9ns.95
i'.03
2.5n
as
£195.67
4100. 0.
4100.
0.
0.
143,
0.
ill.
3.
Blis.67
.W.; .00
2£,.74
.00
.015
cis
ai>
015
ElW;,lj7
3.C4
ai2nso 2nO.
20n.
200.
4
1t
0
.On
30.33
34. IE,
)tSEC14C, 9450.000
9450.00 7.39
890.04
094,53
.00
903.96
13.12
1.96
.03
893.45
410n. 0.
4100.
R.
0,
141.
0.
17,
3,
iW3.41
.. n' 00
29. 07
00
.019
cis
ni5
.015
803..45
3.91
Oi.S24t 150,
iSO.
150.
4
11
0
,On
30,17
34.09
MSECNU 9400,000
LINE It;' JUNCTION
PIPE
?-11111.011 7.45
090. 16
893.79
.00
903.30
1:3.14
61h
On
8Y2.7.1
411,0. 0.
4160.
n.
0.
143.
n,
i7.
3,
f192.71
a,; 00
2Y.00
,00
.015
.015
.n15
at i
(102.71
;5,0
013132 SO.
si0.
SO.
3
14
0
.00
30.37
34.19
*UL110 WOO. 1100
9:20n.00 7.40
807. is
E190.03
.00
YOn,60
13.4,
167
03
Uhl;,;1:,
4160, 0.
4160.
0.
0.
141,
0,
in.
4.
009.75
01; 00
29.43
.00
,OiS
.0iS
Oil
01";
079.71;
n13Y,4 ;100
:00.
ryn.
4
14
0
nn
30.20
54.10
VALE i4
SAT, AUG 21, 19£12, 2:36 PM
SECNO Df:PTII
CWSEL
CRIWS
WSELK
EG
IIV
HL
OLOSS
DAUX EL.EV
Q QLCID
QCH
QRC)B
ALOE
MACH
AROB
Vol.
TWA
LUT/RIGHT
TIME V1.08
VCH
VROB
XNL
XNCH
XNR
WTN
ELIIIN
SSTA
SLUFL Xl.DSL
XLCII
XLODR
ITRIAL
IDC
ICONT
CORAR
TOPWID
E.N,D5T
i;; :CNu :'000. 000
5.000.00 7.36
884.iS
887.87
.OD
897.83
13.68
.3.74
.02
006.79
4160. 0.
4160.
0.
0.
140,
0.
1.8.
4.
506.79
.06 .00
29.69
.00
.cis
.01s
.pis
.cis
076.79
3.96
013073 200.
200.
20n.
4
14
0
.00
30.00
34.04
*SCLOW O(.100.000
6800.00 7.33
801.16
804.91
.00
895.02
13.86
2.00
.02
683.£13
4160. 0.
4160.
0.
0.
139.
0.
19.
4.
803.07
.06 Ica
29.07
.00
.015
,nil
.Oil
1115
073.03
4.00
014170 200.
D00.
200,
4
14
n
n0
29.99
34. 0(i
*SLCN(1 81)00.000
800 0 . 00 % . 31
(170 . it)
001 .95
.00
092. 17
13 .99
2.04
01.
C1110 . 87
4160. 0.
4160.
0.
0.
139.
0.
20.
4.
CS0,(11'r'
.0:, n0
30.01
.00
,cis
.pis
cis
.015
870.87
4.C4
01 •1267 200.
200.
200,
4
14
0
() a
29. 93
33. 5'6
*11UNU OSS0.000
INVCkI GRADE
FREAK
1;1;:U.00 %.31
£t%%.44
801.32
00
091,45
14.01
.72
.00
01;1.13
4160. 0.
411.0.
0.
0.
139.
0.
20,
4.
MIi.I
06 Ott
30 . 03
. 00
0 i
. 015
.0.15;
1111.;
870 . i;:
U14314 5n.
Sa.
S0.
3
14
0
on
x9.92
41,
xGECNCI 1;44,1.000
8444.00 ; .•10
Ct%:>.3
Ban. is
00
8[19.81
1,';.45
1.40
17
079.95
4160. 0.
4160,
0.
0.
141.
0;
20,
4.
079.95
.06 .0a
29.44
.00
.015
.01S.
0153
0 I
868.9';
S . 4 U
a13562 1a6.
106.
106.
4
14
0
(10
30.20
2,S. 60
x`;1:(.11(1 (13'14.000
ALMOND AVE..
JUNLTIUN
PIPE.
8394, 00 7.51
075.91
079.65
.00
809.05
i3. 1.3
.66
.10
079.40
4.210. a.
4.:1In.
0.
0.
14S.
0.
20.
4.
079,40
.01, 00
:9.110
.Oa
III 'I
.1)15;
.(11',
111:;
060.40
1; ;'A
01sn;)4 S.It.
510.
S0.
4
i4
0
.n0
30.!,4
i'.i.%i
PALL 15
SAT, AUG 21, 1982, 2:36 PM
SCCHO
DEPTH
CWSE1.
CRIWS
WSELK
EC
HV
HL
GLOSS
BANK rLEV
Id
OLD14
LA
LJ
LW3
L:-1
L-1-
Cil
L::J
t: - J L,....J
L- J
[-_.i !._1 t_.J tJ t... J`�.....� _�._.l L-!
SAT, AUG 21, 1982, 2:36 PM
SCCHO
DEPTH
CWSE1.
CRIWS
WSELK
EC
HV
HL
GLOSS
BANK rLEV
Id
OLD14
QCH
OROE,
ALOR
HACH
ARO$
VOL
TWA
LOFT/RICHT
TIME
VLOH
VCH
VROD
XNL.
XNCH
XNR
WTN
ELMIN
SS FA
SLOPL
XLOEtL
XLCH
XLOHR
ITRIAL
IDC
ICONT
CORAR
10PWID
END:ST
cit -04d :100.000
(.:.IOU. oil
/ . 62
U%;i . 07
U77. 50
.00
006142
1'.' . 56
2.45
. 17
CI'17 .25
4210.
0.
4210,
0.
0.
140.
0.
21.
4,
(17".25
.06
00
x.'.8.44
.00
Oita
015
cis
0 i
E166.25
5.07
0i2261
194.
194.
194.
4
14
0
.00
30.86
35.93
4ULCH() SOSO.000
0050.00
7.68
87,.,26
875.83
.00
804.52
12.27
1.81'
.09
87`.".:10
4210 .
0.
4210 .
0.
0.
1 S 0 ,
0.
21..
4.
(17S. '.'a
.06
.00
";6,t1
.00
cis
cis
cis
lots
864,58
4.99
0110114
ISO.
iso,
iso.
4
14
0
,00
3J. .03
:6,01
+1LELHO 30110.000
8000.00
7.611
671.71
875.35
.00
883,91
12.21
59
.,02
875,03
4210.
0.
4210.
0.
0,
iSO.
0.
24..
4,
075,0;
.06
.00
LU.04
.00
lois
cis
cis
.o1S
864.03
4.97
011003
50.
50.
5c.'
3
it
0
.00
31.06
36,03
+:,LCNU 7000.000
7000.00
%.%3
Ct:.".S,4
073.13
.00
0(St.sf
t1.97
2. 33
.01I
07? fit
4: 1 0 .
0.
4210.
0.
0.
1.52.
fl.
?:'
S.
!t'i �' , ( 1
U7
.00
::'i.%;'
.00
lois
lots
01 S
0.1!1
E16,f .Ot
4. 90
011SO2
200.
200.
200.
4
It
0
1.00
31.120
t0
*Gt:CNU 7600.000
600.00
%.76
U6%.
670.91
.00
879, 1.9
11.04
2.28
.04
E170.5"
4210.
0
4210.
0.
0.
152,
0,
23,
s,
(170.':,7
t17
00
27.61;:
.00
cis
015
.0V;
10iS
(1;9.59
4101,
011331
2100.
200.
200.
4
'it
0
00
;{1.20
:36.14
tSCLHU 7404.000
7.104.00
%.%7
0:66.06
1569.62.
.00
877.87
11.80
1.:31
0
[167.;31)
42! 0 ,
0 .
4210 .
0 .
0.
1.S3.
0 .
.;3,
S.
(it"? 10
,07
OU
27.57
,00
lots
;cis
OV;
,011;
0511.30
4.ii',
011211-S
116).
116.
116.
3
11
0
0t;
31 .31
36,, 1':;
1,AGL ib
SAT, AUG 21, 1982, 2:36 PM
31:1.NU
1)E:PIII
CWSEL.
CRIWS
WSELK
FG
HV
IIL
OLO.SS
DONK ELEV
_.,.J
L_.J
L--'
L.,-1
L.._,!
L.. -i
L: -J
L:J L_.:
TWA
..jm
SAT, AUG 21, 1982, 2:36 PM
31:1.NU
1)E:PIII
CWSEL.
CRIWS
WSELK
FG
HV
IIL
OLO.SS
DONK ELEV
Q
QLUS
QCH
QROB
ALOB
HACH
A.ROH
VOL
TWA
LEFT/RIGHT
TIME
VL08
VCH
VROD
XNL
XNCH
XNR
WTN
EL.MIN
SSTA
SLOPL
XLOhL
XLLH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
NO %'434.
ono
1. INE
'C{' JUNCTION
PIPE
7434,00
7.89
865.63
869,14
.00
877,26
11,63
.56
05
568.74
4190.
0 .
4280,
0 .
0.
iS6 ,
0.
24.
S; .
CMC , 7!
.07
.00
2%.37
.00
OiS
lois
,015
.0t5
057.74
4,67
01,0930
SO.
50.
5o.
4
it
0
nn
31.66
36„3:3
4S£CNU 7400,000
7400.00
7,89
865.26
860,75
.00
876,09
11.63
.37
.00
060,37
42110,
0,
428n.
0,
0,
is6,
0.
24.
5.
060,3'1'
.07
00
27,37
.00
,015
415
,0 i
ni5
057,37
4,67
010'740
34.
34.
34,
0
11
0
0n
31,66
36,3::•
*SCCN0 7330.000
7330. 00
7.89
864,40
867.98
.00
876.12
11.64
..77
.00
867.59
4200.
0.
4200.
0.
0.
iS6.
01.
24,
S.
067.Sf'
.07
00
:%.311
.00
cis
.Ots
.015
,015
E1,5 S9
4.67
.010953
70.
70.
70,
3
it
0
.00
31.,65
36.3;5
�S1.1 Itfl 7230.000
72.17. UO
7. 31
06;'.79
866.42
.00
874, 94.
1;'_. 15
i , i3
.05
V66. 4t:
4290.
0.
4110n.
0.
0.
1113,
0.
24,
S.
f16b.4f:
.07
00
27,97
.00
.015
.015
,015
.015
EIS5.40
S,;
011722
ion.
100.
100.
7
It
0
00
31.91
37.4.5
1;;i i, 111.1 ,..;'4.000
7-,;!0 UO
%. d1
11(. . b!I
066.211
.00
074.61
1;? 13
1."
0.t
1,66,;;',
4. iIn.
0.
4200.
0.
0.
is3.
0.
24. -
S.
CL6.31
0'7
.00
%.Y5
00
.015,
OSS
015
at!)
E15,,37
5.54
.011700
10.
10,
in.
0
14
0
00
31.92
37.411)
:tSEl:N11 7170.000
11145 11`11 SEC
ADDED BY
RAISING
SEC .7170.00,
278FT AND
MULTIPLYING
PY
1/49
I.tit
7, lift
1162,711
066,2c)
.00
074,30
it.611
.:111
.16
1166.09
41.;'0.
n.
4`.+;.'11.
0.
0.
Ili'.;.
It.
;'4.
!1.
11h6.IlY
.117
. 00
:!7..;:;
0O
.61S
, 015
n1!;
, 015
NS,S. 09
4, Y%
0101.,1/11
:!,.
L!1.
251
`+
14
0
.00
33.04
3H.Ci
F'AGL 17
SAT, AUG 21, 1982, 2:36 PM
SCC:NO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
ULOSS
BANK ELEV
Q
QLOQ
QCH
QROB
ALOE)
HACH
AROD
VOL
TWA
LEFT/RIGHT
TIML
VLOV
VCH
VROB
XNL
XNCH
XNR
WTN
ELMIN
SSTA
SLOPE.
X1.ODL
X1.C11
XLOPR
IT'RIAL
IDC
ICONT
CORAR
TOP WID
CNDS
il,4'; INT SEC:
ADDED
8Y RAISING
SEC
i.0i,
-.278FT
AND MULTIPLYING PY
i,e0i
.00
CANANA JUNCTION PIPE:
i 1 .90
.' . in
01
C037. ^7
0.
172 .
0.
7170.00
6.06
fl6 .U"
866,1.'.
.00
873,90
ii.in
.2;
1S
065,01
4760.
n.
4760.
0.
n.
1711,
n.
25.
5.
0Z'S.01
.07
00
21.74
.00
oisi
nis
leis
.015
054.01
4.41
1)(111o41
s.
?S.
2S.
5
14
0
.00
34.10
311.59
*SLLN1) 7000,000
fL�.T•
R
'1000. 00
6.00
1160,93
064.37
.00
872.29
it.36
1.66
.03
063.93
4760.
0.
4760,
0.
0.
M.
0.
25.
S.
063,9;;
.U7
.00
27.04
.00
,015
.015
leis
.015
6522.93
4,!;n
.009939
M.
170.
170.
4
11
0
.00
34.00
30. s0
SSCLNU 6000.000
6000.00 7, YS US11.66 062,16
4760. 0. 4760. 0,
.00 00 :7.3:1 00
.010216 200. 2011, 200.
V01 UtJC) 6600.000
6600.00 %.91 8S6.40 059. 94
4760. 0, 4760. 0.
.Oil .00 27.53 00
i) t 04;'7 .?00. 200. 200.
►`,LLNh 6400.000
6400. 00 %.bil M,4.IS OS7.72
476n, n. 4760. n.
.UG 00 27.69 00
ntU501) 00, 200. 200.
VICUNO 6250.000
&no.00 7.86 852_.46 US6.06
4760, n. 476n. 0,
.011 . 011 2Y. %0 . no
01ut113 it.0. 150. i50.
.00
870.25
it S9
2.02
.02
861.7t
0.
174.
0.
21,,
S.
861.71
leis
.015
.0is
015
BSO. 71
4,50
4
11
a
on
3:1.04
';,4:?
.00
068.16
it .77
2.060„
02
057.49
0.
173.0.
859, 41,
leis
.015
cis
040,49
4.64
4
it
0
00
33.73
'0.36
.00
066.05
i 1 .90
.' . in
01
C037. ^7
0.
172 .
0.
20 :
6 .
f 1 i
leis
Oi5
Oi5
tlis
846.27
4.;,0
4
if
n
,0.0
33.64
:11.3. ;2
.00
064.45
it .98
.4.60
.01
E15S.60
0.
1.71.
Q..
;!0.
nit,
01!1
011;
(1 IS
044.60
4
! t
e
, 00
3,;. 59
stl . 119
fL�.T•
R
PAGE 13
- AI, Au;. ?1, 1592, 3;35 PM
sLCNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
Ht_
OLOSS
DANK ELEV
Q
WLOB
QCH
QROS
AL.OP
HACH
AROS
VOL
TWA
LEFT/RIGHT
1111E
VLOD
VCH
VROD
XNL
XNCH
XNR
WTN
£:LMIN
SSTA
S1.UF1E
XLODL
X1.CH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDyT
x-;L.CNO t0So.000
C.iso.00
7.31
MID .80
I1S4.53
.00
(363.29
12.49
i.ti
.05
GS4.49
4760.
0.
4760.
0.
0.
i60.
0.
29,
6.
GS4.49
.00
.00
20.36
.00
.015
lois
015
.015
043.49
515.1
.011449
100.
100.
100.
7
it
0
00
33.93
39.46
4SECNU 6125.000
6125.00
7.31
OSO.S2
854.22
.00
063.00
12.40
.29
.00
CS4.21
4760.
0.
4760.
0.
0.
160.
0.
29.
6.
GS4.21
00
00
28.35
.00
lois
.015
.Ois
AiS
843.21
S. S3
Oii439
25.
2S.
25.
0
i A
0
On
33.93
39.17
*SELNU 6075.000
CALAIsASH
JUNCTION PIPE
6075.00
7.47
£lSO.13
OS3.76.
.00
862.37
12.24
S6
.07
053.66
4070.
0.
41.170.
0.
0.
M.
0.
29.
6.
0 1
.011
00
"1.011
.00
.Ois
cis
.0i5
.015
042. 6l:
S.;'9
.o10'IS9
SO.
So.
50.
4
14
0
.o0
34.42
* SECNO 6059.000
b3r�9.00
7.47
1349.45
853.59
.00
862.19
12.24
.10
o0
E; S3
4117() .
0.
4070.
a.
0.
1.73.
n.
29,
6,
053 , 413
.08
00
20.00
.00
.0i5
.0i5
.015
.0 i
(02.40
153
010'16.1
16.
16.
16.
0
14
0
.00
34.42
.39.'71
;t;tc.1)u nuns, 000
6043. 00
7.44.
849. i6
£153.41
.00
86.2..0?_
12 ."?j
. it)
.00
E;S3.'1,0
41370.
0.
4970;
0.
0.
M.
0.
29.
6.
OS3.30
. 011
. n0
?13. 09
.00
.015
.015
Cis
01 +
542.30
S.29
oi097S
i6.
16.
16.
0
14
0
On
34.41
39.71
tLC(AM 6000.000
6000.00
7.47
841/.:!Y
W12. 93
.00
8,6t.54
1;!,;.>��
.4'/
00
11'.,:',11;1
4870.
0.
4070.
0.
0.
173.
0.
P9.
6.
11c;? . L'?
.01.1
n0
20.07
.00
.01s
.OiS
lots
(11.S
041.02
29
.010971
41.
43,
43.
2
14
n
.n0
34.41
39.71
VAGI: 19
ir AIM �wii6m
SAT, AUC 210 1982, 2136 PM
SECNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q
QLOB
QCH
QROB
ALOB
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME
VLOB
VCH
VROB
XNL
XNCH
XNR
WTN
ELMIN
SSTA
SLDPE
XLOBL
XLCH
XLOBR
ITRIAL-
IDC
ICONT
CORAR
IOPWID
ENDST
*!3CCNI) SOSO.000
LINE 'A' JUNCTION PIPE
SUSO.00 7.48
947.64
8Si.27
.00
SS9.90
12.26
i.6S
.00
SSi.i6
4870. 0.
4870.
0.
0.
173,
O.
30.
6.
85i.iL
.09 .00
29.10
.00
.Ois
.OIS
.015
lois
840.16
S.30
.Oi09Ui ISO.
ISO.
ISO.
0
14
0
.00
34.41
39.70
*SEL'ND 5800.000
SS0o.00 7.48
947.o8
850.71
.00
859.35
12.27
.5S
.00
850.60
4870. 0.
4870.
0.
0.
173.
0.
30.
6.
SSO.61
.OY .00
29.11
.00
.015
.Ois
.015
.Ois
839.60
S.30
.OiO992 S0.
SO.
SO,
3
14
0
.00
34.40
39.71
*SELNO S600.000
21VEk9IDE LOUNTY LINE
AT STATION
S7+67
5600.00 7.47
844.86
848.49
.00
857.14
12.29
2.20
.00
848.38
4U70. 0.
4870.
0.
0.
03,
0.
31.
6.
848.38
.09 .00
28.13
.00
.Ois
.01S.
.01S
lois
837.38
S.30
.Oiioi6 200.
200.
200.
3
14
0
.00
34.39
39.70
*Sr CNV 5400.000
'.400.00 7.47
942.63
846.27
.00
854.94
12.30
2.21
.00
946.16
4870. 0.
4870.
0.
0.
173,
0.
32.6.
846.1.6
.09 .00
28.15
.00
.015
.015
.015
.0i5
83S;i6
S.31
.011037 200.
200.
200.
3
14
0
.00
;.344.38
39.69
*SE(:N(1 S200.000
S200.00 7.46
940.41
844.OS
.00
852.73
1.2.32
2.21
.o0
943.94
4870. 0.
4870.
0.
0.
1.73.
0.
32.
7.
843.91
.09 .00
28.16
.00.
.Ois
.01S
lois
.015
832.94
S.31
.Oi10S3 200.
200.
200.
3
14
0
.00
34.37
39.69
*SECNO 5080.000
5080.00 7.44
939.06
842.72
.00
SSi.40
12.34
1..33
.00
842.61
41370. 0.
4070.
0.
0.
173,
0.
33.
7.
042.61
.01I 00
Lift. iY
.00
.cis
.Ois
.01!1
.111!;
831.61.
!'i.3"?
.1111001 0fl.
120.
120.
2
14
0
.00
34.36
;19.611
PAGE 20
0
zt-
i
Its'
.0o
tv;
t0,
Ota•
p
011076
too.
too.
100.
0
.00
34.3t'
ml
OUECNU 4000.000
4900.00
7.44
935.94
839.61
.00
949.29
12.3S
1.99
.00
839.SO
4870.
0.
4870.
0.
0,
M.
0.
34.
7.
839.50
.t0
.00
28.20
100
lois
.bis
.015
.oiS
828. so
5.32
.O1i009
180.
180,
180.
0
14
0
.00
34..35
39.60
*SECNCI 4600. 000
4600.00
7.4S
833.73
837.39
.00
846.07
12.34
2.22
..00
837.28
4870.
0.
4870.
0.
0,
173.
0.
3S.
7.
837.2P
ISO
.00
28.19
.00
.01%
leis
.015
.015
826.28
S.32
,011082
200.
200.
200.
2
14
0
.00
34.36
39.60
*SECNU 4400.000
4400.00
7.4S
831.Si
835.17
.00
943.86
12.34
2.22
.00
835.06
4070 1
0.
4870.
0.
0.,
173.
0.
36.
7.
83S.Ot
.io
.00
28.19
.00
Ibis
lois
.oiS
lois
824.06
S.32
.Oii003
200.
200.
200.
2
14
0
.00
34.36
39.60
*SENO 4200.000
4200.00
7.46
829.30
832.9S
.00
941.64
12.34
2.22
.00
832.84
4970.
0.
4070,
0.
0.
173.
0.
36.
7.
032.04
.10
.00
28.0
.00
.015
.oiS
lots
lois
021.04
S.32
.Oii083
200.
200.
200.
0
14
0
.00
34.36
39.60
4SECN0 4000.000
4000.00
%.45
E127.07
830.73
.00
939.42
12. S
2.22
loo
930.62
4070.
0.
4870.
0.
0.
M.
37.
7.
030.61F
Ito
.00
28.20
.00
Ibis
.bis
lois
,bis
Si9.62
S.32
.011096
200.
200.
200.
2
14
0
.00
34.35
39.68
0
SAT, AUG 21, 082, 2336 PM
SFCNO DEPTH CWSEL CRIWS
Q QLUB QCH QROB
fIML VLOB VCH VROB
SLOPE XLOBL XLCH XLOBR
*SCCNO 3000.000
3800.00 7,4S 824.85 828.Si
4870. 0. 4870. 0.
.it .00 28.20 .00
.011092 200. 200. 200.
«SECNU 3600.000
3600.00
7.44
822.62
826.29
4870.
0.
4870.
0.
.it
00
28.21
.00
.011101
200.
900.
200.
3SE:C 40 3400,000
173.
0.
3400.00
7.4S
820.41
824.07
4870.
0.
4870.
0.
it
.00
28.20
.00
.011092
200.
200.
200.
*SECNU 3200.000
3200.00
7.4S
Si8.i9
821.8S
4870.
0.
4870.
0.
.it
.00
28.20
.00
.011090
200.
200.
200.
* SECNU 3000.000
173.
0.
3000.00
7.4S
SiS.97
819.63
4870.
0.
4870.
O.
.it
.00
28.20
.00
.01io95
200.
200.
200.
*SELNU 2064.000
COUN1kY VILLAGE kUAD S STATION 29+30
21364.00 7.45 8i4.4b BiS.i2 .00 826.81
4870, 0. 4870. 0, 0. 173,
.12 .00 28.20 .00 .0is ,Dig
0t1093 t3h. 136. 136. 2 14
HL OLOSS BANK ELEV
VOL TWA LEFT/RIGHT
WTN ELMIN SSTA
CORAR TOPWID ENDST
2.22 .00 828.40
38. 0. 828.40
.0i5. 517.40 5.3?
.00 34.35 39.60
2.22 .00 826.18
39. 8. 826.18
.Ois 815.18 S.33
.00 34.3S 39.67
2.22 ,.00 823.96
40. S. 823.96
.0i5 SQ.% S.32
.00 34.3S 39.68
2.22 .00 821.74
40. 8. 82i.7t•
.015 SiO.74 S.32
.00 34,35 39.68
2.22 .00 819.5?
41. 0. 819.52
lots 008.52 5131_
.00 34.3S 39.68
i2.3S..
EG
HV
WSELK
ALOE
HACH
AROB
XNL
XNCH
XNR
ITRIAL
IDC
ICONT
.00
837.20
12.35
0.
173.
0.
.Dig
lois
.015
2
!4
0
,00
834.90
12.36
o.
173.
0.
,Dig
.015
.015
0
14
0
.00
832.76
12.35
O,
173.
0.
.01s
.01s
lois
2
14
0
.00
830.S4
12.35
O.
173.
0.
lois
,cis
.015
2
14
0
.00
828.32
12.39
0.
173.
O.
lois
,0i5
.015
0
14
0
COUN1kY VILLAGE kUAD S STATION 29+30
21364.00 7.45 8i4.4b BiS.i2 .00 826.81
4870, 0. 4870. 0, 0. 173,
.12 .00 28.20 .00 .0is ,Dig
0t1093 t3h. 136. 136. 2 14
HL OLOSS BANK ELEV
VOL TWA LEFT/RIGHT
WTN ELMIN SSTA
CORAR TOPWID ENDST
2.22 .00 828.40
38. 0. 828.40
.0i5. 517.40 5.3?
.00 34.35 39.60
2.22 .00 826.18
39. 8. 826.18
.Ois 815.18 S.33
.00 34.3S 39.67
2.22 ,.00 823.96
40. S. 823.96
.0i5 SQ.% S.32
.00 34.3S 39.68
2.22 .00 821.74
40. 8. 82i.7t•
.015 SiO.74 S.32
.00 34,35 39.68
2.22 .00 819.5?
41. 0. 819.52
lots 008.52 5131_
.00 34.3S 39.68
i2.3S..
1.51
.00
Bi0.0i
0.
42.
a•.
810.0i
.Dig
.cis
807.81
S.32
0.,
..00
34.35
39.60
N
0
PAGE 22
SAT, AUG 21, 1982, 2136 PM
StCNO
DEPTH
CWSEL
CRIW8
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q
WLOU
QCH
QROB
ALOB
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME
VLOB
VCH
VROB
XNL
XNCH.
XNR
WTN
ELMIN
SSTA
SLUPL
XLOBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
*ShCNO 2014.000
I.NVERI GRADE
BREAK/
MULBERRY
JUNCTION
PIPE
824,01
i0.90
.46
.13
2814.00
8.17
814.63
918.04
too
826.02
11.39
.SO
.29
517.46
5370.
0.
5370.
0.
0.
198.
0.
42.
8,
b17.46
.12
.00
27.09
.00
All
tots
tots
tots
806.46
4.24
.0092f12
S0.
160.
SO.
6
14
0
.00
36.52
40.76
*SECNO 2664.000
2664.00
7.S6
813.27
816,74
.00
824,60
ii,33
1,40
.02
816.71
5370,
0.'
5370.
0,
O.
199,
0.
43,
9.
816.71
.12
.00
27.02
,00
,015
.Ois
.OSS
tots
SOS,%
S.17
,009424
iso.
150.
150,
6
it
0
.00
37,6S
42.83
*SECNO 2614.000
2614.00
7.6S
M .ii
M.S4
.00
824,01
i0.90
.46
.13
816.46
S370.
0.
S370.
0.
0.
203.
0.
43.
9.
816.41.,
.12
.00
26.49
.00
tots
.01s
.015
.cis
805.46
S.02
.008932
SO.
SO.
SO.
4
it
0
.00
37,96
42.98
*SECN(j 2414.000
164S )NI SLC
ADDED
BY RAISING
SEC 2414,00,
.SOOFT AND
MULTIPLYING BY
i.000
1.01
7,8S
812.81
816.03
.00
822.93
10.12
.85
.23
Sis.96
5370.
0.
S370.
0.
0.
M.
0.
43.
9.
SiS.96
.12
.00
2S.S2
.o0
tots
tots
tots
.Ois
804.96
4,72
.00001/0
100.
100.
too.
4
it
0
.00
38.57
43.29
164`o INt SEC
ADDED
BY RAISING
SEC
i.0i,
-.500FT AND
MULTIPLYING BY
1,000
414.00
b.04
bi2.S0
815.52
.00
821,96
9.47
.77
.0
biS.46
S370.
0,
S370.
0.
0.
217.
0.
44.
9.
815.41.
.12
.00
24.69
.00
.OV6
tots
.oiS
.015
804.46
4.44
.007372
100.
100,
too.
4
it
0
.00
39.11
43.56
ti
PAGE 23
_ • `: .i w
EMMMMM
SAT, AUG 21, 1982, 2t36 PM
SECNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q
QLOB
QCH
QROB
ALOE
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME
VLOB
VCH
VROB
XNL
XNCH
XNR
WTN
ELMIN
SSTA
SLOPE
XLOBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
*SLCNU 2260.000
2260.00
8.27
8ii.96
B14.73
.00
820.66
8.70
1.07
.23
814.69
5370.
0.
S370.
0.
0.
227.
0.
4S.
9.
814.69
.12
.00
23.67
.00
.ois
.015
.Ois
.015
803.69
4.09
.006569
iS4.
iS4.
iS4.
4
it
0
.00
39.83
43.91
*SECNU 2210.000
EXISTING FONTANA CHANNEL
2210.00
8.35
. 8ii.79
Bi4.24
.00
820,28
8.48
,32
.06
817.44
if O .
O.
5370.
O.
0.
230.
'0.
45.
9.
Hii.44
.12
.00
23.37
.00
.cis
.015
.OSS
.0i5
803.44
.0i
.00624S
SO.
SO.
S0.
4
11
0
.00
38.99
39.00
*SECN(7 2110.000
2ii0.00
8.46
bii.40
813.74
.00
819.58
8.i7
.61
.09
Si6.94
5370,
0.
5370.
0.
0.
234.
0.
45.
9.
BiO.94
.12
.00
22.94
.00
.015
.Ols
.015
.Ois
802.94
0i
.00S906
100.
100.
too,
4
it
0
.00
38.99
39.00
*SECNO 2000.000
164S )N1 SEL' ADDED
BY RAISING
SEC 2000.00,
.220FT
AND MULTIPLYING
BY,
i.000
1.01
8.84
Bi1.56
813.63
.00
819.08
7.S3
.30
.19
816.72
5480.
0.
5400.
0.
0.
249.
0.
46.
9.
M0,72
112
.00
22.02
loo
,Ois
.ois
.ois
.015
802.72
,01
.00S011s
y5.
SS.
55.
4
ii
0
.00
39.00
39.00
1645 INT SEC ADDED
BY RAISING
SEC
1.01,
-.920FT
AND MULTIPLYING
BY
i.000
000.00
9,30
Bii.80
813.52
.00
018.62
6.82
,25
.21
016.50
SS90.
0.
5590,
0.
0.
267.
0.
46,
9.
810.50
.13
.00
20.96
.00
.ois
lois
.ois
.015
802.50
01
.004188
ss.
SS.
SS.
s
it
0
.00
38,99
39.00
PAGE 24
`ii����� i� � ion Aw--' iiia7,miiwAi.
SAT, AUG 21, 1982, 2t36 PM
SECNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL.
OLOSS
BANK ELEV
Q
QLUB
QCH
QROB
ALOE
HACH
AROB
VOL
TWA
LEFT/RIGHT
TIME
VLOB
VCM
VROB .
XNL
XNCH
XNR
WTN
ELMIN
SETA
SLUPL
XLUBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDT
*8ECN0 i9SO.000
lyS0.00
9.20
811.60
81.3.32
.00
8i8.4i
6.80
.21
.01
816.30
SS90.
0.
5590.
0.
0.
267.
0.
46.
9.
8iO.31
.13
.00
20.93
.00
.OSS
.OLS
.015
.cis
802.30
.01
.004171
SO.
S0.
SO.
2
11
0
.00
.38.99
39.00
*SECNLI 1793.000
1793.00
9.3S
Sii.02
812.69
.00
817.73
6.72
.65
.03
8iS.67
5590.
0.
5590.
0.
0.
269.
O.
47.
9.
809.6?
13
00
20.80
00
.OIs
.015
.015
lois
801.67
.01
.004090
157.
iS7.
157.
3
11
0
.00
38.99
39.00
*SECNfj.1637.000
1645 )N1 SEC
ADDED BY RAISING
SEC 1.637.00,
i.OSOFT AND MULTIPLYING BY
1.001
3301 HV CHANGED
MORE
THAN HVINS
1.01.
9.07
809.49
811.64
.00
517.27
7.78
.36
.11
81,4.62
5590.
0.
SS90.
0.
0.
2S0.
1 0.
48.
9.
808.62
.13
.00
22.38
.00
.015
lois
.015
.015
800.62
,01
.00SiSi
78.
7O.
78.
6
11
0
.00
39.02
39.03
164S INT SEG
ADDED BY
RAISING
SEC
1.01,
-i.OSOFT AND
MULTIPLYING BY
.999
1637.00
O.S3
808.10
810.S9
.00
816.74
8.64
.44
.09
813.57
0.
SSyo.
0.
0.
237.
0.
48.
9.
807.57
.13
.00
23.S9
.00
.CIS
.Ois
.015
lois
799.S7
.01
.006!%6
%B.
78.
78.
S
11
0
.00
38.99
39.00
*SECNO 1400.000
i64S 1NT SEL'
ADDED BY
kAISING
SEC i400.00,
.47SFT AND
MULTIPLYING
BY
i.00i
1.01
8.77
807.86
810.12
.00
81S.87
8.01
.68
.19
813,il
S590.
0.
5590.
0.
0.
246.
0.
49,
10.
007.10
.13
'.00
422.71
.00
.015
.015
.Ills
.IliS
799.!0
.01
,005:3y?
iIIt.
tit/.
sig.
4
ii
0
.00
39.0;
3v. 0:3
MAGE 2S
SAT, AUG 21, 1982, 2:36 PM
1SECNa
DEPIM
CWSEL
CRIWS
WSELK
EG
HV I
HL
GLOSS
BANK ELEV
Q
GLOB
QCH
GROS
ALOE
MACH
ARGO
VOL
TWA
LEFT/RIGHL'
TIML
VLON
VCH
VROD
XNL
X14CH
XNR
WTN
EL.MIN
SSTA
SLOPE
XLOBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
TOPWID
ENDST
i64S 1NI SEG
ADDED
BY RAISING
SEC
i.0i,
-.47SFT
AND MULTIPLYING BY
.999
1400.00
8.97
807.59
809.64
.00
815.12
7.S3
.61
.14
812.62
!.Svo.
0.
5590.
0.
0.
2S4.
0.
49.
10.
606.62
.13
.00
22.02
.00
.015
.015
.015
.015
798.62
01
.004t;wi
119.
1iy.
119.
4
11
0
.00
38.99
39.00
SE.CHO 100.
000
1200.00
9.20
007.02
808.84
.00
814.04
7.02
.92
.is
811.82
SS90.
0.
5590.
0.
0.
263.
'0.
Si.
10.
805.82
.14
.00
21.26
.00
.OiS
.01S
.015
.OiS
797.82
.01
.004300
200.
200.
200.
4
11
0
.00
38.99
39.00
*SECNU 1000.000
1645 IN) SLL
ADDED
BY RAISING
SEC 1000.00,
.40OFT
AND MULTIPLYING BY
i.000
1.01
9.74
807.16
808.55
.00
813.42
6.26
.39
.23
Si1.42
S700.
0.
5700.
0.
0.
204.
0.
Si.
10.
805.42
.14
.00
20.07
.00
.015
.015
.015
.OtS
797.42
.01
.00358'3
500.
100.
i00.
S
ii
0
.00
39.00
39.01
1645 INT SEC ADDED BY RAISING SEC
3L::l, 20 1 R I AL.S A11 EMP1 ED WSEL, CWSEL
3710 WSEL.
ASSUMED
BASED ON MIN
DIFF
1000.00
10.41
807.43
808.32
5810.
0.
5810.
0.
.14
.00
iS.74
.00
.002830
100.
100.
100.
*SEC:NtJ 800.000
39.00
39.00
800.00
10.08
806.30
807.47
5810.
0.
5810.
0.
.14
.00
i9.SS
.00
. 003:x'7
Pon.
200.
200.
1.01,-.40OFT AND MULTIPLYING BY 1.000
.00
812.09
5.4S
.32
.13
8i1.02
0.
310.
0.
52.
i0.
805.02
.015
.015
.0iS
.01S
797.02
.01
20
e
0
.00
39.00
39.00
.00
812.23
S.93
.60
.05
SiO.22
0.
297.
0.
S3.
10.
1204.22
.015
.OiS
.0i5
.015
796.22
:01
8
0
0
.00
39.00
39. 0(I
PAGE 26
OWN
SAT, AUG
21, 1982,
2136 PM
SEC
456.00,
1.447FT
AND MULTIPLYING BY
.999
PAGE 27
StCNO
DEPTH
CWSEL
CRIWS
WSELK
EG
HV
HL
OLOSS
BANK ELEV
Q
QLDB
WCH
QROB
ALOB
HACH_
AROB
VOL
TWA
LEFT/RIGHT
1IME
VLOB
VCH
VROB
XNL
XNCH
XNR
WTN
ELMIN
SSTA
SLUPL
XLBBL
XLCH
XLOBR
ITRIAL
IDC
ICONT
CORAR
1OPWID
ENDST
*t;LCNU 620.000
620.00 9.9S 80S.4S 006.77 ,00 81i.6i 6.16 .60 ,02 809.50
5010. 0. 5810. 0. 0. 292. '0. SS, i0. 003.S1
.14 .00 19.92 .00 lois ,015 .cis .cis 79S.SO .01
.003423 i80. i80. i80. 4 8 0 ,no 39.00 39.00
*SECNU 456.000
164S 1141 SEC
ADDED
BY RAISING
SEC
456.00,
1.447FT
AND MULTIPLYING BY
.999
i.0i
9.43
804.21
006.06
.00
811.31
7.i0
.21
.09
808.71
SOi0.
0.
SOiO.
0,
0.
272.
0.
SS.
i0.
802.78
.i4
.00
21.38
.00
lois
.01s
.cis
.cis
794.78
.01
.104267
SS.
SS.
SS.
7
8
0
.00
38.96
38.97
1645 INi SEC
ADDED
BY RAISING
SEC
1.0i,
-.723FT
AND MULTIPLYING BY
1.000
1.021
9.i0
803.15
805.30
.00
810.99
7,83
.2S
.07
808.05
S8i0.
0.
S8i0.
0.
0.
2S9.
0.
SS,
i0.
802.0S
.i5
.00
22.46
.00
.015
,01s
.cis
.cis
794.OS
.01
.0049110
SS.
SS.
SS.
6
11
0
.00
38.90
38.91•
1645 1NT SEL'
ADDED
BY RAISING
SEC
1.02,
-.723FT
AND MULTIPLYING BY
1.000
456.00
8.84
802.17
804,57
.00
Siva
8.46
.29
.06
807.33
Sf110.
0.
Sfti0.
0.
O,
249.
0.
S6.
11.
801.33
.IS
.00
23.34
.00
.cis
,cis
.cis
.cis
793.33
.01
.IOS622
SS.
SS.
SS.
S
ii
0
.00
38.99
39.00 ,
*t;ECNO 256.000
,56.00
9.i6
f10i.69
803.78
.00
809.36
7.66
1.04
.24
806.53
5810.
0.
5010.
0.
O.
262.
0.
57,
11.
800. S;:
.is
,00
22.21
.00
lois
lois
.Ois
,015
792.53
.01
.004812
2100.
200,
200.
4
11
0
.00
38.99
39.00
ILL
ii■� � � Ar' do
SAT, AUG 21, 1902, 2136 f -M
St:CNO
DEPTH
CWSEL
CRIWS
WSELK
EG
Q
QLOB
QCH
DRUB
ALOB
HACH
TIME
VLOB
VCH
VROB
XNL
XNCH
SLOP L•
XLObL
XLCH
XLOBR
ITRIAL
IDC
.CIS
.015
791.81
.01
0
1/6.00
9.37
80 i.iS
803.OS
.00
808.39
5810.
0.
5810.
0.
0.
270,
1S
.00
21i.55
00
.015.
.015
.0043'/5
180,
180,
iso.
4
11
HV
HL
GLOSS
BANK ELEV
AROB
VOL
TWA
LEFT/RICHT
XNR
WTN
ELMIN
SSTA
ICONT
CORAR
1OPWID
ENDST
7.21
83
14
80S.8i
0.
58.
11.
799.81
.CIS
.015
791.81
.01
0
.00
38.99
34.00
PAGE 28
SAT, hUG 21, 1932, 2:36 NM PAGE 29
HEC2 RLL.EASE DATED NOV 76 UPDATED APRIL 1980
L'RROR CORR - 01,02,03,04,OS
M11UII 1GATl(.1N - 50,St,52,S3,54
N11IL-- AblLR1SK (#) AT LLPT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST
1:11ANN1.1. :il'/_E FEk CONSTRU
:SUMMARY PRINrwlT
!•il.l.Nb
XL.l:ll
K#(:HSL
DEPTH
AREA
1UPWID
Q
VCH
E:LMIN
LW SE."L
CRIWS
E.G
t< 000
.00
.00
9.37
::72.23
43. it
3905.00
14.34
927.0S
936.42
936.42
939.61
* 13500.000
200.00
-6.40
8.06
217.83
39.14
390S.00
17.93
925.77
933.83
93S.iS
938.0.!
13300.0110
200.00
-6.40
7.67
203.29
38.01
3905.00
19.21
924.49
932.16
933.89
937.11'1
13100.000
200.00
--6.40
7.47
0S, 7S
37.41
3905.00
19.95
923.21
930.68
932.S8
936,116
12900.000
200.00
-6,40
7.3S
591.25
37.OS
396S.00
20.42
921.93
929.28
935,30
935.76
!.'7011.000
200.00
-6.40
7,27
08.20
36.80
390S.00
20.75
920.6S
927.92
930.02
934.611
1.e593.000
1(17.00
--6.40
7.23
i87.00
36.70
3908.00
20.00
91.9.97
927.20
929.34
933. Y7
12soo.1100
93.00
-8. to
7,14
183. SS
36.42
390S.00
21.28
90.21
926,35
928.58
933.311
000
200.00
--1.1.10
7.00
178.19
35.97
390S.00
21.91
9!7.59
924.59
926.96
932.05
12'100.000
200.00
--0.10
6,89
174,S7
35,6.7
390S.00
22,37
9iS.97
922.87
925.35
930.6!
!1900.000
100.00
-8.10
6,82
172,16
35.47
390S.00
22.60
914.3S
921.18
923.73
9.'.9,io
11700.000
200.00
-8.10
6.78
170.52
3S.33
390S.00
22.90
912.73
919.51
922.1!
927.65
11!,00.000
2, 00.00
-•11. 10
6.74
169.37
3S.23
390!;. o0
23.06
911 . 11
917.06
920.49
921.. 11
ii30o.000
200.00
-8.10
6.72
i68.S6.
35.16
3905.00
23.17
909,49
916.21
9i8.80
V24, Sl;
115011.11011
atltf.on
11.10
6.70
167.911
;.5!5.11
3'10!5.110
2.4.V!i
907.117
Y14.'.11
'/17..'1.
4/.!I1.'1'.'
10950.000
IU0.00
--14.8t
7.17
163.29
33.52.
3905.00
23.91
905.65
912. SP
915.6?
921.70
10900.0011
50.00
-i4.80
7,08
iS9.99
33.23
3905.00
24.41
904,91
911.99
914,91
921.4
SAT, AUG 21, 1982, 2:36 PM
5FC11(1
X1.C'H
K*CHSL
DEPTH
AREA
TOPWID
.9
VCH
ELMIN
CWSEL
10870.000
30.00
-14.80
7.02
158.18
33.06
3905.00
24,69
904,47
911.49
i0820.000
50.00
-14.80
7.22
i64.9S
33.67
4090.00
24.80
903.73
91.0.95
t00o0.000
20.00
-1.4.00
7.19
163.77
33.S7
4090.00
24.97
903.43
910.62
i0%50,000
So.00
-14.80
7.11
16i.11
33.33
4090.00
2S.39
902.69
909.SO
10700.000
50.00
-14.80
7.OS
iS9.22
33.16
4100.00
2S.7S
90!.95
909.00
101.00.000
1oo,00
-i4.8O
6.94
iSS.31
32.80
4100.00
26.40
900.47
907.41
10500.000
ino.00
-14.80
7.37
iS5.26
32.12
4100.00
26.41
898.99
906.36
10400.000
i00.On
-14.80
7.28
iS2,02
31.81
4100.00
26.97
897.Si
904.79
1.0200.000
200.00
-14.80
7.12
147.17
31.3S
4100.00
27.86
894.SS
901.67
10u00.000
200.00
--14.80
7.02
143.97
31.QS
4100.00
28.48
09i.59
898.61
9900.000
100. no
-14.80
6.98
142.72
30.92
4100.00
28.73
890.11
897.09
9U00.000
100.00
-14.80
7.S4
14S.48
30.61
4100.00
28.18
888.63
896.17
9600.000
200.00
-14.80
7.4S
142.64
30.33
4100.00
28.74
885.67
893.12
9450.000
150.00
-14.80
7.39
141.06
30.17
4100.00
29.07
8(33.45
890.84
9400.000
50.00
-14.80
7.4S
143.03
30.37
4160.00
29.08
882.71
890.16
911t00.000
200.00
-14.80
7,40
141.36
30.20
4160.00
29.43
879.75
887.iS
9000.000
200.00
-14.80
7.36
140,14
30.08
4160.00
29.69
076.79
884.iS
0800.000
200.00
-14.80
7.33
139.2S
29.99
4160.00
29.87
873.03
Ultt.i6
8600.000
200.00
-14.80
7.31
138.61
29.93
4i60.00
30.01
870.87
878.10
BSS.0.000
50.00
-14.80
7.31
138.51
29.92
4160.00
30.03
810.13
677.44
8444,000
106.00
-11.i0
7.40
141,32
30.20
4160.00 '
29.44
060.95
876.3S
IIA94.000
50.00
-11,01
7,S!
144.7S
30.S4
QiO.Qd
29.08
E1(.,H.40
875.91
N:00.0on
194.00
-11.10
7.62
148.05
30,86
4210,00
28.44
866.2S
873.87
U01,0.000
150.00
-i1.i0
7.613
149,78
31..03
42i0,00
2.9.11
864,511
t.172.'l,
8000.000
So.00
-li.i0
7.68
iS0.i6
31:06,
.4210.00
28.04
864.03
871,71
AMA
inn nn
-11,10
7.73
151:61
31.,20
4214.00
27,77
861.81
869.54
PAGE 30
CRIWS
EG
914.47
920.95
913.95
920.50
913.63
920.30
912.89
9i9,8t
912.17
919.30
91o.70
91(3.23
909.S6
917.19
908.13
916.08
905.18
913.7.1
902.23
911.20
900.68
909.90
699.63
9011. SO
896.74
905.95
894.S3
903.96
893.79
903.30
890.83
900.60
887.07
897.8:1
884.91
095.0?
88i.95
89.17
881.32
891.45
880. iv
1189. Bt
879.65
(imp. n',
877 . SO
1186.4;
[17!-1.0.1
UU4.'�:'
87S.3S
883.91
873.13
80i.St
t
SAt, AUV 2t,
1982, 2x36
PM
PAGE 31
Il.CNU
XLCH
K*CHSL
DEPTH
AREA
TOPWID
Q
VCH
E:LMIN
CWSEL
CRIWS
LG
7600.000
200.00
-11.10
7.76
1S2.44
31.20
4210.00
27.62
859.59
867.3S
870.91
879.19
7484.000
116.00
-ii.l0
7,77
I.S2.7i
31.31
4210.00
27.S7
SS8.30
1166.06
869.62
877.87
1434.000
SO.00
-11.10
7.89
1S6.40
31.66
4280.00
27.37
857.74
86S.63
869.14
877.26
7400.000
34.00
-li.i0
7.89
156.39
31.66
4280.00
27.37
BS7.37
86S.26
868.75
876.89
7330.000
70.00
-ii.l0
7.89
156.32
31.6S
4280.00
27.38
8S6.S9
864.48
867.98
876.12
72'.50.000
100.00
-ii.i0
7.31
iS3.00
31.91
4280.00
27.97
8,5. 48
862.79
866.42
874.94
7220.000
1o.n0
-11.10
7.31
iS3.i1
31.92
4280.0.0
27.95
0SS.37
862.68
866.28
874.81
>i %1%0.000
SO.00
-li.i0
8.06
178.01
34.iB
4760.00
26.74
BS4.8i
862..87
866.22
873.98
7000.000
170.00
-ii.l0
8.00
176.00
34.00
4760.00
27.04
SS2.93
860.93
864.37
072.29
61;110.000
200.00
-ii.i0
7.9S
174.22
33.84
4760.00
27.32
SSO.7i
SS8.66
862.16
870.25
6600.000
200.00
-ii:10
7.91
172.90
33.73
4760.00
27.53
848.49
856.40
BS9.94
860.16
6400.000
Lion .00
-•11.10
7.88
i71.92
33.64
4760.00
27.69
846.27
11,4.15
BS7.72
866.0;
62SO.000
iso .n0
-11.10
7.86
171.3S
33.59
4760.00
27.70
844.60
8S?..46
856.06
864.45
6150.000
100.00
••11.12
7.31
167.83
33.93
4760.00
28.36
843.49
BSO.80
854.53
863.29
6125.000
25.00
-11.10
7.31
167.89
33.93
4760.00
28.35
843.21
050.52
854.22
1.163.01,
6075.000
SO.00
-ii.i0
7.47
1.73.46
34.42
4870.00
28.00
842.66
850.13
1153.76
862.37
6059.000
16.00
-11.i0
7.47
173.44
34.42
4870.00
28.08
842.48
849.95
BS3.59,
062.19
i.04a.000
16.00
-11.10
7.46
173.37
34.41
4070.00
28.09
042.30
849.71)
US3.41
U,62. OP
6000.000
43.00
-11.10
7.47
173.39
34.41
4870.00
28.09
841.02
049.29
SS2.93
861.54
58`.0.000
150.00
-11.10
7.48
173.33
34.41
4870.00
28.10
840.16
847.64 '
851.27
1159.90
Sub. oil 0
50.00
-1i.i0
7.48
173.27
34.40 ,
4970.00
28.11
039.1.0
847,00
850.71
(IS9.3a
5600.000
200.00
-11.10
7.47
173.13
34.39
4070.00
28.13
837.30
844.116
U40.49
U417.1.1
5400.000
Pn0.00
-11.10
7.47
173.01
34.38
4970.00
28. 1.5
1,135.16
04.".63
046.27
01;4. Y4
5:00.000
".00.00
-ii.in
7.46
172.91
34.37
4870.00
28.16
8:3,'...94
840.41
(04.05
tU1..;!.73
5080.000
120.00
-11.10
7.44
172.7S
34.36
4870.00
28.19
831.61
839.n6
842.72
EISt.40
49110. non
SOn.00
-11.13
7.4S
172.78
34.36
4870.00
28.19
E130,SO
837.95
841.61 .
EsSO.29
SAH AUG 21,
1982, 2136 PM
PAGE 32
EsE.1:N0
XLCH
K*CHSL
DEPTH
AREA
TOPWID
Q
VCH
ELMIN
CWSEL
C'RIWS
EG
4800.000
i80.00
-ii.i0
7.44
02.71
34.35
4870.00
28.20
828.S0
835.94
839.61
848.211
4600.000
200.0a
-ii.i0
7.4S
02.7S
34.36
4870.00
28.19
826.28
833.73
837.39
846.07
4400.000
200.00
-ii.i0
7.4S
172.74
34.36
4870.00
28.19
824.06
831.Si
83S.i7
843.8(.
4::00.000
200.00
-ii.i0
7.46
172.74
34.36
4870.00
28.19
821.84
829.30
832.9S
641..6.1
4000.000
200.00
-11.10
7.4S
172.67
34.35
4870.00
28.20
819.62
827.07
830.73
839.42
3800.000
1200.011
-11.10
7.4S
172.69
34.35
4870.00
28.20
6!7.40
824,85
820.51
E137, '110
3600.000
200.00
-11.10
7.44
172.64
34.35
4876.00
28.21
BiS.is
82.62
826.29
834.911
3400.000
200.00
-11.10
7.4S
172.69
34.35
4870.00
28.20
812.96
820.41
824.07
832.76
3;011.1100
:300.an
-li.i0
7,4S
172.70
34.3S
4870.00
28.20
810.74
Bi8.i9
821.85
830.;x:
30110.000
200.00
-71.10
7.4S
02.68
34.3S
4070.00
28.20
608.52
SiS.97
619.63
828.32
2864.000
136.00
-ii.i6
7.4S
172.69
34.35
4870.00
28.2(1
807.01
814.46
818.12
826.81
213114.000
50.00
-f.i.i0
8.17
198.24
36.S2
5370.00
27'.09
806.46
814.63
Si0.04'
(126.0?
2664.000
150.00
-4.98
7.S6
198.78
37.6S
5370.00
27.02
SOS.71.
813.27
816.74
024.60
2(.14.000
50.00
-5.00
7.6S
202.72
37.96
5370.00
26.49
805.46
813.11
616,54
624.01
::414.000
200.00
-5.00
8.04
217.50
39.i1
.5370.00
24.69
004.46
812.SO
GiS.S2
021.96
:4:!60.000
i54.00
-5.00
8.27
226.90
39.83
S370.00
23.67
803.69
61i.96
814.73
1120.66
2210,000
50.00
-5.00
8.3S
229.76
38.99
5376.00
23.37
803.44
81.1.79
814.24
820.:11
2110. Otto
100.00
-13.00
8.46
234.10
39.99
5370.00
22.94
001.94
till .411
1113.74
6f9,!A1
.�K3Ah:
Ix 2000. 000
170. 00
-4.60
9.30
266.75
38.99
SS90. 00 ; ;y,,
.?0.96
802.50
til i ,1110
813.52
1118. t..;'
i950.000
$0.00
-4.00
9.30
267.08
38.99
..
SS90.00
20.93
802,30
8ii.60
61.3.3:3
611.1.41
1793.1100
1,%.00
-4.01
9.3S
268•.77
38.99
5590.00
'20.80
fin 1.67
LIf1.0.
11!12.69
(117.7.5
i 1(.37.11(10
156.00
-1;3.46
9.5:3
236.92
311,99
55'!0.011
23.59
7YY.!i7
(1011.10
61t1,!i'!
If 16.71
+► 141111.11011
n.97
253.1119
311.9'1
a ',
11•'41.0."
Y9(t.to.!
(107.59
009. 64
111!".. f:
1:100.01►u
V90. 00
••4.00
9.20
262.45
39.79
S54a.oa :.+; ;;`,`21.26
797.112
1107.0:!
1:100. 1`14
1114.0.1
111011.000
200.00
-4.06
10.41
316.07
39,00
SH M OV.
18.74
797.02
8(17.43
808.32
ifi:!.If7
r.nn.11bh
2n0.n0
--4.00
10,Ot)
297.23
39,00
5t110.Q0
19.55
796.22
(06.30
807.47
612.:':1
SAS, AUG 21, 1982, 2s36 PM
St.LNO
XI.L'H
K*CHSL
DEPTH
AREA
620.000
180.00
-4.00
9.95
291.66
2 4.6.000
164.00
-13.23
8.84
248.89
2t;b.0110
200.00
-4.00
9.16
261.SS
76.000
i80.00
-4.00
9.37
269.62
1OPWID Q
39.00 5810.00
38.99 S8i0.00
38.99 S810.00
38.99 S810.O0
VCH
ELMIN
19.92
79S.SO
23.34
793.33
22.21
792.53
2i.S5
1/9i.8i
PACE 33
CWSEL
CRIWS
EC
80S.4S
806.77
8ii.61
802.17
SOCS7
big .63
801.69
803.78
809.36
fs01 , i8
803. OS
808.39
iiAs
�- i� ri• �• �• �-� .�iiiiif- .ice Aii iii
SAI, AUG 21, 1982, 2136 PM
E.UMMAkY UP LRRORS
CAIIIILIN
SECN(I=i's700.000
PROFILEa
i
CRITICAL DEP1H ASSUMED
CAUIICIN
SECNO=13500.000
PROFILE=
i
INTERPOLATED XSECTIONS USED
LAU111IN
SLLNU= 7190.000
PROFILE■
i
INTERPOLATED XSECTIONS USED
CAIIt'(ON
!; CNO= 2414.000
PROFILE=
i
INTERPOLATED XSECTIONS USED
I:ritllIUll
.)tl.N(1= 20tin. 000
PROFILE=
i
INTERPOLATED XSECTIONS USED
CAUfION
StCNO- 7637.000
PROFILE=
i
INTERPOLATED XSECTIONS USEV
CALIIION
I:ckCN(I= 1400.000
PROFILEa
i
INTERPOLATED XSECTIONS USED
CAI IIION
SE'CNO= i000.000
PROFILE=
i
INTERPOLATED XSECTIONS USED
CAII'tION
!tkCNU= 456.000
PROFILE=
i
INTERPOLATED XSECTIONS USED
PACE 34