Loading...
HomeMy WebLinkAboutDeclez Channel Design Memorandum4 g 19 1991 SOLITHRIDGE VILLAGE SOUTHRIDGE VILLAGE DEVELOPMENT FONTANA, CALIFORNIA DESIGN MEMORANDUM. Declez Chanel- Phase I Prepared By BOYLE ENGINEERING CORPORATION August 1982 p> + 0owle Englneerinq Cdrporation ' - consultlnq enolneers . a,cnitects '"• 118 Airport Drive. Suite 212 718 Eugene Road San Bernardino. California 92408 Palm Springs. California 92264 714 / 824.5580 714 / 323-1761 i. Mr. Richard Ashby August 30, 1982 Southridge Village Partners 7072 Garfield Avenue Huntington Beach, California 92648 Transmitted herewith is a copy of the design memorandum for the DeClez Channel in Phase I and a copy of the reconnaissance investigation for Fontana Lateral Improvements. A copy of the design memorandum has been forwarded to Santosh Verma of the Los Angeles HUD office as requested by Rick Andrews and three copies of the Fontana Lateral investigation report have been submitted to Robert Nelson of the Riverside County Flood Control District as they ,have requested. w ' The Chino Basin Municipal.Water District (CBMWD) Board of Directors at its _ regular meeting of August 25, 1982, gave its final approval to our request,; as submitted by the City of Fontana, for four permanent connections to the Fontana Interceptor Sewer within the Phase I area. The Board conditioned its approval upon the dedication of sufficient easement within Southridge Village for CBMWD to build this sewer interceptor line. As a point of information, we will need to receive building floor plans for your proposed residential units prior to any street construction within tract areas in order to establish driveway locations if the cost of future curb, gutter, and sidewalk cutting and removal to install driveways is to be avoided. To proceed with needed approvals for your initial proposed developments, we will need your incremental phasing plan, building elevations, front yard landscaping plans, and model home sites for recently approved Tentative Tracts 12245, 12246, and 12247, as well as site plans for your proposed townhome and garden home developments on Parcels 17 and 21 of Tentative Tract 12064. I" If you have any questions or if we can be of assistance, please call. BOYLE ENGINEE ING CORPORATION _ M. Victor Rol i er, PE Senior Engineer SB-CO8-100-29 go TABLE OF CONTENTS io Pa ge a r Introduction . . . . . . . . . . . . . . . . . . . 1 Hydrologic Analysis for the Declez Channel Watershed. . . . . . . . . . 4 Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Hydraulic Design of the Declez Channel --Phase I . . . . . . . . . . . . 8 TABLES No. 1 Hydrologic Parameters . . . . . . . . . . . . . . . . . . . . 5 2 Estimated Peak Flows . . . . . . . . . . . . . . . . . . . . . . . 6 ;i 4 4t. FIGURES No. 1 Declez Channel, Drainage Boundaries and Proposed Facilities . . . 3 APPENDICES No. f 1 Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries i ! 2 HEC -2 Computer Program Output •Iq A: A '61: _71i, # -Its z LEY7 C'J BLVD - V 0 :7 P -ter 7s: r 2 4.91 . •Ii II�3 -ji . . , I - ';,: m 24 0 Well I— g. f.dusloral W m 1!S ca 22 2 P4pd, ::5 < aop• 1111101• T LIJ _j < < cc ............ I 10 • PACIFIC Act IC I-10W)•A 7- 0 039.11 K p• 7;••• .......... _;E• U SLOVE I-11&— AVE ��14_ - - 99.1 .......... P-, ----------- South FQn ------- 7; ......... .. L. z rQ is Iq IL 0 -77 to All - 7 ---------- tiur Pa Hills 40. ....... .... Radio. 2 4, 27 F nz 26 1 939 8 959• % VA ?4 TA -AWA* 25 C "fig 1p, 7 --------- 4 qj: us SIM qjj . ........... I L we ................ . - ----- ----- Of Re, wen JURUPA W— /000 ?2 - - - - - - - - - - - - - - - - - - - . ............. 6: 7 Well 00 I Ott 167 xm 41 33 1AARLAY AVE 3� P F6ittina Well -------- Bud -Park P 1r z w t,� eyo U. _j C) ( �I, \ >�I �: is \ j w t z Z a: A LN BERNMIR Co 1. k RIVERSI Tr* RIVE i'(u Y z U_ 3 :., _ ` :•;,' ;�i ri�� f1 ;;,i , ; '- �`', `{''� t'°� ` I .� SCALE IN FEET N 0 a z w M Uj 2000 0 2000 4000 to v". LE 3 114 cl� Pa r ws, _J Ul 0 10 A_ w LEGEND a Z 0 4 Z ":i %DRAINAGE AREA BOUNDARY < cc < r fl"Rho A AREA Rnl1K1nADV LLT 4WI Qws? '0. < P Ha-lborn. chi-ioptian =I=-- 0 1 VC ------------- 'Rs, w1wob bell S, It V 7,4- • - f e 5 vqr 1 ri A U r - EXISTING FONTANA LATERAL CHANNEL PROPOSED CONCRETE CHANNEL PHASE I PROPOSED CONCRETE CHANNEL PHASE 11 OCONCENTRATION POINT NUMBER DRAINAGE BOURSE FIGURE 1 INTRODUCTION The Southridge Village Development Project will require the installation of flood control and drainage facilities. These facilities will include a trapezoidal section concrete lined main channel (Declez Channel); a tributary channel to drain the low area between the main channel and the Jurupa Mountains; and storm drain facilities to collect local runoff and deliver to the main channel. The total drainage area into the channel system is about 7,550 acres (11.79 square N, y miles). It is bounded on the north by the San Bernardino Freeway, on the east by Palmetto Avenue, on the south by the ridge of the Jurupa Mountains, and on the west by the slope break east of the San Sevaine Channel. The major drainageway through this area is the Declez Channel which extends from Palmetto Avenue to the junction with the Fontana Channel, which is a continuation of the Declez Channel in Riverside County. The Southridge Village Development will occupy approximately 2,560 acres in the southern portion of the drainage area. This development will be bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, on the south by the San Bernardino/ Riverside County line, and on the east by Sierra Avenue. g - The construction of the development was divided in two phases. Phase I of the dev- elopment is bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, on the east by Cherry Avenue and on the south by the proposed Declez Channel. This Phase will include the construction of the Declez Channel from its connection with the Fontana Lateral Channel (Station 22+10 of the Declez Channel Improvement Plans) to Cherry Avenue (station 111+00). ,z �• 1 j Its This Design Memorandum has been prepared primarily to summarize the analyses made to prepare the Improvement Plans for Phase 1 of the Declez Channel. These analyses include: 1. -Hydrologic Analysis for Declez Channel Watershed 2. -Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries 3. -Hydraulic Design of the Declez Channel --Phase I. The location of the Declez Channel, its watershed boundaries and the limits of Phase I of the Development are shown in figure 1. N a HYDROLOGIC ANALYSIS FOR THE DECLEZ CHANNEL WATERSHED This hydrologic analysis has been made primarily to determine the channel .,, capacity requirements for the Declez Channel and tributary to contain the ' 100 year return period peak flood flows under conditions of ultimate develop- ment. The city of Fontana anticipates that the total drainage area except the Jurupa Mountain area will be in urban development ultimately. The total drainage area of 11.79 square miles was divided into five subdrainage areas as shown on Figure 1. The parameters for hydrologic analysis were deter- mined for each subdrainage area in accordance with criteria specified by the Riverside County Flood Control and Water Conservation District Hydrology Manual. >� These parameters were used as input for computer analysis using Los Angeles i District Flood Hydrograph Package Computer Program. HYDROLOGIC PARAMETERS Parameters were determined as required for developing hydrographs by the Synthetic Unit Hydrograph Method described in the Riverside County Flood Control and Water Conservation District (RCFC&WCD) Hydrology Manual. Basin Physical Factors t The drainage area (D.A.), length of the longest watercourse (L), length along the longest watercourse measured upstream to a point opposite to the centroid of the area (LCA), elevation of headwater (Hl) and the ele- vation of concentration point (H2) were obtained from U.S.G.S., 7-1/2 minute quads. The overall slope of longest watercourse (S) was completed by the formula S = (H1 - H2)/L. 3 Mannings "n" Values The n values for use in the Lag formula were calculated on a weighted basis depending on -the development conditions assumed. The values used for lands were: n ol Valley area - developed 0.015 Mountain area - undeveloped 0.040 (assumed no developed mountain area) Infiltration Rates The weighted infiltration rates (I) for each drainage area were estimated in accordance with criteria specified by the RCFC&WCD Hydrology Manual. The Soil Survey of San Bernardino County Southwestern Part, California, prepared by the USDA Soil Conversation Service, "et al.", issued in January 1980 was used to determine the hydrological soil groups. The soils in this watershed are almost entirely in hydrologic soil groups A and B and have depths generally in excess of 5 feet except for the Jurupa Mountain area. These soil groups are very permeable. The city of Fontana General Plan and the Southridge Village Specific Plan, included in Ordinance 712 and adopted by the Fontana City Council on December 15, 1981, was used to determine future land uses. Table 1 shows the above specified parameters used in the analysis. 4 1Concentration Point No. 2Elevation of Headwater 3Elevation of Concentration Point 5 TABLE 1 HYDROLOGIC PARAMETERS s C. P.1 D.A. (sq.mi.) L (mi.) LCA H 2 H22 3 S n I (mi.) (R.) (fi.) (ft/mi) (in/hr) 1 5.33 4.55 2.00 1120 935 41 .019 .378 2 1.36 2.48 1.27 1768 935 336 .026 .352 3 6.69 4.55 1.53 1120 935 41 .020 .372 4 10.97 6.66 2.75 1120 817 46 .020 .375 ,i 5 11.79 7.16 3.02 1120 793 46 .019 .364 1Concentration Point No. 2Elevation of Headwater 3Elevation of Concentration Point 5 l The estimated peak flows for each concentration point are listed in Table 2. TABLE 2 ESTIMATED PEAK FLOWS i_. 100 -yr. Peak Flows for Conc. D. A. Ultimate Cond. of Devel. Pt. (sq. mi.) (cfs) i 1 5.33 3,000 2 1.36 920 3 6.69 3,890 4 10.97 5,370 { 5 11.79 5,810 f y Rainfall - The rainfall intensity for the 100 -year return period, 6 -hour duration storm, was determined as 3.3 inches. This was based on statisti-cal analyses of rain- fall records for the Fontana #18 and Miraloma Q.M. Depot 21A stations, as i shown in bulletin No. 195, Rainfall Analysis for Drainage Design, State of California, Department of Water Resources. The storm pattern used was as shown in the RCFC&WCD Hydrology Manual. RESULTS a The above specified parameters were input to Los Angeles District Flood Hydrograph `;. Package Computer Program to obtain estimated peak flows that would result from the 100 year return period, 6 -hour duration storm. It has been determined that the 6 -hour duration storm generated higher peak flood flows than either the 3 -hour duration or the 24-hour duration storms. l The estimated peak flows for each concentration point are listed in Table 2. TABLE 2 ESTIMATED PEAK FLOWS i_. 100 -yr. Peak Flows for Conc. D. A. Ultimate Cond. of Devel. Pt. (sq. mi.) (cfs) i 1 5.33 3,000 2 1.36 920 3 6.69 3,890 4 10.97 5,370 { 5 11.79 5,810 f 14: I FLOOD FLOW BULKING FACTOR EVALUATION i FOR DECLEZ CHANNEL AND TRIBUTARIES `fig The San Bernardino County Flood Control District'(SBCFCD) requires the use of a ' bulking factor in the design of major waterways. For this reason, Boyle Engineering Corporation (BEC) made an analysis to estimate the amounts of sedi- ment that will be produced and transported to the Declez Channel system during the period of runoff of a major storm (100 -year return period). This volume of N .d sediment could be considered in relationship to the estimated volume of water .' It runoff to determine the need for additional capacity to contain the sediment content. The required additional capacity is expressed as a bulking factor to be applied to the estimated capacity required for water runoff. The final report of this analysis is presented in Appendix 1 of this Design Memorandum. This report concluded that the Declez Channel Watershed would not produce a significant volume of sediment and that no bulking factor would be required in the design of the flood control facilities. This report was reviewed by the SBCFCD staff and its conclusions were verbally approved by them in a meeting with the City of Fontana and BEC staff, on May 5, 1982. Md i .L 7 HYDRALIC DESIGN OF THE DECLEZ CHANNEL -- PHASE I DESIGN CRITERIA The following hydrualic design criteria were used in the sizing of the Declez channel: 1. Design Flow. The 100 -year, 6 -hour discharge flow for ultimate conditions of development was used in the design of the Declez Channel and tributary. Design flows between concentration points shown in Figure 1 were computed based on contributing drainage areas. 2. Roughness. A 0.015 Manning's Roughness coefficient "n" was used for concrete channels. 3. Side Slopes. Side slopes of 1.5:1 were used for concrete trapezoidal sec- tion concrete -lined channels. 4. Unstable Flow. In the hydraulic design the unstable flow zone was avoided. The unstable zone is defined as: 0.9dc < d < 1.1dc where do = critical depth d = normal depth of flow 5. Freeboard. a. TreeFoard above the calculated water surface was provided in accordance with the following criteria: Subcriticai Flow Rectangular Section 0.1 He Trapezoidal Section 0.2 He Where He = specific energy head d = normal depth of flow Supercritical Flow 0.2 d 0.25 d However, for major waterways, freeboard less than 2.5 feet for trape- zoidal sections and less than 2.0 feet for rectangular sections was not used under either flow condition. b. On major sections with curving alignments, freeboard of at least one R foot above the calculated maximum elevation of superelevated water surface was provided. This permited encroachment upon the free- board specified under (a) above. 6. Bridges. All bridges within Phase I of the project are single span bridges. They were located above the top of the channel walls and create -no interferenece to the channel flow or freeboard. CHANNEL SIZING. The initial channel geometry was developed using normal depth calculations. Final channel sections were developed using the U.S. Army Corps of Engineer HEC -2, water surface profile, computer program. A HEC -2 profile was devel- oped using the geometry shown in the Declez Channel Improvement Plans for Phase I, station 22+10 to station 111+00, and preliminary Phase II channel geometry for stations 111+00 to 137+00.. -Appendix 2 of this Design Memoran- dum contains the HEC -2 computer program output. BOX AND PIPE CULVERT INLETS. The angle of entrance of -side culverts discharging into the Declez channel were designed according to the criteria suggested in the U.S. Army Corps of Engineers' manual titled Hydraulic Design of Flood Control Channels. The ef- fects of the side culverts on the Declez Channel water surface profile were analyzed using the methodology outlined in the Los Angeles Flood Control District Hydraulic Design Manual. FONTANA LATERAL CHANNEL The Fontana Lateral Channel is located immediately downstream of the proposed Declez Channel. The present capacity of the Fontana Lateral is inadequate to contain the peak flows estimated for ultimate development conditions, or even the 100 year peak flows estimated for existing conditions. Boyle Engineering Corporation is presently studying alternative plans to increase the capacity of the existing channel. The proposed Declez channel was designed to match 9 the existing dimensions of the Fontana Lateral Channel. The portion of the channel between the Fontana Lateral -channel and Country Village Road, might be changed somewhat if the dimensions of the existing channel are modified. This change, however, should not affect the hydraulic design of the Declez Channel since, for supercritical flow, changes downstream would not affect flow conditions upstream. 10 APPENDIX 1 e SOUTHRIDGE VILLAGE DEVELOPMENT FONTANA, CALIFORNIA FLOOD FLOW BULKING FACTOR EVALUATION FOR DECLEZ CHANNEL AND TRIBUTARIES 1 PREPARED FOR CREATIVE COMMUNITIES PREPARED BY BOYLE ENGINEERING CORPORATION SAN DIEGO, CALIFORNIA APRIL 1982 A TABLE OF CONTENTS s Page No. INTRODUCTION 1 DESCRIPTION OF THE WATERSHED 3 ESTIMATED SEDIMENT PRODUCTION AND TRANSPORT WITHIN THE WATERSHED CONCLUSIONS FIGURES No. 1 Declez Channel Watershed Showing Declez Channel Alignment APPENDIX . Sediment Production Computations Revised Flaxman Method Lr Universal Soil Loss Equation T 12 2 INTRODUCTION The Southridge Village project being planned by Creative Communities will require the installation of flood control and drainage facilities. These facilities will include a trapezoidal section concrete lined main channel (Declez Channel); a tributary channel to drain the low area between the main channel and the Jurupa Mountains; and storm drain facilities to collect local runoff and deliver to the main channel. The planned layout for these facil- ities is shown on Figure 1. The locations of the storm drain facilities indicated on this figure are subject to change. In areas where large amounts of sediment• are produced by major storms and delivered to the channel system the sediment content of the flood flows becomes a significant part of the flood volume that is transported by the channel system. Consequently, the required channel capacities have to be increased to contain this additional bulking caused by the sediment content. The purpose of this study is to estimate the amounts of sediment that will be produced and transported to the channel system during the period of runoff of a major storm (100 -year return period). This volume of sediment will be con- sidered in relationship to the estimated volume of water runoff to determine the need for additional capacity to contain the sediment content. The required additional capacity is expressed as a bulking factor to be applied to the estimated capacity required for water runoff. -1- 49'-0- .- .\-rte - :::�I L _ .- . ;�• ..S 4 ' �. �. —:--:l .R• } �l , 22 •1077 - �,�•,- QL VO •'•ti .' - .j = i •22 f � , q _ �'� .w -!' •Z�`.� 2�T 't7 �i =!• nT, ;7t IWustryl W ste - - 1 -y �' . ,\ I Tr.1H ~ - _ rte' : • ■a �: • S: �b i-�• ` vary i' e , + ?l� f - �` • _.� � Oji Vin- i -• � p,}Z_t�...:;, �'� {'...'� .• • �� ::... �"in' �_-�` � `•:- i - • ''•�A t -- n a. ' • o o r O �� t ,' 1 LCL—i 9 �� 1� _. ��it- _...•- • i....[' �r.5 N '- BERNAROINOe. -- •�•r"- -_-F'EWJf1►-. tl ' _ --. _ 1 -. ` • - i - - ._._.. - r PAGl ! 1 .... . i..t IT i • ACIFIC a r000 1 SOUTHERN • - '• • •.\ .. i-�•" 1 aoo. tJ tt� 1t�Kaiser t� •::: �;, .. ...: ' s\ I - 1 ;, Y •;�. "'�_ _ R .: •-,»;-•�.....•�c _ -= -tiy • l /O ' •'rad Y,. = li ~71 • -- r- I, �"� AVE - •• -� - �. 1t .. ..019., ,•1' ��• r' •� .w_ - _• . - - 9 _ 9t11• . ^` •• . �' .-� 1 y ... "L=5t.OvCR • 91M 9 • ' VE' •i067• 11� • - •� t �� i•s ■ _ - i ` ` ' j _ 1 S1o..r-_ 1• lisp••• _ - .r :� :• r-_ rte` -• _� - r South Fqn •t! :a -------_---= ol•=•• .. :I`:.,.. t , �� 4. Or 1-00 m 4L .Y 0 �d • � ! O 2000 4000 FEET V ..... Cc -J �. •• .... a -='� --------ervp•ils. N _27 27 •9 .. �. i : �Rad,o.i *ell .. .... „t i l sso 8?6� •'' ' : �� ti rx�•avil' AVE • ,�” � 25 . •J • `�. ..JJJ1 - - 7 - - - \ -11 �,i:. ' / i , �F•-I . -M _ _"_� O�. t 0!910 + 54N...•�-�,.,•1-. _• �1 . •.,•��r . _ • _ ,,,�- - I � -.�`�1:72 r�N W.ttru v R � \ _ -•-' ,•• ' ••'�• -.�/. �J•.-2-�_: t - �. 1%1 -.oww...�..a-.�.,'.,_.-�-�___- _ i1 -----_ -_ -- . ��-- (�. Wdt w Ori •_ rO1p ' _^�_s� = 4 m 900 --- -- - z--- -•- - �- ----- . _.. --- ._. p , well too MARGAY 33 AVE 60 F---34,a�A� '...,.VE - 914 }- - - =_.�•J:-3 �-_'. _ -r-• `. 113-' •�Ontlnl • l .p O ..` _' -.•. .� •r, _._ �. --_ - '! • / B,rd Parw =t•� - _' j •- ;fir .. W�i _- Z� •Q •\f`�� i ., ,,p I� ;-'- . _ a I`' ``�'� (- 1 (\• s`�r• -a �..: b` er .`, •� _ •V �� �� t`�`-. - •}• �'i:� �y_... • •' ''\ 'fit �/ _'-�: W.;•_ -:j' (. .�' _ _� sae _ _ _A _ _� Ii ess' a -+- -SAN BERNARD _ CO _ 1 _ `t' ' -f _ -�� f`"`; � RIVE DE CO .e� --=�- -r --. R VERSI I ♦ ,« \ s 1: � -.y'• r ! _S40 ISO ,_ a a � � (` :• a / %� - v oO V� : Op � .t; f 1 /T• - -�-�:: :. ,t i,.; .,F , • l ,e- � . ` � i!I =.. .. J,/ , -J'• _ . __ - ``1 � "�� ', ( ' ,• - (•�� = ` !�•: -.` Arlt .rj t - ' 1 s s.. _ i `i _ ••'1 GG ' 1/ 4 1 • % � p', �J •1,•'rG `' - - ,• 4}` it t= it //., fi ,1 3 _ I -�'' t,� �/, ►Q••/�/ J rj t,l� -:� =! :.� �. ^. -:. (.t: .�~. //f'~ ` '� '; .Pit! • '•n C� .1 _- - _ _ _ :�: J� f ':, i.( ..•,,,:�_ i "00 - _ _ • 1 _��i 7, jJ 15.;- • = avT ; —_ _ ; _ LEGEND FIGURE i CO��CP.ETLINED ' SOUTNRIOGE VILLAGE i � � � � t�t � � ,� : � 1 - -• E ' • •�� f: •/: H..ir.t.lwrry f Ar. t ��i�:: i tt't -- = •i-�' -•• -rI - _ [ -�- ~ • ���L�,� �TRAPEZOIDAL CHANNEL pECLEZ CHANNEL ALIGNMENT -u.n 46 _L REINFORCED CONCRETE PIPE • = 1' - - , = =_ _ DRAINAGE BOUNDARY _ ALTERNATIVE • �M ~' ' "i'•. ''.- .O CONCENTRATION POINT N0. ;� "c,,, • • :.� 'I . • •---..'` ."',� :... . - - �? ?•..... REINFORCED CONCRETE BOX e� _ cosur.q t C �� I�• i T. _.' 1 • • - n.t- f WT � tKti a DESCRIPTION OF THE WATERSHED a The total drainage area into the channel system is about 7,000 acres (10.91 square miles). It is bounded on the north by the San Bernardino Freeway, on the east by Palmetto Avenue, on the south by the ridge of the Jurupa Moun- tains, and on the west by the slope break east of the San Sevaine Channel. The major drainageway through this area is the Declez Channel which extends from Palmetto Avenue to the junction with the Fontana Channel, which is a k. continuation of the Declez Channel in Riverside County. The area south of Jurupa Avenue is characterized by a variety of land uses including agricultural but is primarily open space and fallow land. Low- density residential development is presently underway within the northwest portion with clusters of residential development and agricultural uses north T of Jurupa Avenue. The Southridge Village development being planned by Creative Communities will occupy approximately 2560 acres in the southern portion of the area. This e development will be bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, on the south by the San Bernardino/Riverside County line and on the east by Sierra Avenue. a The city of Fontana anticipates that the total drainage area except the Jurupa •� Mountain area will be in urban development ultimately. FQ, j The land slopes within the area are generally within the range of one to two percent except for the Jurupa Mountain area where slopes are generally 25 to J 35 percent. The soils in the valley area with gentle slopes are predominantly Delhi fine sand (Db) and Tujunga loamy sand (TuB). Small areas of other sandy soil types are included in the area with similar characteristics. These soils are generally described for this slope category as somewhat excessively drained to excessively drained, very deep soils on alluvial fans or alluvial valley. floors. The Soil Survey of San Bernardino County Southwestern Part, California, pre- pared by the USDA Soil Conservation Service, et al, describes these soils in part as follows: Delhi fine sand (Db) - This nearly level,to strongly sloping soil is on alluvial fans that have been reworked by wind action. Runoff is very slow, and the hazard of soil blowing is generally moderate. - Estimated soil properties: Depth to bedrock or hardpan - greater than 5 feet Depth from surface of typical profile - 0-18 inches -fine sand 18-60 inches -sand Percentage passing sieve No. 4 (4.7 mm) - 100 No. 10 (2.0 mm) - 90-100 No. 40 (0.42 mm) - 50-70 No. 200 (0.074 mm) - 5-10 Permeability - 6.0 to 20.0 inches/hour _ Hydrologic Soil Group - B (above average infiltration rate) -4- 4 i d 9 'i Tujunga loamy sand (TuB) - This nearly level to gently sloping soil is on broad, long alluvial fans. Runoff is slow to very slow. The hazard of P water erosion is slight, but the soil will blow if left unprotected. The hazard to soil blowing is moderate to high on bare soil. Estimated soil properties: Depth to bedrock or hardpan - greater than 5 feet Depth from surface of typical profile 0-60" loamy sand and coarse sand Coarse fraction greater than 3 inches - 0-5 percent Percentage less than 3 inches passing sieve No. 4 (4.7mm) - 100 -'� No. 10 (2.0 mm) - 55-100 No. 40 (0.42 mm) - 25-50 No. 200 (0.074 mm) - 5-20 The soils in the Jurupa Mountain area are predominantly Cieneba-Rock outcrop complex (Cr). This steep complex is described as occupying areas on uplands. It is about 60 percent Cieneba sandy loam, and has 30 to 50 percent slopes and 30 percent granitic rock outcrops. The Cieneba soil has the profile described as representative of the series. ' Included with this PP complex in mapping are small areas of soils that have P moderate sheet and rill erosion, places where slopes exceed 50 percent, and small areas where slopes are 15 to 25 percent. Also included are small areas ' that consist mainly of rock outcrop. ' -5- Runoff is rapid and the hazard of erosion is moderate if soils are burned over or overgrazed. Estimated soil properties: Depth to rock or hardpan - 1-1/2 feet Depth from surface of typical profile 0-14 inches - sandy loam 14 inches - weathered granitic rock Coarse fraction greater than 3 inches - 0-10 percent Percentage less than 3 inches passing sieve No. 4 (4.7 mm) - 90-100 No. 10 (2.0 mm) - 90-100 No. 40 (0.42 mm) - 50-65 No. 200 (0.074 mm) - 25-35 C 1 A , --a ESTIMATED SEDIMENT PRODUCTION AND TRANSPORT WITHIN THE WATERSHED n Eroded materials from a drainage area may be transported through the flood channels and compose a large percentage of the volume of the total flow. Under these conditions the estimated peak flood flows of clear water determined in the hydrologic analysis must be increased by a bulking factor because of . the transported sediment to determine the required capacity of flood channels. A large percentage of the gross erosion from a watershed may be transported to the channel location if the grades are sufficiently steep to transport the materials in the flood flows. The transport capability of the flood flows is dependent on the velocity of the flow and -the characteristics of the eroded materials including size, shape, density, etc. 1 x+ i Various methods have been used to estimate sediment bulking factors for flood flows. These methods are largely based on the gross erosion characteristics of a watershed. The Los Angeles County Flood Control District (LACFCD) procedure for estimating T. bulking factors is based on runoff and sediment produced by a major storm on a recently burned watershed. The bulking factor was determined as 100 percent with a sediment production rate of 120,000 cubic yards per square mile. The formula used for estimating bulking factor for a particular watershed is: 1/2 rmass debris potential - cu. yds./sq. mi._ + 1) x 100 \ 120,000 If the rate of sediment production is 120,000 cu.yds/sq.mi. the bulking factor ' would be 100 percent which is the case on which the formula is based. -7- This formula includes a large safety factor for watersheds with low sediment production rates. If the watershed is determined as having no sediment produc- tion the computed bulking factor would still be 50 percent. However, it is stated in their procedures that "This percentage increase is. applied to the peak flow rate, where the entire watershed area is considered to be debris productive, and on a proportionate basis with respect to produc- tive and non-productive areas where debris control structures or developments within the watershed would cause a decrease in transportable debris.quantities." The Declez Channel watershed_ has two portions having different characteristics. The alluvial valley area with slopes generally in the range of one to two percent has an -area of about 5700 acres (8.9 square miles). The Jurupa Mountain area with slopes generally in the range of 25 to 35 percent has an area of about 1300 acres (2.0 square miles). The alluvial valley area has soils that are very erosion resistant on the prevailing slopes with slow rates of runoff. The soil particle sizes tend to r: be primarily coarse sand with very small percentages that would be classified as silt. with the slow rates of runoff and low velocities sheet and rill erosion will not dislodge large amounts of sediment and the sand particles would not be transported in large quantities to the stream system. The Jurupa Mountain area has soils that are moderately erosion resistant even on the prevailing steep slopes. The subdrainage areas are very small and large concentrations of runoff do not occur. There are no raw gullies in the area. Shallow rills in the drainageways are checked from eroding deeper' by - 8 - rock outcrops. There is no evidence of sediment discharge and deposition onto the flatter areas at the base of the hills. It is not planned that this area will be developed or used in a way that will cause soil disturbance. Several methods are available for estimating the mass debris potential or sediment yields from natural watersheds. Of these Elliott M. Flaxman's revised method is considered appropriate for southern California as it was developed from data compiled from 11 western states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Applying the revised Flaxman method, the estimated mean annual sediment yield for the 5700 acre alluvial plain portion of the watershed was estimated as 26 cu. yds./square mile (see Appendix). The 100 -year return period flood generally produces from 8 to 10 times the mean annual sediment production. Assuming a multiple of 10, the sediment yield would be 260 cu. yds./square mile. For the total 5700 acre (8.9 sq. mi.) drainage area, the 100 -year return period flood is estimated to produce a total of 2314 cu. yds., or 1.43 acre-feet. For the 1300 acre Jurupa Mountain area the estimated mean annual sediment yield was estimated as 645 cu. yds./square mile. The 100 -year return period flood would produce 6450 cu. yds./sq. mi. (10 x 6450). For the total 1300 acre (2.0 sq. mi.) drainage area the 100 -year return period flood is estimated to produce 12,900 cu. yds., or 8.0 acre-feet. -9- The only significant soil disturbance in the area at present in from roads .,� and motorcycle tracks at the base of the hills. Several methods are available for estimating the mass debris potential or sediment yields from natural watersheds. Of these Elliott M. Flaxman's revised method is considered appropriate for southern California as it was developed from data compiled from 11 western states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Applying the revised Flaxman method, the estimated mean annual sediment yield for the 5700 acre alluvial plain portion of the watershed was estimated as 26 cu. yds./square mile (see Appendix). The 100 -year return period flood generally produces from 8 to 10 times the mean annual sediment production. Assuming a multiple of 10, the sediment yield would be 260 cu. yds./square mile. For the total 5700 acre (8.9 sq. mi.) drainage area, the 100 -year return period flood is estimated to produce a total of 2314 cu. yds., or 1.43 acre-feet. For the 1300 acre Jurupa Mountain area the estimated mean annual sediment yield was estimated as 645 cu. yds./square mile. The 100 -year return period flood would produce 6450 cu. yds./sq. mi. (10 x 6450). For the total 1300 acre (2.0 sq. mi.) drainage area the 100 -year return period flood is estimated to produce 12,900 cu. yds., or 8.0 acre-feet. -9- On the basis of these estimates the total drainage area (10.9 sq. mi.) would t produce 9.4 acre-feet of sediment during a storm having a 100 -year return period. The estimated volume of runoff that is estimated to occur with a 6 - hour duration, 100 -year return period flood is 690 acre-feet. The estimated total gross sediment production is 1.36 percent of the estimated runoff volume (9.4/690). A large part of the sediment produced, especially from the Jurupa Mountain area will be deposited within the area and will not be transported to the channel system. Using the LACFCD bulking factor formula, the required bulking factor would be: 1/2 t 1396 + 1) x 100 = 50.58 percent. \120 , 000 Without the factor of safety, the bulking factor would be: '9•" 1396 20,000 x 100 - 1.08 percent. This would be reduced to insignificance when the low delivery rates over the alluvial plain are considered. .x� The Universal Soil Loss Equation is a method for predicting rainfall erosion losses with consideration of the various parameters which affect erosion on a particular watershed. This procedure is explained in a publication "Pre- . Y dicting Rainfall Erosion Losses" developed by the USDA in cooperation with Purdue Agriculture Experiment Station, December, 1978. ' - 10 - This procedure may be used for predicting gross erosion from a storm of specified return period but is considered more accurate for prediction of longtime averages. For conditions affecting the equation parameters for the alluvial plain por- tion of this watershed the estimated average annual rate of sediment produc- tion is 74 tons/sq. mi., or 659 tons/yr. for 8.9 sq. mi. area. For the Jurupa Mountain portion of the area the estimated average annual rate of sediment production is 426 tons/sq. mi. or 852 tons per year for the 2.0 square mile area. The total estimated sediment production per year for the total drainage area of 10.9 square miles is 1511 tons/year, or about 0.94 acre-feet. Assuming that the 100 -year return period storm produces 10 times the average annual amounts a total of 9.4 acre-feet would be produced. CONCLUSIONS Gross sediment production in the drainage area of the Declez Channel is estimated to be very small as compared to the volume of runoff produced by the 6 -hour duration 100 -year return period flood flow (volume of sediment ' produced is about 1.4 percent of the runoff volume). The major portion of this sediment is produced by the Jurupa Mountain area included in the drainage area. However, sediment produced by the mountain area must be transported over considerable lengths of relatively flat alluvial plain area before it can enter the channel system. The particle size distribution of all soils in the drainage area into Declez Channel indicates that all but a small portion is relatively coarse sand that could not be transported effectively over the alluvial plain with the velocities of flow that would prevail. Consequently, 'u these analyses have indicated that an extremely small amount of sediment in relationship to the flood volume will enter the channel system, thus adding an insignificant amount of volume to the flood flows. Furthermore, as the land use in this area is changed from agriculture and open space to urban use even the small amounts of sediment produced at present will be greatly reduced. Studies have indicated that with mature urban development sediment production rates will be reduced by about 90 percent of that produced by land uses now current in this area. The hydrologic analyses for this area have indicated that peak flood flows that will occur with full urban development will be about 20 percent greater than occur under existing land use. *The channel system will be constructed to Icontain capacities required for these ultimate development conditions. On the basis that these channels will have excess capacities of 20 percent for R41 - 12 - 1 �7 present land use, and as urban development occurs sediment production will be reduced progressively, it appears inappropriate to provide any additional capacity because of possible bulking by the sediment content of the flood P Y _ � flows. T The velocities of overland flows with the more frequently occurring storm runoff will be very low and these flows will be able to transport only very fine sand or silt particles. When these particles enter the storm drain system very low velocities will continue to transport the particles entering the system. Providing a minimum velocity of 5 feet/sec. with the more 't frequently occurring flows appears to be more than sufficient. ;6J { r - 13 - SEDIMENT PRODUCTION COMPUTATIONS ALLUVIAL PLAIN AREA 5700 ACRES (8.9 SQ. MI.) (EXCLUDING JURUPA MOUNTAIN AREA) Revised Flaxman Method The equation used in the revised Flaxman method is: log (Y+100) = 524.37231 - 270.65625 log (X1 + 100) + 6.41730 log (X2 + 100) - 1.70177 log (X3 + 100) + 4.03317 log (X4 + 100) + 0.99248 log (X5 + 100) in which Y = mean annual sediment production - tons/sm X1= ay. an. precip. (in.)/ay. an. temp. (°F) X2= weighted average slope X3= percentage of soil particles coarser than 1.0 mm X4= 0 (when more than 25 percent of soil particles are coarser than 1.0 mm) X5= 50% chance of occurrence flood flow-csm For the Shay Meadow watershed the following values of the variable parameters were determined as follows: X1= 22"/64°F = 0.344 X2= 1.25% X3= 40% X4= 0 X5= 50 csm Using these parameters sediment production was computed: log (Y + 100) = 524.37231 -270.65625 log (0.344 + 100) -541.71616 +6.41730 log (1.25 + 100) +12.86922 -1.70177 log (40 + 100) -3.65222 +4.03317 log (0 + 100) +8.06634 +0.99248 log (50 + 100) +2.15973 i Y + 100 = 126 Y = 26 tons/sm 2.51935 = 26 cu. yds./sm (approx.) - mean annual sediment production SEDIMENT PRODUCTION COMPUTATIONS JURUPA MOUNTAIN AREA - 1300 ACRES (2.0 SQ. MI.) Revised Flaxman Method The equation used in the revised Flaxman method is: log (Y+100) = 524.37231 - 270.65625 log (X1 + 100) + 6.41730 log (X2 + 100) - 1.70177 log (X3 + 100) + 4.03317 log (X4 + 100) + 0.99248 log (X5 + 100) in which Y = mean annual sediment production - tons/sm Xl= ay. an. precip. (in.)/ay. an. temp. (°F) X2= weighted average slope X3= percentage of soil particles coarser than 1.0 mm X4= 0 (when more than 25 percent of soil particles are coarser than 1.0 mm) X5= 50% chance of occurrence flood flow-csm For the Shay Meadow watershed the following values of the variable parameters were determined as follows: X1= 22"/64°F = 0.344 X2= 30% X3= 40% X4= 0 X5= 55 csm Using these parameters sediment production was computed: log (Y + 100) = 524.37231 -270.65625 log (0.344 + 100) -541.71616 +6.41730 log 30 + 100) +13.56581 -1.70177 log �40 + 100) -3.65222 +4.03317 log (0 + 100) +8.06634 +0.99248 log (55 + 100) +2.17386 2.80994 Y + 100 = 330 Y = 645 tons/sm = 645 cu. yds./sm (approx.) = mean annual sediment production • w SEDIMENT PRODUCTION COMPUTATIONS ALLUVIAL PLAIN AREA - 5100 ACRES (8.9 SQ. MI.) (EXCLUDING JURUPA MOUNTAIN AREA) Universal Soil Loss Equation The Universal Soil Loss Equation, is: = A RKLSCP in which the parameters for Shay Meadow watershed were a determined as follows: A = Computed soil loss - tons/ac./yr. E, r R = Rainfall factor = 50 .w K = Soil erodibility factor = 0.24 LS = Topographic factor = 0.23 .ti Slope length assumed - 500 feet Slope steepness = 1.25 percent C = Cover and management factor = 0.042 Idle land with 60% ground cover P = Support practice factor = 1 A = 50 x 0.24 x 0.23 x 0.042 x 1 = 0.11592 tons/ac./yr. = 0.11572 x 640 = 74 tons/sm/yr. (estimated average annual rate) Assume 100 year flood produces 10 times the average annual sediment production Estimated sediment yield for 100 -year flood = 10 x 74 = 740 tons/sm 740 cu. yds./sm (approx.) i� 1 SEDIMENT PRODUCTION COMPUTATIONS JURUPA MOUNTAIN AREA - 1300 ACRES (2.0 SQ. MI.) Universal Soil Loss Equation The Universal Soil Loss Equation is: A = RKLSCP in which the parameters for Shay Meadow watershed were determined as follows: A = Computed soil loss - tons/ac./yr. R = Rainfall factor = 50 K = Soil erodibility factor = 0.24 LS = Topographic factor = 18.5 Slope length assumed - 500 feet Slope steepness = 30 percent C = Cover and management factor = 0.003 Range with 95+% ground cover P = Support practice factor = 1 A = 50 x 0.24 x 18.5 x 0.003 x 1 = 0.666 tons/ac./yr. = 0.666 x 640 =-426 tons/sm/yr. (estimated average annual rate) Assume 100 year flood produces 10 times the average annual sediment production Estimated sediment yield for 100 -year flood = 10 x 426 = 4260 tons/sm 4260 cu. yds./sm (approx.) AMWOM --m�.1►,i�i�il��.b��:���;�.���,1�t. SAT, AUG 21, 1982, 2:36 PH PAGE 2 .000 INVERT GRADE BREAK 93,000 Xi itlS93.000 .000 .000 Xi 12SO0.000 .000 .000 Xi 12300.000 .000 .000 Xi i4i00.n00 .000 .000 Xi it9o0.000 .000 .000 Xi 11700.000 .000 .000 Xi 11500.000 .000 .000 Xi 11300.000 .000 .000 200,000 INVERT GRADE BREAK .000 X1 ijiuo.0o0 .000 .000 XS 10950.000 4,000 .000 GR 9iS.650 1000 90S.6SO Xi 10900.000 4.000 .000 GR 914.910 .000 904,910 Xi 10870.000 .one .000 QT t.0oo 4090.000 .000 C11LIMY AVE. JUNCTION PIPE Xi SOEimono 1000 ,000 PAGE 2 .000 93.000 93.000 93,000 .000 -.68S .000 .000 200.000 200.000 200.000 .000 -.7S3 .000 .000 200.000 2oo,00n 200.000 .000 -1.620 .000 .000 200.000 200.000 200.000 .000 -1.620 .001 1000 200.000 200.000 200.000 ,000 -1.620 .000 .000 200,000 200.000 200.000 .000 -1.620 OOD ,000 200,000 200,000 200,000 ,000 -1.620 .000 .000 200.000 200.000 200,000 .000 -1.620 .000 .000 i50.000 i5o.nnn i50.000 .000 -1.620 .000 42.000 SO.000 Saloon Saloon .000 .000 .000 i5.000 90S.6SO 27,000 91.S.6SO 42.000 .000 000 42.000 30,000 30.000 30.000 000 .000 .001 15.000 904.9i0 27,0no 914.910 42.000 .000 .000 ,000 So.ono So.000 Saloon .000 -.444 .001 ,000 .000 ,000 .000 .000 .000 .000 ,000 20.000 40.000 2o.noo .000 ••.740 .ono SAT, ALIG 21, 1982, 2 t 36 PM X1 108n0.000 .000 .000 X1 10750.000 noo .000 QT 1.000 4100.000 .000 -.740 LINE 'D'JUNCTION PIPE Xi 101/00.000 .000 .000 X1 10600.000 i 1', .000 .000 Xi 1OS00.000 t�� 4.000 .000 GR 908.990 .000 898.990 Xi 10400.000 .000 .000 xi 10200.000 .000 1000 x1 i0o00.000 .000 .000 X1 9900.000 .000 .000 Xi 9800.000 4.000 .000 GR 898.630 .000 888,630 Xi 9600,000 .000 .000 XI 94SO.000 .000 .000 QT 1.000 4160.000 .000 -2.960 LINE 'C' JUNCTION PIPE Xi 9400.000 .000 1000 xi 9200.000 .nnn .000 PAGE 3 .000 50.000 50.000 SO.000 .000 -.296 .000 .000 50.000 50.000 50.000 .000 -.740 .000 .000 .000 .000 .000 .000 .000 000 .000 100.000 100.000 100.000 .000 -.740 .000 .000 100.000 100.000 100.000 .000 -1.480 .001 40,000 '!00.000 in0.000 100.000 .000 .000 .000 Mono 898.990 Mono, 908.990 40.000 .000 .000 .000 200.000 200.000 200.000 .000 -1.400 .000 .000, 200.000 200.000 200.000 .000 -2.960 .000 ,000 i00.000 100.000 100.000 .000 -2.960 .000 ,000 100.000 100.000 100.000 .000 -1.480 .000 38.000 200.000 200,000 200.000 .000 .000 .000 i5. 000 888.630 23.000 898,630 38.000 000. 001 1000 150.000 150.000 iso .000 000 ••2.960 .000 ,000 50.000 50.000 50,000 000 -2.220 .000 ,000 .000 .ono .nnn .ono .000 .000 1000 200.000 200,000 200,000 0 n 0 -.740 .000 1000 200,000 200.Ono 2.00,000 n 0 0 -2.960 .001 in -- L.:9 U h. L.:.➢ Lr` lam! :<.,;: �: -�, , L L -11M L_" LTM LW AW [-..M- L -r (^'. SA1, AUG 21, 1982, 2;36 PM Xi 9000.000 .000 .000 xi 8800.000 .000 .000 Xi 8600.000 .000 .000 --2.960 INVUR1 GRADE: PRL AK 50.000 xi t:SSn.0UD •1.000 .000 1;R OE11.130 non 070.130 x1 844.1, OUO 000 .000 E11 1.000 4210.000 .000 41 , 000 ALMOND AVE. JUNCTION PIPE XS E1;SY4.000 .000 .000 Xi 0200.000 .000 .000 XS 00SO.Ooo .0110 .000 xi 3000.000 .000 .000 x1 7LiU0.000 000 000 xi 7600.000 .000 .000 x1 74E1.1.000 000 000 UI 1.000 4:00.000 .000 1.665 LINE 1D' JUNCTION P 111 200,000 XS '/4s4. UUO .00i1 .00U 1'Acc 4 .000 200.000 200,000 200.000 .000 --2.960 0 c 0 000 200,000 .20n.ono 200.000 Ono --2.960 0�.0 .noo 50.000 So.000 SO,000 .000 -2.960 .001 41.000 106.000 106,000 106,000 .000 .000 .9.1 16,500 070. 130 24, 500 801. 130 41 , 000 000 ,000 50.000 SO.000 .50.000 .ono --1.177 u. 000 non Ono Ono 0;;0 .000 .661 000 194.0n0 194.000 .194,000.0190 S S 3 OUn ,000 iso, non iso. noo isn,000 .000 -•2.iS3 .000 000 So non s•o.on0 So Ono 000 1.665 Ui.P .000 200,000 200. non 200. Ono 0110 -.sss o;)o .000 2on.000 2nn,non 200, non Ono :.:1 0 n,l loon 116.000 116.000 M. 000 .000 -2.720 000 .000 SO 000 So Ono !;a 000 0019 -1 ,280 nun o o n Ono ano Ono nc0 noo 1900 000 34.00o 34.000 34, 0 b 0 01IL' SAT, AUG 21, 1982, 2;36 PM X1 7400.000 U00 .000 Xi /530,000 Ono .000 Xi 7230.000 4.000 .000 GR 866.480 .000 BSS.480 X1 72,'0.000 .000 .000 W1 1.000 4760.000 .000 866,480 DANANA JUNCTION PIPE Cr,) X1 /5'.'0.000 .000 .000 xi 7000.000 .000 000 11 61jou.000 .000 .000 X1 6600.000 .000 non Xf :)400.000 .000 .000 X1 62SO.000 .000 .000 X1 6150.000 4.000 .000 c;R 054.490 .000 043.490 X1 6125.000 .000 .000 QT 1.000 48710.000 .000 000 CALABASH JUNCTION PIPE X1 1.0%S.Ooo .000 .000 X1 60'1'/.111)0 Olin non PAGE !• ,000 70,000 70,000 70,000 UOn -.377 .000 .000 100,000 100,000 100.000 .000 -,777 101 43,000 10.000 i0,On0 in.coo 000 .000 000 16.500 BSS.400 21).50n 866,480 43.000 000 Cr,) 000 50,000 50.000 50.000 .000 -.111 .000 .000 .000 Ono .1100 COO C,:1 000 170.000 170.0On 170.000 .CCIO - .SSS .0„) .000 2n0.000 2.0O.Onn ICO.000 Ono -1.087 .000 000 200 Ono ":00,000 12()0.000 .000 2.12;?0 0 .., 000 200.000 200.000 200.000 000 --1 LID 000 150.000 ISO Dan iS0.Ono .0^0 ,000 100.000 1.00 non 100.000 000 -1,66, C,:1 49, coo es.0on 2 ,OOn 25.0c0 n 0 01 Ono 16.500 843.490 20. SO DN's4.4?0 4'.;,nno 0011 c,t 000 SO.Ono SO.000 50.000 OOC 277 L'GG 000 .000 , non .Ono (ton 000 .000 16.000 i6.0n0 16.000 cnn -.SSS .000 . non i6. uon Ill. onn 16.000 1.1;0 1 11 uo1 1_ Lm L= t ► 5M L==t..�m_a. � - L,= L..P-M c. r M it -10 a-.$= • wi -AM t..' ... �. SAI, AUC 2i, 1982, 2:36 PM x1 604.I.000 .000 .000 .000 43.000 43.000 43.000 xi 6000.000 .000 .000 .000 i5o.000 15n.000 150.000 .000 LINE 'A' JUNCTION PIPC .000 000 -2.220 .0';:; xi M$tj0.000 .000 .000 .000 50.000 50.000 50.000 .000 , 000 2..2n i Xi S800.000 .000 .000 .000 200.000 200.000 200.000 RIVEk6IDC COUNTY L1NC AT STATION S7+67 x1 !•600.000 .000 .000 .000 200.000 200,000 200.000 x1 5400.000 Ono coo coo 200.000 11-300, 000 200.000 x 5::00.000 .000 .000 .000 12n.000 120.000 12.0.()00 x1 Sofia coo 000 .000, 000 '100.000 100.n0,0 i00.000 x( 47(10.000 4.000 coo 45.000 ion.000 io.n,non ion 900 CR 041.SOO .000 030.SOO 16.500 030.500 20.Sa0 041.500 xi 4000.000 .000 .000 .000 200.000 200;000 200,000 ki 4600.000 .000 .000. 000 2on.Ono ion .,a().a 200.000 xi 4400.000 ono .000 .000 200.000. 200.;'(1.00 :.00 nr,o xi 4200.000 000 .ono aon 2ao,00a ;.;yan,;ono .!on.na0 xi 4000.000 .000 ;000 .000 200.000. no .,.Don 200,00.0 x1 3000,nuo nun non ,coo 200.000 2an.na0 .2n0 an PAGE 6 .000 17(S . 0011 .000 -.477 000 .000 -1.655 .000 Goo -.555 .0101 000 -2.2?0 .OG+'' .000 -111..220 G00 .Ono -2,220 Gni .000 -1.332 ;at 000 .000 ^;•o 4!:.003 .000 iL: 000 -5.990 .000 000 -2.220 .0';:; 1000 •-2.220' .000 000 -2.420 nc;0 .nrn -2.2r.o .000 , 000 2..2n , 0!10 SAI, AUG 21, 1982, 2136 PM PAGE 7 X1 3600.000 .000 .000 .000 •200.000 200.000 200.000 .000 -2.220 .000 Xi 3400.000 .000 .000 .000 200.000 200.000 200.000 .000 -2.220 .000 X1 3200.000 .000 .000 .000 200.000 200.000 200•.000 .000 -2.220 .000 Xi 3000.000 .000 .000 .000 136.000 136.000 536.000 .000 -2.220 .000 COUNTRY VILLAGE ROAD N STATION 29+30 X1 X181-4.000 1000 .000 .000 SO.000 50.000 50.000 .000 -i.Sio .000 OT 1.000 S370.000 .000 .000 .000 .000 .000 .000 .000 .000 INVERT GRADE BREAK/ MULBERRY JUNCTION PIPE Xi LUiA ,000 .000 .000 .000 i50.000 ISO.000 150.000 .000 -.SSS coo Xi 2664.000 4.000 .000 48.000 50.000 50.000 5O.o00 .000 .000 .000 GR 816.710 .000 130S.7i0 16.S00 805.710 31.S00 816.710 48.000 .000 .00n Xi 2614.000 .000 .000 .000 200.000 200.000 200.000 .000 -.2SO .000 Xi 2414.000 .000 .000 .000 iS4.000 iS4.000 iS4.000 .000 -1.000 .000 Xi 2260.000 .000 .000 .000 50.000 So.000 50,000 .000 -.770 .001 EXISIING FONTANA CHANNEL X1 k210.coo 6.000 .000 39.000 i00.000 i00.000 100.000 coo .000 con GR 817.440 .000 811.440 .0iO 803.440 12.000 803.440 27.nno Dii.440 39.001 GR 857.440 39..010 .000 .000 .000 .000 .000 Don .000 .Olin Xi 2110.000 .000 .000 .000 110.000 110.000 110.000 .000 -.SOO .001 QT 1.000 SS90,000 .000 .000 .000 .000 .000 .000 .000 ono X1 20oO.000 .000 .000 .000 SO.000 SO.000 SO.000 on() --.440 %00" SAI, AUG 21, 1992, 2:36 PM Xi 1950.000 .000 Xi 1793.000 .000 Xi 1637.000 .000 Xi !400.000 .000 X1 1200.000 .000 fit i.000 S0i0.000 xi iono.000 .000 xi 800.000 .000 Xi 620.000 .000 Xi 4S6.000 .000 X1 2S6.000 .000 Xi 76.000 .000 EJ .000 .000 'iff imp. i M -e atm PAGE 8 .000 .000 IS7.000 iS7.000 1S7.000 .000 -.200 .000 .000 .000 iS6.000 iS6.000 iS6.000 .000 -.630 .000 .000 .000 237.000 237.000 237.000 .000 -2.100 .000 .000 .000 200.000 200.000 200.000 .000 -.950 .000 .000 .000 200.000 200,000 200.000 .000 -.800 .001 .000 .000 •.000 .000 .000 Ono .000 .000 .000 .000 200.000 200.000 200.000 .000 -.800 .001 .000 .000 180.000 iso .Ono i80.Ono .000 -.000 .000 .000 .000 164,000 164.000 164.000 .000 -.720 .000 .000 .000 200.000 200.000 200,000 .000 -2.17n .000 .000 .000 190.000 180.000 180.00n Ono -.800 .000 .000 .000 .000 '.000 .000 .000 -.720 .000 .000 ,000 .000 .Ono ,noo onn .000 .000 SAI, AUG 21, 1962, 2:36 PM SECNO DEPTH CWSEL Q QLUB QCH TIME VLOB VCH SLUFL XLOBL XLCH CRIWS W8ELK EG HV HL GLOSS BANK ELEV QROB ALOE HACH AROB VOL TWA LEFT/RIGHT VROB XNL XNCH XNR WTN ELMIN SSTA XLOBR ITRIAL IDC ICONT CORAR 1OPWID ENDST *PROF i CRITICAL DEPTH 10 BE CALCULATED AT ALL CROSS SECTIONS CCHV= .too CEHV= .300 S.Oi *SLL:NU 13700.000 934.79 93S.79 .00 939.23 4.44 .26 .12 936.41 3720 CRI1ICAL DEPTH ASSUMED 390S. 0. 0. 231. 0. 1. 0. 13700.00 9.374 936.42 936.42 940.00 939.61 3.20 .00 .00 937.OS 390S. 0. 390S. 0. 0, 272. 0. 0. 0. 937.OS .00 .00 14.34 .00 .015 .015 .015 .000 927.OS .95 .002118 O. 0. 0. 0 18 0 .00 43.11 44.05 *SECHO 13500.000 164S )N1 SEC ADDED BY RAISING SEC 13SO0.00, .640FT AND MULTIPLYING BY i.000 3301 HV CHANGED MORE THAN HVINS S.Oi 8.38• 934.79 93S.79 .00 939.23 4.44 .26 .12 936.41 390S. 0. 390S. 0. 0. 231. 0. 1. 0. 936.41 00 .00 16.91 .00 ,cis lois .0i5 .Ois 926.41 2.44 .003313 too, 100. 100. 7 S 0 .00 40.13 42.S6 164S 1NT SEC ADDED BY RAISING SEC 1.01, -.640FT AND MULTIPLYING BY 1.000 i3S00.09 8.06- 933.83 93S.iS .00 938.82 4,99 .36 .OS 93S.77 390S. 0. :S9US. 0. 0. 218. 0, i. 0. 93S.77 .00 .00 17.93 .00 .01s .OSS lois .015 925.77• 2,93 .003HtQ 100. 100. 100. 6 8 0 ,00 39.14 42,07 *!;ECNO 13300.000 13300.00 7.67 932.ib 933.89 .00 937,89 S.73 ,85 .07 934.49 390S. 0. 3905. 0. 0. 203, 0. 2. 0. 934.49 .01 .00 i9.2i, .00 ,01S lois lots .015 924.49• 3.SO .004687 200. 200. 200. 6 8 14 .00 38.01 41.50 u PAGE 9 1 BREAK 14593.00 SAT, AUG 21, 1982, 2136 PM .00 933.97 6.77 ,62 .01 929.97 3905. SkCNO DEPTH CWSEL CRIWS WSELK EG 11V HL OLOSS SANK ELEV Q QLE1B QCH QROB ALOB HACH AROB VOL TWA LEFT/RICHT TIME VLOB VCH VROB XNL. XNCH XNR WTN ELMIN SSTA SLOPL XLOHL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *S9CNO 13100,000 926.35 928.S6 .00 933.38 7.03 .S6 .03 929.21 13100.00 7.47 930,68 932.58 .00 936.86 6.i8 .99 .04 933.21 390S. 0. 390S. 0. 0. 196. 0. 3. i. 933.21 .01 .00 19.95 .00 .015 .015 .015 .0ts 923.21 3.80 .00Si97 200. 200. 200. S 11 0 .00 37,41 41.20 *SEL11U 12900.000 7.00 9'24.59 926,96 .00 932.OS 7:46 1.29 ,04 927.59 12900.00 7.3S 929.28 931.30 .00 935.76 6.47 1.07 .03 931.93 3905. 0. 3905. 0. 0. 191, 0. 4. 1. 931.93 01 .00 20.42 .00 .015, .015 tots .015 921.93 3.98 .00S530 200. 200. 200. 4 11 0 .00 37.OS 41.0'2 1 *SUCNU 12700.000 12700.00 7.27 927.92 930.02 .00 934.60 6,69 1.13 ..02 930.6S 390S. 0. 3905. 0. 0. 188. O. S.. 1. 930.65 .01 .00 20.7S .00 .015 .015 .015 .OiS 920.65 4.10 .00S707 200. 200. 200. 4 it 0 .00 36,80 40.90 *SECNU 12593.000 [NVEkl GRADE BREAK 14593.00 7.23• 92/.20 929.34 .00 933.97 6.77 ,62 .01 929.97 3905. 0. 390S. 0. 0, 187. 0. S, ,_1. 929.97 .02 .00 20.88 .00 .0i5 .015 .015 tots 919:.97 4.iS .00S889 107. 107. W. 4 11 0 .00 36.70 40.85 *SECNO 12SO0.000_ 12500.00 7.14 926.35 928.S6 .00 933.38 7.03 .S6 .03 929.21 390S. 0. 3905. 0. 0. 154. 0•. >6, i. 929,21 .02 .00 21.28 .00 lois ,015 .015 .01s 919G21 4.29 .006198 93. 93. 93. 4 11 0 .00 36,42 40.71 *SECNU 12300.000 12300.00 7.00 9'24.59 926,96 .00 932.OS 7:46 1.29 ,04 927.59 390S. 0. 3905. 0. 0.. 178. 0, 6., 1. 927.S9 .02 .00 21.91 .00 ,015 .015 .Cis .OiS 917.S9 4.St 00675; :!n 0. 200. 200, 4 11 0 ... .00 3S.97 40.4P NAGE 10 WL Ow aw r. , 1 SAT AUG 21 1982 2136 PM F AIGE i.1 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QLOB QCH QROB ALOE HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLEIDL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *sVCNO 12100.000 i2i00.00 6.89 922,87 92S.3S .00 930.64 7.77 1.30 .03 925.97 3905. 0. 3905. 0. 0. 17S. 0. 7. i. 925.97 .02 .00 22.37 .00 .015 .015 .Ois .015 9iS.97 4.66 .007111 200. 200. 200. 4 ii 0 .00 35.67 40.31 *SECNu 11900.000 • ti90U.0U 6.82 92i.i8 923.73 .00 929.16 7.99 i.4S .02 924.35 3905. 0. 3905. 0. 0. 172, 0. 8, 2. 924.35 .02 .00 22.68 .00 .015 .Ois ,.0i5 .0is 914.35 4.77 .007387 200. 200. 200. 4 ii 0 .00 35.47 40,23 *SECt40 11700.000 t1700.00 6.78 9i9.Si 922.11 ,00 927,65 8.14 i.SO ..02 922,73 3905. 0. 3905. 0. 0, 171. 0. 9. 2. 922.73 .03 .00 22.90 ,00 .015 lois .015 ,015 912.73 4,84 .007584 200. 200. 200. 4 !i 0 .00 35,33 4A.i6 *SECNO iiS00.000 11500.00 6.74 917.86 920.49 .00 926.11 8.25 i.S3 .01 921.11 3905. 0. 3905. 0. 0. 169, 0, 10. 2. 921.11. .03 .00 23.06 .00 lois ,015 ,015 .cis 911,11 4,88 .007726 200. 200. 200. 4 11 0 .00 35.23 40.12 *SECNU 11300.000 51300.00 6.72•. 9161.21 918.88 .00 924,SS 8.33 i.S6 ,01 919.49 3905. 0. 3905. 0. 0. 169, O, i0i 2. 919,41 ,03 .00 23.1'/ .00 .015 ,cis .015 ,015 909,49 4,92 .0078,•29 200. 200, 200. 4 ii 0 .00 •,, 35.16 40.Of *SECNU ili00.000 INVLRI GKADE BREAK !1100,00 6.70, 9t4.S8 917.26 .00 922.97 8.39 i.S7 .01 917.87 3905. 0. 3905, 0. 0, ib8, 0, ii., 2. 917.8% .03 .00 23.25 .00 .Ois .015 .O1S ,OiS 907.87 4,94 .007903 200. 200. 200. 4 11 0 .00 3S.i1 40.06 SAT, AUG 21, 1982, 2136 PM PAGE 12 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QLUB QCH QROB ALOB HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROS XNL XNCH XNR WTN ELMIN SSTA SLUPL XI.OBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SECNO iO9SO.000 10950.00 7.17 912.82 9iS.62.00 921.70 0.88 i.2i .0S 9i5.6S 3905. 0. 3905. 0. 0, i63.0 0. 12. 2. 9iS.65 .04 .00 2.91 .00 lois .015 .Ois .cis 90S.6s 4.24 .008301 ISO. ISO, ISO. 5 14 0 .00 33.52 37.76 *SE.CNC1 10900.000 10900.00 7.08•• 911.99 914.9i .00 921.24 9.25 .43 .04 914.91 3905. 0. 3905. 0. 0. 160. O. 12. 2. 914.91 .04 .00 24.41 .00 .01S lois .CIS .ois 904.91 4.39 .008775 SO. SO. SO. 4 it 0 .00 33.23 37.61 *SEC14U 10870.000 10870.00 7.02 • 911.49 914.47 .00 920.95 9.46 .27 .02 914.47 3905. 0. 3905. 0. 0. i58. O. 12. 2. 914.47 .04 .00 24.69 .00 .015 .015 leis .OiS 904.47 4.47 .00905i 30. 30. 30. 4 11 O .00 33.06 37.53 *SECNU 10820.000 CHERRY AVE. JUNCTION PIPE 10020.00 7.22• 910.95 913.95 .00 920.50 9.55 .4S ,01 913.73 40901 0. 4090. 0. 0. 165; 0. 12. 2. 913.73 .04 00 24.80 00 .0i5 lois .015 lois 903.73 4.16 .008860 SO. 50. SO.. 4 11, 0 .00 33.67 37.84 *SEC14(i i000u.ono i0E:100.00 7.i9 910.62 913.63 .00 920.30 9.68 .18 .01 913.43 4090. 0. 4090. 0. 0. 164. 01. 12. 2. 913.43 04 .00 24.97 .00 .015 .0is .015 .n1► 903.43 4.22 .009034 20. 20. 20. 4 It 0 .00 33,57 37.70 *SECNtG 10750.000 10750.00 7.11- 909.80 912.89 100 9i9.81 10.01, `. .46 .03 912.69 4090. 0. 4090. 0. 0/ 161, 1, 1 0. '.: 12. 2. 912.65' .04 .00 25.39 .00 MS 1015 .015 ;015 902.69 4.34 00')44x; S0. SO. 50. 4 !1 n .nn' 33.33 37,66 SAT, AUG 21, 1982, 2t36 PM SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QL0B UCH QR00 ALOB HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROH XNL XNCH XNR WTN ELNIN SSTA SLU1IL XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SECNO 10700.000 LINE 'D'JUNCTION PIPE 906.36 909.S6 .00 917.0 10.83 1.04 .00 10700.00 7,05 909.00 912.17 .00 919.30 i0.30 .48 .03 91i.9S 4100. 0. 4100. 0. 0, iS9. 0. 13. 2. 911.9S .04 .00 25.75 .00 .OiS .0i5 .015 .OiS 90i.95 4.42 .009000 SO. SO. So. 4 11 0 .00 33.16 37.50 *SECNCI 10600.000 10600.00 6.94 907.41 910.70 .00 918.23 !0082 1.01 .OS 910.47 41on. 0. 4100. 0. 0. iSS. 0. i3. 3. 910.47 .04 .00 26.40 .00 .015 .015 0015 .015 900.47 4.60 010A86 i00, 100, 100. 4 11 0 .00 32.80 37.40 *SECNU 10500.000 10900.00 7.37 906.36 909.S6 .00 917.0 10.83 1.04 .00 908.99 4100. O. 4100. 0. 0. iSS. 0. 13. 3. 908.9P 04 00 26.41 .00 .OiS .OiS .OSS .015 698:99 3.94 .010340 100. 500. 100. S 14 0 .00 32.12 36.06 *SECNO 10400.000 10400.00 7.28 904.79 908.13 .00 916.08 11.29 1.06 .0S 907.Si 4100. 0. 4100, 0. 0. iS2. 0. 14. 3. 907.Si .04 .00 26.97 .00 .OiS .015 .OSS ,OiS "'997, Si 4.09 01094S 100. 1,00, i0o, 4 ii 0 .00 31.81 3S.9i 4SECUD 102200.000 10200.00 7.12 901.67 90S.i6 .On 913.72 12.05 2.29 .08 904.SS 4100, n, 4100. o. O. 147. 0, 1.4. 3. •904.SS .04 .00 27,86 .00 .015 .015 .015 .015 894.SS 4.32 .011947 200. 200. 200. S 11 0 .00 3i.3S 3S.68 '%SECNU 10000.000 10000.00 7.02 - 898.61 902.23 .00 911.20 12.S9 2.46 .05 901.59 4100. 0, 4100. 0. 0. 144. 0. 15, 31 901.S9 .OS .00 26.48 .00 .01S .015 .015 .015 891.59 4,48 .ni?6711 2nn, 200. 200, 4 11 0 .00 31.OS 35.52 PALL 13 SAT, AUG 21, 002, 2:36 PM SE -U40 DCPTH CW:;EL CRIWS WSELK EG HV NL GLOSS DANT( ELEV Q QLC1D UC11 QR00 ALOD MACH AR OD V0L 1WA LEf i/PIGHT TIME VLOD VCH VROD XNL XNCH XNR W'i'N ELMIN S IA SLUNL XLURL XLCH XLODR ITRIAL IDC ICONT CORAR TOPWID ENDST ;!;t.040 99(10. uon YY00.00 6.9£1 (197.01/ 1700.611 .00 909.9n 12.01 1.'.10 ur Y00.ii 4100. 0. 4100, 0. 0. 143. n, 1f;. 3. 17,00. ii 0s 0o 1090;11 28.73 00 ois 0is, nis Oi5 4.s4 012970 100. 100. 100. 4 14 0 On 3.0.92 35.46 *bCt.NU 91100.000 4000.00 7.S4 896.17 099.63 .00 9n0.5o 12.33 1,26 14 09(1.63 4100. n. 4100. 0, 0. 14S. D. 14- 3. (190.63 .OS .00 28.io .00 ,Ois .01S nts AiS 800.63 3.71 .012107 t00. 100. 100. 6 14 0 On 30.61 .',4.30 4:3FUNU 9bO0.000 96110.00 7.4s 1.193.12 896,74 .00 9ns.95 i'.03 2.5n as £195.67 4100. 0. 4100. 0. 0. 143, 0. ill. 3. Blis.67 .W.; .00 2£,.74 .00 .015 cis ai> 015 ElW;,lj7 3.C4 ai2nso 2nO. 20n. 200. 4 1t 0 .On 30.33 34. IE, )tSEC14C, 9450.000 9450.00 7.39 890.04 094,53 .00 903.96 13.12 1.96 .03 893.45 410n. 0. 4100. R. 0, 141. 0. 17, 3, iW3.41 .. n' 00 29. 07 00 .019 cis ni5 .015 803..45 3.91 Oi.S24t 150, iSO. 150. 4 11 0 ,On 30,17 34.09 MSECNU 9400,000 LINE It;' JUNCTION PIPE ?-11111.011 7.45 090. 16 893.79 .00 903.30 1:3.14 61h On 8Y2.7.1 411,0. 0. 4160. n. 0. 143. n, i7. 3, f192.71 a,; 00 2Y.00 ,00 .015 .015 .n15 at i (102.71 ;5,0 013132 SO. si0. SO. 3 14 0 .00 30.37 34.19 *UL110 WOO. 1100 9:20n.00 7.40 807. is E190.03 .00 YOn,60 13.4, 167 03 Uhl;,;1:, 4160, 0. 4160. 0. 0. 141, 0, in. 4. 009.75 01; 00 29.43 .00 ,OiS .0iS Oil 01"; 079.71; n13Y,4 ;100 :00. ryn. 4 14 0 nn 30.20 54.10 VALE i4 SAT, AUG 21, 19£12, 2:36 PM SECNO Df:PTII CWSEL CRIWS WSELK EG IIV HL OLOSS DAUX EL.EV Q QLCID QCH QRC)B ALOE MACH AROB Vol. TWA LUT/RIGHT TIME V1.08 VCH VROB XNL XNCH XNR WTN ELIIIN SSTA SLUFL Xl.DSL XLCII XLODR ITRIAL IDC ICONT CORAR TOPWID E.N,D5T i;; :CNu :'000. 000 5.000.00 7.36 884.iS 887.87 .OD 897.83 13.68 .3.74 .02 006.79 4160. 0. 4160. 0. 0. 140, 0. 1.8. 4. 506.79 .06 .00 29.69 .00 .cis .01s .pis .cis 076.79 3.96 013073 200. 200. 20n. 4 14 0 .00 30.00 34.04 *SCLOW O(.100.000 6800.00 7.33 801.16 804.91 .00 895.02 13.86 2.00 .02 683.£13 4160. 0. 4160. 0. 0. 139. 0. 19. 4. 803.07 .06 Ica 29.07 .00 .015 ,nil .Oil 1115 073.03 4.00 014170 200. D00. 200, 4 14 n n0 29.99 34. 0(i *SLCN(1 81)00.000 800 0 . 00 % . 31 (170 . it) 001 .95 .00 092. 17 13 .99 2.04 01. C1110 . 87 4160. 0. 4160. 0. 0. 139. 0. 20. 4. CS0,(11'r' .0:, n0 30.01 .00 ,cis .pis cis .015 870.87 4.C4 01 •1267 200. 200. 200, 4 14 0 () a 29. 93 33. 5'6 *11UNU OSS0.000 INVCkI GRADE FREAK 1;1;:U.00 %.31 £t%%.44 801.32 00 091,45 14.01 .72 .00 01;1.13 4160. 0. 411.0. 0. 0. 139. 0. 20, 4. MIi.I 06 Ott 30 . 03 . 00 0 i . 015 .0.15; 1111.; 870 . i;: U14314 5n. Sa. S0. 3 14 0 on x9.92 41, xGECNCI 1;44,1.000 8444.00 ; .•10 Ct%:>.3 Ban. is 00 8[19.81 1,';.45 1.40 17 079.95 4160. 0. 4160, 0. 0. 141. 0; 20, 4. 079.95 .06 .0a 29.44 .00 .015 .01S. 0153 0 I 868.9'; S . 4 U a13562 1a6. 106. 106. 4 14 0 (10 30.20 2,S. 60 x`;1:(.11(1 (13'14.000 ALMOND AVE.. JUNLTIUN PIPE. 8394, 00 7.51 075.91 079.65 .00 809.05 i3. 1.3 .66 .10 079.40 4.210. a. 4.:1In. 0. 0. 14S. 0. 20. 4. 079,40 .01, 00 :9.110 .Oa III 'I .1)15; .(11', 111:; 060.40 1; ;'A 01sn;)4 S.It. 510. S0. 4 i4 0 .n0 30.!,4 i'.i.%i PALL 15 SAT, AUG 21, 1982, 2:36 PM SCCHO DEPTH CWSE1. CRIWS WSELK EC HV HL GLOSS BANK rLEV Id OLD14 LA LJ LW3 L:-1 L-1- Cil L::J t: - J L,....J L- J [-_.i !._1 t_.J tJ t... J`�.....� _�._.l L-! SAT, AUG 21, 1982, 2:36 PM SCCHO DEPTH CWSE1. CRIWS WSELK EC HV HL GLOSS BANK rLEV Id OLD14 QCH OROE, ALOR HACH ARO$ VOL TWA LOFT/RICHT TIME VLOH VCH VROD XNL. XNCH XNR WTN ELMIN SS FA SLOPL XLOEtL XLCH XLOHR ITRIAL IDC ICONT CORAR 10PWID END:ST cit -04d :100.000 (.:.IOU. oil / . 62 U%;i . 07 U77. 50 .00 006142 1'.' . 56 2.45 . 17 CI'17 .25 4210. 0. 4210, 0. 0. 140. 0. 21. 4, (17".25 .06 00 x.'.8.44 .00 Oita 015 cis 0 i E166.25 5.07 0i2261 194. 194. 194. 4 14 0 .00 30.86 35.93 4ULCH() SOSO.000 0050.00 7.68 87,.,26 875.83 .00 804.52 12.27 1.81' .09 87`.".:10 4210 . 0. 4210 . 0. 0. 1 S 0 , 0. 21.. 4. (17S. '.'a .06 .00 ";6,t1 .00 cis cis cis lots 864,58 4.99 0110114 ISO. iso, iso. 4 14 0 ,00 3J. .03 :6,01 +1LELHO 30110.000 8000.00 7.611 671.71 875.35 .00 883,91 12.21 59 .,02 875,03 4210. 0. 4210. 0. 0, iSO. 0. 24.. 4, 075,0; .06 .00 LU.04 .00 lois cis cis .o1S 864.03 4.97 011003 50. 50. 5c.' 3 it 0 .00 31.06 36,03 +:,LCNU 7000.000 7000.00 %.%3 Ct:.".S,4 073.13 .00 0(St.sf t1.97 2. 33 .01I 07? fit 4: 1 0 . 0. 4210. 0. 0. 1.52. fl. ?:' S. !t'i �' , ( 1 U7 .00 ::'i.%;' .00 lois lots 01 S 0.1!1 E16,f .Ot 4. 90 011SO2 200. 200. 200. 4 It 0 1.00 31.120 t0 *Gt:CNU 7600.000 600.00 %.76 U6%. 670.91 .00 879, 1.9 11.04 2.28 .04 E170.5" 4210. 0 4210. 0. 0. 152, 0, 23, s, (170.':,7 t17 00 27.61;: .00 cis 015 .0V; 10iS (1;9.59 4101, 011331 2100. 200. 200. 4 'it 0 00 ;{1.20 :36.14 tSCLHU 7404.000 7.104.00 %.%7 0:66.06 1569.62. .00 877.87 11.80 1.:31 0 [167.;31) 42! 0 , 0 . 4210 . 0 . 0. 1.S3. 0 . .;3, S. (it"? 10 ,07 OU 27.57 ,00 lots ;cis OV; ,011; 0511.30 4.ii', 011211-S 116). 116. 116. 3 11 0 0t; 31 .31 36,, 1':; 1,AGL ib SAT, AUG 21, 1982, 2:36 PM 31:1.NU 1)E:PIII CWSEL. CRIWS WSELK FG HV IIL OLO.SS DONK ELEV _.,.J L_.J L--' L.,-1 L.._,! L.. -i L: -J L:J L_.: TWA ..jm SAT, AUG 21, 1982, 2:36 PM 31:1.NU 1)E:PIII CWSEL. CRIWS WSELK FG HV IIL OLO.SS DONK ELEV Q QLUS QCH QROB ALOB HACH A.ROH VOL TWA LEFT/RIGHT TIME VL08 VCH VROD XNL XNCH XNR WTN EL.MIN SSTA SLOPL XLOhL XLLH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST NO %'434. ono 1. INE 'C{' JUNCTION PIPE 7434,00 7.89 865.63 869,14 .00 877,26 11,63 .56 05 568.74 4190. 0 . 4280, 0 . 0. iS6 , 0. 24. S; . CMC , 7! .07 .00 2%.37 .00 OiS lois ,015 .0t5 057.74 4,67 01,0930 SO. 50. 5o. 4 it 0 nn 31.66 36„3:3 4S£CNU 7400,000 7400.00 7,89 865.26 860,75 .00 876,09 11.63 .37 .00 060,37 42110, 0, 428n. 0, 0, is6, 0. 24. 5. 060,3'1' .07 00 27,37 .00 ,015 415 ,0 i ni5 057,37 4,67 010'740 34. 34. 34, 0 11 0 0n 31,66 36,3::• *SCCN0 7330.000 7330. 00 7.89 864,40 867.98 .00 876.12 11.64 ..77 .00 867.59 4200. 0. 4200. 0. 0. iS6. 01. 24, S. 067.Sf' .07 00 :%.311 .00 cis .Ots .015 ,015 E1,5 S9 4.67 .010953 70. 70. 70, 3 it 0 .00 31.,65 36.3;5 �S1.1 Itfl 7230.000 72.17. UO 7. 31 06;'.79 866.42 .00 874, 94. 1;'_. 15 i , i3 .05 V66. 4t: 4290. 0. 4110n. 0. 0. 1113, 0. 24, S. f16b.4f: .07 00 27,97 .00 .015 .015 ,015 .015 EIS5.40 S,; 011722 ion. 100. 100. 7 It 0 00 31.91 37.4.5 1;;i i, 111.1 ,..;'4.000 7-,;!0 UO %. d1 11(. . b!I 066.211 .00 074.61 1;? 13 1." 0.t 1,66,;;', 4. iIn. 0. 4200. 0. 0. is3. 0. 24. - S. CL6.31 0'7 .00 %.Y5 00 .015, OSS 015 at!) E15,,37 5.54 .011700 10. 10, in. 0 14 0 00 31.92 37.411) :tSEl:N11 7170.000 11145 11`11 SEC ADDED BY RAISING SEC .7170.00, 278FT AND MULTIPLYING PY 1/49 I.tit 7, lift 1162,711 066,2c) .00 074,30 it.611 .:111 .16 1166.09 41.;'0. n. 4`.+;.'11. 0. 0. Ili'.;. It. ;'4. !1. 11h6.IlY .117 . 00 :!7..;:; 0O .61S , 015 n1!; , 015 NS,S. 09 4, Y% 0101.,1/11 :!,. L!1. 251 `+ 14 0 .00 33.04 3H.Ci F'AGL 17 SAT, AUG 21, 1982, 2:36 PM SCC:NO DEPTH CWSEL CRIWS WSELK EG HV HL ULOSS BANK ELEV Q QLOQ QCH QROB ALOE) HACH AROD VOL TWA LEFT/RIGHT TIML VLOV VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE. X1.ODL X1.C11 XLOPR IT'RIAL IDC ICONT CORAR TOP WID CNDS il,4'; INT SEC: ADDED 8Y RAISING SEC i.0i, -.278FT AND MULTIPLYING PY i,e0i .00 CANANA JUNCTION PIPE: i 1 .90 .' . in 01 C037. ^7 0. 172 . 0. 7170.00 6.06 fl6 .U" 866,1.'. .00 873,90 ii.in .2; 1S 065,01 4760. n. 4760. 0. n. 1711, n. 25. 5. 0Z'S.01 .07 00 21.74 .00 oisi nis leis .015 054.01 4.41 1)(111o41 s. ?S. 2S. 5 14 0 .00 34.10 311.59 *SLLN1) 7000,000 fL�.T• R '1000. 00 6.00 1160,93 064.37 .00 872.29 it.36 1.66 .03 063.93 4760. 0. 4760, 0. 0. M. 0. 25. S. 063,9;; .U7 .00 27.04 .00 ,015 .015 leis .015 6522.93 4,!;n .009939 M. 170. 170. 4 11 0 .00 34.00 30. s0 SSCLNU 6000.000 6000.00 7, YS US11.66 062,16 4760. 0. 4760. 0, .00 00 :7.3:1 00 .010216 200. 2011, 200. V01 UtJC) 6600.000 6600.00 %.91 8S6.40 059. 94 4760. 0, 4760. 0. .Oil .00 27.53 00 i) t 04;'7 .?00. 200. 200. ►`,LLNh 6400.000 6400. 00 %.bil M,4.IS OS7.72 476n, n. 4760. n. .UG 00 27.69 00 ntU501) 00, 200. 200. VICUNO 6250.000 &no.00 7.86 852_.46 US6.06 4760, n. 476n. 0, .011 . 011 2Y. %0 . no 01ut113 it.0. 150. i50. .00 870.25 it S9 2.02 .02 861.7t 0. 174. 0. 21,, S. 861.71 leis .015 .0is 015 BSO. 71 4,50 4 11 a on 3:1.04 ';,4:? .00 068.16 it .77 2.060„ 02 057.49 0. 173.0. 859, 41, leis .015 cis 040,49 4.64 4 it 0 00 33.73 '0.36 .00 066.05 i 1 .90 .' . in 01 C037. ^7 0. 172 . 0. 20 : 6 . f 1 i leis Oi5 Oi5 tlis 846.27 4.;,0 4 if n ,0.0 33.64 :11.3. ;2 .00 064.45 it .98 .4.60 .01 E15S.60 0. 1.71. Q.. ;!0. nit, 01!1 011; (1 IS 044.60 4 ! t e , 00 3,;. 59 stl . 119 fL�.T• R PAGE 13 - AI, Au;. ?1, 1592, 3;35 PM sLCNO DEPTH CWSEL CRIWS WSELK EG HV Ht_ OLOSS DANK ELEV Q WLOB QCH QROS AL.OP HACH AROS VOL TWA LEFT/RIGHT 1111E VLOD VCH VROD XNL XNCH XNR WTN £:LMIN SSTA S1.UF1E XLODL X1.CH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDyT x-;L.CNO t0So.000 C.iso.00 7.31 MID .80 I1S4.53 .00 (363.29 12.49 i.ti .05 GS4.49 4760. 0. 4760. 0. 0. i60. 0. 29, 6. GS4.49 .00 .00 20.36 .00 .015 lois 015 .015 043.49 515.1 .011449 100. 100. 100. 7 it 0 00 33.93 39.46 4SECNU 6125.000 6125.00 7.31 OSO.S2 854.22 .00 063.00 12.40 .29 .00 CS4.21 4760. 0. 4760. 0. 0. 160. 0. 29. 6. GS4.21 00 00 28.35 .00 lois .015 .Ois AiS 843.21 S. S3 Oii439 25. 2S. 25. 0 i A 0 On 33.93 39.17 *SELNU 6075.000 CALAIsASH JUNCTION PIPE 6075.00 7.47 £lSO.13 OS3.76. .00 862.37 12.24 S6 .07 053.66 4070. 0. 41.170. 0. 0. M. 0. 29. 6. 0 1 .011 00 "1.011 .00 .Ois cis .0i5 .015 042. 6l: S.;'9 .o10'IS9 SO. So. 50. 4 14 0 .o0 34.42 * SECNO 6059.000 b3r�9.00 7.47 1349.45 853.59 .00 862.19 12.24 .10 o0 E; S3 4117() . 0. 4070. a. 0. 1.73. n. 29, 6, 053 , 413 .08 00 20.00 .00 .0i5 .0i5 .015 .0 i (02.40 153 010'16.1 16. 16. 16. 0 14 0 .00 34.42 .39.'71 ;t;tc.1)u nuns, 000 6043. 00 7.44. 849. i6 £153.41 .00 86.2..0?_ 12 ."?j . it) .00 E;S3.'1,0 41370. 0. 4970; 0. 0. M. 0. 29. 6. OS3.30 . 011 . n0 ?13. 09 .00 .015 .015 Cis 01 + 542.30 S.29 oi097S i6. 16. 16. 0 14 0 On 34.41 39.71 tLC(AM 6000.000 6000.00 7.47 841/.:!Y W12. 93 .00 8,6t.54 1;!,;.>�� .4'/ 00 11'.,:',11;1 4870. 0. 4070. 0. 0. 173. 0. P9. 6. 11c;? . L'? .01.1 n0 20.07 .00 .01s .OiS lots (11.S 041.02 29 .010971 41. 43, 43. 2 14 n .n0 34.41 39.71 VAGI: 19 ir AIM �wii6m SAT, AUC 210 1982, 2136 PM SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QLOB QCH QROB ALOB HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLDPE XLOBL XLCH XLOBR ITRIAL- IDC ICONT CORAR IOPWID ENDST *!3CCNI) SOSO.000 LINE 'A' JUNCTION PIPE SUSO.00 7.48 947.64 8Si.27 .00 SS9.90 12.26 i.6S .00 SSi.i6 4870. 0. 4870. 0. 0. 173, O. 30. 6. 85i.iL .09 .00 29.10 .00 .Ois .OIS .015 lois 840.16 S.30 .Oi09Ui ISO. ISO. ISO. 0 14 0 .00 34.41 39.70 *SEL'ND 5800.000 SS0o.00 7.48 947.o8 850.71 .00 859.35 12.27 .5S .00 850.60 4870. 0. 4870. 0. 0. 173. 0. 30. 6. SSO.61 .OY .00 29.11 .00 .015 .Ois .015 .Ois 839.60 S.30 .OiO992 S0. SO. SO, 3 14 0 .00 34.40 39.71 *SELNO S600.000 21VEk9IDE LOUNTY LINE AT STATION S7+67 5600.00 7.47 844.86 848.49 .00 857.14 12.29 2.20 .00 848.38 4U70. 0. 4870. 0. 0. 03, 0. 31. 6. 848.38 .09 .00 28.13 .00 .Ois .01S. .01S lois 837.38 S.30 .Oiioi6 200. 200. 200. 3 14 0 .00 34.39 39.70 *Sr CNV 5400.000 '.400.00 7.47 942.63 846.27 .00 854.94 12.30 2.21 .00 946.16 4870. 0. 4870. 0. 0. 173, 0. 32.6. 846.1.6 .09 .00 28.15 .00 .015 .015 .015 .0i5 83S;i6 S.31 .011037 200. 200. 200. 3 14 0 .00 ;.344.38 39.69 *SE(:N(1 S200.000 S200.00 7.46 940.41 844.OS .00 852.73 1.2.32 2.21 .o0 943.94 4870. 0. 4870. 0. 0. 1.73. 0. 32. 7. 843.91 .09 .00 28.16 .00. .Ois .01S lois .015 832.94 S.31 .Oi10S3 200. 200. 200. 3 14 0 .00 34.37 39.69 *SECNO 5080.000 5080.00 7.44 939.06 842.72 .00 SSi.40 12.34 1..33 .00 842.61 41370. 0. 4070. 0. 0. 173, 0. 33. 7. 042.61 .01I 00 Lift. iY .00 .cis .Ois .01!1 .111!; 831.61. !'i.3"? .1111001 0fl. 120. 120. 2 14 0 .00 34.36 ;19.611 PAGE 20 0 zt- i Its' .0o tv; t0, Ota• p 011076 too. too. 100. 0 .00 34.3t' ml OUECNU 4000.000 4900.00 7.44 935.94 839.61 .00 949.29 12.3S 1.99 .00 839.SO 4870. 0. 4870. 0. 0, M. 0. 34. 7. 839.50 .t0 .00 28.20 100 lois .bis .015 .oiS 828. so 5.32 .O1i009 180. 180, 180. 0 14 0 .00 34..35 39.60 *SECNCI 4600. 000 4600.00 7.4S 833.73 837.39 .00 846.07 12.34 2.22 ..00 837.28 4870. 0. 4870. 0. 0, 173. 0. 3S. 7. 837.2P ISO .00 28.19 .00 .01% leis .015 .015 826.28 S.32 ,011082 200. 200. 200. 2 14 0 .00 34.36 39.60 *SECNU 4400.000 4400.00 7.4S 831.Si 835.17 .00 943.86 12.34 2.22 .00 835.06 4070 1 0. 4870. 0. 0., 173. 0. 36. 7. 83S.Ot .io .00 28.19 .00 Ibis lois .oiS lois 824.06 S.32 .Oii003 200. 200. 200. 2 14 0 .00 34.36 39.60 *SENO 4200.000 4200.00 7.46 829.30 832.9S .00 941.64 12.34 2.22 .00 832.84 4970. 0. 4070, 0. 0. 173. 0. 36. 7. 032.04 .10 .00 28.0 .00 .015 .oiS lots lois 021.04 S.32 .Oii083 200. 200. 200. 0 14 0 .00 34.36 39.60 4SECN0 4000.000 4000.00 %.45 E127.07 830.73 .00 939.42 12. S 2.22 loo 930.62 4070. 0. 4870. 0. 0. M. 37. 7. 030.61F Ito .00 28.20 .00 Ibis .bis lois ,bis Si9.62 S.32 .011096 200. 200. 200. 2 14 0 .00 34.35 39.68 0 SAT, AUG 21, 082, 2336 PM SFCNO DEPTH CWSEL CRIWS Q QLUB QCH QROB fIML VLOB VCH VROB SLOPE XLOBL XLCH XLOBR *SCCNO 3000.000 3800.00 7,4S 824.85 828.Si 4870. 0. 4870. 0. .it .00 28.20 .00 .011092 200. 200. 200. «SECNU 3600.000 3600.00 7.44 822.62 826.29 4870. 0. 4870. 0. .it 00 28.21 .00 .011101 200. 900. 200. 3SE:C 40 3400,000 173. 0. 3400.00 7.4S 820.41 824.07 4870. 0. 4870. 0. it .00 28.20 .00 .011092 200. 200. 200. *SECNU 3200.000 3200.00 7.4S Si8.i9 821.8S 4870. 0. 4870. 0. .it .00 28.20 .00 .011090 200. 200. 200. * SECNU 3000.000 173. 0. 3000.00 7.4S SiS.97 819.63 4870. 0. 4870. O. .it .00 28.20 .00 .01io95 200. 200. 200. *SELNU 2064.000 COUN1kY VILLAGE kUAD S STATION 29+30 21364.00 7.45 8i4.4b BiS.i2 .00 826.81 4870, 0. 4870. 0, 0. 173, .12 .00 28.20 .00 .0is ,Dig 0t1093 t3h. 136. 136. 2 14 HL OLOSS BANK ELEV VOL TWA LEFT/RIGHT WTN ELMIN SSTA CORAR TOPWID ENDST 2.22 .00 828.40 38. 0. 828.40 .0i5. 517.40 5.3? .00 34.35 39.60 2.22 .00 826.18 39. 8. 826.18 .Ois 815.18 S.33 .00 34.3S 39.67 2.22 ,.00 823.96 40. S. 823.96 .0i5 SQ.% S.32 .00 34.3S 39.68 2.22 .00 821.74 40. 8. 82i.7t• .015 SiO.74 S.32 .00 34,35 39.68 2.22 .00 819.5? 41. 0. 819.52 lots 008.52 5131_ .00 34.3S 39.68 i2.3S.. EG HV WSELK ALOE HACH AROB XNL XNCH XNR ITRIAL IDC ICONT .00 837.20 12.35 0. 173. 0. .Dig lois .015 2 !4 0 ,00 834.90 12.36 o. 173. 0. ,Dig .015 .015 0 14 0 .00 832.76 12.35 O, 173. 0. .01s .01s lois 2 14 0 .00 830.S4 12.35 O. 173. 0. lois ,cis .015 2 14 0 .00 828.32 12.39 0. 173. O. lois ,0i5 .015 0 14 0 COUN1kY VILLAGE kUAD S STATION 29+30 21364.00 7.45 8i4.4b BiS.i2 .00 826.81 4870, 0. 4870. 0, 0. 173, .12 .00 28.20 .00 .0is ,Dig 0t1093 t3h. 136. 136. 2 14 HL OLOSS BANK ELEV VOL TWA LEFT/RIGHT WTN ELMIN SSTA CORAR TOPWID ENDST 2.22 .00 828.40 38. 0. 828.40 .0i5. 517.40 5.3? .00 34.35 39.60 2.22 .00 826.18 39. 8. 826.18 .Ois 815.18 S.33 .00 34.3S 39.67 2.22 ,.00 823.96 40. S. 823.96 .0i5 SQ.% S.32 .00 34.3S 39.68 2.22 .00 821.74 40. 8. 82i.7t• .015 SiO.74 S.32 .00 34,35 39.68 2.22 .00 819.5? 41. 0. 819.52 lots 008.52 5131_ .00 34.3S 39.68 i2.3S.. 1.51 .00 Bi0.0i 0. 42. a•. 810.0i .Dig .cis 807.81 S.32 0., ..00 34.35 39.60 N 0 PAGE 22 SAT, AUG 21, 1982, 2136 PM StCNO DEPTH CWSEL CRIW8 WSELK EG HV HL OLOSS BANK ELEV Q WLOU QCH QROB ALOB HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROB XNL XNCH. XNR WTN ELMIN SSTA SLUPL XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *ShCNO 2014.000 I.NVERI GRADE BREAK/ MULBERRY JUNCTION PIPE 824,01 i0.90 .46 .13 2814.00 8.17 814.63 918.04 too 826.02 11.39 .SO .29 517.46 5370. 0. 5370. 0. 0. 198. 0. 42. 8, b17.46 .12 .00 27.09 .00 All tots tots tots 806.46 4.24 .0092f12 S0. 160. SO. 6 14 0 .00 36.52 40.76 *SECNO 2664.000 2664.00 7.S6 813.27 816,74 .00 824,60 ii,33 1,40 .02 816.71 5370, 0.' 5370. 0, O. 199, 0. 43, 9. 816.71 .12 .00 27.02 ,00 ,015 .Ois .OSS tots SOS,% S.17 ,009424 iso. 150. 150, 6 it 0 .00 37,6S 42.83 *SECNO 2614.000 2614.00 7.6S M .ii M.S4 .00 824,01 i0.90 .46 .13 816.46 S370. 0. S370. 0. 0. 203. 0. 43. 9. 816.41., .12 .00 26.49 .00 tots .01s .015 .cis 805.46 S.02 .008932 SO. SO. SO. 4 it 0 .00 37,96 42.98 *SECN(j 2414.000 164S )NI SLC ADDED BY RAISING SEC 2414,00, .SOOFT AND MULTIPLYING BY i.000 1.01 7,8S 812.81 816.03 .00 822.93 10.12 .85 .23 Sis.96 5370. 0. S370. 0. 0. M. 0. 43. 9. SiS.96 .12 .00 2S.S2 .o0 tots tots tots .Ois 804.96 4,72 .00001/0 100. 100. too. 4 it 0 .00 38.57 43.29 164`o INt SEC ADDED BY RAISING SEC i.0i, -.500FT AND MULTIPLYING BY 1,000 414.00 b.04 bi2.S0 815.52 .00 821,96 9.47 .77 .0 biS.46 S370. 0, S370. 0. 0. 217. 0. 44. 9. 815.41. .12 .00 24.69 .00 .OV6 tots .oiS .015 804.46 4.44 .007372 100. 100, too. 4 it 0 .00 39.11 43.56 ti PAGE 23 _ • `: .i w EMMMMM SAT, AUG 21, 1982, 2t36 PM SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QLOB QCH QROB ALOE HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SLCNU 2260.000 2260.00 8.27 8ii.96 B14.73 .00 820.66 8.70 1.07 .23 814.69 5370. 0. S370. 0. 0. 227. 0. 4S. 9. 814.69 .12 .00 23.67 .00 .ois .015 .Ois .015 803.69 4.09 .006569 iS4. iS4. iS4. 4 it 0 .00 39.83 43.91 *SECNU 2210.000 EXISTING FONTANA CHANNEL 2210.00 8.35 . 8ii.79 Bi4.24 .00 820,28 8.48 ,32 .06 817.44 if O . O. 5370. O. 0. 230. '0. 45. 9. Hii.44 .12 .00 23.37 .00 .cis .015 .OSS .0i5 803.44 .0i .00624S SO. SO. S0. 4 11 0 .00 38.99 39.00 *SECN(7 2110.000 2ii0.00 8.46 bii.40 813.74 .00 819.58 8.i7 .61 .09 Si6.94 5370, 0. 5370. 0. 0. 234. 0. 45. 9. BiO.94 .12 .00 22.94 .00 .015 .Ols .015 .Ois 802.94 0i .00S906 100. 100. too, 4 it 0 .00 38.99 39.00 *SECNO 2000.000 164S )N1 SEL' ADDED BY RAISING SEC 2000.00, .220FT AND MULTIPLYING BY, i.000 1.01 8.84 Bi1.56 813.63 .00 819.08 7.S3 .30 .19 816.72 5480. 0. 5400. 0. 0. 249. 0. 46. 9. M0,72 112 .00 22.02 loo ,Ois .ois .ois .015 802.72 ,01 .00S011s y5. SS. 55. 4 ii 0 .00 39.00 39.00 1645 INT SEC ADDED BY RAISING SEC 1.01, -.920FT AND MULTIPLYING BY i.000 000.00 9,30 Bii.80 813.52 .00 018.62 6.82 ,25 .21 016.50 SS90. 0. 5590, 0. 0. 267. 0. 46, 9. 810.50 .13 .00 20.96 .00 .ois lois .ois .015 802.50 01 .004188 ss. SS. SS. s it 0 .00 38,99 39.00 PAGE 24 `ii����� i� � ion Aw--' iiia7,miiwAi. SAT, AUG 21, 1982, 2t36 PM SECNO DEPTH CWSEL CRIWS WSELK EG HV HL. OLOSS BANK ELEV Q QLUB QCH QROB ALOE HACH AROB VOL TWA LEFT/RIGHT TIME VLOB VCM VROB . XNL XNCH XNR WTN ELMIN SETA SLUPL XLUBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDT *8ECN0 i9SO.000 lyS0.00 9.20 811.60 81.3.32 .00 8i8.4i 6.80 .21 .01 816.30 SS90. 0. 5590. 0. 0. 267. 0. 46. 9. 8iO.31 .13 .00 20.93 .00 .OSS .OLS .015 .cis 802.30 .01 .004171 SO. S0. SO. 2 11 0 .00 .38.99 39.00 *SECNLI 1793.000 1793.00 9.3S Sii.02 812.69 .00 817.73 6.72 .65 .03 8iS.67 5590. 0. 5590. 0. 0. 269. O. 47. 9. 809.6? 13 00 20.80 00 .OIs .015 .015 lois 801.67 .01 .004090 157. iS7. 157. 3 11 0 .00 38.99 39.00 *SECNfj.1637.000 1645 )N1 SEC ADDED BY RAISING SEC 1.637.00, i.OSOFT AND MULTIPLYING BY 1.001 3301 HV CHANGED MORE THAN HVINS 1.01. 9.07 809.49 811.64 .00 517.27 7.78 .36 .11 81,4.62 5590. 0. SS90. 0. 0. 2S0. 1 0. 48. 9. 808.62 .13 .00 22.38 .00 .015 lois .015 .015 800.62 ,01 .00SiSi 78. 7O. 78. 6 11 0 .00 39.02 39.03 164S INT SEG ADDED BY RAISING SEC 1.01, -i.OSOFT AND MULTIPLYING BY .999 1637.00 O.S3 808.10 810.S9 .00 816.74 8.64 .44 .09 813.57 0. SSyo. 0. 0. 237. 0. 48. 9. 807.57 .13 .00 23.S9 .00 .CIS .Ois .015 lois 799.S7 .01 .006!%6 %B. 78. 78. S 11 0 .00 38.99 39.00 *SECNO 1400.000 i64S 1NT SEL' ADDED BY kAISING SEC i400.00, .47SFT AND MULTIPLYING BY i.00i 1.01 8.77 807.86 810.12 .00 81S.87 8.01 .68 .19 813,il S590. 0. 5590. 0. 0. 246. 0. 49, 10. 007.10 .13 '.00 422.71 .00 .015 .015 .Ills .IliS 799.!0 .01 ,005:3y? iIIt. tit/. sig. 4 ii 0 .00 39.0; 3v. 0:3 MAGE 2S SAT, AUG 21, 1982, 2:36 PM 1SECNa DEPIM CWSEL CRIWS WSELK EG HV I HL GLOSS BANK ELEV Q GLOB QCH GROS ALOE MACH ARGO VOL TWA LEFT/RIGHL' TIML VLON VCH VROD XNL X14CH XNR WTN EL.MIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST i64S 1NI SEG ADDED BY RAISING SEC i.0i, -.47SFT AND MULTIPLYING BY .999 1400.00 8.97 807.59 809.64 .00 815.12 7.S3 .61 .14 812.62 !.Svo. 0. 5590. 0. 0. 2S4. 0. 49. 10. 606.62 .13 .00 22.02 .00 .015 .015 .015 .015 798.62 01 .004t;wi 119. 1iy. 119. 4 11 0 .00 38.99 39.00 SE.CHO 100. 000 1200.00 9.20 007.02 808.84 .00 814.04 7.02 .92 .is 811.82 SS90. 0. 5590. 0. 0. 263. '0. Si. 10. 805.82 .14 .00 21.26 .00 .OiS .01S .015 .OiS 797.82 .01 .004300 200. 200. 200. 4 11 0 .00 38.99 39.00 *SECNU 1000.000 1645 IN) SLL ADDED BY RAISING SEC 1000.00, .40OFT AND MULTIPLYING BY i.000 1.01 9.74 807.16 808.55 .00 813.42 6.26 .39 .23 Si1.42 S700. 0. 5700. 0. 0. 204. 0. Si. 10. 805.42 .14 .00 20.07 .00 .015 .015 .015 .OtS 797.42 .01 .00358'3 500. 100. i00. S ii 0 .00 39.00 39.01 1645 INT SEC ADDED BY RAISING SEC 3L::l, 20 1 R I AL.S A11 EMP1 ED WSEL, CWSEL 3710 WSEL. ASSUMED BASED ON MIN DIFF 1000.00 10.41 807.43 808.32 5810. 0. 5810. 0. .14 .00 iS.74 .00 .002830 100. 100. 100. *SEC:NtJ 800.000 39.00 39.00 800.00 10.08 806.30 807.47 5810. 0. 5810. 0. .14 .00 i9.SS .00 . 003:x'7 Pon. 200. 200. 1.01,-.40OFT AND MULTIPLYING BY 1.000 .00 812.09 5.4S .32 .13 8i1.02 0. 310. 0. 52. i0. 805.02 .015 .015 .0iS .01S 797.02 .01 20 e 0 .00 39.00 39.00 .00 812.23 S.93 .60 .05 SiO.22 0. 297. 0. S3. 10. 1204.22 .015 .OiS .0i5 .015 796.22 :01 8 0 0 .00 39.00 39. 0(I PAGE 26 OWN SAT, AUG 21, 1982, 2136 PM SEC 456.00, 1.447FT AND MULTIPLYING BY .999 PAGE 27 StCNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QLDB WCH QROB ALOB HACH_ AROB VOL TWA LEFT/RIGHT 1IME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLUPL XLBBL XLCH XLOBR ITRIAL IDC ICONT CORAR 1OPWID ENDST *t;LCNU 620.000 620.00 9.9S 80S.4S 006.77 ,00 81i.6i 6.16 .60 ,02 809.50 5010. 0. 5810. 0. 0. 292. '0. SS, i0. 003.S1 .14 .00 19.92 .00 lois ,015 .cis .cis 79S.SO .01 .003423 i80. i80. i80. 4 8 0 ,no 39.00 39.00 *SECNU 456.000 164S 1141 SEC ADDED BY RAISING SEC 456.00, 1.447FT AND MULTIPLYING BY .999 i.0i 9.43 804.21 006.06 .00 811.31 7.i0 .21 .09 808.71 SOi0. 0. SOiO. 0, 0. 272. 0. SS. i0. 802.78 .i4 .00 21.38 .00 lois .01s .cis .cis 794.78 .01 .104267 SS. SS. SS. 7 8 0 .00 38.96 38.97 1645 INi SEC ADDED BY RAISING SEC 1.0i, -.723FT AND MULTIPLYING BY 1.000 1.021 9.i0 803.15 805.30 .00 810.99 7,83 .2S .07 808.05 S8i0. 0. S8i0. 0. 0. 2S9. 0. SS, i0. 802.0S .i5 .00 22.46 .00 .015 ,01s .cis .cis 794.OS .01 .0049110 SS. SS. SS. 6 11 0 .00 38.90 38.91• 1645 1NT SEL' ADDED BY RAISING SEC 1.02, -.723FT AND MULTIPLYING BY 1.000 456.00 8.84 802.17 804,57 .00 Siva 8.46 .29 .06 807.33 Sf110. 0. Sfti0. 0. O, 249. 0. S6. 11. 801.33 .IS .00 23.34 .00 .cis ,cis .cis .cis 793.33 .01 .IOS622 SS. SS. SS. S ii 0 .00 38.99 39.00 , *t;ECNO 256.000 ,56.00 9.i6 f10i.69 803.78 .00 809.36 7.66 1.04 .24 806.53 5810. 0. 5010. 0. O. 262. 0. 57, 11. 800. S;: .is ,00 22.21 .00 lois lois .Ois ,015 792.53 .01 .004812 2100. 200, 200. 4 11 0 .00 38.99 39.00 ILL ii■� � � Ar' do SAT, AUG 21, 1902, 2136 f -M St:CNO DEPTH CWSEL CRIWS WSELK EG Q QLOB QCH DRUB ALOB HACH TIME VLOB VCH VROB XNL XNCH SLOP L• XLObL XLCH XLOBR ITRIAL IDC .CIS .015 791.81 .01 0 1/6.00 9.37 80 i.iS 803.OS .00 808.39 5810. 0. 5810. 0. 0. 270, 1S .00 21i.55 00 .015. .015 .0043'/5 180, 180, iso. 4 11 HV HL GLOSS BANK ELEV AROB VOL TWA LEFT/RICHT XNR WTN ELMIN SSTA ICONT CORAR 1OPWID ENDST 7.21 83 14 80S.8i 0. 58. 11. 799.81 .CIS .015 791.81 .01 0 .00 38.99 34.00 PAGE 28 SAT, hUG 21, 1932, 2:36 NM PAGE 29 HEC2 RLL.EASE DATED NOV 76 UPDATED APRIL 1980 L'RROR CORR - 01,02,03,04,OS M11UII 1GATl(.1N - 50,St,52,S3,54 N11IL-- AblLR1SK (#) AT LLPT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST 1:11ANN1.1. :il'/_E FEk CONSTRU :SUMMARY PRINrwlT !•il.l.Nb XL.l:ll K#(:HSL DEPTH AREA 1UPWID Q VCH E:LMIN LW SE."L CRIWS E.G t< 000 .00 .00 9.37 ::72.23 43. it 3905.00 14.34 927.0S 936.42 936.42 939.61 * 13500.000 200.00 -6.40 8.06 217.83 39.14 390S.00 17.93 925.77 933.83 93S.iS 938.0.! 13300.0110 200.00 -6.40 7.67 203.29 38.01 3905.00 19.21 924.49 932.16 933.89 937.11'1 13100.000 200.00 --6.40 7.47 0S, 7S 37.41 3905.00 19.95 923.21 930.68 932.S8 936,116 12900.000 200.00 -6,40 7.3S 591.25 37.OS 396S.00 20.42 921.93 929.28 935,30 935.76 !.'7011.000 200.00 -6.40 7,27 08.20 36.80 390S.00 20.75 920.6S 927.92 930.02 934.611 1.e593.000 1(17.00 --6.40 7.23 i87.00 36.70 3908.00 20.00 91.9.97 927.20 929.34 933. Y7 12soo.1100 93.00 -8. to 7,14 183. SS 36.42 390S.00 21.28 90.21 926,35 928.58 933.311 000 200.00 --1.1.10 7.00 178.19 35.97 390S.00 21.91 9!7.59 924.59 926.96 932.05 12'100.000 200.00 --0.10 6,89 174,S7 35,6.7 390S.00 22,37 9iS.97 922.87 925.35 930.6! !1900.000 100.00 -8.10 6,82 172,16 35.47 390S.00 22.60 914.3S 921.18 923.73 9.'.9,io 11700.000 200.00 -8.10 6.78 170.52 3S.33 390S.00 22.90 912.73 919.51 922.1! 927.65 11!,00.000 2, 00.00 -•11. 10 6.74 169.37 3S.23 390!;. o0 23.06 911 . 11 917.06 920.49 921.. 11 ii30o.000 200.00 -8.10 6.72 i68.S6. 35.16 3905.00 23.17 909,49 916.21 9i8.80 V24, Sl; 115011.11011 atltf.on 11.10 6.70 167.911 ;.5!5.11 3'10!5.110 2.4.V!i 907.117 Y14.'.11 '/17..'1. 4/.!I1.'1'.' 10950.000 IU0.00 --14.8t 7.17 163.29 33.52. 3905.00 23.91 905.65 912. SP 915.6? 921.70 10900.0011 50.00 -i4.80 7,08 iS9.99 33.23 3905.00 24.41 904,91 911.99 914,91 921.4 SAT, AUG 21, 1982, 2:36 PM 5FC11(1 X1.C'H K*CHSL DEPTH AREA TOPWID .9 VCH ELMIN CWSEL 10870.000 30.00 -14.80 7.02 158.18 33.06 3905.00 24,69 904,47 911.49 i0820.000 50.00 -14.80 7.22 i64.9S 33.67 4090.00 24.80 903.73 91.0.95 t00o0.000 20.00 -1.4.00 7.19 163.77 33.S7 4090.00 24.97 903.43 910.62 i0%50,000 So.00 -14.80 7.11 16i.11 33.33 4090.00 2S.39 902.69 909.SO 10700.000 50.00 -14.80 7.OS iS9.22 33.16 4100.00 2S.7S 90!.95 909.00 101.00.000 1oo,00 -i4.8O 6.94 iSS.31 32.80 4100.00 26.40 900.47 907.41 10500.000 ino.00 -14.80 7.37 iS5.26 32.12 4100.00 26.41 898.99 906.36 10400.000 i00.On -14.80 7.28 iS2,02 31.81 4100.00 26.97 897.Si 904.79 1.0200.000 200.00 -14.80 7.12 147.17 31.3S 4100.00 27.86 894.SS 901.67 10u00.000 200.00 --14.80 7.02 143.97 31.QS 4100.00 28.48 09i.59 898.61 9900.000 100. no -14.80 6.98 142.72 30.92 4100.00 28.73 890.11 897.09 9U00.000 100.00 -14.80 7.S4 14S.48 30.61 4100.00 28.18 888.63 896.17 9600.000 200.00 -14.80 7.4S 142.64 30.33 4100.00 28.74 885.67 893.12 9450.000 150.00 -14.80 7.39 141.06 30.17 4100.00 29.07 8(33.45 890.84 9400.000 50.00 -14.80 7.4S 143.03 30.37 4160.00 29.08 882.71 890.16 911t00.000 200.00 -14.80 7,40 141.36 30.20 4160.00 29.43 879.75 887.iS 9000.000 200.00 -14.80 7.36 140,14 30.08 4160.00 29.69 076.79 884.iS 0800.000 200.00 -14.80 7.33 139.2S 29.99 4160.00 29.87 873.03 Ultt.i6 8600.000 200.00 -14.80 7.31 138.61 29.93 4i60.00 30.01 870.87 878.10 BSS.0.000 50.00 -14.80 7.31 138.51 29.92 4160.00 30.03 810.13 677.44 8444,000 106.00 -11.i0 7.40 141,32 30.20 4160.00 ' 29.44 060.95 876.3S IIA94.000 50.00 -11,01 7,S! 144.7S 30.S4 QiO.Qd 29.08 E1(.,H.40 875.91 N:00.0on 194.00 -11.10 7.62 148.05 30,86 4210,00 28.44 866.2S 873.87 U01,0.000 150.00 -i1.i0 7.613 149,78 31..03 42i0,00 2.9.11 864,511 t.172.'l, 8000.000 So.00 -li.i0 7.68 iS0.i6 31:06, .4210.00 28.04 864.03 871,71 AMA inn nn -11,10 7.73 151:61 31.,20 4214.00 27,77 861.81 869.54 PAGE 30 CRIWS EG 914.47 920.95 913.95 920.50 913.63 920.30 912.89 9i9,8t 912.17 919.30 91o.70 91(3.23 909.S6 917.19 908.13 916.08 905.18 913.7.1 902.23 911.20 900.68 909.90 699.63 9011. SO 896.74 905.95 894.S3 903.96 893.79 903.30 890.83 900.60 887.07 897.8:1 884.91 095.0? 88i.95 89.17 881.32 891.45 880. iv 1189. Bt 879.65 (imp. n', 877 . SO 1186.4; [17!-1.0.1 UU4.'�:' 87S.3S 883.91 873.13 80i.St t SAt, AUV 2t, 1982, 2x36 PM PAGE 31 Il.CNU XLCH K*CHSL DEPTH AREA TOPWID Q VCH E:LMIN CWSEL CRIWS LG 7600.000 200.00 -11.10 7.76 1S2.44 31.20 4210.00 27.62 859.59 867.3S 870.91 879.19 7484.000 116.00 -ii.l0 7,77 I.S2.7i 31.31 4210.00 27.S7 SS8.30 1166.06 869.62 877.87 1434.000 SO.00 -11.10 7.89 1S6.40 31.66 4280.00 27.37 857.74 86S.63 869.14 877.26 7400.000 34.00 -li.i0 7.89 156.39 31.66 4280.00 27.37 BS7.37 86S.26 868.75 876.89 7330.000 70.00 -ii.l0 7.89 156.32 31.6S 4280.00 27.38 8S6.S9 864.48 867.98 876.12 72'.50.000 100.00 -ii.i0 7.31 iS3.00 31.91 4280.00 27.97 8,5. 48 862.79 866.42 874.94 7220.000 1o.n0 -11.10 7.31 iS3.i1 31.92 4280.0.0 27.95 0SS.37 862.68 866.28 874.81 >i %1%0.000 SO.00 -li.i0 8.06 178.01 34.iB 4760.00 26.74 BS4.8i 862..87 866.22 873.98 7000.000 170.00 -ii.l0 8.00 176.00 34.00 4760.00 27.04 SS2.93 860.93 864.37 072.29 61;110.000 200.00 -ii.i0 7.9S 174.22 33.84 4760.00 27.32 SSO.7i SS8.66 862.16 870.25 6600.000 200.00 -ii:10 7.91 172.90 33.73 4760.00 27.53 848.49 856.40 BS9.94 860.16 6400.000 Lion .00 -•11.10 7.88 i71.92 33.64 4760.00 27.69 846.27 11,4.15 BS7.72 866.0; 62SO.000 iso .n0 -11.10 7.86 171.3S 33.59 4760.00 27.70 844.60 8S?..46 856.06 864.45 6150.000 100.00 ••11.12 7.31 167.83 33.93 4760.00 28.36 843.49 BSO.80 854.53 863.29 6125.000 25.00 -11.10 7.31 167.89 33.93 4760.00 28.35 843.21 050.52 854.22 1.163.01, 6075.000 SO.00 -ii.i0 7.47 1.73.46 34.42 4870.00 28.00 842.66 850.13 1153.76 862.37 6059.000 16.00 -11.i0 7.47 173.44 34.42 4870.00 28.08 842.48 849.95 BS3.59, 062.19 i.04a.000 16.00 -11.10 7.46 173.37 34.41 4070.00 28.09 042.30 849.71) US3.41 U,62. OP 6000.000 43.00 -11.10 7.47 173.39 34.41 4870.00 28.09 841.02 049.29 SS2.93 861.54 58`.0.000 150.00 -11.10 7.48 173.33 34.41 4870.00 28.10 840.16 847.64 ' 851.27 1159.90 Sub. oil 0 50.00 -1i.i0 7.48 173.27 34.40 , 4970.00 28.11 039.1.0 847,00 850.71 (IS9.3a 5600.000 200.00 -11.10 7.47 173.13 34.39 4070.00 28.13 837.30 844.116 U40.49 U417.1.1 5400.000 Pn0.00 -11.10 7.47 173.01 34.38 4970.00 28. 1.5 1,135.16 04.".63 046.27 01;4. Y4 5:00.000 ".00.00 -ii.in 7.46 172.91 34.37 4870.00 28.16 8:3,'...94 840.41 (04.05 tU1..;!.73 5080.000 120.00 -11.10 7.44 172.7S 34.36 4870.00 28.19 831.61 839.n6 842.72 EISt.40 49110. non SOn.00 -11.13 7.4S 172.78 34.36 4870.00 28.19 E130,SO 837.95 841.61 . EsSO.29 SAH AUG 21, 1982, 2136 PM PAGE 32 EsE.1:N0 XLCH K*CHSL DEPTH AREA TOPWID Q VCH ELMIN CWSEL C'RIWS EG 4800.000 i80.00 -ii.i0 7.44 02.71 34.35 4870.00 28.20 828.S0 835.94 839.61 848.211 4600.000 200.0a -ii.i0 7.4S 02.7S 34.36 4870.00 28.19 826.28 833.73 837.39 846.07 4400.000 200.00 -ii.i0 7.4S 172.74 34.36 4870.00 28.19 824.06 831.Si 83S.i7 843.8(. 4::00.000 200.00 -ii.i0 7.46 172.74 34.36 4870.00 28.19 821.84 829.30 832.9S 641..6.1 4000.000 200.00 -11.10 7.4S 172.67 34.35 4870.00 28.20 819.62 827.07 830.73 839.42 3800.000 1200.011 -11.10 7.4S 172.69 34.35 4870.00 28.20 6!7.40 824,85 820.51 E137, '110 3600.000 200.00 -11.10 7.44 172.64 34.35 4876.00 28.21 BiS.is 82.62 826.29 834.911 3400.000 200.00 -11.10 7.4S 172.69 34.35 4870.00 28.20 812.96 820.41 824.07 832.76 3;011.1100 :300.an -li.i0 7,4S 172.70 34.3S 4870.00 28.20 810.74 Bi8.i9 821.85 830.;x: 30110.000 200.00 -71.10 7.4S 02.68 34.3S 4070.00 28.20 608.52 SiS.97 619.63 828.32 2864.000 136.00 -ii.i6 7.4S 172.69 34.35 4870.00 28.2(1 807.01 814.46 818.12 826.81 213114.000 50.00 -f.i.i0 8.17 198.24 36.S2 5370.00 27'.09 806.46 814.63 Si0.04' (126.0? 2664.000 150.00 -4.98 7.S6 198.78 37.6S 5370.00 27.02 SOS.71. 813.27 816.74 024.60 2(.14.000 50.00 -5.00 7.6S 202.72 37.96 5370.00 26.49 805.46 813.11 616,54 624.01 ::414.000 200.00 -5.00 8.04 217.50 39.i1 .5370.00 24.69 004.46 812.SO GiS.S2 021.96 :4:!60.000 i54.00 -5.00 8.27 226.90 39.83 S370.00 23.67 803.69 61i.96 814.73 1120.66 2210,000 50.00 -5.00 8.3S 229.76 38.99 5376.00 23.37 803.44 81.1.79 814.24 820.:11 2110. Otto 100.00 -13.00 8.46 234.10 39.99 5370.00 22.94 001.94 till .411 1113.74 6f9,!A1 .�K3Ah: Ix 2000. 000 170. 00 -4.60 9.30 266.75 38.99 SS90. 00 ; ;y,, .?0.96 802.50 til i ,1110 813.52 1118. t..;' i950.000 $0.00 -4.00 9.30 267.08 38.99 .. SS90.00 20.93 802,30 8ii.60 61.3.3:3 611.1.41 1793.1100 1,%.00 -4.01 9.3S 268•.77 38.99 5590.00 '20.80 fin 1.67 LIf1.0. 11!12.69 (117.7.5 i 1(.37.11(10 156.00 -1;3.46 9.5:3 236.92 311,99 55'!0.011 23.59 7YY.!i7 (1011.10 61t1,!i'! If 16.71 +► 141111.11011 n.97 253.1119 311.9'1 a ', 11•'41.0." Y9(t.to.! (107.59 009. 64 111!".. f: 1:100.01►u V90. 00 ••4.00 9.20 262.45 39.79 S54a.oa :.+; ;;`,`21.26 797.112 1107.0:! 1:100. 1`14 1114.0.1 111011.000 200.00 -4.06 10.41 316.07 39,00 SH M OV. 18.74 797.02 8(17.43 808.32 ifi:!.If7 r.nn.11bh 2n0.n0 --4.00 10,Ot) 297.23 39,00 5t110.Q0 19.55 796.22 (06.30 807.47 612.:':1 SAS, AUG 21, 1982, 2s36 PM St.LNO XI.L'H K*CHSL DEPTH AREA 620.000 180.00 -4.00 9.95 291.66 2 4.6.000 164.00 -13.23 8.84 248.89 2t;b.0110 200.00 -4.00 9.16 261.SS 76.000 i80.00 -4.00 9.37 269.62 1OPWID Q 39.00 5810.00 38.99 S8i0.00 38.99 S810.00 38.99 S810.O0 VCH ELMIN 19.92 79S.SO 23.34 793.33 22.21 792.53 2i.S5 1/9i.8i PACE 33 CWSEL CRIWS EC 80S.4S 806.77 8ii.61 802.17 SOCS7 big .63 801.69 803.78 809.36 fs01 , i8 803. OS 808.39 iiAs �- i� ri• �• �• �-� .�iiiiif- .ice Aii iii SAI, AUG 21, 1982, 2136 PM E.UMMAkY UP LRRORS CAIIIILIN SECN(I=i's700.000 PROFILEa i CRITICAL DEP1H ASSUMED CAUIICIN SECNO=13500.000 PROFILE= i INTERPOLATED XSECTIONS USED LAU111IN SLLNU= 7190.000 PROFILE■ i INTERPOLATED XSECTIONS USED CAIIt'(ON !; CNO= 2414.000 PROFILE= i INTERPOLATED XSECTIONS USED I:ritllIUll .)tl.N(1= 20tin. 000 PROFILE= i INTERPOLATED XSECTIONS USED CAUfION StCNO- 7637.000 PROFILE= i INTERPOLATED XSECTIONS USEV CALIIION I:ckCN(I= 1400.000 PROFILEa i INTERPOLATED XSECTIONS USED CAI IIION SE'CNO= i000.000 PROFILE= i INTERPOLATED XSECTIONS USED CAII'tION !tkCNU= 456.000 PROFILE= i INTERPOLATED XSECTIONS USED PACE 34