Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Hydrology Report Storm Facility Design
,rr t i� i� i� i� ,t �J 'HYDROLOGY REPORT STORM FACILITY DESIGN CREATIVE COMMUNITIES SOUTHRIDGE VILLAGE DEVELOPMENT PHASE 11 CITY OF FONTANA TRACT 12064 -1 JULY 1982 1C Z 0 CO W J W Z Z Q V N W J V W 0 SOUTHRIDGE VILLAGE DEVELOPMENT FONTANA, CALIFORNIA DESIGN MEMORANDUM Declez Channel Phase I Prepared By BOYLE ENGINEERING CORPORATION August 1982 TABLE OF CONTENTS Pa ge Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Hydrologic Analysis for the Declez Channel Watershed. . . . . . . . . . 5 Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Hydraulic Design of the Declez Channel - -Phase I . . . . . . . . . . . . 9 TABLES No. 1 Hydrologic Parameters . . . . . . . . . . . . . . . . . . . . . . 6 2 Estimated Peak Flows . . . . . . . . . . . . . . . . . . . . . . 7 FIGURES No. 1 Declez Channel, Drainage Boundaries and Proposed Facilities . . . 3 APPENDICES No. 1 Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries 2 HEC -2 Computer Program Output i� INTRODUCTION J The Southridge Village Development Project will require the installation of flood 1 control and drainage facilities. These facilities will include a trapezoidal section concrete -lined main channel (Declez Channel); a tributary channel to drain the low ` area between the main channel and the Jurupa Mountains; and storm drain facilities to collect local runoff and deliver to the main channel. The total drainage area into the channel system is about 7,550 acres (11.79 square miles). It is bounded on the north by the San Bernardino Freeway, on the east by Palmetto Avenue, on the south by the ridge of the Jurupa Mountains, and on the west by the slope break east of the San Sevaine Channel. The major drainageway through this area is the Declez Channel which extends from Palmetto Avenue to the junction with the Fontana Channel, which is a continuation of the Declez Channel in Riverside County. The Southridge Village Development will occupy approximately 2,560 acres in the southern portion of the drainage area. This development will be bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, on the south by the San Bernardino/ Riverside County line, and on the east by Sierra Avenue. i The construction of the development was divided in two phases. Phase I of the dev- elopment is bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, 1 on the east by Cherry Avenue and on the south by the proposed Declez Channel. This 1 Phase will include the construction of the Declez Channel from its connection with the Fontana Lateral Channel (Station 22 +10 of the Declez Channel Improvement Plans) to Cherry Avenue (station 111 +00). 1� 1 This Design Memorandum has been prepared primarily to summarize the analyses made to prepare the Improvement Plans for Phase I of the Declez Channel. These analyses include: 1.- Hydrologic Analysis for Declez Channel Watershed 2. -Flood Flow Bulking Factor Evaluation for Declez Channel and Tributaries 3.- Hydraulic Design of the Declez Channel - -Phase I. The location of the Declez Channel, its watershed boundaries and the limits of Phase I of the Development are shown in figure 1. �I fl Y. 0 r r I 1 I Z •` s \ Q .1 7: � '� >= - - _ . R - - — _. i :: i •. » : r �s_ •� v r1�. 1. _ Z - _B LVD ._ - ,�• - rya✓ \•� .- .- VA3l LEY.. t: rOJJ ... - , ,.. i • .r' • BL VO •• 11. ._. �./ ���s fir = � - y r ?� CJ to ` `• - VI•.. x•ne+ 22 =- •�G •� �i L , ' .it•IJ \�_•.. • �i • ' • i : � :' • • -- 2 / 4 ��1' - { ' - {'tom' :«••:::: ' `Park' • ' • j.a,ler Park' O 2 O '' :1' • tII - e t„? T ... , . a .. • �_ to r Tndus trrat W ste �.r. ,. - - :II \ " - i Tr Park �o ,�irve•iri' • �1 1 1_- 1^ t- o PArds Ili • _ - '' • - ::. •, __ 1 -' ` - -� _ - . • _ - � - . -_ :Theater - - _ ... - - CD O •" C r.yc w� 10� 10 ..... _,; 1� ti _ li. • r t • t' ' -$AN BERIVARDINO -=�' W U r t .. t / I .. .... J , - • - - - -• ' ` - - SP R - G PACIFIC - - •�' - �. - - \ - - '~ - - - - tE.•,1o.. - - -- - - -- _ - = ..1•:,,..Y =;i U - - ACI IC �- —rood II 1 .. .....:`.. .. / ~� . -•1 /- �.r... :�.•�, -•, f - cn - �_•18jgCT: / ° •• .. ... 'I: • - _ a , i ?ti7rail Pr ... • - ' S �: I �E . t •.• - i N• 91`+t+•.,.,�i:S •� ' - -' i •\•__ - _ _ __ _ • ^ }089_ �. _ N --- ', - -- -- 991 _ -- •99211•• • C�avPr' - = • �1'•1 'e• �•.•��'}pp9, '�I7 VE• r067• .A' : r�j•.:C :i. ' = U ��5 1 , . 1 ! .. W. tich t� r `_ ib•q- . , �� 1• �• ::..faik: _ ... - --- -- South F -------- ...... - -� - --- - - - - -- - -- - 4 O 4 'f Iq t a - - O 1 .. Jurupa Hills .� LY • � V t I : V . _ . � ... -. .. ........ ': -:: >n• ell.. C 1 .. I Radro ,. ' r L ::3.. 27 f� 'I 27 a - • I• - •. c • •• " 26 F cltltr e y • .. l i. •� , Well 930 8 .....- I VANTA - -AWA AVt' . - x' 25 �_•`:" 950. 10-6 C 9 :I . •I. ,,. o \- I ... -. - - - I=- -- �•� • .. - X27•... - - _ '` iri;: , �.. p It O _ / r• t 'I z - _ It r I. 1• 56• , - •L PA • A _ JUR LRes _�_ _ .__ ' JukuPa y:MNf : .,:.H >• _,<:x%` • -, 992 rO WeH t 70 <' _: <?: _ ° - e ^z i - -- •\� - 1( _ ✓,': =� f Well -- � - ";.�-`. ''.u?v . <«e'` . -�•- • y ` • ,,.. \J • I, I 3 - _ /- •1 34 AV E - •.�• I• - AVE 'yi '� f - - Il n o tea �- - - r - l t - "1f Park • - - / If a \ - - t B Y 'f •• 'O ri t \ _ � t o Z co - 9 k_ I - i� i - - - 0 1 - - •l F , - � 1 •r • .4t I I , 5 " :l - O _ W - W co JR G i:G4:i :•i. y • ' 1 1 .r r - T . ERNARD ' ©� 7Y[_ SAN - J A B • e56 t � -._- _ ; ___ v e . RI E R 1 - 1 S a Y J.: :i �- - ; F e r t J i. - U . -_. .i --., �:'� -�. r :; alt. - =�� - � i -- • o _- •J. _ '�-;� .�`' ui_i: 'ham •d. \ Z -air .. - _ •.� -` _ - `•' - it� ,o - 1 ,� � • l :r' /oa "_ ;.� I -"•' SC i: F ALE IN FEET 2 = ,. O 0 Q - 00� -•11' 11 .. i . ,\- ''O" - ll,. 1 t 1_ JI ., +, . /.:9• "� 2000 W m W U 200 J co 0 4000 W Q w LEGEND Z o Z tt 1 i __ • S' - ? iii- ( :�� 4 3 D _ w 1 L� !. • - '\ DRAINAGE' AREA BOUNDARY Q SUBDRAINAGE AREA BOUNDARY a cr Co - - ' '" ". o 'r'r' < ` S - =� . EXISTING EONTANA LATER z I t . •,;� .�� �: AL CHANNEL �� -.�t .,..•, _ _' y b' ' - - - - -- PROPOSED CONCRETE CHANNEL PHASE I 1 = >>..S �t /._- 1 I r . n� •T6ar,�'t 1 tt �j' 1 H•- lhwrne Ch'hatian r� -''' V • i' , \ "r PROPOSED CONCRETE CHANNEL PHASE II ' .pdrk �. : - �'' I' . 1 . a.� _�- 2 l 1 ' `.J. — 1 _ CONCENTRATION NUMBER srn- _-- + � :.•' �:�'. �,;,..�s'.4 • ;l��l : �� - _ �� `�,' /_ = ,r � O RATION POINT N,•eiofi Bell •: ¢. S '� •! '� •o R IVE's 7E3 Sch • ou - -tttl� —..- DRAINAGE COURSE FIGURE : • -.16S Q• • : —j � �.. "9L. f _ . '.. • i :` Bc VD li• - /d _� • ' �� Y,!, Trades �( `'� • i <. HYDROLOGIC ANALYSIS FOR THE DECLEZ CHANNEL WATERSHED I ; This hydrologic analysis has been made primarily to determine the channel capacity requirements for the Declez Channel and tributary to contain the �.� 100-year return period peak flood flows under conditions of ultimate develop - y P ment. The city of Fontana anticipates that the total drainage area except the Jurupa Mountain area will be in urban development ultimately. The total drainage area of 11.79 square miles was divided into five subdrainage areas as shown on Figure 1. The parameters for hydrologic analysis were deter- mined for each subdrainage area in accordance with criteria specified by the Riverside County Flood Control and Water-Conservation District Hydrology Manual. 1 These parameters were used as input for computer analysis using Los Angeles District Flood Hydrograph Package Computer Program. HYDROLOGIC PARAMETERS Parameters were determined as required for developing hydrographs by the l Synthetic Unit Hydrograph Method described in the Riverside County Flood Control and Water Conservation District (RCFC &WCD) Hydrology Manual. Basin Physical Factors The drainage area (D.A.), length of the longest watercourse (L), length along the longest watercourse measured upstream to a point opposite to ' the centroid of the area (LCA), elevation of headwater (H1) and the ele- vation of concentration point (H2) were obtained from U.S.G.S., 7 -1/2 t I minute quads. The overall slope of longest watercourse (S) was completed by the formula S = (H1 - H2) /L. .� 4 Ll z - i Mannings "n" Values The n values for use in the Lag formula were calculated on a weighted basis depending on the development conditions assumed. The values used for lands were: W r 1 1 1 1 1 Valley area - developed 0.015 Mountain area - undeveloped 0.040 (assumed no developed mountain area) Infiltration Rates The weighted infiltration rates (I) for each drainage area were estimated in accordance with criteria specified by the RCFC &WCD Hydrology Manual. The Soil Survey of San Bernardino County Southwestern Part, California, prepared by the USDA Soil Conversation Service, "et al. ", issued in January 1980 was used to determine the hydrological soil groups. The soils in this watershed are almost entirely in hydrologic soil groups A and B and have depths generally in excess of 5 feet except for the Jurupa Mountain area. These soil groups are very permeable. The city of Fontana General Plan and the Southridge Village Specific Plan, included in.Ordinance 712 and adopted by the Fontana City Council on December 15, 1981, was used to determine future land uses. Table 1 shows the above specified parameters used in the analysis. 5 TABLE 1 HYDROLOGIC PARAMETERS C. P. D. A. L LCA H11 2 H 3 S n I (sq.mi.) (mi.) (mi.) (ff.) (f.) (ft /mi) (in /hr) 1 5.33 4.55 2.00 1120 935 41 :019 .378 2 1.36 2.48 1.27 1768 935 336 .026 .352 3 6.69 4.55 1.53 1120 935 41 .020 .372 4 10.97 6.66 2.75 1120 817 46 .020 .375 5 11.79 7.16 3.02 1120 793 46 .019 .364 1 Concentration Point No. 2 Elevation of Headwater 3 Elevation of Concentration Point M . H F s 1 Rainfall The rainfall intensity for the 100 -year return period, 6 -hour duration storm, was determined as 3.3 inches. This was based on statistical analyses of rain- fall records for the Fontana #18 and Miraloma Q.M. Depot 21A stations, as shown in bulletin No. 195, Rainfall Analysis for Drainage Design, State of California, Department of Water Resources. The storm pattern used was as shown in the RCFC &WCD Hydrology Manual. RESULTS The above specified parameters were input to Los Angeles District Flood Hydrograph Package Computer Program to obtain estimated peak flows that would result from the 100 -year return period, 6 -hour duration storm. It has been determined that the 6 -hour duration storm generated higher peak flood flows than either the 3 -hour duration or the 24 -hour duration storms. The estimated peak flows for each concentration point are listed in Table 2. TABLE 2 ESTIMATED PEAK FLOWS 7 100 -yr. Peak Flows for Conc. D. A. Ultimate Cond. of Devel. Pt. (sq. mi.) (cfs) 1 5.33 3,000 2 1.36 920 3 6.69 3,890 4 10.97 5,370 5 11.79 5,810 7 r FLOOD FLOW BULKING FACTOR EVALUATION FOR DECLEZ CHANNEL AND TRIBUTARIES �r 1 The San Bernardino County Flood Control District (SBCFCD) requires the use of a bulking actor in the design of major waterways. For this reason 9 9 J Y Boyle Engineering Corporation (BEC) made an analysis to estimate the amounts of sedi- ment that will be produced and transported to the Declez Channel system during the period of runoff of a major storm (100 -year return period). This volume of sediment could be considered in relationship to the estimated volume of water runoff to determine the need for additional capacity to contain the sediment content. The required additional capacity is expressed as a bulking factor to be applied to the estimated capacity required for water runoff. The final report of this analysis is presented in Appendix 1 of this Design Memorandum. This report concluded that the Declez Channel Watershed would not produce a significant volume of sediment and that no bulking factor would b e required in the de sign of the flood control facilities This report was reviewed by the SBCFCD staff and its conclusions were verbally approved by them in a meeting with the City of Fontana and BEC staff, on May 5, 1982. 1 1 r r d C r HYDRALIC DESIGN OF THE DECLEZ CHANNEL -- PHASE I DESIGN CRITERIA The following hydrualic design criteria were used in the sizing of the Declez -� channel: ' 1. Design Flow. The 100 -year, 6 -hour discharge flow for ultimate conditions _ of was used in the design of the Declez Channel and tributary. Design flows between concentration points shown in Figure 1 were computed based on contributing drainage areas. 2. Roughness A 0.015 Manning's Roughness coefficient - "n" was used for r i concrete channels. 3. Side Slopes Side slopes of 1.5:1 were used for concrete trapezoidal sec - tion concrete -lined channels. 4. Unstable Flow In the hydraulic design the unstable flow zone was avoided ®� The unstable zone is defined as: 0.9dc < d < 1.ldc where do = critical depth d = normal depth of flow W1 5. Freeboard a. Freeboard above the calculated water surface was provided in accordance I with the following criteria: Subcritical Flow Supercritical Flow .� Rectangular Section 0.1 He 0.2 d Trapezoidal Section 0.2 He 0.25 d Where He = specific energy head d = normal depth of flow 'J However, for major waterways, freeboar less than 2.5 feet for tr W zoidal sections and less than 2.0 feet for rectangular sections was not used under either flow condition. least b. On major sections with curving alignments, freeboard of at one t 9 n F1 foot above the calculated maximum elevation of superelevated water surface was provided. This permited encroachment upon the free- ll board specified under (a) above. 'i 6. Bridges. All bridges within Phase I of the project are single span ridges. They were located above the top of the channel walls and I create no interferenece to the channel flow or freeboard. CHANNEL SIZING The initial channel geometry was developed using normal depth calculations. Final channel sections were developed using the U.S. Army Corps of Engineer ' HEC -2, water surface profile, computer program. A HEC -2 profile was devel- oped using the geometry shown in the Declez Channel Improvement Plans for Phase I, station 22 +10 to station 111 +00, and preliminary Phase II channel geometry for stations 111 +00 to 137 +00. Appendix 2 of this Design Memoran- dum contains the HEC -2 computer program output. BOX AND PIPE CULVERT INLETS The angle of entrance of side culverts discharging into the Declez channel were designed according to the criteria suggested in the U.S. Army Corps of Engineers' manual titled Hydraulic Design of Flood Control Channels The ef- fects of the side culverts on the Declez Channel water surface profile were analyzed using the methodology outlined in the Los Angeles Flood Control District Hydraulic Design Manual. ,i FONTANA LATERAL CHANNEL ,l The Fontana Lateral Channel is located immediately downstream of the proposed ll Declez Channel. The present capacity of the Fontana Lateral is inadequate to 'J contain the peak flows estimated for ultimate development conditions, or even the 100 year peak flows estimated for existing conditions. Boyle Engineering Corporation is presently studying alternative plans to increase the capacity '� 10 of the existing channel. The proposed Declez channel was designed to match the existing dimensions of the Fontana Lateral Channel. The portion of the channel between the Fontana Lateral channel and Country Village Road, might be changed somewhat if the dimensions of the existing channel are modified. This change, however, should not affect the hydraulic design of the Declez Channel since, for supercritical flow, changes downstream would not affect flow conditions upstream. 11 1! t 0 I P, APPENDIX I I i � I SOUTHRIDGE VILLAGE DEVELOPMENT FONTANA, CALIFORNIA FLOOD FLOW BULKING FACTOR EVALUATION FOR DECLEZ CHANNEL AND TRIBUTARIES PREPARED FOR CREATIVE COMMUNITIES PREPARED BY BOYLE ENGINEERING CORPORATION SAN DIEGO, CALIFORNIA APRIL 1982 FIGURES No. 1 Declez Channel Watershed Showing Declez Channel Alignment APPENDIX Sediment Production Computations Revised Flaxman Method Universal Soil Loss Equation 2 TABLE OF CONTENTS Page No INTRODUCTION 1 DESCRIPTION OF THE WATERSHED 3 ESTIMATED SEDIMENT PRODUCTION AND TRANSPORT WITHIN THE WATERSHED 7 CONCLUSIONS 12 FIGURES No. 1 Declez Channel Watershed Showing Declez Channel Alignment APPENDIX Sediment Production Computations Revised Flaxman Method Universal Soil Loss Equation 2 INTRODUCTION t The Southridge Village project being planned by Creative Communities will require the installation of flood control and drainage facilities. These Il facilities will include a trapezoidal section concrete lined main channel (Declez Channel); a tributary channel to drain the low area between the main 'i channel and the Jurupa Mountains; and storm drain facilities to collect local runoff and deliver to the main channel. The planned layout for these facil- ities is shown on Figure 1. The locations of the storm drain facilities indicated on this figure are subject to change. In areas where large amounts of sediment are produced by major storms and delivered to the channel system the sediment content of the flood flows becomes a significant part of the flood volume that is transported by the channel system. Consequently, the required channel capacities have to be increased to contain this additional bulking caused by the sediment content. ` } The purpose of this study is to estimate the amounts of sediment that will be produced and transported to the channel system during the period of runoff of s a major storm (100 -year return period). This volume of sediment will be con- sidered in relationship to the estimated volume of water runoff to determine the need for additional capacity to contain the sediment content. The required �I additional capacity is expressed as a bulking factor to be applied to the estimated capacity required for water runoff. i Bi - -- ` .=j... j JP na 077 is[ VD 1• .. .-� - �t •� .. ...� . .2 yAiLE „• q , , ,6'J -. %i 6 4 2 8L V0 •• • 11 � - - "_.. - - 1113 7 -=.. :� 1 (• I I s l 22 22 - r� _' a = — r - t • __ - i '. • �� • TTa �r - �T , J -' °O i I'•__•" - Park n Tra.lrr Pa•� r 9 fndusinat W St! \ �` _ ' _ Par4 -�\: ��O •• ' • nve -rn ..•, i� , - .p Well (- --- i ' ' Ptds it a ` _ _ _ _- -:: :. • \i1 / 4 —�� • 'Theater _�i`� _�L - -- -� _F77Ef WAi�!i•��_�! 1 -. c^ _ [.. !� _ f IC i 10 —_t— 4 - •1t -^ a [I.E' '-SaN BEON. 1N -' -u - _ t [ ' _ - 7 . - i _ 4 [ L _ C a Lani.'f _ ',• �- 1(�: _ .1, •��� • 1 OO • •-- y_= -• - - • � - .. _BOYLE -• if •:.• r. -••: �. •• IIYG . ». . .. .. Y .. c. _ .. SOUTHERN: ss - - - -= :. --- - . «. — � - •• ,„ _ �' x-1000 »•Kaiser / �:, .. ... __� y z a C 039 IBM 1089 1 - ,� � � O -- — :r -- - •�� �.., ._ ... Q "•[ • . ,_ _ `�:. - . ri - �i 1 - - - -• • .— - - - - dd i- _ 91 _ •991 -.. - •f�Sloveri� .. 1 1 �"SLOVER - - Z(yg9 • VE• AV �_ 1067 —T • • '�(Lie�t 1~ - - _ - - - -• - t Seh South _ Z _ T � I _ / O• O � ) - - - --- --- -- - -- - - -- •--- - - -v�• ._Park - -- h Fn y 1__ , __ - - -940 —_ 4 a • ml T ¢ dim �'j Res i —, 7. aI� of , to 0 O 2000 4000 FEET U'I t V ��- -� -i; -. _!- -� _' k' ;J�uhupa Hills r.r �� Well f 27 •27 l• d j - - •y . 1 , Radio.-- -- - - -- » 1 •- - - -- - - - - p . 4 YA _ ' `�- • • sr - --�- 26 F artya? . �os9 :i- -- — �•� 9 50 8 9 .. ... - . °_- - -- - -: '�- - _ .c. -v= c __' - -. - = -cc =cc = -a.�" - °. •� -- - - - W fi 1 ) _ •!I. N T�[�AJ% 2� • AV� 1 _ _ _ I \• `\ ,1 • ' 9301 ' i Z c° `� - __ ____ -__ r� `\ • n «- - -_ - _- _-- __- ___� --:_ - _ _ v 930 ! i . -y� 11 • �, • 11'� 11 " ' i ►V ��`���+'� t � '. � `���•• j1 1 , It _ 1 1 . 1 :r >l. ... _ 916 :.(L.. I' r,,: • 54 •• 9 Jf2PA _ _ ( QS7 '- 6 V AVL 4_ J _- - - - '� ,_ _ .•� 1. '�.OSE= z_-- ��a_�� [JRUPA ;AVE! 1030 _- Well R� Wet= 000 1 r ' - -- -- - - - - -- - / lI 0 . 9 N O - -- 4 ^. tD l ep i ss' en - _i -.E -- _ - - - �_ -_-_- -- ,. �• ___.__�_ _ _ ____ ___ � _S.. _ _ _ _l ____ ___W __ _ _ __ - ____ -__ __- __ _ J_ -. \ -��` - 0 Weu = DAclezville — - - , _ _ - - s '�� - <, =oo - ac S"a_e � 1 j/. _ �LIX017 900 --- _ _ = - warty �_I1 - f� _ _ _-_- -- _ _ - - " -�: f• _ _ .!� L 33 MARLAY A Well VE r W - UPLAY - -A VE 914 r� _ ^/ _ �- - - _ -_ ,,� -- - _ ees- _ = Fontana B - \, - - �+ �� s . ✓ - _ a.l` _ •' J ird Parts �U t` �- t - ._ •. - �' /'- - _ - _ . ^�•' i _ - _ __ � 0 - 170 - J 'F - .i / 8 � `/- _ _ :f, ~:. r , I k- � - - _ �•.- - J t - mo 0 o.... -;; �" ''1' :,: �l• � � ewe _ IVE 'v'A'R_ D 7I`Q; C `� i esc _ - :,'_ - S/1N BE _ CO �• CO c r• -- - , - _ •`•1 �_ 'ter, `_. - -- Z-� R)�D e � _RIVERSIDE CO { � j ` \ = s F. :�'_ cc'•'• ii r • :t`J r - �c =- ' ■ _ ' �' � � � _ � l P �� �J/ � l - . � 'i �� - � � ill • .��i��� •_ •- .-y�'�-• %�' �. =i � _-' . 1 4 /�� __ \ - ' `I 1` 3fvr ,�L r n J j:� ► v.! .i1 /.\: .a+� _•- �\ �l _ .1 " �� .'' _ '' _ ( 1 •� -- -' ` * LEGEND FIGURE i a erg - -'� _ ,C 'low r � '' ��s � • ip •, - - l � SOUTHRIDGE VILLAGE CONCRETE LINED N sis_s �. •± �`� TRAPEZOIDAL CHANNEL . - : = 1 _•. —• �� ��� DECLEZ CHANNEL A • Har, rh..tnr= - hn.l�.n � : :�_' —'%' :— . •. — LIGNMENT ` _ . 1- _ _• •- - � REINFORCED CONCRETE PIPE •�}�� 1 ' = ALTERNATIVE I - ' . = • : ' _; — DRAINAGE BOUNDAR ,. � O2 CONCENTRATION POINT N0. rT!, _I - _ =`•: "' REINFORCED CONCRETE BOX BacAe Er x:)I -•crt C 1 . _' :.- .: – l ` Q C��, - •\•• : _ : _. —. C _ - _ • • consultlnq anglnvers / arcnitacts j -�• �.I . :i MAY 15,1981 i DESCRIPTION OF THE WATERSHED The total drainage area into the channel system is about 7,000 acres (10.91 square miles). It is bounded on the north by the San Bernardino Freeway, on the east by Palmetto Avenue, on the south by the ridge of the Jurupa Moun- tains, and on the west by the slope break east of the San Sevaine Channel. The major drainageway through this area is the Declez Channel which extends from Palmetto Avenue to the junction with the Fontana Channel, which is a continuation of the Declez Channel in Riverside County. . The area south of Jurupa Avenue is characterized by a variety of land uses including agricultural but is primarily open space and fallow land. Low - density residential development is presently underway within the northwest portion with clusters of residential development and agricultural uses north of Jurupa Avenue. The Southridge Village development being planned by Creative Communities will occupy approximately 2560 acres in the southern portion of the area. This development will be bounded on the north by Jurupa Avenue, on the west by Mulberry Avenue, on the south by the San Bernardino /Riverside County line and on the east by Sierra Avenue. The city of Fontana anticipates that the total drainage area except the Jurupa Mountain area will be in urban development ultimately. The land slopes within the area are generally within the range of one to two ' percent except for the Jurupa Mountain area where slopes are generally 25 to 1 35 percent. - 3 - ►i ' The soils in the valley area with gentle slopes are predominantly Delhi fine sand (Db) and Tujunga loamy sand (TuB). Small areas of other sandy soil types are included in the area with similar characteristics. These soils are generally described for this slope category as somewhat excessively drained to excessively drained, very deep soils on alluvial fans or alluvial valley floors. The Soil Survey of San Bernardino County Southwestern Part, California, pre- pared by the USDA Soil Conservation Service, et al, describes these soils in part as follows: Delhi fine sand (Db) - This nearly level to strongly sloping soil is on alluvial fans that have been reworked by wind action. Runoff is very slow, and the hazard of soil blowing is generally moderate. Estimated soil properties: Depth to bedrock or hardpan - greater than 5 feet Depth from surface of typical profile - 0 -18 inches -fine sand 18 -60 inches -sand Percentage passing sieve No. 4 (4.7 mm) - 100 No. 10 (2.0 mm) - 90 -100 No. 40 (0.42 mm) - 50 -70 No. 200 (0.074 mm) - 5 -10 Permeability - 6.0 to 20.0 inches /hour Hydrologic Soil Group - B (above average infiltration rate) - 4 - Tujunga loamy sand (TUB). This nearly level to gently sloping soil is on broad, long alluvial fans. Runoff is slow to very slow. The hazard of water erosion is slight, but the soil will blow if left unprotected. The hazard to soil blowing is moderate to high on bare soil. Estimated soil properties: Depth to bedrock'or hardpan - greater than 5 feet Depth from surface of typical profile 0 -60" loamy sand and coarse sand Coarse fraction greater than 3 inches - 0 -5 percent Percentage less than 3 inches passing sieve No. 4 (4.7mm) - 100 No. 10 (2.0 mm) - 55 -100 No. 40 (0.42 mm) - 25 -50 No. 200 (0.074 mm) - 5 -20 The soils in the Jurupa Mountain area are predominantly Cieneba -Rock outcrop complex (Cr) This steep complex is described as occupying areas on uplands. It is about 60 percent Cieneba sandy loam, and has 30 to 50 percent slopes and 30 percent granitic rock outcrops. The Cieneba soil has the profile described as representative of the series. Included with this complex in mapping are small areas of soils that have moderate sheet and rill erosion, places where slopes exceed 50 percent, and small areas where slopes are 15 to 25 percent. Also included are small areas that consist mainly of rock outcrop. - 5 - C 11 11 �I �I Runoff is rapid and the hazard of erosion is moderate if soils are burned over or overgrazed. Estimated soil properties: Depth to rock or hardpan - 1 -112 feet Depth from surface of typical profile 0 -14 inches - sandy loam 14 inches - weathered granitic rock Coarse fraction greater than 3 inches - 0 -10 percent Percentage less than 3 inches passing sieve No. 4 (4.7 mm) - 90 -100 No. 10 (2.0 mm) - 90 -100 No. 40 (0.42 mm) - 50 -65 No. 200 (0.074 mm) - 25 -35 - 6 - 1 ' ESTIMATED SEDIMENT PRODUCTION AND TRANSPORT WITHIN THE WATERSHED Eroded materials from a drainage area may be transported through the flood channels and compose a large percentage of the volume of the total flow. Under these conditions the estimated peak flood flows of clear water determined in the hydrologic analysis must be increased by a bulking factor because of the transported sediment to determine the required capacity of flood channels. a A large percentage of the gross erosion from a watershed may be transported to the channel location if the grades are sufficiently steep to transport the materials in the flood flows. The transport capability of the flood flows is - dependent on the velocity of the flow and the characteristics of the eroded materials including size, shape, density, etc. Various methods have been used to estimate sediment bulking factors for flood flows. These methods are largely based on the gross erosion characteristics of a watershed. - The Los Angeles County Flood Control District (LACFCD) procedure for estimating bulking factors is based on runoff and sediment produced by a major storm on percent � a recently burned watershed. The bulking factor was determined as 100 p with a sediment production rate of 120,000 cubic yards per square mile. The formula used for estimating bulking factor for a particular watershed is: rr 1 /2( mass debris potential - cu. yds. /sq. mi. + 1) x 100 \\ 120,000 1 If the rate of sediment production is 120,000 cu.yds /sq.mi. the bulking factor would be 100 percent which is the case on which the formula is based. t � _ 7 - i This formula includes a large safety factor for watersheds with low sediment production rates. If the watershed is determined as having no sediment produc- tion the computed bulking factor would still be 50 percent. However, it is stated in their procedures that "This percentage increase is applied to the peak flow rate, where the entire watershed area is considered to be debris productive, and on a proportionate basis with respect to produc- tive and non - productive areas where debris control structures or developments within the watershed would cause a decrease in transportable debris quantities." The Declez Channel watershed has two portions having different characteristics. The alluvial valley area with slopes generally in the range of one to two percent has an area of about 5700 acres (8.9 square miles). The Jurupa Mountain area with slopes generally in the range of 25 to 35 percent has an area of about 1300 acres (2.0 square miles). The alluvial valley area has soils that are very erosion resistant on the prevailing slopes with slow rates of runoff. The soil particle sizes tend to be primarily coarse sand with very small percentages that would be classified as silt. with the slow rates of runoff and low velocities sheet and rill erosion will not dislodge large amounts of sediment and the sand particles would not be transported in large quantities to the stream system. The Jurupa Mountain area has soils that are moderately erosion resistant even on the prevailing steep slopes. The subdrainage areas are very small and large concentrations of runoff do not occur. There are no raw gullies in the area. Shallow rills in the drainageways are checked from eroding deeper by r 8 rock outcrops. There is no evidence of sediment discharge and deposition onto the flatter areas at the base of the hills. It is not planned that this area will be developed or used in a way that will cause soil disturbance. The only significant soil disturbance in the area at present in from roads and motorcycle tracks at the base of the hills. Several methods are available for estimating the mass debris potential or sediment yields from natural watersheds. Of these Elliott M. Flaxman's revised method is considered appropriate for southern California as it was developed from data compiled from 11 western states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Applying the revised Flaxman method, the estimated mean annual sediment yield for the 5700 acre alluvial plain portion of the watershed was estimated as 26 cu. yds. /square mile (see Appendi'x). The'100 -year return period flood generally produces from 8 to 10 times the mean annual sediment production. Assuming a multiple of 10, the sediment yield would be 260 cu. yds. /square mile. For the total 5700 acre (8.9 sq. mi.) drainage area, the 100 -year J return period flood is estimated to produce a total of 2314 cu. yds., or 1.43 acre -feet. I For the 1300 acre Jurupa Mountain area the estimated mean annual sediment yield was estimated as 645 cu. yds. /square mile. The 100 -year return period flood would produce 6450 cu. yds. /sq. mi. (10 x 6450). For the total 1300 acre (2.0 sq. mi.) drainage area the 100 -year return period flood is estimated to produce 12,900 cu. yds., or 8.0 acre -feet. a i 3 _ g _ 9 On the basis of these estimates the total drainage area (10.9 sq. mi.) would produce 9.4 acre -feet of sediment during a storm having a 100 -year return period. The estimated volume of runoff that is estimated to occur with a 6- hour duration, 100 -year return period flood is 690 acre -feet. The estimated total gross sediment production is 1.36 percent of the estimated runoff volume (9.4/690). A large part of the sediment produced, especially from the Jurupa Mountain area will be deposited within the area and will not be transported to the channel system. Using the LACFCD bulking factor formula, the required bulking factor would be: 1396 1/2 120,000 + 1 x 100 = 50.58 percent. Without the factor of safety, the bulking factor would be: 1396 x 100 - 1.08 120,000 This would be reduced to insignificance when the low delivery rates over the alluvial plain are considered. The Universal Soil Loss Equation is a method for predicting rainfall erosion losses with consideration of the various parameters which affect erosion on a particular watershed. This procedure is explained in a publication "Pre- dicting Rainfall Erosion Losses" developed by the USDA in cooperation with Purdue Agriculture Experiment Station, December, 1978. - 10 - S This procedure may be used for predicting gross erosion from a storm of specified return period but is considered more accurate for prediction of longtime averages. i For conditions affecting the equation parameters for the alluvial plain por- t tion of this watershed the estimated average annual rate of sediment produc— tion is 74 tons /sq. mi., or 659 tons /yr. for 8.9 sq. mi. area. For the Jurupa Mountain portion of the area the estimated average annual rate of sediment production is 426 tons /sq. mi. or 852 tons per year for the 2.0 square mile area. The total estimated sediment production per year for the total drainage area of 10.9 square miles is 1511 tons /year, or about 0.94 { acre- feet. Assuming that the 100 year return period storm produces 10 times the average annual amounts a total of 9.4 acre -feet would be produced. CONCLUSIONS Gross sediment production in the drainage area of the Declez Channel is estimated to be very small as compared to the volume of runoff produced by the 6 -hour duration 100 -year return period flood flow (volume of sediment produced is about 1.4 percent of the runoff volume). The major portion of this sediment is produced by the Jurupa Mountain area included in the drainage area. However, sediment produced by the mountain area must be transported over considerable lengths of relatively flat alluvial pl.ain area before it can enter the channel system. The particle size distribution of all soils in the drainage area into Declez Channel indicates that all but a small portion is relatively coarse sand that could not be transported effectively over the alluvial plain with the velocities of flow that would prevail. Consequently, these analyses have indicated that a extremel s amount of sediment in relationship to the flood volume will enter the channel system, thus adding an insignificant amount of volume to the flood flows: Furthermore, as the land use in this area is changed from agriculture and open space to urban use even the small amounts of sediment produced at present will be greatly reduced. Studies have indicated that with mature urban development sediment production rates will be reduced by about 90 percent of that produced by land uses now current in this area. The hydrologic analyses for this area have indicated that peak flood flows that will occur with full urban development will be about 20 percent greater ' than occur under existing land use. The channel system will be constructed to contain capacities required for these ultimate development conditions. On the basis that these channels will have excess capacities of 20 percent for - 12 - r ' i j present land use, and as urban development occurs sediment production will be reduced progressively, it appears inappropriate to provide any additional capacity because of possible bulking by the sediment content of the flood I flows. The velocities of overland flows with the more frequently occurring storm runoff will be very low and these flows will be able to transport only very fine sand or silt particles. When these particles enter the storm drain system very low velocities will continue to transport the particles entering the system. Providing a minimum velocity of 5 feet /sec. with the more frequently occurring flows appears to be more than sufficient. n: 1 13 - SEDIMENT PRODUCTION COMPUTATIONS JURUPA MOUNTAIN AREA - 1300 ACRES (2.0 SQ. MI.) Revised Flaxman Method The equation used in the revis log (Y +100) = 524.37231 - + 6.41730 log 1.70177 log + 4.03317 log + 0.99248 log 1 in which ad Flaxman method is: 270.65625 log (X1 + 100) (X2 + 100) X3 100) (X4 + 100) (X5 + 100) Y = mean annual sediment production - tons /sm X1= ay. an. precip. (in.) /ay. an. temp. ( °F) X2= weighted average slope X3= percentage of soil particles coarser than 1.0 mm X4= 0 (when more than 25 percent of soil P articles are coarser than 1.0 mm) X5= 50% chance of occurrence flood flow -csm For the Shay Meadow watershed the following values of the variable parameters were determined as follows: XI= 22 "/64 °F = 0.344 X2= 30% y X3= 40% ' X4= 0 X5= 55 csm Using these parameters sediment production was computed: log (Y + 100) = 524.37231 - 270.65625 log (0.344 + 100) - 541.71616 +6.41730 log (30 + 100) +13.56581 - 1.70177 log (40 + 100) - 3.65222 +4.03317 'j +0.99248 log log (0 + (55 + 100) 100) +8.06634 +2.17386 2.80994 Y + 100 = 330 Y = 645 tons /sm = 645 cu. yds. /sm (approx.) = mean annual sediment production B SEDIMENT PRODUCTION COMPUTATIONS ALLUVIAL PLAIN AREA - 5700 ACRES (8.9 SQ. MI.) (EXCLUDING JURUPA MOUNTAIN AREA) Universal Soil Loss Equation The Universal Soil Loss Equation is: I A = RKLSCP in which the parameters for Shay Meadow watershed were determined as follows: loss tons /ac. /yr. A = Computed soil - R = Rainfall factor = 50 K = Soil erodibility factor = 0.24 LS = Topographic factor = 0.23 Slope length assumed - 500 feet = 1.25 Slope steepness percent El C = Cover and management factor = 0.042 Idle land with 60% ground cover P = Support practice factor = 1 A = 50 x 0.24 x 0.23 x 0.042 x 1 = 0.11592 tons /ac. /yr. = 0.11572 x 640 = 74 tons /sm /yr. (estimated average annual rate) 1 Assume 100 -year flood produces 10 times the average annual sediment production Estimated sediment yield for 100 -year flood = 10 x 74 = 740 tons /sm 740 cu. yds. /sm (approx.) ,I , I S a '� 1! ' SEDIMENT PRODUCTION COMPUTATIONS JURUPA MOUNTAIN AREA - 1300 ACRES 2.0 S . MI. ( Q ) Universal Soil Loss Equation 'j 1 The Universal Soil Loss Equation is: A = RKLSCP 'J in which the parameters for Shay Meadow watershed were determined as follows: A = Computed soil loss - tons /ac. /yr. R = Rainfall factor = 50 i K Soil factor = 0.24 = erodibility LS = Topographic factor = 18.5 Slope length assumed - 500 feet Slope steepness = 30 percent C = Cover and management factor = 0.003 Range with 95 +% cover ground l P = Support practice factor = 1 A = 50 x 0.24 x 18.5 x 0.003 x 1 = 0.666 tons ac. / /y r. = 0.666 x 640 = 426 tons /sm /yr. (estimated average annual rate) Assume 100 -year flood produces 10 times the average annual sediment production �) Estimated sediment for 100 -year flood = 10 x 426 = 4260 tons /sm yield 4260 cu. yds. /sm (approx.) ll it i! r �i J I SAT, AUG 21, 1982, 2;36 PM PAGE i Q WSEL FQ HL.C2 RELEASE: DATED NOV 76 UPDATED APRIL. 1980 IBW CHNIM ITRACE ERROR CORR -- 01,02,03,04,05 .000 .000 .000 MODIFICATION - SO,Si,S2,53,S4 42.000 1.000 .000 .000 .001 loon r. .000 .000 .non .000 .000 ii SOUTHRIDGEr DEVELOPMENT PROJECT (FILET FONDECG) .000 .000 12 DECLEZ CI °IANNEL - PHASE I AND BEGINNING OF PHASE II 200.000 f3 CHANNEL- SIZE PER CONSTRUCTION DRWGS. DATED 6--24 -82 .000 Ji ICIIECK INQ NINV IDIR STRT METRIC HVINS 200.000 0. 2. 0. 1. - i..00o000 .00 i.0 JIB NPRO I1: LO7 1 - RFVS XSECV XSECH FN ALLDC -i.Ooo 1000 -1. ,000 .000 .000 .000 -i.000 J3 WiR.IALtLE CODES FOR SUMMARY PRINTOUT 3U.000 39.000 3310110 8.000 25.000 4.000 43.0110 2.000 3. Ono 000 Ono non 000 .000 Nc .015 .015 0 1 .100 .300 .Olin Q1 i.000 3905.000 1000 .000 .nnn .000 Xi 13700.000 4.000 .000 45.000 200.000 200.000 GR 937.050 Ono 927.OSO 15.000 927.OSO 30.000 Xi i350 U.000 .000 000 .000 200.000 200.000 Xi 13300.000 .000 non 000 200.000 200.000 Xi 131001000 .000 .000 .000 200.000 200.000 X1 1;900.000 .000 .000 .000 200.000 200.000 xi. 12700.000 .000 1000 1000 107.000 107.000 PAGE i Q WSEL FQ 3905. 940.000 .000 IBW CHNIM ITRACE .000 .000 .000 26.000 42.000 1.000 .000 .000 .001 loon .000 .000 .000 .non .000 .000 .009 200.000 .000 .000 .000 937.050 4S.000 .000 1000 200.000 .000 -1.280 1000 200.000 .000 -1.280 1001 200.000 .000 -1.280 .000 200.000 .000 -1.280 .004 107.000 1000 -1.280 1000 SAT, AUG 21, 1902, 2;36 PM PAGE 2 INVERT GRADE BREAK X1 j"�)Y's.000 000 .000 .000 93.000 93.000 93.000 .000 -.685 .000 Xi 12SO 0,000 .000 .000 .000 200.000 200.000 200.000 .000 -.753 .0011 X1 12300.000 .000 .000 .000 200.000 200.000 200.000 .000 -1.620 1000 r x1 1211111.000 000 Ono .000 200.000 200.000 200.000 .000 -1.620 .001 Xi 51900.000 .000 .000 .000 200.000 200.000 200.000 .000 -1.620 .000 Xi ii7U0.000 000 .000 .000 200.000 200.000 200.000 .000 -1.620 .000 xi iiSOO. 000 .000 1000 .000 200.000 200.000 200.000 .000 -1.620 1000 X1 11300.000 .000 .000 .000 200.000 200.000 200.000 1000 -1.620 .000 INVERT GRADE BREAK X1 11100.000 .000 .000 .000 i50.000 iso.000 150.000 .000 -1.620 .000 Xi 50950.000 4.000 .000 42.000 50.000 50.000 50.000 000 .000 .000 (" R 91S.6S0 .000 905.6'_10 15.000 905.65)0 27.000 91rj.6SO 42.000 .000 .000 -� Xi 10900.000 4.000 .000 42.000 30.0(10 30.000 30.000 .000 000 OOU GR 914.910 .000 904.910 15.000 904.910 27.000 914.910 42.000 .000 .000 Xi SOG70.000 .000 .000 .000 50.000 50.000 50.Ono .000 -.444 .000 W'r 5.000 4090.000 Ono .000 .000 goo 000 .000 .000 .000 I:I LRRY AVC, JUNCTION PIPE xi 10 We! 0101)0 .000 .000 .000 20.000 20 .000 20.000 .000 • -.740 .000 SAT, AUG 21, 1982, 2;36 PM PAGE 3 Xi M190.000 .000 000 .000 50.000 50.000 50.000 .000 -.296 .000 Xi 10750.000 .000 .000 .000 50.000 50.000 50.000 000 -.740 .000 QT 1.000 4100.000 .000 .000 .000 .000 .000 .000 1000 .000 LINE 'D'JUNCTION PIPE Xi 10'/00,000 .000 000 .000 100.000 100.000 100.000 .000 -.740 000 XS 10600.000 .000 .000 .000 100.000 100.000 100.000 000 -1.480 001 Xi 10500.000 4.000 000 40.000 100.000 100.000 100.000 000 .000 .000 GR 908.990 .000 898.990 15.000 898.990 25.000 908.990 40.000 .000 .000 1 Xi 10400.000 .000 .000 .000 200.000 200.000 200.000 .000 -1.480 000 X1 10200.000 .000 .000 .000 200.000 200.000 200.000 .000 -2.960 .000 Xi 10000.000 .000 .000 ,000 100.000 100.000 100,000 .000 -2.960 .000 Xi 5'9011.000 .000 000 000 100.000 100.000 100.000 000 -1.480 .000 Xi 9800.000 4.000 000 38.000 200.000 200.000 200.000 .000 .000 000 GR 890.630 .000 888.630 is. 000 888.630 23.000 898.630 38,000 .000 .001 Xi 9600.000 .000 .000 .000 150.000 i50.000 150.000 .000 -2.960 .000 X1 9450.000 .000 .000 .000 50•.000 50.000 50.000 .000 -2,220 .000 CST 1.000 4160.000 .000 .000 .000 000 .000 000 .000 .000 L1: NE 'Cl JUNCTION PIPE Xi 9400.000 .000 000 .000 200.000 200.000 200.000 .000 -.740 000 Xi 11'00.000 .000 .000 1000 200.000 1200.11()0 200.000 .000 -2.960 .001 SA1, AUG 21, 1982, 2;36 PM X1 9000.000 .000 .000 .000 200.000 200.000 200.000 Xi 880O.O00 .000 .000 .000 200.000 200.000 200.000 Xi 8600.000 1000 .000 .000 50.000 50.000 50.000 ENVERI GRADE F3RLAK X1 W )5.0,000 4.000 .000 4i.000 106.000 106.000 106,000 G SSi,i30 000 870.130 16.500 870.1.30 24.SOO 881.130 Xi E14.14.000 .000 .000 .000 50.000 So.0o0 50.000 ul 1.000 4210.000 .000 1000 non .000 .000 1 ALMOND AVE. JUNCTION PIPE Xi (;3Y4.000 .000 .000 .000 194.000 194.000 1.94.000 Xi 8200.000 .000 .000 .000 i50.000 iSO.000 150.000 Xi 805)0,000 000 .000 .000 50.000 50.000 50.000 xi S000.000 .(loo .000 .000 200.000 20O.nnO 200.000 X1 7800, 000 .000 .000 .000 200.000 200.000 200.000 X1 7600.000 1000 .000 .000 116.000 116.000 116.000 Xi 7484.000 .000 1000 .000 So.000 50.000 50.000 Wf i.000 4280.000 .000 .000 .000 .000 1000 LINE )HI JUNCTION PIPE Xi %4 41000 000 .000 .000 34.000 34.000 34.non PAGE 4 .000 -2.960 .000 .000 -2.960 .000 .Ono -2.960 .00E 1000 .000 .000 41.000 .000 .000 1000 -1.177 .000 .000 .000 .001 .000 -.553 1000 .000 -2.iS3 .000 1000 -1.665 .000 .000 -.5SS 1000 .000 -2.220 .000 .000 -2.220 1000 1000 •-1.288 .000 .000 .000 1000 1000 - . Eiss 1000 SAT, AUG 21, 1902, 2:36 PM PAGE 5 X1 7400,000 .000 1000 .000 70,000 70.000 70,000 .000 -,377 .000 Xi '7:5:10,000 .000 .000 .000 100,000 1.00,000 100.000 .000 -.777 .001 X1. 7230.000 4.000 000 43.000 10, Ono 10.000 10.000 .000 ,000 .000 1;R 066.400 oon OSS.400 16.500 85S. 480 26, Son 866.480 43,000 .000 001 x1 72 -0,000 .000 000 .000 so .000 50.000 so.0oo 000 -,111 000 141 1.000 4760.000 .000 Don 000 ono 000 .Ono 000 000 DANANA JUNCIION PIPE Xi %i %0.000 000 .000 000 170,000 170.000 170,000 .000 -,55S 000 X1 7000.000 000 000 Ono 200,000 200 200 ,000 ,000 -1 .ee7 .000 X3 6800,000 .000 000 000 200,000 20o.Ono 200,000 .000 -2,220 .000 x1 6600.000 noo Ono 000 2on,Ono 200.000 200,000 .000 -2,220 001 xi 640U,000 .000 000 ,000 iso.0oo iso.Ono i5o.Ono 000 -2,220 .000 xi 62!10.000 .000 000 000 100.000 1.001Ono 100,000 000 -1.665 000 xi Win .000 4.000 .000 45,000 M OOn 25,000 25.000 ono ,000 .000 GR 0',4.490 000 043,490 16.500 043.490 20.SOO OS4,490 45.000 000 001 xi 6125.000 .000 Ono ,000 50',000 50.000 SO .000 000 -,277 .000 QT 1.000 4070.000 .000 .000 .non OOO 000 Ono 000 .00(1 CALABASH JUNCTIDN PIPE )Q 1,U %5,.000 .000 000 .000 16.000 16.000 J.6 000 000 -.SSS 000 X1 611!,'!, (11) 1) 0(111 () (111 1 ()On 16, 000 16. 0011 16 , 000 000 -, 170 . 001 r Mon M M M M M SA1 , AI.IG 2j, 1982, 2 i 36 PM PAGE 6 Xi 6043.000 1000 1000 1000 43.000 43.000 43.000 1000 -.178 1000 Xi 6000.000 1000 1000 .000 150.006 iS0.000 iS0.6n0 .000 -.477 .000 LINE 'A' JUNCTION PIPE Xi �-Btj0.000 .000 .000 .000 50.000 50.000 So.000 .000 -1.66S .000 xi St160.Ouo 000 Ono 000 200.000 200.000 200.000 .000 -.SSS 001 RIVERSIDE COUNTY LINE AT STATION 57 +67 Xi �- 600.000 .000 .000 .000 200.000 200.000 200.000 000 -2.220 .000 1 xi 5400,000 loon .000 .000 200.000 200.000 200.000 .000 -2.220 .000 x1 b 2oo.000 .000 1000 .000 12o.000 120.000 120.000 1000 -2.220 .000 x1. SO8n.000 .000 .000 .000 100.000 100.000 100.000 000 -1.332 1001 X1. 49110,000 4.000 000 4S.000 180.000 i80.000 180.000 .000 .000 .000 GR 041,500 .000 830.500 16.SOO 830.500 28.500 1141,500 45.000 .000 .000 X1. 4800.000 .000 .000 1000 200.000 200.000 200.000 .000 -1.998 .000 Xi 4600.000 .000 .000 .000 200.000 200.000 200.000 .000 -2.220 .000 Xi 4400.000 .000 .000 1000 200'.000 20011100 200.000 1000 -2.220 .000 Xi ` 4200.000 .000 .000 .000 200.000 200.000 200,000 1000 -2.220 .000 xi 4000.000 .000 .000 .000 200.600 20n.600 200.000 .000 - 2.220 1000 xi 3000.600 1006 .000 .600 200.000 200.000 200.000 .000 -2.220 .000 Xi 3600,000 .000 .000 .000 200.000 200.000 200.000 .000 -2,220 ,000 X1 3400.000 .000 .000 ,000 200.000 200.000 200.000 .000 -2.220 .000 Xi ,200,000 .000 .000 .000 200,000 200,000 200.000 ,000 -2.220 .000 X1 3000,000 .000 ,000 .000 136,000 136.000 136.000 ,000 -2.220 ,000 -� COUNTRY VII..LAGE ROAD @ STATION 29 +30 Xi ('1564.000 .000 .000 .000 50.000 50.000 so Ono 000 -1,510 ,000 QT 1.000 5370 ,000 000 ,000 .000 .000 000 000 .000 .000 INVERT GRADE BREAK/ MULBERRY JUNCTION PIPE X.1 ,'M 4.000 ,000 .000 .000 is0,000 iso.000 is0.000 1000 -,SSS 000 Xi L'6b4.000 4.000 .000 40.000 50.000 50.000 50.000 ,000 .000 .000 GR (.(16,71.0 .000 005.710 16,500 005,71.0 31.,500 016.710 40.000 .000 .000 X1 2614. 000 000 non Ono 200.000 200 .000 200.000 000 -.2s0 .000 Xi 241.4.000 000 000 ,000 154.000 iS4,000 1.54,000 .000 -1,000 000 xi 2260.000 000 000 coo so.000 SO 000 50.000 .000 -,770 .001 - EXI5IING FONTANA CHANNEL Xi (:'10.000 6,000 .000 39.000 inn" coo 1.00.Ono i0O.Ono .000 ,000 000 GR r317.440 ,000 Oii.440 010 003.440 12.000 003.440 27,000 011,440 39.001 GR 017.440 39.010 000 .000 ono Ono 000 000 000 ono ` xi 2110,000 ,000 .000 .000 1i0.000 iio,oOO 110,000 .000 -.500 .001 QT 1,000 55901000 000 .000 ,000 ,OOn .000 .000 .000 ono Xi 1!000.000 1000 1000 .000 50,000 50.000 SO, 0 00 ,000 - -.440 .000 ® rr rr rr r r r rr r r 11 SA1, AUG 21, 1962, 2;36 PM PAGE 8 1 X1 t95o.o00 .000 .000 .000 iS7.000 iS7.000 iS7,000 .000 -.200 1000 Xi 1793.000 .000 1000 ,000 iS6.000 iS6.000 iS6,000 ,000 -,630 1000 Xi 1637.000 .000 .000 ,000 237,000 237.000 237,000 .000 -2,iOO 1000 xi 1400.000 1000 .000 .000 200,000 200.000 200.000 ,000 -.95o 1000 Xi t.200.000 .000 .000 .000 200.000 200.Ono 200,000 000 -.800 .001 Q'I 1,000 5,610.000 000 000 ,000 .000 ,000 000 ,000 000 Xi 1000.000 1000 .000 1000 200,000 200,000 200,000 1000 -,800 loci x1 600.000 000 000 000 1.80.000 180.000 ion .000 000 -.800 000 X1 620 000 .000 ono coo 164,000 164.000 164,000 .000 -,720 000 xi 456.000 .000 ,000 000 200.000 200.000 200.000 .000 -2,170 .000 Xt 1256.000 .000 000 non 1.80, Ono ion .000 ion Ono 000 -.800 006 X1 76,000 000 .000 .000 000 coo 000 .000 -.720 .000 EJ 000 000 .000 000 .000 000 000 .000 1 000 .000 *pROI' i CRI11CAL. DEP1H 10 BE CALCULATED AT ALL CROSS SECTIONS CCIIV= 100 CEHV= .300 i.0i 8.38 *5El:140 53'/00.000 SA'i, AUG 21, i982, 2:36 PM 4.44 .26 .12 936.41 3905. 3720 C14111CA1_ DEPTH A..a5UMEA) SFI:NO DEP'CH CWSEI_ CRIWS WSELK EG HV HL OLOSS RANI( ELEV Q QLUB QCH QROB ALOE HACH AROB VOL TWA LEFT /RIGHT MME VC_OB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SI_.UIIL XI_.OBL Xl_CII XLOBR ITRIAL IDC ICONT CORAR IOPWID ENDST *pROI' i CRI11CAL. DEP1H 10 BE CALCULATED AT ALL CROSS SECTIONS CCIIV= 100 CEHV= .300 i.0i 8.38 *5El:140 53'/00.000 935.79 .00 939.23 4.44 .26 .12 936.41 3905. 3720 C14111CA1_ DEPTH A..a5UMEA) 0. 0. 231. 0. 1.. 0. 936,41 1 :5 /00100 9.37 936.42 936.42 940.00 939,61 3.20 on 00 937.05 2_91a. 0. 3905. 0. 0. 272. 0. 0. 0. 937.OS 00 00 14.34 .00 .Ois .015 OIS 1000 927.05 .95 .002110 0. 0. 0. 0 18 0 .00 43.11 44.OS *SEC140 iY100.000 i(-.)45 1N1 4;EC: ADDED BY RAISING SEC i3S00.00, .640FT AND MULTIPLYING BY i.000 3301 IIV CHANGED MORE' MAN HVINS i.0i 8.38 934.79 935.79 .00 939.23 4.44 .26 .12 936.41 3905. 0. 3905. 0. 0. 231. 0. 1.. 0. 936,41 100 .00 16.91. 00 .Ois .OiS .015 .0 1, 926.41 2.44 0033.13 10O. 100, 1.00. 7 s 0 .00 40.1.3 42.56 1645 1NT SEC: ADDED BY RAISING SEC 1..Ot, - .640FT AND MULTIPLYING BY 1.000 1.3500.0 A 06 933.83 935.1.5 .00 938.02 4.99 .36 .05 935.77 S. 0. 3905. 0. 0. 210. 0. 1.. () . 935.77 00 00 17.93 00 ()is 015 . ()1.5 (11.5 925.77 2.93 .003b(t;.' 100 100. 100, 6 Ci 0 00 39.1.4 42.07 *:31_CNO 1:330 0 . 0 0 0 1:'.:30 0. 0 () 7.67 93.16 933.89 . 00 937.89 S.73 F35 . 07 934.49 3905. 0. 3905. 0. 0. 203. 0. 2. 0. 934,49 .01 .00 19121 100 .015 .015 lots lots 924.49 3.50 .004687 200. 200, 200. 6 8 0 .00 38.01 41.50 PAGE 9 1 SAT, AUG 21, 1982, 2:36 PM 1 3 ECN0 DEPTH CWSEL. CRIWS WSELK EC [IV HL. GLOSS RANK ELEV Q QLCII1 QCH Qum ALOB HACH AROB VOL TWA LEFT /RIGFIT EIM1: VLO D VCH VROB XNL XNCH XNR WTN EL.MIN SSTA SLOIlL XLOUI. XL_CH XLOBR ITRIAL IDC ICONT CORAR TOPWID E:NDST *Si:CNO l3100.000 1'65.00.00 7.47 930.68 932.SES 00 936.86 6.18 .99 .04 933.21 390S>. 0. 3905. 0. 0. 196. 0. 3. 1. 933.25. ,01 .00 19.95 00 .0iS ,015 015 ,015 923.21 3.00 .005197 200, 200. 200. 5 11 0 .00 37,41 41.20 *SELNO 12900.000 12900.00 7.35 929.28 931.30 .00 935.76 6.47 1.07 .03 931.93 39051. 0. 3905. 0, 0. 191. 0. 4. 1. 931.9:1 01 00 20.42 .00 ,015 .015 .0i5 .015 921.93 3.98 00 S30 : ?00. 200. 200. 4 11 0 00 37,OS 41.02 *SL:CNCI 12700. 000 12700.0o 7.27 927.92 930.02 00 934,60 6.69 1.1.3 .02 930.65 3905. 0. 3905. o. 0, 188, 0. S. 5.. 930.65 .01 .00 20.751 .00 ,015 .015 .015 .015 920.65 4.10 .00S707 200. 200. 200, 4 11 0 00 36.80 40.90 *SEL'NO 12593.000 INVLkl GRADE URLAK 00 7.23 927.20 929,34 00 933.97 6.77 .62 01 929.97 39051 0. 3905. 0. 0. 187. 0. S. 1, 929.97 .o2 .00 20.88 .00 .015 ,015 .015 .015 919.97 4.15 005809 107. 107. 107. 4 11 0 00 36.70 40.85 *SE.CNO SP500.000 i250o.o0 %.14 926.35 928,56 00 933.38 7.03 56 .03 929.21 3905, 0. 3905. 0. 0. 184, 0. 6. 5.. 929.21 ,o2 .00 21.28 ,00 .015 ,015 .0i5 .015 919.21 4.29 .0061993 93. 93. 93, 4 11 0 00 36.42 40.71 *SECNO 12300.000 • 1._'300.00 7.00 924.59 926.96 00 932.OS 7.46 1.129 .04 927.59 3905. 0. 3905. 0. 0. 178, 0. 6. J. 927,59 .02 .00 21,91 .00 ,015 01.5 111.5 .015 917.59 4.51 0 0av 1!00. :100. 200. 4 5.1 0 .00 35.97 40,41' PAGE 10 PAGE li SAT, AUG 21, 1982, 2:36 PM SfCNO DEPTH CWSEL. CRIWS WSELK EG HV HL. OLOSS BANK ELEV Q Q1.Cll3 QC QROB ALOB I-IACH AROB Vol.. TWA LEFT /RIGHT TIME' VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA L0l'L XLCIDL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *ril:i'PILI J.2100.000 121.00.00 6.89 922.87 925.35 00 930.64 7.77 1. 13B .03 925.97 :5905. 0. 3905, 0. tl, l.75. tl. 7, J. 925,97 02 .00 22.37 .00 1015 ,015 .OiS ,015 91.5.97 4,66 .007111 200. 200. 200. 4 ii 0 .00 35.67 40,31• *CLCNu 11900,000 ,.. 11900.00 6.82 921.1.8 923.73 .00 929.16 7.99 i.45 02 924.35 3905. 0. 3905. 0, 0. 172, 0, 8. 2. 924.35 .02 00 22.68 00 015 .015 0i5 015 914,35 4.77 .0073117 200. 200. 200. 4 ii 0 00 35,47 40.23 *SEC140 11700.000 11700.00 6.78 9!.9.51 922.11 100 927.65 8,14 1.50 .02 922,73 3905. 0. 3905. 0. 0. 171, 0. 9. 2. 922.73 .03 .00 22.90 .00 ,015 .015 .0iS .015 912.73 4,84 ,007 200. 200. 200. 4 11 0 00 35.33 40. 16 *SECNCI 1i500.000 li500.00 6.74 91%.86 920,49 ,00 926.11 8.25 1.53 .01 921,11 3905. 0. 3905, 0. 0. 169, 0. l.0. 2. 921.11. .03 100 23.06 .00 10i.5 .0i5 .0is .015 911.11 4,88 .007726 200. 200, 200. 4 !.1 0 00 35.23 40,12 *SECNO 11300.000 11300.00 6.72 916.21 918.88 .00 924.55 8.33 1,56 .01 919.49 3905. 0 . 3905. 0 . 0 . 1.69. 0 . 10 . 2. 91.9.4 .03 .00 23.17 .00 1015 .015 01!'7 tl15 909.49 4.92 0071.129 200. 200, 200, 4 11 0 .00 35.16 40,0E *SECNCI i1100.000 1:NVUCI (MODI_ BREAK 11100.00 6.70 914.58 917.26 .00 922.97 B.39 1.57 101 917.87 3905. 0. 3905, 0, 0. 168, 0. 11. 2. 917,87 .03 100 23.25 .00 Ci.5 ,015 10iS 015 907.87 4.94 0117903 2001 200. ?00. 4 11 0 .00 37). 1. 1 40.06 PAGE li 1 SAT, AUG 21, 1982, 2;36 PM PAGE 12 SECNI.I DE:F' iH CWSEL. CR IWS WSEL.K EG HV HL. OLOSS BANK ELEV Q Q1.01i QCH QROB AL.OB HACH AROB VOL TWA LEFT /RIGHT TIME VLOB VCH VROB XNl_ XNCH XNR WTN EL.MIN SST'A SI_01% XLOBI_ XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *_)L :'C.N0 1 0 950.000 10'iM,00 '7.1.7 912.82 9i5.62 .00 921.70 I3.88 1. 21 .01i 9i5.65 390S. 0. 3905. 0. 0. 163. 0. 12. 2. 915.61 .04 .00 2:5.91 .00 .01s Oi.5 .015 .015 905.65 4.24 ,008501 15(1. 150. 150. 5 14 0 00 33.52 37.76 *S1 (;Nip i0900 . 000 - 1.0900.00 7.00i 911.99 914.9i. 00 921.24 9.25 .43 .04 914.91 3905. 0. 3905. 0. 0. 160. 0. 12. 2. 914.91. . .04 .00 24.41 .00 .015 .015 .()15 .015 904.91 4.39 0ua7 %5 50. S0. 50. 4 11 0 .00 33.23 37.61 *SELNCI 1011711.000 iOL170.00 7.02 911,49 914.47 .00 920.95 9.46 .27 .02 914.47 399„5. 0. 3905. 0. 0. iSA. 0. 12, 2. 914.47 .04 00 24.69 .00 .01.5 .015 0 i .015 904.47 4.47 009051 30. 30. 30. 4 1J. 0 .00 33.06 37.53 *SEC140 101320 .0110 CHERRY AVE, JUNCTION PIPE 10020. U0 7.22 910.95 913.95 00 920.50 9.55 45 .01 913.73 4 4u 0. 4090. 0. 0, 165. 0. 12, 2. 9J.3. 73 .04 .00 24.80 .00 .015 OiS 015 .0i.5 903.73 4.16 00$1860 50. 50. 50, 4 11 0 .00 33.67 37.84 *SECNII 10000 . 000 101:10U.00 7.19 91.0.62 913.63 100 920.30 9.68 .1.8 .01 913.43 4090. 0. 4090. 0. 0. 164. 0. 12. 2. 913.43 .04 .00 24.97 .00 .015 .015 015 0i5 903.43 4.22 .009034 20. 20. 20. 4 11 0 110 33.57 37.7E *SECN0 10750.000 10750.00 7.11 909.110 912.89 .00 919.81 1.0.01 .46 .03 912.69 44 0. 4090. Q. 0. 161. 0. 12. 2. 912.65' .04 .00 25.39 .00 .015 .015 .015 .1115 902.69 4.34 00944'; 'i0. 10. S0. 4 11 0 .00 33.33 37.66 r m- Emu ow r r- r it 1 SAT, AUG 21, 1982, 2;36 PM SVENO 1) 11. 1* 1 F II CWGEI. CRIWS WSELK EG HV FIL GLOSS RANK ELEV Q QL.OB WCH QROD ALM HACH AROB V(31- TWA LEFT /RIGHT TIME VL0D VCH VROB XNL XNCH XNR WTN ELMIN SST'A GI -0IIL X1.QF3L XLCH XI_0BR I.TRIAL IDC ICONT CDR AR TOPWID ENDST *3ECN1) 10700.000 LINE 'D'JUNCTICIN PIPE 10700160 7.05 909.00 912.17 .00 919.30 10.30 .48 .03 911.95 4 0. 4100. 0. 0. i59. 0. 1.3. 2. 91.1.1 95 04 00 20.75 ()0 .015 .015 .0i5 .015 901.95 4.42 .01) 1 1(3110 50. SO. 50. 4 11 0 00 33.1.6 37.58 *SECNU 10600.000 10600.60 6.94 907.41 910.70 on 918.23 10.82 1.01 .05 910.47 4100, 0. 41.00. 0. 0. 155. 0. 13. 3. 910.47 .04 .00 26.40 .00 .015 .0iS 015 .015 900.47 4.60 0t0486 1(10. 100. 100. 4 ii 0 QO 32.80 37.40 *SECNCI 10500.000 LOli011,00 7.37 906.36 909.56 .00 917.19 10.83 1..04 no 908.99 4100. 0. 4100. 0. 0. 155. 0. i3. 3. 908.9(' .04 .00 26.41. 00 .015 .01.5 .0i5 .015 698.99 3.94 0iU340 100. 100. 100. 5 1.4 0 .00 32.12 36.06 *SECNCI 10406.000 10400.06 7.26 904.79 908.13 .00 916.08 11.29 1.06 as 907.51 4100. 0. 4100. (I. 0. M. 0, i4. 3. 907.51 .04 .00 26.97 .00 .015 .OiS .015 .01.5 897.51 4.09 .010945 i00. 100. 100. 4 11 0 on 31.81 35.91 *SLLNU 10200.0110 10206.00 7.t2 901.67 905.i6 .00 913.72 12.05 2.29 .08 904.55 4100, 0. 4100. 0. 0, 147, 0. 14. 3. 904.55 .04 .00 27.86 00 .015 .015 .015 .015 894.SS 4.32 011947 200. 200. 200. 5 i1 0 .00 31.35 35.68 *SECNCI 10000 . 000 10000.00 7.02 898.61 902.23 .00 911.20 12.59 2.46 05 901.59 4100. 0. 4100, 0. 0. 144. 0. SS. 3. 901.59 .05 .00 28.48 00 .015 .015 015 Oi5 891.59 4.413 012670 200. 2 (10. 200 . 4 11 0 1 QO 31..05 35.52 PAGE 13 SIC:, - - -- - - _ _ : m-' J 1 1 SAT, AUG 21, 1982, 2;36 PM SECNO DEPTH CWSEL CRIWS WSELK EG HV HL MOSS BANK ELEV Q QLUB QCH QROD AIM HACH ARAB VOL. TWA LEFT /RIGHT TIME VL.OB VCH VROB XNL XNCH XNR W•1'N EL..MIN SST'A SUAIL XLCIItL XLCH XL.OBR ITRIAL IDC ICONT CORAR TOPWID ENDST * 9900.000 9YOO.00 6. YO 097.09 900.68 .00 909.90 12.131 1.28 .02 900111 4100, 0. 4100, 0. 0. 143. 0. 15. 3. 900111 .05 00 28.73 .00 0i5 ni5 015 .OSS 890111 4.54 .012978 100. 100, 100, 4 14 0 .00 30.92 35.46 *S ECNO 9000.000 9800.00 7.54 896.17 899.63 .00 908.50 12.33 1.26 .14 898.63 4100. 0. 4100. 0. 0. 14S, 0. 16. 3. 898.63 05 .00 28. i8 .00 .01.5 015 .01.5 niS 888.63 3.70 012i87 100. 100. 100. 6 14 0 .00 30.61 34.30 *SE'CNC7 9600.000 9600.UO 7.45 893.12 896.74 00 90S.95 12.83 2.50 .OS 895.67 4100. 0. 4100. 0. 0. 143, 0. 16. 3. 895.67 .0 00 28.74 .00 .015 .Oi5 OJ.S .OiS 885.67 3.84 0120So 200. 200. 200. 4 11 0 no 30.33 34.16 *SECNU 9450.000 9450.00 %.39 890.84 894.53 00 - 903.96 13.12 1.96 .03 893.45 410 0. 4100. 0. 0. 141. 0. 17. 3. 893.45 O5 .00 29.07 .00 .015 .015 .015 .015 883.45 3.91 013241 150. 150. 150. 4 11. 0 00 30. J.7 34.09 *SECNU 9400.000 LINE 'C;' JUNCTION PIPE 9400. 0U 7.4S 090,16 893.79 .00 903.30 13.14 .66 O0 892.71 416 . 0. 4160. 0. 0. 143. 0. 17. 3. 892,71 10S 00 2Y. 08 .00 015 OiS OiS Oi5 882.71 3.82 .013132 50. 50. S0. 3 14 0 no 30.37 34.18 1 *SECNU 9200.000 9;.''.00.00 7.40 887.iS 890.83 100 900.60 13.45 2.67 .03 889.75 416(1. 0. 4160. 0. 0. 141, 0. J.B. 4. 809.75 .05 .00 29.43 00 .015 .015 .015 .0is 879.75 3.90 01:SC.t;4 ;'00. 200. 200. 4 14 0 . on 30 .20 34 . J 0 PAGE 14 r mom M M ® - -- -- ' ® - -- M ® . 1 1 SAT, AUG 21, 1902, 2t36 PM SFCNO DEPTH CWSEL CRIWS WSELK F_.G HV HL OLOSS DANK ELEV Q QLOB QCH QROB AL.OB HACH AROB VOL TWA LEFT /RIGHT i1ME VLOB VCH VROB XNL XNCH XNR WTN EL.MIN SSTA SLOPE. XL.OEaL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SLA'Ntl ; 1 1100.000 S'000,00 V.36 864.15 887,67 .00 897.83 13.613 2.74 ,02 (186.79 4160. (l. 4160. 0. 0. 14n, 0, 18. 4. B86,7 .06 .o0 29.69 .00 .01.5 .015 .oi5 ,015 876.79 3.96 .013873 200. 200. 200, 4 14 0 .00 30.08 34.04 *SL'C)dll B000 , 000 81300,00 7.33 661.16 BB4.91 00 895.02 13.86 2,80 .02 683.83 4160. 0. 4160. 0. 0. 139. 0. 19. 4. 883.83 ,06 .00 29.87 00 ,015 oiS .0iS 0i5 873.83 4.00 014110 200. 200. 200, 4 14 0 on 29.99 34,00 *SECN(.s 8600.000 8600.00 7131 678.18 8131.95 00 892.17 13.99 2.64 .01 860.87 4160, 0. 4160, 0. 0. 139. 0. 20. 4. f1B0.B7 ,06 .00 30.01 .00 .015 ni5 .015 ,n15 870,87 4.04 ,014207 200. 200. 200, 4 14 0 on 29.93 33.96 *SECNO 6550.000 INVEKI GRADE BREAK 13350.00 7.31. 877.44 BB1.32 .00 891.4S 14.01 .72 on 881.13 4160, 0. 4160, 0. 0. 139. 0. 20, 4. 861,7; .06 .01) 30.03 .00 .0iS ,o1.5 ,015 .015 870,13 5,54 .(114314 5o. 50. 50. 3 14 0 on 29.92 35,46 *OECN0 11444.000 8444.011 7.40 LJ76.M; B60.i5 .00 8139. Eli 13,45 1.48 1.7 879.95 416 0, 4160. 0. 0. 141, 0. 2n, 4. 679.95 " 06 .00 29,44 On 015 015 1115 .015 868.95 5,40 013562 106. 106, 106, 4 14 0 00 30.20 35.60 *SEU140 8394.000 ALMOND AVE, JUNCTION PIPE 8394.00 7.51 675.91 879.65 .00 889-OS 13.13 .66 .10 879,40 4210. 0. 4210. 0. 0, 14S. 0. 20, 4. 679.40 ,0i, . 1) 11 : "!.011 00 01ii 1) is) 01S 111`7 6611, 40 5.2;3 01.7024 b0. SO 5.11 . 4 14 0 .O0 30.54 35,71 PAGE 15 PAGE 16 SAT, AUG 21, 1982, 2:36 PM GECN0 DF CWSEL.. CRIWS WSELK EG HV HL OLOSS BANK ELEV W (41 C1CL1 QROB ALOB HACH AROB VOL TWA LEFT /RIGHT LIME VL0B VCH VROB XNL. XNCH XNR WTN ELMIN SSTA SLOPL XL.ODL. XLCH XL.OBR ITRIAL IDC IC0NT CORAR IOPWID ENDST CiLCNO ;1,!00.000 [:;:!00,00 V.62 87:.5,87 877.50 on 0116.42 12. S36 2.45 .17 877.25 4210. 0. 4 21.0. 0. 0. 148. 0. 21.. 4. 877.25 .06 00 28.44 00 .oi5 .01.5 .oi5 .015 866.25 5.07 .012261 194. 194. 194. 4 14 0 .00 30.86 35.93 *SECNO 80'30.000 8050.00 7.66 87;x.26 875.83 .00 884.52 12.27 1.81 .09 875.58 4210. 0. 4210. 0. 0. 15n. 0. 21. 4. 87S.Si .06 .00 28.11 .00 .015 .0 1.5 .015 .015 864.58 4.99 011004 150 , ts0 , is() . 4 14 0 00 M. .03 36.01 ASECNO 8000.000 13000.00 %.60 671.71 875.35 00 883.91 12.21 .59 .02 875.03 4210. 0. 42!0. 0. 0. is0. 0. 22. 4. 875.0.':; .06 .00 211.04 .00 .015 .01s ni5 .015 864.03 4.97 0 110 0.3 50 . din . SO. 3 1.1 0 , 0o 31.06 36.03 *SECNO 71100.000 7800.00 %.%3 869.54 873.13 .00 881.51 11.97 2.33 .07 872.81 4 (1. 4210. 0. 0. 152. 0. 22, S. 872.81 .07 .00 :7.77 .00 .oi5 .oi5 .015 ni5 1161.8t 4.90 .01150;' 200. 200. 200. 4 11 0 00 31.20 36.10 *SGCNO 7600.000 7600.U0 7.76 867.:35 870.91 .00 879.19 11.84 2.28 .04 870.59 4210. (1. 4210. 0. 0. 152. 0. 23, S. 870.59 .07 ou 27.62 .00 loss .ois 015 ni5 859.59 4.86 011337 200. 200. 200, 4 11 0 n0 31 .28 31).14 *SECNO 7404.000 7404.00 7.%7 [166.06 869.62 .00 877.87 1.1.80 1..31 .01 869.30 4 2 � iQ,,. 0. 4210 . 0. 0. 1.53. 0 . 23. S. 869.30 .07 .00 27.57 .00 .015 .0is 0 i 0i5 858.30 4.85 .0111 ?83 116. 116, 116. 3 11 0 .00 31.31 36.15 PAGE 16 PAGE 17 SAT, AUG 2 1 , 1982, 2;36 PM SECNU UE:PTH CWSEL. CRIWS WSELK E [IV HL OLOSS DANK ELEV Q QLULS Q(:I-1 QROB AI_OB HACH AROB VOL TWA LEFT /RIGHT TIME VL.OB VCH VROB XNL XNCH XNR WT'N EI_.MIN SSTA SLOPL XLOHL XLCH XLOBR ITRIAL IDC MONT CORAR TOPWID ENDST *;it:CNil `1434.000 LINE 'S' JUNCTION PIPE_ 7434.00 7.89 865.63 869.14 .00 877.26 11.63 .56 .05 868.74 '' 0. 4280. 0, 0. iS6. 0. 24, S. 868.74 7 00 27.37 .00 lots 0 i lots .015 857.74 4.67 . 01 0930 So . so . Sol 4 1.1 0 on M.66 36.33 *SECNCI 7400. 000 7400.00 7.89 86S.26 868.75 .00 876.89 5.1.63 .37 .00 868.37 4280. 0. 4280, 0. 0. iS6. 0. 24. S. 868. 3P' .0% .00 27.37 .00 .015 lots .Ois lots 857.37 4.67 .010940 34. 34. 34. 0 11 0 .00 31..66 36.3:5 1 *SECNCI 7330. 000 7330.00 7.89 864,40 867.98 .00 876.12 11.64 .77 .00 867.59 4200. 0. 42()0. 0. 0. iS6. 0. 24, S. 867.St' .07 .00 27.38 .00 lots lots lots lots 8s6.S9 4.67 OiU953 70. 70. 70. 3 it 0 .00 31.65 36.3:5 `kSLCN(U 7230.000 7230.00 7131. 862.79 '066.42 no 874.94 1.2.i5 i.1.3 .Os 866.48 42H0 , 0. 42110. 0. 0. 153. 0. 24. S. 866.0 .07 00 27.97 .00 lots lots .01.5 lots 855.40 5.55 .011722 i00, 100. 100. 7 it 0 .00 31.91 37.45 %tSL 7220.000 72.'0.00 7.31 86.'.68 866.20 .00 874.81 12. 0 .1.2 .01 866.37 42 0. 4200. 0. 0. M. 0. 24. S. 1166.31 .07 00 27.95 00 .015 lots .015 lots 055.37 S.54 0 1170 0 10. 1.0. 10. 0 14 0 UO 31.92 37.46 ` *SE(:NO 7170.000 i645 1NT SEC ADDED BY RAISING SEC 7170.00, .278FT AND MULTIPLYING BY .999 1, . 01 7.60 (162.7C1 866.25 . 00 874.38 11 .60 121.1 . 1.6 (166. 09 4!1:.'0. 0. 4':20. 0. 0. t61.3. 11(..6.0'7 7 1) IJ ,27.:13 (10 lots .Ois (11.5 (115 85s.09 4.97 010':'YU '2b 25 14 0 (10 33.04 Milo1 PAGE 17 '1 SAT, AUG 21, 1902, 2;36 PM St DE:.PIH CWSEL CRIWS Q QI - ON QCH QROB TIML VLOD VCH VROB SLOPE XI.OBL XLCH XI..OBR i64S 1N1 SE(: ADDED BY RAISING SI=C BANANA JUNCTION PJE'E IDC 7170.00 8 06 86.87 866.2 4-" 70 (l . 0. 4760. 0. / 00 26.74 .00 00`h,41 2S. 1 12 51 2S. *SELNO 7000,000 0. 2s. 7000.00 H.00 B60.93 864.37 4760. 0. 4760. 0. .07 .00 27.04 .00 .009939 170. i70. 170. *SGCNU 6000,000 1.66 .03 863.93 6000.00 7.95 858.66 862.16 4760. 0. 4760. 0. .00 .00 27.32 .00 .010216 200. 200. 200. *GFUNO 6600.000 38.50 .0o 870.25 6600.00 %.91 B56.40 BS9.94 4760. 0. 4760. 0. .00 on 27.53 .00 0 10 4, x'.00. 200. 2.00. *SCCNO 6400.000 it 0 .00 b400.00 7.8 ra 8S4.is 857.72 4760, 0. 4760. 0. .UU 00 27.69 .00 010588 20x1. 200. 200. *SEL:N(i 6250.000 ois 848.49 4.64 6250.00 7.86 852.46 856.06 4760. 0. 4760. 0. .IIU 00 2'/.70 IlU 11106113 t!,rl. 150. 1510. WBELK EG HV HI_ OLOSS BANK ELEV AL.OB HACH AROB VOL TWA LEFT /RIGHT XNI_ XNCH XNR WTN E.LMIN SSTA ITRIAL IDC MONT CORAR TOPWID ENDSI' i.0i, - .278FT AND MULTIPLYING BY 1.001 .00 873.98 ii.10 .2S i5 865.81 0. 178. 0. 2s. S. 865.8! 0is 0is 015 .015 854.81 4.41 5 14 0 .00 34.iB 38.59 .00 872.29 11.36 1.66 .03 863.93 Cl . 176. 0. 2S. S. 863.9;; .Ois .015 .01s 015 BS2.93 4.So 4 1.1 0 .00 34.00 38.50 .0o 870.25 ii.S9 2.02 .02 861.71 0. 174. 0. 26, 5. 861.71 .0is oi5 ot5 ot5 850.71 4.S8 4 it 0 .00 33.84 311.42 .00 868.16 11.77 2.06 .02 B59.49 0. 173, 0. 27, S. 859,41' .015 .015 .0is ois 848.49 4.64 4 11 0 .00 33.73 38.36 .00 866,05 11.90 21t0 ,0i 857.27 0. 172. 0. 28. 6. 857.21 .Ois Ots lots .015 846.27 4.68 4 it 0 .00 33.64 38.32 .00 864,45 11.98 1.60 01 855.60 0. 171, 0. 20. 6. 855.60 01.5 0i. $ii 015 r11!; 844.60 4.71 4 it 0 .00 33,59 38.29 PAGE 18 PAGE 0 SA(, AUG 21, 1982, 2 :36 PM SL CNO DEPTH C:WSEL CRIWS WSF..LK EG HV HI_ GLOSS DANK ELEV Q QLOP QCt4 QROB AL.OB HACH AROB VOL TWA LEFT /RIGHT 11ME VLOB VCH VROP XNL XNCH XNR WTN ELMIN SSTA SLUFIL XLODL XLCH XL.OBR ITRIAL TUC ICONT CORAR TOPWID ENDST *:;L-_CNO 615,0.000 6150.00 7,31. 850.80 854.53 00 863,29 12,49 1.11 05 854,49 4760, 0. 4760. 0, 0. 168, 0. 29. 6. 854.49 .08 00 28.36 .00 Big 01.5 ,015 cis 843,49 5.54 .011449 100. 100. 100. 7 11 0 .00 33.93 39,46 *SUMO 6125,000 +� b12S.00 7.31 850,52 854.22 100 863.00 12.48 .29 00 854,21 0. 4760. 0, 0, 168, 0. 29. 6. 854,21 .08 00 28.35 00 .OiS .Oi5 .015 015 843. 5,53 .01.1439 2S. 25. 25. 0 14 0 on 33.93 39.47 *SEC14U 6075.000 CALABASH JUNCTION PIPE 607S. 00 7.47 850,13 853.76 00 862.37 12.24 56 07 853,66 4 O. 0. 4070. 0. 0. M. 0. 29. 6. 853.66 .ULI 00 2£:.OU 00 ,015 OiS 015 015 842,66 5.29 ,010959 5O. 501 50, 4 14 0 .00 34.42 39,71. *SUCNO 605)9.000 b0S9 .00 7.47 849.95 ' 853,S9 00 862,19 12.24 18 .00 853,48 4U70 . 0. 4870, 0. 0. 1.73, 0. 29. 6. 853.48 .OR 00 28,08 00 ,015 01.5 Big .015 842.48 5.29 .O1U963 16. 16. 16. 0 1.4 0 00 34,42 39.71 *SLC,NU 6043.000 6043.00 7.46 049.%6 853.41. 00 862.02 12.25 11.8 00 853.30 - 4870. 0. 4870. 0. 0. 173, 0. 29, 6. 853.30 .OU 00 28. BY 00 015 .015 015 01S 842.30 5.29 010975 16, it). 16. 0 14 0 00 34.41 39,71. kSG(;14U 6001).00U 6000.00 7,47 849.29 852.93 00 861.54 12.25 .47 .00 852.82 4870, 0, 4870, 0. 0. 173, 0 29. 6. 852.8i' .011 00 28.09 00 015 .01.5 015 Oi5 841.82 S.29 010'1%1 41. 43. 43, 2 14 0 1 00 34.41 39.71 PAGE 0 Anon mmm m m m r m m SAT, ALIG 21, 1902, 2;36 PM PAGE 20 SEC:NO DEPTH CWSEL.. CRIWS WSELK EG FIV HL OL_OSS BANK F_LEV Q QLOB QCH QROB AI_.OB HACH AROB VOL TWA L.F_FT /RIGHT TIME VLOB VCH VROB XNL XNCH XNR WTN EL.MIN SSTA SLOPE XLODL XLCII XLORR ITRIAL IDC MONT CORAR IOPWID ENDST *:Jt CNI] ISOSO , 000 L.1NL 'A' JUNCTION PIPE Soso .00 7.48 847.64 85i.27 00 859.90 12,26 i,65 00 851.16 4070. 0. 4870. 0. 0. 173, 0. 30. 6. 85i.il. .09 00 28.10 .00 015 .OiS IBIS .OiS 840.16 5.30 .0109131 ISO. iSO. ISO. 0 14 0 00 34,41 39,70 *SECNO 5800.000 SGOO.O 0 7.48 847,08 850.71 00 859.35 12.27 S5 00 850.60 4870, 0. 41:170, 0. 0. 173, 0. 30. 6. 850.61 .OY .00 28.11 .00 .OiS ,Oi5 .015 .015 839,60 5.30 010992 SO. 50. 50. 3 14 0 00 34.40 39.71 *SE(;NO 5600.000 RIVERSIDE COUNTY LINE: AT STATION 57 +67 5600.00 7.47 (344.86 848.49 00 857.14 12.529 2,20 00 848,38 41(70. 0, 41(70. 0, 0. M. 0. 31, 6. 848,38 .09 0028.13 00 cis ,015 .0iS .015 837.38 S.30 .Oii0i6 200. 200, 200. 3 14 0 00 34.39 39.70 *SEC'NO 5400 , 0 1) 1) 54(10.00 7.47 842.63 846.27 00 854,94 1.2.30 2.21 .00 846.16 4870, 0. 4870. 0. 0, M. 0. 32. 6. 846.1.6 .09 .00 1 2 8.15 00 015 015 .015 .015 835.16 5.31 011037 200. 200, 200, 3 1.4 0 .00 34.38 39,69 *SEC ;N0 5;'.00.000 5200.(10 7,46 E140.41 844.05 00 852.73 12,;32 2,21. 00 843.94 4070, 0. 4870, (l. 0. 173, 0. 32, 7, 843.94 .09 00 28.16 .00 .015 Oi.S 01.5 01.5 832,94 S.31 0 111) 5; 3 111) 200 200, 3 1.4 0 00 34,37 39,69 *SECNTI 5000,000 5080.00 7.44 839,06 .842.72 00 851,40 12,34 1.33 ()0 842.61 4(17(1, 0. 41170. (l. 0. M. 0. 33, 7. 842.61 .09 .1)0 21.11 1.Y 00 0 I 0 i (lili 11 Vi 0:31.61 5132 u i i WI t ;!() , 1 ;!0 . i2o , 2 14 0 0 0 34.36 39.6(3 F•� 1 ;;A'1 1111G 21., i9[12, 2136 PH liU]NO DF 1' 1 H CWSE_1. CR IWE; WSELK F. G HV FIL OLOSS BANK ELEV Q QLOD QCH QROD ALOB HACH AROB VOL TWA LEFT /RIGHT TIME VLOE; VCH VROB XNL XNCH XNR WTN ELMIN SST'A S1. (lip E- XLODI. XLC:I3 XL.OBR ITRIAL TUC IC:ONT CORAR TOPWID F:.NDST *S)ECN1) •1'7 1-10 , U U O 4 7 A 8371951 841.61 00 850.29 1.2.34 i.ii 00 841.SO 4U70. 0. 4870, 0. 0. M. 0. 33, 7. 841,50 .09 .00 29.19 0 ,015 .015 .01.S ,015 830,50 5.32 .011076 11)0. 100. 100. 2 14 0 (10 34.36 39,68 *:;LCNU 4000.000 41300.00 7.44 835,94 839.61 100 8413,29 1.2.35 1.99 00 839,50 4070, 0. 4870. 0, 0, 173. 0. 34, 7. 839.50 10 00 2E1.20 00 015 0 i ,015 015 828,50 5.32 .011009 180, 180. 180, 0 14 0 .00 34.35 39,68 *SECN) 4600.000 4600.00 7.451 833.73 837.39 00 846,07 12,34 2.22 00 837.28 4870, 0. 4870. 0. 0. 173. 0. 35. 7. 837.28 .iU 00 28.19 .00 .0 1.5 .015 015 ()15 826.28 5.32 1)1108' 200. 200, 200, 2 14 0 00 34,36 39,68 *SECNU 4400.000 4 7,45 831,51 835.17 100 843.86 12,34 2.22 ,00 835.06 4t170. 0. 4870. 0. 0. 173. 0, 36, 7. 835.01. .10 .00 28.19 ,00 ,015 ,01.5 .01S ,015 824,06 5132 .011003 200. 200, 200. 2 14 0 .00 34.36 39.68 *SLUNO 4200,000 45300. U0 7,46 E129.30 032.Y5 .00 841,64 12.34 2,22 00 832.84 41370. 0 . 4870 . 0 . 0 . 173. 0 . 36. 7. 832.84 1.0 .00 20. 19 .00 ,015 .015 015 0i5 821.84 S,32 •. 01108:5 200, 200. 200. 0 14 0 DO 34.36 39.68 • *SCCNU 4(1(10.000 ' 4000.00 7.45 827.07 830.73 00 839.42 12.35 2.22 00 830.62 4070. 0. 4870, 0, 0, 173. 0. 37. 7. 830,61: • 10 UO 28.20 .00 ,015 .015 ,0151 ,015 819.62 5.32 .OliU96 200. 200. 200. 2 14 0 100 34.35 39.68 PAGE 21 ® -_ - ® m m or PAGE 22 1 SAT, AUG 21, 19F12, 2:36 PM 2 L ( DID CW EL. CRIWS WSELI< EG IIV HL GLOSS BANK ELEV Q QL0H 1,1011 QRUP ALOP HACH AROD VOL. TWA L.EFT /RIGHT rIMF VLLIR VCH VROP XNL XNCH XNR WTN ELMI.N SSTA oAIPE XI.0Di.. XLCII XLOBR '!.TRIAL. IDC I C T CORAR TOPWID ENDST C.A. G N O 31100.000 :5800.110 '/.4s 824, GS 828. S1 .00 837.20 12.35 2.22 00 828.40 4070. 0. 4870. 0. 0. M. 0. 38. 8. 828.40 ,1.1 00 28.20 00 .015 .ois 015 .015 817.40 5.32 011092 200. 200. 200, 2 14 0 00 34.35 39.68 K<liCCNU '5[,00.000 3600,00 7.44 822,62 826.9 00 834.98 1'.36 2.22 00 826.18 4870, 0. 4EI70. 0, 0. M. 0. 39. 8. 826.18 .11 .00 28. 21 .00 .01s 015 .015 .015 815. t8 5.33 011101 200. 200. 200. 0 1.4 0 no 34.35 39.67 *SE_LM) 3400.000 3400.00 7.45 820.41 E124,07 00 832.76 12.35 2.22 00 823.96 4070. 0. 4870, 0. 0. M. 0. 40, 8. 823.96 .11 .00 ;8.20 00 .Ots .015 cis 015 812.96 S.32 .011092 200. 200. 200. 2 14 0 00 34.35 39.68 *SECNU 3200.000 3200100 7.45 £118.19 821,85 00 830,54 12.35 2,22 00 821.74 4070. 0. 4870. 0. 0. 173, 0. 40, 8. 821.71• .11 00 28.20 00 lots .Ois Q15 Oi5 810,74 5.32 ,011090 200. 200. 200, 2 14 0 .00 34.35 39.641 *SECNU 3000,000 3000.00 7.45 815.97 819.63 00 828.32 1.2.35 2.22 OO 80.52 4070. 0. 4870. 0. 0. M. 0. 41. B. 81.9.52 .ii 00 28.20 .00 lots 111.5 ,015 Ois 808.52 s.32 011095 200. 200. 200, 0 14 0 on 34.35 39.641 *SECNU 2864.000 COUNIRY VILLAGE ROAD 9 STATION 29 +30 2064.00 7,45 Sidi ,44, 818.12 .00 826,Bi 12.35 1.51 00 818.01 4EI70, 0. 4870, 0. 0, 173. 0. 42. B. Me. oi 00 x.8.20 00 ,015 OiS 0is 015 807,01 5.32 O t 11193 1'36. 1 36. 136, 2 1.4 0 . 00 34.35 39.68 PAGE 22 1 SAT, AUG 21, 1982, 2;36 PM 3t_040 DEPTH CWSI'L CRIWS WSELK EG HV HL OLOSS BANK ELEV Q QL01.3 QCH WROB ALOB HACH AROB vol- TWA LEFT /RIGHT TImE'. VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOP XL.ONI_ XLC.II XL.OBR ITRIAL IDC ICONT CORAR TOPWID E.NDST U 21114.000 INVI_R1 GRADE BREAK/ MULBERRY JUNCTION PIPE 2Bi4.00 8.17 814.63 818.114 .00 826.02 11.39 .50 .29 817.46 S:5701 0. 5370, 0. 0. 1981 0. 42, 8. 817.46 - - .12 00 27.09 .00 .OiS Oi5 .015 .01.5 806.46 4.24 .009"IU2 50. 50. 50, 6 1.4 0 .00 36.52 40.76 *SEUNO 2664.000 :'_664.00 7.56 813.27 816.74 .00 (324.60 11.33 1.40 .02 816.71 5370, 0. 537(1. 0. 0. M. 0. 43. 9. 816.7E 12 .00 27.02 100 .015 .0i5 .015 .0i5 805.71 5.17 .00942.4 ISO. is(). ISO. 6 1.1 0 no 37.65 42.83 1 tSECNU 2614.000 2614.00 7.65 81;.iI11. 816.54 .00 824.01. 1.0.90 .46 .13 816.46 5370. 0. 5370. I). 0. 203. 0. 43. 9. 816.41+ .i. 00 26.49 .00 .0i5 .015 .015 .015 805.46 5.02 00L1932 50. 50. 50, 4 11 0 .00 37.96 42.98 *SECNU 2414.000 1645 )N) S;LC ADDLD BY RAISING SEC 2414.00, SOOFT AND MULTIPLYING BY 1.000 i.01 7.85 812.81 81.6.03 .00 822.93 10.12 .85 .23 815.96 5370. 0. 5370, 0. 0. 2i0. 0. 43. 9. 815.96 .12 .00 25.52 100 .OiS .015 .015 .OiS 804.96 4.72 .0000 %O 1.00 1.00, 100. 4 11 0 (10 38.57 43.29 1645 IN'r SE.0 ADDED BY RAISING SEC 1.01, ••.SOOF'r AND MULTIPLYING BY 1.000 x'_414.01) El, 04 81.2.50 8!5.52 OO 821 .96 9.47 .77 19 815.46 5370. 0. 5370, 0. 0. 217, 0. 44. 9. 815.4E • 12 .00 24.69 .00 .015 .OiS .OiS .015 804.46 4.44 .007372 1.00. 100. i0O. 4 11 0 .00 39.11 43.56 PAGE 23 SAT, AUG 21, 1902, 2;36 FM SI_CNU ur .' .PTH CWSFL.. CRIWS WSELK EG HV HL OLOSS RANK ELEV 0 £d1. 01i C,1CH QROT' ALOB HACH AROH VOL TWA LEFT /RIGHT TIML: V£ OB VCH VROB XNL XNCH XNR WTN EL.MIN SSTA SI.Of XLOBL. XL.CH XLOBR ITRIAL IDC ICONT CORAR TOPWID E:NDST *SLCNU x 2260.00 11.27 81.1.,96 Eli 4.7 *3 00 820,66 8,70 1..07 .23 S14.69 5370. 0. 5370. 0. 0. 227, 0. 45. 9. 814,69 .1.2 .00 23.67 .00 ,015 .0i5 ,015 (315 803.69 4.09 .006569 154. 154. 1.S4. 4 11 0 ,00 39.83 43,91 4SE£.NU 2210.000 EXI SI 1NG FONTANA CIIANNEL ' u0 B 3S 1111..79 814,24 00 820,28 B.48 .32 .06 817.44 5370, 0. 5370. 0. 0. 230. O. 45. 9. 811.44 .12 .00 23.37 no .0 1.5 .015 015 ni5 803.44 .01 0UK * 0. 50. 50. 4 11 0 no 38,99 39.00 *SE:CNO 2110 , 000 2110.00 8.46 1111..40 813,74 ,00 81.9. S8 1 -3 .17 .61 .09 816.94 0. 5370. 0. 0. 234, 0. 4S. 9. 810.94 00 22.94 .00 .015 .015 .01.5 .015 802.94 101 .005906 100. 100. 100. 4 11 0 00 38.99 39,00 *SE.CNU 2000,000 i64S 1 N1 E. ;E(.: ADDED BY RAISING SEC 2000 .00, .2 20FT AND MULTIPLYING BY i . 000 1.01 8.84 131.1.56 813.63 .00 819.08 7.53 .30 .19 816.72 1:1400. 0. 5400 , 0. 0. 249. 0. 46. 9. W.0.72 X 7.1 .00 22.022.02 .00 ,QiS .01.5 .niS .0151 802.72 .01. .00!)1((1.5 �) �) S . 5S. 4 11 n . 0n 39, 3 9.00 1645 INi SEC ADDED BY RAISING SEC 1.01, --.220FT AND MULTIPLYING BY 1.000 1.000.00 9.30 811,80 [.113.52 .00 818.62 6.82 2 S 21. 816.50 5590, 0. 5590. 0. 0. 267, 0. 46. 9. Eli 0.50 � M .00 20.96 .00 .OiS .015 Oi5 Oi5 H02.50 .01 .004188 55. 55. 55. S 11 0 on 38.99 39.00 PAGE 24 PAGE 2S SAT, AUG 21, i9E12, 2;36 F'M SECN(1 DEPTH CWSEL. C:RIWS WSELK EG I -IV I-IL 01_OSS BANK ELEV Q WLCIB QCFI QROB ALOB HACH AROB VOL TWA LEFT /RIGHT TIME V1.OB VCH VROB XNL. XNCH XNR WTN ELMIN SSTA SLUPE: XL.GBL. XLCH XLCIDR ITRIAL IDC IC:ONT CORAR TOPWID ENDST *;;t:CNO 1950.0 0 0 iY')O.00 9 1:5 0 ((1.1.,60 B13.32 .00 818,41 6.80 ,21 01 816.30 5590. 0. SS90. 0. 0. 267. 0, 46, 9, 810,34 ,i's .00 20,93 00 .015 .015 .015 .015 802,30 .01 004171 SO. S0. 50. 2 li 0 00 38,99 39.00 %ISk C'NI.1 1793. 000 ,. 179:5.00 9. 811,0 812.69 00 817,73 6.72 ,65 ,03 815.67 5)590. If. SS901 0, 0. 269. 0. 47. 9, 809.6( 1'3 .00 20180 00 .0i5 .0i5 ,015 ,015 801,67 .Oi 004090 iS7, iS7, iS7. 3 11 0 (10 38.99 39,00 *t1ECNU 1637.000 i64S 3 N1 SEC ADDED I+Y RAISING SEC 1.637.00, i . OSOFT AND MULTIPLYING BY i . 001 3,501 HV CHANGED MORE THAN HVINS 1,01 El. 87 809,49 811.64 .00 817,27 7.78 .36 ii 814.62 5590. 0. SM. 0. 0. 2SO. 0. 48, 9. 808.62. .1.3 .00 22.38 O(1 .015 ,OiS OAS .015 800,62 .01 OOSist 78. 7£1. 70. 6 11 0 .00 39.02 39.03 164S INT SEC: ADDED BY RAISING SEC i.01, - i.OSOFT AND MULTIPLYING BY ,999 163'7.011 (1,53 8(1(3.10 810.59 00 81.6.74 8.64 .44 .09 813,57 0. 0. 51,'/0, 0. 0. 237. 0. 48. 9. 807,57 13 no 23,59 .00 .015 .0iS .015 ,01.5 799.S7 .01 .0061 '/6 1 /8. 1 /8. 78, 5 11 0 1110 38.99 39.00 i *SECNO 1400,000 • 1645 1N1 SLL ADDED BY RAISING SEC 1400.00, ,475FT AND MULTIPLYING BY 1.001 i3Oi 8.77 807,86 810,12 .00 815,87 £1.01 .68 ,19 813,11 S�S90. 0. 0. 246, 0. 49, i.0. 007. An 1 3 011 .. "!:' , '/ f 0 0 (I 1. 5'4 11154 fl 1 Si 0 f. !ii 799.111 (1 t 00!".1' /..' 1f' /. 119. 1.191 4 ll 0 (In ;39.1)2 ;1'4',0 PAGE 2S 1 5'110 W51 ASSUMED BALED ON MIN I)IFf' 1000.110 10.41 b07,43 00[1, 32 SEt SAT, ALIG 21, 1982, 2;36 PM 0. 4 100 ib, 74 00 00.'830 100. �iUCNCI DEP1 H *aEC ;N0 E100,000 CRIWS WSELK EG HV HI_ OLOSS BANK ELEV Q QLOD QCII QROII ALOB HACH AROB VOL TWA LEFT /RIGH1' TIM. VL.OD VCH VROB XNI_ XNCH XNR WTN EL.MIN SSTA SLOPE XL.OBL XL.CH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST 1645 INT SEC: ADDED BY RAISING SEC" i,ni, - .47SFT AND MULTIPLYING BY 1999 1400,00 8.97 807.S9 809.64 .00 815.12 7.S3 61 .14 812,62 55)90. 0. 5590. 0. 0. 254, 0. 49. L0, 606.62 .13 .00 22.02 .On .015 101.5 .OiS .01.5 798.62 .01 .00408Y 119. 119. 11.9. 4 11 0 .110 30.99 39.00 ~ *SECNO i2oo .000 1;00,(10 9.20 807.02 808,114 .00 814.04 7.02 .92 i5 611.82 SS90 0. 5590. 0. 0. 263. 0. 51. 10. 80S.82 7 7 .00 21,26 00 .0 1.5 OiS 015 OiS 797.82 ,OS .004 301) 200. 200. 200, 4 11 0 00 38.99 39.00 1 *SECNEI 1000,000 164'3 1141 SLL ADDED BY RAISING SEC 1000 .00, .40OFT AND MULTIPLYING BY 1.000 1.01 9.74 807.1.6 808.55 .00 813.42 6.26 .39 .23 811,42 Zi-L 0. 5)700. 0. 0. 284, 0. Si, 10. 80S.42 .14 .00 20.07 .00 .OiS .015 .OiS OiS 797.42 101 .0 031,13.1 1.00, 100, 100. 5 1.1. 0 .00 39.00 39.01 1645 INT SEC ADDED BY RAISING SEC 36M) 2(1 MAL.S A11EiMP1E.D WSEL,CWSEL 5'110 W51 ASSUMED BALED ON MIN I)IFf' 1000.110 10.41 b07,43 00[1, 32 SEt 0. 501.0. 0. 4 100 ib, 74 00 00.'830 100. 100, 1011. *aEC ;N0 E100,000 39.00 39.00 00 (3(10.00 10.08 806.30 807.47 SEI10. 0. 6810. 0. .14 .00 1.9.55 00 0 113;' :'7 P 0 O. 2 O. 200 , i3Oi, - .40OFT AND MULTIPLYING BY 1.000 ,00 812.89 S.45 .32 1 1.3 811.02 0. 310, 0. S2, i(1. 805,02 .0i5 ,015 Oi!; l ois 797. 01 20 El 0 00 39.00 39.00 00 812.23 S.93 .60 OS 810.22 0, 297, n, S3, in, 1104,22 01.5 .0i5 .OiS 015 796,22 .01 8 8 0 on 39.00 39.00 PAGE 26 r«1 :r 1 SAT, AUG 21, 19132, 2;36 F'M ::itiCNU DI -:NTH f1wSF::L. CRIWS WSELK EG HV HL. GLOSS HANK ELEV Q QLCID I.1CFI QR11It ALOB HACH AROB VOL TWA LEFT /RIGH'T TIME VL.OB VCH VROB XNL. XNCH XNR WI'N E.L.MIN SETA '.31.U11L XLUBI_ XL.CH XLOBR ITRIAL IDC ICONT CORAR IOPWID ENDST *t;L:CNU 6'0.0110 6'.0.1)0 9.9 1 ) EMS .4S 1106.77 .00 811.61 6.16 .60 .02 809.50 501.0, 0. 58i0. 0. 0. 292. 0. 55. 1.0. 803,51 .14 .00 1.9.92 .00 .OiS .015 .015 .IIiS 79S.SO .01 .003423 ISO. 180. 180. 4 8 0 .00 39.00 39.00 *t3EGf4u 4 1645 114'1 SEC ADDED BY RAISING SEC 456.00, i.447FT AND MULTIPLYING BY 1999 1.01 9.43 804.21 806.06 .00 8ii.3i 7.10 .21 .09 808.78 SM 0 . 0 . 561O . 0 . 0 . 272. 0 . S5. 10 . 802.78 .14 .011 21.38 00 .OiS .015 0 I OiS 794.78 .01 b .004267 Si,. SS, 59. 7 8 0 .00 30. 96 38.97 164!3 INT SEG ADDED I'(Y RAISING SL::C 1.01, - .723FT AND MULTIPLYING BY i.000 i.02 9,10 803. Ii; 8115.;.10 .00 810.99 7.83 .25 .07 808.05 SE11.0. 0. SOiO. 0. 0. 259. 0. 55, 10. 802.OS .15 .00 22.46 .00 .015 .015 0i5 1015 794.OS .01 0049E.;0 55. 55. 5S. 6 11 0 .00 30.90 30.9P 1645 INT SEC ADDI'_ "D BY RAIST.NG SEC 1.02, - .723FT AND MULTIPLYING BY i.000 456.00 0.84 802.17 804.57 .00 8iO.63 8.46 .29 .06 807.33 Sft101 0. SE110. 0. 0. 249. 0. 5 ;6. 1.1. 801.33 .15 .00 23.34 .00 .015 .Oi5 .015 .1115 793.33 .Oi 005622 SS. SS. SS. 5 11 0 .00 313.99 39.00 *SE:CNO 256.000 PAGE. 27 iS6.U0 9,16 H01.69 803.78 .00 809.36 7.66 1.. 04 .24 806.53 561.0 . U. S U1.0 . 0. 0. 262. 0 . 57. ii . 800 .5?; .1S 00 22 .21 .00 .015 .015 .01.5 Oi5 792.53 .01 .004812 2001 200. 200, 4 11 0 .00 38.99 39.00 sw ow f• 1 - SA , OUG 21 , 1902, 2i'36 PM PAGE 28 51:CN0 1)I::1 CWSEL CRIWS WSELK EG HV HL OI_OSS BANK ELEV w (lt.011 WCH QROB AL.OB HACH AROP VOL. TWA LEFT /RIGHT 1.[Mh Vl -(.)E+ VCH VROB XNL. XNCH XNR WTN EL.MIN SSTA 'iLUt E. XL- Clbl.. XL.C:II XI-.OPR ITRIAL IDC IC:ONT CORAR IOPWID ENDST kthl I:N0 ( , lull) 76,UU 9.37 ts01..1f: S03.0S no 808.39 7.21. .133 .1.4 805.8i St31 0 , 0. SM , 0 , U . 270. 0. S8. 11. 799.81 00 21.Ss .00 .Oi5 .01.5 .015 0 1!i 791.81 .(11 0043' /S illo. 1,1:10. 1.80. 4 11 0 .n0 38.99 - 39.00 t! I SAT, 011G 2.1, 19;:12, 2;36 PM PAGE 29 {II' ( ;2 Ilk.I.LA!'it I)Ar(cD NOV 76 UPDATLD APRIL. 1.980 I.RRIIR CORR - 01,02 ,03,04,(15 MOl).11 ICA(l.0N Will-- A'.,ItK1tiK ( *) AT I.LFT OF CROSS- SECTION NUMBER INDICATES MESSAGE. IN SUMMARY OF ERRORS LIST 01,1tlrll I f.l k: I'H. CONSTRIJ ' &('(40 XI.(;II K*C11SL 1) I:_ AREA 10PWT.D £d VC.1 E:LMIN CWSEL CRIWS L 1< 1 . <'i I10 • iJ00 . 01J . () (1 9.37 272.23 43.1.1 3905,00 1.4.34 927.05 936.42 936.42 939.61 1 * 13ti00. 000 ;2 u0 , 011 • -6.4(1 8. 06 2J.7, B3 :59.14 3905.00 J.7. 93 925.77 933.83 935.15 938.82 13s011 •000 :_'011.11(1 6.40 7.67 203.29 38.01. 3905i.O0 19.21 924.49 932.16 933.89 937.89 1311)(.01) 1) ,(00.1) 1) -.6.41) 7.47 195.7S 37.41. 3905.00 19.95 923.21 930.68 932.58 936.86 3'1. Y 00,000 200.00 • -6.40 7.35 5.91.2S 37.05 3905.00 20.42 921.93 929.28 931.30 935.76 12 /0 u.l)(10 ;.'00.01) -•6.40 7.27 1.(18.20 36.80 3905.00 20.75 920.65 927.92 930.02 934.60 t"Y/3.110 U 1(17. U1) ••6.40 7.23 1.87.00 36.70 3905.00 20,88 91.9.97 927.20 929.34 933.97 1; 3 51)1).1)01) 93.(111 • -8.10 7.14 183. SS 36.42 3905.00 21.28 919.21 926.35 928.58 933.311 1.(300.0 0(1 0 (1 .00 1-3. J.0 7.00 178.19 35.97 3905.00 21.91 917.59 924.59 926.96 932.05 1211)1) .1)11() 200.011 •.B.1.0 6.89 174.57 35.67 3905.00 22.37 915.97 922.87 92S.3S 930.6►.• f)91J0•(I(1(I 200.00 8. 1.0 6.82 172.16 35.47 3905.00 22.611 914.35 921. 1.8 923.73 929.16 i 11.7011.000 21)1).00 -B. 10 6.78 17O.S2 35.33 3905,00 22.90 912.73 919. Si 922.11 927.65 1 1 "0 0. (10 U ':1001 011 £1 , 10 6.74 1.69. 37 3S, 23 39 V-3 . 0 0 23,06 911 . 11 917. 06 920.49 926. 11. 1131)0.1)01) 1 ?() 1).1) 11 -••0.1.0 6.72 168. S6 35. It, 3905.00 23.17 909.49 91.6.21. 918.88 924.55 111(IU. tit) U 01111.110 U. 6.'10 167.91'.1 :3!:3.11. 39 W1 100 2;3.11'.!.1 907.117 914.'Fj(1 91.7.26 Yl!2.9'/ 10950.000 I'd) 00 1.4.81 7.17 163.29 ;33.52 39(15.0(1 23.91 9115.65 912.82 915.62 921..70 tU911U.00(1 !JO (10 14.81) 7.01•.1 i59.99 33•.23 3905.(1(1 24.41 904.91 911.99 914.91 921.24 men m m mm m one"emmmm" wtmtmwm-m M. j. sAr, AUG 21, 1982, 2;36 PM PAGE 30 bI.C14() XLDI K01 -ISL. DEPTH AREA TOPWID Q VCH ELMIN CWSEL CRIWS EG 101)'70.000 30.00 -14.80 7.02 i58.i8 33.06 3905.00 24.69 904.47 911.49 914.47 920.95 S OHM 000 50.00 - 1.4.80 '7.22 164.95 33.67 4090.00 24.80 903.73 910.95 9i3.95 920.S0 1. 00110 .000 20 00 --- 1.4.80 7.1.9 1.63.77 33.57 4090.00 24.97 903.43 910.62 913.63 920.30 000 50.00 - -14.80 7.11. 161.1.1 33.33 4090.00 25.39 902.69 909.80 912.69 919.81 10700 000 510,00 - •14.80 7.05 159.22 33.16 4100.00 2S.7S 901.9S 909.00 912.17 919.30 1U600 ,0011 i(I() .00 - 1.4.8(1 6.94 1.55. 31 32.80 4111(1.00 26.40 900.47 907.41 910.70 918.23 - 1US0 0,000 100.0(1 --1.4.80 7.37 155.26 32.12 4100.00 26.41 898.99 906.36 909.56 917.19 1(J4110,1100 100.00 - ••14.80 7.28 152.02 31.81 4100 00 26.97 897.51 904.79 908.13 916.08 1.0;'1) 1) .001) !00.00 --- 14.80 7.12 1.47.1.7 31..35 41.00.00 27.86 894.SS 901.67 905.18 913.72 10 UU0.000 200,00 --- 14.00 7.02 143.97 31.05 4100.00 28.48 891.59 898.61 902.23 911.20 9900,000 1.1)0.00 -14.80 6.98 142.72 30.92 4100.00 28.73 890. it 897.09 900.68 909.90 91)(l 0,1100 1.00.1) 0 •14,80 7.54 145.48 30.61 4100.00 28. i8 888.63 896.17 899.63 908.50 9600 000 200.00 -14.80 7.4S 1.42.64 30.33 4100.00 28.74 8115.67 893.12 896.74 905.95 945)O,000 i50.U0 -14.80 7.39 141.06 30.17 4100.00 29.07 883.45 690.84 694.53 5+03.96 '1400,11110 SO.0U - 1.4.80 7,4S 1.43.03 30.37 4160.00 29.08 882.71 890.16 893.79 903.30 92.00 .000 200.00 •- 1.4.80 7.40 141.36 30.20 41.60.00 29.43 879.75 Es87.iS 890.83 900.60 9000.000 200,110 - -14.80 7.36 140.14 30.08 4160.00 29.69 876.79 884.iS 887.87 897.83 BUO U , (111) "00 . 00 - 1.4 . H0 7. 33 1'139. 25 29.99 41.60 .00 29.87 873.83 881 , i6 884.91 895.02 0600.0 UU 21)0,00 1.4.110 7.31 138.61 29.93 41.60.00 30.01 870.87 878.18 881.95 892.17 85.x•.(1.000 50.00 - -14.80 7.31 138. Si 29.92 4160.00 30.03 870.13 877.44 Bei.32 891.45 1)444.000 i06.00 - 11.10 7.40 141.32 30.20 4160.00 29.44 868.95 876.35 880.iS 889.81 1'1.1' /4.0110 50.00 - 1.1..07 7. Si 144.75 30,S4 421.0.00 29,013 868.40 875.9i 879.65 889.05 IWO11.111)0 194.00 --11.10 7.62 148.05 30.86 4210.00 211.44 866.25 873.87 877.50 886.42 1.111'.0 , 0 01) 1.511 . U 0 -° 1 1 . 111 7.60 149,713 ;31.. 03 421.0 . 0 0 211. 11 E164 . SC-3 1•.172. 26 875. 03 U04 , 52 Boo()I000 5111.011 -11.10 7,68 1SO.i6 31, 06 4210,00 2L•1.04 864.03 871.71 875.35 883,91 71)00,0011 200 .00 •-1.1,1.0 7.73 15!.61 31.20 4210.00 27,77 661.81 869,54 873.13 881.51 1 SA 1, ALJ1, 2t, 198'2, 2 MAMA XL.1.:11 7600,000 200.00 74114.000 1i6.00 1434.000 50,00 74(10,0(10 :54.00 /330,000 70.00 7;.00.000 10.00 i /f' /0,11011 SU.OU 70(10.1) 00 1.70 00 61;U0.000 4 0 11 .01) 6600.000 2011.00 G48r 61(10.000 200.00 6'50. 000 i5l) , 00 6150,000 100.0U 6t;'S. 000 125. (10 60%5.1100 5(1.00 6059,(10(1 1.6.00 1,04,1.000 1(,.00 61100.11110 43.00 SW 0.000 i5U.00 1 .30011 • 01)1) S 0 . no 56011.00(1 200.00 !'.!400.000 P11O.01) !) .000 (10 .00 S0H0.000 1 !0.01) 4 100.(10 36 PH K *CI-ISI- - 1.1,10 - 11.,10 10 f. f. , 1.0 ii,f.0 11,10 -f 1,1.0 10 1.0 10 f. I • ill 11..10 1.1,12 i i. A 0 - •(.1.10 -11.10 1.1.,10 -- 11,10 •-11,1.0 - if.,f.0 1.1 f.0 fi,1II -11,10 DEPTH 7,76 7.77 7.119 7.89 7.89 7.31 7.31 8.06 8. 00 7 . W-5 7 7,OB 7.116 7.:31 7.31 7.47 7.47 7.46 7.47 7.48 7.48 7.47 7.47 7.46 7.44 7.45 y -2.3. -1 3 i AREA TtOPWID 11 VCH i52,44 31.28 4210.00 27.62 152.71 31,31 42(.0,00 27,57 i56.40 31.66 4280.00 27.37 (.56.39 31.66 4280.00 27,37 i56.32 il31.6S 4280.00 27.38 153.00 31.91 4280.00 27.97 153.11 31.92 4280.00 27.95 17B.Oi 34.18 4760.00 26.74 176,00 34.00 4760.00 27.04 174.22 33.84 4760.00 27.32 172.90 33.73 4760.00 27.53 !71.92 33.64 4760.00 27.69 17i.3S 33.59 4760.00 27.78 167.83 33.93 4760.00 28.36 167.89 33.93 4760.00 28.35 173.46 34.42 870 28.08 173.44 34.42 4870.00 28.08 173.37 34.41 4870,00 28.09 173,39 34.41 4870.00 28.09 173.33 34.41 4870.00 2B.i.0 (.73.27 34.40 4870.00 28.11 173.13 34.39 41170.00 213,1.3 M. 01 34 .30 41370 . 0 0 28.1.5 172. 9 1 34.37 4870.00 21:1.16 172.75 34.36 4870.00 20.19 172,78 34.36 4£170.00 28, i9 PAGE 31 ELHIN CWSEL CRIWS EG 859.59 867.35 870,91 879.19 858.30 866.06 869.62 877.87 857.74 86S.63 869.14 877.26 857.37 865,26 868,75 876,89 856.59 864.48 867.98 876.12 EISS . 48 E162.79 866.42 874.94 855.37 862.68 866.28 874.81 E1S4.Bi 862.87 866.22 873.98 B52.93 860.93 864.37 872.29 850.71 8SB.66 862.16 870.25 848.49 856,40 859.94 868.16 846.27 854,iS 857.72 866.OS 844.60 852.46 856.06 864,45 843,49 BS0.80 854.53 863.29 043.21 85O.S2 854.22 863,01•! 842.66 850.13 853.76 862.37 842.48 849.95 BS3.59 862.19 842,30 849,76 853,4i 862.02 845.8 849.29 852.93 861.54 840.16 847.64 851.27 859,90 839.60 047.08 850.71 859,35 1137.30 844.86 848.49 857.14 835,16 842.63 846.27 854.5'4 1•{32,94 840,41 844.05 852,73 831.61 839,06 842,72 OSi.40 830.SO 837.95 841.61 850.29 E'2'2T8 41'609 0£ 82'96/. 55'6$ 011'01135 00'6E E2'462 . 80'0T 00'0 00'00. 1100'0110 68'218 EE'BOB E4'4U8 80'464 04'8T 00'IITCIS 0I0'6£ 40'UTI T4'OT 006- 00'002 0(10'00(11 * 40'410 18'8118 20' /.118 213'464 92''12; 00'0655 66'8E 56'292 02'6 00'4- 00'002 000'01 41'510 49'608 65'408 '29'1:164 . 20'22 00'06!i!a 66'1:15: 61:1'k!5c: L6'8 1 11'•4 011' 41:,! 1100'01141 * 44'910 65'018 !1!:'81111 45'664 65'S.:i? 00'0655 66'81' 26'9£2 £!5'n 94'El- H0'9'iI 11011' /,5'91 t £4'4T8 69'8;8 20'118 49'TO0 013'02 (10'0655 66'EL1 44'(392 SE'6 1(1'4- 00'4!i1 0(I(1'S•6.I Tb'8T9 2£'£19 09'118 0£'208 £6't12 Q0'0655 66'r3.E . 80'492 OE'6 (10'4 -• 00'05 000'056T 09'8T8 2S'ET8 08'TT8 0S'208 96'U2 00'0655 66'8£ 54'992 OE'6 00'4- 0U'0TT 000'11002 * 85'618 14'£18 00'1;8 46'208 16'22 00'04ES 66'8E 0T'1E2 94'8 00'S- 00'001 000'((110 82'0228 b2'1T8 64'118 64'£08 4£'E2 00'04E5 66'8£ 94'622 5E'3 00'5- 00'05 000'0102 99'029 £L''TR 96'TT8 69'£08 49'£2 00'04£5 £8'6E 06'922 42'8 00'S -- 00'0ST 000'0922 96'12'8 25'518 05'818 91'108 69'12 00'04E5 T1'6I 05'4TE 60'(3 00'.5- 00'0112 000'4162 * T0'b89 65'918 TT'ET8 91'508 64'98 00'04£5 96'4E 224'202 59'4 00'5- 00'05 000'0192 09'028 14'9T8 42'08 T4'508 20'48 00'04E5 59'4E 84'861 95'4 86'0- 00'05T 000'4992 20'9E8 00'818 E9'1T8 91'908 60'42 00'04ES 2S'9£ 12'861 41'8 OT'TI- 00'115 000'41132 T8'9E8 81'818 91'018 TO'408 02'82 00'0480 SE'1£ 69'24T 51'4 OT'TT -- 00'91.T (100'1'9(32 2E'BZB £9'618 46'ST8 25'808 02'82 00'0481 SE'1E 89'241 51'4 OT'1T -- 00'00? 000'000£ '65'0£8 58'T28 6T'BTB 1L'OTB 02'88 00'0481 S£'VE U4'24T 51'4 (11'1'1 -- 00'002: 000'00n 94'2E8 - 40'0E8 11'088 96'218 02'82 00'0480 SE'1E 69'241 51'4 OT'TT- 00'00' 000'004£ 86'0£8 62'928 29'828 8T'ST8 122'82 00'0481 S£'1£ 09'24T 11'4 OT'TT- 00'002 000'009' O2'4E8 TS'828 58'128 00'418 02'82 00'0481 SE'LE 69'24T S4'4 OT'TT- 00'(10' 000'O0r3f.: 21'6£8 £4'0£8 40'428 29'6T8 02'82 00'0486 5£'1£9 49'E CT 54'4 OT'TT- 00'002 00(1'0(104 19'118 56'2£9 0£'628 08'128 61'82 00'0481 9E'1E 14'241 91'4 OT'TT- 00'002 000'00'4 98'£18 4T'SE8 TS'TE8 90'028 6T'82 00'0481 9E'1E 04 50'4 OT'TT- 00'002; ((00'0061' 40'908 6E'4E8 E4'EE8 82'928 61'82 00'0481 9£'11: S4'243 54'4 O'I'1T-- 00'002 000'0094 62'808 T9'6E8 16'5£8 05'828 02'82 00'0481 5£'1E T4'24T 41'4 OT'TT 00'01T 000'0031' 93 SMI3 13SM3 NIW13 H36 b QIMdOJ d3HV H1d1U 1SH3 *>I H31X ON11; 2£ 33Vd Wd 9E '2:861 'T2! !3riV '.IVS 4 i _- L . { 1 ■ 6E808 SO'E08 WT08 T8'T64 55 00'0I85 668E 89698 GE'6 000- 00 00094 9E608 8CE08 69 £$ 18'88 000T85 668E 55'T98 9T 00'0- 00 00095i.! E9'0T8 L5'VO8 L1'808 EE'E64 VE'EE 00010i 668E 68808 088 E8'El- 0049T 000 t 19'TT8 W908 54'S08 05 866T 00 00'6E 99'T68 566 00'0- 00 0000E9 01 SMI43 13SM0 NIW13 H3A b GIMdO.L V36 Hid:10 1SHO*N 1111X OW)N EE 30 Wd 9E 'F.86T '12 onv 'ays 7--- �r 'r . ;SAI, AUG 21, 1982, 2:36 PM PAGE 34 SaIMMF11tY OF ERRORS CAM) UN E.l :NO= 13700 , 000 PROFILE= 1 CRITICAL DEPTH ASSUMED CAU f it)N SLCNO =13500 , 000 F'ROFIL.E= 1 INTERPOL.ATED XSECTIONS USED CAUIICIN SEC;NCI= 7170,000 PROFILE= 1 INTERPOLATED XSECTIONS USED CAUFTUN S CNC)= 2414.000 PROFILE= 1 INTERPOLATED XSECTIONS USED I.i`111I1U0 5E1:NU= 2000,000 PROFILE.= i INTERPOLATED XSECTIONS USED t,AUIICIN SECNO 1637.000 PROFILE= 1 INTERPOLATED XSECTIONS USED CAll 11ON !:jF CNU = 14110. 000 PROFILE= 1 INTERPOLATED XSECTIONS USED t:i11111oN SlCNO = 1000. 000 PROFILE= I INTERPOLATED XSECTIONS USED CAII11uN lsELNU=- 4'36.000 PROFILE= i INTERPOLATED XSECTIONS USED c — PROJECT HYDROLOGY - ON-SITE PHASE If R C F C 8i W C D HYDROLOGY )MANUAL RATIONAL METHOD CALCULATION FORM PROJECT S °uT�IF' -EDGE �lrl -AGE QN45e ►- -�� .d- Cz Le---4- FREQUENCY t'o T r m 0 N Sheet No. I of 9 -Sheets Calculated by __ Checked by —jrv7'-- DRAINAGE AR Soil 81 r: .. R C FC a WC D HYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM PROJECT ?a �>?ivG>; T:)e.» TA FREQUENCY 1a es r m 0 N Sheet No. a of —aSheels Calculated by �..--- .--— '3 zTI - -- Checked by •-------- - *K1vt D RAINAGE AR r: .. . . m NOW m m m RCFC Ek WCD HYDROLOGY JMANUAL RATIONAL METHOD CALCULATION FORM PROJECT G T FREQUENCY le> Y Sheet No. 3 of 'I Sheets Calculated by Chocked by DRAINAGE AREA iDevelopmtnt-'affimmom ---[ Soil 81 • _■Wmm �m� �=� �=� �=� m - m i mmmm = mmm mmmm mmmm mmmm mmmmm mmm mmmmm mmm mmox_mm mom= mm_mm ■■mm ■■rte■■■■■ ®� MEE mmmmmm mmm mmm - ® mmm mmmmm R C R C 81 W C D rIYDR MANUAL RATIONAL METHOD CALCULATION. FORM PROJECT PHA - Er L440- A• be-lfE. FREQUENCY 10 � 'D r D m a h Sheet No. _. of 9• Sheets Calculated by __.___._ - -_ Checked by I DRAINAGE AREA Soil 81 Develop s s m r s es � rs @m as wa � � M w PROJECT Z r D_ rr C f1 R C F C a W C D HYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM Lxr 4e1DGE 1✓►L.LA�.r= PHASE (ti L1$4 P- A r Ee - �'�'� FREQUENCY Io -125 • Sheet No.2— of elSheets Calculated by __.___._ -_ 'lS ICT� Chtckcd by • - - - - - - - - - DRAINAGE AREA Soil Ik Development l Acras A I In1hr. C 4 Q CFS % Q. 1 %.opEsEc - riON CFS v FPS L FT. T MIN. E T REMARKS 9• � BASIN Uo• I°1 , d. G o. 4•Co 1''t '�8a c•(r Z•$ 13 e ou'TG 2S -- 2 No• zv A- P - i. 1.2 1.1 b . 5'14 -• 4 43• '4 - 2g'Q• Rota 20 Jr 8 38 L c : 29.2t o t = 2ct•° .43 -4 -F 3.-1 I- ) ' 4.S• �• 1�•3. FS,eSi� -1• r ZI 4 G , i•of 1•SS G'�S I -3 34 3• 3� j4 ZI 5 3-e� 2 GL 1.59 -51. 2 4 0 8 12-0 - TL ° - r0 2& IS 5 2 o To 24• q•5 13�sIN J4 6> , 27..a. c. .3� 2.02 .G90 0,5 3•I 31 7. 22 F3 -� 2.3`I 1.60 •L to 2.40 Qpu C ,�� . �• Z A-• �,pD U � I�•5 a2 _3.1 +3 -� �•sc � _ �•Q-. PROJECT r I n C i r R C F C ei W C 0 'H YDROLOGY NIANUAL RATIONAL METHOD CALCULATION FORM SbUT 1a21p�E vl(_.L. PHASE - M , LIta ,es r�l✓����yr FREQUENCY Shea No. V of 9 Sheets Calculated by -- --5ATI Checked by - - - - - - - -6r DRAINAGE AREA Soil 81 Development A Acres I In /hr. C 40 C F S Q C F S SLOPE SECTION v FPS L FT. T M I N. E T REMARKS g.-I. Sd sI Q. n• fi z3 a B -c.• 0.28 z•I1 - L-9 0.4 z3 8 13• 1 -1 (-95 - ��83 1.3 a•A•• C Q DU'Tt. 3 -�• z 4• (3L : b • 4 -1' I • "(. 8 _ 4� , g j2au - !Q gAS, ►.a Nc 24• ,a - 4. V 1.IC •554 3.va' 48•'9 3 3a•4• dn1� z`1 + 24 , ' 45. 29 -q t o•S -30.4• g.�.siN tae• z54 ° o•L4 I.98 •G90 a•�. I - "�. 4•c� 3 .II -5 25 � � -c• 2•s 1 -+R3 - LI.Z 3 - I �•4• . 4•a' IZ•`t 2cuTS BAS,N 4•5 `1 i.o8 -544 2.-1. - T z�•< +o =3• g, 1.�it�. ST -Z. 3o•M A" 70. 2G -t- 31' S�4.5 t 4 -•— S°1 •8 t -a A l 3� i ® 1 , m an m an m m m_ ON am, R C R C& w C D i MANUAL RATIONAL METHOD CALCULATION FORM PROJECT M L 4s 1Ep+ tbG ---S -or•Lb FREQUENCY la -'es r m a N Sheet No. 7 of !Sheets Calculated by __ - axTI - Checked by •-- - - - - -- - xrv>< - -- DRAINAGE AREA Soil Ik Development A Acres I In1hr. C AQ CFS E Q CFS SIAPESECTION v FPS L FT. T MIN. ET REMARKS 1�•2 13eislu tio• 2Y 4• c 1 -z9 1• °G84 1 --(. 1:5.1 F�•`1• 42 3•s 2 "1 I�j r3,� 1, • 6�+ � � G . �Z'1 " • �• o• 8 �• �. t 4•• S eru 4Z -s• z8 o •4• 3 °•'j '�io51► t.lv 2��• 3.3 \ 1•�f3 o•L52 2.3 A2•l ,Arty zE 41 an , �g . 3 • I• '2 �'fo Z-1 Q i • ' 21• �. �O 7C zo 0 V 124 No , 3a a. P5 "76 t- �j o.g 8 c 4l. I.t•3 ' 3o B >� c t,•6 I.1.2 •( -T•Z• 0.4. �•!s 14•�(. � O U 1� 33j•Z 47 bbp 45 r 3S 'L 334 -7, 2 R C F C& W C D THYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM PROJECT � 1- a. -t :- ��t� FREQUENCY Z r D_ R C , n www Sheet No, b of -2Sheels Calculated by Checked by - - - - - - - - xrvr - DRAINAGE AREA Soil 8 Dovelopment A Acres I In /hr. C AQ C FS � Q C FS SLOPE SECTION v FPS L FT, T E T MIN. REMARKS gs f.�b• 31 4• 13 2- 4-5 2.15 - 6qo I s- - (. 3.9 a • 2 �. I2.4 p• .I. : 22• z tD.� . �.� . $Ae, W • 3 Z 3.q 3�8 o o •32 F ® 3341 0 • �. 'K-• 2 2 ' 9 -+ o • -4 23 • (e , 343 •q, 51 � a te- • 23 • L -t o Z . 34-3 • `) • • ©. 23.8 34b 53 L�DD 3� -� 5z 3a3 9 714 - f3os�r.a mv. 34 - 5-42 I•z2 ,1,Q2 Q•2 'fc. 23.8 +o•'i. 352 • L 5 q a•DT:> 34 -1-• s3 ,c} P, ,AS0.1 rt0- ?"l r. �„ t 5� I -'1 E7 0 •6°tri 1.aI 4-1• 5A-SIN ►.Iv. 3 3• •2 °I I•s3 . 05 11' QtiD 37 p -1- 21 -3 �y 5�►-1 l.lv • c� 3 q•c I.3 • , �RC� - ,.3 35 4-(SD 13 bvt� 4 + SG d2- X52 L +2 t' Z , p Z 9. m mew wwmw� mwmw m m-ow ow m- RCFC 81 WCD rHYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM PROJECT 'S .TW u - w EF b. j::>m:,a FREQUENCY 1 '-' Sheet No. —I of 9 Sheels Calculated by - - - - - - - - - - - ' - C by - - - - - - - -- - - nq - -- DRAINAGE AREA Soil ek Development ���� - �. viii ANN ANN 100mom ANN = INNIMMINIMMEN WINE mmmmm ANN mm mmmmmmmmmm mm mmm mmm 11000101SENININE mm = mmmm INNION INE AgE EN ANN ANN aw PROJECT I r D n C n R C F C a W C D HYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM � 1 1-A E PHASE i ► t t � Sheet No. I of I. Sheels Calculated by _ .__ - ,_ - _ __ raEVEt.oP•�r�, FREQUENCY Id Yt?s _ - - -_ -- �XTI' Checked by -- - •>ti - -- DRAINAGE AREA Soil 81 Development A Acres I in/hr. C 40 CFS Q CFS SIAP£SECTION v FPS L FT. T MIN. £ T REMARKS I z F3AS�ti.J tJ4' 31 A' ,4 3 -5 9•S 58 19 5A Slu) -00. 3-1 F3 d 3 �•I X39 -535 L v 4.3 �4•Z g,45'N Fl 3g a• •, 3.3 1•L3 .34rj 2• I• 15•I G Ig •5 38 P� IZ• 2 1.42 •'14s 12.9 a - a•5 C' 9SZ � 24 ,24•'3 L� Ig'S �Dp 58 �� T= 18•s 22.2 �.a5.i�.t ��b. 3q ,ec.. •• �•, Z. 1 1 -28 - x}`1 1 -'3 2 S i� q i,t 44 1 3 •'1 GZ lvc a 3 X1.1 viv- ¢01–k. .�.o F.> o - g 2 `( I L.� �•G3 1.33 •551 -59"1' 2•�j 13 •Z li S .—IS"t G3 zo•8 4 * 1 4-- 4- 33 z.aq• PROJECT r D_ R C i n R C F C a W C D 1HYDROLOGY (MANUAL RATIONAL METHOD CALCULATION FORM s 21oGE yILLa(" L. V14 As S. 2 L.)Ma T� , R vEtl-PE� FREQUENCY 1c "" as• Sheet No. 'Z of L Sheets Col'culoted by � XT� Ch@cked by 'htYt [cam RCFC a W C D HYDROLOGY MANUAL shut Na I of ! Sheets RATIONAL METHOD CALCULATION FORM PROJECT L- L-A ';-H 4S S It 1-44S Calculated by r* . 3. FREQUENCY 1a Ch k & d by - - - - - - - - 0 DRAINAGE AREA Soil 61 Development REMARKS -r =TAFMWW-52!49i-���� rr- C G rJYDROLO(BY 1\/IANUAL RATIONAL METHOD CALCULATION FORM Sheol No. of ..._Sheets PROJECT SOUrNQID < LLAGE pH 'Z* L1QG: Calculated by .•._•_.•__ ._ C �EvELcPE Q FREQUENCY 10 `f2S• _ _ •'bXT'�' Ch0cked by `-•• `•- - -��• -- r i n AREA Development mom mm SYSTEM DESIGN CALCULATIONS PRELIMIMARY OUTLET SIZING PHASE If C r 1 4 V` a � AX � Q ��� G/ 6 ® o 'OS aN►'►N t WW Q • •% ol g I I OM � N ►'1 Dt►<JL� 6� I. Z C oc - o 6 0 . 'IL / GL t9 r o Za 6O)Z Lan - ® M m m m i 1 N Q Z _1 C Lan - ® M m m m i 1 \cti� OAKS f 54 15 0 14(, 134 S-roRM 17RAI N 0 in � '\ st s i ti •��\ S� ! Z�f92 35159 %� / 06 19a 0 WAY PNASG Q, Q joo 11 L' a v r � •� h �S O er a a% / 172a�N aO �9.� Cti / (Zo Ac >v✓aY _ U rt E 13 - - Aiz : " p%A q 7:1[ Q / q too co ti • '� - / Rp 30 20 aO �9.� Cti / (Zo Ac >v✓aY _ U rt E 13 - - Aiz : " p%A q 7:1[ Q / q too f] 1 / rO I� 4/ i 36 . r--- d� I �P STORM OQ A1N - - - -- - ------ - - ---- �. =-=.• s• X36 � 3• �� °` ®� c aP a / RO WD w AIZ _ L Nc C PH PsE TL. Q 2S S b eA, w _ \ n 1 1 24 / p f Op O 1...1N -lJ PH As 73r QZ5 / Q 100 1 11 11 I F-kX4Ae Erx7&7eef&'X7 Ccwf-xyOtICW7 By DATE SUBJECT SHEET NO. 12 OF CHKD.BY- DATE - - JOB N e( - U. z 2 U 'E 1- VEIL E G3 L �'RLS -- W-F -1A AMP jk2m NEW V LD. Pc JNI E . i i L 0 1- R' fio t-I IIIEEP 0 I " A HEAT I PLO p C! - T K." U. z 2 U 'E 1- VEIL E G3 L �'RLS -- W-F ' E300e ErX7r)eertx7 Carr »oratlbrf BY DATE —/� SUBJECT —501-17271QII7126 / s7GeG / /-' SHEET NO. OF CHKD. BY DATE lA S7VeA JOB NO. — ILI a i t :H ;; :i_L F� �!__� - - �7F E F� t :: ;H ' 4 L -' FLL�IJ 4 -3 ! i tt E PIR -+ All t-1 0 Li I4 EiJ: i3 C! P {'EL HEAD Kc - - -- - - -�/�- -gam - -- 3 �c -- s_=__ D,0z4, FLOW Q _- { iF.3 . .z D Er- O zi i EE_ - - - _ }_GL _ _ yRLS 1 i 1 FJCX,)L= ErXW)eer x7 Can aaratlior7 BY DATE " —�� SUBJECT ��/ "� I ` E SSE SHEET NO. -OF // S< .e G GHKD. BY DATE QF'EN C FAIIA N EL F L 0 1.0 - - C :? := 1 FIR - - - --- -- � _FI s DI Fa - = =_ EEF - -- f � �� 0. 01 �_ {_; o l • 1 L � F HE TRLS - - - - -- -- - - -.�'•' '',...m..a sue,: ` -- --- - - = —•- _�4t__/�L'I_'-=- /�i�lrriun�_ s /zP - - - -.- S_r O.OZ� - - -- -- - -- -- - ----- - - - - -- ---- - - - - -- - - -- - - -- - - - - -- - --- - - - - -- -- - - o,cz -- - - 10" f9l om 1' _ s i 11 - .0. IDE IF -° i.. r FJCX./AL-7 Erx*7eerjr 7 BY DATE SUBJECT uri,�RioGE l/c�Ac -� IM r SHEET NO. - OF CHKD.BY DATE El 0. JOB NO. - -:_ =lip -fit °l -1 80 IEFUTI -- -- _ 6 E G L - - - -- - - - -- - o p- FL i9ex.1 /e En &x7 EQ73c ratbr7 l752 SUBJECT SOV'C1�R��JVE V �IL.AGC SHEET NO. t OF BY DATE CHKD. BY DATE �VMM , V N OFD_ PPALc _ JOB NO. Cti a - 1Dcz) -1L� t�P-c. C�(��c.•r� -i' C ;vr}� . _ ' � ��, - - - s« QCS� t�� . 2�Xvh.,� Sk P-EE Caf>lkC y a F3x!S I z — >t c ' 4 5 7 8 L.oca I p 1 bq- *5 9 8 115 — -' X 11 Cn 1\ec� ov 03 T. O 2 S 2 1 S t - 2 •� ,03 3Zv" �t r3 13:0 25� 2458 ZS z ►3 to - -. _. � �- -- ��} - - t•5 0 2� 1 339 397 t 89 42 ^. 360 4-11 220 45" tap 25z 355 420 228 43'' � .02 lo(, 20 3(x) 433 tt.3 54 , o s �7 Z 3-7 �- r 0 44 - -I 1 X15 330 - -3 Lot 12 = ci 38 cO"� 13• � 2_5Z 9 3 K X 25 . Zi 2z o 90 toy - - a a 0 2 T\ aL Ot. 0 -- 1(9 24 (06 - -Z ZoG -9 43Z - -1 -©6' SD1 5 ��" ! 321a 48 -oz 206 445 52 2 33C) 5Z ®so • Ot - Is 14� 4Sfl - 3 - 7s is JAI 53b 41,1 W �3 .O! p 53 5+ , •o� �5 14 1 - - - 7 Z." - �5 146 - - -- -- 4 St33 533 ., - 75 t�P-c. C�(��c.•r� -i' C ;vr}� . _ ' � ��, - - - s« QCS� t�� . 2�Xvh.,�