Loading...
HomeMy WebLinkAboutDeclez Channel Watershed Detention Basinii 11 11 r� r� r r n n n r� r n. r i v SOUTHRIDGE VILLAGE DEVELOPMENT FONTANA, CALIFORNIA DECLEZ CHANNEL WATERSHED DETENTION BASIN Prepared by BOYLE ENGINEERING CORPORATION February 1983 r 1 A TABLE OF CONTENTS Introduction Hydrologic Analysis forithe Declez Channel Watershed Hydraulic Sizing of the Detention Basin Outlet Works 1 Summary of Results References Page 1 3 8 13 14 5 t 6 7 9 10 11 12 13 2 TA_ No. - 1 Hydrologic Parameters I 3. 2. Point Rainfall For 6 -Hour Duration Storms Estimated Peak Flows h 4. Elevation- Area - Storage - Discharge Relationship J 5. 100 Yr - K Hr Inflow /Outflow Hydrograph l 6. 1,000 Yr - 6 Hr Inflow /Outflow Hydrograph 7. 10,000 Yr - 6 "Hr Inflow /Outflow Hydrograph { Resul�s 8. Summary of { No. \. FIGURES 1. Declez Channel Wat rshed and Proposed Facilities Page 1 3 8 13 14 5 t 6 7 9 10 11 12 13 2 .� v . :i� .�� .• - . '" " • • • Y16L �'.: I . . �� A+h • LVD a ►• U .• I II /S - - '•- 22 •+ 221" . j 7 :;.. • : + ; 24 .. • '' �' I Rose . • ' I si -a s�1 --} -- \ ••, € y ', a •• ``.23 i "F. 13 ` �� —�i ' � a.• 'op i� 14 Prl! . -_��w �r.dtr Par ce l .. •,� 1 ti ` • t . PJr11 .. g : _ ~ .Lrwe in e f �' 11 °L' -"��� • ._ a- • ► well `. ✓,` ~ T PA G/F /�. •�, • aw^ e ii- - : •'\ • • - i ��•• `.• •� »' • .•• r•: • I /00 valmr riser: ••- ..: .. -• � .1' 17 - — T I `• •• 1. ' . ' .... �' - iq - . r . i . IOJfs • j • 9.! „ . !_� • . , ..:. t: • ?• . /' t ` I . \w\ E^ • /Ois � .t � .E., �• • Y South Fgnt; �. y �. 1 * �• �• � 1 • ' - hrk } ...ai 1�t'�•� �_ _ r \ter • YIIL 7. *- -� -�_� -------- 2J�_�_�_� y `t 7S s • � \ L�• � ?;�.,, ' �t �� }` • � • � 31 • . •,�_ ��: �• • 'fir ' E . �._ �� 1 �\ i:'i V r. ' ta: .....�.. .r.. •a...... �tw- \ I -------- #.JorupsNine L...r> • " ell - 27 1 '.r27 ► '; . 1 1. Radlp„>' ; 1 t• b� •tack •! ,� • •. •.... -.K.. ffr 26 Facility . • �1�/ .•' ' i i r -a • "' yyy ' ' ._ , r , • »»>!. '• 'ha �s...r. r.r ... . .........r !O /e>,•.r 1' •... ' •�• /pa0 I- WAm rA-ZAAr � VE • trI I ! i ' .�, �`. � Well 29 2J :T • C `ssr ' 1 . » p �. » :f� !. 'tj• r `;y i ! 1 . \ • � lul � s � • i � �` I - - -• •• �.. ,. ■ r `�-- .. i T 4 _. �• ._ = t.\ T\ sc�' '�.' t Wit..- ::= I/ o •..'. � Q Rio - ti 1% '\ I Ord / ; • • 1. !• • . t .•� - �r.s.•.w. /.- - - - - -- - - - -... JUN u . i - ••. .r . AVE li t t, _^ ✓ V V A - • _ 'i !)its .. gig" - .... _ - ` tlrsM . • Res: i qi.. - - 1 - - _ - -- :� •7` -- •.mot.. _ _ � - - .. -- .ice...• }� • - �- ! r � / r. . r 1 t .• i •� r" 0 s 1 W e " t -■ a i i J t '.. ••ill � ' _ ••' L ^ � p - , j. � ���.•\ I ►1�. - X11 �' _ J ' .a" .' • .1 J Y / h• r l _.A .r `•c.i' to , ?i a,•' i. ,, :��- ^� �• 1 p / • NAR A w � ( '1 1 I •AVE • � b 'r" 1 1 - - a � � F. f 1 � - •tNes. •• pntsn w ^ate; �` - .__ - _`l �:... - 1' �v' � -i 4 ♦♦ _ � -._ .�. . � .�- - �. 2: . &rd Park 'Trs ,• _ -. �- ':!; ���, .• ' %' •� : � ti � ' ,�; ; � � 1 _ � / � - �� t! /'IS_ • t. •! \ •�_..._ • . � ) nr H C - /... -•. - ••�•i �, ` i. .� . � . ���7 k ': .mac � ,� 1 • ►' ^. - �L ; ^. t �. , j.. in► � . !/. � '!•' I- -E. - I , \Q�' O kit 070- 0 .4" C_ JI t �.!' 1' 1 �\� �v -' i� 4. ♦ ! .7:' fl.. _ •• . �p .. : :.. ^�' - ••` ~\ i� \` ". _s •t• l iy. I,✓ ,� �. •i ^ i �'k,: •��1.:f._ =6' 11'''' •� s•' 7 1 .` / .ai •a 1 - i� , \ :1 ,r �4Y, \I \. J : ` '2.i• �..s, +`• 1 _— �-. ��`. � �F � .�� � a •. i•_ ,� /1. w` •'.- /s�0 :`` ��� ^'` :1�.� - -� �\ fr f / La . w .� (�l,' :.�1:.` .ti i Y 't �_ •��= r - _ 'V r: , f� _•• •��•;_, •fie _ :+, t� ��; �._• RNA CO BERNARD _� v `+' �•\ >✓ = � ,� . ` /�. � �:. � � iv Il 1` �l r w' .+'�Z �. � _ 1.'bRxv RSIDE - _ „ - ¢. , � ^ / �... \� - 'i t),'�;. , ',�'�,li ,!^I 1;�� ( `\/ t� �.>:' " '� �•' ' /•� - . _ �`` �,\ ..)� •;.�. - -- � 1 � � +.n r�'/ til ��•��� � V .( :,. ;s)lf ' + !' :'� h - � - ' :. ry,'�' !' .)• ! �Ii'\`L. ;'�� � _ Z - ti i'- -', • . S c T.i: ' j ./_ \� pp i, \.. t i•. R i : .. '� t„ �� , 1 : a.. f'd y r` / r% r. /. 'ti / � i 17 - :/ •'-`- tt,, �� ,7T -'•:' -" =•. '� '� �`- -• �% Ali I ,�Z' E / ".: a.�f tE J :a - - 'O •. %' 7 • - ':.si/• ,jS/ •I�!7` /',GIs _ .v - �r :• i _/11� >• _ ;. - ,;,�_ ���._ , :v.` :: , N.'�•'- •'°�, 0 '/ `_ y =�1 ,�J;: �, l' 1. /- � `•_._.•: » F . �/• r.� . N.. - ...rte 1 .�t . sr=; l/ � /l, - � l' ..•♦ N » w y4 / >✓ �� _ _ l !`:: ` ::t' �e °. - - :P w .i : >V ?.iw W I - - �"' .r 1 , �! , 1 v ' •`. _ f 1 •, x s•' { : %•.fw` ..D"- • l� t : 'i 1 �1. !r "�'• ♦' \ t. / '� .his' • .ar : _ ' s. .��') .1 -, - .•.� Z w f ►. � 'Y:. .w i ►�: /! t \.L. 'ems ./- -� '� .i.. •�' I i r 1 j , . ' _= f /o , 1 �-� •� � �. t � p i � :.I �� 1/ �� 1 j : i � • t . i ' �. �/ .� ' . � •� • � ;. 1 �� i ! It>� / �.- � �•`..n:. - �.a� V) !/ t .r J , eOO' T!, } c _ l� '�C �� : _•! !i'.' '�' _ .. :1 1601 nqkz j I Z`� � /.\.!./ r . S � � i ^••c mac`•. •r. •. J\ ...a. .� •�, ,G; . .w �o yt Trf.ItN� -: _• w --•• • fir' ��, ':mss •C i"?.� , •'`may /� Y a � •��� •��, •' • "act �� � \ `'�_�� -- LEGEND DRAINAGE AREA BOUNDARY - -- EXISTING FON ANA LATERAL "CHANNEL PROPOSED CONCRETE CHANNEL I — J --► DRAINAGE COURSE • PROPOSED DETENTION BASIN 0 m C F. 0 0 C N 1 t ` r ¢ J =) C. C l - •ESL {`1 �� 1' cU >C d; Iw 2 / _I W j LL a v wJ '. W W Z � - O T a O _ C W C J Z W FIGURI If u u INTRODUCTION I i The Southridge Village Development Project, located in San Bernardino, California, will require the installation of flood control and drainage facilities. Planned facilities include a concrete lined main channel (Declez Channel); a tributary channel to drain the low area between the main channel and the Jurupa IE Mountains; storm drain facilities to collect local runoff and it deliver to the main channel. The facilities also include a detention basin to reduce the estimated 100 -yr, 6 -hr flood peak 1E , flow to less than 2500 cfs in the Fontana Channel. This existing channel is a continuation of the Declez Channel in Riverside It County. This flood peak reduction requirement was stipulated by the Riverside County Flood Control and Water Conservation I WCD District (RCFC& . ) This report summarizes hydrologic the dentention basin. The analyse for Declez Channel Watershed, and Basin Outlet Works. The location Detention Basin and its watershed 1. and hydraulic analyses made for as include hydrologic analysis hydraulic sizing of Detention of the Declez Channel, boundaries are shown in Figure 1 0 t HYDROLOGIC ANALYSIS FOR THE DECLEZ CHANNEL WATERSHED This analysis has been made to develop inflow hydrographs to the proposed detention basin under conditions of ultimate development. The City of Fontana anticipates that the total drainage area except the Jurupa Mountain area will ultimately be urbanized. i� The total area draining into the detention basin is about 6,800 acres (10.62 square miles). It is bounded on the north by the San Bernardino Freeway, on the east by Palmetto Avenue, on the south by the Jurupa Mountains, and on the west by the slope break east of the San Sevaine Channel. The major drainageway through this area is the Declez Channel which extends from Palmetto Avenue to the Fontana Channel. The parameters for hydrologic analysis were determined in ac.cordance with criteria specified by the RCFC &WCD Hydrology Manual (Ref. 1). These parameters were used as input for computer analysis using'Los Angeles District Flood Hydrograph Package (LADFHP) Computer Program (Ref. 2). Hydrologic Parameters Parameters used to develop hydrographs were determined by the Synthetic Unit Hydrograph Method described in the RCFC &WCD Hydrology Manual. This method is similar to that used by the Los 1 4 6 3 Basin Physical Factors - The drainage area (D.A. length y g )� of the g j longest watercourse (L), length along the longest watercourse measured upstream to a point opposite to the centroid of the area (LCA), elevation of headwater (H1) and the elevation of concentration point (H2) were obtained from USGS, 7 -1/2 minute topographic maps. The overall slope of longest watercourse (S) was estimated using the formula S =(H1 - H2) /L. Mannings "n" Values - The n values for use in the Lag formula were calculated on a weighted basis depending on the development conditions assumed. Angeles District, U. S. Army Corps of Engineers, for developing flood hydrographs for drainage basins within the RCFC &WCD. The (� "Valley" Lag curve and S- graph, developed by the Corps of Engineers, were used to develop a synthetic unit hydrograph for 0.015 [' 0.040 the Declez Detention Basin. - undeveloped Basin Physical Factors - The drainage area (D.A. length y g )� of the g j longest watercourse (L), length along the longest watercourse measured upstream to a point opposite to the centroid of the area (LCA), elevation of headwater (H1) and the elevation of concentration point (H2) were obtained from USGS, 7 -1/2 minute topographic maps. The overall slope of longest watercourse (S) was estimated using the formula S =(H1 - H2) /L. Mannings "n" Values - The n values for use in the Lag formula were calculated on a weighted basis depending on the development conditions assumed. Infiltration Rates - The weighted infiltration rates (I) for each drainage area were estimated in accordance with criteria specified by the RCFC &WCD Hydrology Manual. The n values used are as follows: 1r .. n ., Valley area - developed 0.015 [' 0.040 Mountain area - undeveloped (assumed no developed mountain area) Infiltration Rates - The weighted infiltration rates (I) for each drainage area were estimated in accordance with criteria specified by the RCFC &WCD Hydrology Manual. The Soil Survey of San Bernardino County Southwestern Part, California (Ref. 3), was used to determine the hydrological soil �t groups. The soils in this watershed are almost entirely in hydrologic soil groups A and B and have depths generally in (ir excess of 5 feet except for the Jurupa Mountain area. Soil I groups A & B are very permeable. I L The City of Fontana General Plan and the Southridge Village Specific Plan, included in Ordinance 712 and adopted by the JE Fontana City Council on December 15, 1981, were used to determine mom future land uses. X It Table 1 shows the hydrologic parameters used in the analysis. TABLE 1 HYDROLOGIC PARAMETERS D. A. (sq mi) L (mi) LCA (mi) H1 H2 (ft) (f S (ft /mi) n I (in /hr) 10.62 6.43 2.52 1120 833 45 0.020 0.375 it W L� Rainfall I' The point rainfall for 6 -hour duration storms was based on statistical analyses of rainfall records for the Fontana #18 and Miraloma Q.M. Depot 21A stations, as shown in Reference 4. The point rainfall for the various storm periods analyzed is shown in Table 2. TABLE 2 Results The estimated peak flows for each return period are listed in Table 3. 6 POINT RAINFALL FOR 6 -HR DURATION STORMS (INCITES) Return Period Fontana #18 Miraloma Q.M. Declez (Years) Station Station Watershed 100 3.72 3.05 3.3 1,000 5.00 4.10 4.4 10,000 6.24 5.13 5.5 Results The estimated peak flows for each return period are listed in Table 3. 6 (� TABLE 3 ESTIMATED PEAK FLOWS Return Periods Detention Basin Peak Inflow (Years) Utlimate Cond. of Devel. (cfs) 100 5,270 1,000 7,800 10,000 10,350 N G C 1 1 1 1 0 7 J* ff HYDRAULIC SIZING OF THE DETENTION BASIN OUTLET WORKS The hydraulic sizing of the Detention Basin outlet works considered two major goals. First to reduce the estimated 100 - yr, 6 -hr inflow hydrograph, to a discharge less than 2500 cfs, as required by the RDFC &WCD. Second, to provide a spillway with IE capacity to pass the estimated 10,000 -yr. 6 -hr inflow hydrograph, with 1.5 feet of freeboard, as required by the DWR's Division of Safet y of Dams. A 12' x 7' x 166.41' reinforced concrete box was selected to serve as principal spillway. The elevation - discharge relationship for this box were computed using the methods presented in Reference 5 and Reference 6. A 250 ft. long broad - crested weir was selected for the emergency spillway. The spillway crest elevation was set at 843 ft. The capacity was computed using the weir formula presented in Refernce 6. Table 4 shows the Elevation - Area - Storage- Discharge relationships +' developed for the proposed Dentention Basin. 1 1 a Cl TABLE 4 ELEVATION- AREA - STORAGE - DISCHARGE RELATIONSHIP Elevation Area Storage Discharge (ft) (ac) (ac -ft) (cfs) The inflow hydrographs modified puls method. and outflow hydrograph surface elevations for 5, 6 and 7 respectivel 1 were routed through the basin using the The 100 -yr, 1,000 -yr and 10,000 -yr inflow ordinates and the corresponding water each time interval are presented in Tables Y. 9 819 0.00 .00 0 El 822 3.02 2.18 160 824 9.65 14.10 370 826 830 16.00 17.08 40.29 106.43 620 1180 832 17.62 141.12 1430 834 18.16 176.87 1640 836 18.70 213.72 1820 L 838 19.24 251.65 1990 839 19.51 271.02 2070 840 19.78 290.66 2150 841 20.00 310.55 2220 842 20.32 330.71 2290 843 20.47 351.10 2360 'l 844 20.63 371.65 3200 845 21.05 392.49 4680 846 21.38 413.70 6570 847 21.78 435.28 8790 El' 848 22.28 457.31 11310 The inflow hydrographs modified puls method. and outflow hydrograph surface elevations for 5, 6 and 7 respectivel 1 were routed through the basin using the The 100 -yr, 1,000 -yr and 10,000 -yr inflow ordinates and the corresponding water each time interval are presented in Tables Y. 9 TABLE 5 (� 100 YR - 6HR INFLOW /OUTLFOW HYDROGRAPHS Time Inflow Outflox Elev. Time Inflow Outflow Elev. (min) (cfs) (cfs) (ft) (min) (cfs) (cfs) (ft) Ir L it 1 10 150 160 200 207 182 187 822.2 822.2 410 420 1201 996 2172 2112 840.4 839.6 170 214 193 822.3 430 839 2045 838.7 180 221 199 822.4 440 722 1972 837.8 190 229 205 822.4 450 633 1892 836.8 200 241 213 822.5 460 560 1811 835.9 210 270 225 822.6 470 492 1722 834.9 220 335 249 822.8 480 434 1635 834.0 ` 230 454 294 823.3 490 388 1538 833.0 240 629 366 823.9 500 347 1445 832.2 250 843 • 428 824.4 510 310 1343 831.3' 260 1081 509 825.1 520 277 1243 830.5 l 270 1346 613 825.9 530 244 1141 829.8 280 1645 713 826.8 540 213 1027 829.1 290 1975 833 827.8 550 192 925 828.4 300 2320 1008 828.9 560 172 838 827.8 310 2715 1208 830.2 570 147 773 827.3 320 338 3241 4012 1398 1606 831.8 833.7 580 590 122 106 711 654 826.7 826.3 340 4804 1825 836.0 600 98 594 825.8 350 5198 2023 838.4 610 90 531 825.3 360 4887 2173 840.4 620 81 475 824.8 (_ 370 3837' 2254 841.5 630 71 425 824.4 380 2693 2274 841.8 640 58 380 824.1 390 1944 2259 841.6 650 41 312 823.4 400 1493 2223 841.1 660 17 248 822.8 L it 1 10 U TABLE 6 1,000 YR - 6 HR INFLOW /OUTFLOW HYDROGRAPHS Time Inflow Outflow Elev. Time Inflow Outflow Elev. (min) (cfs) (cfs) (ft) (min) (cfs) (cfs) (ft) rN 90 216 179 822.2 390 2951 3505 844.2 100 236 192 822.3 400 2271 2862 843.6 110 252 205 822.4 410 1831 2409 843.1 120 269 219 822.5 420 1521 2324 842.5 130 291 234 822.7 430 1285 2276 841.8 140 327 254 822.9 440 1107 2221 841.0 150 377 281 823.1 450 970 2159 840.2 160 433 314 823.5 460 857 2091 839.3 170 495 353 823.8 470 754 2020 838.4 180 564 387 824.1 480 666 1943 837.4 190 646 419 824.4 490 594 1862 836.5 200 747 460 824.7 500 532 1777 835.5 210 868 511 825.1 510 474 1689 834.6, 220 230 1025 1239 575 649 825.6 826.2 520 530 422 372 1599 1503 833.7 832.8 240 1510 731 826.9 540 325 1409 831.9 250 1823 834 827.8 550 290 1304 831.0 260 2162 990 828.8 560 259 1207 830.2 270 2533 1179 830.0 570 222 1095 829.5 280 2948 1344 831.4 580 184 983 828.8 290 3400 1518 832.9 590 159 882 828.1 J 300 3871- 1692 834.6 600 146 807 827.6 310 4407 1869 836.6 610 133 743 827.0 320 5117 2056 838.8 620 119 684 826.5 l 330 6153 2262 841.6 630 104 85 629 826.0 825.5 340 7216 3813 844.4 640 563 350 7725 6660 846.0 650 59 500 825.0 360 7251 7151 846.3 660 26 441 824.6 370 5743 6031 845.7 670 4 387 824.1 380 4074 4560 844.9 680 1 314 823.5 690 0 246 822.8 �I 1 '_ 11 TABLE 7 � 10,000 YR -6 HR INFLOW OUTFLOW HYDROGRAPHS ® Time Inflow Outflow Elev. Time Inflow Outflow Elev. (min) (cfs) (efs) (ft) (min) (cfs) (cfs) (ft) 60 273 186 822.2 390 3975 4478 844.9 70 367 225 822.6 400 3063 3551 844.2 80 470 278 823.1 410 2472 2961 843.7 90 576 343 823.7 420 2056 2564 843.2 100 676 397 824.2 430 1739 2343 842.8 110 751 441 824.5 440 1498 2304 842.2 120 809 486 824.9 450 1312 2258 841.5 130 863 533 825.3 460 1159 2206 840.8 140 928 582 825.7 470 1020 2147 840.0 150 1008 - 633 826.1 480 900 2081 839.2 160 1091 676 826.4 490 802 2013 838.3 170 1180 724 826.9 500 717 1938 837.4 180 1277 776 826.3 510 639 1860 836.5 190 1387 834 827.8 520 568 1778 835.5 t 200 1521 911 828.3 530 500 1691 834.6 210 167 9 100 5 828. 9 54 0 436 1602 8 833.7 220 1882 1113 829.6 550 388 1508 832.8 230 2154 1226 830.3 560 347 1416 831.9 �j 240 2498 1345 831.4 570 297 1312 831.1 250 2893 1479 832.5 580 247 1212 830.3 I 260 3320 1622 833.9 590 213 1100 829.5 270 3788 1770 835.4 600 194 989 828.8 .l 280 4309 1928 837.2 610 176 889 828.2 290 4878 2092 839.3 620 157 813 827.6 300 5468 2260 841.6 630 137 749 827.1 310 6140 3120 843.9 640 111 688 826.6 320 7030 5800 845.6 650 78 631 826.1 330 8327 7829 846.6 660 34 558 825.5 340 9656 9380 847.2 670 5 490 824.9 350 10278 10170 847.5 680 1 429 824.5 360 9638 9702 847.4 690 0 376 824.0 370 7670 7963 846.6 700 0 297 823.3 380 5473 5951 845.7 710 0 233 822.7 1 1 ' 12 io t �e m u u t i SUMMARY OF RESULTS Table 8 summarizes the.peak inflow and outflow, the maximum water surface elevations in the detention basin and the freeboard available within the reservoir. TABLE 8 SUMMARY OF RESULTS Return Peak Inflow Peak Outflow Water Surf Freeboard Period Elevation (Years) (cfs) (cfs) (ft) (ft) 100 5,200 2,270 841.8 7.2 1 7,730 7,150 846.5 2.7 10,000 10,280 10,170 847.5 1.5 13 REFERENCES 5. U.S. Department of Transportation, Dec. 1965, Hydraulic Charts for the Selection of Highway Culverts. Hydraulic Engineering Circular No. 5 ii 6. E. F. Brates and H. W. King, 1976, Handbook of Hydraulics. For the Solution of Hydraulic Engineering Problems. Sixth �I Edition. It 1 J 1 1 1 � 14 1. Riverside County Flood Control and Water Conservation Distrsict, April 9, 1978. Hydrology Manual 2. U. S. Corps of Engineers, Nov. 1978. Los Angeles District Flood Hydrograph Package. Computer Program #723- 69 -L1003 3. USDA Soil Conservation Service, Jan. 1980. Soil Survey of San Bernardino County, Southwestern Part, California 4. State of California, The Resources Agency, Department of Water Resources, Oct. 1976, Rainfall Analysis for Drainage Design. Volume I. Short - Duration Precipitation Frequency " Data. Bulletin No 195 5. U.S. Department of Transportation, Dec. 1965, Hydraulic Charts for the Selection of Highway Culverts. Hydraulic Engineering Circular No. 5 ii 6. E. F. Brates and H. W. King, 1976, Handbook of Hydraulics. For the Solution of Hydraulic Engineering Problems. Sixth �I Edition. It 1 J 1 1 1 � 14 1' SOUTHRIDGE VILLAGE DEVELOPMENT f Supplement #1 to report !� DECLEZ_CHANNEL WATERSHED- DETENTION MARCH 1983 I The emergency spillway, presented in the initial report, was modified to provide a spillway with capacity to pass the 17,000 -Yr 24 -hr inflow hydrograph with 1.5 feet of freeboard, as required by the DWR's r Division of Safety of Dams. The two tables presented in this supplement show the revised Elevations- Area - Storage- Discharge Relationships and the 17,000 -Yr 24 -hr inflow and outflow hydrographs. u 1 f I re SOUTHRIDGE PEVELOPMEFT PROJECT DECLEZ CHANNEL DETENTION BASIN ELEVATION- AREA - STORAGE - DISCHARGE RELATIONSHIP Elevation Area Storage Discharge (ft) (ac) (ac -ft) (cfs) 819 0.00 .00 0 822 3.02 2.18 160 824 9.65 14.10 370 826 16.00 40.29 620 828 16.54 72.82 860 830 17.08 106.43 1180 832 17.62 141.12 1430 834 .18.16 176.87 1640 836 18.70 213.72 1820 838 19.24 251.65 -1990 839 19.51 271.02 2070 840 19.78 290.66 2150 841 20.00 310.55 2220 842 20.32 337-Mt 2290 843 20.47 351.10 3130 844 20.63 371.65 4610 845 21.05 392.49 6500 846 21.38 413.70 8730 847 21.78 435.28 11250 848 22.28 457.31 14020 Based on: 1. - Principal Spillway: 12' x 7' x 166.41' Reinforced Concrete Box 2. - Emergency Spillway: 250' Long Broad - crestal Weir with a spillway crest elevation of 842 � I �� G u SOUTHRIDGE DEVELOPMENT PROJECT DECLEZ CHANNEL DETENTION BASIN 17,000 -Yr; 24 -Hr INFLOW /OUTFLOW HYDROGRAPHS 6 11w TIME E r:Min INFLOWI (cfs) OUTFLOW (cfs) ELEV. (ft) TIME Hr:Min INFLOWI (cfs) OUTFLOW (cfs) ELEV. (ft) 0:00 100 0 819.0 12:30 10,500 9,640 846.4 0:30 230 180 822.2 13:00 12,883 12,570 847.5 1:00 340 240 822.7 13:30 8,400 9,820 846.4 1:30 2:00 500 600 330 420 823.6 824.4 14:00 14:30 5,600 4,350 5,950 4,680 844.7 844.0 2:30 .640 490 824.9 15:00 3,600 3,830 843.5 3:00 680 540 825.4 15:30 3,050 3,230 -843.1 3:30 710 590 825.8 16:00 2,650 2 842.7 4:00 750 640 826.1 16:30 2,400 2,550 842.3 4:30 800 670 826.4 17:00 2,200 2,320 842.0 5:00 815 710 826.7 17:30 2,020 2,270 841.7 5:30 900 750 827.0 18:00 1,900 2,230 841.1 6:00 990 800 827.5 18:30 1,700 2,170 840.3 6:30 7:00 1,150 1,380 870 1,000 828.1 828.9 19:00 19:30 1,450 1,280 2,080 1,970 839.1 837.7 7:30 1,570 1,160 829.9 20:00 1,18 0 1,850 836.2 8:00 1,700 1,280 830.9 20:30 1,100 1,710 834.8 8:30 1,850 1,410 831.9 21:00 1,050 1,580 833.5 9:00 2,000 1,520 832.9 21:30 1,000 1,460 832.4 9:30 2,325 1,660 834.3 22:00 980 1,350 831.4 10:00 2,710 1,820 836.0 22:30 920 1,250 830.6 10:30 3,100 2,000 838.2 23:00 900 1,160 829.9 11:00 3,700 2 840.9 23:30 880 1,070 829.3 11:30 4,500 3,590 843.3 24:00 860 1,000 828.9 ' 12:00 6,940 6,270 844.9 24:30 840 950 828.6 17,000 -Yr; 24 -Hr Inflow Hydrograph provided by the State Division of Safety of Dams. This inflow hydrograph was stamped "DRAFT ". 1 1