HomeMy WebLinkAboutDeclez Channel Watershed Detention Basinii
11
11
r�
r�
r
r
n
n
n
r�
r
n.
r
i
v
SOUTHRIDGE VILLAGE DEVELOPMENT
FONTANA, CALIFORNIA
DECLEZ CHANNEL WATERSHED
DETENTION BASIN
Prepared by
BOYLE ENGINEERING CORPORATION
February 1983
r
1
A
TABLE OF CONTENTS
Introduction
Hydrologic Analysis forithe Declez Channel Watershed
Hydraulic Sizing of the Detention Basin Outlet Works
1 Summary of Results
References
Page
1
3
8
13
14
5
t
6
7
9
10
11
12
13
2
TA_
No.
-
1
Hydrologic Parameters
I 3.
2.
Point Rainfall For 6 -Hour Duration Storms
Estimated Peak Flows
h
4.
Elevation- Area - Storage - Discharge Relationship
J
5.
100 Yr - K Hr Inflow /Outflow Hydrograph
l 6.
1,000 Yr - 6 Hr Inflow /Outflow Hydrograph
7.
10,000 Yr - 6 "Hr Inflow /Outflow Hydrograph
{
Resul�s
8.
Summary of
{ No.
\. FIGURES
1.
Declez Channel Wat rshed and Proposed Facilities
Page
1
3
8
13
14
5
t
6
7
9
10
11
12
13
2
.� v . :i� .�� .• - . '" " • • • Y16L �'.: I . . �� A+h • LVD a ►• U .• I II /S - - '•-
22 •+ 221" . j 7 :;.. • : + ; 24 .. • '' �' I Rose . • '
I si -a s�1 --} -- \ ••, € y ', a •• ``.23 i "F. 13
` �� —�i ' � a.• 'op i� 14 Prl! . -_��w �r.dtr Par ce l
.. •,� 1 ti ` • t . PJr11 .. g : _ ~ .Lrwe in e f �' 11 °L' -"��� • ._ a- • ► well
`. ✓,` ~ T PA G/F /�. •�, • aw^ e ii- - : •'\ • • - i ��•• `.• •� »' • .•• r•: • I /00 valmr riser: ••- ..: .. -• � .1'
17 - — T I
`• •• 1. ' . ' .... �' - iq - . r . i . IOJfs • j • 9.! „ . !_� • . , ..:. t: • ?• . /' t ` I
. \w\ E^ • /Ois � .t �
.E., �• • Y South Fgnt; �. y �. 1 * �• �• � 1 • ' - hrk }
...ai 1�t'�•� �_ _ r \ter • YIIL 7. *- -� -�_� -------- 2J�_�_�_�
y `t 7S
s • � \ L�• � ?;�.,, ' �t �� }` • � • � 31 • . •,�_ ��: �• • 'fir ' E . �._ ��
1 �\ i:'i V r. ' ta: .....�.. .r.. •a...... �tw- \ I -------- #.JorupsNine L...r> • " ell -
27 1 '.r27 ► '; . 1 1. Radlp„>' ; 1 t• b� •tack •! ,�
• •. •.... -.K.. ffr 26 Facility . • �1�/ .•' ' i i
r -a • "' yyy ' '
._ , r , • »»>!. '• 'ha �s...r. r.r ... . .........r !O /e>,•.r 1' •... ' •�• /pa0 I-
WAm rA-ZAAr � VE • trI I ! i ' .�, �`. � Well 29
2J
:T • C `ssr ' 1 . » p �. » :f� !. 'tj• r `;y i ! 1 . \ • �
lul
� s � • i � �` I - - -• •• �.. ,. ■ r `�-- ..
i
T
4
_. �• ._ = t.\ T\ sc�' '�.' t Wit..- ::= I/ o •..'. � Q
Rio - ti 1% '\ I Ord / ; • • 1. !• • . t .•� - �r.s.•.w. /.- - - - - -- - - - -...
JUN
u . i - ••. .r . AVE li t t, _^ ✓ V V A - • _ 'i !)its ..
gig" - ....
_ - ` tlrsM . • Res: i qi.. - -
1
- - _ - -- :� •7` -- •.mot.. _ _ � - -
.. -- .ice...• }� • - �- ! r � / r. .
r 1
t .•
i •�
r"
0
s
1
W e "
t -■
a
i
i J t
'.. ••ill � '
_ ••' L ^ � p - , j. � ���.•\ I ►1�. - X11 �' _ J ' .a" .'
• .1 J
Y / h•
r
l
_.A .r `•c.i' to , ?i a,•' i. ,, :��- ^� �• 1 p /
• NAR A w � ( '1 1 I
•AVE • � b 'r"
1 1 - -
a
� � F.
f 1 � - •tNes. •• pntsn w ^ate; �` - .__ - _`l �:... - 1' �v' � -i 4 ♦♦ _ � -._ .�.
. � .�- - �. 2: . &rd Park 'Trs ,• _ -. �- ':!; ���, .• ' %' •� : � ti � ' ,�; ; � � 1 _ � / � - �� t! /'IS_ •
t. •! \ •�_..._ • . � ) nr H C - /... -•. - ••�•i �, ` i. .� . � . ���7 k ': .mac � ,� 1 • ►' ^. - �L ; ^. t �. , j.. in► � . !/. �
'!•' I- -E. - I , \Q�' O
kit
070- 0
.4" C_ JI t �.!' 1' 1 �\� �v -' i� 4. ♦ ! .7:' fl..
_ •• . �p .. : :.. ^�' - ••` ~\ i� \` ". _s •t• l iy. I,✓ ,� �. •i ^ i �'k,: •��1.:f._ =6' 11'''' •� s•' 7
1 .` / .ai •a 1 - i� , \ :1 ,r �4Y, \I \. J : ` '2.i• �..s, +`• 1
_— �-. ��`. � �F � .�� � a •. i•_ ,� /1. w` •'.- /s�0 :`` ��� ^'` :1�.� - -� �\ fr f / La . w .� (�l,' :.�1:.` .ti i
Y 't �_ •��= r - _ 'V r: , f� _•• •��•;_, •fie _ :+, t� ��; �._•
RNA CO BERNARD _� v `+' �•\ >✓ = � ,� . ` /�. � �:. � � iv Il 1` �l r w' .+'�Z �. � _ 1.'bRxv
RSIDE - _ „ - ¢. , � ^ / �... \� - 'i t),'�;. , ',�'�,li ,!^I 1;�� (
`\/
t� �.>:' " '� �•' ' /•� - . _ �`` �,\ ..)� •;.�. - -- � 1 � � +.n r�'/ til ��•��� � V .( :,. ;s)lf ' + !' :'� h - � - ' :. ry,'�' !' .)• ! �Ii'\`L. ;'�� � _
Z - ti i'- -', • . S c T.i: ' j ./_ \� pp i, \.. t i•. R i : .. '� t„ �� , 1 : a.. f'd y r` / r% r. /. 'ti /
�
i 17 -
:/ •'-`- tt,, �� ,7T -'•:' -" =•. '� '� �`- -• �% Ali I ,�Z' E / ".: a.�f tE J
:a - - 'O •. %' 7 • - ':.si/• ,jS/ •I�!7` /',GIs
_
.v - �r :•
i _/11� >• _ ;. - ,;,�_ ���._ , :v.` :: , N.'�•'- •'°�, 0 '/ `_ y =�1 ,�J;: �, l' 1. /- � `•_._.•:
» F . �/• r.� . N.. - ...rte 1 .�t . sr=; l/ � /l, - � l' ..•♦ N
» w y4 / >✓ �� _ _ l !`:: ` ::t' �e °. - - :P w .i : >V ?.iw
W I - - �"' .r 1 , �! , 1 v ' •`. _ f 1 •, x s•' { : %•.fw` ..D"- • l� t : 'i 1 �1. !r "�'• ♦'
\ t. / '� .his' • .ar : _ ' s. .��') .1 -, - .•.�
Z w f ►. � 'Y:. .w i ►�: /! t \.L. 'ems ./- -� '� .i.. •�' I i r 1 j , . '
_= f /o , 1 �-� •� � �. t � p i � :.I �� 1/ �� 1 j : i � • t . i ' �. �/ .� ' . � •� • � ;. 1 �� i ! It>� / �.- � �•`..n:. - �.a�
V) !/ t .r J , eOO' T!, } c _ l� '�C �� : _•! !i'.' '�' _ ..
:1 1601
nqkz
j I Z`� � /.\.!./ r . S � � i ^••c mac`•. •r. •. J\ ...a. .� •�, ,G; .
.w �o yt Trf.ItN� -: _• w --•• • fir' ��, ':mss
•C
i"?.� , •'`may /�
Y a � •��� •��, •' • "act �� � \ `'�_�� --
LEGEND
DRAINAGE AREA BOUNDARY
- -- EXISTING FON ANA LATERAL "CHANNEL
PROPOSED CONCRETE CHANNEL I
— J
--► DRAINAGE COURSE
• PROPOSED DETENTION BASIN
0 m C F.
0 0 C
N 1
t `
r ¢
J =) C.
C l
- •ESL {`1 ��
1'
cU >C
d;
Iw
2
/ _I
W j
LL
a v
wJ '.
W W
Z � -
O
T a
O _
C
W C
J Z
W
FIGURI
If
u
u
INTRODUCTION
I i The Southridge Village Development Project, located in San
Bernardino, California, will require the installation of flood
control and drainage facilities. Planned facilities include a
concrete lined main channel (Declez Channel); a tributary channel
to drain the low area between the main channel and the Jurupa
IE Mountains; storm drain facilities to collect local runoff and
it deliver to the main channel. The facilities also include a
detention basin to reduce the estimated 100 -yr, 6 -hr flood peak
1E , flow to less than 2500 cfs in the Fontana Channel. This existing
channel is a continuation of the Declez Channel in Riverside
It County. This flood peak reduction requirement was stipulated by
the Riverside County Flood Control and Water Conservation
I WCD
District (RCFC& . )
This report summarizes hydrologic
the dentention basin. The analyse
for Declez Channel Watershed, and
Basin Outlet Works. The location
Detention Basin and its watershed
1.
and hydraulic analyses made for
as include hydrologic analysis
hydraulic sizing of Detention
of the Declez Channel,
boundaries are shown in Figure
1
0
t
HYDROLOGIC ANALYSIS FOR THE DECLEZ CHANNEL WATERSHED
This analysis has been made to develop inflow hydrographs to the
proposed detention basin under conditions of ultimate
development. The City of Fontana anticipates that the total
drainage area except the Jurupa Mountain area will ultimately be
urbanized.
i�
The total area draining into the detention basin is about 6,800
acres (10.62 square miles). It is bounded on the north by the
San Bernardino Freeway, on the east by Palmetto Avenue, on the
south by the Jurupa Mountains, and on the west by the slope break
east of the San Sevaine Channel. The major drainageway through
this area is the Declez Channel which extends from Palmetto
Avenue to the Fontana Channel.
The parameters for hydrologic analysis were determined in
ac.cordance with criteria specified by the RCFC &WCD Hydrology
Manual (Ref. 1). These parameters were used as input for
computer analysis using'Los Angeles District Flood Hydrograph
Package (LADFHP) Computer Program (Ref. 2).
Hydrologic Parameters
Parameters used to develop hydrographs were determined by the
Synthetic Unit Hydrograph Method described in the RCFC &WCD
Hydrology Manual. This method is similar to that used by the Los
1 4
6
3
Basin Physical Factors - The drainage area (D.A. length y g )� of the g
j longest watercourse (L), length along the longest watercourse
measured upstream to a point opposite to the centroid of the area
(LCA), elevation of headwater (H1) and the elevation of
concentration point (H2) were obtained from USGS, 7 -1/2 minute
topographic maps. The overall slope of longest watercourse (S)
was estimated using the formula S =(H1 - H2) /L.
Mannings "n" Values - The n values for use in the Lag formula
were calculated on a weighted basis depending on the development
conditions assumed.
Angeles District, U.
S. Army Corps of Engineers,
for developing
flood hydrographs for
drainage basins within the
RCFC &WCD. The
(�
"Valley" Lag curve and S- graph, developed by the
Corps of
Engineers, were used
to develop a synthetic unit
hydrograph for
0.015
['
0.040
the Declez Detention
Basin.
- undeveloped
Basin Physical Factors - The drainage area (D.A. length y g )� of the g
j longest watercourse (L), length along the longest watercourse
measured upstream to a point opposite to the centroid of the area
(LCA), elevation of headwater (H1) and the elevation of
concentration point (H2) were obtained from USGS, 7 -1/2 minute
topographic maps. The overall slope of longest watercourse (S)
was estimated using the formula S =(H1 - H2) /L.
Mannings "n" Values - The n values for use in the Lag formula
were calculated on a weighted basis depending on the development
conditions assumed.
Infiltration Rates - The weighted infiltration rates (I) for
each drainage area were estimated in accordance with criteria
specified by the RCFC &WCD Hydrology Manual.
The n values used
are as follows:
1r .. n .,
Valley area
- developed
0.015
['
0.040
Mountain area
- undeveloped
(assumed no
developed mountain
area)
Infiltration Rates - The weighted infiltration rates (I) for
each drainage area were estimated in accordance with criteria
specified by the RCFC &WCD Hydrology Manual.
The Soil Survey of San Bernardino County Southwestern Part,
California (Ref. 3), was used to determine the hydrological soil
�t groups. The soils in this watershed are almost entirely in
hydrologic soil groups A and B and have depths generally in
(ir excess of 5 feet except for the Jurupa Mountain area. Soil
I groups A & B are very permeable.
I L The City of Fontana General Plan and the Southridge Village
Specific Plan, included in Ordinance 712 and adopted by the
JE Fontana City Council on December 15, 1981, were used to determine
mom future land uses.
X
It Table 1 shows the hydrologic parameters used in the analysis.
TABLE 1
HYDROLOGIC PARAMETERS
D. A.
(sq mi)
L
(mi)
LCA
(mi)
H1 H2
(ft) (f
S
(ft /mi)
n I
(in /hr)
10.62
6.43
2.52
1120 833
45
0.020 0.375
it
W
L�
Rainfall
I'
The point rainfall for 6 -hour duration storms was based on
statistical analyses of rainfall records for the Fontana #18 and
Miraloma Q.M. Depot 21A stations, as shown in Reference 4. The
point rainfall for the various storm periods analyzed is shown in
Table 2.
TABLE 2
Results
The estimated peak flows for each return period are listed in
Table 3.
6
POINT RAINFALL FOR 6 -HR
DURATION STORMS
(INCITES)
Return Period
Fontana #18
Miraloma Q.M.
Declez
(Years)
Station
Station
Watershed
100
3.72
3.05
3.3
1,000
5.00
4.10
4.4
10,000
6.24
5.13
5.5
Results
The estimated peak flows for each return period are listed in
Table 3.
6
(� TABLE 3
ESTIMATED PEAK FLOWS
Return Periods Detention Basin Peak Inflow
(Years) Utlimate Cond. of Devel.
(cfs)
100 5,270
1,000 7,800
10,000 10,350
N
G
C
1
1
1
1
0
7
J*
ff HYDRAULIC SIZING OF THE DETENTION BASIN OUTLET WORKS
The hydraulic sizing of the Detention Basin outlet works
considered two major goals. First to reduce the estimated 100 -
yr, 6 -hr inflow hydrograph, to a discharge less than 2500 cfs, as
required by the RDFC &WCD. Second, to provide a spillway with
IE capacity to pass the estimated 10,000 -yr. 6 -hr inflow hydrograph,
with 1.5 feet of freeboard, as required by the DWR's Division of
Safet y of Dams.
A 12' x 7' x 166.41' reinforced concrete box was selected to
serve as principal spillway. The elevation - discharge
relationship for this box were computed using the methods
presented in Reference 5 and Reference 6.
A 250 ft. long broad - crested weir was selected for the emergency
spillway. The spillway crest elevation was set at 843 ft. The
capacity was computed using the weir formula presented in
Refernce 6.
Table 4 shows the Elevation - Area - Storage- Discharge relationships
+' developed for the proposed Dentention Basin.
1
1 a
Cl
TABLE 4
ELEVATION- AREA - STORAGE - DISCHARGE RELATIONSHIP
Elevation
Area
Storage
Discharge
(ft)
(ac)
(ac -ft)
(cfs)
The inflow hydrographs
modified puls method.
and outflow hydrograph
surface elevations for
5, 6 and 7 respectivel
1
were routed through the basin using the
The 100 -yr, 1,000 -yr and 10,000 -yr inflow
ordinates and the corresponding water
each time interval are presented in Tables
Y.
9
819
0.00
.00
0
El
822
3.02
2.18
160
824
9.65
14.10
370
826
830
16.00
17.08
40.29
106.43
620
1180
832
17.62
141.12
1430
834
18.16
176.87
1640
836
18.70
213.72
1820
L
838
19.24
251.65
1990
839
19.51
271.02
2070
840
19.78
290.66
2150
841
20.00
310.55
2220
842
20.32
330.71
2290
843
20.47
351.10
2360
'l
844
20.63
371.65
3200
845
21.05
392.49
4680
846
21.38
413.70
6570
847
21.78
435.28
8790
El'
848
22.28
457.31
11310
The inflow hydrographs
modified puls method.
and outflow hydrograph
surface elevations for
5, 6 and 7 respectivel
1
were routed through the basin using the
The 100 -yr, 1,000 -yr and 10,000 -yr inflow
ordinates and the corresponding water
each time interval are presented in Tables
Y.
9
TABLE 5
(� 100 YR - 6HR INFLOW /OUTLFOW HYDROGRAPHS
Time Inflow Outflox Elev. Time Inflow Outflow Elev.
(min) (cfs) (cfs) (ft) (min) (cfs) (cfs) (ft)
Ir
L
it
1 10
150
160
200
207
182
187
822.2
822.2
410
420
1201
996
2172
2112
840.4
839.6
170
214
193
822.3
430
839
2045
838.7
180
221
199
822.4
440
722
1972
837.8
190
229
205
822.4
450
633
1892
836.8
200
241
213
822.5
460
560
1811
835.9
210
270
225
822.6
470
492
1722
834.9
220
335
249
822.8
480
434
1635
834.0
`
230
454
294
823.3
490
388
1538
833.0
240
629
366
823.9
500
347
1445
832.2
250
843 •
428
824.4
510
310
1343
831.3'
260
1081
509
825.1
520
277
1243
830.5
l
270
1346
613
825.9
530
244
1141
829.8
280
1645
713
826.8
540
213
1027
829.1
290
1975
833
827.8
550
192
925
828.4
300
2320
1008
828.9
560
172
838
827.8
310
2715
1208
830.2
570
147
773
827.3
320
338
3241
4012
1398
1606
831.8
833.7
580
590
122
106
711
654
826.7
826.3
340
4804
1825
836.0
600
98
594
825.8
350
5198
2023
838.4
610
90
531
825.3
360
4887
2173
840.4
620
81
475
824.8
(_
370
3837'
2254
841.5
630
71
425
824.4
380
2693
2274
841.8
640
58
380
824.1
390
1944
2259
841.6
650
41
312
823.4
400
1493
2223
841.1
660
17
248
822.8
L
it
1 10
U
TABLE 6
1,000 YR - 6 HR INFLOW /OUTFLOW HYDROGRAPHS
Time Inflow Outflow Elev. Time Inflow Outflow Elev.
(min) (cfs) (cfs) (ft) (min) (cfs) (cfs) (ft)
rN
90
216
179
822.2
390
2951
3505
844.2
100
236
192
822.3
400
2271
2862
843.6
110
252
205
822.4
410
1831
2409
843.1
120
269
219
822.5
420
1521
2324
842.5
130
291
234
822.7
430
1285
2276
841.8
140
327
254
822.9
440
1107
2221
841.0
150
377
281
823.1
450
970
2159
840.2
160
433
314
823.5
460
857
2091
839.3
170
495
353
823.8
470
754
2020
838.4
180
564
387
824.1
480
666
1943
837.4
190
646
419
824.4
490
594
1862
836.5
200
747
460
824.7
500
532
1777
835.5
210
868
511
825.1
510
474
1689
834.6,
220
230
1025
1239
575
649
825.6
826.2
520
530
422
372
1599
1503
833.7
832.8
240
1510
731
826.9
540
325
1409
831.9
250
1823
834
827.8
550
290
1304
831.0
260
2162
990
828.8
560
259
1207
830.2
270
2533
1179
830.0
570
222
1095
829.5
280
2948
1344
831.4
580
184
983
828.8
290
3400
1518
832.9
590
159
882
828.1
J
300
3871-
1692
834.6
600
146
807
827.6
310
4407
1869
836.6
610
133
743
827.0
320
5117
2056
838.8
620
119
684
826.5
l
330
6153
2262
841.6
630
104
85
629
826.0
825.5
340
7216
3813
844.4
640
563
350
7725
6660
846.0
650
59
500
825.0
360
7251
7151
846.3
660
26
441
824.6
370
5743
6031
845.7
670
4
387
824.1
380
4074
4560
844.9
680
1
314
823.5
690
0
246
822.8
�I
1
'_ 11
TABLE 7
�
10,000 YR -6 HR INFLOW OUTFLOW HYDROGRAPHS
®
Time
Inflow
Outflow
Elev.
Time
Inflow
Outflow
Elev.
(min)
(cfs)
(efs)
(ft)
(min)
(cfs)
(cfs)
(ft)
60
273
186
822.2
390
3975
4478
844.9
70
367
225
822.6
400
3063
3551
844.2
80
470
278
823.1
410
2472
2961
843.7
90
576
343
823.7
420
2056
2564
843.2
100
676
397
824.2
430
1739
2343
842.8
110
751
441
824.5
440
1498
2304
842.2
120
809
486
824.9
450
1312
2258
841.5
130
863
533
825.3
460
1159
2206
840.8
140
928
582
825.7
470
1020
2147
840.0
150
1008 -
633
826.1
480
900
2081
839.2
160
1091
676
826.4
490
802
2013
838.3
170
1180
724
826.9
500
717
1938
837.4
180
1277
776
826.3
510
639
1860
836.5
190
1387
834
827.8
520
568
1778
835.5
t
200
1521
911
828.3
530
500
1691
834.6
210
167 9
100 5
828. 9
54 0
436
1602
8
833.7
220
1882
1113
829.6
550
388
1508
832.8
230
2154
1226
830.3
560
347
1416
831.9
�j
240
2498
1345
831.4
570
297
1312
831.1
250
2893
1479
832.5
580
247
1212
830.3
I
260
3320
1622
833.9
590
213
1100
829.5
270
3788
1770
835.4
600
194
989
828.8
.l
280
4309
1928
837.2
610
176
889
828.2
290
4878
2092
839.3
620
157
813
827.6
300
5468
2260
841.6
630
137
749
827.1
310
6140
3120
843.9
640
111
688
826.6
320
7030
5800
845.6
650
78
631
826.1
330
8327
7829
846.6
660
34
558
825.5
340
9656
9380
847.2
670
5
490
824.9
350
10278
10170
847.5
680
1
429
824.5
360
9638
9702
847.4
690
0
376
824.0
370
7670
7963
846.6
700
0
297
823.3
380
5473
5951
845.7
710
0
233
822.7
1
1 ' 12
io
t
�e
m
u
u
t
i
SUMMARY OF RESULTS
Table 8 summarizes the.peak inflow and outflow, the maximum water
surface elevations in the detention basin and the freeboard
available within the reservoir.
TABLE 8
SUMMARY OF RESULTS
Return
Peak Inflow
Peak Outflow
Water Surf
Freeboard
Period
Elevation
(Years)
(cfs)
(cfs)
(ft)
(ft)
100
5,200
2,270
841.8
7.2
1
7,730
7,150
846.5
2.7
10,000
10,280
10,170
847.5
1.5
13
REFERENCES
5. U.S. Department of Transportation, Dec. 1965, Hydraulic
Charts for the Selection of Highway Culverts. Hydraulic
Engineering Circular No. 5
ii 6. E. F. Brates and H. W. King, 1976, Handbook of Hydraulics.
For the Solution of Hydraulic Engineering Problems. Sixth
�I Edition.
It
1
J
1
1
1 �
14
1.
Riverside County Flood Control and Water Conservation
Distrsict, April 9, 1978. Hydrology Manual
2.
U. S. Corps of Engineers, Nov. 1978. Los Angeles District
Flood Hydrograph Package. Computer Program #723- 69 -L1003
3.
USDA Soil Conservation Service, Jan. 1980. Soil Survey of
San Bernardino County, Southwestern Part, California
4.
State of California, The Resources Agency, Department of
Water Resources, Oct. 1976, Rainfall Analysis for Drainage
Design. Volume I. Short - Duration Precipitation Frequency
"
Data. Bulletin No 195
5. U.S. Department of Transportation, Dec. 1965, Hydraulic
Charts for the Selection of Highway Culverts. Hydraulic
Engineering Circular No. 5
ii 6. E. F. Brates and H. W. King, 1976, Handbook of Hydraulics.
For the Solution of Hydraulic Engineering Problems. Sixth
�I Edition.
It
1
J
1
1
1 �
14
1' SOUTHRIDGE VILLAGE DEVELOPMENT
f Supplement #1 to report
!� DECLEZ_CHANNEL WATERSHED- DETENTION
MARCH 1983
I The emergency spillway, presented in the initial report, was modified
to provide a spillway with capacity to pass the 17,000 -Yr 24 -hr inflow
hydrograph with 1.5 feet of freeboard, as required by the DWR's
r Division of Safety of Dams.
The two tables presented in this supplement show the revised
Elevations- Area - Storage- Discharge Relationships and the 17,000 -Yr
24 -hr inflow and outflow hydrographs.
u
1
f
I re
SOUTHRIDGE PEVELOPMEFT PROJECT
DECLEZ CHANNEL DETENTION BASIN
ELEVATION- AREA - STORAGE - DISCHARGE RELATIONSHIP
Elevation Area Storage Discharge
(ft) (ac) (ac -ft) (cfs)
819
0.00
.00
0
822
3.02
2.18
160
824
9.65
14.10
370
826
16.00
40.29
620
828
16.54
72.82
860
830
17.08
106.43
1180
832
17.62
141.12
1430
834
.18.16
176.87
1640
836
18.70
213.72
1820
838
19.24
251.65
-1990
839
19.51
271.02
2070
840
19.78
290.66
2150
841
20.00
310.55
2220
842
20.32
337-Mt
2290
843
20.47
351.10
3130
844
20.63
371.65
4610
845
21.05
392.49
6500
846
21.38
413.70
8730
847
21.78
435.28
11250
848
22.28
457.31
14020
Based on:
1. - Principal Spillway: 12' x 7' x 166.41' Reinforced
Concrete Box
2. - Emergency Spillway: 250' Long Broad - crestal Weir
with a spillway crest elevation of 842
�
I ��
G
u
SOUTHRIDGE DEVELOPMENT PROJECT
DECLEZ CHANNEL DETENTION BASIN
17,000 -Yr; 24 -Hr INFLOW /OUTFLOW HYDROGRAPHS
6 11w
TIME
E r:Min
INFLOWI
(cfs)
OUTFLOW
(cfs)
ELEV.
(ft)
TIME
Hr:Min
INFLOWI
(cfs)
OUTFLOW
(cfs)
ELEV.
(ft)
0:00
100
0
819.0
12:30
10,500
9,640
846.4
0:30
230
180
822.2
13:00
12,883
12,570
847.5
1:00
340
240
822.7
13:30
8,400
9,820
846.4
1:30
2:00
500
600
330
420
823.6
824.4
14:00
14:30
5,600
4,350
5,950
4,680
844.7
844.0
2:30
.640
490
824.9
15:00
3,600
3,830
843.5
3:00
680
540
825.4
15:30
3,050
3,230
-843.1
3:30
710
590
825.8
16:00
2,650
2
842.7
4:00
750
640
826.1
16:30
2,400
2,550
842.3
4:30
800
670
826.4
17:00
2,200
2,320
842.0
5:00
815
710
826.7
17:30
2,020
2,270
841.7
5:30
900
750
827.0
18:00
1,900
2,230
841.1
6:00
990
800
827.5
18:30
1,700
2,170
840.3
6:30
7:00
1,150
1,380
870
1,000
828.1
828.9
19:00
19:30
1,450
1,280
2,080
1,970
839.1
837.7
7:30
1,570
1,160
829.9
20:00
1,18 0
1,850
836.2
8:00
1,700
1,280
830.9
20:30
1,100
1,710
834.8
8:30
1,850
1,410
831.9
21:00
1,050
1,580
833.5
9:00
2,000
1,520
832.9
21:30
1,000
1,460
832.4
9:30
2,325
1,660
834.3
22:00
980
1,350
831.4
10:00
2,710
1,820
836.0
22:30
920
1,250
830.6
10:30
3,100
2,000
838.2
23:00
900
1,160
829.9
11:00
3,700
2
840.9
23:30
880
1,070
829.3
11:30
4,500
3,590
843.3
24:00
860
1,000
828.9
'
12:00
6,940
6,270
844.9
24:30
840
950
828.6
17,000 -Yr; 24 -Hr Inflow Hydrograph provided by the State Division of Safety
of Dams. This inflow hydrograph was stamped "DRAFT ".
1
1