Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
San Sevaine Channel Connection to Baseline Ave Box Culvert
rrt► rr .r. 41x1 ar do ow as as rI. trr go Mir >wA Ara SAN SEVAINE CHANNEL CONNECTION TO BASELINE AVE. BOX CULVERT 6229 Z 1 Exp. -31 - l * ,' September 21, 1988 ClvI . c\� !E OF CAU4 3170 REDNILL AVENUE COSTA MESA. CA 02020.3428 (7141 641 -4777 ®' CIVIL ENGINEERING LANG PLANNING • LANG SURVEYING OR on tMr 7 1 - Project Location & Purpose of Study 2 - Hydraulic Calculations 3 - Debris Calculations 4 - Hydrology Calculations 5 - Hydrology Map 6 - Topo of Existing San Sevaine Channel E we r y ,. r E M w m w an No M Project Location di This project is located at the intersection of San Sevaine Channel and Base Line Avenue, approximately 1,800 feet west of Cherry Avenue in the City of Fontana. Study Purposes No The purpose of this study is to design a temporary channel in Base Line Avenue to connect the existing San Sevaine Channel to the existing 2- 10'x8' boxes in Base Line Avenue. .r R. am .. ■r y e 9 0 Z 0 J M V J Q V U J I I I I 1 I I i I# I I 11 1 i I I I I 1 I 1 1 1 I l I I i i F I I I 11 w ** WARNING NO. 2 ** WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = 'NV + DC 1 F0515P PAGE WATER SURFACE PROFILE LISTING SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JC3 # 3811 -004 HALL & FOREMAN ASSOC. J. KANANI FILE NAME: SANBAS STATION INVERT DEPTH U.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ SASE / ZL NO AVBPR �Ir ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L /ELEM SO SF AVE HF NORM DEPTH ZR � rwr rrrwxwxxw: rwr, rwxxxwrrwrrr. rwwrwwwrrrrrrrrww********* r***** r***** r* w* rrwwwrwrrxrrwwrrrrrrwwwr ...xxwxwxxxrxxxx «.* 5897.75 285.31 10.270 295.580 1377.1 8.63 1.158 296.737 .00 5.282 8.00 20.67 .00 1 .7 'C WALL ENTRANCE .00 0 5897.75 285.31 12.336 297.646 1377.1 2.80 .121 297.767 4.950 6 0 .0 m tRANS STR .08498 r 5950.00 289.75 7.830 297.580 1377.1 11.22 1.956 299.536 .00 7.830 10.00 2.00 0 OTRANS STR .00500 .014429 .29 2.00 �0 5970.00 289.85 9.859 299.709 1377.1 4.27 .283 299.992 .00 5.342 10.00 13.00 2.00 0 .0 58.79 .00523 .000788 .05 6.171 2.00 rrr 6028.79 290.16 9.570 299.728 1377.1 4.48 .311 300.039 .00 5.342 10.00 13.00 2.00 0 .0 0 57.93 .00523 .000896 .05 6.171 2.00 Aw 6086.72 290.46 9.287 299.748 1377.1 4.70 .342 300.090 .00 5.342 10.00 13.00 2.00 0 .0 57.20 .00523 .001019 .06 6.171 2.00 6143.92 290.76 9.012 299.772 1377.1 4.93 .377 300.149 .00 5.342 10.00 13.30 2.00 0 u 0 56.62 .00523 .001159 .07 6.171 2.00 w 6200.54 291.06 8.744 299.800 1377.1 5.17 .414 300.214 .00 5.342 10.00 13.30 2.00 0 .3 56.23 .00523 .001318 .07 6.171 2.00 0 6256.77 291.35 8.482 299.832 1377.1 5.42 .456 300.288 .00 5.342 10.00 13.30 2.00 0 C 56.07 CO523 .001500 .08 6.171 2.00 6312.84 291.64 8.228 299.871 1377.1 5.68 .501 300.372 .00 5.342 10.00 13.00 2.00 0 .0 rr 56.22 .00523 .001706 .10 6.171 2.00 0 6369.06 291.94 7.979 299.916 1377.1 5.96 .552 300.468 .00 5.342 10.00 13.00 2.00 0 .0 Ow 55.94 .00523 .001938 .11 6.171 2.00 rr F0515P PAGE 2 WATER SURFACE PROFILE LISTING SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES w� JOB # 3811-004 HALL & FOREMAN ASSOC. J. KANANI r FILE NAME: SANBAS STATION INVERT DEPTH U.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ow ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER - /ELEM SO SF AVE HF NORM DEPTH ZR � rrrrrrwrrrrrrrxrrrwrrrrrrr. xer* w '" **************** **************** rrw* r* rrrrwwrrrrwwwrrrrrwwrrxrrrrrrrrwwwxwwrx rxr :.wrr xxxxrxxxrrxx 0 6425.00 292.23 7.741 299.971 1377.1 6.25 .606 300.577 .00 5.342 10.00 13.00 2.00 0 J *11NCT STR .00306 .000930 .05 2.00 6474.00 292.38 7.985 300.365 942.3 4.07 .258 300.623 .75 4.347 10.00 13.00 2.00 0 .0 tOW 6.00 .00000 .000184 0.00 .000 2.00 0 6480.00 292.38 7.987 300.367 942.3 4.07 .258 300.625 .00 4.347 10.00 13.00 2.00 0 .0 CANS STR .44333 .000615 .01 2.00 (A6492.00 297.70 2.443 300.143 942.3 5.93 .547 300.690 .00 1.869 8.00 65.00 .00 0 .0 0 7.42 .00909 .001134 .01 1.259 .00 06499.42 297.77 2.329 300.096 942.3 6.22 .601 300.697 .00 1.869 8.00 65.00 .00 0 .0 0 , 2.24 .00909 .001258 0.00 1.259 .00 6501.66 297.79 2.288 300.075 942.3 6.34 .624 300.699 .00 1.869 8.00 65.00 .00 0 .0 OHYDRALILIC JUMP .00 0IN6501.66 297.79 1.498 299.285 942.3 9.68 1.454 300.739 .00 1.869 8.00 05.00 .00 0 .0 0 1.34 .00909 .005102 .01 1.259 .00 0 6503.00 297.80 1.506 299.306 942.3 9.62 1.438 300.744 .00 1.869 8.00 65.00 .00 0 .0 0 5.42 .01070 .004862 .03 1.198 .00 0 ;. 508.42 297.86 1.544 299.402 942.3 9.39 1.369 300.771 .00 1.869 8.00 65.00 .00 0 .0 0 ' 7.72 .01070 .004330 .03 1.198 .00 3 6516.14 297.94 1.619 299.560 942.3 8.95 1.245 300.805 .00 1.869 8.00 65.00 .00 0 .0 -44 4.88 .01070 .003705 .02 1.198 .00 0 j21.02 297.99 1.698 299.691 942.3 8.54 1.132 300.823 .00 1.869 8.00 65.00 .00 0 .0 0d 2.65 .01070 .003171 .01 1.198 .00 F0515P PAGE 3 WATER SURFACE PROFILE LISTING No w AN SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JOB # 3811 -004 HALL & FOREMAN ASSOC. J. KANANI 40 FILE NAME: SANBAS STATION INVERT DEPTH W.S. D VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ __ NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER .EM SO SF AVE HF NORM DEPTH _? # xwwrrxwxtrwwwwwwwxrwwwwwwrwwwrwwrwrwwxwwwrxwxwwxrwwxxxxwwwwwww wrwrwwwwwxrwwxwwwwxwwwwwwwwxrwwwwxwxwwxxxxxxxxxxxxxwrx xxxxx xxrxrrxxr ri0 6523.67 298.02 1.781 299.802 942.3 8.14 1.029 300.831 ^130 1.869 8.00 65.00 0 .0 0 .83 .01070 .002712 0.00 1.198 -0 6524.50 298.03 1.869 299.899 942.3 7.76 .934 300.833 .00 1.869 8.00 65.00 _ 0 .0 1 6524.50 298.03 2.516 300.546 942.3 17.19 4.589 305.135 3.744 7 0 't 5.25 .06527 .018687 .10 2.005 .0 0 6529.75 298.37 2.556 300.929 942.3 16.65 4.304 305.233 3.744 7 0 5.80 .06527 .016821 .11 2.005 r 1 6536.55 298.82 2.618 301.434 942.3 15.87 3.913 305.346 3.744 7 ) 0 5.80 .06527 .014815 .09 2.005 6542.35 299.20 2.681 301.876 942.3 15.13 3.557 305.433 3.744 7 0 .0 i 4.96 .06527 .013044 .06 2.005 ■.rt 6547.31 299.52 2.745 302.264 942.3 14.43 3.234 305.498 3.744 7 0 .0 0 -.22 .06527 .011488 .05 2.005 *+ 6551.53 299.79 2.812 302.607 942.3 13.76 2.940 305.547 3.744 7 0 .0 3.63 .06527 .010118 .04 2.005 6555.16 300.03 2.879 302.911 942.3 13.12 2.672 305.583 3.744 7 ) am 3.07 .06527 .008910 .03 2.005 6558.23 300.23 2.949 303.181 942.3 12.51 2.429 305.610 3.744 7 C ..r 2.61 .06527 .007847 .02 2.005 0 6560.84 300.40 3.020 303.422 942.3 11.93 2.209 305.630 3.744 7 0 .0 2.19 .06527 .006911 .02 2.005 6563.03 300.54 3.093 303.638 942.3 11.37 2.008 305.646 3.744 7 0 .0 F0515P PAGE WATER SURFACE PROFILE LISTING SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JOB # 3811 -004 HALL & FOREMAN ASSOC. J. KANANI rr FILE NAME: SANBAS STATION s. INVERT DEPTH U.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA 10 NO. PIER r �L /ELEM SO SF AVE HF NORM DEPTH ZR x rw# rrr. wwwwntwxrwwwwwwrtwwwwrrntrrrwrrwwrrwwwr, twwrrwwrwwrwrtrwyryr wwrrw yr* wr* rwr* wwwwrrwwwwwwwwwwwwwxwwrwwwrr rrr.r.r rr.rrxx...rx .06527 .006086 .01 2.005 6564.86 300.66 3.167 303.832 942.3 10.84 1.825 305.657 3.744 7 .0 4� '.49 .06527 .005359 .01 2.005 0 6566.35 300.76 3.244 304.006 942.3 10.34 1.659 305.665 3.744 7 0 C '.20 .06527 .004720 .01 2.005 6567.55 300.84 3.322 304.162 942.3 9.86 1.508 305.670 3.744 7 0 .94 .06527 .004157 0.00 2.005 .0 0 6568.49 300.90 3.402 304.303 942.3 9.40 1.371 305.674 3.744 7 0 .59 .06527 .003661 0.00 2.005 .0 6569.18 300.95 3.484 304.430 942.3 8.96 1.247 305.677 3.744 7 0 .0 0 .47 .06527 .003223 0.00 2.005 Q 6569.65 300.98 3.568 304.545 942.3 8.54 1.133 305.678 3.744 7 0 .0 .27 .06527 .002839 0.00 2.005 6569.92 300.99 3.654 304.649 942.3 8.15 1.030 305.679 3.744 7 0 .0 0 .28 .06527 .002499 0.00 2.005 4 0 6570.00 301.00 3.744 304.744 942.3 7.76 .936 305.680 3.744 7 0 .0 go 6570.00 301.00 1.972 302.972 942.3 6.76 .710 303.682 1.972 9 0 .0 0 .32 - .01818 .010651 0.00 .000 0 6570.32 300.99 2.071 303.065 942.3 6.32 .621 303.686 1.972 9 0 .0 1.00 - .01818 .008567 .01 .000 Ad 6571.32 300.98 2.174 303.150 942.3 5.92 .544 303.694 1.972 9 0 .0 58 -.01818 .006910 .01 .000 F0515P SAGE go WATER SURFACE PROFILE LISTING SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JOB # 3811-004 HALL & FOREMAN ASSOC. J. KANANI 4m FILE NAME: SANBAS I--I LL] 40 STATION INVERT DEPTH W.S. 0 VEL /EL ENERGY SUPER CRITICAL HGT/ BASE/ __ NO A:BPR ELEV OF FLCW ELEV HEAD GRD.EL. ELEV DEPTH DIA :0 NO. PIE L /ELEM SO SF AVE HF NORM DEPTH R rrr«« ww*• w* r«« x* rr«« ww* r««: xr•# xr«• w* x«« rr«««*# r« r«*** rrtr rtr xwr« rrrwr« rr« rxw** xx«« rr«« w**«« w# rx*« rwrxrtrrrrxrxrxxrtr . 0 "x73.00 300.95 2.283 303.228 942.3 5.55 .478 303.706 1.972 9 0 2.38 - .01818 .005592 .01 .000 - I 6575.38 300.90 2.397 303.299 942.3 5.20 .420 303.719 1.972 9 dil 3.08 - .01818 .004540 .01 .000 0 6578.46 300.85 2.517 303.363 942.3 4.88 .370 303.733 1.972 9 �+ 3.76 - .01818 .003696 .01 .000 6582.22 300.78 2.643 303.421 942.3 4.59 .326 303.747 1.972 9 4.44 - .01818 .003018 .01 .000 - 0 �.. 6586.66 300.70 2.775 303.472 942.3 4.31 .288 303.760 1.972 9 0 J 5.11 - .01818 .002470 .01 .000 6591.77 300.60 2.914 303.518 942.3 4.05 .255 303.773 1.972 9 r, 0 5.76 - .01818 .002026 .01 .000 6597.53 300.50 3.059 303.558 942.3 3.82 .226 303.784 1.972 9 0 6.42 - .01818 .001665 .01 .000 6603.95 300.38 3.212 303.595 942.3 3.59 .200 303.795 1.972 9 0 0 7.06 - .01818 .001372 .01 .000 "' 6611.01 300.25 3.373 303.627 942.3 3.38 .178 303.805 1.972 9 0 7.70 - .01818 .001132 .01 .000 0 6618.71 300.11 3.541 303.655 942.3 3.19 .158 303.813 1.972 9 0 .n. 8.35 - .01818 .000936 .01 .000 6627.06 299.96 3.718 303.681 942.3 3.01 .141 303.822 1.972 9 , 8.99 - .01818 .000775 .01 .000 _ 1 F0515P PAGE _ ..• WATER SURFACE PROFILE LISTING SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JOB # 3811 -004 HALL & FOREMAN ASSOC. J. KANANI FILE NAME: SANBAS STATION INVERT DEPTH U.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT / BASE/ ZL NO AVBPR err ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA 7 0 NO. PIER -LEM SO SF AVE HF NORM DEPTH ZR x* www•* xrrrxx•* rrxxr• xxt•• rx• r«* r**«•*«« rrt*«« r« w* x*«* xxrrtrx• wr• rrrr• r*«••*«« t*« tr*« r« t« x«*« xx•* rxxxrrrxrrrxrxxrx ...rrrxrrrt...... 6636.05 299.80 3.904 303.703 942.3 2.84 .125 303.828 1.972 9 0 „ 9.64 -.01818 .000643 .01 .000 0 6645.69 299.62 4.100 303.724 942.3 2.68 .111 303.835 1.972 9 0 ,G. 10.31 -.01818 .000534 .01 .000 .3 6656.00 299.44 4.305 303.741 942.3 2.53 .099 303.840 1.972 9 0 ," 10.98 - .01818 .000445 0.00 .000 0 6666.98 299.24 x.520 303.757 942.3 2.39 .088 303.845 1.972 9 0 11.67 - .01818 .000370 0.00 .000 6678.65 299.02 4.746 303.771 942.3 2.25 .079 303.850 1.972 9 0 0 1.35 - .01818 .000333 0.00 .000 0 6680.00 299.00 4.772 303.772 942.3 2.24 .078 303.850 1.972 9 0 do 0 71 MR 5897.75 so 5904.11 5910.47 IN 5916.83 5923.19 40 5929.55 5935.91 5942.27 5948.63 5954.99 5961.35 5967.71 +r SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES JOB # 3811-004 HALL & FOREMAN ASSOC. J. KANANI FILE NAME: SANBAS : YYYYYYYYYYYYYYYYYYYYYYCYYYYYYYYYYYH W E C X H X EH WE TX TX R R R R R R R R 5974.07 t C 5980.43 .:X 5986.79 5993.15 5999.51 5005.87 6012.23 s 6018.59 6024.95 *� 6031.30 I C WEH 6037.66 6044.02 6050.38 A.. 6056.74 6063.10 6069.46 6075.82 6082.18 +� 6088.54 I C 6094.90 W EH *� 6101.26 6107.62 r 6113.98 6120.34 6126.70 6133.06 6139.42 .,, 6145.78 [ C 6152.14 W H E 6158.50 6164.86 6171.22 6177.58 rr 6183.94 6190.30 6196.66 6203.02 i C 6209.38 W E x .. 6215.74 6222.10 6228.46 6234.82 6241.18 6247.54 aw 6253.90 6260.26 t C 6266.62 u E H 40 6272.98 6279.34 6285.70 6292.05 ' 6298.41 6304.77 " 6311.13 A 6317.49 I C u E H 6323.85 6330.21 dw 6336.57 AN 6342.93 6349.29 4m 6355.65 6362.01 6368.37 6374.73 6381.09 C W E H ar R R R R R R R R �w 6387.45 Q1 'q 0 T E S 1. GLOSSARY 40 [ = INVERT ELEVATION 40 C = CRITICAL DEPTH W = WATER SURFACE ELEVATION H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE dM X = CURVES CROSSING OVER B = BRIDGE ENTRANCE OR EXIT qm = WALL ENTRANCE OR EXIT -afATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY ar J R TX R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R 6393.81 6400.17 6406.53 6412.89 3419.25 6425.61 I C W E H rr 6431.97 6438.33 6444.69 6451.05 6457.41 6463.77 6470.13 rr 6476.49 I C WE H 6482.85 t C WE H 6489.21 6495.57 t C W E H .. 6501.93 [ C W E H 6508.29 I C W E H 6514.65 I W C E H 6521.01 I W C E H rr 6527.37 [ we E H .. 6533.73 ! WC E H 6540.09 I WC E H w 6546.45 1 WC E H 6552.80 I X E H s 6559.16 I W C H E 6565.52 [ W C H E +� 6571.88 I W C H E 6578.24 I W C HE 6584.60 I W C EH 5590.96 rr [ W C EH .)597.32 I W C E H 6603.68 [ W C E H 6610.04 I W C E H 6616.40 I W C E H 6622.76 I W C E H 6629.12 .,, I W C E H 6635.48 I WC H �+ 6641.84 [ W C E 7 6648.20 1 WC E H 6654.56 I WC E H 6660.92 i X E H rrr 6667.28 I X E H 6673.64 I X E 6680.00 I CW E 0 285.31 237.58 289.85 292.12 294.39 296.65 298.92 301.19 303.46 305.73 ? :3.00 Q1 'q 0 T E S 1. GLOSSARY 40 [ = INVERT ELEVATION 40 C = CRITICAL DEPTH W = WATER SURFACE ELEVATION H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE dM X = CURVES CROSSING OVER B = BRIDGE ENTRANCE OR EXIT qm = WALL ENTRANCE OR EXIT -afATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY ar J R TX R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R +w 'rr w w I X?e g 2"~0-00 R CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT s/ S. C�A��I�L BY DATE JOB NO /I SHEET + OF � - �9 ..34 d I 0 9 x , 9� i3� /d � ,BASE C /NE AMC, � 5ANs�i�iN� cAL�. fob ,2- 7 2" e-0? UND�I� �yANNEL Z- " 57'r d. '90 ' /o /r•6. _ 1300. 3 a-- 41 � - D..S� = 130!. ,2- 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 40 SAN SEVAINE CHANNEL CONNECTION TO BASELINE BOXES 72 JOB # 3811-004 HALL 8 FOREMAN ASSOC. J. KANANI 4 " FILE NAME: SANBAS 1w 5997.75 285.31 1 295.58 WE 5897.75 285.31 6 .050 ,950.00 289.75 2 .050 5970.00 289.85 4 .050 ■w 6425.00 292.23 4 .030 .00 JX 6474.00 292.38 4 13 13.024 217.4 217.4 294.00 294.00 1.00 1.00 an 6480.00 292.38 4 .014 40.00 6492.00 297.70 11 .014 Ir 6503.00 297.80 11 .014 R 6524.50 298.03 11 .014 6570.00 301.00 7 .014 r 6680.00 299.00 9 .03 SH 6680.00 299.00 9 ,ra 1 3 1 .67 8.00 20.67 .00 .00 .00 2 1 0 .00 10.00 0.01 2.00 2.00 .00 rip 4 1 0 .00 10.00 13.00 2.00 2.00 .00 CD 10 1 0 .00 8.00 60.00 1.50 0.00 11 1 0 .00 8.00 65.00 0.00 0.00 7 5 13 4 0 6.00 00.00 0.00 0.00 .00 CD 6 5 w.. 9 5 612 .00298.50 17.50289.75 20.50289.75 20.50286.75 23.50286.75 PTS 23.50285.31 44.17285.31 44.17286.75 47.17286.75 47.17289.75 P 50.17289.75 67.67298.50 f ; 7 5 00.00307.00 8.66306.00 51.96301.00 95 .26306.00103.92307.00 Rm 911 51.00306.00 58.00307.00 76.00307.00 79.00306.00 84.00306.00 PTS 85. 00300. 00130. 00299. 00178. 00300 .00183.00301.00189.00305.00 PlS 192.00307.00 c 942.32 .0 rr a.r rr ill tl rir dW w CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING rr �''IDD /f��i¢T /O/✓ o f S�EI�✓ �� T /ON " I ,y�� - z JSE�eS ".Al a,.vL (; H r. 1 V -,3 8) 0 ) 13o 7 > P. , /� a �� .� /. i G f / 30 / 9 , 1o3'9L' i3o� IR - I= m. SUBJECT BY DATE TJOB O. SHEET OF 70 1 =o) i° „ /O cl-e �''IDD /f��i¢T /O/✓ o f S�EI�✓ �� T /ON " I ,y�� - z JSE�eS ".Al a,.vL (; H r. 1 V -,3 8) 0 ) 13o 7 > P. , /� a �� .� /. i G f / 30 / 9 , 1o3'9L' i3o� IR - I= m. ON to 94 do M 22. 3RI0GES ON A SKEW ,w Skewed bridge crossings are generally handled by making adjustments to the cridge dimensions to define an equivalent cross section perpendic- ular t-. the flow lines. The adjustments can be made in the normal bridge method :;_i multiplying the actual dimensions of the bridge by the cosine of the s<ew angle. The cosine of the angle is coded on the X1 card (variable PXSECR in field eight) for the cross section coordinates on GR cards and on the X2 card (variable BSQ in field nine) for the data on the BT cards. If the special bridge method is used, the data coded on the SB card must be adjusted prior to inout. There is no internal .. method in the program to adjust the data on the SB card. we In the publication "Hydraulics of Bridge Waterways" (reference i) the effect of skew on low flow is discussed.. In model testing, skewed crossings with angles up to 20 showed no objectionable flow patterns. For increasing angles, flow efficiency decreased. A graph illustrating the impact of skewness indicates that using the projected length is adequate for angles up to 30" for small flow contractions. 23. PARALLEL BRIDGES With the construction of divided highways, a common modeling A problem involved parallel bridges. For new highways, these bridges are often identical structures. The hydraulic losses through the two structures has been shown to be between one and two times the loss for ,.� one bridae (reference i). The model results shown in reference i indicate the loss for two bridges ranging from 1.3 to 1.55 times the loss for one bridae crossing, over the range of bridge spacings tested. Presumably if the two bridges were far enough apart, the losses for the two bridges would ecual twice the loss for one. For the program user faced with a dual bridge problem, computing a single bridge loss and then adjusting it with criteria from reference i may be the most expedient approach. •ar If both bridges are modeled, care should be exercised in depicting the expansion of flow between the bridges. IV -38 T7 z� 4' AN• . r. aas » ace rat, +lei M do 4 " do ON so 40 do •R t3t3 7 V � U do .. V • d _� _ N N P • / o V . Under of note, \ it �r O � x a stream Current to yet sa I Protection Section c MI°Imum Plret hn@ � velocity velocity stone elass Placement thiekneae velo@Ity stone class phwsnwas Beet4oe V U V♦ W We method T V e iP W e , • method Wakeless fps I I fps Ito A or B ft (pa Ito or T A or B m � 4.6 3 o O P None \ 6 alb None sea M 4 FRI None' 8 IS weight of reek .. _. - 1.8 $ 6 1 Nooe Tee. ' one CL V : r i N U O O p rp p 8 S o O O \ U O �• aas » ace rat, +lei M do 4 " do ON so 40 do •R t3t3 7 V � U .. V • d _� _ N N P • / o V . Under of note, \ it �r O � x a stream Current to yet sa I Protection Section c MI°Imum Plret hn@ � velocity velocity stone elass Placement thiekneae velo@Ity stone class phwsnwas Beet4oe V U V♦ W We method T V e iP W e , • method Wakeless fps I I fps Ito A or B ft (pa Ito or T A or B m � 4.6 3 None It 6 alb None sea M 4 FRI None' 8 IS Facing B 1.8 7. S 6 1 Nooe see 10 1 . 87 yI ton B 3.3 9 6 3 _a l fee@ .lase . ter a 411110 T S( ton B 3.3 10.3 7 7 1 I , , u / IX ► {. ] r ( r Y r � 14 430 jf ton A 3.3 1 B 4.2 12 8 1S Facing B 1.8 1 16 960 1 ton �A 4.2 H TALE 2. APPLICATION Of CHART 0 TO OESION OP STREAM•ILANK REVETMENT * _ :a�:•' aas » ace rat, +lei M do 4 " do ON so 40 do •R t3t3 Basic data and assumphons: Velocity ratios VA:Vm:VB - 2:3:4; specific gravity of rock is sg, = 2.65; face slope of revetment is 1.5:1; stones grade uniformly between specified 'minima for class with two thirds heavier than minimum required on face; T a �j NY plus 25% for Method B. TV = 2 X 10 V sg, . 00002 V .65 .000057 V' (89, - 1)' sin' (p - a) a 1.65 .592' �C: :'' _ zJ, G teou T�'D �iP- r Parallel flow alone tangent bank s ' Impingement n against mysai bank � a Mean stream Current Minimum Protection Section Current MI°Imum Protection velocity velocity stone elass Placement thiekneae velo@Ity stone class phwsnwas Beet4oe V U V♦ W We method T V e iP W e , • method Wakeless fps I I fps Ito A or B ft (pa Ito or T A or B (t .--- 4.6 3 None 6 alb None 6 4 None' 8 IS Facing B 1.8 7. S 6 1 Nooe 10 1 . 87 yI ton B 3.3 9 6 3 , None 13 170 S( ton B 3.3 10.3 7 7 Facing H 1.8 14 430 jf ton A 3.3 B 4.2 12 8 1S Facing B 1.8 1 16 960 1 ton �A 4.2 H 3.3 13.6 9 30 Light B 2.6 18 - 1.0 T 1 ton A S.3 15 10 57 H ton B 3.3 20 1.8 4 toe A 6.7 IB 12 170 S{ ton B 3.3. 24 6.6 8 ton A 3.3 21 14 430 ys ton JA 3.3 28 13.7 Special B 4.2 24 16 950 1 ton l B 32 30.6 speow 6.3 Basic data and assumphons: Velocity ratios VA:Vm:VB - 2:3:4; specific gravity of rock is sg, = 2.65; face slope of revetment is 1.5:1; stones grade uniformly between specified 'minima for class with two thirds heavier than minimum required on face; T a �j NY plus 25% for Method B. TV = 2 X 10 V sg, . 00002 V .65 .000057 V' (89, - 1)' sin' (p - a) a 1.65 .592' �C: :'' _ zJ, G teou T�'D �iP- r qR doi 44 w 0 on me w do an aw .» .m ow of d MR iff on dw w ow DEBRIS CALCULATIONS PHOTO ORIENTATION MAP ! � � N -- � i Al lZ gas DD FONTANA ( WEST END VENTURE J. CUCAMONGA ii iD qs -19 oft DEBRIS PRODUCTION An inspection of the watershed was made to evaluate the potential of debris deposition at San Sevaine Creek and Base Line Avenue. There are several features of the watershed which prevent long -range movement of debris. These ''debris restrictors" are described on the following pages Photos are included for clarification. 1. The Interstate 15 Freeway The steeper portions of the watershed are located north of the 1 -15 Freeway. Runoff from these areas must pass through culverts under the Freeway. These culverts act as a barrier to prevent the conveyance of debris from the upper watershed to the lower watershed. T_is D +_"k . -300 _ x;11►`: � ' a 1. The Interstate 15 Freeway, continued 7 • 4W 77 w Y w ID7 74 t , + 2 r '� 2. Summit Avenue Another debris barrier is located along the north side of Summit Avenue in the form of a concrete -lined channel. This channel intercepts runoff (and any debris) and conveys it under the 1 -15 Freeway to the San Sevaine Basins. { r" C2 K s� O V� 3. Highland Avenue Further impediments to the movement of debris are located at Highland Ave. Any debris to be generated north of Highland Avenue will be deposited as the runoff passes through 3 existing 24" pipes. Highland Avenue will function as a silting dam. See pictures below. r 0 I' r1e.--9rff °, - llf D 4 t CAII J � Il �� �11�i _j-7,e-,4,e ,- 4 Awle 4. Victoria Avenue The next point where debris would be deposited is at Victoria Avenue. Any debris to be produced north of Victoria Avenue will settle as the runoff passes through 2 -30" C.M.P. culverts as shown on the photos below. Victoria Avenue effectively acts as a silting dam. 3 S ti �NIL r • � ' :tee : � � ` •e., y, iI 7 i 1 5 0 5. Base Line Avenue ,.. Any debris produced south of Victoria and north of Base Line Avenue will be deposited in the proposed silting dam north of Base Line Avenue, to be located within the old San Sevaine Channel. Calculations verifying the adequacy of that proposed facility are contained herein. go r am do are E w on g ot* CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING irr an No mm wo om .. qm ow e E 0 N r SUBJECT BY J KAW At / DATE JOB 3NO./ /— d0 ` SHEET / OF� �fl4 N�/�'L I ToTi#Z Aelf - A = 5'0 A -e—, = 2.70 fl lfe) _ C�s�7 /2 97 7) z500 8a) t , Z 2 - `►/��It/ A�2Ei9 /S T¢ i2 h _ z¢ - D. 4-y Opexr -cT /o o 0.97 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 nn iY• ON a. ,m No 0 h 40 im 0 tl SUBJECT BY �/ DATE JOB cN�O. SHEET OF� AeAev f1yP� ©M rrel,c — i/V,0, � 5 7 x o, �9 -46, To L'c�it''�' /aN f���•C'= �•97� �•/3�(•5z,i�Q.9� - 0, 05 Feem �oe A= v. 3 ,9 �5� . /''1 /lam D�Be'�'�= o•3�X /a X USE 1°�of .5 l e CGJolS rk'd�' T CUie!/E' flec eel"lcr ArACAe5 = o. 023X 11 ? c.y. Ics ro r,4c DceoelCS = Ao23X Ia 4 (41.3 ,P ) = �? .� 70 c y To rA L zewerll a,= zr r. jw-Al S EY�i1�✓E' /!�E/C.� /4/� 0// td/l/c/f i,S �A TED ��/ ,��ST c�� "1-5'7 ,5,og;!A/��'/��NG�' Cfi�i�if/it/E",� /S .4 BovT .�a o /f ld G� S ZIA+ " oNly rG 8E �,•3� - D AS STO�L�. /S ,3 a,c rr�a 47 = 1Z, Z Z Z , $1 7a �'•�• � f 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 w. dig rr� dw rs Aw ,u AW low w e! 4" s! 40 is aA so A NEW METHOD OF ESTIMTIM DEBRrS-STCPJM REQUIRSI��ITS FOR DEBRIS BASINS By Fred E. Tatun U. S. Armor Engineer District Los Angeles, California um Prepared for Second National Conference on Sedimentation of the Subcc�ittee on Sedimentation, ICXR Jackson, Mississippi 28 January -1 February 1963 I U_S_ARMY ENGINEER DISTRICT r.nRPS OF ENGINEERS r tut ►vv. rt_a i c t LEGEND • RECORDED OR ESTIMATED DEBRIS INFLOW / WEST RAVINE DEBRIS BASIN MARCH 1938 2 SHIELD DEBRIS BASIN MARCH 1938 J HALL — BECKLEY DEBRIS BASIN MARCH 1938 4 PICKENS DEBRIS BASIN MARCH 1938 5 SANTA ANNTA FLOOD - CONTROL BASIN MARCH 1938 6 DEVIL'S GATE FLOOD — CONTROL BASIN MARCH 1938 7 COGSWELL FLOOD—CONTROL BASIN MARCH 1938 9 SAN GABRIEL FLOOD — CONTROL BASIN MARCH 1938 9 BAILEY DEBRIS BASIN JANUARY 1954 400,0W 300,000 ENVELOPING CURVE OF DEBRIS INFLOWS + 100 PERCENT 0 200 ENVELOPING CURVE OF DEBRIS INFLOWS + 25 PERCENT Lij / 2 10oxm W , J • W • B Q SQa000 0 40,000 E NV ELOPING CURVE OF 'DEBRIS INFLOWS W 30,000 p 20,000 Q Y U_ Go 10,000 U Z • 300 400 300 1 00 m 5 ,000 W 4PW 3,000 L DEBRIS INFLOWS 06 0S AND FLOOD CONTROL BASM N! LOS ANGELES COUNTY CALIFORNIA 2 1 - 2 a s u0 z 3 o s 10 20 30 40 SO 100 2p0 U. S ARMY ENGINEER DISTRICT DRAINAGE AREA IN SQUARE MILES +L.OS ANGELES, CORPS OF ENGINEERS PAPER BATED 26 JAN -1 FES 1963 r tut ►vv. rt_a i c t dili ..s do m do uw +rr w dd go r ■w do ARMY E NGINEER DISTRICT 0.6 =lx F. 0.6 W S W 0.4 Q W w 0.2 h I AREA a ENGINEERS HYPSOMETRIC CURVES FOR DRAINAGE AREAS ABOVE AREA A SELECTED DEBRIS BASINS (ENTIRE BASIN) IN LOS A NGELES COUNTY, CALIFORNIA U.S. ARMY ENGINEER DISTRICT LOS ANGELES, CORPS OF ENGINEERS PAPER DATED 26 JAN - I FES 1963 FILE NO. PI ATP 2 0.5 RELATIVE AREA A SUMMIT PL BASE PLANE I IV _ we ■■ r. iir" - -=, ■■ ■111 ■iii �� -_.s ..� .. n. • ■ !!!!i$t 11111111 ■1 ■�i! 1■w i��i ■��■ ......._ ■■��11�! 111 ■, low ■■a■�■� H I I IIIIIII II H IU 1 111 1111■8■2■■■: C ■r��1 IRosI�I 11 HolUOMNIii!!1!.!...:iiii • iiuw■i�oo•• UUUIII�� ■ ■ ■ /// ■111 1 11 ■1 ■ ■ ■ ■ ■ ■1 •111 1 II ■ ■ ■ ■ ■� \I /111 1111 ■� ■ ■� ■11 1111 1111■■■■�■■1 some loon name ■■ ■ 11 XU S IWICATS ISOM B0I31B 9 IZSM I8 TAWS 2 AND IUTA TM U3Z PROI COMM Z ANR I n V • D • wraps j+�sjis x An�Ls • QCIr1s■ et s�1a� r U. S. ARMY ENGI M DISTRICT in E 9 y 3 co rrr � 2 � � 1 a 0 rir m rtir CORPS OF ENGINEERS N r PERCENT OF CORRECTION DRAINAGE DENSITY Jv �J CURVES INDICATING CORRECTION OF DEBRIS PRODUCTION U. S. Asap► Engineer District Los Angeles, Corps of Engineers Pager dated 28 Jan -1 Feb 196 PLATE PERCENT OF CORRECTION SLOP: 1600 1 aw *� 1200 IXO �. 800 600 s ca 400 200 0 0 10 20 .w N r PERCENT OF CORRECTION DRAINAGE DENSITY Jv �J CURVES INDICATING CORRECTION OF DEBRIS PRODUCTION U. S. Asap► Engineer District Los Angeles, Corps of Engineers Pager dated 28 Jan -1 Feb 196 PLATE PERCENT OF CORRECTION SLOP: rr w wr •o . S. ARMY ENGIRM DISMICT c OF Mmi1Mi1MiM1ii MMIMIMIMMIMMIMIM! MIMiii =/iii MMm=w_1Mi1M1Mi1M iIMiIMIMiiiii mmmmmmmm //MiIMMIrMI'ii MMIMIMIMIMMIMIMIM we PERCENT CORRECTION MAXIM 3 -HOUR PRECIPITATION 1.00 .90 .80 .70 W H .60 •5 U H o •30 .20 . 10 ME MMIMIMIMMIMMMIM miiimiimii MMIMIMIMIMIMIMMIM MMIMIMIMIMIMIMM t • • 0 1 0 ! ••l•:_4 CURVES MICATING CORF MON OF DIMS PR=CTION v. .J. �iq ci+jV aaor ario UL_A.a j6j Los Angeles, Corps of litaid es Paper dated 28 Jan -1 Feb PLATE 7 r7 10. Verification of method - -Verif {.cation of the method is in- dicated by comparing results obtained by commuting the amount of debris produced during the storm of 7 -12 February 1962 In the Los Angeles area with amoums actually produced according to the .., Los Angeles County Flood Control District measurements. A fire occurred in the drainage areas of Sierra Madre Villa, Bailey Carzyon, Auburn Canyon, and Carter Canyon debris basins (see pl. 3) in October 1961 A storm occurred over these areas on 7 -12 February 1962, vith a total rainfall of about 11 inches. The maximum 3 -hour rain occurred In the evening of the 10th. Although prior to this storm the ground conditions were relatively dry, the rain prior to the asxizm 3-hour rain was reasonably adequate to condition the ground for runoff. Pertinent information for drainage areas above the .. debris basins and the computed and measured amounts of debris are ,.. given in table 3. 11. Recommended for design - -The design capacity of a debris basin should represent that amount of debris for one major storm that would be exceeded in magnitude only on rare occasions. The assumption that a major storm would occur, with ground conditions conducive to runoff', during the first year after 100 percent of the drainage area was burned, is believed to be too severe for design purposes. As indicated on plate 4, the debris potential of an area decreases rapidly in the first 5 years after a burn. The recommended design debris quantity from a maximum debris producing area of 1 square mile is 220,000 cubic yards, or about 12 percent of the asxiatmt index value, unadjusted. This value is equivalent to the value for 1 square mile area obtained from the enveloping curve of �. debris inflow (see pl. 1) increased by 100 percent. This value also �. represents the amount of debris that would be produced from a similar area if a major storm occurred, with ground conditions conducive to runoff, 4 to 5 years after 100 percent of the drainage area was burned (see pl. 8 and 10). This value is then adjusted by the factors r affecting the debris potential for the drainage area being studied and the resulting computed value is the capacity for design of the debris basin in question. ■r 12. Conclusions - -The method presented in this paper, which is based on varying degrees of debris potential for the drainage area , above each debris basin, gives debris capacities for use in design of debris basins such that approximately equal protection to the different downstream areas will result. The method is believed to give reasonable values within the limits of presently available data. Obviously, where many interrelated variables are involved, a large ,■ number of basic data are required for definitive analysis. Further studies will be made as data become available. The method presented eo herein is believed applicable for other than the Los Angeles area; however, the correction factors should be verified. One of the basic 'R assumptions in developing the method is that ground conditions, prior eo to the maxim= 3 -hour rainfall, are conducive to runoff. In order to use this method of computing debris potential for areas vith various ON prior ground conditions, development of additional correction factors ON would be necessary. 0 No 0 W 40 q. .rr RN ■r 40 .1l 40 do 40 .n on me o 'l v wo 6229 z \ Exp. I• O �\ CIVIt BASE LINE TEMPORARY CHANNEL HYDROLOGY CALCULATIONS REF.: SAN SEVAINE WATERSHED MODEL, EXISTING CONDITION September 21, 1988 2 ice. 3170' REDHILL AVENUE COSTA MESA. CA 92828 -3428 • (714) 841 -8777 - 'CIVIL ENGINEERING LAND PLANNING • LAND SURVEYING mm r r rr dill dill SUBJECT BY DATE JOB NO. SHEET OF AREA* 106 C O cnv y� t 40 I�•1 0 0 /c.,d a n oCt� { S 7 % O�n P, •� 91. (r ,--% F,.- , 43,x' �MC .11 C = 2S fi.36 w 000 J,.,q (�ar. t~ G.o.� - A C ra(�� L;urti...A1. � Z S 'Z �VLQ C� �p r(pY� C A MC �I 1 CN A �''► C 11 0 -40 0.65* 3- -s -4035 TT 59.95 = 39.95 D o 3 `? Q- 0.651 4g•s -r o 35y 64•s ;•s7 - 50 85 7D. 85 CIN = 47.90 CN = 6 7. 90 _ x,.88 4.73 Pz4 �� ��� = r 7s = 0-360 P� ; ' 1_' b - ° t / - 0.7f/ 7.38 % 0. 92 , cw : 3 9.9151 T14_:"G� e., 4�, l.,�'•1_s0.85 C� v•.G � 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 *s CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING rir SUBJECT BY DATE 77 SHEET OF 0. 4x0.924 0- 03 {o -o4+ o•s7, = D•831 p. 4 0.63 f- O Of -A 0.03 -+ 0- !Z 7 a.46 G g so i, -A, Sc'i. C Ica ;„ L, G.. J AMC i_ , u � � ArtA PQ�� A� �( c iv AN, c r c iv ` 0 .96 ." y3 -1 4 0 -4.1 s 7.S - 49•I 69.10 0 — CN -51,05 CN _ 70.33 5 > -59, c 160 = 4.22 X 14, 100 y - o - W +� '�. P'y 2 v / - .16 `i = 0 - - 741 1 / 4 ' = 5.87 804 0 .934 L wi /'r r �l : 0_ O I = o 790 rri t _C4 1. ,x.51 4 aan aw ' do 3170 REDHILt AVENUE • COSTA MESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 fR XO CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING r SUBJECT BY DATE JOB NO. SHEET OF r r I 0 7 - A L Pk &A = 115`7 4 / 6 V' :2 s 4 2 Ac. r .� Irt . • Re 7 r �r r 6 Y n / _ Q•��'r 24 by _ o• 99S do ,4 J� � 1 40 do 3170 REDHILL AVENUE • COSTAMESA, CALIFORNIA 92626 -3428 • (714) 641 -8777 m do 4" dW 4 " dill diw w4e g 20"WAO-0-0 gmeo CIVIL ENGINEERING • LAND PLANNING • LAND SURVEYING SUBJECT BY DATE JOB NO. SHEET OF TkE-5VVrJr- svmmA 1 33.3? N �- = 1 5 -7 7,' -_c44 tj , 13`7 C,1 woo— 0 ■ -, . .1 ♦� 1 11gi 1 �... -_ 0, A.= -\ .. a i. 44 1 15 '• Well I I if 1 i � II I i n li J �� ♦ 192 AC. " ♦�Aw = I .' ♦ 30 %5 Q /Gb a /• obi .. AV Lu I 26 ... W •� Q co /4A �\ HIGHLAN asms Nil i G ILFILLAN 1 O of I il� A I R P19,�T .n = 52795 5 = 394.5E C.FS. Q/ 42 Q25 = ✓37 37C.F.9 ®� � it ♦ `tiC n ♦ Q II a o 1 � ♦ \ Ilk I ,. 1.5t/37.37 — 3A5E- L /NE AVf 7110 AEDMILL AVENUE COSTA MESA CA $2624-1128 CIVIL EMOIMffMINO • LAND PLANMNIO . LANONNIVfViNO i SCALE' / " = /ODO' ,. CITY OF FONTANA PUBLIC WORK HYDROLOGY MASTER PLAN DATE SCALE DRW. NO. 11 /86 1 ,940 1 SAN BERNAODINO COUNTY HYDROLDGY' . MANUAL WATERSHED INFORMATION FORM: Ini ,-//' 1e , PROJECT: S . �' . M D. t ! DATE: ENGINEER: irr 1. Enter the design storm return frequency (years) IOU 2. Enter catchment lag (hors) L :19,540, Lam= 6.3 oo, H =16 , V - 7 '. o o ,.. 3. Enter the catchment area (acres) 1157 ■' 4. Enter basef low (cfs/square mile) 5. Enter S -Graph proportions (decimal) Valley: Developed Foothill 12 .rr Mountain Valley: Undeveloped 0 .4 �* Desert 6. Enter maximum loss rate, F (ind/hmw) 0 •S 2 6 7. Enter low loss fraction, Y (decimal) 0.36 0 8. Enter watershed area - averaged 5-minute point rainfall Enter watershed area- averaged 30- minute point rain- ,.. fall to ches)* 1.2 Enter watershed area - averaged 1 -hour point rainfall Ouches)* 1 .5-9 r Enter watershed area-averaged 3 -hour (indhes)* g point rainfall Enter watershed area - averaged 6-hour point rainfall (inches)* 4 Enter watershed area - averaged 24 -hour point rainfall (i'il'es)* 1 1 .75 9. Enter 24 -hour storm unit interval (minutes) d *Note: enter values unadjusted by depth -area factors SAN BERNAODINO COUNTY HYDROLDGY' . MANUAL WATERSHED INFORMATION FORM: i M - 52 9 - M - h - la. S ............ =-74 a rrf SAN BERNARDINO COUNTY � HYDROLOGY MANUAL WATERSHED,: INFORMATION FORM L 106 -I !0� PROJECT: ` . M r E DATE: do ENGINEER: 1. Enter the design storm return frequency (years) 100 2. Enter catchment la (hocrs) L = !4, 4 o �, / g ..cc�- �66�. H =Z98. 3. Enter the catchment area (acres) 1385 4. Enter basef low (cfs/square mile) 5. Enter S -Graph proportions (decimal) Valley: Developed Foothill -- Mountain --- Valley: Undeveloped I — '"" Desert 6. Enter maximum loss rate, F (Inchilmr) O. .4"/ 7. Enter low loss fraction, Y (decinud) 0-387 _ 8. Enter watershed area - averaged 3- minute point rainfall (inches)* 0.55 Enter watershed area- averaged 30- minute point rain- fall Cinches)* 1 Enter watershed area - averaged 1 -hour point rainfall Gnches)* 1.53 .. Enter watershed area-averaged 3 -hour (��)* 8 point rainfall 2-70 Enter watershed area - averaged 6-hour point rainfall (inches) *. ¢ . 2c9 Enter watershed area - averaged 24 -hour point rainfall (inches)* °f 9. Enter 24 -hour storm unit interval (minutes) ra *Note: enter values unadjusted by depth -area factors SAN BERNARDINO COUNTY � HYDROLOGY MANUAL WATERSHED,: INFORMATION FORM = _SEES° �wrw ..HM.w..w.w..� :w .... ..-w www.w..A.HMww.YYwIwIN wwwNM....H.1�w.Mww. W..H.HH.w «.YMww.......H... �� ww —Z�- - --- _-- "= ° =��== tea: '_' - :�:__..• - '_- -�. ME _ _'� '' � ►:.� � �.���___ .«..... ___........-- ^:L'::. -" .�. ...mow«. M wwr� �.w. ww:':wn: mow. •ww wwMww. w.n �GN::: o: w::::iw:n u..�..:.�.. :.�« i ~ � ' w w�w� wwuwn.r ww H.H...w rw.....own«.oH.u � "l�'�L.I7•' �. T.�J_ - _ YW Ww.ww.ww.H.Hwwwr w..w M..w.I....wH w.. . 1 Z. - - i eF q u. +.rrn. a. IJASC. L , ALE hpANGE COUNTY SUpV EY(Ip 40 40 go No 7oo 332? 4,3 �-�- j 4 A VE U a[ �1 iij NAA , ..t S• Ov- 9 y "PAN.E COUNTS Is 3g. -7 - __ f3m tee is 0C -- 7g T P. �i /0 Top o q .C' 13 ff g ,• �. S. C . Cop— Ck �R2Y 3L- 5 c c 4 p 5L2� - 2 7,6 3 I cate—NO EL. 1534 - •�3 -- o. t q. ;-i 1 A 4,4 Z9. W r X— SEG W1NG U/4 + r /53G..d E• P. N orz's, r s.o C PA, r n M AR k - S Ce 4• l G err "M ,y/.r- s g zoo �r q. dO Im arr ............. • , -- -- - - \r,:< - -- - - - " - - -- " -- rAIf .3 o f d ORANGE COUNTY SURVEYOR mo t Jr an qS7 s J� h rr O Lo o & [N c. EAS-r �7 AN #11 04 WC n � _ �! ��� Ire • Loo fc I Co L•A S • r sw . UA.i LC R7 W pU L C_I/ �'• S — Qlp — `'' V 101 ANGF (OUNTV SURVFYOP �v ow t• /! -so rir )C E c 3 Lk • , 0 � �� ��o ��� .S� issue• /i Aa O 4! S Vl i J dig , v � GOo /iJ �a tq ORT SAS r _� rrW " HYD; <AL k j C , "I . F ^1` NT S - I PROC PAC:KAC w� <<<<<:<;<<<:;<<<<:<<<<<<.(<<<<<<<<<<<<>> ) > >: >) > > > > > > > >> >>>> >> > >>>>>)))) W > awl / ..".;. ,,;_. `,.o�' �': +,'•_ Pu._!�, - J Fr�;�.r�• °•�rirv, ;,,ti-�„4.�r + - (nr:.,j - nrE pi -r f cx - : NA! .L '< FORE=MAN. TNT sA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< > > » » » >> >> >> > > >>> >>>>) »» >> > > > > >>>> <<<<<<<<<<<<<««<<<(<««<<<<<<<<< <<<) > > > » » » > > > >>> >>> > > » » » »> >>> > > > >> Adv;xn ed Er c.)i.neerinh Softwcare (.A.ES] SERIAL.- No. TO0821 z„ VER. 2.3C RELEASE DATE: 2/20/86 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<«««< < >» » » > > >>>» »> > > > > > > > >»» > > > > > > > >> w * * * * * * ** * *DESCRIPTION CIF RESULTS' *********** * * * * * *x * * * *xx * * *xX * *x* * *.k* * * *x SAN `EVAINF- WATERS� MODEL,DRAINAGE DITCH ALONG SUMMIT AVE ' FLJA4 SPLIT 8-0 AT NODE 1.t.}6-01.,FAST OF I -15(Sf E HYDROLOGY rAA ) * VEI <I.N, JN 3814 -023, 6/28/ > > > > CH W\IF_L. _ WJT INFCR lAl' IaJ < < < < .r ( Z(FKDRIZONTAL /VERTICAL) _ .49 ;A<;!: '-JIDTH ( FEET) = 3.00 CC>IVSTANT CfiPJV�!Et SLOPE (FEET /FEET) _ .015707 tw UNIFORM FL- , A4(CFS) = 5K0.00 � - NCY�MAL - -DEPTH FLOW I N4. ORMAT I ON : - - - - -- - - - -- - - - - -- - -------_--- _._._ -------------- ------------------------ >>>>> NOR IAL_ CFPT-' f F F =T) -- 5 _ 08 FL C44 rcr— 't - "7r i(FEF ?) = 7. 98 yr F L.0 OW AREA (�,QfJA F E` T) = 27 . &", HYDRA IC, D' P H(cEE' s� Fi -CW AVERAGc 'v=.l ()(:TTY(FEET /`S.E(..) = 19.37 do E. NIM. - 1RM FRC7_:. E 1.826 f f'.l✓ 5S ;F + AVFRA;=D VFLC} "`Y ' A= ( ~`rT) - ''. i`> F'.._C... Tf"Q '.J .'- C;f2't F CfZ rc; rr 7r qi F i - _r .: qvr =kAr x- L % "r! CY;T ; Y (FFF f 1 2. 10 :.�'f ?•.Tt:�'J. F nT ,•rr "`�z;_Jtf 1 ".�.1r t�hU�t(F'O.INf��,l mm ni�E:f_4) ri�1"r �.. FIi_ }i.i \1f rlr.'lY f P�C)(r . F 0 do F L O O D R O U T I N G A N A L Y S I S USING ORANGE /SAN BERNARDINO COUNTY UNIT - HYDROGRAPH (1986 MANUAL) Copyright 1983,1986 Advanced Engineering Software (aes) Ver. 2.7C Release Date: 6/07/87 Serial # I00909 *� Especially prepared for: HALL & FOREMAN DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** �* BASELINE TEMP.CHANNEL CONNECTION FROM EXIST CHANNEL TO PROP. RCB AT R/R * Q 100 YR, REF: BASELINE TEMP DITCH CALCS EAST OF CHERRY AVE VENRI.N, JN 3810 -020, 9/21/88 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: BASE106.100 — TIME /DATE OF STUDY: 15: 6 9/21/1988 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.00 TO NODE 106.01 IS CODE = 1 --------------------------------------------------------------------------- » » >UNIT- HYDROGRAPH ANALYSIS « «< ■ r--------------------------------------------------------------------- - - - - -- m (UNIT- HYDROGRAPH ADDED TO STREAM #1) ' WATERCOURSE "LAG" TIME = 1.232 HOURS UNIT HYDROGRAPH TIME UNIT = 10.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 13.528 WATERCOURSE LENGTH = 19540.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 6800.000 FEET ,,.. ELEVATION VARIATION ALONG WATERCOURSE = 1614.000 FEET BASIN FACTOR = .090 M ' + WATERSHED AREA = 1157.000 ACRES BASEFLOW = .000 CFS /SQUARE -MILE *" VALLEY(DEVELOPED): "S" -CURVE PERCENTAGE(DECIMAL NOTATION) = .000 FOOTHILL "S" -CURVE PERCENTAGE(DECIMAL NOTATION) = .200 MOUNTAIN "S" -CURVE PERCENTAGE(DECIMAL NOTATION) = .400 MIN VALLEY(UNDEVELOPED /DESERT): NO "S" -CURVE PERCENTAGE(DECIMAL NOTATION) = .400 MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) _ .526 IN LOW LOSS FRACTION = .360 * HYDROGRAPH MODEL #2 SPECIFIED* 40 SPECIFIED PEAR 5- MINUTES RAINFALL(INCH)= .58 SPECIFIED PEAR 30- MINUTES RAINFALL(INCH) = 1.20 do SPECIFIED PEAR 1 -HOUR RAINFALL(INCH) = 1.59 SPECIFIED PEAR 3 -HOUR RAINFALL(INCH) = 3.17 SPECIFIED 6 -HOUR RAINFALL(INCH) = 4.75 - SPECIFIED PEAR 24 -HOUR RAINFALL(INCH)= 11.75 *USER SPECIFIED.'PRECIPITATION -AREA REDUCTION FACTORS: +s 5- MINUTE FACTOR = 887 30- MINUTE FACTOR = .887 1 -HOUR FACTOR = .881 3 -HOUR FACTOR = .983 . ""'� 6 =HOUR FACTOR = .991 do 24 -HOUR FACTOR = .995 q " RUNOFF HYDROGRAPH LISTING LIMITS: ,W MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 16.00 MODEL TIME(HOURS) FOR END OF RESULTS = 18.00 .w _______ ______________________________° UNIT HYDROGRAPH DETERMINATION ---------------------------------------------------------------------------- "I`• INTERVAL 'IS " GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ---------------------------------------------------------------------------- rrr 1 1.236 86.439 2 4.187 206.507 ,.. 3 8.614 309.741 4 15.277 466.097 5 23.750 592.835 6 32.460 609.387 7 41.195 611.116 8 50.417 645.187 rr 9 56.569 430.406 10 61.194 323.527 ... 11 64.914 260.261 rrr 12 67.976 214.284 13 70.537 179.147 .. 14 72.746 154.565 15 74.773 141.780 16 76.568 125.572 17 78.238 116.884 18 79.719 103.581 19 81.118 97.909 20 82.355 86.542 21 83.528 82.070 22 84.577 73.344 wr 23 85.557 68.578 24 86.425 60.761 .. 25 87.250 57.694 26 88.028 54.430 27 88.713 47.957 28 89.340 43.821 29 89.944 42.234 30 90.524 40.591 31 90.983 32.124 32 91.416 30.288 33 91.849 30.282 34 92.274 29.770 35 92.681 28.470 +*i 36 93.087 28.389 37 93.493 28.392 do 38 93.846 24.737 39 94.159 21.911 40 94.473 21.928 41 94.784 21.799 42 95.072 20.133 43 95.353 19.665' 44 95.634 19.649 45 95.906 19.027 46 96.146 16.804 47 96..384 16.63'5 48 96.601 15'.170 .r� 49 96.803 14.126 50 96.987 12.865 51 97.171 12.881 w m 52 97.354 12.816 53 97.522 11.782 54 97.685 11.354 ,M 55 97.847 11.354 56 98.011 11.467 l 57 98.183 12.040 58 98.356 12.114 59 98.529 12.105 60 98.659 9.081 61 98.714 3.830 62 98.768 3.790 63 98.822 3.774 ,^ 64 98.876 3.798 65 98.930 3.782 66 98.984 3.782 67 99.038 3.798 68 99.092 3.766 69 99.147 3.798 " 70 99.201 3.782 71 99.255 3.798 72 99.309 3.766 73 99.363 3.798 �r 74 99.417 3.782 75 99.454 2.618 76 99.480 1.810 arr 77 99.506 1.778 78 99.531 1.778 .� 79 99.557 1.793 80 99.582 1.778 ' 81 99.609 1.859 82 99.634 1.778 83 99.660 1.778 84 99.685 1.778 85 99.710 1.777 86 99.736 1.778 87 99.761 1.778 88 99.787 1.778 89 99.812 1.778 *� 90 99.838 1.777 91 99.863 1.778 92 99.888 1.778 93 99.914 1.778 94 99.939 1.778 95 99.965 1.777 96 99.990 1.778 97 100 000 700 a ---------------------------------------------------------------------------- m TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 391.3679 do TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 735.4829 ---------------------------------------------------------------------- - - - - -- e R Iw .r Lmj 71 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H --------------------------------------------------------------------------- ---------------------- -------------------------- ---------------------------- HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) M VOLUME(AF) Q(CFS) 0. 250.0 500.0 750.0 1000.0 rr TIME(HRS) ---------------------------------------------------------------------------- 16.083 368.7921 608.94 V Q 16.167 372.9859 608.94 V Q ,., 16.250 377.6536 677.74 V Q 16.333 382.3213 677.74 V Q . .. 16.417 387.4546 745.37 .V Q. 16.500 392.5880 745.37 .V Q. d' 16.583 398.2955 828.74 .V Q 16.667 404.0031 828.74 .V Q 16.750 410.1553 893.31 V Q 16.833 416.3076 893.31 V Q . rm 16.917 422.5712 909.48 V Q 17.000 428.8348 909.48 V Q . w 17.083 435.1417 915.76 o V o Q . rrr 17.167 441.4486 915.76 V Q 17.250 447.6740 903.92 o V Q . 17.333 453.8993 903.92 V Q . 17.417 459.3465 790.93 V .Q . 17.500 464.7937 790.93 o V .Q . 17.583 469.8090 728.22 o V Q. '.667 474.8242 728.22 V Q. .750 479.4908 677.59 VQ . r .833 484.1574 677.59 o VQ 17.917 488.5210 633.59 QV 18.000 492.8846 633.59 o QV . rr FLOW PROCESS FROM NODE 106.01 TO NODE 106.01 IS CODE = 2 OR --------------------------------------------------------------------------- » » > FLOWBY STRUCTURE ROUTING MODEL<< <<< *f-------------------------------------------------------------- - - - - -- - - -- MODEL STREAM NUMBER 1 FLOWING PAST A FLOWBY STRUCTURE: FLOWRATES IN STREAM # 1 WHICH ARE GREATER THAN ,rr 540.0 CFS ARE ASSUMED TO BE EXCESS FLOWS. FLOW EXCESS IS ASSUMED TO BE ADDED TO STREAM NUMBER 2 a in 40 $0 me ,. AN we 40 INFLOW INFLOW (STREAM 2) (STREAM 1) flow excess <------------- - - - - -* < =flowby structure (flowby Q = 540.0 cfs) V V STREAM 2 STREAM 1 + FLOW EXCESS FLOWBY F +w ,e FLOWBY BASIN MODELING RESULTS: MODEL INFLOW INFLOW OUTFLOW FLOWBY TIME (STREAM 2) (STREAM 1) (STREAM 2) (STREAM 1) +� (HRS) (CFS) (CPS) (CFS) (CFS) 16.083 .0 608.9 68.9 540.0 16.167 .0 608.9 68.9 540.0 16.250 .0 677.7 137.7 540.0 16.333 .0 677.7 137.7 540.0 16.417 .0 745.4 205.4 540.0 ' 16.500 .0 745.4 205.4 540.0 do 16.583 .0 828.7 288.7 540.0 16.667 .0 828.7 288.7 540.0 �. 16.750 .0 893.3 353.3 540.0 16.833 .0 893.3 353.3 540.0 .r 16.917 .0 909.5 369.5 540.0 17.000 .0 909.5 369.5 540.0 17.083 .0 915.8 375.8 540.0 17.167 .0 915.8 375.8 540.0 17.250 .0 903.9 363.9 540.0 17.333 .0 903.9 363.9 540.0 17.417 .0 790.9 250.9 540.0 do 17.500 .0 790.9 250.9 540.0 17.583 .0 728.2 188.2 540.0 „ 17.667 .0 728.2 188.2 540.0 17.750 .0 677.6 137.6 540.0 to 17.833 .0 677.6 137.6 540.0 17.917 .0 633.6 93.6 540.0 18.000 .0 633.6 93.6 540.0 s( FLOW PROCESS FROM NODE 106.01 TO NODE 106.01 IS CODE = 5 r. --------------------------------------------------- ------------------------ » »> MODEL CHANNEL ROUTING BY THE CONVEX METHOD « «< on____________________________________________ _______ ________________________ Im - THE MODIFIED C- ROUTING COEFFICIENT IS ESTIMATED IN ORDER TO ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5- MINUTE INTERVALS(Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17 -52, August,1972, U.S. Department of Commerce). AM ASSUMED REGULAR CHA EL INFO BASEWIDTH(FT) = 100.00 EL - 5.00 UPSTREAM ELEVAT ON = 1559.00 DOWNSTREAM ELEVA ION = 1389.60 CHANNEL LENGTH(FT�.,,= 80 INGS FACTOR = .035 CHANNEL ROUTING COEFFICIENT ESTIMATED: MAXIMUM INFLOW(CFS) = 375.76 AVERAGE FLOWRATE IN EXCESS OF 50% MAXIMUM INFLOW = 299.46 CHANNEL NORMAL VELOCITY FOR Q = 299.46 CFS = 4.47 FPS ESTIMATED CHANNEL ROUTING COEFFICIENT = .725 N MODIFIED CHANNEL ROUTING COEFFICIENT FOR 5- MINUTE UNIT INTERVALS IS CSTAR = .467 an CONVEX METHOD CHANNEL ROUTING RESULTS: ii ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 'SOW PROCESS FROM NODE 106.01 TO NODE 106.02 IS CODE = 5 - '��`� - >>> MODEL CHANNEL ROUTING BY THE CONVEX METHOD « «< _---------------- ______-------- _____________ _________________ ______________ r THE MODIFIED C- ROUTING COEFFICIENT IS ESTIMATED IN ORDER ,. TO ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5- MINUTE INTERVALS(Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17 -52, August,1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH(FT) = 100.00 CHANNEL Z = 5.00 UPSTREAM ELEVATION = 1389.60 DOWNSTREAM ELEVATION = 1297.70 rw CHANNEL LENGTH(FT) = 4340.00 MANNINGS FACTOR = .035 w CHANNEL ROUTING COEFFICIENT ESTIMATED: 'r MAXIMUM INFLOW(CFS) = 368.99 AVERAGE FLOWRATE IN EXCESS OF 50% MAXIMUM INFLOW = 301.24 40 CHANNEL NORMAL VELOCITY FOR Q = 301.24 CPS = 4.50 FPS ESTIMATED CHANNEL ROUTING COEFFICIENT = .726 MODIFIED CHANNEL ROUTING COEFFICIENT FOR 5- MINUTE UNIT INTERVALS IS CSTAR = .551 �r +w CONVEX METHOD CHANNEL ROUTING RESULTS: MODEL INFLOW OUTFLOW TIME (STREAM 2) (STREAM 2) '" (HRS) (CPS) (CFS) MODEL INFLOW OUTFLOW TIME (STREAM 2) (STREAM 2) (HRS) (CPS) (CPS) 16.083 68.9 .0 16.167 68.9 .0 16.250 137.7 4.4 Aw 16.333 137.7 8.8 16.417 205.4 28.6 .n 16.500 205.4 47.4 16.583 288.7 79.3 1w 16.667 288.7 106.6 16.750 353.3 142.6 16.833 353.3 171.9 16.917 369.5 214.0 17.000 369.5 248.9 17.083 375.8 288.0 17.167 375.8 318.5 17.250 363.9 339.9 17.333 363.9 353.7 w 17.417 250.9 363.1 17.500 250.9 369.0 17.583 188.2 368.4 17.667 188.2 366.3 17.750 137.6 329.3 17.833 137.6 292.7 17.917 93.6 253.3 .,, 18.000 93.6 222.9 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 'SOW PROCESS FROM NODE 106.01 TO NODE 106.02 IS CODE = 5 - '��`� - >>> MODEL CHANNEL ROUTING BY THE CONVEX METHOD « «< _---------------- ______-------- _____________ _________________ ______________ r THE MODIFIED C- ROUTING COEFFICIENT IS ESTIMATED IN ORDER ,. TO ROUTE THE STREAM 2 INFLOW HYDROGRAPH BY 5- MINUTE INTERVALS(Reference: the National Engineering Handbook, Hydrology, Chapter 17, page 17 -52, August,1972, U.S. Department of Commerce). ASSUMED REGULAR CHANNEL INFORMATION: BASEWIDTH(FT) = 100.00 CHANNEL Z = 5.00 UPSTREAM ELEVATION = 1389.60 DOWNSTREAM ELEVATION = 1297.70 rw CHANNEL LENGTH(FT) = 4340.00 MANNINGS FACTOR = .035 w CHANNEL ROUTING COEFFICIENT ESTIMATED: 'r MAXIMUM INFLOW(CFS) = 368.99 AVERAGE FLOWRATE IN EXCESS OF 50% MAXIMUM INFLOW = 301.24 40 CHANNEL NORMAL VELOCITY FOR Q = 301.24 CPS = 4.50 FPS ESTIMATED CHANNEL ROUTING COEFFICIENT = .726 MODIFIED CHANNEL ROUTING COEFFICIENT FOR 5- MINUTE UNIT INTERVALS IS CSTAR = .551 �r +w CONVEX METHOD CHANNEL ROUTING RESULTS: MODEL INFLOW OUTFLOW TIME (STREAM 2) (STREAM 2) '" (HRS) (CPS) (CFS) sw ' 16.083 .0 .0 do ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.02 TO NODE 106.02 IS CODE = 1 ---------------------------------------------------------------------------- 90 » » > UNIT- HYDROGRAPH ANALYSIS<< <<< (UNIT - HYDROGRAPH ADDED TO STREAM #2) WATERCOURSE "LAG" TIME = 1.479 HOURS UNIT HYDROGRAPH TIME UNIT = 10.000 MINIITES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 11.269 WATERCOURSE LENGTH = 14400.000 FEET +r LENGTH FROM CONCENTRATION POINT TO CENTROID = 5660.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 298.000 FEET BASIN FACTOR = .100 WATERSHED AREA = 1385.000 ACRES dw BASEFLOW = .000 CPS /SQUARE -MILE VALLEY(UNDEVELOPED /DESERT) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) _ .490 LOW LOSS FRACTION = .387 * HYDROGRAPH MODEL #2 SPECIFIED* a SPECIFIED "o SPECIFIED SPECIFIED qw SPECIFIED do SPECIFIED SPECIFIED PEAK PEAK PEAK PEAK PEAK PEAK 5- MINUTES RAINFALL(INCH)= .55 30- MINIITES RAINFALL(INCH) = 1.15 1 -HOUR RAINFALL(INCH) = 1.53 3 -HOUR RAINFALL(INCH) = 2.70 6 -HOUR RAINFALL(INCH) = 4.20 24 -HOUR RAINFALL(INCH)= 9.51 "m *USER SPECIFIED PRECIPITATION DEPTH -AREA REDUCTION FACTORS: rrr 5- MINUTE FACTOR = .887 30- MINUTE FACTOR = .887 +w 1 -HOUR FACTOR = .887 3 -HOUR FACTOR = .983 6 -HOUR FACTOR = .991 24 -HOUR FACTOR = .995 ,rs W 16.167 .0 .0 16.250 4.4 .0 16.333 8.8 .0 16.417 28.6 1.6 16.500 47.4 4.7 16.583 79.3 14.3 rr 16.667 106.6 29.1 16.750 142.6 50.9 ... 16.833 171.9 76.6 16.917 214.0 106.3 "' 17.000 248.9 137.1 17.083 288.0 171.7 17.167 318.5 207.8 17.250 339.9 244.8 No 17.333 353.7 279.8 „„ 17.417 363.1 309.0 17.500 369.0 331.1 .• 17.583 368.4 347.0 17.667 366.3 358.0 +- 17.750 329.3 363.8 17.833 292.7 365.6 17.917 253.3 352.4 18.000 222.9 326.2 a.A do ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 106.02 TO NODE 106.02 IS CODE = 1 ---------------------------------------------------------------------------- 90 » » > UNIT- HYDROGRAPH ANALYSIS<< <<< (UNIT - HYDROGRAPH ADDED TO STREAM #2) WATERCOURSE "LAG" TIME = 1.479 HOURS UNIT HYDROGRAPH TIME UNIT = 10.000 MINIITES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 11.269 WATERCOURSE LENGTH = 14400.000 FEET +r LENGTH FROM CONCENTRATION POINT TO CENTROID = 5660.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 298.000 FEET BASIN FACTOR = .100 WATERSHED AREA = 1385.000 ACRES dw BASEFLOW = .000 CPS /SQUARE -MILE VALLEY(UNDEVELOPED /DESERT) S -GRAPH SELECTED MAXIMUM WATERSHED LOSS RATE(INCH /HOUR) _ .490 LOW LOSS FRACTION = .387 * HYDROGRAPH MODEL #2 SPECIFIED* a SPECIFIED "o SPECIFIED SPECIFIED qw SPECIFIED do SPECIFIED SPECIFIED PEAK PEAK PEAK PEAK PEAK PEAK 5- MINUTES RAINFALL(INCH)= .55 30- MINIITES RAINFALL(INCH) = 1.15 1 -HOUR RAINFALL(INCH) = 1.53 3 -HOUR RAINFALL(INCH) = 2.70 6 -HOUR RAINFALL(INCH) = 4.20 24 -HOUR RAINFALL(INCH)= 9.51 "m *USER SPECIFIED PRECIPITATION DEPTH -AREA REDUCTION FACTORS: rrr 5- MINUTE FACTOR = .887 30- MINUTE FACTOR = .887 +w 1 -HOUR FACTOR = .887 3 -HOUR FACTOR = .983 6 -HOUR FACTOR = .991 24 -HOUR FACTOR = .995 ,rs W 0 dill RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 16.00 'ter MODEL TIME(HOURS) FOR END OF RESULTS = 18.00 do '� ----------------------------------------------------------- - - ---- - - -- UNIT HYDROGRAPH DETERMINATION ro ---------------------------------------------------------------------------- AM INTERVAL 'IS" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) Art - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 .977 81.797 on 2 3.098 177.673 3 6.175 257.663 .w 4 10.650 374.810 5 16.138 459.574 in 6 23.109 583.840 ,rr 7. 30.790 643.243 8 38.855 675.494 .�, 9 46.952 678.085 10 53.718 566.691 11 59.238 462.236 12 63.467 354.243 "* 13 66.984 294.519 14 69.908 244.835 15 72.244 195.705 16 74.218 165.256 �w 17 75.920 142.585 do 18 77.578 138.840 19 79.018 120.632 �w 20 80.370 113.243 21 81.603 103.184 22 82.729 94.374 23 83.811 90.601 24 84.805 83.249 25 85.765 80.353 26 86.591 69.177 27 87.392 67.145 28 88.094 58.799 .r 29 88.771 56.636 30 89.447 56.622 «� 31 90.123 56.636 32 90.719 49.916 33 91.215 41.556 34 91.711 41.526 35 92.207 41.526 , 36 92.686 40.089 37 93.063 31.584 ARM 38 93.423 30.191 39 93.784 30.191 do 40 94.145 30.219 41 94.492 29.117 MR 42 94.830 28.303 43 95.168 28.304 on 44 95.506 28.333 45 95.827 26.823 40 46 96.081 21.279 g o 47 96.328 20.726 48 96.577 20.785 49 96.824 20.698 50 97.041 18.202 51 97.244 16.982 52 97.447 17.011 ""� 53 97.650 16.982 00 40 54 97.839 15.879 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 402.9460 �w TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 688.8227 ---------------------------------------------------------------------------- E .w am( ,.0 rr ww 4= .w d H M e w aw 55 97.999 13.354 MR 56 98.156 13.180 ri 57 98.314 13.237 58 98.469 13.005 59 98.593 10.334 60 98.705 9.405 urr 61 98.818 9.434 62 98.931 9.464 +�w 63 99.043 9.435 64 99.156 9.435 65 99.269 9.435 66 99.381 9.435 67 99.494 9.435 68 99.607 9.435 69 99.719 9.435 70 99.832 9.435 71 99.945 9.435 ► 72 100.000 4.634 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 402.9460 �w TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 688.8227 ---------------------------------------------------------------------------- E .w am( ,.0 rr ww 4= .w d H M e w aw ..r 2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H 41L dd HYDROGRAPH IN FIVE- MINUTE INTERVALS(CFS) w ---------------------------------------------------------------------------- TIME(HRS) VOLUME(AF) Q(CFS) 0. 250.0 500.0 750.0 1000.0 " ---------------------------------------------------------------------------- 16.083 324.7622 566.15 16.083 324.7622 566.15 V . Q , 566.15 16.167 328.6613 566.15 V. Q . 629.93 16.250 332.9996 629.93 V. Q . 629.93 16.333 337.3380 629.93 V. Q . 692.23 16.417 342.0943 690.62 V. Q 346.8944 695.37 16.500 346.8506 690.62 V Q . , +rri 16.583 352.1014 762.41 V Q , 791.50 16.667 357.3522 762.41 V Q , ,w 16.750 363.0066 821.02 .V Q . 897.60 16.833 368.6609 821.02 .V Q , 993.54 16.917 374.7711 887.20 .V Q . 1024.28 17.000 380.8813 887.20 V Q , 1090.76 17.083 387.2108 919.04 V Q , 1126.86 17.167 393.5403 919.04 V Q . 1175.90 17.250 399.9528 931.10 V Q . # 17.333 406.3653 931.10 V Q , 17.417 412.6516 912.78 V Q , rrW 17.500 418.9380 912.78 V Q , 17.583 424.7471 843.48 V Q . +.w '.667 430.5562 843.48 V Q , .750 435.8964 775.39 V ,Q .833 441.2365 775.39 V .Q . 17.917 446.1215 709.30 V Q . 18.000 451.0065 709.30 V Q , ari FLOW PROCESS FROM NODE 106.02 TO NODE 106.02 IS CODE = 11 +r --------------------------------------------------------------------------- »» >VIEW STREAM NUMBER 2 HYDROGRAPH<< <<< 40 STREAM HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) NO R --------------- --------------------------------------------------- - - - - -- sjTIME(HRS) ---------------------------------------------------------------------------- VOLUME(AF) Q(CFS) 0. 325.0 650.0 975.0 1300.0 „ 16.083 324.7622 566.15 Q , 16.167 328.6613 566.15 QV . 'W 16.250 332.9996 629.93 VQ. . 16.333 337.3380 629.93 VQ. . 10 16.417 342.1054 692.23 V ,Q . 16.500 346.8944 695.37 V.Q . 16.583 352.2434 776.67 V. Q 16.667 357.6945 791.50 V. Q 16.750 363.6995 871.93 V. Q . to 36.833 369.8813 897.60 V Q . .917 376.7238 993.54 V Q .000 383.7781 1024.28 .V .Q X1.083 391.2902 1090.76 .V Q 17.167 399.0510 1126.86 .V Q 17.250 407.1494 1175.90 V Q 17.333 415.4889 1210.89 V Q err 00 'o 17.417 423.9031 1221.74 V Q . 17.500 432.4695 1243.85 y Q . ON 17.583 440.6683 1190.46 V Q do 1 7.667 448.9430 1201.50 p Q .750 456.7889 1139.23 V Q w� ( .833 464.6469 1140.97 p Q 1.917 471.9589 1061.71 p Q . ,r 18.000 479.0908 1035.55 p ,Q END OF FLOOD ROUTING ANALYSIS ark F R ma Nw Mo yr 0 MR ®rr E OR AW rr 10 E E go do d