Loading...
HomeMy WebLinkAboutCoyote Canyon Debris Study tim ` DEBRIS PRODUCTION STUDY FOR THE COYOTE CANYON SPECIFIC PLAN FONTANA, CALIFORNIA we PREPARED FOR: COYOTE CANYON, LLC a. 16027 Brookhurst Street, Suite G -251 Fountain Valley, CA 92708 441 ei , . PREPARED BY: _ No. 41679 M. * Exp.3 —31-0 AEI•CASC ENGINEERING OF CA1-1 937 SOUTH VIA LATA SUITE 500 COLTON, CA 92324 (909) 783-3636 Fax (909) 783 -0108 September 12, 2002 Revised October 25, 2002 DEBRIS PRODUCTION STUDY COYOTE CANYON - FONTANA, CALIFORNIA TABLE OF CONTENTS PAGE I. PURPOSE AND SCOPE 1 II. PROJECT SITE AND DRAINAGE AREA OVERVIEW 1 III. HYDROLOGY 1 N. DEBRIS PRODUCTION AND BULKING FACTOR ANALYSES 2 V. CONCLUSIONS AND RECOMMENDATIONS 6 VI. REFERENCES 6 FIGURE 1: REGIONAL LOCATION MAP FIGURE 2: LOCAL VICINITY MAP PHOTOGRAPHS OF THE DRAINAGE CANYONS *� APPENDIX APPENDIX "A ": CORRESPONDENCES *' APPENDIX "B ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "A" APPENDIX "C ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "B" APPENDIX "D ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "C" APPENDIX "E ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "C-4" APPENDIX "F ": 100 -YEAR RATIONAL TABLING CALCULATIONS APPENDIX "G ": BOYLE ENGINEERING AES HYDROLOGY CALCULATIONS EXHIBIT EXHIBIT "A ": HYDROLOGY MAP (SCALE: 1" =300') EXHIBIT "B ": USGS MAP WITH DRAINAGE AREA DELINEATION (SCALE: 1 "= 2000') EXHIBIT "C": HYDROLOGIC SOILS GROUP MAP September 12, 2002 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403- CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc ape DEBRIS PRODUCTION STUDY COYOTE CANYON — FONTANA, CALIFORNIA I. PURPOSE AND SCOPE This report was prepared in response to the City of Fontana's request to document the results of the debris analysis for the Coyote Canyon Specific Plan using the U.S. Army Corps of Engineers, Los Angeles District (USACOE -LAD) methodology. The extent of the studies establishing this report includes the following: A. Review of the USACOE -LAD Debris Production Manual (Reference 1). B. Preparation of a drainage area map and points of flow concentration of debris load in the project area. C. Determination of the 100-year/1 -hour rainfall and the 10- year /1 -hour rainfall values for the tributary drainage areas to be used for Regression Equation 1. D. Determination of the 100 -year and 10 -year storm runoff for the tributary drainage areas to be used for Regression Equation 2. wij E. Determination and evaluation of the quantities of debris production volume and the associated bulking factors tributary to the project site utilizing Regression Equations 1 and 2. me F. Preparation of the debris production report and exhibits. II. PROJECT SITE AND DRAINAGE AREA OVERVIEW The Coyote Canyon Specific Plan is located in the City of Fontana. The project is roughly bounded �!! by I- 15/Duncan Canyon Road to the south and east, the existing Hunter's Ridge development to the west, and the undeveloped hillsides to the north. The drainage area covered by this study consists of approximately 3,230 acres. The northern portion of the watershed is characterized by rugged, steep slopes with elevations ranging from a high of 4,060 feet above sea level to a low of 1,780 feet at the bottom of the foothills. For the most part, the project area consists of moderately steep valley terrain sloping gently to the south. The Hawker Crawford Channel traverses the project site in a southwesterly direction and terminates into the existing Rich Detention Basin, which is located near the southwest corner of the project site. The total drainage area tributary to this basin is approximately 3,234 acres (Reference 3). III. HYDROLOGY The San Bernardino County Hydrology Manual, the San Sevaine Water Project report (Boyle), and the Hawker - Crawford Channel and Rich Basin Drainage Analysis (Volume IA) were used to develop the hydrological parameters for the 100 -year storm event. For the most part, the rational tabling method was used to determine the peak flow rates. Computations were performed using the RSB computer program developed by CivilCadd/CivilDesign (CDD). Off -site flows were obtained October 2s 2002 1 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403 - CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc in DEBRIS PRODUCTION STUDY COYOTE CANYON - FONTANA, CALIFORNIA • from Boyle's study. The rainfall values and slope of intensity duration curves used for the study were obtained from the San Sevaine Water Project report and verified against the isohyetal maps contained in the SBCFCD hydrology manual. The 100 - year /1 -hour rainfall value is 1.638 inches while the 10- year /1 -hour rainfall value of 1.15 inches. A slope of 0.6 was used for the study. Hydrologic Soil Groups "A" and "B" were used for the study area. Hydrologic Soil Group "B" was used for the northerly mountainous areas, which covers most of the study area. Antecedent 3 Moisture Condition (AMC) 2 was used to determine the peak storm flows. For this study, meadows (fair) cover type was used. The drainage boundaries and points of storm flow concentration were determined using the project's topographic maps for the project area. For some portions of the natural watershed areas to the 2 north, existing project area topographic maps — including USGS Quadrangle maps and the San ii Bernardino County Flood Control District's maps — were used. IV. DEBRIS PRODUCTION AND BULKING FACTOR ANALYSIS Debris Production The Coyote Canyon project is impacted by small watersheds to the north and the existing Hawker Crawford channel to the northeast. These watersheds drain into the proposed Line "A ", Line "B ", Debris Basin "C ", and Line "C-4 ". For purposes of this report, the watershed that drains into Line "A" is designated as Area "A ", the watershed that drains into Line "B" is Area "B ", the watershed that drains into Basin "C" is Area "C ", the watershed that drains into Line "C-4" is designated as Area "C-4 ". Table 1 shows the four "Areas" (column 1) and their respective drainage areas in acres and square miles (column 2). Table 1 i . , Size of Drainage Area (2) Watershed (1) Acres Square Miles (mi "A" 138 0.22 "B" 372 0.58 "C" 195 0.31 "C -4" 231 0.36 According to the USACOE -LAD Debris manual (Reference 1), Regression Equation 1 is recommended for use in watersheds from 0.1 to 3.0 mi for which recorded peak flow data is not October 25, 2002 2 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403 - CLOMR\Reports and Studies \Coyote Canyon Debris Production Study I. DEBRIS PRODUCTION STUDY 5 COYOTE CANYON - FONTANA, CALIFORNIA available. The preceding table shows that the subject watersheds (column 1) fall within this range (column 2 on Table 1). Regression Equation 2, on the other hand, is recommended for use in watersheds of 3 mi to 10 mi in area for which recorded or computed peak flow data is available. These regression equations were selected by statistical criteria and are based upon the following variables: relief ratio (RR), drainage area (A), unit peak flow (Q) or 1 -hour precipitation (P), and the non - dimensional Fire Factor (FF). Each of these variables was found to be significant at the 95 percent confidence level. Regression Equation 1 takes the form: Log D =0.65 (Log P) +0.62 (Log RR) +0.18 (Log A) +0.12 (FF) Regression Equation 2 is defined as: Log D = 0.85 (Log Q) + 0.53 (Log RR) + 0.04 (Log A) + 0.22 (FF) D is the unit debris yield in yd /mi . Two of the key variables considered in the selection of the appropriate regression equation are the 1 -hour precipitation (P) and the unit peak flow (Q). As indicated in the manual under Section 3, "Evaluation and Selection of Variables for Analysis ", subsection 3.1.1 "Precipitation ", paragraph 6, page 8, reads, "The choice of 3 mi as the dividing line between Equations 1 and 2, and between the use of precipitation or runoff as the hydrologic variable, was based on several factors. Runoff data is generally unavailable for watersheds under 3 mi in area, and the data that was available displayed poor correlation with measured unit debris yield. Watersheds larger than this were most likely to be controlled by reservoirs, which also commonly possessed inflow records for the debris yield event of interest. Peak unit inflow for these larger watersheds exhibited good correlation with measured unit debris yield. Precipitation over these larger watersheds exhibited greater variation areally than that falling on smaller watersheds, which resulted in poor correlation with unit debris yield when compared to unit peak runoff." The manual points out further that, "Maximum 1 -hour precipitation was adopted for use in the regression equation dealing with drainage areas under 3 mi because of its high correlation with measured debris yield (see Table 2)" (see last sentence under Section 3.1.1, page 9). Review of Table 2 on page 37 indicates that precipitation (P) has a relative worth of 0.987 or 98.7% in this regression equation. The manual also states under subsection 3.1.2 "Runoff', page 9, "Results indicated that unit peak runoff values from small watersheds were poor indicators of unit debris yield. For watersheds over 3 mi in area, however, unit peak inflow (ft3 /sec /mi2) proved to be highly significant in all phases of the analysis. Unit peak inflow was adopted for use in the regression equation dealing with drainage areas of 3.0 to 200 mi of its high correlation with measured unit debris yield." The last paragraph of Section 5.3, page 19, reads the following: "Note that some discontinuity exists between Equations 1 and 2 at the drainage area size juncture. When dealing with borderline cases, such as a watershed of 3.0 mi in size for which both precipitation and runoff data exist, it is advised that debris yield be calculated through the use of October 25, 2002 3 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403 - CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc DEBRIS PRODUCTION STUDY COYOTE CANYON - FONTANA, CALIFORNIA, 1 both Equations 1 and 2. The higher of the two results should be used." Based upon the above mentioned information and considering the size of the watersheds tributary to I the project site, the project tributary drainage areas fall within the limits of Regression Equation 1. However, at the request of the City of Fontana, Regression Equation 2 was also used in the analysis and the results were compared against the enveloping curve of maximum debris inflow for Southern . California. The maximum values were determined by selecting the respective point along the curve based upon the drainage area of the study watershed. I Additionally, at the request of the San Bernardino County Flood Control District (SBCFCD), this study evaluated the 10 -year debris loading based upon a Fire Factor that is equivalent to a 1 -year fire occurrence, that is the debris load is determined based upon the 10 -year flood event occurring I one year after the subject drainage area has experienced a 100 percent watershed burn. According to SBCFCD, the 10 -year event using a 1 -year fire occurrence would yield higher debris volumes in few cases than the 100 -year event based upon the 4 -year fire occurrence. The USACOE -LAD II manual recommends that the design debris loading (100 -year) be determined using a 4 -year fire occurrence. The 10 -year peak flow rate was computed by multiplying the 100 -year peak flow rate by a factor of 0.7. The 10 -year rainfall value used was 1.15 inches as shown on the SBCFCD's I isohyetal map. Table 2 shows the results of the analysis. The unit debris yields are expressed in cubic yards per square mile (yd /mi Table 2 . _ Enveloping & , r, - i' ° Remission. gre Regre Ression Regression : Curve Value �.......:... � , < .. ,, ... . ,; ;;fir` ' Ecuationfis =:,:;Equation 2 Equation 1 Equation 2 of Watershed :: F Based upon Based upon Based upon Based upon Maximum -1 ' , .: , ::11.i'''''''' - ,'" ' . 100 -near . - -100 =near l0 -pear 10 -year. Debris . `' , Ita fall Peak Flow Rainfall Peak Flow Inflow ~ C 21 . (3) ' (4) (5) (6) " A " 15,900 yd /m 211,300 yd / mi 21,630 � y 2 s z s z s 2 630 d /m 430,290 y y 290 d /m 145,000 d /m "B" 19,500 yd /mi 224,270 yd /mi 27,050 yd /mi 456,550 yd /mi 130,000 yd /mi . "C" 20,500 yd /mi 278,765 yd /mi 28,820 yd /mi 566,980 yd /mi 140,000 yd /mi "C-4" 17,800 yd /mi 309,030 yd /mi 24,260 yd /mi 627,670 yd /mi 138,000 yd /mi 1 According to the recommendations made by the U.S. Army Corps of Engineers, Los Angeles District in their e-mail and correspondence, dated August 30, 2002, and August 31, 2001, I respectively (see Appendix A), the computed 100 -year debris yield should not exceed the value shown on the enveloping curve value of maximum debris inflow in Southern Califomia (column 6 above). The results of the analysis shown above indicate that debris yields associated with L October 25, 2002 4 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403- CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc L DEBRIS PRODUCTION STUDY a COYOTE CANYON - FONTANA CALIFORNIA A Regression Equation 1 for the 100 and 10 -year events (columns 2 and 4, respectively) are less than the enveloping curve value of maximum debris inflow (column 6). Regression Equation 2, on the other hand, generates debris yields for the 100 and 10 -year events (columns 3 and 5, respectively) that are far greater than the enveloping curve value of maximum debris inflow (column 6). It is apparent that using Regression Equation 1 for determining debris yields for the subject watersheds is more reasonable than using Regression Equation 2. Table 2 also shows that the debris volume associated with the 10 -year event using a 1 -year fire occurrence (column 4) is greater that the 100 -year event using the standard 4 -year fire occurrence (column 2). Therefore, the 10 -year event using a 1 -year fire occurrence will be utilized in the design di of the debris basins. Bulking Factor A bulking factor is used to increase the "Clear- Water" flow rate in order to account for debris loads pi inherent in natural watercourses or streams. It is determined based upon the maximum potential debris production for a study watershed. PI The bulking factor calculations were performed using the Los Angeles County methodology: Bulking Factor (B.F.) = 1.0 + D /120,000 WS iii iil- where: D = Design Storm Debris production rate for the watershed in cubic yards per square mile Table 3 tabulates the results of the 10 -year debris production and bulking factor calculations for each of the study watersheds. Since the 10 -year event resulted in greater debris volume than the 100 -year event as shown on Table 2, the 10 -year debris volume is used to determine the bulking factor. 'lam Table 3 i Wa tershed:.; B ;;': Drainage Area Design Design Debris Design Debris ." Yield , Volume Factor nik>Iag "Fac (1) , ' (21 (3) (4) - (51 «p„ 0.22 mi 21,630 yd /m 4,760 yd 1.18 «g„ 0.58 mi 27,050 yd /m 15,690 yd 1.23 « 0.31 mi 28,820 yd /m 8,935 yd 1.24 "C -4" 0.36 mi 24,260 yd /m 8,735 yd 1.20 The desi gn debris yield associated with the 10 -year event with a 1 -year fire occurrence (column 3) October 25, 2002 5 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403- CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc • u DEBRIS PRODUCTION STUDY COYOTE CANYON - FONTANA, CALIFORNIA • is shown on the preceding table. The design debris volume (column 4) is calculated by multiplying the debris yield shown in column 3 with the drainage area shown in column 2. Table 3 also shows that the computed bulking factors range from 1.18 to 1.24 (column 5). Due to the uncertainties associated with the equations for determining debris production and the bulking factor, a maximum bulking factor of 1.50 is recommended for sizing the proposed drainage facilities. This bulking factor of 1.50 is consistent with the minimum bulking factor that's acceptable to the San Bernardino County Flood Control District. V. CONCLUSIONS AND RECOMMENDATIONS Based on the results of the studies and investigations made for this report, it is concluded that: • Use of Regression Equation 1 is appropriate for the study area based upon the conditions and technical requirements as set forth in the USACOE -LAD Debris Manual. • Regression Equation 1 produced more reasonable debris yield than Regression Equation 2 when compared to the maximum debris inflow enveloping curve for Southern California. This report recommends that: • The use of Regression Equation 1 be approved by the City of Fontana for determining the design debris yield for the Coyote Canyon Specific Plan. gli • The debris load and bulking factor resulting from a 10 -year storm event with a 1 -year fire occurrence be used to design the proposed debris basins and drainage facilities as recommended in the project master drainage plan. VI. REFERENCES 1. U.S. Army Corps of Engineers, Los Angeles District; "Debris Method, Los Angeles District Method for Prediction of Debris Yield'; dated February 1992, and updated February 2002. 2. County of San Bernardino; Hydrology Manual, August 1986. 3. AEI•CASC Engineering; Master Drainage Plan for the Coyote Canyon Specific Plan 4. Boyle Engineering Corporation; San Sevaine Water Project, May 1995. October 25, 2002 6 AEI•CASC ENGINEERING O: \word processing \job related \734 - Coyote Canyon \73403- CLOMR\Reports and Studies \Coyote Canyon Debris Production Study_091202.doc _ PR Vicinity Map . Figure II . ,. • . _ .••••.„,., __,...,:•,,:•.:_:,..: e ....; -.- : ;•-•,., :•-' 0 ,'. - • . • , i .- -_- - - .,.....- \ >•,. • ' •;: 3-•, : : :- •2.•:, ' • ','..... -.•• ..-' - - 7.* -....--.-:..,...-:. t - .-, • v ...........' -':,: ,i,, -ci: : ...,,i : ,..... , ..-.:* : ;.k s........ L...) .. ...,:.;.:'.;:-...:1 IL' ..-.1 ..:-% • 77--!-'6' .-*,(..: • -... • \ . ._ ....:: . - 1: .• 'I:: ..Z.....':' - -:'.;;.:•.-4 , 1 ,- ...-• -. : --..: ;.;:e 4: ...--_,_ , '- .- •• • .!..-• Y-....4.../..n. 11..!..1'..- - - 4*- ;•:,: •■•• , ',P2:'.• ' • • "! • , r,.. .4: ,-.-...": ,..f, .. ••••••,...'":: .• - - .- •....: L..; ...f: , ' • •.i .L ••• •;;;i,!....;..`:' '7,7 ' :. er....;. ., ..••■•. , c1 .:„•,...7, .7. '. ' • .: -•''.-:,' ' •••'::::11`..ifff ''• • -- 4..,:.1. • •--":: :": ..*?: ..::!:1.... -,-; :), - --4., ; :- - • .::. : • , 1 ; ..• .‘,-.7-'4...T.4,,V-1..,!, : ...;;;"' A .% • ,...";.' , :.t.-:- , :-. 1 ... , :::•:".:.'7: 7 - .3 - • .*;. ''r.gs...,:r :-- - .'.s --:.-, •l' • --:::". .:`;-5 - -. 7 . ' ...'"•.: ....." :,--::. ,-' 'i . ~"' . ..% - 7 4 : - .- , ••7±"? , : , :i...'..•) -. 1..e:-• . ' -,:". : ' ',.'-- :: :: :: - :::“ - '';1-.., , J:.-1);': 1:fe '. ' •3!..i.'evi: :-.=.::::: : -, in . •.! I -•••• • .i.-e: di.... ,:•::::: •77.: -:, --' i?"7. -.-- •;::' :•.:- :- '.- .• ,'•-:-..-.! ..--;:. : '''''.:: --?f,t..-.. T f ...... , s . -e•-.•;€ '4 •,... e -, ....r....*:%:.!!,•1::,.f.:,. - ,'t - .r •:--,.....-; ...-;•-•-•,.,;>•. ;: - :•;::- ,- :•:;;;,- , •;:;;.::... , ,.%ia-4*-,-- , - N':::-.:-•:.:,- .-:- . ---• % - -' , -,-- -) • - -----. , - • - *.:,-..:-.,-- , -t4i..s.:: '-- -4)--• •••••-• •-•--, - ...* • , 1.L.-....,-:-,---- _.. • _-!,;, -:,...---...• ,-, ,,-;. .-:•-;;;;;.- ••.' -- 7 .. s, .. . V. r...?i:Cit-21,7. •'`--' ...1 l' — ..... '! 4'-:••• :: :, '''' '''1 --- ."..',?. i • ',. • : ''. . • :! :': • ;: : • ..rii'''C:: ' ' - - .. 7 " . 4$ 4.-" "." ' V .7... ..,....;"7 •.-.':=..,.. r -. '‘.• - ',..•.--,:,.: ..t . --,, ,i,Fi ': ; . ,:- -- -: • ....:ger.F.: ,'• • : -.1. 7:: . 7.....• .., I: •• -...- ' • V% ., 4 i. :'.. .--... :--, ..-;;-?...: "-• - _,,:-.-7,)- .• _ . :--......::.:- . !.., ,s , ..' • ;::"..... . rfi. • : • , „ . ..-.. • , .• A . , ::,.:-,- .. .....:; : t...•:,i:n.. ,. ,,,,-, . aser_ ;;-,,,,.....•••. • ,--,- 7:- •::-....:. --., ...:,„-.v.•_ ..-- ...„. ; . .,.,. ,,, • . .- . ,- „ ..... .. _ ... . , ,. , . . • _ • • . _-_.--- • -,.-----. ,-,..,-. " -- •,..i. ,-, ._-: • . • ."_;...._____,_.,..„-_._......„_-,•-,-#„----- - . . .-•„.,„...--- — ---. - ---:----- ,.---.:-. , --7-t. - -.— -- - = -.. - -- ----7-• - ...• ,...----- - _..-:....;,• . ,-...;,, .. •:.---,..;„*-; ...:..7- • • 7 , ...1 7 ,.... i .i S.: -,"..! i . ..i .: . • .'' • . --:. "*. ' ,:: .... : .'..::::, ‘ ; .• -• : . ::' ---...--,•,.-.. - - :'..: ' . - 7 -.-:.."'.,.:. lif..it:!" ''• .. ''•; - - i •';:.." ,'" - .. - - . "ir-- :- '..- .' - :... -':-.- - .7 ;- ----z•.: ); .... : • .. re'...ir,;:i ... i! , t1 . .....v.':' , :'•ri.: -. "- :'...4!.!::)•:!:-.4" :., . • - --. , . :! ":.- :" .• : : ',' '.f.V : .."-e i :'.. 1 ,...::• , , ..,.-7:7 ,4 .. 7 ...' : ' :' .... 1.. :11 ? :::'.... 7.::':1'?.. 7..1•41.:*11‘71.:Z.:::'".... . ......; ::..".....--.-r.-17'.... ••••■.: '..7\- %.:•‘..•-•-•"'"." . -.: \ 4 11.'r: t' A .. - . • - : ' -: . " . ' : ... - i. • 7:: :, ' . %:' '... ....... '...: .......• -. ,.,_..... .,,' ••• _--r . _ :.. , . . ...,...„ -,..... . r .... i ' ; •I'.! . .... - -, 1 ; :.:‘....:*%-.,•.•:'...— .4 • .•:..-1.7, -...,- ..., . .,... , - • .- ..: ... • ' -- ,-.: :._ :— --'::' ' .: - t ' ....:', -., : :1:' .'...'-..,,••• ) .)." :--- 4." . . . 11 . 2 - . - • R "' 7 . ..' , . ! . -.. . . -/ ,.... i. .;e2 • ,...; • - .` 1 1-::"- , 7 :t .:::-. — --. .- .',i.*.:'... f ,, .2.1 ;•,•,,,, . • .c. ,...:;:•••••••• •‘:-.--.-.. :., ....■•• , . inr*.: i,.... .„ .,. ..... -,.., . . . ' .,.....!. - ..."•• . 1 -. .. - '.'.'-'• .14 r .... :! ..N% . ..i: .%.-- -- ‘, 1... . .. -PP , • - ok - 1."Q :. • , .•-• ,;• .,-,•• ..; ,. .-- . „.„ . ' .,•• , • , , . • ..-.--.77, .. . , __'...." -,.--IE-. ....../ .....- •• :--• - ..•:, -- --1 _ - .- .•",,--• j . , ,,. _., • .. . .- .-....- (--; '". - • - .-- - .•••• : .. • 4' : - ••■.,,•• • , 4 ' Y F . : -- .:- --- - r: : :: : " •-''. . '••• •• 47..7 I . • ---;•• ••-• . • . - • • .• - - .;•• ..... . .. , --• ;. • f • .. - - ...., -.".• ,- . .. ----.••-• , w. 1 : ,. ; • . .....„ • - — ..i.r: I 1 i - . • ' ---,$7 . — - . ---,.. i ._•.--- :•::- . , . . 3 Z.. ..- ... . — - --- ;.. _t_.• • . 1....:-.,_,, _,,,,: , „O ...-- ... - ---- — — — _ . - . .,,.. . •? . - . \ 1 . • . • ...4, ,. . . . ..., I .- I ....'..... -----...-.---..-s-.' ' \ : • l . ...4. . ... - - . , _,, ... , - i .... , . - - . . • A .-• .. ._: , ,.. .:.-- .•... . ,. , _ 1 _ „.. -. _......;,.. . . - - ,i . ' - --,- - - . ; ,•- ...; 5: • - ..• . -.. _ - -.! , . x - . • , I • 1. I _......r , * • • W ' . • • I , . - • . 41,1 I • . I . '7 Q i.. * 7.1' - • '. - ..... . _ .._ • - — ,.-.._ . ,, ..... . 1,.., • e.. 1.!..sy, Y . , • ) - -. _ . •,, . —..,_ . 1 !Id • ..,.. . _ ---t- - - .. . : - . .., : .," I '..- ... . , . 4 .. . . _ _ ..- . got , • ... i . ,..„.•. , • . , . i • smA.,...- : ,..- -. : •-• .. . • • ,1138 • . . • i ' Fa:m.0..0.r . 1 . • • • • ' • . _ . _ .. _. . . • I . t . •• '' • • ... - c.1 t.3. 2.• tt: • i , 1 • _ . . _ • - . .....— - . *-4-- • I --.. - . ' • • tu. ?•• - .• • t i 25 -. . I, : . I. _- --,..-- --.....,-..!.._ -..-..-..,---;,57, •-**---..r..---^.----- - - - - _-- ..... --,..,.._.-...... ... • . • 1 weli : • I '" 9.. ..• .• .... • d • [ ....1 .. ,1 •• • . I: ‘ • ' r-----„---------r----- ,, .; .. •,.. li • ,.,. ... • •• j ,... .[. 41. • ' ./.// 2! • .. • ' i - • USGS Devor6. I - Coyote Canyon Specific Plan III-2 - City of Fontana 1 . i 1 7 4 t 1 r i * r 4 1 + .a i 4 f . i i . i r 5 1= 1**- • w _ fi v t: Drainage Area A Area = 0.22 mi r r Drainage Area B Area = 0.58mi r 1 1 1 1 1 ( , f . 1 1 _ _ f- I � Drainage Area C Area = 0.31 mi 1 1 I ,te _ .. . 1 • , i Drainage Area C -4 1 Area = 0.36mi 1 1 irt ei Ira i 1 • 1 APPENDIX "A": CORRESPONDENCES 1 1 1 a 1 111 11,10 our • 1 PR 4111 IP APPENDIX "A": CORRESPONDENCES 3 3 11. /'' �F LCS ANGa s GISTRICT. CCFPS CF EIGINE S *` •: P.O. 8v c =. 711 f ' � tb _ LOS ANGELES. CALIFORNIA 90053.2325 August 31, 2001 Office of the Chief Hydrology and.Hydraulics Branch ni Mr. Cea7ar V. Aguilar, PE is AEI•CASC Engineering • 937 South Via Lata, Suite 500 Colton, California 92324 Dear Mr. Aguilar: • In response to your letter dated August 2, 2001, we have discussed your concerns and reviewed the information you have provided. We hope this letter provides clarification as to the use of the Los Angeles District (LAD) Debris Method for prediction of debris yields. The LAD Debris Method was developed to provide a systematic approach for determining the debris yield from a single event to be used in design of debris basins. The regression equations presented in the LAD Debris Method give debris yield estimates under a given set of conditions. In general, the four factors used in the regression equations are: runoff relief ratio, drainage area, and fire factor. However, for watersheds with contributing areas less than 3.0 square miles, better results are achieved by using precipitation as a factor instead of runoff. These parameters were determined to be the most significant and provided the best correlation with observed events. The Los Angeles District does not now, nor has it ever, recommended using only Equation 2 for drainage areas less than 3.0 square miles. It has been our experience, that in a few specific cases the 1 -hour precipitation for a specific frequency used in calculating debris yields generated unreasonably high debris yields (converse to your fmdings). In these cases, and when reliable runoff information is available, the debris yield can be calculated using both equations 1 and 2 and the most reasonable results used. To assist in the determination as to reasonableness, debris yields can be calculated using other methods and all results can be compared to the Enveloping Curve of Maximum Debris Yields as_ you have done in this case. The engineer should adopt the results that are the most reasonable for the specific project area. 1 • 0 • Questions may be directed to Mr. Kerry Casey of our Hydrology and Hydraulics Section at 213 -452 -3574. Sincerely, 3 1 /2 0 4.;h C ,q Robert E. Koplin, P.E. Chief, Engineenng Division CF San Bernardino Flood Control District attn: Mike Fox City of Fontana; attn: Todd Miller Colorado pacific Construction; attn: Steve Stewart 3 3 w# August 2, 2001 Colonel Richard G. Thompson District Engineer U. S. ARMY CORPS OF ENGINEERS, LOS ANGELES DISTRICT 911 Wilshire Blvd., Suite 1260 Los Angeles, CA 90017 -3401 i�► Re: Los Angeles District Method for Prediction of Debris Yield (L.A.D. Method for Prediction of Debris Yield) tow Dear Col. Thompson: Pursuant to my telephone conversation with Mr. Kerry Casey of your Hydrologic & Hydraulic Section, AEI•CASC Engineering is requesting clarification on the use of the L.A.D. Method for Prediction of Debris Yield. We prepared a preliminary drainage plan for the proposed Coyote Canyon project in the City of Fontana, San Bernardino County. The plan has been reviewed by the City and the San Bernardino County Flood Control District (SBCFCD). In general, the City of Fontana would routinely request SBCFCD to provide their input from a "regional flood control" standpoint. The City has the option to accept or repudiate SBCFCD's recommendations. This 660 -lot residential project is impacted by two distinct drainage courses to the north. In conformance with the City's master plan of drainage, we provided debris basins at the upstream terminus of the on -site drainage conveyance facilities. During the course of our study, we looked at several methods or equations for estimating the amount of debris load that could be generated by the tributary watersheds such as the USLE, MUSLE, Tatum Method, PSIAC, an:d the L.A.D. Method for Prediction of Debris Yield. The method that we opted to use was the L.A.D. Method for Prediction of Debris Yield. Based upon the size of the two tributary watersheds, which are 0.22 and 0.31 mile we determined that Regression Equation 1 was the appropriate equation to use. The 100 -year debris loads for the drainage areas of 0.22 mi and 0.31 mi were computed to be approximately 5,930 yd' and 11,070 yd respectively. The unit yield is approximately 27,550 yd and 36,270 yd per mi for the 0.22 mi and 0.31 mi respectively. • SBCFCD staff has recently informed us that through past dealings with the USACOE, the use of Regression Equation 1 is not valid when design flow rates are available, and that USACOE has advocated the use of Regression Equation 2, not only for the range of drainage areas between 3.0 and 10.0 mile but also for small drainage areas (smaller than 3.0 mile Staff also informed us that SBCFCD is now following the recommendation of the USACOE and as a matter of policy, will only reconsider the use of Regression Equation 1 if they receive a memo from the USACOE that clearly advocates the use of O:hvord processing \job retated\734 Coyote Canyon173403 \Memos \Col R. Thompson. USACOE 030201.doc Colonel Richard G. Thompson August 3, 2001 Page 2 of 2 - Regression Equation 1 for drainage areas that are smaller 3 gr q g all r than 3.0 mi As you know, Regression Equation 1 was developed for drainage areas ranging in size from 0.1 m i l to 3.0 mil. By using Regression Equation 2, the 100 -year debris load for the two canyons has increased by almost a factor of 9 (from 5,930 yd to 52,130 yd and from 11,070 yd to 85,030 yd The computed debris load resulted in a yield of approximately 242,070 yd 1 and 278,640 yd per m wh exceeded the "Enveloping Curve of Maximum Debris Inflows per Storm in Southern California "(see attached exhibit). Additionally, this yield equated to about 3 inches of uniform surface erosion over the entire drainage area, which we believe is unrealistic. As shown on the enclosed photographs, the drainage areas show significant vegetation cover and sparse rock outcropping. Our opinion on this matter is that SBCFCD should require Consultants to take a closer look at using Regression Equation 2 instead of Equation 1 for watershed areas that fall within the "transition" range (from 2.5 mi to 2.9 mi We believe that using Regression Equation 2 for watersheds smaller than 2.5 mi would yield overly conservative and unrealistic numbers. Enclosed you will find the results of our debris load calculations including the appropriate exhibits and photographs for your use. Your prompt attention on this matter will be greatly appreciated. Please call me if you have any questions regarding this letter. Very truly yours, AEI•CASC Engineering Cea7ar V. ,Aguilar, PE ' Principal.) CVA/ch Enclosure - cc: Mike Fox, SBCFCD Todd Miller, City of Fontana Steve Stewart, Colorado Pacific Construction Joe Castaneda, AEI•CASC Scott Vinton, AEI•CASC Aric Torreyson, AEI•CASC 0: \word processing \job related \734 Coyote Canyon \73403 \,Memos \Col R. Thompson. USACOE 080201.doc • Pagelof3 1' Aric Torreyson From: Ceazar Aguilar Sent: Wednesday, September 04, 2002 2:09 PM To: 'gbucknell @fontana.org'; Todd Miller (tmiller @fontana.org) Cc: Steve Stewart (sps080253 @aol.com); Aric Torreyson; Scott Vinton Subject: FW: USACOE -LAD Debris Production Regression Equation for the Coyote Canyon project in the City of Fontana Dear Gregg and Todd, I'm forwarding the e-mail I received from the U.S. Army Corps of Engineers — Los Angeles District regarding tw the use of their regression equations for determining debris yields. For the coyote Canyon project, the 1 -hour precipitation value using Regression Equation 1 resulted in reasonable debris yield unlike in few specific cases as mentioned in Mr. Vermeeren's e-mail where the 1 -hour precipitation (using equation 1) generated unreasonably high debris yields. In other words, Mr. Vermeeren states that the use of Equation 2 for cases such as this is valid (area less than 3 mil) only if the use of Equation 1 results in unreasonably high debris yield. For the Coyote Canyon project, we are comfortable with the results of our analysis using Regression Equation 1. I hope that the Corps' e-mail, their previous letter dated August 31, 2001, and the position letter that we prepared dated September 3, 2002 would provide the City with the necessary justification for allowing us to utilize Regression Equation 1 for calculating the debris yield for the Coyote Canyon project. Sincerely yours, Ceazar V. Aguilar -- ---Ori inal Message----- 9 9 From: Vermeeren, Rene A SPL [ mailto: Rene. A. Vermeeren @spl01.usace.army.mil] Sent: Wednesday, September 04, 2002 1:44 PM To: Ceazar Aguilar Cc: Casey, Kerry T SPL Subject: RE: USACOE -LAD Debris Production Regression Equation for the Coyote Canyon project in the City of Fontana Ceazar Aguilar Principal AEI -Casc Engineering -and - City of Fontana To a- 1 We are sorry that our letter of August 31, 2001 did not fully address your concerns on use of the Los Angeles District (LAD) Debris Method. We have not reviewed the details of your 9/4/02 Page2of3 specific project(s) so we cannot address directly. However, we hope the following clarifies ourposition on use of the equations presented in the LAD Debris Method. For watersheds with contributing drainage areas Tess than 3.0 square miles, LAD recommends use of Equation 1. • That being said, let us reiterate from our previous letter, the engineer should utilize all available information to verify the results. We have found in a few specific cases, that the 1- hour precipitation for certain frequency events generates debris yields that are unreasonably HIGH. The engineer should compare the results to the Enveloping Curve of Maximum Debris Yields. If the results from Equation 1 are HIGHER than the maximum shown, the engineer should calculate the debris yield using other methods to verify. An alternate method can include using Equation 2, if discharge information is available. The in engineer should adopt the results that are most REASONABLE for the specific project area. This decision does not mean choosing the highest values. Rene Vermeeren, P.E. Chief, Hydrology & Hydraulics Section - - -- -Original Message--- - From: Ceazar Aguilar [mailto:Aguilar @aei- casc.com] Sent: Tuesday, September 03, 2002 11:51 AM To: kcasey @spl.usace.army.mil; rvermeeren @spl.usace.army.mil Cc: tmiller@fontana.org; gbucknell @fontana.org; Aric Torreyson; sps080253 @aol.com Subject: USACOE -LAD Debris Production Regression Equation for the Coyote Canyon project in the City of Fontana Kerry, Per our telephone conversation today, AEI *CASC Engineering is requesting clarification regarding the use of Regression Equation 1 versus Regression Equation 2 for the Coyote Canyon project in the City of Fontana as discussed in Mr. Koplin's letter dated August 31, 2001 (see attached). The City of Fontana has informed us that Paragraph 3 of Mr. Koplin's letter appears to indicate that both equations should be used to determine the design debris volume, regardless of the size of the watershed, and the greater resulting debris volume be used for design. Please clarify. Imt As you know, our tributary watersheds are .22 and .3 square miles, which fall well within the range of Regression Equation 1. Based upon the results of our calculations, which we have provided to you previously, we believe that the use of Regression Equation 1 for our particular drainage canyons is appropriate and reasonable. Sincerely yours, Ceazar Aguilar, PE Principal AEI *CASC Engineering 9/4/02 1 • • on !A � APPENDIX "B ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "A" 1 gm 1 1 1 1 1 _ _ ■rrrrrr� -_�� • ��� -- 937 South Via Lata, Suite 500 SHEET / OF Colton, CA 92324 N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE / - / "w JOB: 73‘,0 CALC. BY . A31,41-LOWS- FPCToa. 7r-rE ST'` -145 7.15.0vF_ CHECKED BY 4 0 C P ,t A f C o Y O T_ C PAPIO L) STEM M ( NooES 231 -IZ3Z� &IUEJJ: 4 =/37.8 Ac.: E arv H = 3285.0 L�= ,3 933 -t, Q = 310. 0 ,ECFV = 17(04. ISO - YR 114 c iO3S " } F2E r ( )Z = 1 1•6 -- Ss (E' 7-55.0 - 1769,31 5z30 = 89b.2. /,,,i �° = 8983 C+ I rvN ate: (I ` FIZoM �r-. 15 t.tt) coF i `' 0 L_Ov D. = O, (oS 0,0Z (LO& + 0,13 (Lo& -A O. n (FF w•. LO v D, LoZ7 LO &. 84(0. Z T 0.1 (Lo ) -f- alZ(4'5) L.bG o, = y, 2.07 p = 5,`e48.13 yA/m.Z usE /5,500.0 v= z D = ay h (15;9 °%,iz }( /37.s r?c.)( o ,K.� D= 3,9 2 4 0 ti 2, SULKING F'4LTOZ F = I C NYPEDLo &tI ,MAJJUEI- p . F -Z 1,;,100 F b = 1 I 20,000 / • / _ use I,so BULK Q = 310.0 (:..,o) 0, = 9Co5 CF .S 0 AE I 'CASC C 937 ol South Via Lata, Suite 500 SHEET OF Colton, CA 92324 N G 1 N E E R 1 Ni G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB tt CALC. BY SUBJECT CHECKED BY 4 NOTE.: Cl;ECK 100 Y R. 3TOR.M eve). v'S. /0 1g. L v£PT STICEA M /a- vtAx_ gQQ (i) = 1,15" I n ,C,QE AlcroIC z € . Lo' Or = O,&5 Low( / /s :0) f O,6Z c01r(89 (..L) +0.18 to6-(3 + o.it.(4. S) LOG D = _ y, 335 P 7 = 21 � l a 27 rd / z USE Z1 631.3 Y %; L ) 15 Yc /,,; ?-- (l -1 9 s• 4fe 10 -YEAR, 5ror- £vE)-3T 1 YOU. AMC_ 100% eu► - I,- u P O Pu . &C.Eie! QU, j i' z. rI OF 1).E 43' S . p _ r>Y = 21. i loSO Vd3 l o t O. VC P d3 2.1 A (. 1 Z 12 O,0oO ,O — Ooo r 1.18 ' , . (UsE 1.5 Q = `llv5. Cr;S 1 • 937 South Via Lata, Suite 500 SHEET OF - I � ��� � Colton, CA 92324 E N G I N E S 1=1 1 N G (909) 783 -0101 • Fax (909) 783 -0108 1 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY _ 5TflA M • '— l !Z . LOG Py = 0 LO — +D,S 3 Lob >;Z. t0, b (.D A i-D,ZZ FE 1�Qc..o� �5 -�u� MIr F, - 0 M pef,IJio A5 ('! AT / 000 lit a =-310,0 C rS ,9ti+6 .. di 0 ,=oz E.0 () - (At i PDw._ (i't"looF� (P + /5 /mi 1 Q= 3310'0 _ / 4139, 5 4AAL IL 0,215 on iii 1 II PE&e'S / Mc- " . . iii G oa pl = O,13S "15 (l `/35.5) f D, 5 L06-(5`16,2)./ 00 Lo& 63 4) 01 Z z( y,5- L06.. p S, 32_ p s 2! I, 300.9 ;d 3 /m,. Z Dy - 2 // 30 Oye z (/3?,g Ac ,) (1 " Ac.) D- 4s,4 ye) z ZS ,2, AG -FT 1 5uciziA)6- F,ic>a1z - f / 4 �I g p (�C►�C 4 Lai) Ny,DR- (r'j AA apu I Z /1,3 ID i 2o1o00 NOTE Vy = 211 300.E Yd JOT -peitT /o , . AEI.CASC - 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I N E E R I N G (909) 783 -0101 • Fax .(909) 783 -0108 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY N or 10 `I SroVM E'JJ T 1 -1 Er C- AT - -TE Q 1 zet 5u RJJ uM� io y R t = •? O loo i g. Q = I a 01 :3 . Y5/frv,; z r-F= (t) 406 17 = D, Co - aco1 +0153 Gob- (6?6,,f) -J-0,0 lo& 137,8 + 0.2Z(lo,$) lac= oy = S , 3 p _ y 30 29 o Y 4 44; 2 ►.ioT PP0+TI • fP 1 d I r ■ a ■t / s i m nu nnan■m ■ t � a ■� � sw � ■ ttaaL� ■�w■■:■■■an it ■a■aw� nwtan�' in ` ■m ' m " Hm r aat pit t a11ati� � ip ' t ' t ■ ii nt �itul ■ a ' 11 a' w ■tttanann —n a il -- m Oa m a a a aW t t a ■ ■nn mn ■■a n anni ■t' ■■■■ /■t■aw nn ottatttwtaltw ■ta�■wat t ■■■a�■wtattr�■t/ aamWHmuOWw wt HmwWm am of mm mt /t■1Httaammaga■tttia / . a ai W' tttat " a i no nS a nn n n owt " ' iaiiaitiiaiannm ' j t■■/a■n■tt■ tutu■tunt■t■ Mann ■wu ■H■tta■n1a■atanmmMI/■a■■I1tO ti atatwtmmmu ttlt■ tt7t11ttt ■tttlt■tlwttttttttt ■t1t1HtC imam ■t■ ■w ■1t mWH W H u ■ H n w ntnOwtttmm ■ ■ ■ott■uuwmttommol■pnm nnnuni enm ■a mnHWwtmtH a■Hlmmmt ■Wnanntltt ■11 mwtOHam■ awiltlg■g H u111 WW ■tttgtttttltta nniwnntt ■innnu nannatttpannnz ■`tat ■ ■t■■a ■■ ■g■/■■ Wtltttt ■t■ttlttttttta■ttttttHttH ■Want ■ /a■ttant■tatttn A ■WA■ a■ tHH■ 1HtW1at■■ tltttlWt■ t ■tttlttttttaa ■■1■■■1 ■■t■1 /nt ■■ ■■■gt CD H■ttWttttttt■ttttttttt ■■wtt ■wont■ ■tttttt ■ ■tlwtw ■ ■a■■■onnpnn■■1 ' ■ttt■altWnnonunitt nonnnu ■munwn■ 11111 ■ ■nt■ait ■ ■wt■w■■■ ■ ■■■nnunn ■■■■ nontuulmu ■t■muttontutnl ■n W n■ ■anawwa■■onmonn ■ ■a■■tW ■nionnonnon /m ■tmW■mt ■tmmt ■o ■mwmoto ■/ tom■mntm ■ ■ ■ntamnma ■■1■ ■mat/■■monnrin7 /t1mt7 ■tnumou ■OUO ■mmlm■ notion ■ ■ ■■■n ■onnw11OOmmamanotu mfmmlmmnnnnnm au W1nt ■utmmto■totmttott ■o ■ ■Hnnonni t■ ■nnonnu■1■ ■toganun ■ ■ /,o ■n1 ■ ■i10 nounaammnn■mn■nut■ratan■1a■at inunnn ■■nalaa■■wnnnonnm ■nun ■t■ /sun il ■a■■ tent■ tumu■ nnunnn■■ wamam ■nn■■■mtmmmnalnmm/af■itmammgln nmama■nn Hnof■n/nnnummno ■uguoomu■nt1 W got■to ■ ■ttinmumtmuaamam miamEnn ■1 ■ utoni■■ aaouaoltlnnumm aWaoa■ annwa■■ ■■nno ■t■■ / ■Hnnawwaaii/alannaa■ ■■ CO ■Ramanot ■ ■mtn■ tota a■■ OmmmMntn■ o■■ a■tmmlfmmnmm /11 ■1uu ■+■n1 ■u■ton■ • HO n1mn■ tonontw■■ tlaammtmmummlflntamnuamtnia ■ /fatnf /Mims ■■mOtwultl' wgu ■on ■■ ■otnat ■ ■ ■goot■a tan n u wn ■ ■ ■ ■ ■n n■ /■n■ n gaga■■ iat ■ nWI■ wt ■ n a /■aw ■ ■mmoHaatat■■ta ■mootim ■ ■ ■ ■■n ■outtll■ ■t nnmitmt ■ ■iHtm■rtmlm ■t■■ ■ago il MMIIIMMIMMIIM L/tfotitfina■■ gnnmtu■OUmma■mmmnoi onto ■at ■t Mina■ ■Mott■ / t ■ ■atn■/ /flta ■aan ■a ■aa atlu■■ w m t ■ o■ t■ oanfftmltnmm ■lolo ■aW■u ■Ot ■mtananninen /nmiiomtamnim ■■ nt W H mntnoat mmOnam ■mimmunnnmunnumom■ W ntm■m■aaita■mnewn/ann ■onnt■ lLI ■ ot■ an■ lgttwn ■■ ■ao■a ■ ■ ■a7tittlft■ ■fn■i t ■flat ■m ■ /i/■at /n ■atlt a CC mtWnnouOHUHO ■nm■nnoa ■mttotmmnotmtnn■tmnmm ininmumunmtf ■H maO■OnnO■O■u ■oa■no1■ gun■ tonWa■ a■oatauowtt■tta ■1 /■fiwfn ■at■ ■■n (L tin ■nnattutw ton■ 1amt1 ■ogotuu ■nnW ■ononnlinunnona■ ■tt ■t■ /gnat OP ■ mmunnt otommamtgmntm Oawom nm ■ta /WO1ta /nmummm /aaaiatifitlttH 0 ii onlnmmitmomo■ nnnut■ taOmot wt■ tnnntt ■ututt ■tMRunnn ■i /aaainnonnu1■ j _ W1WOa Wanm■ nnonumnmatmmHmminunannownlmnin ■ ■ ■f annumn1■■tftit /t no ■un t ■■almnn a o ■mamm ■am Inn■ ■onu n n tnmmowmiir,t /ntiawiitnHnnn nogtat■1W ■ta W noun amt ■umnoommnimmmnmittmmiuiamman W omna W ■Maw W000nattnuttn/ na waaot■uatoaan /■a / ■m ■i ■n■tanuno W■t ■ ■■ow ■■ Mama■ Mmitt■ nnnna ■on■Info■watttr/lfloaatintntann MI ii nonn u amm■mmnmm� oW W ttn mummiaou n oo nn fft fwannananntann V W nontmon ■o ■nnn■ng0000tuouann■noatttnft a n u t m n n■ iana ■n i ant■ H uonnnnWn u at ■anmtm■ oft■ ■ O ■i■ OOaoonto■am■fammnn■tnlnmanm Z Huntannuwot■■ oonttntonnu■nnu ■ ■o ■to ■�nnnaH/fn ■luau nt1f ■otmw unn1u1o00outmim ■■ntmmn ■mmmummt tut m ■ ■omamm� n lnt ■ ■na ■ /m ■t■mmt■Hm 0 CO Hommnm0■nmmamnmtnw■■ W ■ouf W ■■ W ta /nwoon■1f Hunottot■ onotnanoolWanotitoon ■n■tt ■nin ■ ■It■aoatfmtn /tttNAM . • tt■n n n ■ um■m■ ot u m m ■oown■mntn mm� om■onmir /imti W omnnunmunn■nn Hunanonn Wn aa■ ona ■n ■anftonontn t tlfia■nnwannalta a (_ ii ■■ tHf■ tf tllnnofnlnWO■■ H■■ tf■ n ■■utt7■ttL/titlnfnaantnl tfn■att t Q nowmalutomn■onufnt W amwnn■anust ■mm�numwonnu moanmmlmannnonn ■ u■ nwmnnnWUUna ■n ■tans■nannatna■■a■■ni■■n ■Hof■ ■■mn■ ■warn CC mw ■m H ottU nnmm aamwum� n m n mwnwffow■ .■aaf/lataann■atnn■tt■an■ }, wtuoo■ wfo■ a■ otttannta■ watw ■tntotnnititnaa tat _.. tnoo■munn■W loo ■mmm■ tit■ u1■ tH ■t■Wtu■Latt ■n ■n■t■ltantntnftnnn nonnanumminnunninmnnunnmanniinnumnnnniuninnumninninunammannnonmininnommunnenn ittnmmmm m■mutoHalt■mwmm■nnotOmta ■o ■' /tomnlatmminnittlmmmnW ._= nntm ■uuanm■■omw■oammoWOt0lwwfo■■■ 4oumaW /mwtmwtimt ■wmwH MMUMMANNEMSMEMUMINEMMEMMRIMMOMMAUMMOMMU AIIIII111111111111111111MIMAMMIN1111101111121W1 mnWW■nn ■tt■a■n■WUOUnn■mW OOm"' mta=s n■ tomHnt mnaannununnnmunniwn■mn%n■n .Hnn ■ H sa ■a■►aaamatnwn u Wn mum ■nwa■muoou■nmtmmmumwmw■ono .a Wnttun■■na■■n■w■■■m■aagnnm • Hut ■mmtWnn■Wn■at■tmmw mn■mtn■n■nittm■nn■■ntuwnnn ii m"'tan"'n�trauaaatt taaimumm iummuwOa mummum ilumai ntfam iu nummmmm■ontomo■nmmammmawmwf/no ■■ omm HHnw■W un mnumuama Hunammum unnitnmma■om■ mmump 4■atomH ■otuW ■namanmi■mtlnmgs irimi Hl HHaainnui lotuudi sattnamu■un■a1■tamo■mtnmumamnon • 1 , , , i n■ W1■ omHHOmntaal. IlaamutaHnta ■ ■ ■o ■ ■amm/oWnotmmmm ' I . , . , tumotnWtummi mmu mm ammnuo 03 0 ■/ ' Wnnu t atalwt mnnwnwmu I vW _ n /t ■ ■mOto � a W � ' : LnI M 1 test 1161 1 1 ■ H ■ aaC n ■1■amnw ■tltt toHtlft■■/ t1m1t ■l aolm�itaH / ■tt■ Ctt mwn■WUm■Wmw■wamo�tlumau r1. /o■ meam ■annsm m u Wttnnu■ottwa■in11 /* mt . ig iiMIAMMM ■u uaa d ati au N nmmtmmtammmtmmiry _mmWmin im■ nu■■ nimmwnt ■mwlwnw/u_nmQfiamwmmmunnna u%a■a " ii a ► tiall m m inumpummin ■ a mu un c i om m x mm t ' i i unont ii n m ' ai■1 ' ma • ■n■nnt■monmmtunnutanal■■mto/ta/a /mat■ ■■ = amnaanmagwitm■w■n II ry aa: �'''� r a - ° ■ w � 'n � i - m�i ° �m■ aw , = = i til i g k n.a m : t la mmmu■ a af a T II 114 co 11, 117 CD au tO 41' CD CO CD LOS ANGELES DISTRICT METHOD I FOR PREDICTION OF DEBRIS YIELD FROM COASTAL. SOUTHERN FIRE FACTOR (DIMENSIONLESS) CALIFORNIA WATERSHEDS I. FIRE FACTORS TOR WATERSHEDS OF 0.1 TO 3.0 - - SQUARE MILES IN AREA. 1 U.S. ARMY CORPS OF E�SGI�3EEP- 1 1 LOS A ?9'C =Z :3 D1 :ST71 1•, 7 C J 0 & tai _ �� , V ! c� (> . 11 P Q > .L i 1 p Z �9 n � u } Y> i I i ;j a a P 2 z l�J W O W �� o ri X X -2 X X X �s N r ri W wo T II ° 0 O co W 7... • Q or J it X I- l O a J t9 a ° „ Q /� � ' E v lam. °• up o X i i CC m w o Z co c u o F >' 1 — 1 • ai p 2°- O - O O O ® 0 ri of �ti a ea ti ai a+ p z r� d1 ..., z i it I1!I r■ rr1.r.■■ _ ME _ 111111 , � �■ ■■ J ' II ■■1111■ ■ 1 ■■� MINIM 1111■■ MM.. ■■■� ■ . ■■fir■■■ ■ri■■■■■ i imum....mim ■■ EIII ILrI■ ■ 1111. ■■■ ■ ■■■ ii fir■ i . ± ■ to 1111■■ ■ ■■ E 11 ■■ ■ ■■ ■■ ■ ■■ ■ I 11 IL IM■Irrr■rrN�rrrr MINIM ' r�rr. g rriir rtr orpgm � /■rr■�� ME n ,A ry 1111111 . ■r ■■ _',.■ ■ ■.�_ ■■ ■.� al 1 piiII ■■I ■ ! ■r■ 1111 ■■■■ la 11 ■ ■ ■11■r '� 1 II IiIIII E I i 1111 Z e M ; inomm limm pilling"' .■ ■mwrimom r■rr - ® �' ■ ■■i■■�■■� ■ri■■r �i ■■i■■Q■■ = ■ ■r H ■■■■■r■■■ I Ii IPiIiI111IIjjI _ ' � 11 ■ ■ ■ ■ ■ ■II■I■■■rr■ ■r 1111 ■ ■ ■ ■■� ■lA1 ■■ ■■ ■■■■■■■■■ 111 ■r■ iiii �I 1 ■ ■■ ■■■ l MIEN III �� 1111 O t Q 0 0 0 0 Q am n ® 0 0 O O O O O O ® ® o o c� a o ea o c► a q o O D A © O p O ® O 0 P h M tai es. I r OP 1 3 or ale <e -3 et fir APPENDIX "C ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "B" in ii �rw 1 3 1 1 lei - — � A E I • CSC ' - 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I N E S FR I fV G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE /l - DO JOB # 73 0 CALC. BY / 1-7-- SUBJECT ;,CALVANC FP T••Z <? ge,OVF CHECKED BY 5_c r1WP , Co'ic E CFNvOIJ 5r'I;FAM . (kroDES Z23 -1219) 6-�vEN A= 370,6 R%. cLEv = L/083.o L LoNC.= IZIL48.8 Q- si9.3 CFS ELEV L = /77'/.7 /00 ZLr- /R P= /430 "'/ftZ. FJrzE FAC) = L/ S Z2, _ (U 083,0 - 01' J 5280 c LOG- D = 0,lcf LOC P t Lo(, ez + 0.18 Lob- A 7 0.12 FE 0,(c5 Lo-' 4 _ 0,:,z_ Lo - (16.3. 6) t Ode LoG(371,5/0) f 0 1Iz(1.S) P = 4 /. Zq a, _ :,y�;� � -� .. U SE 11,5230 = Jv A % (/_y,5-O0 ,,�;,, X 37I- 24 A4-)( p ,q� ) D A330.1 yd' = 7,"I ��i - r ;' _ 1 %,� PW_K; JaC +ZO,000 11 Fs = 1 I (v .. u E /• S f3brz_KF,7 Q 0 Q,_Fa 9 (-/. Sl Q ,„Z = lZ1q : 145E. /230 GP-5 irl CASC 937 South Via Lata, Suite 500 AE 1 SHEET OF Colton, CA 92324 N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 1 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY ID -YgZ STORM EV I yi. 14-FTEv._ ► OD% otmu.1 sreeAm Z /6- yE,4 f. Ea 1. p„= /./ ; fF = 4.5 is ZvG ny = D,(oS LOt 1115,0) t o,G2 Lo &(9.b3,10) O.!S Lo& (371.5) x-CIL (6.5) ape �oG o=11, y3 p = 27, cart y d 3 / EA se 27,o5o 0144; p Foe Io vR E vENT > 17y I00 -YR. „ us€ Io - '/fait � E VENT. D D >1 27, 050 Yd 3 �,,,,; z 0, s5/ p_ /57/7,5 y A 9.7 AL -FT f;3 =__, 4. 22L2_ Ito, 000 Irt F g = 1.23 usE / 5 as= 1230 CF5 937 South Via Lata, Suite 500 SHEET OF AEI CASC Colton, CA 92324 E N G I N E E R I Ni G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY STgEAM Z Q 819, Q Foe ea (Z) ,guar of F ( Ft p 5g, = /ylo, a (z) i-c py = Digs (Q) i o,53 LI6- (Rt2 -) +0,61-1 Lo((A *o? it),?2,FF +.� 4Pk pyw a SS cat,- 014/o1 JS) . - e?,5`3 L.06063,0 to,a(li -o -( -71. %) + 0,72 04,$) L-06- Dy= 5,35 D Z2'/, 1cog,a Yd M; 0=r7yJa sZ2y,4m8, y ; 4 „" Z (if sel = i3 D Liao yd3 It $0,8 - Fr (ALILIku.- FwccDtz = 1 -t" Py a oa r : 7, ea/ D � � = ZZ �I(o$, y �, r) Z r4or PRhnci4-L u5E_ EQ EVENT', Ali 3 AE I • CASC 937 Colton South CA Via 92324 Lata, Suite 500 SHEET OF - , E N G 1 N E E Ft 1 N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY ST REAM 2 ✓ %O -y 5O . EU' . 'T / `/e A TE e• 1O !Su 3t_N pm /- Ssuk^ -G to yg (? z 0,70 /00 y �Z Q= 1 $7,1 • + /s /,, FF 6,S ,o L' = 0,85 LOG 19370 + 053 LOL, ( ?4,3,1) +D, by I-4t 371,614 +0,7z. (60 out 106 P = s, &Gs. „. Py: 1 -/s6 1 CCa ye% Z nor p»T IM. UPI 1 3 ■ El Miff t ■ ai a• =lrrr1ui °rrr T' .. i:: u = H is mw 1 ■■� sasli =sainni� : ' ' ■ .o ■ Si! u■ tun ■rrrs eruus...■ ■r i . . ' , ru• ua. r r rrr : .Y :■�■s =s_�s o:::mm: :E n s:=■ / ss::s .�■■■/■ Wt � o■n ■WWI �f� ■o /■/ ■f ■f ■ ■1t■ ■■on mane . . W ■1 annum ■ /an ■f n W � ■■■■ ■ ■1f! . !I O i °■■an Y1sss:.°s:s :ss u :srrrsr A r■:s -,• �■ �1 ■ = 1fnl. msm mmmumr ■ .. .r■a■ ■.o..00len.nn.o, r �■///1.1.■ Wn!■ o1n■■ nninnu1f1ff■■/ 1f1r ■1f■ftfnnonnn! ■!t1■Q1f ■■f1■■ nun anon■. /.0 urno.■. n ■■ n1.. fWW ■■1f11ffnannnn!! ■!■■■!■lfpll ■1t ■! !! 1■ W ■n■..n.10 ■.fa■n•e.■ ■•e■■■ a. ■0a.fE.. nom ■a WWW■.■. ■10an■1■1■oa ■■ ■ ■1■■■■pn ■ ■ 1 n. ■tor ■ /.. ■n ■ 1 ■11 ■11 / ■l1111l1 ■nninum um* ■n■. 111 ■ff■f11 ■! /■l111 1t1f■■■ ■ ■1 ■■/11! ! r■■!1!!1! ■!!te 111 ■ W1f11/11!■f1nannanW ■■t1■ /1111111/1 nt! / ■11111 allt an ■n ■■■0 ■Dunn.rrlu ■ninennonnm rsfssf• 1 ■unnonnnonnons ■sss! ti ■ftn stall ls//./■..■... fu..■• u■f a. no. ■onur■sn....■0.n1'uaaunn ■ 1■... a■01.t.n..nn■ffntf.fnon ■nnnnunn ■a..1nf.■ ■■ ■nnf..nlf.7 . n. n. mt■ nnl nf.. 0o lfuoaf .. ■unn■ ■n.00no..nannon.oaf ■!amen! /■foolnn !/.■ f. no.!■ 1n.. 1nno nsoo. f.■. lNl /nar /!m 11non1fa■■ ■m!a!■ 1 alnp ■mmno.an ■n■1enWlm ennl■! /..o.n.n.■.nolof. 1■on.o■m..t.■■.■t.oafnm U.nf1.. ■■a IP t.!■.■nl.eaenm■■1..W.f. W ■■■ ■n /ao■ W.on ■■1of.onfffnaoo ■■ a..a. . o■f..o. ■o■W.o■.■!f W f1 ■o.fo W ■n /u.t1a ■.1a.f aannmfM .!MARX! !/ ■.■1Wm ■■ ■ ■nia■ norm! snf■ f■ 1f11n■ 1Y1 ■amlfammtnn■1■!m ■owgmo! ■ ■!nm ■a MD ■■ ■!Henn. W...nnl...f.0a ■on...n.■!nf ■n1 ■emtnn ■manna!+ /nae11 ■ ■nn ■1.u■■1.1W.ua... 111111 !■mltfnlnnonn11n1 ■1!!1n ■f ■anool ■meta ante! .l . nonno■■ nn nun non11 f...■1u1nnnnnl■.a. ■1n n .e.annsmu feof ra.oa 1t111d1tlnl ■! ■ ■/1n1f11n1f11 ■ ■n1 ■1111!! ■nnnunnaan ■aHansru n ntm tenon OM ■.fmm W W n.n■ mf. mun e 1 e ■. 1. mfmmml■■ non ■o.n1 ■..oanf!omen.nanmm� ■!ef ■ ■n -` o.■n..onanom..1. ..mm. ■■ mn...■.■ !1 ■ ■mnnonnEnao ®ellnnannnomama .■.l..l.■1.■a11nnnonnnonnnomm 1n111na ■ffflltfomm!■nnnnnimnateae ■ ■!n1 ili a.W ■mm.m.. ■.a muff. / ■a.1.00.o■e.s ■1n.el..tf f ■!101+1 W non■ oaf ff w o.oWn.mum ummin■ m... f.. flW. nn■.um.an ■mmefamn/imff ■ ■nne..e. ^ cc 11...Wf■■.1....Wf. 111! ■W■..n.a.. tat...■....melomn■.menmtal.lon. ....n ■.u1W ■W ■W ■W.f.. nnunnnn.nfl anon.! /! ■■f nnu m..n ■.ol.n mg .tn■ nun...■■■.. n■ fn1■ 1f... a■ 1. n ..W.1.f..tnn ■■■!an ■anunamael.am 0 $ y ■ ou. W1.■ o.!■■ 0■ ua. n■. 0..■ tW .W1WW.11W...la.I/f...a.fnnol■.w ..j . off...■■ W ■..o ■!f ■■... f■o.!■ t. .nn■mufl■.n.em.n'Ifl.nn.annnao. 111 ■.al.■1..W ■. 111...■./.. a■./... a ...■..n...nn■m►..al.ltnm.a/naeN .■ f0o u... ff. o. 0...■ ■m.mnWnt■..■■1alf.nuntfnnf infnnfoe■f■anuns ■■.■■ a.■ f1.. 1o.■l... f. olsff.. fu .....0on1n ■o.allao.Wm. ■.tnlofe WWW nW n n 0 n II.I ii.a■ ... lmm. t/■ lm.. . . ■.1/lnnma//anan Y fae. ■.aa. ■m 00 nW.lonnonn.nW.W!■f... t erm..a.meun...f ■.1nmnnnnn.ofonu V ..■ W f ■.. ■n■.fnu..■11.onlo..l.1n■1.nf ■nnoo./I.aulnoo.nf■n■.an. W. n01nl. f.l na.■.. W... n.. nn. nW .ttf.11..1laalnlola..o! ■eff..o Z Me . n.. t. n. o0 .n..uffm..!/W■■tl.nf.n.unannun 1 ■0..n.mnnn.f. ■a ■W■ 0n.■ n■.■ nu../ n... 1 1 1 noa.. f.■ Wnfl.ulfn.! / ■.1all..t ■nn■eennno (n .■n.nmm. ■.f1.■..n.e W nfl mf annf0on .00nnnmAlomn■nnemoanl.o ■n■ nfuWf.■n.n..11. ■■.n10n..nunlo...f n.f f ■ /n. o n nannno nnm ■. o ■nf.■ .ftmnon.unlf ■.1n ■u Won.nff.fl W nonnunnnnnofu.onn. ■f foes... II ■non■ ■WOW W.t.1.■o ■f ■o. 1 !1X1..■ /.nof.ai■..otnea!llnae (� o1. WUe. W1.■■. n n. n W Vl .. n.. f.. .m■■1. ■nn.me n faeeWfnfm.flfol L Q .Moon... W 1. W.00. Wn W.eef non u /..e. norm onnf f a...a.o1■ ■.fnolWOnWfnn..■.nafn ■u ■1 Inn... t.....git..■■o■■■ana.ao■■..1nnn UJ oW /W1..mWW nW un■n0o ...■.11..f �n.eWa..n.mmun..11■■n■.■ } ■tnfn.am.1 W. 1.. ..lnuouo■0n0 ■...f.unminnnnn.a0f W.■aa■efmn.f - sn.nno■nn0n ■.. W n..0o ■0n1.a/M ■f1.n0f a.i.n.f ■.e... W ii. n..1W 11! 1■ MnfM■ 1nmf.■ n..■. 1 ..■ n .tle■'..n...ana.a..a.. ■f.l... ■■ ■ ■uoW...e.... ■fit.. ■laouminnnumf.n XAlfW■n.0..n0.eo.nae■.0 MEMMUMMEXMARXXMEMMEMMEREMXIMMUMMIUMMEM /1..11.X. ■.f■■a.nf.a.n.....■ o..W. W W f1..f W.n.1.f.fe.W o0u.1n /a0.t0■a■ ■naf o....!■oa o. nWnm■ WtfWl.n an ofmmonw...�..�..�1111""""m.mmal I'M -. =. .4, nfmnnm■oou.nninno O Un. 1■ WWW�� 'nuAnl�if■o ■ ■nsaanannna ■1�,70 0W.■noan..WW1nflmWU.o ■■!a �n /.nom ■o1a ■■...o. ■nm - li o . ■an.■ . �urrs m ■.fo■�tss Hnl � ..■lf s fm s . s tn.. ■ X Wn0l.1.■ W■■11■.■■oo■u f / ■■ /1fn.oXft■W.n ■■11.!00 • Wn./.... �■% s o Wan�/0fo os n ssnousss %s ■W■f0.mlu..ulf.. ■ ■... W f/. 0 fln .uIlntll.N ■n W ii nnagninnninniinnimunninnnunnion ••••••nn0nn•••••" ■a/W�■1■on�i■"Agam:� assn: ■..fr =■.a f.m :: :: ". an WW1uW.na.f ■nmf./ . ■fOnW/ of 1nWnnonnn ■.no■ oof * 01W1 0 o. /n • 0fu= is ■n of �r� ■ /•■• ■ ■.f ■f1 ■■u ■.0..... ■ 0 II r ... dC1 / ur tflm.sta a e. ds "sf_o_r •■e■■sranu0.a ■as ■na ■•t0 mums..lma ■ .anmslWf.Wnffalf N u namsan/mps �s ■.ssnis pnin nmenn....nn'fa w�Haanffalnnnaiifar ■0■ * O " E■.. ■ ■.lI . u. ■.a ■X i■. s �■ MUME anf.aaao I/ � •. . .r .' ip il a ° sa.• °'°m s � !IMMUNE .l..f.nfml ■al...ss...o/. m ;rs / s 1 to p CO 0 CO 0 LO O .....• D CO W 10 O CO LOS ANGELES DISTRICT METHOD II FOR PREDICTION OF DEBRIS YIELD FROM COASTAL SOUTHERN FIRE FACTOR (DIMENSIONLESS) CALIFORNIA WATERSHEDS FIRE FACTORS TOR WATERSHEDS OF 0.1 TO 3.0 SQUARE MILES IN AREA U.S. 1 ARMY CORPS OF ENGINEERS' - LOS ANGELES DISTRICT E • U=:=? J F; — 4' O E Q 1 , 0 0 SA I re . o •• }2 � I! _ z ` W Z at } } 01 O►. i !! j ';! C W `J! CC a< a a a a ° c � l 3, 0 s ® 0 9 w r ACA F v T W .n 4 O o• t o N iz p . 1 '1 4 1,61 cn w W U 1� W 1� Q i o a f m I to to 02 �" m w e v+ v► r$ � - p gal i 1 o n ® - (.i ri a Iri a w ►- m ai o x O O O Q -LI 4 , a t u i I __■a uIIl ■.m= I 11111111 � _ om i nra m ok ir r■ NI R■ ;f I III �i� ril 1111111111111111111 2 W11111111111 � it �■ ■ r■ ■1111■ ■■� ` __ MI� ■�� ■■■ ■111111_ r � _ • i, u■� ■ IM= Ft ■■� MIN �i� ■rr Et ■' gig kg 1111 ill 1 - 2 ' i i d i i Iii 1 , , w i _ • wi L i .2................. 1......... < al ii m. - ill II In 1111111111111111 II ■ ■.r■ I � Z ■ 1 11 ■■t r w 111111111M111111 • 04 v. .4, ¶ iI P : ' i M 1 ii _ IX �■ ■■ 111 01 II eg i 111 te■ ■ ■fir ■MIrr { 1 r 11 11 i1■■� 1i.rr1■ir r ■ ■ ■■Ir1111rrrt li VIII 111111111111 111 II IIIIII 11111111 ■■1a1 1111■■ III NMI , { ii 1 ® O®® pp O O 8 O O O O O O O © O O O O 8 0 O 0 O 0 0 1 o O O O o o o rya . _ \ 1^ - - ' °It IL .... a- .. • 1 R+.......01 .a.••^" not "NItI I1 • omo too oloo loo rWi APPENDIX "D ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "C" ope imi gm 5 1 937 I • CAS C Cot South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE 1/ "/ - 00 JOB # 73 3 CALC. BY ,4f SUBJECT RULCI•.C- =rcroZ_ Foe . p5OVE CHECKED BY <c = I J I P J c M F)JT (0VO r C F NM A- STEER xn5 3 - (No+DE I lo(,) UWEAJ . A = M 5.3 , . E v = 2:888.0 C� = 4 77. (0 cry ELEV = /1/s, /. /Go - Y' - Nfz i'- 1, 633 lem P14 , =,A:.ro z = N .5 011 , k' _ (zS88•o- /7/9.l) /' 5-280 c- = 12 BCo.q 4 g00 ' £Q' ( #; . L0&- Dy = 045(Lo& P) + 6.62. L0L-( Iz) 0.!5(c.0&(;) t D,?Z (F LS ( .(. Jr!S r- O=- 1953)t0,1a_('L �., p, = 2D 7.- 0 z _ ZO, -oo z = D p .7 (z0, 500 Yd'' ; 4 195 A L ) ( 67On. 0 = .6) y cJ3 3. - ,BULKIic FAcr F7 1 - 7.0„ coo F / -- f /,17 vsE /. 23aLKED G? Q 3g— QLFe, N77. C7 .5 ) � = 116 ,y. CF5 38 -- _AE I • CASC .�■ 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G 1 N E E F. 1 NJ G (909) 783 -0101 • Fax (909) 783 -0108 3 ENGINEER DATE JOB # CALC. BY 111 SUBJECT CHECKED BY mor / -YTL 3 7-0 4 EVENT 1 YR_ ,q-F1 ,L& J uo%, iryr STKESA 3 -l0 to -y6i# EC? 1 P 1./5 whiz FP' %6. S LD6 P = 0,(05 LOG- /MO) # Q.6Z Goo. ( /7 ,f 01/8 Lobf /i5,3)4 /ta.S) Golr 2 y,q . p z 8, 8Z° Y ' . Z aw Py FOR io - EVE r p, too -yR EvEUT' :. u5E ►o D y D= 7 7 ti 28, 8zo yd %w,: Z 3 0.30 5 . p = 8 ,790 y 3 * 5, Y5 4 a z / 1 e> / f z8,8� 20,000 1.20.000 F I :. u5s (,s 0 5.s. 7l6,. y CPS . =AE I • CSC 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I Ni E E i=c 1 N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY a 3774M ki S 3 - (# on a a r =oe E& L - u vrt i< ,Nuuo FP ( eF6/50 ; 2) 11111 y7�� r45 /5‘ 90 0,3°5 imi (z) La- j7 G; 8S zoo- let) -l-- as c.v f - (e R-) 04011 Lo (r C /O t O, 2 2 F+= y� � /� ," ' 2 p G \ /r - L', Z ., " �vLr (15 65 4 ) r' t2/ 5 & 62? - ,4, / 1 Y ,9/L� � �(s' r 0.. p 7$, 763.7 O Pn, z on Dy / - 2 7g, 763.7 (A 305) — g5;UZZ.'t y ci3 5 116 FT r j itt t '-1 L- rttcrioZ (F = 1 I- PY Zo, 000 F6 � f 276 7 (73 , 7 3 3Z 2-747 63.7 P .A:Z »- PKgcrrc tAsE. Fa t. 10-yc EVENT, 1 1 � AEI. CASC � 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY g .1y 11111 SUBJECT CHECKED BY !P N STREAM 5 3 ✓ /D ye 5700A EVENT I y ft r4CTE r_ ,00% RuR)..A /'4 wAA (;4 ° ONDJ = r + Vs /rvii s- rF S LotrP 8S- I (09'40 T 0, 1.06-( /Z8d.9) f o,bq Lot,- /9'S ? f c,22 (,, -) dii .• Lo & v y = • py= S!0(o, cis 1 y6I%1 z /x77- rzerIc awl um g • and nee ■ 1■ / ■.W�■1 4.a.■■: O ■ : •...f ... ■ `�■ ■ i =1 ■.11111 11 : : unman mum gg : :: L � : : / um 0 1 :n C. =�:. /1 mdm / : :�CC H E �L� ■ : WmmmME mum= . ■ ■..p ■■H■■■ =.p_ ■L..■■■dri_:aa...ii :4:::.. ■1..11 ■ ■ � mmumm u mmommu•1 ■ mom mm A..: ■m ■smmummmmmumu1mim : ■H11 /1�■ 1 - 1 � E■■MEMMMMMm ■.. :: . : .. ■. :O : .. ■1. ■ u.f.1 M ■11 ■.. .mIM ■■ ■■mum ■ ■.■■ ■aMEm■mumm ■IMIMmMmummmumumm■mm.ME. MWE■EEIM mummy ..HEM ■W. ■ MIME. ■ ■ ■■■HHU ■ ■ ■A..m :�: ■ :: MINMEI IM :O : :: � :i : . mW■■ mmmm■m.EIMEMUmmummE■.m1 ■ ■.md.... m■■. : � mummumW _ 1..Wm. I.W_■. in .. mmEMEM■■.■ mM 1.. MMmm■ HUpMmEMU m ■HHE■E■M.m.MMUM ■IMMEM: ' di mE11EmHM■■ MMIM1MMm■■mE■■m.dMaWMEIMm MM IIIMMEEmM11M■ AMEMI EMM mmmmuummu mm. m■ EEm■ M. mmummum■ M. m■■ M..■E..■EmumummuM■m■MWME4uymaMu mummummumummammmumumummummmuummummummummmommmammummmuumummuummmummium mmummmmummmmummummummummmmummummummmmmummummummummummuummmmurummummumm mmummummummmummmummmummummmmmmommumummmmummummuummommuumwmmiummummommm !A! Mmmum■1uMm.M..mum■.mu.m.. MME■■ MEE. .m■mu.IMm■■■mmm.mmummuma■.M1u■m / MM■■ uW■ mm um■ M■.. EmmuE1M ■um■.mm.umummum11■muiem1aMMur/m.1■M11mu CO mumm um M1mmumM.■ EUmmuumu mmIMEmIM. mmum mmummmummmmm.MEEIMIMEuMmummmMmmum mummummmmmummmumummmmummmmummummimmommmummmummommummummommuummummummmu M 1.E11mEMEIM mW IM W MEEE■■ mmm. mME■■ ■ m■■EMMUMMM■EE.M■MMa ■ 1 Mm■1■M.mmm■ MMEMMIMMUMEMMOMMEMINMEUMEMONMUMMUMMEMMEMIUMUMMUUMERMINEUMMIMIEMMUMUMMOINNEMIS PI ■ M1IMIM■■■ fE. M■ M1MMAM EMEIEM EEEH■ 1mmmM MMm1■Mm■EM1.■MMM11M■M.uMIMEEMMMMM M■ ■IM■UMMUMMM1 W ■M MmMm/. MMMIMUME ■E ■ ■MMUMMUmMM11MMEEMEMmaEf IM1mMMMMm■ IN mmmammmuummmummommmummummmmummummommmmumumummummummummuummuummilmmumm CC MME.■ IMIMM.■ m. dWEUmE■ E. m. mmEIMEIMMEEIM ■EEmEM ■MMMIEM.WE11 ■MM11dM IL, mmommumummmmuummummmommummummmommumumummmammmmuummummmumummummummummmu . mEmIMMEMME. mUMMM■ ■ ■MIMMMIMMm.M.■■M■■.■Mm ■IM. ■■mM ■Mm am■IMm■■■E ■■.Emu 1' . EMIMMMMEMMEEmmuMMEE. u.■ Mm■ mEIM■ HEIM MMME■IM. ■ ■EE ■MEMNEMMUmMMMM1EMmm J EMKNERBANIMMEMEMEMNWINIMEMEMMUMUMMUOUURIBUMMUMMUSIMMXMINMAMUNIMUMEMMERUMMIM MmumuIMEE■M.m■ MIME■.■ 1■ umIMMmM ■EMUmE■■.mmm.EH.Mrm■ ■uMEHEIMHU m 3 EMm. Em M. E■ m. E. MMMEE.. MMM. E■ MIME M. E■ IMEEEE.■EEIMIM.u/ME. ■u mmmEMIMIM■ MmdmmmmIMlIMMmmummIMHIMmummm ■IMIMMmEMmwmuumum1EEMmumEM111m 4 0 E.m■E.MHm ■ ■11.11! IMIMIM ■mmdm• Emu• M Mmm/•E. EmIM IMm ■.M.Mmm•IMMHE•EEm•MM■ ■■ mumIMMMIMmu mmummummmmmmmIMIMIME ■.mmmum mmummlmmu ■mummMIM1M ■■mM ■EmHM Em EMM mm 111 ■E. ■umM ■.M IMM /EIMI dIMIEE ■mIMMEIMEmIM■FAME m1M 1M1M11m.EM MEM ■.1M inumummmannsummummummummommmimmimmimmummunimmummumminimmummalumm r IMmmmEmmdMmmmam.dmMIMmlMmmuIM /annum mumumwaMm u m ■111 ■M1M1EEmMmm a (C II dEdMIMIMMEmmM ■mME1mIME ■Mmm MME ■MM.IM ■mMm1.mERUMMEEMEIMMWWIM.MWM L Q IIMMXIMINEMNIUMMUMMUMMEMEMUMUMMMEMEREMERIMUUMNWISMINEMEMEUMMEMESIMENMUMUISE mommummmmummmommmommmummmommmummmummumummmmompiummommumummummuummummumm ILI mommmummummummummummommimmummummommummmummumunummummuummmummumummuummmm ›- MMW W M■ MIIM. MM■. EEMMIMIMIMMIM. IMIMME .11mmMAUMMEMM■EU1mHM■M ■E1MMmMM -- - . WMamMIMMEEME. MM1. mdWM■ IMM ■.IMW■dMmMUMEMMEEU.IMIMW1■IM.MMMMM m/EHHMmIMIMM.M.MM■MEIMEMIM MEIMIMEEMEEMIMMWdIM mM MM H.mE■ W 1111.11 E M1■ - .. u UWEMME mmmIMEMEEm ■m..m.1■MWEMEMM■E# A■EIMM WMMMmm■UEMEEMEM ■E MEWM ■IMMMmMIMEEMd/MMMEmIMEMEm ■11mERMUM imm.mmmmommammMEmmm /EIM■ mummy M■■EW EmummEm.u■ AIM■ um■ mm.. IMIMmmm .IMM /. ■.m ■mm ■MMUUMmumumm Wm ■Mm.m IMHIMUMEIM.IIM■IM■EEIMI /WEH■EWMm AMMEEEE ■EMM.r'IMIM Mr minsummilimmimminimmonsmaingsmummummin .M•^nI MUM ,. ill :::■ ■Eu:E .. u.uauuau/um is ::: 1 :R: :a■ : :: : . • 1111 uEHaMWdmm:MM■EEWmEE �U■ ■m.■■■HMMEUEIM■mM. ■H■EUH IMH IMmummammEMIMmmm.W E■ W MIM/amummmN nm mmm W mmmmUm EmM■mmum■m■IM■ ■mummm ■M■ /.amEE ■IMm soma.. ■ ■.1Mm•■■EEW /.IMummmum Emummummumumummummilqi:::iga::::::mmummmummmium ::mii mamma C i 5:::::umm:::mm::::imm : IM■EUIMWWEE■ MME■ mMIIM MUE■ iu■ mm■■■■ mu : . ■H ■■■E ■H : : :: U M M . ICE:::! ■M. ::E: :M : :� :n m ■■ p :2:11412:1111:::::.2 • • mamm MIM and ■M imm :mmumm mm M / : : : :m■- 3 /EE. u m m � m mmml.m.mM M :ri u: Yi ■mM mmMmum.. ■� E . �� � I MIEN IIIMMUMU Ma r MMH■MEMMM Mm .. : .M1E A::: E :::: : 111 IME -10".-qiiiiliiris mum 1 1 LO O co O to I . t0 O m ca . i `er r� c� LOS ANGELES DISTRICT METHOD I FOR PREDICTION OF DEBRIS YIELD FROM COASTAL SOUTHERN FIRE FACTOR (DIMENSIONLESS) CALIFORNIA WATERSHEDS FIRE FACTORS TOR WATERSHEDS OF 0.1 TO 3.0 SQUARE MILES IN AREA U.S. ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT F„..,,,,...., E ", Jr Atil:...'± ,.. , i.'..'suio. -ur .'uiatitalY... .ice.. ... li' 1 - 5rui r',q .. r 'F..�v. .1....: M ....Ve. Y •YaJ, ..•.. A -. 4 :A,e ..n_. •. .. r. .. :. •.- ... f. r. .r.. :. •....ar 3.4c ♦. ..:::5: .l tnTA. J O O z c-& za 2 V ex IIC 4 U V 4 0 0 0 4 vp W i < � � la I Cr z z IC Ac z et z ® 3 E 4 H Q 4 '4 Q Q Q Q 4 ` c L J z >> M z -, z z z -a I t . 1 c d p I irk czt e e j • v p N t F: a M Li) tu GC 12 Ili W W J • �� (y ;A X Z N Q W • �• y! �a1 d D m u) rn Q o hh o 0 Z RI J Ir O W VI 0 a I�! ^a 0 — A 3 u x x x Rn 3 cc �u u) II z $ » . PA 1 0 - O O © O 1 t k GC i G I $ NI MINIM t II i1 R. 11111 I. i :i �r� '1111111111 1 11 i UrniiiiiimitiVa minim 111111111M1111 111111r11111•11111■ UM ��■r�� I__ X11111 11• mirsim 1111111111111 11il■ 111 �� to y IIIIIULT 1E1111 11 __ D 41 2 VC ri, ,111111111111111111111111111111111111111111111 3 OIL 111111111111111. OWN I II ■ 111 r�k �I1111 MM 111 MINN � IINrui ■ 111111111 11 rr r I r�IMI 1 _� 11111111111111111 14 I r��rII1�K!r�rr 12NM 1� �r ! iu rmsu 1 . III 1 i� 111 ii• ` { III 1111111 op 0 { 1111 I Mit II i iiins. �. � pa ;111. 11 __ 1! �� E t ill le . ; ,, , i .. �r�■ ___ u1 r..__ ■r NOM= ._r- i__r_uu Ni Era MN -I I Iu II ___ ► 111 r � ■_ ir1 ■1i 1 ■�1 , iiii iiiraniiiiiiMMEN1 NM INI _ , ■ ■ I ■r/ _ iiiiC rr ...� 1■ ■.N f. iIIi 1 Ii I1 HIU I i L .. .. 111111 MI i. II III r 4 1 ° 8 3 8 ® 8 ® ® o 8 ® 0 O O O O 0 O k, ca 6? Q 9 CI 0 0 0 0 § X 0 2 0 ; i t � � a tot 2 1 3 a 111 i oliodowe Ars sr APPENDIX "E ": DEBRIS PRODUCTION CALCULATIONS FOR WATERSHED "C-4" m • 1 1 1 1 1 1 1 E - -A E' • CS C 937 South Via Lata, Suite 500 SHEET OF y �� Col on CA�_2324 E N G I N E S 1=1 I Ni G (909) 783 -0101 • Fax (909) 783 -0108 3 --; ENGINEER . DATE fi Z' JOB z 7;t1 CALC. BY F SUBJECT gMCK1MC FP.C.TOZ CHECKED BY I 1!R sT KEA i (ruoOr` 171q vivEk): 4= 2 1,3 4c. cLEv,+= zszs..o. .��- 6600 Q = 535,9 r =_. F Lev, = 6,4,5 /oo -VR ': 1,6,32s - ' Al g. FJ ' IGToZ = 4 = (zgzsA_1(oloS.o) 5100p- = elZ8 4 /61, .F ) . !s Dv = O. 6,5 GO& (P) + O.(pz LUG CrA) 4 O. (5 (_o& (f-) 'i 0. lZ (FT) ' e: Go& (16,3.B) 4 O. i(Z LOb (115) 1-0.1$ Lo& (231.3) + O,(Z (q.S) Lx = y. 25 0y= 17 vs= 17 D= P R => 011300,o0 ya%Mi 233,1 /K.) (= ) G= 6, 483 yd A. . AL -ft Dv �� FACTOR F 1 ± /ZD,cO n. sop I' f _ 8 . I Z' oe c� J • i_ 11 u51= 1.�0 2(4LK Q -15- Ql _ ( Q713 (J° = 3. . NSF SQL u [ C-_5 937 South Via Lata, Suite 500 Colton, SHEET OF Colton, CA 92324 E N G I N E E. 1 N G (909) 783 -0101 • Fax (909) 783 -0108 1 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY Mgt V 10 - 'Ifs 57oRM Evr -T 1 YEAR AFTEr2 1 HURT ea 5't'RE A-m Z to - YR EQ I- p = = ids ►"' /r9, FF 10.5" lob. Dy= 0 Lo6-011s,o) 1-0,42 Lolr (928) f- 0.l$ Le& (231,3)f0.12(4„5) 1.06 Dr = y . 38 «. � = 2 9 Goo Y0 . 2y Fort 10-10 EvE, -'T > D), loo —YR EVENT LASE ID-YQ O EQ.1 DyA = 2N p = 9,7s7,7 f3IALrf4...) U Fm..TOR (Qs 1 + i20 -4 24,21•0 F� _ ' �Z� o F's _ I2o us><. i , So Q $0 usE 804 CPS:. 3 I� =AE i CASC =, 937 South Via Lata, Suite 500 SHEET OF Colton, CA 92324 E N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY al SUBJECT CHECKED BY ,.o ,T/Z EA M 7 ,", a 1 535,1 (F3 a Foie to 2 mo r ) P��K- �cl�; +v UFF (C# Z _ 63S,9GF5_ F%3 a a 344 Hit./ / /��,,,; Yr ®P. fa (z) La -p = 05 Co& (c) I a 53 Col - kg .f -o.o'l L06-09 F Vc Lc>(r Dy - 0,05 1491 'fo, 53 to& /4650 #.40q L& 231.3 ÷c),22( �a DD 5. 1.. sra /7y 3o i ye )3 /11,' Z AP- /7y R = ? {11 ; oz °l, CI yd / T a 3� i = ill 55L 7 yd 3 - 61,/ AC-Fr 36f6k Hv & Fo4c 10e- (F,3) = 7 -7 P y i 2O, 6 04) 3o021 1 UDv f� 3,57 Py • 3o / 1 po E IA 5E Eq t t o -ye EWA" 937 South Via Lata, Suite 500 SHEET OF _.AEI CAS C �� Colton, CA 92324 E N G I N E E R I N G (909) 783 -0101 • Fax (909) 783 -0108 ENGINEER DATE JOB # CALC. BY SUBJECT CHECKED BY 0 _57 7 ✓ /0 ye 5TO e,cn v v,K •r I YZ ►4r-rEie 10 30,r_ u AS AA E 0 0,70 0100 (ea Z) LO& Py = !S $ ' 1-DG- /t�y3�`� 4- e..476- /645 -o +o,byCoe, 23)3 rirtl L o IT 17y = 5, go Z7i 6,4,8 Yd 3 1 w ,, '"r Pe.4T1t et 0 3 cli.--mmi,gmaisesiEss:= - Ampri: dal: milasit .2. t / ■1■** / 1/■■ 1.p ■1i/ 1 .:::: .■. � ■ 1 ■ 1i■ ■q /■ -- a t ■1U /a mm wt.■ : i ■t /t ■t/II..`1■1■ / :.i.■1� /� ■ ■■■ //// ms ■. itll 111 1Et /aalMEUmi 1111. .■■■ 1 ■/. Imam a /lU� 1.a1 alt /mlm■i! mum ■■■ ■ ■l�Duul / 1.11/11/�/U ■MA 1 ■ 1 UM . Q u . i / ■Ulltu ■` ■MU It■■. w_ uI uI� mo/■tmilommu ■a`ai /ltl.ma�.l.ltm■mmum .a1 ■mUmmutmt /1 =1111►/ /; r m! amt 1 awaaataataaaata= wa ima itst■ tama tt ■ i =t�rmummu.■lt■■1pltt■im■tt M■M ■ ■MatEMt /■ Isms ■ ■alt M■EUS Mt WM M1.R11 ■mummMR ■um1I■■.■all■■l...11 111a ■■a..laliaa /a■ ■■ iaaaaal.■•° aaaaa�aMliiiiaiiiaaisivaafiimalllaasum ualmIaE/��halalla ■i■ �K111!1 I atuUU■llMlmuua■.11R1aM immumm am.amalaaaaa a ■ ■ ■mm ■111 ■m■a ■im /w /■ 1M■ utul■ M■ utU.■ 11 11 . 1 . 1 . 111 .a.■■atlmt /. 1111■ ■1t /■■ /iiiiii!!!7!!!t■■■a■ LW usmluUER mimmomm ■ ■ ■mml■■UEMUlu ut / ■■1■■ /■am ■a■ ■ t m aa a A u■ RMi ■ ■M/M■I■UMMMMSU1MMEm.M■Ua■111 IluamEMMM■ /a1a■1i■mat' /mi ■■H IIi UEU1uUMt uaimomm mumMMm/1111..m■■mm■maaMMm immum 1a11l111 ■ +,a■ ■■■1■■ a■ Ma ■E 1111 / It ■ /■mta1m■a.m■mtala.m..11t... 11/■ ■alt■almaa■■im1/1■1■la■u ■■■■ EaMMtEMEUE■ EMMaR a■ t■■ 1t■. ■.■■ ■1m■■ ■a1 ■t1■tEta ■ ■■ ■ ■ /■ ■■mR ■■■!■mums Ua■ Est■■■ UtM■ us■■ 1■■ a■ lt■■■ tllH ■i aaa li/■ t ■■t■a ■tuu ■■ ■1tum ■i11 ■ s■ ■1■■ ■u1 R MM ■ ■UU■a ■UMaEEMmE■m■ amyl/ EM■ masomm ummum.lmmwmumMU■m ■EmMUEa iMM■1Ems IPI a■ a■ 1■ t■ 1■ si■ 1■■■■ u■ sust■■■ a ■1 ■.1aa ■utt■stutmlt■■m ■1 ■ ■ ■ ■ ■1■ a■ ■ ■ ■ ■i ■t■ 61 1■uaM■M■■ ■uEM ■MMUME tat ■u■ alt■ 1■ m■■■ st ■uu■ ■■1u1■m11 ■.sa ■uMUMUMO ■■11■ aaaaaaa°ammummu ataaaaaataaaataaataaatataatataaaaaaaaawma :Caa �' taaaaaa ■■tUmM■■■mES■E■■mmieww aM■ MEEMM■ Marmssu mMamummmumaaEM■ ■EE■Eri■■1a�u11 ■ 1■ NamEE■ E1MUE1MESM ■US ■ES■MMRRUaMU ■u1I■ ■ ■I1IIIIMU 111111 ■■M■ 1:111: i■ SIMMER■ ■ ■MEMt t■ ■iM ■ :MME EE11..1MMMMEUMM UUMM ■UMU tau Mu M1.MUM UM EMa Est INN Mi/■ 11E MUtas sliE■ ■/1SI1miu1 ■i ■ ■ ■■mimmE1MMSIUt mwasumEMMMMsuEE1U ■EMSEE■ 1■■/■ EEEMM■ U■ aE■ MEMMMEEE■ M■ UURUSME ■MEMMUMEESI ■ ■ ■■1■u■tiNEE ■ ■ua1EMs S_ ry 11MMMEMIMU■ MM■ RM■ M■■■ EMMMU1M /U.■EE■MUMUME/a■MMMat■u■. RUMUMUMM■■i■■ • / MUUMM■ U/ MIEM■■ E■ MEMM■■ M1■■MMMMMMM■MMEMMEMMM■EU■EMa1■1 IwUERMEMMUM 11.1 MMIXEMAMNIMMUMEMMUNUMMMMUMMMUMMMUMMEERNMUMMIUMUMMEIMMEMMIAMEMUMMEXEMMUM CC u■■1■usalaw■MIUIMM■R■ M E■U■1MREMM//tuE EERttumlu ■umwmu■■umpM t ■■ i ■u MEMMEMUUMEMMOOMMUNNEUMMIOWERMMEMBEIMOMOROMMEIMMEMMEMOMVAIMMAIMMUMUMEMENE U. 1111 MMMMEM1uRMaWaMMUM■■ MUEMMMUMM ■uMMMaUMMMMEIMMMMUMMa ■M ERUU ■aMM ■MMUMu MUMINMEMMUMUMEMIMMUMNMEMMUMMEMUSIMOMMURAIMMMUMMUUMMEMMINAWNOMMMUMENEMOU CI P MMUMEm M mwmwwwImammummu U■■ ESImM p 1E .1■ ■uMEMEa■EM ■a■ ■■■wwwwamarnmuM ■Ma -.1 m /aitua ■mum■aMauEMM■MMMMi1■ umuumUMaUaa■E.muaM■■MS /1u ■MtauMM /am■mi■ uiuMUU■ M■■■ UM■ 1■ MM ■tiulmulmmummumtatllmuumwmo1H SI1►a1SI1uu■ ■a1aENm■s ■imwommumma■ME ■ ■.ME mommum■ MME■a sulmUUUsM ■■uiarimmwwUUEM ■EE■1E1M maw Ei MmMmEmUU ■ /u.sitas MM ■ ■1■ ■ MmMM1UR1saaMElla■i11 /. RUSM mM ■M ■ ■ mum v 1mMU■ MEMM ■M ■MMEMMEMEMMEMEMMEIRUM ■MM■ MUM .EMMUMMUMAKUN ■1MMU1tUMi1MRM■i1 m Ijj ■ ■1ME /MUM■ MaM■ MM■■■ MMENUME1■ /I1■a■1uu■MEEMMMMMRMUM WAMMMUMU1 1MMM ■E ■uu11 0 . M■ MMM■ M11MMU11iuMUaaE tEMEMMMIMMM./ EMIMMEMEM1tME MUMUN ■R/UMEMU■t■1M■u ii umMEMMMMEUEMMtMMMMM■ MM.■ su1UM1E■ EMMMEM1a.1uM ■ / / ■WU■UMMUMEU ■1Mis Z m.suMUMUM ■MMUU■U■ ■MMM ■ ■MUMMU MME ■MUMUMm11RUL/MMU ■MUUMM■MasMME:■ U■ SIUSIMMUM■ 11uE■ 1U1■ sM■■ t■ URMM■ IIMME .MMMMU ■ / /RMM ■SIU ■ ■ ■ ■MMMa1UMMR CO MIMEMME ■M■UMMU ■uuUEESIU■MMUMUNIM 1UMUIMMEL /MMEM11UMM ■MM ■UMM■ ■ ■M1 IIMMEMUMRE1 M1mUE■ EM1tuMMMEM■ EMiMEMMM ■MMUMUMM1aEMMEM ■ ■sNMMMMEEMUUM up . I !MUM ■MMEIMm ■MEURIMU u mwmmUMUmmm■■mmmumUM ■IIaM ■EEU■iUMM ■RiIU11E ■ MMUMM■ MM11E M1■■ U■ s■ 1MMMMMM ■ ■MEMMEMMUMIREEMUNVAMEM1 ■alt■ ■MUM ■a ■M ■MO■ Q MMM■ 1U1M■ Ul■ 1MRt■ u■ MMUE EUM11Ea■ M■ auM ■uEMMIRUMM1MMMU ■■EUIMMMUIEM■E t Q ■M MmmammMMUEE ■m ■uM1E■1uamUUM■RUM1Etlm /muM■a1u■ 1u1au a1 ■sUu f RM■M ■MMESIUmuIU ■lU ■.R11/ 1111. u./ 1a11tu��111 /iMMaaM1MEi ■ ■ /1tMU11 U.W U EMU ■■ ■uu ■ ME ■imu■MIMMUMEammummu Ml..M1 mummu ■Mi ■utumaE ■.Emu!■ >-• E ■■m m MMmMUE ■usUMM ■m■uE UUME au.IIIMMEMMEMU ■EU USi uE R ■uE umUMEMEM t■ a1M■■ MIMMME. I .MM.aIOaMMM1.M■w/1EMEMMUMM1MauM ERMUM■1■Ea mum■MEE■aEEEE■UM■ UMMU■ME UUMUUMMUMWMIMUM■EMMMEaE■ E■E1EMMUMUMU■ REMt UtMM■11MERAMRU1■ MMEMI MMM■MUUIMM11U1i AREMU ■MuEM1 m1 ulrim:■E■u MEUSI E MiU11MMUaMRUM ■ UMMUMMMIMtMMM ■aal a.Rt ■mum ■.RUU. ■.0 U u •R■Muu.t•EM■■ /u M MUta•Ulu ■ ■Mis /m■ ■MM11uu/ • ..UU.E■mu . .1■uauWUMUMMU .M■M1 _ _ ■D EEM= __ �� MI l Mu • u MMEMEMM � I s.N.1UUUSM1a u/u U mossmuuu mummoMa ■mUMm.mmuml/.lu��Rs1.E11. mmaM./uusammiumm Iu ■1UMMMMUaMMU1tuMUMUM■suMMm dRmsENa.uO000ua.■m m Uu ■mu m U■E UU U MUIMmR■EMMUEI M/1 Mmum■ mMalas ■a■E.0 ■UE ■MSau■.MU■sUMMUMMmM ■11tUmUU M1 ■M /t/■aMmuuElsEUMa Elmsam ■s■■mmt■UEMMt1t mama mum! uu M Mmu ma/t11t /sMSManumwsw I1 EaamammusaM.ME■1ttl.■smmammu aEmMSNm.Mmmummmuluu■MMMmm uUli� m 03 /M� ■Iai 1M U ■MMU MU OM M ai P l M I UMM O a % A1t ■MM al t1 amt �m.mEM saM ll1 a1■1n MMUUMaEMlsm Maaataa 1U mms;"MMa■iMEM /111:1/ :. ua � ■ ■ a a I a M aM a l ltt :m� Y . E : wom M muimmnimmucw■ Bd atuM U:UdUM'ii�liEuamummumIiIM ■ ii i!■ om ■ a m ■i■Mm iaMMUMMMMii - cm ■■MmuU� UmaauaalU.amlmm�.Ulalmmusam. il mmaaimU /a.amalUU 1_11 MMUM EU 1EM �! RU�u� ■ Mat ■ ■ a■■amm EH IIIM M : ■a : :wrw' mmmmaa ■ ■:1 1:11 i■ i aa a. Ram t uy r II 1 o 10 o 10 0 o co id td 4 CI LOS ANGELES DISTRICT METHOD I FOR PREDICTION OF DEBRIS YIELD FROM COASTAL SOUTHERN FIRE FACTOR (DIMENSIONLESS) CALIFORNIA WATERSHEDS FiRE FACTORS'FOR WATERSHEDS OF 0.1 TO 3.0 SQUARE MILES IN AREA (Ls. ARMY CORPS OF E 1 • LOS A NGEL DISTRICT E I ^^ =a�LIRS 2 , : ":!', 1 x J u4, 1 lr...e ... a rt., u, f,.t......,. . . rr..a.<., .v∎.f. . i . .., a n...,ea h. . .x rte. w. .: .v ., .... , x :, a. x , , r... . .... , , fl ,,, , _. .Ft 4. ... .. re . J K li aJ O C g � 0 0 I '' lc' E V 4 Z � N W J co 01 Nh - s ® a+— v J g� c i;J a z x e -a s s E as ® c v s 6M a o '=.A � 1-1) U -- � � y a N Poi y, E ® y 2 e+ w 6a1 N NI O W > O aC !!I; ®a a . J a: Y J 1- W 1® O O O O � N a : x aK vai W a X ei 3' 1 O - p � r ® - N M 9 sri 4 j N CO CO Q z # fa i h i u ac i t t I iliiiulIlII�■im■rila■■■o■■■■■i 11111111111111 11111111111 11111111111 8 4 1117:1111111Tfim _ 11:i■■■■■■u 11■■■■■■ ■I g Il1■r ■ ■ ■■■ 1111. ■ ■ ■■ ■ ■ • •1r ■ ■rir ■rr iii i iiiiifl _ ii 1I1!I!!!11!! ■■7111 i iiiiiiii r _ _ 111111 1 1 ! __ 1 1111 111 ■111■■ II■ ■■II■ itoi � f ac er■ ill _ 1I ■rrr ■ ■MMIMMi■■i r ■r rrr■ IlIiIIIIIIiiI U UIIII ii __ 7.7M 1 CI 1111111111111111111 iiIi , iiiiii IiiiiiiiIIi= __ IiiiiiiiiiI 1 �1 ■■ ■■■■■ ■■ rrrr�r■rr■��r■rrrrmo � 11111111 et r IFIEIIIIIIIIIIIIII' � , 1 dIall ■■Nalloimmlmommolmmmumuim ., 1 111111 II 11111111 II 11111111111 11 r 1 C O Ca Q O Q O Q C! 0 0 O O Q 0 8 o o ° o ° o o o p ° 0 6 ro o t an q in a - off f 2 N L _ oil is i1 ire ,., APPENDIX "F ":100 -YEAR RATIONAL TABLING CALCULATIONS pi IOW �i■r 1 r.r San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) 1 '• CIVILCADD /CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational Hydrology Study Date: 03/20/02 :1 Coyote Canyon Master Drainage Plan 100 -year Proposed Hydrology Line "B" Rational Tabling to Rich Basin me FN:CYTPRA.RSB 12/6/00 A. Torreyson ill CASC Engineering Group, Riverside, California - S/N 615 ow ii * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** OM Rational hydrology study storm event year is 100.0 ill Computed rainfall intensity: Storm year = 100.00 1 hour rainfall p = 1.638(In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 is ow +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ iii Process from Point /Station 223.000 to Point /Station 223.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** OM Soil classification AP and SCS values input by user OFF ONC>2.oI_DCT'/ iYli USER INPUT of soil data for subarea 8011—E EN34. -) E E Q% 3(r SCS curve number for soil (AMC 2 ) = 70.00 ? 3oOE. u2 a!"" Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) is Rainfall intensity = 3.049(In /Hr) for a 100.0 year storm User specified values are as follows: 5 Esc APPE,J: _ TC = 21.30 min. Rain intensity = 3.05(In/Hr) Oo Total area = 359.66(Ac.) Total runoff = 808.96(CFS) b ?I +++++++++++++++++++++++++++++++++++++++ + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + ++ ii Process from Point /Station 223.000 to Point /Station 1214.000 p 9 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 7,3 ii Upstream point elevation = 1902.50(Ft.) Downstream point elevation = 1774.70(Ft.) Channel length thru subarea = 1400.00(Ft.) • Channel base width = 8.000(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = 817.170(CFS) ir Manning's 'N' = 0.030 Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 817.170(CFS) Depth of flow = 2.523(Ft.), Average velocity = 20.808(Ft /s) Channel flow top width = 23.136(Ft.) i Flow Velocity = 20.81(Ft /s) Travel time = 1.12 min. r i 1 OW 1 I Time of concentration = 22.42 min. Critical depth = 4.250(Ft.) Adding area flow to channel _ ii II Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 60.27 Pervious ratio(Ap). = 1.0000 Max loss rate(Fm)= 0.676(In /Hr) II The area added to the existing stream causes a a lower flow rate of Q = 799.694(CFS) therefore the upstream flow rate of Q = 808.960(CFS) is being used II II Rainfall intensity = 2.957(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.896 Subarea runoff = 0.000(CFS) for 7.300(Ac.) II Total runoff = 808.960(CFS) Total area = 366.96(Ac.) Area averaged Fm value = 0.535(In /Hr) II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 223.000 to Point /Station 1214.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** li Along Main Stream number: 1 in normal stream number 1 Stream flow area = 366.960(Ac.) Runoff from this stream = 808.960(CFS) Time of concentration = 22.42 min. Rainfall intensity = 2.957(In /Hr) Area averaged loss rate (Fm) = 0.5353(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 1 Process from Point /Station 225.000 to Point /Station 226.000 * * ** INITIAL AREA EVALUATION * * ** I Soil classification AP and SCS values input by user At r - t, : NOPF $ USER INPUT of soil data for subarea 22 S — Z31 F Roi. SCS curve number for soil (AMC 2) = 70.00 Bo`IL E eh) G) N EERA N Lr Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) II Initial subarea data: fi ‘i Pea L Scut) Y Initial area flow distance = 884.000(Ft.) 55 0 Z P A T Top (of initial area) elevation = 314.700(Ft.) Bottom (of initial area) elevation = 0.000(Ft.) S EE 14 EiJ . E 1 Difference in elevation = 314.700(Ft.) Slope = 0.35600 s( %)= 35.60 TC = k(0.730) *[(length"3) /(elevation change)] . II Initial area time of concentration = 13.548 min. Rainfall intensity = 4.000(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.780 Subarea runoff = 19.443(CFS) II Total initial stream area = 6.230(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 226.000 to Point /Station 227.000 II II 1 Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.769 Subarea runoff = 60.905(CFS) for 22.390(Ac.) ON Total runoff = 115.477(CFS) Total area = 41.04(Ac.) A Area averaged Fm value = 0.532(In /Hr) rim +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ill Process from Point /Station 228.000 to Point /Station 229.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** . #P Upstream point elevation = 100.00(Ft.) O. Downstream point elevation = 8.20(Ft.) Channel length thru subarea = 690.20(Ft.) P"' Channel base width = 0.000(Ft.) iii Slope or 'Z' of left channel bank = 2.500 Slope or 'Z' of right channel bank = 2.500 NM Estimated mean flow rate at midpoint of channel = 156.713(CFS) »,, Manning's 'N' = 0.035 61 - Maximum depth of channel = 30.000(Ft.) Flow(q) thru subarea = 156.713(CFS) is Depth of flow = 2.047(Ft.), Average velocity = 14.965(Ft/s) 10 Channel flow top width = 10.233(Ft.) . Flow Velocity = 14.96(Ft /s) Travel time = 0.77 min. PO Time of concentration = 16.49 min. gi Critical depth = 3.000(Ft.) Adding area flow to channel lloi ,:.::: Soil classification AP and SCS values input by user it - USER INPUT of soil data for subarea i/ SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.556(In /Hr) for a 100.0 year storm iiill Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.765 Subarea runoff = 75.929(CFS) for 29.310(Ac.) Total runoff = 191.406(CFS) Total area = 70.35(Ac.) Area averaged Fm value = 0.532(In /Hr) II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 229.000 to Point /Station 230.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 237.88(Ft.) Downstream point elevation = 0.00(Ft.) _ Channel length thru subarea = 1091.20(Ft.) . Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.500 Slope or 'Z' of right channel bank = 2.500 Estimated mean flow rate at midpoint of channel = 221.185(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 30.000(Ft.) II Flow(q) thru subarea = 221.185(CFS) Depth of flow = 2.123(Ft.), Average velocity = 19.632(Ft/s) Channel flow top width = 10.614(Ft.) Flow Velocity = 19.63(Ft /s) i 1: :I I' Travel time = 0.93 min. . Time of concentration = 17.41 min. Critical depth = 3.438(Ft.) AO Adding area flow to channel vo Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) 41 Rainfall intensity = 3.441(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified OR rational method)(Q =KCIA) is C = 0.761 Subarea runoff = 50.034(CFS) for 21.890(Ac.) i Total runoff = 241.440(CFS) Total area = 92.24(Ac.) Area averaged Fm value = 0.532(In /Hr) 01 il +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 230.000 to Point /Station 231.000 OR * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 252.07(Ft.) Om Downstream point elevation = 0.00(Ft.) M11 Channel length thru subarea = 2211.10(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.500 op Slope or 'Z' of right channel bank = 2.500 Estimated mean flow rate at midpoint of channel = 288.595(CFS) Manning's 'N' = 0.035 101_. . Maximum depth of channel = 30.000 (Ft. ) Flow(q) thru subarea = 288.595(CFS) MO Depth of flow = 2.649(Ft.), Average velocity = 16.454(Ft/s) Channel flow top width = 13.244(Ft.) • Flow Velocity = 16.45(Ft /s) Mii Travel time = 2.24 min. Time of concentration = 19.65 min. !m Critical depth = 3.844(Ft.) Adding area flow to channel ill Soil classification AP and SCS values input by user USER INPUT of soil data for subarea 1 SCS curve number for soil(AMC 2) = 68.50 ii Pervious ratio(Ap) = 0.9900 Max loss rate(Fm)= 0.550(In /Hr) Rainfall intensity = 3.200(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.749 Subarea runoff = 65.927(CFS) for 36.030(Ac.) Total runoff = 307.367(CFS) Total area = 128.27(Ac.) Area averaged Fm value = 0.537(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ rig II Process from Point /Station 231.000 to Point Station 1214.200 n 8 * * ** IMPROVED CHANNEL TRAVEL TIME 1;, 12- II Upstream point elevation = 1897.50(Ft.) Downstream point elevation = 1792.00(Ft.) Channel length thru subarea = 2045.00(Ft.) Channel base width = 5.000(Ft.) Al MO Slope or 'Z' of left channel bank = 2.500 Slope or 'Z' of right channel bank = 2.500 Estimated mean flow rate at midpoint of channel = 322.703(CFS) Manning's 'N' = 0.030 PM Maximum depth of channel = 10.000(Ft.) MO Flow(q) thru subarea 322.70(CFS) Depth of flow = 2.206(Ft.), Average velocity = 13.908(Ft /s) OR Channel flow top width = 16.032(Ft.) Flow Velocity = 13.91(Ft /s) Travel time = 2.45 min. Time of concentration = 22.10 min. Critical depth = 3.156(Ft.) SO Adding area flow to channel Soil classification AP and SCS values input by user Pm USER INPUT of soil data for subarea iii SCS curve number for soil(AMC 2) = 54.43 Pervious ratio(Ap) = 0.9900 Max loss rate(Fm)= 0.747(In /Hr) Rainfall intensity = 2.982(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified OP rational method)(Q =KCIA) is C = 0.732 Subarea runoff = 0.601(CFS) for 12.800(Ac.) aw Total runoff = 307.968(CFS) Total area = 141.07(Ac.) Area averaged Fm value = 0.556(In /Hr) MO MO Process from Point /Station 1214.200 to Point /Station 1214.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 111 Upstream point elevation = 1792.00(Ft.) MO Downstream point elevation = 1774.70(Ft.) Channel length thru subarea = 380.00(Ft.) P1 Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Manning's 'N' = 0.015 OR Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 307.968(CFS) Depth of flow = 1.729(Ft.), Average velocity = 23.454(Ft/s) Channel flow top width = 10.187(Ft.) Flow Velocity = 23.45(Ft/s) Travel time = 0.27 min. Time of concentration = 22.37 min. Critical depth = 3.500(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1214.200 to Point /Station 1214.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 141.070(Ac.) Runoff from this stream = 307.968(CFS) Time of concentration = 22.37 min. Rainfall intensity = 2.960(In /Hr) Area averaged loss rate (Fm) = 0.5564(In /Hr) Area averaged Pervious ratio (Ap) = 0.9965 - Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 0 1 808.960 22.42 2.957 6 2 307.968 22.37 2.960 61 Qmax(1) = 1.000 * 1.000 * 808.960) + 0.998 * 1.000 * 307.968) + = 1116.454 Qmax(2) = 1.002 * 0.998 * 808.960) + 1.000 * 1.000 * 307.968) + = 1116.477 im 60 Total of 2 streams to confluence: Flow rates before confluence point: 808.960 307.968 Maximum flow rates at confluence using above data: it 1116.454 1116.477 Area of streams before confluence: 366.960 141.070 Effective area values after confluence: 508.030 507.265 Results of confluence: Total flow rate = 1116.477(CFS) di Time of concentration = 22.375 min. Effective stream area after confluence = 507.265(Ac.) Study area average Pervious fraction(Ap) = 0.999 Study area average soil loss rate(Fm) = 0.541(In /Hr) Study area total (this main stream) = 508.03(Ac.) PR 60 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1214.000 to Point /Station 1215.000 //II * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 1 66 Upstream point elevation = 1774.70(Ft.) Downstream point elevation = 1700.00(Ft.) !s+ Channel length thru subarea = 1290.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1119.228(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 1119.228(CFS) Depth of flow = 2.421(Ft.), Average velocity = 18.610(Ft /s) Channel flow top width = 29.684(Ft.) Flow Velocity = 18.61(Ft /s) Travel time = 1.16 min. Time of concentration = 23.53 min. Critical depth = 4.000(Ft.) Adding area flow to channel COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 PR Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 !I Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 1070.500(CFS) therefore the upstream flow rate of Q = 1116.477(CFS) is being used Om Rainfall intensity = 2.872(In /Hr) for a 100.0 year storm 10 Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.850 Subarea runoff = 0.000(CFS) for 2.500(Ac.) Total runoff = 1116.477(CFS) Total area = 509.77(Ac.) Area averaged Fm value = - 0.539(In /Hr) OP +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1214.000 to Point /Station 1215.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** OR i *= iM Along Main Stream number: 1 in normal stream number 1 Stream flow area = 509.765(Ac.) "'" Runoff from this stream = 1116.477(CFS) Time of concentration = 23.53 min. Rainfall intensity = 2.872(In /Hr) Area averaged loss rate (Fm) = 0.5390(In /Hr) OP Area averaged Pervious ratio (Ap) = 0.9946 40 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 122.000 to Point /Station 122.000 MO * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** Om Soil classification AP and SCS values input by user - rRAcT ► 4 , Z90 USER INPUT of soil data for subarea L- E SCS curve number for soil (AMC 2) = 40.50 FN: CTIA 100 . E53 o Pervious ratio(Ap) = 0.5560 Max loss rate(Fm)= 0.507(In /Hr) Rainfall intensity = 4.831(In /Hr) for a 100.0 year storm User specified values are as follows: 5 EE APPF,Ji F3 -5 A TC = 9.89 min. Rain intensity = 4.83(In /Hr) 04 Total area = 15.73(Ac.) Total runoff = 62.38(CFS) A = 13,10 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 122.000 to Point /Station 1215.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 15.733(Ac.) Runoff from this stream = 62.379(CFS) Time of concentration = 9.89 min. Rainfall intensity = 4.831(In /Hr) Area averaged loss rate (Fm) = 0.5071(In /Hr) Area averaged Pervious ratio (Ap) = 0.5560 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) MP 1/ 1 1116.477 23.53 2.872 !I 2 62.379 9.89 4.831 Qmax (1) _ 1.000 * 1.000 * 1116.477) + 0.547 * 1.000 * 62.379) + = 1150.601 00 Qmax(2) = • 1.839 * 0.420 * 1116.477) + 1.000 * 1.000 * 62.379) + = 925.776 Total of 2 streams to confluence: Flow rates before confluence point: 1116.477 62.379 Maximum flow rates at confluence using above data: MO 1150.601 925.776 Area of streams before confluence: vim 509.765 15.733 4 Effective area values after confluence: 525.498 230.061 Results of confluence: Pm Total flow rate = 1150.601(CFS) Time of concentration = 23.530 min. Effective stream area after confluence = 525.498(Ac.) Study area average Pervious fraction(Ap) = 0.981 Study area average soil loss rate(Fm) = 0.538(In /Hr) Study area total (this main stream) = 525.50(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1215.000 to Point /Station 1216.000 411 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** ---- so S.`y Upstream point elevation = 1700.00(Ft.) Downstream point elevation = 1633.00(Ft.) 041 Channel length thru subarea = 1500.00(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 1157.061(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 6.000(Ft.) Flow(q) thru subarea = 1157.061(CFS) Depth of flow = 2.613(Ft.), Average velocity = 31.811(Ft/s) Channel flow top width = 17.839(Ft.) Flow Velocity = 31.81(Ft /s) Travel time = 0.79 min. Time of concentration = 24.32 min. Critical depth = 5.625(Ft.) Adding area flow to channel COMMERCIAL subarea type Decimal fraction soil group A = 0.873 Decimal fraction soil group B = 0.127 1; Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 35.05 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.096(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 1091.920(CFS) therefore the upstream flow rate of Q = 1150.601(CFS) is being used Rainfall intensity = 2.816(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.849 Subarea runoff = 0.000(CFS) for 5.900(Ac.) Total runoff = 1150.601(CFS) Total area = 531.40(Ac.) Area averaged Fm value = 0.533(In /Hr) +w +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ea Process from Point /Station 1215.000 to Point /Station 1216.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 531.398(Ac.) Runoff from this stream = 1150.601(CFS) Time of concentration = 24.32 min. Rainfall intensity = 2.816(In /Hr) Area averaged loss rate (Fm) = 0.5331(In /Hr) - Area averaged Pervious ratio (Ap) = 0.9717 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 331.000 to Point /Station 331.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** MP Soil classification AP and SCS values input by user TRA r (to Zq 0- Z. USER INPUT of soil data for subarea �-�� ' OA , QS$ SCS curve number for soil(AMC 2) = 47.30 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0 . 505 (In/Hr) AFPFUDW 8_5f - Rainfall intensity = 4.607(In /Hr) for a 100.0 year storm 00 User specified values are as follows: TC = 10.71 min. Rain intensity = 4.61(In /Hr) oo„ Total area = 18.05(Ac.) Total runoff = 64.85(CFS) l + + + + ++ + + ++ + ++ + + + + + + + ++ + + + + + + + ++ + ++ + ++ + + + ++ + + + + ++ + + ++ + + + ++ + + + ++ + ++ + + + ++ Process from Point /Station 331.000 to Point /Station 331.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 18.049(Ac.) Runoff from this stream = 64.849(CFS) Time of concentration = 10.71 min. Rainfall intensity = 4.607 (In /Hr) Area averaged loss rate (Fm) = 0.5046(In /Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1150.601 24.32 2.816 2 64.849 10.71 4.607 i.,- Qmax(1) = 1.000 * 1.000 * 1150.601) + 0.564 * 1.000 * 64.849) + = 1187.144 Qmax(2) = 1.784 * 0.440 * 1150.601) + 1.000 * 1.000 * 64.849) + = 968.845 0 Total of 2 streams to confluence: Vi Flow rates before confluence point: 1150.601 64.849 Maximum flow rates at confluence using above data: 1187.144 968.845 di Area of streams before confluence: 531.398 18.049 PP Effective area values after confluence: 549.447 252.040 SS Results of confluence: Total flow rate = 1187.144(CFS) Time of concentration = 24.316 min. Effective stream area after confluence = 549.447(Ac.) Study area average Pervious fraction(Ap) = 0.959 pp Study area average soil loss rate(Fm) = 0.532(In /Hr) Study area total (this main stream) = 549.45(Ac.) 4I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1216.000 to Point /Station 1218.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** • Upstream point /station elevation = 1633.00(Ft.) Downstream point /station elevation = 1583.60(Ft.) Pipe length = 600.00(Ft.) Manning's N = 0.013 1/ No. of pipes = 1 Required pipe flow = 1187.144(CFS) Nearest computed pipe diameter = 72.00(In.) Calculated individual pipe flow = 1187.144(CFS) Normal flow depth in pipe = 57.56(In.) Flow top width inside pipe = 57.66(In.) Critical depth could not be calculated. Pipe flow velocity = 48.98(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 24.52 min. End of computations, total study area = 550.21 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.960 Area averaged SCS curve number = 67.3 ,q 5S39 1' San Bernardino County Rational Hydrology Program 11 (Hydrology Manual Date - August 1986) DD /CIVI CIVILCALDESIGN Engineering Software, (c) 1993 Version 3.2 Rational Hydrology Study Date: 03/22/02 ON at Coyote Canyon Master Drainage Plan 100 -year Proposed Hydrology with Line "A" 4104 Rational Tabling to Rich Basin 4 . 1 FN:CYTPR.RSB 3/6/00 A. Torreyson CASC Engineering Group, Riverside, California - S/N 615 1 * * * * * * * ** Hydrology Study Control Information so Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall p = 1.638(In.) Po Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 11 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1301.000 to Point /Station 1302.000 * * ** INITIAL AREA EVALUATION * * ** OM 11 4. Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) MP Initial subarea data: • Initial area flow distance = 970.000(Ft.) * Top (of initial area) elevation = 2503.200(Ft.) r, Bottom (of initial-area) elevation = 2333.000(Ft.) is Difference in elevation = 170.200(Ft.) Slope = 0.17546 s( %)= 17.55 TC = k(0.730) *[(length 3) /(elevation change)] ON Initial area time of concentration = 16.198 min. Rainfall intensity = 3.594(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.767 Subarea runoff = 11.296(CFS) Total initial stream area = 4.100(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Z Process from Point /Station 1302.000 to Point /Station 1303.000 * * ** IMPROVED CHANNEL TRAVEL TI 0!; 00 10 Upstream point elevation = 2333.00(Ft.) Downstream point elevation = 1986.70(Ft.) Channel length thru subarea = 885.00(Ft.) Channel base width = 5.000(Ft.) O ON Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 25.209(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 25.209(CFS) Depth of flow = 0.361(Ft.), Average velocity = 12.218(Ft /s) 0 Channel flow top width = 6.443(Ft.) di Flow Velocity = 12.22(Ft /s) Travel time = 1.21 min. Time of concentration = 17.40 min. Critical depth = 0.820(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user Pm USER INPUT of soil data for subarea 0; SCS curve number for soil(AMC 2) = 70.00 OS Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.442(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.761 Subarea runoff = 25.887(CFS) for 10.100(Ac.) OW Total runoff = 37.183(CFS) Total area = 14.20(Ac.) 11 Area averaged Fm value = 0.532(In /Hr) Me 4 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ A sk mo Process from Point /Station 1303.000 to Point /Station 1304.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** '11 '� Ate' Upstream point elevation = 1986.70(Ft.) Downstream point elevation = 1798.60(Ft.) Channel length thru subarea = 1220.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Om Estimated mean flow rate at midpoint of channel = 62.975(CFS) M Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 62.975(CFS) Depth of flow = 0.795(Ft.), Average velocity = 12.021(Ft /s) di Channel flow top width = 8.180(Ft.) Flow Velocity = 12.02(Ft /s) Travel time = 1.69 min. Time of concentration = 19.10 min. Critical depth = 1.406(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.256(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.753 Subarea runoff = 45.901(CFS) for 19.700(Ac.) Total runoff = 83.083(CFS) Total area = 33.90(Ac.) Area averaged Fm value = 0.532(In /Hr) 2 II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ++ Process from Point /Station 1304.000 to Point /Station 1305.000 C II * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 25,(0/ Upstream point elevation = 1798.60(Ft.) Downstream point elevation = 1726.40(Ft.) 40, , Channel length thru subarea = 886.00(Ft.) O1 Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 'MR Slope or 'Z' of right channel bank = 2.000 Iii Estimated mean flow rate at midpoint of channel = 114.454(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) !m Flow(q) thru subarea = 114.454(CFS) A Depth of flow = 1.310(Ft.), Average velocity = 11.461(Ft /s) Channel flow top width = 10.242(Ft.) Ps Flow Velocity = 11.46(Ft /s) 6,4 Travel time = 1.29 min. M Time of concentration = 20.38 min. Critical depth = 1.953(Ft.) r Adding area flow to channel 01 Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 64.64 OW Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.613(In /Hr) Rainfall intensity = 3.131(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.737 ii Subarea runoff = 54.179(CFS) for 25.600(Ac.) Total runoff = 137.262(CFS) Total area = 59.50(Ac.) Area averaged Fm value = 0.567(In /Hr) ii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 11, Process from Point /Station 1304.000 to Point /Station 1305.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 59.500(Ac.) ill Runoff from this stream = 137.262(CFS) Time of concentration = 20.38 min. Rainfall intensity = 3.131(In /Hr) II Area averaged loss rate (Fm) = 0.5673(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 II ++++++++++++++.+++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1305.100 to Point /Station 1305.200 (C.175 II * * ** INITIAL AREA EVALUATION * * ** ��.� Soil classification AP and SCS values input by user USER INPUT of soil data for subarea II SCS curve number for soil(AMC 2) = 56.46 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.728(In /Hr) Initial subarea data: _ Initial area flow distance = 1000.000(Ft.) li 3 I: Top (of initial area) elevation = 1966.600(Ft.) Bottom (of initial area) elevation = 1797.500(Ft.) Difference in elevation = 169.100(Ft.) I Slope = 0.16910 s( %)= 16.91 AgO TC = k(0.950) *[(length ^3) /(elevation change)] ^0.2 MR Initial area time of concentration = 21.483 min. Rainfall intensity = 3.034(In /Hr) for a 100.0 year storm Os Effective runoff coefficient used for area (Q =KCIA) is C = 0.684 OS Subarea runoff = 8.923(CFS) Total initial stream area = 4.300(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.728(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ m mg Process from Point /Station 1305.200 to Point /Station 1305.300 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 1797.50(Ft.) MK Downstream point elevation = 1742.70(Ft.) Channel length thru subarea = 735.00(Ft.) ow Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 OS Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 13.488(CFS) Manning's 'N' = 0.030 • Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 13.488(CFS) Depth of flow = 0.371(Ft.), Average velocity = 6.328(Ft/s) Channel flow top width = 6.485(Ft.) OK Flow Velocity = 6.33(Ft /s) Travel time = 1.94 min. Time of concentration = 23.42 min. Critical depth = 0.563(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user 4 USER INPUT of soil data for subarea VI SCS curve number for soil(AMC 2) = 51.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.797(In /Hr) Rainfall intensity = 2.880(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.662 Subarea runoff = 7.657(CFS) for 4.400(Ac.) Total runoff = 16.579(CFS) Total area = 8.70(Ac.) Area averaged Fm value = 0.763(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1305.300 to Point /Station 1305.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 1742.70(Ft.) Downstream point elevation = 1726.40(Ft.) Channel length thru subarea = 190.00(Ft.) Channel base width = 0.000(Ft.) 1 Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 E P- 1 Manning's 'N' = 0.015 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 16.579(CFS) 4 Depth of flow = 0.764(Ft.), Average velocity = 14.187(Ft /s) • 40 Channel flow top width = 3.058(Ft.) Flow Velocity = 14.19(Ft /s) Travel time = 0.22 min. 04 Time of concentration = 23.64 min. Critical depth = 1.336(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1305.200 to Point /Station 1305.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** 04 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8.700(Ac.) Runoff from this stream = 16.579(CFS) Time of concentration = 23.64 min. Rainfall intensity = 2.864(In /Hr) Area averaged loss rate (Fm) = 0.7631(In /Hr) 0 Area averaged Pervious ratio (Ap) = 1.0000 00 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 00 P. 1 137.262 20.38 3.131 2 16.579 23.64 2.864 it Qmax(1) = 1.000 * 1.000 * 137.262) + 11'"' 1.127 * 0.862 * 16.579) + = 153.370 Qmax(2) = 0.896 * 1.000 * 137.262) + ow 1.000 * 1.000 * 16.579) + = 139.576 Total of 2 streams to confluence: Flow rates before confluence point: • 137.262 16.579 Maximum flow rates at confluence using above data: 153.370 139.576 Area of streams before confluence: 59.500 8.700 Effective area values after confluence: 67.001 68.200 Results of confluence: Total flow rate = 153.370(CFS) Time of concentration = 20.385 min. Effective stream area after confluence = 67.001(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.592(In /Hr) Study area total (this main stream) = 68.20(Ac.) IP +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1305.000 to Point /Station 1106.000 !1 J r ow Wi 0 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 4 Upstream point elevation = 1726.40(Ft.) 11 Downstream point elevation = 1705.00(Ft.) Channel length thru subarea = 400.00(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 10.000 44 Slope or 'Z' of right channel bank = 10.000 Manning's 'N' = 0.025 Maximum depth of channel = 10.000(Ft.) Ow Flow(q) thru subarea = 153.370(CFS) Depth of flow = 0.858(Ft.), Average velocity = 9.619(Ft /s) la Channel flow top width = 27.163(Ft.) Flow Velocity = 9.62(Ft /s) ww Travel time = 0.69 min. ws Time of concentration = 21.08 min. Critical depth = 1.297(Ft.) 44 + ++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1305.000 to Point /Station 1106.000 MN * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Pk Stream flow area = 67.001(Ac.) • Runoff from this stream = 153.370(CFS) Time of concentration = 21.08 min. Rainfall intensity = 3.068(In /Hr) = Area averaged loss rate (Fm) = 0.5923(In/Hr) im Area averaged Pervious ratio (Ap) = 1.0000 Program is now starting with Main Stream No. 2 it +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ mom Process from Point /Station 1101.000 to Point /Station 1102.000 Al * * ** INITIAL AREA EVALUATION * * ** 1.Z Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: , Initial area flow distance = 950.000(Ft.) Top (of initial area) elevation = 2888.000(Ft.) Bottom (of initial area) elevation = 2583.300(Ft.) Difference in elevation = 304.700(Ft.) Slope = 0.32074 s( %)= 32.07 TC = k(0.730) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 14.238 min. Rainfall intensity = 3.883(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.777 Subarea runoff = 21.710(CFS) • Total initial stream area = 7.200(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) • ii li - +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + +4-+ ++ Afilk Process from Point /Station 1102.000 to Point /Station 1103.000 ii * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Q Upstream point elevation = 2583.30(Ft.) Downstream point elevation = 2380.00(Ft.) Channel length thru subarea = 660.00(Ft.) is Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 gm% Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 51.712(CFS) 114 Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 51.712(CFS) 10 Depth of flow = 0.585(Ft.), Average velocity = 14.325(Ft/s) Channel flow top width = 7.340(Ft.) r Flow Velocity = 14.32(Ft /s) it Travel time = 0.77 min. Time of concentration = 15.01 min. Critical depth = 1.250(Ft.) r Adding area flow to channel so Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 rit Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) ili Rainfall intensity = 3.762(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.773 t. Subarea runoff = 57.065(CFS) for 19.900(Ac.) ill Total runoff = 78.775(CFS) Total area = 27.10(Ac.) Area averaged Fm value = 0.532(In /Hr) r ° ill +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ AN a ,,,, Process from Point /Station 1103.000 to Point /Station 1104.000 ( * * ** IMPROVED CHANNEL TRAVEL TIME * * ** ia V/7 Upstream point elevation = 2380.00(Ft.) !"' Downstream point elevation = 1802.00(Ft.) 10 Channel length thru subarea = 2150.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 ii Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 116.419(CFS) Manning's 'N' = 0.035 _ il Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 116.419(CFS) Depth of flow = 0.958(Ft.), Average velocity = 17.577(Ft/s) Channel flow top width = 8.831(Ft.) Flow Velocity = 17.58(Ft /s) Travel time = 2.04 min. Time of concentration = 17.04 min. :: Critical depth = 1.969(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea I; j Pr OR SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.485(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.763 Subarea runoff = 62.081(CFS) for 25.900(Ac.) Total runoff = 140.856(CFS) Total area = 53.00(Ac.) Area averaged Fm value = 0.532(In /Hr) ,., +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1103.000'to Point /Station 1104.000 rr► * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 ilia Stream flow area = 53.000(Ac.) Runoff from this stream = 140.856(CFS) Time of concentration = 17.04 min. Rainfall intensity = 3.485(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 + + + + + + + ++ + + + + + + + + + + + + + + + ++ ++ + + + + ++ ++ + + + ++ + + ++ + + + ++ ++ + ++ + + + + ++ ++ + ++ + + + + Process from Point /Station 1201.000 to Point /Station 1202.000 INITIAL AREA EVALUATION * * ** ik Soil classification AP and SCS values input by user ion :; USER INPUT of soil data for subarea >r. SCS curve number for soil(AMC 2) = 70.00 MI Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: w•� Initial area flow distance = 900.000(Ft.) Top (of initial area) elevation = 2664.400(Ft.) Bottom (of initial area) elevation = 2360.000(Ft.) Difference in elevation = 304.400(Ft.) Slope = 0.33822 s( %)= 33.82 in TC = k(0.730) *[(length ^3) /(elevation change)]A0.2 Initial area time of concentration = 13.786 min. 01 Rainfall intensity = 3.959(In /Hr) for a 100.0 year storm 41 Effective runoff coefficient used for area (Q =KCIA) is C = 0.779 Subarea runoff = 28.368(CFS) Total initial stream area = 9.200(Ac.) S Pervious area fraction = 1.000 i Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1202.000 to Point /Station 1203.000 1 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 13.5 Upstream point elevation = 2360.00(Ft.) Downstream point elevation = 2200.00(Ft.) Channel length thru subarea = 640.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 rr�.rr. Estimated mean flow rate at midpoint of channel = 49.182(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 49.182(CFS) Depth of flow = 0.603(Ft.), Average velocity = 13.131(Ft /s) Channel flow top width = 7.414(Ft.) Flow Velocity = 13.13(Ft /s) NIF Travel time = 0.81 min. Time of concentration = 14.60 min. Critical depth = 1.219(Ft.) Adding area flow to channel gm • Soil classification AP and SCS values input by user • it USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 gar Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.825(In/Hr) for a 100.0 year storm MO Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.775 ON Subarea runoff = 38.897(CFS) for 13.500(Ac.) Total runoff = 67.265(CFS) Total area = 22.70(Ac.) Area averaged Fm value = 0.532(In /Hr) O Ow +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1203.000 to Point /Station 1104.000 """' * * ** IMPROVED CHANNEL TRAVEL TIME * * ** NEW it Upstream point elevation = 2200.00(Ft.) Downstream point elevation = 1802.00(Ft.) rm Channel length thru subarea = 1500.00(Ft.) M Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 87.711(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 87.711(CFS) bit Depth of flow = 0.822(Ft.), Average velocity = 16.062(Ft /s) Channel flow top width = 8.288(Ft.) 01 Flow Velocity = 16.06(Ft /s) Travel time = 1.56 min. Time of concentration = 16.15 min. Critical depth = 1.688(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.599(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.767 Subarea runoff = 33.482(CFS) for 13.800(Ac.) Total runoff = 100.747(CFS) Total area = 36.50(Ac.) Area averaged Fm value = 0.532(In /Hr) 1: +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 9 Process from Point /Station 1203.000 to Point /Station 1104.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 36.500(Ac.) Runoff from. this stream = 100.747(CFS) Time of concentration = 16.15 min. +� Rainfall intensity = 3.599(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: wok Wit Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) ME 1 140.856 17.04 3.485 2 100.747 16.15 3.599 Qmax(1) = it 1.000 * 1.000 * 140.856) + 0.963 * 1.000 * 100.747) + = 237.861 .., Qmax(2) = 1.039 * 0.948 * 140.856) + et 1.000 * 1.000 * 100.747) + = 239.402 Total of 2 streams to confluence: It Flow rates before confluence point: 140.856 100.747 Maximum flow rates at confluence using above data: 237.861 239.402 Mt Area of streams before confluence: 53.000 36.500 Effective area values after confluence: 1Y 89.500 86.734 Results of confluence: Total flow rate = 239.402(CFS) tok Time of concentration = 16.155 min. M t Effective stream area after confluence = 86.734(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.532(In /Hr) Study area total (this main stream) = 89.50(Ac.) It am +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ MK Process from Point /Station 1104.000 to Point /Station 1105.000 • * * ** IMPROVED CHANNEL TRAVEL TIME * * ** tt$ Upstream point elevation = 1802.00(Ft.) Downstream point elevation = 1718.10(Ft.) Channel length thru subarea = 1040.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 255.688(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 255.688(CFS) 10 MI INI 1 Depth of flow = 2.109(Ft.), Average velocity = 14.847(Ft/s) Channel flow top width = 11.328(Ft.) Flow Velocity = 14.85(Ft /s) Travel time = 1.17 min. Ai Time of concentration = 17.32 min. di • Critical depth = 3.156(Ft.) Adding area flow to channel low Soil classification AP and SCS values input by user USER INPUT of soil data for subarea iv SCS curve number for soil(AMC 2) = 70.00 - Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) '' Rainfall intensity = 3.452(In /Hr) for a 100.0 year storm A. Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.832 Subarea runoff = 19.483(CFS) for 11.800(Ac.) Total runoff = 258.886(CFS) Total area = 98.53(Ac.) le Area averaged Fm value = 0.532(In /Hr) or t - . +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1105.000 to Point /Station 1106.000 C.1 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 2.5 +1 Upstream point elevation = 1718.10(Ft.) Downstream point elevation = 1705.00(Ft.) ell Channel length thru subarea = 270.00(Ft.) AO Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Estimated mean flow rate at midpoint of channel = 262.170(CFS) Manning's 'N' = 0.250 Maximum depth of channel = 10.000(Ft.) I'm Flow(q) thru subarea = 262.170(CFS) Depth of flow = 3.205(Ft.), Average velocity = 1.945(Ft /s) Channel flow top width = 74.101(Ft.) Flow Velocity = 1.95(Ft /s) oom" Travel time = 2.31 min. be Time of concentration = 19.64 min. Critical depth = 1.688(Ft.) PR Adding area flow to channel Soil classification AP and SCS values input by user tic USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pm Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) 6* The area added to the existing stream causes a a lower flow rate of Q = 242.713(CFS) therefore the upstream flow rate of Q = 258.886(CFS) is being used - Rainfall intensity = 3.202(In /Hr) for a 100.0 year storm li Effective runoff coefficient used for area, (total area with modified rational method)(Q =KCIA) is C = 0.825 li Subarea runoff = 0.000(CFS) for 2.500(Ac.) Total runoff = 258.886(CFS) Total area = 101.03(Ac.) Area averaged Fm value = 0.532(In /Hr) I; +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1105.000 to Point /Station 1106.000 Pt illi pi lit di * * ** CONFLUENCE OF MAIN STREAMS * * ** di The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 101.034(Ac.) Al Runoff from this stream = 258.886(CFS) Time of concentration = 19.64 min. gir Rainfall intensity = 3.202(In /Hr) Ai Area averaged loss rate (Fm) = 0.5325(In/Hr) Area averaged Pervious ratio (Ap) = 1.0000 Program is now starting with Main Stream No. 3 + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + + + ++ + + + + ++ + ++ + + + + + + + + + + + + + + + + + + + Process from Point /Station 1501.000 to Point /Station 1502.000 * * ** INITIAL AREA EVALUATION * * ** 3. to Soil classification AP and SCS values input by user • 7P11 USER INPUT of soil data for subarea • it SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: Initial area flow distance = 945.000(Ft.) kw Top (of initial area) elevation = 2283.000(Ft.) Bottom (of initial area) elevation = 1884.700(Ft.) Difference in elevation = 398.300(Ft.) Slope = 0.42148 s( %)= 42.15 TC = k(0.730) *[(length ^3) %(elevation change)] ^0.2 Initial area time of concentration = 13.452 min. Rainfall intensity = 4.017(In /Hr) for a 100.0 year storm at Effective runoff coefficient used for area (Q =KCIA) is C = 0.781 Subarea runoff = 11.291(CFS) Total initial stream area = 3.600(Ac.) Pervious area fraction = 1.000 am • Initial area Fm value = 0.532(In /Hr) 66 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1502.000 to Point /Station 1504.000 E Z * * ** IMPROVED CHANNEL TRAVEL TIME * * ** VI tit Upstream point elevation = 1884.70(Ft.) Downstream point elevation = 1774.60(Ft.) Channel length thru subarea = 580.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 13.956(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 13.956(CFS) Depth of flow = 0.315(Ft.), Average velocity = 7.860(Ft /s) Channel flow top width = 6.261(Ft.) Flow Velocity = 7.86(Ft /s) Travel time = 1.23 min. Time of concentration = 14.68 min. Critical depth = 0.578(Ft.) 12 RR di Adding area flow to channel di Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 ira Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) ma Rainfall intensity = 3.812(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified +�► rational method)(Q =KCIA) is C = 0.774 MK Subarea runoff = 4.352(CFS) for 1.700(Ac.) Total runoff = 15.642(CFS) Total area = 5.30(Ac.) Aw Area averaged Fm value = 0.532(In /Hr) it +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ — Process from Point /Station 1502.000 to Point /Station 1504.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** id Along Main Stream number: 3 in normal stream number 1 Stream flow area = 5.300(Ac.) Runoff from this stream = 15.642(CFS) Time of concentration = 14.68 min. low Rainfall intensity = 3.812(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 rm is +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1501.000 to Point /Station 1503.000 * * ** INITIAL AREA EVALUATION * * ** it Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: Initial area flow distance = 930.000(Ft.) P" Top (of initial area) elevation = 2283.000(Ft.) it Bottom (of initial area) elevation = 1872.000(Ft.) Difference in elevation = 411.000(Ft.) Slope = 0.44194 s( %)= 44.19 TC = k(0.730) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 13.240 min. Rainfall intensity = 4.056(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.782 Subarea runoff = 10.464(CFS) Total initial stream area = 3.300(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1503.000 to Point /Station 1504.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Lr Z Upstream point elevation = 1872.00(Ft.) Downstream point elevation = 1774.60(Ft.) Channel length thru subarea = 670.00(Ft.) 1; it • 4, ii Channel base width = 5.000(Ft.) MI Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 17.123(CFS) mm Manning's 'N' = 0.035 di Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 17.123(CFS) Depth of flow = 0.384(Ft.), Average velocity = 7.728(Ft/s) iii Channel flow top width = 6.537(Ft.) Flow Velocity = 7.73(Ft /s) Travel time = 1.45 min. mm Time of concentration = 14.69 min. • Ur Critical depth = 0.648(Ft.) Adding area flow to channel mm Soil classification AP and SCS values input by user ii USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) w• Rainfall intensity = 3.811(In /Hr) for a 100.0 year storm • Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.774 l ,., Subarea runoff = 11.668(CFS) for 4.200(Ac.) Total runoff = 22.132(CFS) Total area = 7.50(Ac.) ill Area averaged Fm value = 0.532(In /Hr) w■ im +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1503.000 to Point /Station 1504.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** 7 {ir Along Main Stream number: 3 in normal stream number 2 Stream flow area = 7.500(Ac.) mm Runoff from this stream = 22.132(CFS) Time of concentration = 14.69 min. Rainfall intensity = 3.811(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) mum Area averaged Pervious ratio (Ap) = 1.0000 lir Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) iiii li 1 15.642 14.68 3.812 2 22.132 14.69 3.811 Qmax(1) I 1.000 * 1.000 * 15.642) + 1.000•* 1.000 22.132) + = 37.773 Qmax2) 1.000 * 1.000 * 15.642) + 1.000 * 1.000 * 22.132) + = 37.772 Total of 2 streams to confluence: Flow rates before confluence point: 1/ 15.642 22.132 Maximum flow rates at confluence using above data: 37.773 37.772 li ri hi op . y d Area of streams before confluence: 5.300 7.500 Effective area values after confluence: 12.798 12.800 Results of confluence: Total flow rate = 37.773(CFS) Time of concentration = 14.682 min. a Effective stream area after confluence = 12.798(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.532(In /Hr) Study area total (this main stream) = 12.80(Ac.) • ei +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ R+ Process from Point /Station 1504.000 to Point /Station 1505.000 r5 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 11/4) is Upstream point elevation = 1774.60(Ft.) Downstream point elevation = 1723.50(Ft.) irr Channel length thru subarea = 485.00(Ft.) Channel base width = 5.000(Ft.) +�* Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Om Estimated mean flow rate at midpoint of channel = 39.691(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 39.691(CFS) Depth of flow = 0.683(Ft.), Average velocity = 9.134(Ft /s) , Channel flow top width = 7.731(Ft.) ' Flow Velocity = 9.13(Ft /s) v Travel time = 0.88 min. Time of concentration = 15.57 min. ''* Critical depth = 1.078(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.680(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified id rational method)(Q =KCIA) is C = 0.819 Subarea runoff = 2.168(CFS) for 1.300(Ac.) Total runoff = 39.941(CFS) Total area = 14.10(Ac.) Area averaged Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1504.000 to Point /Station 1505.000 • * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 14.098(Ac.) Runoff from this stream = 39.941(CFS) Time of concentration = 15.57 min. Rainfall intensity = 3.680(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 Pm d NO Ai ++ .++ + +++ + + ++++ .. +.}.'I.++ ' ++++ ++ ..F.}..f.++ +++ ++++ ' +i +++ +++ + + + +T + +TT + ++ + + + + +T+ / Process from Point /Station 1601.000 to Point /Station 1602.000 F t * * ** INITIAL AREA EVALUATION * * ** 3. to di Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Oi Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 2195.000(Ft.) Bottom (of initial area) elevation = 1845.000(Ft.) nw Difference in elevation = 350.000(Ft.) Slope = 0.35000 s( %)= 35.00 TC = k(0.730) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 14.281 min. ""' Rainfall intensity = 3.876(In /Hr) for a 100.0 year storm • Effective runoff coefficient used for area (Q =KCIA) is C = 0.776 Subarea runoff = 10.832(CFS) elm Total initial stream area = 3.600(Ac.) Pervious area fraction = 1.000 OW Initial area Fm value = 0.532(In /Hr) WI Process from Point /Station 1602.000 to Point /Station 1505.000 F2 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** S.(D Upstream point elevation = 1845.00(Ft.) Downstream point elevation = 1723.50(Ft.) Channel length thru subarea = 850.00(Ft.) Channel base width = 5.000(Ft.) irr Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = 19.257(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 5.000(Ft.) !.. Flow(q) thru subarea = 19.257(CFS) Depth of flow = 0.403(Ft.), Average velocity = 7.691(Ft /s) Channel flow top width = 7.419(Ft.) Flow Velocity = 7.69(Ft /s) - Travel time = 1.84 min. Time of concentration = 16.12 min. Critical depth = 0.672(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 ;I Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.604(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q =KCIA) is C = 0.767 Subarea runoff = 14.597(CFS) for 5.600(Ac.) Total runoff = 25.429(CFS) Total area = 9.20(Ac.) Area averaged Fm value = 0.532(In /Hr) 1= All d :1 ++ + + + + + + + + + + + + + + + + + + + + + ++ ++ + ++ + + + + ++ + + + ++ + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + Process from Point /Station 1602.000 to Point /Station 1505.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** di Along Main Stream number: 3 in normal stream number 2 011 Stream flow area = 9.200(Ac.) di Runoff from this stream = 25.429(CFS) Time of concentration = 16.12 min. Rainfall intensity = 3.604(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) • Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: m MO Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) v. 1 39.941 15.57 3.680 2 25.429 16.12 3.604 om Qmax(1) = 1.000 * 1.000 * 39.941) + 1.025 * 0.966 * 25.429) + = 65.105 • Qmax (2) = 0.976 * 1.000 * 39.941) + NO 1.000 * 1.000 * 25.429) + = 64.396 Total of 2 streams to confluence: Flow rates before confluence point: hi 39.941 25.429 Maximum flow rates at confluence using above data: 65.105 64.396 Area of streams before confluence: 14.098 9.200 Effective area values after confluence: O 22.981 23.298 di Results of confluence: Total flow rate = 65.105(CFS) rm Time of concentration = 15.567 min. Effective stream area after confluence = 22.981(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.532(In /Hr) Study area total (this main stream) = 23.30(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ . Process from Point /Station 1505.000 to Point /Station 1402.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 1723.50(Ft.) Downstream point elevation = 1717.10(Ft.) Channel length thru subarea = 320.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Manning's 'N' = 0.015 PO 1I di k 1 Maximum depth of channel = 20.000(Ft.) di Flow(q) thru subarea = 65.105(CFS) Depth of flow = 1.678(Ft.), Average velocity = 11.567(Ft /s) Channel flow top width = 6.710(Ft.) oR Flow Velocity = 11.57(Ft /s) Travel time = 0.46 min. Time of concentration = 16.03 min. OR Critical depth = 2.313(Ft.) OM +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ om Process from Point /Station 1505.000 to Point /Station 1402.000 Am * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 22.981(Ac.) Runoff from this stream = 65.105(CFS) Time of concentration = 16.03 min. Rainfall intensity = 3.616(In /Hr) • is Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 OR 00 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1401.000 to Point /Station 1402.000 P1 4111 * * ** INITIAL AREA EVALUATION * * ** 4.3 SO Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: rim Initial area flow distance = 715.000(Ft.) 10 Top (of initial area) elevation = 1846.000(Ft.) Bottom (of initial area) elevation = 1717.100(Ft.) Difference in elevation = 128.900(Ft.) pm Slope = 0.18028 s( %)= 18.03 hi TC = k(0.730) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 14.260 min. Pm Rainfall intensity = 3.879(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.776 Subarea runoff = 12.952(CFS) Total initial stream area = 4.300(Ac.) ;1 Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1401.000 to Point /Station 1402.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 4.300(Ac.) Runoff from this stream = 12.952(CFS) Time of concentration = 14.26 min. Rainfall intensity = 3.879(In /Hr) Area averaged loss rate (Fm) = 0.5325(In /Hr) OR , P NO ;I Area averaged Pervious ratio (Ap) = 1.0000 Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) OR 1 65.105 16.03 3.616 OM 2 12.952 14.26 3.879 Qmax(1) = 1.000 * 1.000 * 65.105) + s -- 0.921 * 1.000 * 12.952) + = 77.040 iw Qmax(2) = 1.085 * 0.890 * 65.105) + u" 1.000 * 1.000 * 12.952) + = 75.809 00 Total of 2 streams to confluence: Flow rates before confluence point: 65.105 12.952 Ur Maximum flow rates at confluence using above data: 77.040 75.809 Area of streams before confluence: 22.981 4.300 OW Effective area values after confluence: 27.281 24.746 01" Results of confluence: 00 Total flow rate = 77.040(CFS) Time of concentration = 16.028 min. Effective stream area after confluence = 27.281(Ac.) Study area average Pervious fraction(Ap) = 1.000 MO Study area average soil loss rate(Fm) = 0.532(In /Hr) Study area total (this main stream) = 27.28(Ac.) OR +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1402.000 to Point /Station 1106.000 OR * * ** IMPROVED CHANNEL TRAVEL TIME * * ** OD Upstream point elevation = 1717.10(Ft.) R Downstream point elevation = 1705.00(Ft.) Channel length thru subarea = 240.00(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Manning's 'N' = 0.025 Maximum depth of channel = 20.000(Ft.) Flow(q) thru subarea = 77.040(CFS) Depth of flow = 0.614(Ft.), Average velocity = 7.766(Ft/s) Channel flow top width = 22.289(Ft.) Flow Velocity = 7.77(Ft /s) Travel time = 0.52 min. Time of concentration = 16.54 min. Critical depth = 0.906(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1402.000 to Point /Station 1106.000 NO 4 , :I ii * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: \ +ui In Main Stream number: 3 Stream flow area = 27.281(Ac.) MI Runoff from this stream = 77.040(CFS) Time of concentration = 16.54 min. 4, Rainfall intensity = 3.548(In /Hr) • Area averaged loss rate (Fm) = 0.5325(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 gil Summary of stream data: . Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1 di 1 153.370 21.08 3.068 OM 2 258.886 19.64 3.202 3 77.040 16.54 3.548 it Qmax(1) = 1.000 * 1.000 * 153.370) + IP 0.950 * 1.000 * 258.886) + ;O 0.841 * 1.000 * 77.040) + = 464.104 Qmax(2) = 1.054 * 0.932 * 153.370) + VI 1.000 * 1.000 * 258.886) + a 0.885 * 1.000 * 77.040) + = 477.637 Qmax(3) _ 1.194 * 0.785 * 153.370) + f 1.130 * 0.843 * 258.886) + 1.000 * 1.000 * 77.040) + = 467.197 Al Total of 3 main streams to confluence: ii Flow rates before confluence point: 153.370 258.886 77.040 Maximum flow rates at confluence using above data: 464.104 477.637 467.197 Area of streams before confluence: 67.001 101.034 27.281 oll Effective area values after confluence: ii 195.316 190.731 164.991 Results of confluence: Total flow rate = 477.637(CFS) Time of concentration = 19.636 min. _ II Effective stream area after confluence = 190.731(Ac.) Study area average Pervious fraction(Ap) = 1.000 Study area average soil loss rate(Fm) = 0.553(In /Hr) Study area total = 195.32(Ac.) II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ii Process from Point /Station 1106.000 to Point /Station 1107.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1705.00(Ft.) li '0 ri 6 '1 AI Downstream point /station elevation = 1693.00(Ft.) Pipe length = 375.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 477.637(CFS) am Nearest computed pipe diameter = 60.00(In.) MO Ma Calculated individual pipe flow = 477.637(CFS) Normal flow depth in pipe = 50.63(In.) Flow top width inside pipe = 43.57(In.) Critical depth could not be calculated. • Pipe flow velocity = 27.01(Ft /s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 19.87 min. +++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1106.000 to Point /Station 1107.000 • * * ** CONFLUENCE OF MINOR STREAMS * * ** mw Along Main Stream number: 1 in normal stream number 1 Stream flow area = 190.731(Ac.) Runoff from this stream = 477.637(CFS) Time of concentration = 19.87 min. OP Rainfall intensity = 3.179(In /Hr) la Area averaged loss rate (Fm) = 0.5530(In /Hr) Area averaged Pervious ratio (Ap) = 1.0000 PP +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ Process from Point /Station 244.000 to Point /Station 244.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** rll RESIDENTIAL(3 - 4 dwl /acre) TACT Ilo ZiQ 511E 1r+'(Pet?:.04 - y Decimal fraction soil group A = 1.000 F (J ZO A S. PO Decimal fraction soil group B = 0.000 G T ib Decimal fraction soil group C = 0.000 P P?E J D1X S 6 - 2 F' Decimal fraction soil group D = 0.000 w* SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 4.929(In /Hr) for a 100.0 year storm User specified values are as follows: !P TC = 9.57 min. Rain intensity = 4.93(In /Hr) • Total area = 1.40(Ac.) Total runoff = 5.33(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 244.000 to Point /Station 244.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.400(Ac.) Runoff from this stream = 5.327(CFS) Time of concentration = 9.57 min. Rainfall intensity = 4.929(In /Hr) Area averaged loss rate (Fm) = 0.5867(In /Hr) Area averaged Pervious ratio (Ap) = 0.6000 II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ il il Process from Point /Station 242.000 to Point /Station 242.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** mt RESIDENTIAL (3 - 4 dwl /acre) - RA( -T /4'Z ?O 11 " di Decimal fraction soil group A = 1.000 r/J : C j U Zo 6, R' Decimal fraction soil group B = 0.000 5 t - E APP€ 1 3 - 2. f Decimal fraction soil group C = 0.000 Om Decimal fraction soil group D = 0.000 II SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) am Rainfall intensity = 5.176(In /Hr) for a 100.0 year storm {;s User specified values are as follows: MM TC = 8.82 min. Rain intensity = 5.18(In /Hr) Total area = 2.70(Ac.) Total runoff = 10.85(CFS) IAN Oth +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + ++ OR Process from Point /Station 242.000 to Point /Station 242.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 3 "+"" Stream flow area = 2 .697 (Ac . ) OW Runoff from this stream = 10.848(CFS) Time of concentration = 8.82 min. 410 Rainfall intensity = 5.176(In /Hr) ei Area averaged loss rate (Fm) = 0.5867(In /Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: II'° Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) A alli 1 477.637 19.87 3.179 2 5.327 9.57 4.929 3 10.848 8.82 5.176 t Qmax(1) = k1 1.000 * 1.000 * 477.637) + 0.597 * 1.000 * 5.327) + 010" 0.565 * 1.000 * 10.848) + = 486.946 Qmax(2) = 1.666 * 0.482 * 477.637) + 1.000 * 1.000 * 5.327) + 0.946 * 1.000 * 10.848) + = 398.808 Qmax(3) = 1.760 * 0.444 * 477.637) + _ 1.057 * 0.922 * 5.327) + 1.000 * 1.000 * 10.848) + = 389.209 Total of 3 streams to confluence: II Flow rates before confluence point: 477.637 5.327 10.848 Maximum flow rates at confluence using above data: II 486.946 398.808 389.209 Area of streams before confluence: 190.731 1.400 2.697 Effective area values after confluence: ii 194.828 95.935 88.644 Results of confluence: Total flow rate = 486.946(CFS) . Time of concentration = 19.867 min. Effective stream area after confluence = 194.828(Ac.) Study area average Pervious fraction(Ap) = 0.992 Study area average soil loss rate(Fm) = 0.554(In /Hr) Study area total (this main stream) = 194.83(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ME Process from Point /Station 1107.000 to Point /Station 1714.100 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1693.00(Ft.) as Downstream point /station elevation = 1657.00(Ft.) Pipe length = 1080.00(Ft.) Manning's N = 0.013 UPI No. of pipes = 1 Required pipe flow = 486.946(CFS) r,< Nearest computed pipe diameter = 60.00(In.) MO Calculated individual pipe flow = 486.946(CFS) Normal flow depth in pipe = 50.63(In.) Flow top width inside pipe = 43.57(In.) Critical depth could not be calculated. Pipe flow velocity = 27.56(Ft/s) Travel time through pipe = 0.65 min. Time of concentration (TC) = 20.52 min. ' =- = +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1107.000 to Point /Station 1714.100 * * ** CONFLUENCE OF MINOR STREAMS * * ** 14 0 4 Alon g Main Stream number: 1 in normal stream number 1 so Stream flow area = 194.828(Ac.) Runoff from this stream = 486.946(CFS) Time of concentration = 20.52 min. Rainfall intensity = 3.118(In /Hr) is Area averaged loss rate (Fm) = 0.5537(In /Hr) Area averaged Pervious ratio (Ap) = 0.9916 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 230.000 to Point /Station 230.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** Soil classification AP and SCS values input by user LT I IP 210 5 IT F— USER INPUT of soil data for subarea HI/ MOLL-760i SCS curve number for soil (AMC 2) = 38.40 P- 35 Cl" 2. • Q5 Pervious ratio(Ap) = 0.5470 Max loss rate(Fm)= 0.509(In /Hr) Rainfall intensity = 4.166(In /Hr) for a 100.0 year storm ' E3 e A pe&j Rj 2 User specified values are as follows: TC = 12.66 min. Rain intensity = 4.17(In /Hr) Total area = 34.02(Ac.) Total runoff = 113.62(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 230.000 to Point /Station 1714.100 AI Process from Point /Station 1714.100 to Point /Station 1714.100 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** ii Soil classification AP and SCS values input by user pZpWf&E A =r�- USER INPUT of soil data for subarea -MI T RN TD �� :i SCS curve number for soil (AMC 2) = 66.50 • Pervious ratio(Ap) = 0.9390 Max loss rate(Fm)= 0.550(In /Hr) Rainfall intensity = 3.158(In/Hr) for a 100.0 year storm ikppr?J: 6 -23 User specified values are as follows: Om TC = 20.09 min. Rain intensity = 3.16(In /Hr) Total area = 227.22(Ac.) Total runoff = 535.96(CFS) Mil aye +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ * Process from Point /Station 1714.000 to Point /Station 1714.100 * * ** CONFLUENCE OF MAIN STREAMS * * ** Os 0 The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 227.220(Ac.) OR Runoff from this stream = 535.962(CFS) OS Time of concentration = 20.09 min. Rainfall intensity = 3.158(In /Hr) 00 Area averaged loss rate (Fm) = 0.5501(In /Hr) Area averaged Pervious ratio (Ap) = 0.9390 W Summary of stream data: Stream Flow rate TC Rainfall Intensity 4`° No. (CFS) (min) (In /Hr) IS 0. 1 568.014 20.52 3.118 Si 2 535.962 20.09 3.158 Qmax(1) = we 1.000 * 1.000 * 568.014) + % 0.985 * 1.000 * 535.962) + = 1095.839 IA Qmax (2) = 1.015 * 0.979 * 568.014) + 00 1.000 * 1.000 * 535.962) = 1100.721 OS Total of 2 main streams to confluence: Flow rates before confluence point: 568.014 535.962 Maximum flow rates at confluence using above data: 1095.839 1100.721 _ il Area of streams before confluence: 228.843 227.220 Effective area values after confluence: 456.063 451.302 il Results of confluence: il Total flow rate = 1100.721(CFS) Time of concentration = 20.093 min. Effective stream area after confluence = 451.302(Ac.) Study area average Pervious fraction(Ap) = 0.932 II is li Study area average soil loss rate(Fm) = 0.549(In /Hr) Study area total = 456.06(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1714.100 to Point /Station 1715.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** 00 • Upstream point /station elevation = 1657.00(Ft.) Downstream point /station elevation = 1652.80(Ft.) 00 Pipe length = 750.00(Ft.) Manning's N = 0.013 lvd No. of pipes = 1 Required pipe flow = 1100.721(CFS) Nearest computed pipe diameter = 114.00(In.) Calculated individual pipe flow = 1100.721(CFS) Normal flow depth in pipe = 95.63(In.) 10 Flow top width inside pipe = 83.84(In.) Critical Depth = 96.19(In.) Pipe flow velocity = 17.34(Ft /s) 0 Travel time through pipe = 0.72 min. Time of concentration (TC) = 20.81 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1714.100 to Point /Station 1715.000 C7N * * ** SUBAREA FLOW ADDITION * * ** ,.t,/) OP COMMERCIAL subarea type Decimal fraction soil group A = 1.000 +a ..: Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 OR Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 ON Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) OK The area added to the existing stream causes a a lower flow rate of Q = 1035.891(CFS) therefore the upstream flow rate of Q = 1100.721(CFS) is being used `% Time of concentration = 20.81 min. he Rainfall intensity = 3.092(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified P rational method)(Q =KCIA) is C = 0.898 Subarea runoff = 0.000(CFS) for 1.100(Ac.) Total runoff = 1100.721(CFS) Total area = 452.40(Ac.) Area averaged Fm value = 0.547(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 171400 to Point /Station 1715.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** .1 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 452.402(Ac.) Runoff from this stream = 1100.721(CFS) Time of concentration = 20.81 min. Rainfall intensity = 3.092(In /Hr) Area averaged loss rate (Fm) = 0.5475(In /Hr) Area averaged Pervious ratio (Ap) = 0.9302 il +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ` Process from Point /Station 414.000 to Point /Station 414.000 . , w * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** VI Soil classification AP and SCS values input by user ,ACT no 6ZS 1.010eo .,; �� USER INPUT of soil data for subarea Cr u COL 2.. SCS curve number for soil (AMC 2) = 45.10 4PPr".A : 13 'M Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.519(In /Hr) Rainfall intensity = 4.002(In /Hr) for a 100.0 year storm +w User specified values are as follows: . ' TC = 13.54 min. Rain intensity = 4.00(In /Hr) dO Total area = 7.93(Ac.) Total runoff = 24.27(CFS) A II +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 414.000 to Point /Station 1715.000 • * * ** CONFLUENCE OF MINOR STREAMS * * ** II Along Main Stream number: 1 in normal stream number 2 Stream flow area = 7.928(Ac.) do Runoff from this stream = 24.270(CFS) w Time of concentration = 13.54 min. Rainfall intensity = 4.002(In /Hr) !A Area averaged loss rate (Fm) = 0.5192(In /Hr) 3ks Area averaged Pervious ratio (Ap) = 0.6000 ed Summary of stream data: Stream Flow rate TC Rainfall Intensity ,', _ No. (CFS) (min) (In /Hr) Si Olt 1 1100.721 20.81 3.092 ON 2 24.270 13.54 4.002 Qmax(1) = • 1.000 * 1.000 * 1100.721) + di 0.739 * 1.000 * 24.270) + = 1118.650 Qmax(2) = 1.358 * 0.651 * 1100.721) + 1.000 * 1.000 * 24.270) + = 996.416 NI Total of 2 streams to confluence: II Flow rates before confluence point: 1100.721 24.270 Maximum flow rates at confluence using above data: 1118.650 996.416 il Area of streams before confluence: 452.402' 7.928 Effective area values after confluence: 460.330 302.228 Results of confluence: Total flow rate = 1118.650(CFS) Time of concentration = 20.814 min. Effective stream area after confluence = 460.330(Ac.) Study area average Pervious fraction(Ap) = 0.925 Study area average soil loss rate(Fm) = 0.547(In /Hr) Study area total (this main stream) = 460.33(Ac.) ii AA NO Al ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 'e Process from Point /Station 1715.000 to Point /Station 1716.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1652.80(Ft.) Downstream point /station elevation = 1646.50(Ft.) Pipe length = 575.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1118.650(CFS) Nearest computed pipe diameter = 102.00(In.) Calculated individual pipe flow = 1118.650(CFS) Normal flow depth in pipe = 83.25(In.) Flow top width inside pipe = 79.02(In.) Critical Depth = 95.03(In.) 1 Pipe flow velocity = 22.55(Ft/s) Travel time through pipe = 0.43 min. Time of concentration (TC) = 21.24 min. am +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ WO Process from Point /Station 1715.000 to Point /Station 1716.000 Is * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type ¢' Decimal fraction soil group A = 1.000 ilk Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 1042.263(CFS) 4111 therefore the upstream flow rate of Q = 1118.650(CFS) is being used Time of concentration = 21.24 min. ?* Rainfall intensity = 3.054(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified OK rational method)(Q =KCIA) is C = 0.897 Subarea runoff = 0.000(CFS) for 1.300(Ac.) 110 Total runoff = 1118.650(CFS) Total area = 461.63(Ac.) Area averaged Fm value = 0.546(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1715.000 to Point /Station 1716.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** . Along Main Stream number: 1 in normal stream number 1 Stream flow area = 461.630(Ac.) Runoff from this stream = 1118.650(CFS) Time of concentration = 21.24 min. Rainfall intensity = 3.054(In /Hr) Area averaged loss rate (Fm) = 0.5457(In /Hr) Area averaged Pervious ratio (Ap) = 0.9222 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 23 L :1 -- Process from Point /Station 407.000 to Point /Station 407.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** MI Soil classification AP and SCS values input by user 17. 7,2 ig USER INPUT of soil data for subarea F CitA 40 6 . SCS curve number for soil(AMC 2) = 32.50 – Pervious ratio (Ap) = 0.6000 Max loss rate(Fm). 0 .585 (In /Hr) �jt'}' ��% Rainfall intensity = 3.640(In /Hr) for a 100.0 year storm Ow User specified values are as follows: TC = 15.85 min. Rain intensity = 3.64(In /Hr) um Total area = 14.13(Ac.) Total runoff = 37.79(CFS) 40 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 00 Process from Point /Station 407.000 to Point /Station 1716.000 it * * ** CONFLUENCE OF MINOR STREAMS * * ** - Along Main Stream number: 1 in normal stream number 2 ii Stream flow area = 14.134(Ac.) Runoff from this stream = 37.793(CFS) Time of concentration = 15.85 min. WI Rainfall intensity = 3.640(In /Hr) ft Area averaged loss rate (Fm) = 0.5849(In /Hr) Area averaged Pervious ratio (Ap) = 0.6000 Summary of stream data: IN Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) SO 1 1118.650 21.24 3.054 2 37.793 15.85 3.640 OR Qmax(1) = ft 1.000 * 1.000 * 1118.650) + 0.808 * 1.000 * 37.793) + = 1149.194 0 Qmax(2) = 1.234 * 0.746 * 1118.650) + ali 1.000 * 1.000 * 37.793) + = 1067.761 '0 Total of 2 streams to confluence: MI Flow rates before confluence point: 1118.650 37.793 II Maximum flow rates at confluence using above data: 1149.194 1067.761 Area of streams before confluence: 461.630 14.134 Effective area values after confluence: 475.764 358.678 Results of confluence: Total flow rate = 1149.194(CFS) II Time of concentration = 21.239 min. Effective stream area after confluence = 475.764(Ac.) Study area average Pervious fraction(Ap) = 0.913 Study area average soil loss rate(Fm) = 0.547(In /Hr) il Study area total (this main stream) = 475.76(Ac.) ill Op ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + ++ + + +++ Process from Point /Station 1716.000 to Point /Station 1718.100 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1646.50(Ft.) Downstream point /station elevation = 1642.00(Ft.) Pipe length = 250.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1149.194(CFS) Nearest computed pipe diameter = 93.00(In.) Calculated individual pipe flow = 1149.194(CFS) Normal flow depth in pipe = 78.19(In.) Flow top width inside pipe = 68.06(In.) Critical depth could not be calculated. Pipe flow velocity = 27.14(Ft /s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 21.39 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1716.000 to Point /Station 1718.100 6,1( * * ** SUBAREA FLOW ADDITION * * ** Mg AO COMMERCIAL subarea type O.y Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 OP Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a it a lower flow rate of Q = 1069.095(CFS) therefore the upstream flow rate of Q = 1149.194(CFS) is being used x Time of concentration = 21.39 min. Rainfall intensity = 3.041(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.897 Subarea runoff = 0.000(CFS) for 0.400(Ac.) Total runoff = 1149.194(CFS) Total area = 476.16(Ac.) Area averaged Fm value = 0.547(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ Process from Point /Station 1716.000 to Point /Station 1718.100 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 476.164(Ac.) Runoff from this stream = 1149.194(CFS) Time of concentration = 21.39 min. Rainfall intensity = 3.041(In /Hr) Area averaged loss rate (Fm) = 0.5465(In /Hr) Area averaged Pervious ratio (Ap) = 0.9119 Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ di :I - Process from Point /Station 619.000 to Point /Station 619.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** IN Soil classification AP and SCS values input by user TACT If 3 Z s iii USER INPUT of soil data for subarea �",V CTN (�[7L�,� j SCS curve number for soil(AMC 2) = 32.00 Pervious ratio(Ap) = 0.5830 Max loss rate(Fm)= 0.570(In /Hr) 40 Rainfall intensity = 3.672(In/Hr) for a 100.0 year storm Wiii User specified values are as follows: /1 PP; B - /D TC = 15.63 min. Rain intensity = 3.67(In /Hr) Total area = 26.72(Ac.) Total runoff = 75.90(CFS) MI +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ AO Process from Point /Station 619.000 to Point /Station 1718.100 Mi * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 N Stream flow area = 26.720(Ac.) Runoff from this stream = 75.903(CFS) ow Time of concentration = 15.63 min. '*"% Rainfall intensity = 3.672(In /Hr) Area averaged loss rate (Fm) = 0.5701(In /Hr) Area averaged Pervious ratio (Ap) = 0.5830 Program is now starting with Main Stream No. 3 6 MO +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ l i Process from Point /Station 1717.000 to Point /Station 1717.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** r . Soil classification AP and SCS values input by user iDo ta 3` FEL W R'H- il USER INPUT of soil data for subarea LIN ' 14 4 SCS curve number for soil(AMC 2) = 57.70 , Pervious ratio(Ap) = 0.6760 Max loss rate(Fm)= 0.481(In /Hr) Rainfall intensity = 3.088(In /Hr) for a 100.0 year storm el User specified values are as follows: F /4- : 5 501 Pe• IeSS TC = 20.85 min. Rain intensity = 3.09(In /Hr) PO Total area = 2053 .00 (Ac.) Total runoff = 5021.45 (CFS) APP u % S - LE ii +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ II Process from Point /Station 501.000 to Point /Station 501.000 * * ** SUBAREA FLOW ADDITION * * ** (:;;;; il PARK subarea er/ Decimal fraction soil group A = 0.874 Decimal fraction soil group B = 0.126 Decimal fraction soil group C = 0.000 il Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 35.02 Pervious ratio(Ap) = 0.8500 Max loss rate(Fm)= 0.814(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 4833.048(CFS) therefore the upstream flow rate of Q = 5021.454(CFS) is being used Time of concentration = 20.85 min. II ON I sinseent Ai Rainfall intensity = 3.088(In /Hr) for a 100.0 year storm MK Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.899 Subarea runoff = 0.000(CFS) for 7.600(Ac.) Total runoff = 5021.454(CFS) Total area = 2060.60(Ac.) Area averaged Fm value = 0.482(In /Hr) Process from Point /Station 1717.000 to Point /Station 1718.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** IR Upstream point elevation = 1710.00(Ft.) Downstream point elevation = 1642.00(Ft.) 11 Channel length thru subarea = 1950.00(Ft.) Channel base width = 12.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 5026.937(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 10.000(Ft.) - Flow(q) thru subarea = 5026.937(CFS) Depth of flow = 5.664(Ft.), Average velocity = 43.299(Ft/s) Channel flow top width = 28.993(Ft.) Flow Velocity = 43.30(Ft /s) Travel time = 0.75 min. Time of concentration = 21.60 min. Critical depth = 11.250(Ft.) p ,,. Adding area flow to channel COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 32.00 Pw Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.098(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 4724.671(CFS) therefore the upstream flow rate of Q = 5021.454(CFS) is being used !1 Rainfall intensity = 3.023(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q =KCIA) is C = 0.898 Subarea runoff = 0.000(CFS) for 4.500(Ac.) Total runoff = 5021.454(CFS) Total area = 2065.10(Ac.) Area averaged Fm value = 0.481(In /Hr) Process from Point /Station 1717.000 to Point /Station 1718.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2065.104(Ac.) Runoff from this stream = 5021.454(CFS) Time of concentration = 21.60 min. Rainfall intensity = 3.023(In /Hr) 1 OR 11 Area averaged loss rate (Fm) = 0.4812(In /Hr) Area averaged Pervious ratio (Ap) = 0.6754 Summary of stream data: _ AR itS Stream Flow rate TC Rainfall Intensity Ng No. (CFS) (min) (In /Hr) 0 OM 1 1149.194 21.39 3.041 2 75.903 15.63 3.672 A 3 5021.454 21.60 3.023 Iii Qmax (1) = 1.000 * 1.000 * 1149.194) + 0.797 * 1.000 * 75.903) + se 1.007 * 0.990 * 5021.454) + = 6216.927 ii Qmax(2) = 1.253 * 0.730 * 1149.194) + 1.000 * 1.000 * 75.903) + PP 1.255 * 0.723 * 5021.454) + = 5686.194 iii Qmax(3) = 0.993 * 1.000 * 1149.194) + - 0.791 * 1.000 * 75.903) + 4111 1.000 * 1.000 * 5021.454) + = 6222.409 Total of 3 main streams to confluence: Or l Flow rates before confluence point: 1149.194 75.903 5021.454 Maximum flow rates at confluence using above data: - - Area 6216.927 5686.194 6222.409 rea of streams before confluence: 476.164 26.720 2065.104 Effective area values after confluence: ill 2547.713 1868.163 2567.988 OW Results of confluence: 21 Total flow rate = 6222.409(CFS) Time of concentration = 21.605 min. Effective stream area after confluence = 2567.988(Ac.) 4► Study area average Pervious fraction(Ap) = 0.718 II Study area average soil loss rate(Fm) = 0.494(In /Hr) Study area total = 2567.99(Ac.) li +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1718.000 to Point /Station 1218.000 II * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 2$ I Upstream point elevation = 1642.00(Ft.) Downstream point elevation = 1583.60(Ft.) II Channel length thru subarea = 2000.00(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 II Estimated mean flow rate at midpoint of channel = 6256.574(CFS) Manning's 'N' = 0.022 Maximum depth of channel = 20.000(Ft.) MI i Flow(q) thru subarea = 6256.574(CFS) Depth of flow = 5.267(Ft.), Average velocity = 25.639(Ft/s) Channel flow top width = 72.668(Ft.) . Flow Velocity = 25.64(Ft/s) gl Travel time = 1.30 min. Time of concentration = 22.90 min. Critical depth = 8.188(Ft.) POR Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea �► SCS curve number for soil (AMC 2) = 78.00 MN Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.404(In /Hr) The area added to the existing stream causes a a lower flow rate of Q = 5668.168(CFS) OP therefore the upstream flow rate of Q = 6222.409(CFS) is being used Rainfall intensity = 2.919(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified MI rational method)(Q =KCIA) is C = 0.898 PO Subarea runoff = 0.000(CFS) for 28.200(Ac.) Total runoff = 6222.409(CFS) Total area = 2596.19(Ac.) Area averaged Fm value = 0.493(In /Hr) t4 :. fill ow Process from Point /Station 1718.000 to Point /Station 1218.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 ►" ' Stream flow area = 2596.188(Ac.) Runoff from this stream = 6222.409(CFS) Time of concentration = 22.90 min. Rainfall intensity = 2.919(In /Hr) Area averaged loss rate (Fm) = 0.4933(In/Hr) Or Area averaged Pervious ratio (Ap) = 0.7213 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 707.000 to Point /Station 707.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** Soil classification AP and SCS values input by user T4- USER INPUT of soil data for subarea CTt�t DO. SCS curve number for soil (AMC 2) = 32.00 N 7 � Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 3.577(In /Hr) for a 100.0 year storm Z F User specified values are as follows: APP., u TC = 16.32 min. Rain intensity = 3.58(In /Hr) Total area = 15.10(Ac.) Total runoff = 39.51(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 707.000 to Point /Station 1218.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1611.20(Ft.) Downstream point /station elevation = 1583.60(Ft.) Pipe length = 1130.00(Ft.) Manning's N = 0.013 0 di No. of pipes = 1 Required pipe flow = 39.513(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 39.513(CFS) 1: Normal flow depth in pipe = 18.54(In.) ill Flow top width inside pipe = 25.05(In.) Critical Depth = 25.03(In.) mit Pipe flow velocity = 13.57(Ft/s) Travel time through pipe = 1.39 min. 01 Time of concentration (TC) = 17.71 min. ii ++++++++++++++++++++++++++ +++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 707.000 to Point /Station 1218.000 IN * * ** CONFLUENCE OF MINOR STREAMS * * ** i ll Along Main Stream number: 1 in normal stream number 2 Stream flow area = 15.100(Ac.) *"s'' Runoff from this stream = 39.513(CFS) IN Time of concentration = 17.71 min. Rainfall intensity = 3.406(In /Hr) Area averaged loss rate (Fm) = 0.5867(In/Hr) Pw # ; Area averaged Pervious ratio (Ap) = 0.6000 it we +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 312.000 to Point /Station 312.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** OW ii Soil classification AP and SCS values input by user USER INPUT of soil data for subarea T1 14OVl0 -1 SCS curve number for soil (AMC 2) = 32.00 Fes' t.11 -k 3QD R Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 3.691(In /Hr) for a 100.0 year storm User specified values are as follows: A-P P: s 2& TC = 15.49 min. Rain intensity = 3.69(In /Hr) rr Total area = 35.32(Ac.) Total runoff = 96.19(CFS) din +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ lit Process from Point /Station 312.000 to Point /Station 1218.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** li Upstream point /station elevation = 1630.50(Ft.) Downstream point /station elevation = 1583.60(Ft.) Pipe length = 1650.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 96.188(CFS) Nearest computed pipe diameter = 36.00(In.) li Calculated individual pipe flow = 96.188(CFS) Normal flow depth in pipe = 25.64(In.) Flow top width inside pipe = 32.60(In.) Critical depth could not be calculated. Pipe flow velocity = 17.88(Ft /s) Travel time through pipe = 1.54 min. Time of concentration (TC) = 17.03 min. MI ii ++++++++++++++++++++++++++++ +++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I: m . IF ii mis it Process from Point /Station 312.000 to Point /Station 1218.000 * * ** CONFLUENCE OF MINOR STREAMS * ** o m Along Main Stream number: 1 in normal stream number 3 lig Stream flow area = 35.323(Ac.) Runoff from this stream = 96.188(CFS) la Time of concentration = 17.03 min. Rainfall intensity = 3.487(In /Hr) Or Area averaged loss rate (Fm) = 0.5867(In /Hr) Area averaged Pervious ratio (Ap) = 0.6000 """ Summary of stream data: iii Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) MI is 1 6222.409 22.90 2.919 mum 2 39.513 17.71 3.406 ill 3 96.188 17.03 3.487 Qmax(1) = 1.000 * 1.000 * 6222.409) + Pm 0.827 * 1.000 * 39.513) + It 0.804 * 1.000 * 96.188) + = 6332.445 Qmax(2) = o f 1.201 * 0.773 * 6222.409) + iii 1.000 * 1.000 * 39.513) + 0.972 * 1.000 * 96.188) + = 5910.275 _ Qmax(3) = 1.234 * 0.744 * 6222.409) + j 1.029 * 0.962 * 39.513) + 1.000 * 1.000 * 96.188) + = 5845.181 um Total of 3 streams to confluence: to Flow rates before confluence point: 6222.409 39.513 96.188 O Maximum flow rates at confluence using above data: ifit 6332.445 5910.275 5845.181 Area of streams before confluence: 2596.188 15.100 35.323 PP ii Effective area values after confluence: 2646.611 2057.760 1980.177 Results of confluence: li Total flow rate = 6332.445(CFS) Time of concentration = 22.905 min. Effective stream area after confluence = 2646.611(Ac.) Study area average Pervious fraction(Ap) = 0.719 _ Study area average soil loss rate(Fm) = 0.495(In /Hr) Study area total (this main stream) = 2646.61(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1718.000 to Point /Station 1218.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** ii The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2646.611(Ac.) If .,C il g it Runoff from this stream = 6332.445(CFS) Time of concentration = 22.90 min. Rainfall intensity = 2.919(In /Hr) a Area averaged loss rate (Fm) = 0.4950(In /Hr) ii Area averaged Pervious ratio (Ap) = 0.7190 Program is now starting with Main Stream No. 2 ww ili +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1216.000 to Point /Station 1218.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** Mil Soil classification AP and SCS values input by user LuJ . �� 6j " ifis USER INPUT of soil data for subarea i SCS curve number for soil(AMC 2) = 67.30 F C..11 eSa Ili Pervious ratio(Ap) = 0.9600 Max loss rate(Fm)= 0.551(In /Hr) Rainfall intensity = 2.802(In/Hr) for a 100.0 year storm APP ° _y if mil User specified values are as follows: 1 firl TC = 24.52 min. Rain intensity = 2.80(In /Hr) Total area = 550.21(Ac.) Total runoff = 1187.14(CFS) pm Mr +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + ± + + + + ++ + + + + ++ Process from Point /Station 1216.000 to Point /Station 1218.000 * „ i * * ** CONFLUENCE OF MAIN STREAMS * * ** it The following data inside Main Stream is listed: _ In Main Stream number: 2 Stream flow area = 550.210(Ac.) i Runoff from this stream = 1187.144(CFS) Time of concentration = 24.52 min. mu Rainfall intensity = 2.802(In /Hr) Area averaged loss rate (Fm) = 0.5508(In /Hr) it Area averaged Pervious ratio (Ap) = 0.9600 Summary of stream data: ww. ilk Stream Flow rate ' TC Rainfall Intensity No. (CFS) (min) (In /Hr) war 61 1 6332.445 22.90 2.919 2 1187.144 24.52 2.802 Qmax(1) = il 1.000 * 1.000 * 6332.445) + 1.052 * 0.934 * 1187.144) + = 7498.990 Qmax(2) = . li 0.952 * 1.000 * 6332.445) + 1.000 * 1.000 * 1187.144) + = 7214.081 Total of 2 main streams to confluence: Flow rates before confluence point: 6332.445 1187.144 Maximum flow rates at confluence using above data: ii 7498.990 7214.081 Area of streams before confluence: 2646.611 550.210 - Effective area values after confluence: ii r IR on di • im 3160.575 3196.821 Results of confluence: di Total flow rate = 7498.990(CFS) Time of concentration = 22.905 min. Effective stream area after confluence = 3160.575(Ac.) Study area average Pervious fraction(Ap) = 0.761 M. Study area average soil loss rate(Fm) = 0.505(In /Hr) Study area total = 3196.82(Ac.) End of computations, total study area = 3210.45 (Ac.) The following figures may IN be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area out effects caused by confluences in the rational equation. ire Area averaged pervious area fraction(Ap) = 0.761 ±�* Area averaged SCS curve number = 59.7 di dr r w It P it it MI 11 33 l "s ': it San Bernardino County Rational Hydrology Program di (Hydrology Manual Date - August 1986) MN CIVILCADD /CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational Hydrology Study Date: 03/21/02 Coyote Canyon Master Drainage Plan mm 100 -year Proposed Hydrology Offsite Area "H" and "G" to Line "C" �.. FN:CYTOSH.RSB 3/21/02 A. Torreyson mi CASC Engineering Group, Riverside, California - S/N 615 mmi PO * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** PP Rational hydrology study storm event y gy y year is 100.0 hi Computed rainfall intensity: Storm year = 100.00 1 hour rainfall p = 1.638(In.) Scope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 2 im • • '" +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Mm Process from Point /Station 1701.000 to Point /Station 1702.000 * * ** INITIAL AREA EVALUATION * * ** 919 Soil classification AP and SCS values input by user mm USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) L . Initial subarea data: Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 2820.000(Ft.) r^ Bottom (of initial area) elevation = 2440.000(Ft.) Difference in elevation = 380.000(Ft.) Slope = 0.38000 s( %)= 38.00 en TC = k(0.730) *[(length /(elevation change)]'0.2 0- Initial area time of concentration = 14.048 min. Rainfall intensity = 3.914(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.778 :1 Subarea runoff = 30.130(CFS) Total initial stream area = 9.900(Ac.) Pervious area fraction = 1.000 :1 Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ;1 Process from Point /Station 1702.000 to Point /Station 1703.000 * * ** IMPROVED CHANNEL TRAVEL TIME 0 !; Upstream point elevation = 2440.00(Ft.) Downstream point elevation = 2030.00(Ft.) Channel length thru subarea = 1500.00(Ft.) Channel base width = 5.000(Ft.) OA • MR Y: di Slope or 'Z' of left channel bank = 2.000 gg Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 71.673(CFS) MR Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) gi Flow(q) thru subarea = 71.673(CFS) Depth of flow = 0.728(Ft.), Average velocity = 15.248(Ft /s) o Channel flow top width = 7.912(Ft.) Flow Velocity = 15.25(Ft /s) Travel time = 1.64 min. on Time of concentration = 15.69 min. Critical depth = 1.500(Ft.) ,`r Adding area flow to channel Soil classification AP and SCS values input by user "'" USER INPUT of soil data for subarea • in SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) ww Rainfall intensity = 3.663(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.769 Subarea runoff = 74.688(CFS) for 27.300(Ac.) on Total runoff = 104.818(CFS) Total area = 37.20(Ac.) Area averaged Fm value = 0.532(In /Hr) iru o n +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ gg Process from Point /Station 1703.000 to Point /Station 1703.100 6-3 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 2030.00(Ft.) So Downstream point elevation = 1745.00(Ft.) Channel length thru subarea = 2470.00(Ft.) on Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 3.500 AM Slope or 'Z' of right channel bank = 3.500 Estimated mean flow rate at midpoint of channel = 129.473(CFS) on Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 129.473(CFS) on Depth of flow = 1.164(Ft.), Average velocity = 12.260(Ft /s) im Channel flow top width = 13.147(Ft.) Flow Velocity = 12.26(Ft /s) Travel time = 3.36. min. Time of concentration = 19.05 min. Critical depth = 1.844(Ft.) Adding area flow to channel ;I . Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) :1 Rainfall intensity = 3.261(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.753 Subarea runoff = 29.499(CFS) for 17.500(Ac.) ;1 Total runoff = 134.317(CFS) Total area = 54.70(Ac.) Area averaged Fm value = 0.532(In /Hr) OM OR i 7 di R di + + ++ + ++ + ++ + + ++ ++ ++ + + + + + + + ++ + + + ++ + + + ++ + + ++ + + ++ + ++ + + + + + + + ++ + + + ++ + + + + + + + + � Process from Point /Station 1703.100 to Point /Station 1704.100 1 .)4\ we * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 1y. Upstream point elevation = 1745.00(Ft.) P Downstream point elevation = 1683.00(Ft.) "" Channel length thru subarea = 1560.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 1.500 �,. Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 152.610(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 5.000(Ft.) Flow(q) thru subarea = 152.610(CFS) Depth of flow = 1.223(Ft.), Average velocity = 18.253(Ft/s) is Channel flow top width = 8.670(Ft.) f.04 Flow Velocity = 18.25(Ft /s) Travel time = 1.42 min. is Time of concentration = 20.47 min. Critical depth = 2.406(Ft.) Al. Adding area flow to channel RESIDENTIAL(1 acre lot) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 56.00 Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 3.123(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.741 Subarea runoff = 27.203(CFS) for 14.900(Ac.) 60 Total runoff = 161.520(CFS) Total area = 69.60(Ac.) Area averaged Fm value = 0.544(In /Hr) PPM +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1703.100 to Point /Station 1704.100 !•'� * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 69.600(Ac.) Runoff from this stream = 161.520(CFS) Time of concentration = 20.47 min. Rainfall intensity = 3.123(In /Hr) ;I Area averaged loss rate (Fm) = 0.5442(In/Hr) Area averaged Pervious ratio (Ap) = 0.9572 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ (,� Process from Point /Station 1704.000 to Point /Station 1704.100 * * ** INITIAL AREA EVALUATION * * ** 1•(.0 RESIDENTIRL(1 acre lot) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 MR OR RI Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 56.00 Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In /Hr) Initial. subarea data: Initial area flow distance = 735.000(Ft.) Top (of initial area) elevation = 1705.000(Ft.) ons Bottom (of initial area) elevation = 1683.000(Ft.) y Difference in elevation = 22.000(Ft.) Slope = 0.02993 s( %)= 2.99 �,. TC = k(0.469) *[(length"3) /(elevation change)) Initial area time of concentration = 13.257 min. Rainfall intensity = 4.053(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.770 "" Subarea runoff = 8.109(CFS) Mr Total initial stream area = 2.600(Ac.) Pervious area fraction = 0.800 Initial area Fm value = 0.587(In /Hr) trill +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1704.000 to Point /Station 1704.100 Mr * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.600(Ac.) Runoff from this stream = 8.109(CFS) Time of concentration = 13.26 min. Rainfall intensity = 4.053(In /Hr) Area averaged loss rate (Fm) = 0.5872(In /Hr) few Area averaged Pervious ratio (Ap) = 0.8000 Summary of stream data: ma j Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) No 1 161.520 20.47 3.123 2 8.109 13.26 4.053 Qmax(1) = 1.000 * 1.000 * 161.520) + am 0.732 * 1.000 * 8.109) + = 167.453 1 Qmax(2) = IR 1.361 * 0.648 * 161.520) + 1.000 * 1.000 * 8.109) + = 150.439 ;I Total of 2 streams to confluence: Flow rates before confluence point: 161.520 8.109 Maximum flow rates at confluence using above data: 167.453 150.439 Area of streams before confluence: 69.600 2.600 MI Effective area values after confluence: 72.200 47.676 Results of confluence: Total flow rate = 167.453(CFS) VP MI Time of concentration = 20.470 min. Effective stream area after confluence = 72.200(Ac.) Study area average Pervious fraction(Ap) = 0.952 Study area average soil loss rate(Fm) = 0.546(In /Hr) Study area total (this main stream) = 72.20(Ac.) Pm (Ili • Process from Point /Station 1704.100 to Point /Station 1714.000 & * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 3,3 Upstream point elevation = 1683.00(Ft.) n o Downstream point elevation = 1668.00(Ft.) Channel length thru subarea = 630.00(Ft.) Channel base width = 5.000(Ft.) Is Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 171.280(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 171.280(CFS) PR Depth of flow = 1.501(Ft.)., Average velocity = 15.743(Ft/s) 1101 Channel flow top width = 9.502(Ft.) Flow Velocity = 15.74(Ft /s) •. Travel time = 0.67 min. Time of concentration = 21.14 min. itr Critical depth = 2.563(Ft.) Adding area flow to channel Pm RESIDENTIAL(1 acre lot) Decimal fraction soil group A = 0.000 im Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 um SCS curve number for soil(AMC 2) = 56.00 Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In /Hr) ovi Rainfall intensity = 3.063(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified O r rational method)(Q =KCIA) is C = 0.884 Subarea runoff = 3.488(CFS) for 3.300(Ac.) Total runoff = 170.941(CFS) Total area = 75.50(Ac.) AO Area averaged Fm value = 0.548(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1704.100 to Point /Station 1714.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 75.500(Ac.) Runoff from this stream = 170.941(CFS) Time of concentration = 21.14 min. Rainfall intensity = 3.063(In /Hr) Area averaged loss rate (Fm) = 0.5475(In /Hr) Area averaged Pervious ratio (Ap) = 0.9449 Program is now starting with Main Stream No. 2 0, 3 is • 1 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1705.000 to Point /Station 1706.000 \ * * ** INITIAL AREA EVALUATION * * ** � 1 Soil classification AP and SCS values input by user USER INPUT of soil data for subarea P` SCS curve number for soil(AMC 2) = 70.00 Pervious ' ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: Initial area flow distance = 955:000(Ft.) Top (of initial area) elevation = 2825.000(Ft.) fret Bottom (of initial area) elevation = 2480.000(Ft.) Difference in elevation = 345.000(Ft.) Slope = 0.36126 s(%)= 36 .13 TC = k(0.730) *[(length /(elevation change)] ^ 0.2 kr Initial area time of concentration = 13.932 min. Rainfall intensity = 3.934(In/Hr) for a 100.0 year storm Po Effective runoff coefficient used for area (Q =KCIA) is C = 0.778 • id Subarea runoff = 22.652(CFS) Total initial stream area = 7.400(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) IN +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 1. Process from Point /Station 1706.000 to Point /Station 1707.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** PP 2-Q Upstream point elevation = 2480.00(Ft.) be Downstream point elevation = 2040.00(Ft.) Channel length thru subarea = 1280.00(Ft.) r"' Channel base width = 5.000 (Ft. ) Scope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 p ,,, Estimated mean flow rate at midpoint of channel = 53.568(CFS) Manning's 'N' = 0.035 bm Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 53.568(CFS) Depth of flow = 0.579(Ft.), Average velocity = 15.037(Ft/s) Channel flow top width = 7.314(Ft.) Am Flow Velocity = 15.04(Ft /s) Travel time = 1.42 min. Time of concentration = 15.35 min. Critical depth = 1.281(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Rainfall intensity = 3.711(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.771 Subarea runoff = 56.310(CFS) for 20.200(Ac.) Total runoff = 78.962(CFS) Total area = 27.60(Ac.) Area averaged Fm value = 0.532(In /Hr) !A NiM MR Ai +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1707.000 to Point /Station 1708.000 ; ' 6-7 \ , * * ** IMPROVED CHANNEL TRAVEL TIME * * ** ----� it \23, Upstream point elevation = 2040.00(Ft.) Downstream point elevation = 1853.00(Ft.) 'lo Channel length thru subarea = 945.00(Ft.) im Channel base width = 5.000(Ft.) Scope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 120.302(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 120.302(CFS) MO Depth of flow = 1.060(Ft.), Average velocity = 15.935(Ft/s) Channel flow top width = 9.241(Ft.) Flow Velocity = 15.93(Ft /s) Travel time = 0.99 min. Time of concentration = 16.34 min. Critical depth = 2.000(Ft.) o" Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea w•. SCS curve -number for soil (AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Irr Rainfall intensity = 3.575(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.766 Subarea runoff = 75.746(CFS) for 28.900(Ac.) Total runoff = 154.708(CFS) Total area = 56.50(Ac.) Area averaged Fm value = 0.532(In /Hr) PPM Process from Point /Station 1708.000 to Point /Station 1713.000 O' * * ** IMPROVED CHANNEL TRAVEL TIME * * ** 4 Z Upstream point elevation = 1853.00(Ft.) , Downstream point elevation = 1694.00(Ft.) MO Channel length thru subarea = 2145.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 212.347(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 212.347(CFS) Depth of flow = 1.854(Ft.), Average velocity = 13.158(Ft /s) Channel flow top width = 12.414(Ft.) Flow Velocity = 13.16(Ft /s) Travel time = 2.72 min. Time of concentration = 19.06 min. AN Critical depth = 2.688(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea PP PR hi OR MO SCS curve number for soil(AMC 2) = 69.00 .R" Pervious ratio(Ap) = 0.9850 Max loss rate(Fm)= 0.540(In /Hr) Rainfall intensity = 3.260(In /Hr) for a 100.0 year storm ow Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.752 Subarea runoff = 87.035(CFS) for 42.100(Ac.) Total runoff = 241.743(CFS) Total area = 98.60(Ac.) Pe Area averaged Fm value = 0.536(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1708.000 to Point /Station 1713.000 el * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 98.600(Ac.) Runoff from this stream = 241.743(CFS) ww Time of concentration = 19.06 min. Rainfall intensity = 3.260(In /Hr) it Area averaged loss rate (Fm) = 0.5356(In /Hr) Area averaged Pervious ratio (Ap) = 0.9936 Pm kr +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + ++ ws Process from Point /Station 1710.000 to Point /Station 1711.000 G10 * * ** INITIAL AREA EVALUATION * * ** No X1,3 Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 W Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Initial subarea data: ON Initial area flow distance = 990.000(Ft.) P m Top (of initial area) elevation = 2520.000(Ft.) Bottom (of initial area) elevation = 2173.200(Ft.) Difference in elevation = 346.800(Ft.) Slope = 0.35030 s( %)= 35.03 TC = k(0.730) *[(length /(elevation change)1 Initial area time of concentration = 14.222 min. P" Rainfall intensity = 3.885(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.777 io Subarea runoff = 12.976(CFS) Total initial stream area = 4.300(Ac.) Pervious area fraction = 1.000 Initial area Fm value = 0.532(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1711.000 to Point /Station 1712.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** Upstream point elevation = 2173.20(Ft.) , Downstream point elevation = 1840.00(Ft.) Channel length thru subarea = 1120.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 P Estimated mean flow rate at midpoint of channel = 25.650(CFS) 40 Manning's 'N' = 0.035 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 25.650(CFS) Depth of flow = 0.385(Ft.), Average velocity = 10.811(Ft /s) MO Channel flow top width = 7.312(Ft.) Flow Velocity = 10.81(Ft /s) Travel time = 1.73 min. SO Time of concentration = 15.95 min. Critical depth = 0.789(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user SO USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 70.00 Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In /Hr) Me Rainfall intensity = 3.627(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified y rational method)(Q =KCIA) is C = 0.768 Subarea runoff = 22.398(CFS) for 8.400(Ac.) 40 Total runoff = 35.373(CFS) Total area = 12.70(Ac.) Area averaged Fm value = 0.532(In /Hr) 1. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1712.000 to Point /Station 1713.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** • 14.9 Upstream point elevation = 1840.00(Ft.) .._` Downstream point elevation = 1694.00(Ft.) - Channel length thru subarea = 1475.00(Ft.) Ms Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 kg Estimated mean flow rate at midpoint of channel = 56.124(CFS) Manning's 'N' = 0.035 O. Maximum depth of channel = 5.700(Ft.) Flow(q) thru subarea = 56.124(CFS) irr Depth of flow = 0.843(Ft.), Average velocity = 9.951(Ft /s) Channel flow top width = 8.374(Ft.) so Flow Velocity = 9.95(Ft /s) Travel time = 2.47 min. Time of concentration = 18.42 min. Critical depth = 1.313(Ft.) Adding area flow to channel Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 68.11 Pervious ratio(Ap) = 0.9730 Max loss rate(Fm)= 0.546(In /Hr) Rainfall intensity = 3.327(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.754 Subarea runoff = 33.856(CFS) for 14.900(Ac.) Total runoff = 69.229(CFS) Total area = 27.60(Ac.) Area averaged Fm value = 0.540(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Q I MR Process from Point /Station 1712.000 to Point /Station 1713.000 irr * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 27.600(Ac.) Oo Runoff from this stream = 69.229(CFS) Time of concentration = 18.42 min. vs Rainfall intensity = 3.327(In/Hr) Area averaged loss rate (Fm) = 0.5400(In /Hr) Area averaged Pervious ratio (Ap) = 0.9854 it Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) top iW 1 241.743 19.06 3.260 2 69.229 18.42 3.327 Qmax(1) = 1.000 * 1.000 * 241.743) + 0.976 * 1.000 * 69.229) + = 309.302 „' Qmax(2) = it 1.025 * 0.967 * 241.743) + 1.000 * 1.000 * 69.229) + = 308.651 Total of 2 streams to confluence: Mt Flow rates before confluence point: 241.743 69.229 Maximum flow rates at confluence using above data: 309.302 308.651 MI Area of streams before confluence: 98.600 27.600 Effective area values after confluence: is 126.200 122.900 Results of confluence: Total flow rate = 309.302(CFS) Time of concentration = 19.056 min. it Effective stream area after confluence = 126.200(Ac.) Study area average Pervious fraction(Ap) = 0.992 Study area average soil loss rate(Fm) = 0.537(In /Hr) Study area total (this main stream) = 126.20(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1713.000 to Point /Station 1714.000 * * ** IMPROVED CHANNEL TRAVEL TIME * * ** . Upstream point elevation = 1694.00(Ft.) Downstream point elevation = 1668.00(Ft.) Channel length thru subarea = 1070.00(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 325.600(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 325.600(CFS) PP PO • Ai Depth of flow = 2.103(Ft.), Average velocity = 18.984(Ft/s) Channel flow top width = 11.310(Ft.) Flow Velocity = 18.98(Ft /s) Travel time = 0.94 min. Time of concentration = 20.00 min. Critical depth = 3.594(Ft.) Adding area flow to channel RESIDENTIAL(1 acre lot) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 �.0 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 56.00 Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 3.167(In /Hr) for a 100.0 year storm i Effective runoff coefficient used for area,(total area with modified rational method) (Q =KCIA) is C = 0.851 Subarea runoff = 20.344 (CFS) for 13 .300 (Ac. ) Total runoff = 329.645(CFS) Total area = 139.50(Ac.) Area averaged Fm value = 0.541(In /Hr) it a�w +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ • Process from Point /Station 1713.000 to Point /Station 1714.000 w. * * ** CONFLUENCE OF MAIN STREAMS * * ** W The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 139.500(Ac.) Runoff from this stream = 329.645(CFS) Time of concentration = 20.00 min. Rainfall intensity = 3.167(In /Hr) Area averaged loss rate (Fm) = 0.5413(In /Hr) km Area averaged Pervious ratio (Ap) = 0.9735 Summary of stream data: • Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) is 1 170.941 21.14 3.063 2 329.645 20.00 3.167 Qmax(1) = 1.000 * 1.000 * 170.941) + 0.960 * 1.000 * 329.645) + = 487.561 Qmax(2) = 1.041 * 0.946 * 170.941) + 1.000 * 1.000 * 329.645) + = 498.024 Total of 2 main streams to confluence: 11 Flow rates before confluence point: 170.941 329.645 Maximum flow rates at confluence using above data: 487.561 498.024 Area of streams before confluence: 75.500 139.500 Effective area values after confluence: 11 opi tr U MR 215.000 210.923 a�. Results of confluence: Total flow rate = 498.024(CFS) Time of concentration = 19.996 min. Effective stream area after confluence = 210.923(Ac.) Study area average Pervious fraction(Ap) = 0.963 i111 Study area average soil loss rate(Fm) = 0.544(In /Hr) Study area total = 215.00(Ac.) +1t +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1714.000 to Point /Station 1714.100 we * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 1668.00(Ft.) Downstream point /station elevation = 1657.00(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 i No. of pipes = 1 Required pipe flow = 498.024(CFS) Nearest computed pipe diameter = 57.00(In.) Calculated individual pipe flow = 498.024(CFS) it Normal flow depth in pipe = 43.69(In.) Flow top width inside pipe = 48.23(In.) Critical depth could not be calculated. Pipe flow velocity = 34.16(Ft /s) id Travel time through pipe = 0.10 min. Time of concentration (TC) = 20.09 min. • Ana c: +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1714.000 to Point /Station 1714.100 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 - Stream flow area = 210.923(Ac.) Runoff from this stream = 498.024(CFS) Time of concentration = 20.09 min. Rainfall intensity = 3.158(In /Hr) IMF Area averaged loss rate (Fm) = 0.5435(In/Hr) Area averaged Pervious ratio (Ap) = 0.9635 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1715.000 to Point /Station 1716.000 * * ** INITIAL AREA EVALUATION * * ** . RESIDENTIAL(1 acre lot) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 56.00 Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In/Hr) Initial subarea data: Initial area flow distance = 925.000(Ft.) Top (of initial area) elevation = 1723.000(Ft.) PM id OR MR Bottom (of initial area) elevation = 1697.000(Ft.) Difference in elevation = 26.000(Ft.) Slope = 0.02811 s( %)= 2.81 OR TC = k (0.469) * [ (length'3) / (elevation change)) "0.2 Initial area time of concentration = 14.718 min. Rainfall intensity = 3.806(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q =KCIA) is C = 0.761 Subarea runoff = 11.878(CFS) it Total initial stream area = 4.100(Ac.) Pervious area fraction = 0.800 Initial area Fm value = 0.587(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1716.000 to Point /Station 1714.100 &I(09 Ms * * ** IMPROVED CHANNEL TRAVEL TIME * * ** ' -- ow w. Upstream point elevation = 1697.00(Ft.) Downstream point elevation = 1657.00(Ft.) ma Channel length thru subarea = 910.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 23.177(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 10.000(Ft.) Flow(q) thru subarea = 23.177(CFS) Depth of flow = 0.983(Ft.), Average velocity = 12.004(Ft /s) -.'.' Channel flow top width = 3.930(Ft.) Flow Velocity = 12.00(Ft /s) Travel time = 1.26 min. Time of concentration = 15.98 min. Critical depth = 1.531(Ft.) Adding area flow to channel RESIDENTIAL(1 acre lot) pot Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ba . Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 56.00 ym Pervious ratio(Ap) = 0.8000 Max loss rate(Fm)= 0.587(In /Hr) Rainfall intensity = 3.623(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method)(Q =KCIA) is C = 0.754 Subarea runoff = 20.632(CFS) for 7.800(Ac.) Total runoff = 32.510(CFS) Total area = 11.90(Ac.) Area averaged Fm value = 0.587(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1716.000 to Point /Station 1714.100 * * ** CONFLUENCE OF MINOR STREAMS * * ** Of Along Main Stream number: 1 in normal stream number 2 Stream flow area = 11.900(Ac.) Runoff from this stream = 32.510(CFS) Time of concentration = 15.98 min. #m !A! • Rainfall intensity = 3.623(In /Hr) Area averaged loss rate (Fm) = 0.5872(In /Hr) Area averaged Pervious ratio (Ap) = 0.8000 • Summary of stream data: Stream Flow rate . • TC Rainfall Intensity No. (CFS) (min) (In /Hr) VFW 1 498.024 20.09 3.158 11w1 2 32.510 15.98 3.623 Qmax(1) = 1.000 * 1.000 * 498.024) + 0.847 * 1.000 * 32.510) + = 525.555 Qmax(2) = iu 1.178 * 0.795 * 498.024) + 1.000 * 1.000 * 32.510) + = 499.081 Total of 2 streams to confluence: - Flow rates before confluence point: 498.024 32.510 rir Maximum flow rates at confluence using above data: 525.555 499.081 Area of streams before confluence: 210.923 11.900 Effective area values after confluence: 222.823 179.665 Results of confluence: Total flow rate = 525.555(CFS) Time of concentration = 20.093 min. Effective stream area after confluence = 222.823(Ac.) Study area average Pervious fraction(Ap) = 0.955 Study area average soil loss rate(Fm) = 0.546(In /Hr) Study area total (this main stream) = 222.82(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1714.100 to Point /Station 1714.100 * * ** SUBAREA FLOW ADDITION * * ** A COMMERCIAL subarea type Decimal fraction soil group A = 0.330 Decimal fraction soil. group B = 0.670 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 SCS curve number for soil(AMC 2) = 48.08 Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.083(In /Hr) . Time of concentration = 20.09 min. Rainfall intensity = 3.158(In /Hr) for a 100.0 year storm Effective runoff coefficient used for area,(total area with modified rational method) (Q =KCIA) is C = 0.885 Subarea runoff = 10.407(CFS) for 4.400(Ac.) Total runoff = 535.962(CFS) Total area = 227.22(Ac.) • Area averaged Fm value = 0.537(In /Hr) End of computations, total study area = 231.30 (Ac.) The following figures may be used for a unit hydrograph study of the same area. id WO Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. *'I Area averaged pervious area fraction(Ap) = 0.939 Area averaged SCS curve number = 66.5 • OP 1 411 1 7z Il wA 0 10 kii *s" APPENDIX "F ": BOYLE ENGINEERING AES HYDROLOGY CALCULATIONS Pin iw III Pi wr . -- - RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983 -93 Advanced Engineering Software (aes) Ver. 2.2A Release Date: 10/18/93 License ID 1202 Analysis prepared by: all s.i FILE NAME: ss02.DAT TIME/DATE OF STUDY: 11:17 6/22/1994 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: — *TIME -OF- CONCENTRATION MODEL* — USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = .95 owl *USER- DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE = .6000 USER SPECIFIED 1 -HOUR INTENSITY(INCH /HOUR) = 1.6380 *ANTECEDENT MOISTURE CONDITION (AMC II) ASSUMED FOR RATIONAL METHOD* ihri UNIT - HYDROGRAPH DATA: WATERSHED LAG = .80 * Tc VALLEY(DEVELOPED) S -GRAPH USED. PRECIPITATION DATA ENTERED ON SUBAREA BASIS. 3 SIERRA MADRE DEPTH -AREA FACTORS USED. • * ANTECEDENT MOISTURE CONDITION (AMC III) ASSUMED FOR UNIT HYDROGRAPH METHOD r 3 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 2.1 » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 531.40 irr • um up ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = - 180.21 Tc = K *((LENGTH** 3.00) /(ELEVATION CHANGE)]** .20 f SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.876 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.836 imi SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE . GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) di NATURAL FAIR COVER "MEADOWS" B 2.89 .55 1.00 70 9.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 11.16 TOTAL AREA(ACRES) = 2.89 PEAK FLOW RATE(CFS) = 11.16 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .65; 30M = 1.33; 1HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 • "' ** * * **** * ********** * wJ.***************** ********** * **********.**..***** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -15.56 CHANNEL LENGTH THRU SUBAREA(FEET) = 577.80 FIR CHANNEL SLOPE = .2000 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 11.16 FLOW VELOCITY(FEET /SEC) = 6.16 FLOW DEPTH(FEET) = .09 TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 11.44 FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 11.44 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.427 3 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 7.26 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 Lis Ilrr r 1 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 7.26 SUBAREA RUNOFF(CFS) = 25.34 EFFECTIVE AREA(ACRES) = 10.16 AREA - AVERAGED Fm(INCH /HR) = .55 ON AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 10.16 PEAK FLOW RATE(CFS) = 35.44 1w, SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .63; 30M = 1.30; 1HR = 1.71; 3HR = 3.50; 6HR = 5.50; 24HR =15.00 as FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< • t UPSTREAM NODE ELEVATION = 100.00 i DOWNSTREAM NODE ELEVATION = 30.92 CHANNEL LENGTH THRU SUBAREA(FEET) = 345.40 In CHANNEL SLOPE = .2000 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR .= .022 MAXIMUM DEPTH(FEET) = 30.00 SR CHANNEL FLOW THRU SUBAREA(CFS) = 35.44 FLOW VELOCITY(FEET /SEC) = 9.41 FLOW DEPTH(FEET) = .18 TRAVEL TIME(MIN.) = .61 Tc(MIN.) = 12.05 a* FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 8.1 if di » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 12.05 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.291 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 11.67 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 11.67 SUBAREA RUNOFF(CFS) = 39.30 EFFECTIVE AREA(ACRES) = 21.83 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 21.83 PEAK FLOW RATE(CFS) = 73.50 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .62; 30M = 1.26; 1HR = 1.66; 3HR = 3.46; 6HR = 5.50; 24HR =15.00 • le FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 5.1 ,j » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< at UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 129.12 e CHANNEL LENGTH THRU SUBAREA(FEET) = 729.00 • CHANNEL SLOPE _ .3143 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 73.50 FLOW VELOCITY(FEET /SEC) = 14.36 FLOW DEPTH(FEET) = .24 goo TRAVEL TIME(MIN.) = .85 Tc(MIN.) = 12.90 ton FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 8.1 SO » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 12.90 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.120 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 19.05 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00' SUBAREA AREA(ACRES) = 19.05 SUBAREA RUNOFF(CFS) = 61.22 EFFECTIVE AREA(ACRES) = 40.88 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 40.88 PEAK FLOW RATE(CFS) = 131.35 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =15.00 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 202.61 PO ,.. , ... ., -- .• °wrr °--•-two. F le CHANNEL LENGTH THRU SUBAREA(FEET) = 1059.20 CHANNEL SLOPE = .2857 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 • CHANNEL FLOW THRU SUBAREA(CFS) = 131.35 FLOW VELOCITY(FEET /SEC) = 17.05 FLOW DEPTH(FEET) = .35 TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 13.93 di W FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 13.93 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.934 SUBAREA LOSS RATE DATA(AMC II): ft . DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 36.18 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .55 to SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 36.18 SUBAREA RUNOFF(CFS) = 110.16 EFFECTIVE AREA(ACRES) = 77.06 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 77.06 PEAK FLOW RATE(CFS) = 234.66 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =14.80 **** **** * ******* ** ************* ***** *** FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -97.34 CHANNEL LENGTH THRU SUBAREA(FEET) = 1794.00 CHANNEL SLOPE _ .1100 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 234.66 FLOW VELOCITY(FEET /SEC) = 15.44 FLOW DEPTH(FEET) = .65 TRAVEL TIME(MIN.) = 1.94 Tc(MIN.) = 15.87 OPP 1 ; ***.iren,r.4****leirin,r1r*********Int-InttnV***********Inletrerlrlrirlr*********ir*****Irle*****-Irlr** FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 8.1 • » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 15.87 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.638 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS - LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 173.51 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 173.51 SUBAREA RUNOFF(CFS) = 482.23 EFFECTIVE AREA(ACRES) = 250.57 AREA - AVERAGED Fm(INCH /HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 250.57 PEAK FLOW RATE(CFS) = 696.39 ape SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): tie 5M = .61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =13.97 FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 275.69 IP CHANNEL LENGTH THRU SUBAREA(FEET) = 3219.30 CHANNEL SLOPE = .1167 CHANNEL BASE(FEET) = 20.00 "Z' FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 696.39 FLOW VELOCITY(FEET /SEC) = 22.48 FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 2.39 Tc(MIN.) = 18.26 FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 18.26 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.345 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS oat 0 lid • 4111 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 2.01 .81 1.00 51 m"' NATURAL FAIR COVER "MEADOWS" B 178.48 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 4111 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 180.48 SUBAREA RUNOFF(CFS) = 453.49 EFFECTIVE AREA(ACRES) = 431.05 AREA - AVERAGED Fm(INCH /HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 431.05 PEAK FLOW RATE(CFS) = 1083.73 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .60; 30M = 1.23; 1 HR = 1.62; 3HR = 3.39; 6HR = 5.38; 24HR =12.97 • los FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< OPP UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -11.69 CHANNEL LENGTH THRU SUBAREA(FEET) = 2030.80 Ile 44 , CHANNEL SLOPE = .0550 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1083.73 FLOW VELOCITY(FEET /SEC) = 19.82 FLOW DEPTH(FEET) = 1.86 TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 19.96 !A! *** ****** ******** * ****** * ***i****► ***N******* *** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 19.96 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.170 • SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 34.90 .81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 101.49 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .62 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 . a �.. SUBAREA AREA(ACRES) = 136.40 SUBAREA RUNOFF(CFS) = 313.52 EFFECTIVE AREA(ACRES) = 567.45 AREA - AVERAGED Fm(INCH /HR) = .57 AREA - AVERAGED Fp(INCH /HR) = .57 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 567.45 PEAK FLOW RATE(CFS) = 1329.48 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .58; 30M = 1.20; 1HR = 1.58; 3HR = 3.19; 6HR = 4.98; 24HR =12.02 Mg FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 5.1 011 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< ill » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 50.09 um CHANNEL LENGTH THRU SUBAREA(FEET) = 1296.30 CHANNEL SLOPE = .0385 ow CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1329.48 • FLOW VELOCITY(FEET /SEC) = 18.53 FLOW DEPTH(FEET) = 2.28 TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) =. 21.13 ww *********************************************** .******,.***,. * **************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 8.1 0 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 21.13 *100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.064 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 7.26 .81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 99.72 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .57 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 106.98 SUBAREA RUNOFF(CFS) = 240.34 EFFECTIVE AREA(ACRES) = 674.43 AREA - AVERAGED Fm(INCH /HR) = .57 AREA - AVERAGED Fp(1NCH/HR) = .57 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 674.43 PEAK FLOW RATE(CFS) = 1515.60 SUBAREA AREA-AVERAGED RAINFALL DEPTH(INCH): 5M = .59; 30M = 1.20; 1HR = 1.59; 3HR = 3.19; 6HR = 4.97; 24HR =11.80 ofs er FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 7.1 » » >PEAK FLOW RATE ESTIMATOR CHANGED TO UNIT - HYDROGRAPH METHOD « «< » » >USING TIME -OF- CONCENTRATION OF LONGEST FLOWPATH««< UNIT - HYDROGRAPH DATA: 141 RAINFALL(INCH): 5M= .60;30M= 1.23;1H= 1.62;3H= 3.34;6H= 5.28;24H =13.07 S- GRAPH: VALLEY(DEV.)= 100.0 %;VALLEY(UNDEV.) /DESERT= .0% MOUNTAIN= .0 %;FOOTHILL= .0% �.. Tc(HR) = .35; LAG(HR) = .28; Fm(INCH /HR) = .27; Ybar = .14 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. ei UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 674.43 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 210.00 = 11583.20 FEET. TIME OF PEAK FLOW(HR) = 16.33 RUNOFF VOLUME(AF) = 636.43 mil UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) = 1803.20 RATIONAL METHOD PEAK FLOW RATE(CFS) = 1515.60 (UPSTREAM NODE PEAK FLOW RATE(CFS) = 1329.48) PEAK FLOW RATE(CFS) USED = 1803.20 * ****************** ************************ ******* FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTI M E THRU SUBAREA « «< 0 UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 50.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 1587.90 CHANNEL SLOPE = .0313 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 Pm MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 i t CHANNEL FLOW THRU SUBAREA(CFS) = 1803.20 FLOW VELOCITY(FEET /SEC) = 18.77 FLOW DEPTH(FEET) = 2.82 TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 22.54 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 22.54 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.947 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS OOP se • 11!! LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN le NATURAL FAIR COVER "MEADOWS" A 13.03 .81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 124.39 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .57 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 UNIT - HYDROGRAPH DATA: le RAINFALL(INCH): 5M= .60;30M= 1.22;1H= 1.62;3H= 3.32;6H= 5.22;24H =12.83 irgAt S- GRAPH: VALLEY (DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .38; LAG(HR) = .30; Fm(INCH /HR) = .32; Ybar = .17 - USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. #1,-A UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 811.85 aii LONGEST FLOWPATH FROM NODE 201.00 TO NODE 211.00 = 13171.10 FEET. TIME OF PEAK FLOW(HR) = 16.33 RUNOFF VOLUME(AF) = 636.28 TOTAL AREA(ACRES) = 811.85 PEAK FLOW RATE(CFS) = 1803.20 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE SUBAREA AREA-AVERAGED RAINFALL DEPTH(INCH): 5M = .59; 30M = 1.21; 1 HR = 1.59; 3HR = 3.19; 6HR = 4.95; 24HR =11.66 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 5.1 Irw » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 73.72 CHANNEL LENGTH THRU SUBAREA(FEET) = 1118.10 CHANNEL SLOPE = .0235 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1803.20 FLOW VELOCITY(FEET /SEC) = 16.92 FLOW DEPTH(FEET) = 3.03 TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 23.64 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 23.64 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.864 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 41111 0 LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 9.06 .81 1.00 51 NATURAL FAIR COVER " MEADOWS" B 146.39 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .57 OR S UBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= .60;30M= 1.22;1H= 1.61;3H= 3.30;6H= 5.17;24H =12.61 S- GRAPH: VALLEY( DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .39; LAG(HR) = .32; Fm(INCH /HR) = .32; Ybar = .17 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 967.31 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 212.00 = 14289.20 FEET. TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 736.52 TOTAL AREA(ACRES) = 967.31 PEAK FLOW RATE(CFS) = 1957.93 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .59; 30M = 1.22; 1HR = 1.61; 3HR = 3.18; 6HR = 4.89; 24HR =11.42 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 10 e » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< 0 FLOW PROCESS FROM NODE 331.00 TO NODE 331.00 IS CODE = 15.1 » » >DEFINE MEMORY BANK # 2 « «< PEAK FLOWRATE TABLE FILE NAME: 0331.pft MEMORY BANK # 2 DEFINED AS FOLLOWS: PEAK FLOW RATE(CFS) = 2707.28 Tc(MIN) = 24.69 AREA - AVERAGED Fm(INCH/HR) _ .44 Ybar = .29 TOTAL AREA(ACRES) = 1289.07 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 331.00 = 16415.40 FEET. FLOW PROCESS FROM NODE 331.00 TO NODE 331.00 IS CODE = 14 » »> MEMORY BANK # 2 COPIED ONTO MAIN - STREAM MEMORY « «< MAIN - STREAM MEMORY DEFINED AS FOLLOWS: sir► PEAK FLOW RATE(CFS) = 2707.28 Tc(MIN) = 24.69 AREA- AVERAGED Fm(INCH/HR) = .44 Ybar = .29 TOTAL AREA(ACRES) = 1289.07 40* LONGEST FLOWPATH FROM NODE 301.00 TO NODE 331.00 = 16415.40 FEET. FLOW PROCESS FROM NODE 331.00 TO NODE 212.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » »>TRAVELTIME THRU SUBAREA « «< offs UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 60.22 CHANNEL LENGTH THRU SUBAREA(FEET) = 1326.00 „„# CHANNEL SLOPE = .0300 CHANNEL BASE(FEET) = 10.00 "Z' FACTOR = .000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2707.28 FLOW VELOCITY(FEET /SEC) = 35.78 FLOW DEPTH(FEET) = 7.57 TRAVEL TIME(MIN.) = .62 Tc(MIN.) = 25.31 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 11 » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN - STREAM MEMORY « «< ** MAIN STREAM CONFLUENCE DATA ** PEAK FLOW RATE(CFS) = 2707.28 Tc(MIN) = 25.31 s'"' AREA - AVERAGED Fm(INCH /HR) = .44 Ybar = .29 TOTAL AREA(ACRES) = 1289.07 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 212.00 = 17741.40 FEET. jy - MEMORY BANK # 1 CONFLUENCE DATA ** PEAK FLOW RATE(CFS) = 1957.93 Tc(MIN) = 23.64 AREA - AVERAGED Fm(INCH /HR) = .32 Ybar = .17 TOTAL AREA(ACRES) = 967.31 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 212.00 = 14289.20 FEET. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= .58;30M= 1.19;1H= 1.57;3H= 3.20;6H= 5.00;24H =12.11 S- GRAPH: VALLEY (DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .42; LAG(HR) = .34; Fm(INCH /HR) = .37; Ybar = .22 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. UNIT- INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 2256.37 01 IN LONGEST FLOWPATH FROM NODE 301.00 TO NODE 212.00 = 17741.40 FEET. TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 1776.83 PEAK FLOW RATE(CFS) = 4682.63 IWI +111 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< lot » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 we. DOWNSTREAM NODE ELEVATION = 35.91 CHANNEL LENGTH THRU SUBAREA(FEET) = 2047.50 CHANNEL SLOPE = .0313 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.500 • MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4682.63 FLOW VELOCITY(FEET /SEC) = 23.89 FLOW DEPTH(FEET) = 4.42 fir TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 26.74 ************.***************.**************** ************ ********* * * * ******* FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 8.1 on ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 26.74 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 2.660 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" A 71.03 .81 1.00 51 NATURAL FAIR COVER "MEADOWS" B 160.51 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .63 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= .58;30M= 1.20;1H= 1.58;3H= 3.19;6H= 4.99;24H =12.03 S- GRAPH: VALLEY (DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% . MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .45; LAG(HR) = .36; Fm(INCH /HR) = .39; Ybar = .24 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 2487.91 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 213.00 = 19788.90 FEET. TIME OF PEAK FLOW(HR) = 16.42 RUNOFF VOLUME(AF) = 1824.13 TOTAL AREA(ACRES) = 2487.91 PEAK FLOW RATE(CFS) = 4682.63 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE �#t is 40� SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .59; 30M = 1.22; 1HR = 1.61; 3HR = 3.17; 6HR = 4.88; 24HR =11.31 ********* * * ****** *********** FLOW PROCESS FROM NODE 213.00 TO NODE 214.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< */ » » >TRAVELTIME THRU SUBAREA « «< 11 UPSTREAM NODE ELEVATION = 100.00 .. DOWNSTREAM NODE ELEVATION = 44.49 CHANNEL LENGTH THRU SUBAREA(FEET) = 2220.30 CHANNEL SLOPE = .0250 r CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 5.500 MANNING'S FACTOR = .022 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4682.63 FLOW VELOCITY(FEET /SEC) = 21.98 FLOW DEPTH(FEET) = 4.67 TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 28.42 FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 10 » »>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< at FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 2.1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW-LENGTH(FEET) = 872.50 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = - 249.00 0' Tc = K *[(LENGTH""" 3.00) /(ELEVATION CHANGE)]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.726 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.153 SUBAREA Tc AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "MEADOWS" B 11.37 .55 1.00 70 12.73 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 36.87 oat OM rr ''.' TOTAL AREA(ACRES) = 11.37 PEAK FLOW RATE(CFS) = 36.87 e SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): +► 5M = .65; 30M = 1.33; 1 HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 5.1 +ag » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< ,.. UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -34.22 CHANNEL LENGTH THRU SUBAREA(FEET) = 502.70 „a, CHANNEL SLOPE = .2670 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 36.87 VP FLOW VELOCITY(FEET /SEC) = 13.57 FLOW DEPTH(FEET) = 1.04 TRAVEL TIME(MIN.) = .62 Tc(MIN.) = 13.34 w FLOW PROCESS FROM NODE 217.00 TO NODE 217.00 IS CODE = 8.1 OP » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 13.34 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.037 SUBAREA LOSS RATE DATA(AMC II): W " ' DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 7.55 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 7.55 SUBAREA RUNOFF(CFS) = 23.68 EFFECTIVE AREA(ACRES) = 18.91 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 18.91 PEAK FLOW RATE(CFS) = 59.35 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .65; 30M = 1.33; 1HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 5.1 VP I�r . ....................... .... mm • » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< am UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 414.29 Ali CHANNEL LENGTH THRU SUBAREA(FEET) = 940.20 mom CHANNEL SLOPE _ .5470 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 **r CHANNEL FLOW THRU SUBAREA(CFS) = 59.35 FLOW VELOCITY(FEETISEC) = 20.05 FLOW DEPTH(FEET) = 1.09 TRAVEL TIME(MIN.) = .78 Tc(MIN.) = 14.13 ,► FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 8.1 fie » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 14.13 tm * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.901 SUBAREA LOSS RATE DATA(AMC II): ito Jl DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 15.93 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 15.93 SUBAREA RUNOFF(CFS) = 48.05 EFFECTIVE AREA(ACRES) = 34.85 AREA - AVERAGED Fm(INCH /HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 34.85 PEAK FLOW RATE(CFS) = 105.10 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .65; 30M = 1.33; 1HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 FLOW PROCESS FROM NODE 218.00 TO NODE 219.00 IS CODE = 5.1 • » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< ,p UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 133.45 CHANNEL LENGTH THRU SUBAREA(FEET) = 1066.00 CHANNEL SLOPE = .2190 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 r i�r 4 111! CHANNEL FLOW THRU SUBAREA(CFS) = 105.10 id FLOW VELOCITY(FEET /SEC) = 16.32 FLOW DEPTH(FEET) = 1.61 TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 15.21 Ant tri +0, FLOW PROCESS FROM NODE 219.00 TO NODE 219.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< mot MAINLINE Tc(MIN) = 15.21 ea * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.731 SUBAREA LOSS RATE DATA(AMC 11): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN ult NATURAL FAIR COVER „ . 4 "MEADOWS" B 42.93. .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 ion SUBAREA AREA(ACRES) = 42.93 SUBAREA RUNOFF(CFS) = 122.91 EFFECTIVE AREA(ACRES) = 77.77 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 77.77 PEAK FLOW RATE(CFS) = 222.68 di SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .65; 30M = 1.33; 1HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 f1r FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -25.43 CHANNEL LENGTH THRU SUBAREA(FEET) = 1063.00 CHANNEL SLOPE = .1180 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 222.68 FLOW VELOCITY(FEET /SEC) = 15.66 FLOW DEPTH(FEET) = 2.39 TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 16.35 FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 9 'f fiR MAINLINE Tc(MIN) = 16.35 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.574 SUBAREA LOSS RATE DATA(AMC II): - DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 26.83 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 • SUBAREA AREA(ACRES) = 26.83 SUBAREA RUNOFF(CFS) = 73.04 EFFECTIVE AREA(ACRES) = 104.61 AREA - AVERAGED Fm(INCH /HR) = .55 toir AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 104.61 PEAK FLOW RATE(CFS) = 284.71 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .64; 30M = 1.31; 1HR = 1.72; 3HR = 3.51; 6HR = 5.50; 24HR =14.95 eg FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 5.1 tor » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 at DOWNSTREAM NODE ELEVATION = - 214.19 CHANNEL LENGTH THRU SUBAREA(FEET) = 2166.80 CHANNEL SLOPE = .1450 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 284.71 bit FLOW VELOCLTY(FEET /SEC) = 17.93 FLOW DEPTH(FEET) = 2.52 TRAVEL TIME(MIN.) = 2.01 Tc(MIN.) = 18.36 rof FLOW PROCESS FROM NODE 221.00 TO NODE 221.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 18.36 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.333 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 167.73 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 III 41 ! SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 167.73 SUBAREA RUNOFF(CFS) = 420.16 EFFECTIVE AREA(ACRES) = 272.33 AREA - AVERAGED Fm(INCH /HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 r1Y TOTAL AREA(ACRES) = 272.33 PEAK FLOW RATE(CFS) = 682.21 '"'r SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .63; 30M = 1.30; 1 HR = 1.71; 3HR = 3.50; 6HR = 5.50; 24HR =14.04 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » »>TRAVELTIME THRU SUBAREA« «< tot UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 217.41 .. CHANNEL LENGTH THRU SUBAREA(FEET) = 1983.80 CHANNEL SLOPE = .1600 CHANNEL BASE(FEET) = .00 "Z' FACTOR = 2.500 sr, MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 682.21 FLOW VELOCITY(FEET /SEC) = 23.19 FLOW DEPTH(FEET) = 3.43 TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 19.79 *****************.*************************** ** ******** *************** * ***** FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 8.1 IL » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 19.79 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.187 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN 1 NATURAL FAIR COVER "MEADOWS" B 50.62 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 50.62 SUBAREA RUNOFF(CFS) = 120.14 EFFECTIVE AREA(ACRES) = 322.95 AREA- AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 322.95 PEAK FLOW RATE(CFS) = 766.49 SUBAREA AREA-AVERAGED RAINFALL DEPTH(INCH): 5M = .61; 30M = 1.25; 1HR = 1.65; 3HR = 3.45; 6HR = 5.50; 24HR =13.00 rit lam �1! FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = -66.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 1773.40 W CHANNEL SLOPE = .0940 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 r MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 766.49 FLOW VELOCITY(FEET /SEC) = 19.53 FLOW DEPTH(FEET) = 3.96 - TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 21.30 FLOW PROCESS FROM NODE 223.00 TO NODE 223.00 IS CODE = 8.1 NIL » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 21.30 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.049 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 36.70 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS.AREA FRACTION, Ap = 1.00 tit SUBAREA AREA(ACRES) = 36.70 SUBAREA RUNOFF(CFS) = 82.55 EFFECTIVE AREA(ACRES) = 359.66 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 at TOTAL AREA(ACRES) = 359.66 PEAK FLOW RATE(CFS) = 808.96 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .61; 30M = 1.25; 1 HR = 1.65; 3HR = 3.39; 6HR = 5.35; 24HR =11.89 ******* ** ******** * ****** ************ ** FLOW PROCESS FROM NODE 223.00 TO NODE 224.00 IS CODE = 5.1 3 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 24.69 JY. CHANNEL LENGTH THRU SUBAREA(FEET) = 537.90 CHANNEL SLOPE = .1400 CHANNEL BASE(FEET) = 10.00 "Z' FACTOR = .000 MANNING'S FACTOR = .014 MAXIMUM DEPTH(FEET) = 30.00 di CHANNEL FLOW THRU SUBAREA(CFS) = 808.96 FLOW VELOCITY(FEET /SEC) = 46.84 FLOW DEPTH(FEET) = 1.73 TRAVEL TIME(MIN.) = .19 Tc(MIN.) = 21.49 FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 wo ,,,, CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.49 RAINFALL INTENSITY(INCH /HR) = 3.03 AREA - AVERAGED Fm(INCH /HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .55 AREA- AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 359.66 TIM TOTAL STREAM AREA(ACRES) = 359.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 808.96 ow **** * * ** ***** ************** ********** * ****** FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 2.1 owo iYr1 » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< »USE TIME -OF- CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« INITIAL SUBAREA FLOW - LENGTH(FEET) = 884.00 ELEVATION DATA UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = - 214.70 Tc = K *[(LENGTH*"' 3.00) /(ELEVATION CHANGE)] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.095 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 4.083 SUBAREA Tc AND LOSS RATE DATA(AMC 11): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN (MIN.) NATURAL FAIR COVER "MEADOWS" B 6.23 .55 1.00 70 13.09 3 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 19.82 3 TOTAL AREA(ACRES) = 6.23 PEAK FLOW RATE(CFS) = 19.82 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): r 5M = .65; 30M = 1.33; 1 HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =15.00 di ,nm,k,..Ovat e**** **Ink*****i *****..,.£ k************** ** * ***************Ine**** FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 5.1 itR » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA « «< gul UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 25.06 CHANNEL LENGTH THRU SUBAREA(FEET) = 749.40 CHANNEL SLOPE _ .1000 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 19.82 FLOW VELOCITY(FEET /SEC) = 8.01 FLOW DEPTH(FEET) = .99 TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 14.65 ***************** ***** *** * ***** *****1.F*ee *** *** A k ************ * * **** *** FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 14.65 id * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.816 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER • • "MEADOWS" B 12.42 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREAAREA(ACRES) = 12.42 SUBAREA RUNOFF(CFS) = 36.50 EFFECTIVE AREA(ACRES) = 18.65 AREA- AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 18.65 PEAK FLOW RATE(CFS) = 54.83 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .65; 30M = 1.33; 1HR = 1.75; 3HR = 3.53; 6HR = 5.50; 24HR =13.69 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 5.1 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< 40 0 UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 300.76 CHANNEL LENGTH THRU SUBAREA(FEET) = 1001.90 CHANNEL SLOPE _ .4000 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 54.83 FLOW VELOCITY(FEET /SEC) = 17.35 FLOW DEPTH(FEET) = 1.12 TRAVEL TIME(MIN.) = .96 Tc(MIN.) = 15.62 No FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< MAINLINE Tc(MIN) = 15.62 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.673 to„ SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 22.39 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 oft SUBAREA AREA(ACRES) = 22.39 SUBAREA RUNOFF(CFS) = 62.93 EFFECTIVE AREA(ACRES) = 41.04 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 41.04 PEAK FLOW RATE(CFS) = 115.35 tam SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): '^ 5M = .64; 30M = 1.32; 1 HR = 1.74; 3HR = 3.52; 6HR = 5.50; 24HR =13.00 irr No *********« rint** .. * ***** .Y,,... tr *** - ********** *...�a.**.. InV******Int ► r• FLOW PROCESS FROM NODE 228.00 TO NODE 229.00 IS CODE = 5.1 I » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 8.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 690.20 CHANNEL SLOPE _ .1330 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 115.35 FLOW VELOCITY(FEET /SEC) = 13.83 FLOW DEPTH(FEET) = 1.83 TRAVEL TIME(MIN.) = .83 Tc(MIN.) = 16.45 NM FLOW PROCESS FROM NODE 229.00 TO NODE 229.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 16.45 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.561 III SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER a "MEADOWS" B 29.31 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 es SUBAREA AREA(ACRES) = 29.31 SUBAREA RUNOFF(CFS) = 79.43 EFFECTIVE AREA(ACRES) = 70.35 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 70.35 PEAK FLOW RATE(CFS) = 190.63 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .64; 30M = 1.31; 1 HR = 1.73; 3HR = 3.52; 6HR = 5.50; 24HR =13.02 FLOW PROCESS FROM NODE 229.00 TO NODE 230.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 137.88 CHANNEL LENGTH THRU SUBAREA(FEET) = 1091.20 CHANNEL SLOPE = .2180 • CHANNEL BASE(FEET) = .00 "Z' FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 190.63 FLOW VELOCITY(FEET /SEC) = 18.89 FLOW DEPTH(FEET) = 2.01 TRAVEL TIME(MIN.) = .96 Tc(MIN.) = 17.41 o * ***** ******** **** ** ****** ***** ****** ********** ** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 8.1 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 1 MAINLINE Tc(MIN) = 17.41 * 100 YEAR RAINFALL INTENS!TY(INCH /HR) = 3.441 ON u :. 1 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN NATURAL FAIR COVER "MEADOWS" B 21.89 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .55 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 21.89 SUBAREA RUNOFF(CFS) = 56.96 EFFECTIVE AREA(ACRES) = 92.24 AREA - AVERAGED Fm(INCH /HR) = .55 aMe AREA- AVERAGED Fp(INCH /HR) = .55 AREA- AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 92.24 PEAK FLOW RATE(CFS) = 240.02 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .62; 30M = 1.26; 1HR = 1.66; 3HR = 3.46; 6HR = 5.50; 24HR =13.00 *,.A...,..* ** ** * ►,. ** ,,...t,**** ********* * **** *.*.H.,.,,******-**....*,t FLOW PROCESS FROM NODE 230.00 TO NODE 231.00 IS CODE = 5.1 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< 1H' » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 152.07 CHANNEL LENGTH THRU SUBAREA(FEET) = 2211.10 CHANNEL SLOPE = .1140 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.500 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 240.02 FLOW VELOCITY(FEET /SEC) = 15.75 FLOW DEPTH(FEET) = 2.47 TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 19.75 irr► .******.........****************........***** *** *** **. *. * *** *****. * *** *..... oso FLOW PROCESS FROM NODE 231.00 TO NODE • 231.00 IS CODE = 8.1 » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 3 MAINLINE Tc(MIN) = 19.75 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.190 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN PUBLIC PARK A 1.14 .98 .85 32 NATURAL FAIR COVER "MEADOWS" A .50 .81 1.00 51 3 PUBLIC PARK B 1.48 .75 .85 56 NATURAL FAIR COVER "MEADOWS" B 32.90 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .57 SUBARE4 AVERAGE PERVIOUS AREA FRACTION, Ap = .99 SUBAREA AREA(ACRES) = 36.03 SUBAREA RUNOFF(CFS) = 85.10 EFFECTIVE AREA(ACRES) = 128.27 AREA- AVERAGED Fm(INCH/HR) = .55 AREA- AVERAGED Fp(INCH /HR) = .56 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 128.27 PEAK FLOW RATE(CFS) = 304.30 tin j SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): 5M = .61; 30M = 1.25; 1HR = 1.65; 3HR = 3.36; 6HR = 5.27; 24HR =11.52 owl ita �w FLOW PROCESS FROM NODE 231.00 TO NODE 224.00 IS CODE = 5.1 �1r ' » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< its UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = 14.22 CHANNEL LENGTH THRU SUBAREA(FEET) = 752.50 CHANNEL SLOPE _ .1140 CHANNEL BASE(FEET) = 8.00 "Z' FACTOR = .000 #O MANNING'S FACTOR = .014 MAXIMUM DEPTH(FEET) = 30.00 CHANNEL FLOW THRU SUBAREA(CFS) = 304.30 FLOW VELOCITY(FEET /SEC) = 33.15 FLOW DEPTH(FEET) = 1.15 TRAVEL TIME(MIN.) = .38 Tc(MIN.) = 20.13 Dili as FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< !� TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.13 3 RAINFALL INTENSITY(INCH /HR) = 3.15 AREA- AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .56 AREA - AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 128.27 TOTAL STREAM AREA(ACRES) = 128.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 304.30 " CONFLUENCE DATA " STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 808.96 21.49 3.033 .55( .55) 1.00 359.66 215.00 2 304.30 20.13 3.154 .56( .55) 1.00 128.27 225.00 1 • 1 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. gis ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae SOURCE NUMBER (CFS) (MIN.) (INCH /HR) (INCH /HR) (ACRES) NODE 1 1099.0 21.49 3.033 .552( .551) 1.00 487.9 215.00 2 1099.1 20.13 3.154 .552( .551) 1.00 465.1 225.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: gm PEAK FLOW RATE(CFS) = 1099.08 Tc(MIN.) = 20.129 EFFECTIVE AREA(ACRES) = 465.13 AREA - AVERAGED Fm(INCH /HR) = .55 AREA - AVERAGED Fp(INCH /HR) = .55 AREA - AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 487.92 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 224.00 = 10906.30 FEET. FLOW PROCESS FROM NODE 224.00 TO NODE 214.00 IS CODE = 5.1 3 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » »>TRAVELTIME THRU SUBAREA « «< UPSTREAM NODE ELEVATION = 100.00 DOWNSTREAM NODE ELEVATION = - 262.82 CHANNEL LENGTH THRU SUBAREA(FEET) = 3628.20 3 CHANNEL SLOPE = .1000 CHANNEL BASE(FEET) = 8.00 "Z' FACTOR = .000 MANNING'S FACTOR = .014 MAXIMUM DEPTH(FEET) = 30.00 • CHANNEL FLOW THRU SUBAREA(CFS) = 1099.08 FLOW VELOCITY(FEET /SEC) = 47.43 FLOW DEPTH(FEET) = 2.90 TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 21.40 FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 8.1 m » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< MAINLINE Tc(MIN) = 21.40 * 100 YEAR RAINFALL INTENSITY(INCH /HR) = 3.040 SUBAREA LOSS RATE DATA(AMC II): - DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH /HR) (DECIMAL) CN RESIDENTIAL "1 DWELLING /ACRE" A 74.19 .98 .80 32 NATURAL FAIR COVER 3 "MEADOWS" A 8.86 .81 1.00 51 RESIDENTIAL "1 DWELLING /ACRE" B 151.02 .75 .80 56 NATURAL FAIR COVER �i111 "MEADOWS" B 23.87 .55 1.00 70 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH /HR) = .79 • SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .83 a SUBAREAAREA(ACRES) = 257.93 SUBAREA RUNOFF(CFS) = 554.08 EFFECTIVE AREA(ACRES) = 723.06 AREA - AVERAGED Fm(INCH /HR) = .59 AREA - AVERAGED Fp(INCH /HR) = .63 AREA - AVERAGED Ap = .94 TOTAL AREA(ACRES) = 745.85 PEAK FLOW RATE(CFS) = 1596.04 SUBAREA AREA - AVERAGED RAINFALL DEPTH(INCH): as 5M = .61; 30M = 1.24; 1HR = 1.64; 3HR = 3.25; 6HR = 5.00; 24HR =11.56 FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 7.1 V » »>PEAK FLOW RATE ESTIMATOR CHANGED TO UNIT - HYDROGRAPH METHOD « «< » »>USING TIME -OF- CONCENTRATION OF LONGEST FLOWPATH««< UNIT - HYDROGRAPH DATA: RAINFALL(INCH): 5M= .62;30M= 1.27;1H= 1.68;3H= 3.40;6H= 5.31;24H =12.92 S- GRAPH: VALLEY( DEV.) = 100.0 %;VALLEY(UNDEV.) /DESERT= .0% or MOUNTAIN= .0 %;FOOTHILL= .0% Tc(HR) = .38; LAG(HR) = .30; Fm(INCH /HR) = .32; Ybar = .17 USED SIERRA MADRE DEPTH -AREA CURVES WITH AMC III CONDITION. UNIT - INTERVAL(MIN) = 2.50 TOTAL AREA(ACRES) = 745.85 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 214.00 = 14534.50 FEET. TIME OF PEAK FLOW(HR) = 16.33 RUNOFF VOLUME(AF) = 667.02 UNIT- HYDROGRAPH PEAK FLOW RATE(CFS) = 1941.38 RATIONAL METHOD PEAK FLOW RATE(CFS) = 1596.04 (UPSTREAM NODE PEAK FLOW RATE(CFS) = 1099.08) PEAK FLOW RATE(CFS) USED = 1941.38 3 **** FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 11 » »> CONFLUENCE MEMORY BANK # 3 WITH THE MAIN - STREAM MEMORY « «< " MAIN STREAM CONFLUENCE DATA " PEAK FLOW RATE(CFS) = 1941.38 Tc(MIN) = 22.77 AREA - AVERAGED Fm(INCH /HR) = .32 Ybar = .17 Oliva TOTAL AREA(ACRES) = 745.85 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 214.00 = 14534.50 FEET. 1� • ,wo 4.0 010 fps )i,{1 et EXHIBIT "A": HYDROLOGY MAP (SCALE: 1"=300') di 4111 44 oil 40 — tP sit riY an w illy off OR irr A. EXHIBIT "B ": USGS MAP WITH DRAINAGE AREA DELINEATION (SCALE 1 "= 2000') int w. . ' 411111411111111111* . _. ••• ..-t• t- „ r 77 ....,..., ...,-7-7-c „„„„. .7. .;;,':"'"'"":"''''''.,'..,1-::::"7..7" . ,r7,;":;" 7 • ,,, ... , , 0 0 7 - , ..--:- '.,,'- - . --', r.- ; l'', 4-, ,,,,,...---..,,,,*•-._... li,:-.--' .. vs,- - --) , • ,,,, ,, 4,- tLE ... (...,‘:'.; .--'..:' :_. • -, 4 • ''. , " .„...-,: . , ', ;‘, . ."'.-,. ' ,', .. K.,... ?..,..1. ii i 4411, ;•:'.^.- -- ', ,.._ _,4 .:.7(- r,"._ ?.:,'::::,': , i I: •.,' hrt a`k,,,,___, - --......- - .2.'-" ,, /,'.0 . ,,'\--,',,"..:,.. - .; , -, ‘,.,', ., . . i -:!...,- . -,;.,,, . ,.. ,s,13" ;:'' V • -' -:- - - .-.',.... „..." --: C ' %--;=-• r"" '''.--- CI -- -- - - - A% ''‘t ‘ ......,.........7..1,..;,:-.......-__.,_,. l4 - ----. -- t":• ''''--,,---, - ,•- k, ; •',V ',.,•r•ti......•, - 4,,' . ':, ../ ' .,: „ :, -- f i. ' ''' ' ' '' , --. ', ‘ ' N '- ,-..;,- '-- ', .‘>,,..-----..• ; ‘,„., „„.... , s .'. , , % ,„ ,, \-...""A„ -, , v7. - It( ; , N,, , L' . .---„:-..:....; ^; ' `,"4.•,, ' ./.,' , `•:-..1-, - • ;" - .. _4 . '- I: 1 /.. -,..- '- - - • - ' . -..,„_,- „., -..„, „ .,„- ..,,,;,..„-:.,,,,, tt.,-.........,:-...,. „:„--„,„,-,,,:- „I -,::,:,,„, \ \---,..;--..,':--,‘, 1, t ,, t, -, -- - ,•=,„ - .-r , - ..- ',..., -., '.',::::::_„..„ . z-----4„,„ ,' , ...y.„- ... y .. I .. s' ''' \ " -- 1. ' I 1( ',,,,,-,, , .\,„:""--,-•„_ . \ 11 ' .:.,^7::: ' , ' rill g. ‘ ' 4 nly 1 , ' '" , i'' ` 42 ;1 :-; - 3- * --- - -,1:- \ -. it'',",''.-.'......",..-:-.'''71'2.1%---`',...,. "t'i:',`,■:'....''f. - - --:' . Y ,-" - ./ l'. , 1 : I i ,..--..., ,„ . ,.- ,...-----.., 1 . , 1:'[.tt ft'' ' - -.."'-t '4.......,2.-=..,,,,,%" y\`■ .‘ \‘?•. '27 ,..,',' ''‘..K.' , ....21,440.1, , `;; „:7 . , , . --;-‘, - - b ''., „i. i ey, ,,.. a c i ; ; '.. i ' ,..' l„,- ". i / f 1'; 1 / .':.';. ‘,..il - „ '..'""ii, ., 'V , •--' li : \ ,‘, ` .* .;',.• • i''', „'''.'4.,..1,,- .. ::: .. .. .- -, - .-.‘.. '.. -''.-,;,. - 7'. , .Y.' ‘-* 1 . , / ,',.,‘ \ 1; ,'I \ \ ` ' .- ir" ' '. e..- - .." -, - --;',-..-;),,•• —,),,,, A :. fs- sta '-•:,,,,,,--•.,:---..',' -.:.,•,. s... ,,--.; 3 r' 4. .. ' .--.)-- '." '"/ ., ' Pr/ • 1 i \ '% A "'7.. . ............. :2, .) '- 24,114, . \ s. .",!•,;.',_.•• , ,,,:a . S.4.1..„ - .4.7... ''' -,, .'4,k, ,-.. • :• • - . , ' • kV:, '%‘..:,• • ..,,,‘•:. .`; .., ' :'( ' ; C ,; t-;:j 'I/ ,;'••/ 2 ;) ' ;.,) ‘Atii•:.-_:. ,,„, •: - __....•,,, •.;•,;,, 0.,.....,,t, '\. -,*:•. 3 • - ".. • , . ‘-• , r' : ji,,?/ t'774:5" : \ '' - ',:r - 7-- - ;3 : '2 4,. 's ' 1 4 r - ' ' ) ‘s\,.;:::: ' i:" .. •I';'' . ':' ., 2 • s. lir, ,, .:. gi.,*-._ , j ,i , t '..,.___,.' ,L 'f,?),J,,.\,,if t.' • • '\:-," ,N, .\ „t-„,,,, : : c , „,,i-,;:: .•,..., ' ' ' ''':.;•;,.:;•" -•-:,:i P`T ..•.•; :"•(, - .. 2 ; pv, ....,-rf "•-- . - -• • :••-,..., if, .....:-/ ::•:;1 ,: - . .." ..://:;,,..) 1,,..,f . ?1 , ? . ...,.. - N. - f...:, s ...; 41; „'s, ..,..,. , .1,,,....„,..f 1;4 - ,, 4 "Q, ,,.. ' -, , :-. '.!:,-,:; ,,,i,.. - ' t",z, ..-,,!••;,,.-\ I/ '1 . % '-- ' - ' 7-, — ' ' -.: "" - , i i i kti---I f : ';',;; %---'--,,,.-=;;.•-: '' '''• • ••- t i,;'''' , " . :' , s • - •:' , ..\ \ 7 ,--" - - _- - •- 97- - ,. .tti c f : "' :- 4 '' ,'.. 1 \ ' , .'.,' '''' '''..',- . '''... 7 1 - i „ . .c; .:.-7',-- ,4 * .;; " ".i". \ ,...,.-:--; , '.1 , , ..':/// t.';‘ ' ' . s ' - ,.._....14 .. . \ -., l',„ ' - ' :•4 4 ' . • '..: 4 - - Ni '71 '''.1, •• _1; : .. .S,■„ . .,;-.....1- . .,,:.ert,.:',. j>", / 1 i t--- 1,-_-;;,::: ::ty.;...',.; t(t, t , ^Z . „ ; ..., ;' ' .,5,: .: , --4 "zz.:7 - t::: ".; "ItA .;,,'■...:, - :.:-.k-: ' .' ,,,,,,, ,,,,,.• ,, i ?„„„ c, ......, , ,,A, \ ,„ ,..„. v ,.. ,. , ,, i . ,,......,.. i / t ----..,":::\\,.. s ,...... I/ . .„.,..-,...-,4 ,,,-,-....,...,,,,,,,,.:,-.; t 1;2, , ,„,-.1 I , '"... .;„„'f -..., 4^--4.- i ..::-.:-.::.. 4 7./ N ‘Ld.i , F .-e, . \tia-7-g...7 ..s.., „.?)- wa” C R \ i t :•-•-•\,-.....,- , \ ssb.:,\•,, -_-:.,;(/ (.,, 7/ iii .:. h - .- e,,, - •;.•,;-:;„---;,; .,; T- ii,/ , 1 4 ,, •-•., ...'\"- - ,-;'4-' . •;911, 1‘.\. ),I ..,?,:::.ti'',. '"..." ic: :-" ',' .i....,‘:.,:fY.!-- i Atte '''''''*. ,-.,,,,.--._ ..- ,.-), " lit,,, - • , ••••• , :, - - - 7 ,- L-ts"-..,::::' , /:::.,--..:-.7, -- ,.,z.;t., : ,,,,,k , ..1....,,:f.7,4,i;..- •Ak. •.:'---."---_,.; : ■-- -^^ '\, .'''' ' N - ktf,41;ii : , , ,,,Z:1 - 4 , , : . ..,,,,, 7. i ..",, ,. -,,....,,,,,,,----..,, 4 /4. .,- -1 .'•• •;•-••\ - -- . ''''''''.---•-• ''' '''''.- V ri II I 4.„,,,", 4 ' :-; ; - 5 -- 11-1 - N . ;Ir.. \ ' ..' • if' , ,.`''',-.. NN:.;,.7 ..A '3. :"." ' • '''' '' ' ' . ''''''.- ' "..., -.. .> . """":',.....,„,,,,, ...-7.:: . 7„.. 7-.. ' - . ' - » ,' '' - - 2' i•• 14 ' 1. 4 4' - ' t l - : 1 '.' .4A1 tt " \ '''' ' '' ' . P.e:.f i4. • , •-• 1 . ; + 1,' ' ::. .e' .7 : , ' .7 ,..C. \. ," - -7 , - --y.- ,- - , . ,- ; t; I, • 7 , .:,, -.1.- 1,,, r -,,f,ic. ., ;,/,;.,-; , • , 6 , . ,,.. , ../.ff ,,....,..1-4 4,ii „IZ '.. ./rii„--.. -,•••,:,, - • -7. . 1 ...•:\-- "-4.,s7.--..1 -••••.•.,, y 4 lv:.,-- ),p.V 1 0. - e.%,11;, c. L,- - :,—. 1 -11;::2c, ",•,....-',.... ' 'AZ"'%'-' t.•.-^ V I. ".‘ ; • :. - ..;•,•"/.1 „, :,.1 • ., .../ff „....• /,',. \• -,•• kir, ,..,,k7 '''' • -, .: 4.1 4:".. •. -,- .. • -_-7..t t-. - ......--,,,,,„ ...,:, , , . „ , .,,,.„ ,,, / 7/ 4,...„ .,„ .,,,. .., „/ ..,.., . \ ., 4 4 ,,), ., , . I. ',N V.4.' .`• 7.. : ''"" of , Z '''' ■•• '"=,:•'' q..1._- ...z.:„Nz, ::--. t-.... - 's ' ., • ',... . .,;?..-Y,..-- f" ....--... ,- '‘ '-' 'i An. ,. k,te, , :• , ..',7,- . --- .4 ,..y.; ,„ - 7;•.-- , , x,-;.- \ . .....---:‘,.., a ../ _..., , ,f L- . ' ,......„- . t ........--, . • , ... 1 ...,., --.7,......„, . .• .. ,. ' ')••,- ., , (q•-•• - .1 ..;;;:,•-•-. ".,,,,,,42 ..p.: • ,,,...,..._.;:,...- .-- ., :::-..-,-,.. 't. ,-..., "..- 47, , , ,- - ,.."'7 fit--_,- ‘,. - ss`, -:, ..-,-.... t 's . 't.:' ' ' '.•-: ',.' i . ts,%>2:;,1 ., .,''' \•:.-- - ' .:: , • ., z, 4 .•-•:•••,:, ; !, - - . t.7.,„• r.,7:11 • „,,-,.,../ -_,...-:<;f r.. , r,, , :- ;: ,,,,...;!;-.,`,.-‘.. •, '7, ‘...---; -,:„ .:: ,,,, , 4 ,•,,t,.. \- .; ,-,!.:, 1... -,.,.. I . _„ - _4;,..,•..11 ,, ,-„:„. 7 ,,,,, -,,,...": /. . ‘„,..=.7 . - ; •:-..• - ,.... - ..,,k 4 t..,.„•.-_, - ',•••-„,2_ , .1,...irk-/ 4... 0; :.•,..', ,'-- - 2 :y _.-- .• ' '1 • so00 . e7 , ' ,...--;".. i/ itii '''''-:":::',' ; ''''' . O f it ''',. ";' ''''''' 3 '..,: ;- ( 7 --- N ' ' • < ''''' * -,::',‘,„ - 1 - :-.4:,j`s s ■ . '"' !,;;/ :/- ,4 ;ili . 4 ; .- .. , - ,, '„,,,_ ).:S' . -::. * -'it-, :%:"' '''',4- .: , ...k, ‘ 1 , !'• \----/ sw , ..'„, 2- . -- '-' 7 •'' '; "7' 4 7: c• . \ %-: -.-: 2, - '"7:--,,, , - !;:s .,'• t : . ..... -• '`‘-..4. 11 1 1 " ,,;/ ---., `;•.i ' , ,(1-.„ ---':',/,/ • ••.-„," '.\:,,,•.•:- • c 1%,"N ../ ' ••,...-..-/ v" .?:.; vit, ,,,,' • . • ' ::::. , ,,41 ii, • , ,, -- -' , 1.; 7 7,:=1,4C;* i ,/,.!',,A;■;,;'(‘ , -'-=,,;,_:---,,,,,,) -, , I i i , o,‘-',/ t A ;:\ kii /W i,/":4\1. rNk IF 9 N,laiefi i•••(.. • '. •\--..--- =:. w.$4.:: --.:;•:• .'-----• J" /7- !,-..•)t%.1t, \`,;•,•,, •,-- 7: • -- ' 4 it‘,,.\,:,-,v ,,kt,-, Mi‘ i',.• ' }1:\,,,---- ,-. i.,.-,,,, v - .) Az) -•_,) \ tq 0 , ...- - - 1- 3 ....,..,,,,.„.ii, ..:.,....,._,0,,..,..4%iff: ' - ' 3 % ' V\": A LI ' /1 fik j it-• - ' , ,...-- -.,`,', ,, •'-'; - k. - ;..4 . ..": t :: • • 0 ,& . ■ • ' , ''‘''\...`-'' . ;.--4- ''' .. '' Jr .'f , i ;;-`', AO ---. . i • J/ks. ;•,... ii% . , r ', , ..d . ' .1 - .‘ (7... s 4-: • ' ' ' & •---• ' ':.'t,. '••••• • 204.1 A t - :-.„ 2 , ; ,,,'-t ; ;:-.,‘‘.. - ":: . .eel .. ,1 1 , - 1:4 , , , "4.,,',„' , 7-f. ',";? ...,,,, .„ . •:',1 .::','„ ,,, l 'il .. \, V ',`-',,,-,' ,s7 ;1 ( t"N\ ---- ''-''''..f ,11 -, , !:- '''. ,. i' '.:: ''',*-- .""-- - it:,,,,,,...- -(5 " -- - - -f /1 •W;• - ' O ' , r, --" '1''''':.;% • "..;`. ,, ; z,-,. '',-,, ..."'--"'" ' rLIS2,-..„,,,,,:‘) .;t:; .;., ‘, ' ., e -,% ,4,.., \-- ; ', 7_ ,,,.. - -4.. -"),,,,) e ,..... ,,.• •.;z-- •-.: i • -...:k1.-.z..-:-..-..i •,.., ,--..„ .:,,-:-,.-„ s-:..„ , q IN i :%;..' ' .....•'' 's ." . i - .‘„ N- ,..4 VtI .,.' `., \ ,;. tfi t" ' `i /." 44 ‘ ....:-... ,. 4,, ','., 4 4',. ; i ... ..,,,, ..,...„,. t . ), ,..,--- - ,,,,f, -...i...,: : , ..-..A.... (,,iA •, ,,,,,,,•••••• •.i.,..„...„,...:,07 , ,,...„, .t,• •.„, ‘.....,t .1. '.., ■,, ,,,,, ,,..,.... . ..1 /, ,-,..o. • ' i '''' :. ° Nt 'Z '■: .' N ' ,Y 7- f -- g' .." '' /,' 4.;'-'4.,.! it::,;! - ...‘40,i„ -':' -:',,_:.:,'' .-..`-'- V f•i, 1-- :..- - :' - ‘ \\,,,,. N'.--,',r,,,:,Y' -"-',::-. ) ':- i''' • , `-. - / fre l 4. .. . ! ,.„ 1 ;:i r e,17 ; , ; :::' ':;,- „I r :,IN,L ..;,‘ „.....4 .... y.....,.., „ -:- .1 ' ... 213) .:.., . ' :i t . _,... r ‘ \-.:') N)kr, t"„:,..s. ; , T- ,,„..ti • ,,/ 1 .... ::'. . - ,.. ft..\ • c ii„..-,/ ‘ t -; ..,, , i • I I i'' - ,e: „.....- -, :,...,.....,„- ,...,,,,,,....._-„,,,. . ----2L, ,. / . , .-.......,% ' , ' '''y ..,..1AV . - (' - ■;,3„ . ; . ' ....::-•,.* ..1"..-;.;:j...4 ,..,. ' .. ' '''':A f t , • r! 4 , tt , - ' ,g,"17,k li° I , ( 1, ,, c* ■ \ 4 C. ,(.,.... 9 7 0 B::" •: : - .,,ri,f ir-,?„,.L.4.,\ .- c■L \ ,,''' •; •:--"•••,- ' - k .7'71' 1 ! .;, • A , 4 % ,._•■ ';' ‘ 1 t \IA.C1 i,"‘ ■ ''''I --*— .--,,/,' e •-":4`0 i '?v.,...• . s . , -'..- ' ••' • - ; • „,.f. '•• ,-,.- ---,-/, • ,,,,i1.... .1,1,,,, ',„ , ..„ric.:‘,., , ,,- i .3t f" - - ,,, ,-,,,- 4-,,,;• ,,:- ;-,, • .:.."1,,..i'lj \‘..„) y ,,_ J.:,-:,i7 .:: •,..../ 0. , ‘,.,...:-..-::- (:, !if „,:e.\, /,‘ .:, -, :::•.- ... t., , k-- h. i ,,,) ,," - -- --.7. --" ,-.,1 ,,',..„.•••,,,,.: ,-.:„..:.' „„ \ -,‘,.:;i.,, ',.i,E -,, '.-.* '''' , /1/;.. ' - , ir. ' , (-` . ) ! ',0, \f 1 ;1 • ' "7 -. ' '`.. '''.',,, ; IS\ : P, -.......;.,\: ,.." \ ook 1 ,_ --•:,;;;;;"-- - .,„ • .4. 1 , , 7,7 - 7. - ......, ::„.:', ;,4- • ,..,.- - .. - ,,,. • • , . r 2 ' I . j r" i '- - -s-: - - - • , i, ••• .,•,, , - 7 , .4 ' ts.. 1 1- • '-,,,--- -• ,- 1_ .--1), • --••• - • •••• r-,- ....— .••••:-/-„‘,•• -- — .s, , • ,,•_.•4 ,,•;:f•-,•-f:' 4 .-.-,-;- ,-- , •;,••.2! i ),:- 1 , ..1, \... :_'.:.,...; ..w --. i .,;( ...— ..,• -,!.-• y - 1 . ,,f .,..,••,;,....-•-••• ) ... •,-,..-i...- 0J; , -,. ' ,_ : • ., • -7-?....... :: • ,- „ ' • .. • , . .. ''' "'" --• - V `'..--•.- ..-."- / `- -4,-.. - . -'•• . ' - , ,"-A, e to., , • ,• , ..k ,„.. ; , .s.,, • IF ,..., t - t il .450_,•• -- -.., (i. .. ' '-- ' •'' AN' ,, N •'•'• • \ :.:.f ,, m , ■ ,,.;-' f '''‘. ' - i:: , •s."-'• ,-.4,4! ; tsti. '1,' '-': .„,, ... :ir . ( ,---„,....„ ...,,,, ...,..7,',„; N .tN. J , ,, ''' 4. .,i. ., ' I'', A \ / I - '' - r' ' r .- ;;"*•,; \ ,.. . ZIA.•.• f ■,1 ** ;:-. - ..; I • :,,, WA `,... ; * 1 - ,-. -*-•;• 'f . ' 2,, ,,,,,, .iii 'S • ■* j k., ' '''' , ,.' ',' - - :_/,,, ' ' ' '. - rty - `‘..; .4 - . I r` ' \:-• - `-:-. If- \ \-ii \ ' 0.- --- '- A . so' 4 .‘• ' 4. 4 1 ' '''. ' ../,'\% A ' `:• •• 7' ./. .f,,//1 ,,,-,' " : ''. ( '' , A :-.`".,"-'"' l . `1 /7 V \ .:' , ,V ', 15 1 ''''' ---,„ ( ._ . . i, lZ ' ..- ' 1 . T,' '". rt 1\ 1 . ...t \ `:::"i-...." - -‘, ?/ 1 ■ iY ''))) i ' '.: , ..t. , :?P' - ' V '`'-',:.'-'" .*- "-:* ' .,"' ..,' '1:: ,,, \\ K e.,\„, ..... ... . ''' ' ' ''. 0 1 ):: 1 .:::''''''''' ;r7 . --/ :.: )'' ' : ' ; i ' '' Is t.,\ ti. Z t :. '''`' -..-1,:'/(;/,:fill\-.:JAIP--"1"\\ . -4 . ' ,S ,"\-; ;f '5 1 1, .. :4 A .4' '. ' '' \ '' r ..; " ..\‘'. '1 ' ......- " .. i " : '''' :: '•'•'4 IN ,...- " ----' : \ ........ ...;. . 7:.--i y-. , • ' , t, -, _-- s 4 ....,,-, ...;‘,....) " - .1.,, _...;', , „. i , : ,,„-A* ,, j.,' • . •-.;.. "r : , ' 1.1.-- s. r -71 : ' ;: raw ;' . 4 1: 1 e , ....%1 ‘,.. '17 ..., i i f t •.. •••••,.., x i `4.-;.- -,.,--. f ‘ % ..rti -,,/ ' ----,.., - ‘.. ,:..s. -= - ''.-„%* .” • • p A ,i. • r• ' .' ' , - E . .'t - ‘s,s, '4...1 '.•.'" % - ' ( ,." s A.,:e --. • • A . ‘-•- • .....;--.'",:// , :.F•- ,--'''''''' 4 : .. ,.,.. :—.. 1...;;;;, , ... ti, . , 1 ,, , t,t,,,, ...,. ,_ • ,:, \A. ' , , ' ' ‘,‘, ,...„, N ",,r‘ - .7: / - " , , , , f ---'.'^' .. ' ,4 ,.... 0 ''''' , ,; , (V: : . . . ,,' , . ' ir. ''..- .„.:.',,,,'." , ,,,.^ '. . , ..;,4•7 04- •••••:‘•;..,,, .; .., ...,;;;.• 4, . . , n . i . ,V, •,,*:` if: • ".'. ';'\\:',■::::':',!. ;''' ,i:... ;`,`" , ,,,..1..,y;7 ,_ t3,,,•-' ,,, ,,,,,..-f■',";:;. , ,_„,,,,,,, , ..t • ‘ .,,,,, ink s' ,„ ...:. - — - - - - i .: . _ .:-, - j!, ; ' , . . ,i ".... ' : '- i7.„-, , ,, , ,,,,,, - 7 ,: - .. .. . • - „,,,., ;•,-. . ---- . .4 ., A_ vp , ••• i \ A,- '''''''•:: ,..; '-• ,-- V ‘: r ' ,.,.; A /- , A - . . • ' .: . , -... • --1 080.,-:=••• • -/ 1 . ' • - - It - .. - „ ' \ ,"\•:',":'-'„.... ' i;7," :-' -7 -..”... ' '- -:-.-""' , ' 1_, - "j\r-/ „ , ,, 1 .. . ,. OR . -- ';-. - .. . ---.;;• - -i• .7--et - , - .!..z - , - :' -- • 1 . , 4..,..- - ., .,..,.••••.,-: ...- • -•.,,,, _ ., ,..e i f- : ..• : . • f ..' ' , -- • - - _.,, NN. 7rTh . .....-- , ■ , - - - ' ....., I c•'` . . -. M.4.,....... ,........ „,.. -0 ,- , , ., • . • WI , t ...-., ....- . • - ,, ' . Neil 8 • , , ., , , ,, 1 I - 1: • ,-.24,8 . 0102'f • • _. . . -..- . * , , .. , . „..,- . .1 -. ,• ,.. • fili . . •'' . .. .. .. - coNIDTE c)..)‘ibx) . , .,. DE V C. r: .- ,.. '" • . • ..,..„1 „ ,-. -. • .,. .-.. . - . . . .,..._,... . , 1 - ..,...... . - .-., . , .. , . . . - . . ..,,. /. ,, :,,, i '• +.•:.-4 .. , . .• , •. ' .. ,',141:: ..,.. . , , > , , , a . f - ' • ,%;_____„,..-:<<--. . . , . ,..... ITr . • + . . ...• . . • -- --- - • • , . .., .......;.. -. .. A ....23 ..: : ..z•k-,.', . ,. „ ... .. • '. Berms-% -, - -, ........ -•. ti i• . . . . _•.•4•.. - '-, I - 20 . , . •..., . .,...7e 41' .• . ;1. . . , .- . . 1 ; \\\\N " ' ..., IR 4 ' . . I • • A + MI I i + + , /' . • .. - 47 N. N . .£ . .. : ;"7.•,• . . ' \ *. • . . , ; 1 . . • , . - .. • . .. ,,, . • , , . S Wei Xf 7' 1 . ..... A V E . Copyright (C) 1997, Maptech, Inc. . . _ ...._ 2 •'.: ....•' 17: .-•• •N• ' r " /1 '‘ ' 4 ' Y • • •-t-.! • • . . • ' la/ '• -• .10 1 • 111; 1 . ...,1.1 -- 61'.Ci• i l !"Ziff:1; ...•: ' 1: ...... ,- *i-- - ' j : --. -• -.. ;/ ' -" . • t ... ' ' : ' ''' ' IS? / 7 .."..- % Il i Ir..' ' ' - . l'• pl. .,-#:.. .„•• :1. i . i . 1, y ,..:5),. • i._ • • • •• 1 ..... CL. tc.c ., . .. vi .. ,... i .. . tc.. e. ....Ai:lc.% i " r" • •., • ,a • I:: 1_ a • ' 1 l '' 1 VI :a1.`,01 ' ..; :Li .' , rt.' •• • .... • I • • :•••. , / , , • I, • . • =••••••,--. • : •••,• . • •• ' I-- • .0 .114.% .. I' •11 1" r : : • ‘"•• ' - r i ).. ...,.. 111 ,;.• 4 7 ' • ' .c..-. : : 1 • .', ,6 1 3 . , • • . i l ..,, , 2 .:_, _...... 1,. : ,. 4 *•,•3 a4 It . . 1 I . , .•'• ,. . 4" ri.., I ti.: • .1 I _ : • • - er •-• , ' ' • - . • • , - • I ' • ' ' l'' Tlif• iiiitilh• •' •.4 ".I•i i -l ii l • - ' I 1 1 ••-- 4 I - - D 11 /it! \ - I. • •.• . i c. .... . .., . .•:',' .',.....t.f.,..1 • it .1 ' , f. ;'.', ,1 I • It.' I 'l• ., ''1 1 0 ,, - .,. - • . 1- „ i .„ .,„ ;v.. • -..- , . k y - • /I i. 1 • . ;7.,1 I IttP.1•11 ii q•-, ----..- ..- • • . . , . . ..F .2 • J • I r a-4,1. •,, • 1: .- 14 • ,!L... . • • •• i - I_ (....9 /. .., ..... ' • a • .••= ••%.,N'1* '.-, • , • . - 1 ni• ' - • ••• -, ; r... • ...- 1, I. .1. . „... - ; rry , -• . ••sA ,.. , 7 '''" "...,' I *C -1 A41. • :Y.:. '••• '''',•'•• • - •• • • .% i \, / • 1 I ,p0 • ! . •I , .,„ I' • , ir ; •.- .1 1* "' )6 " * •)I ft'' 4. • • " * • 1 1 - --" -7 6 •.1 ••-••-•''''' i •-*'*'••• 4 •11 - -' ' - - - . " : , ,e r - -.;,.., , i--- - - _ _I. ,.........• A . i 1 • ' • • • -... l i .1 :v , - • • • ; ,- . • • ., • , - .r.•••• 0,...,...1 _ Cf) I .111 . 1 •••i; • 1 • t • i , ,.....,_..... . .., i i L....: t 1 t ,p ag: ' ,1 . ; / ... . • 144 . - ,•• - .." , ." . : _.: ; • '. • •■••• : • *•'' ••;:-: ,.• •''' ''. 7 '-• - ' - • - • ; - 0 - i - i f g :, :: : .--...-.• ,•‘.... : .•,....,.:::. , w ; 2 t . • i, . .: II% - • I. a a ( I.-_ o i . ri, i-, .,, 1 ., • 0 ( i) 1.-;* %: i /- 6 '•;4 i -3--;••:•*--'''•'-/- t 1 • , 1 ,•; .. _.„....., ,..,,!•..c., . ....,..2,. • .., ,•. . ,,,, , , . _,... • .- ' .. .n• • ET. • •• •• 1 • " •i• ? :1 r'i -• •,. • '-'.- ,4 ,ti _ii,. ., 4. '" .. '.• II ''''''• 11.. I ,.., ... .; i ; 17. .. ... • i : : 4!: '. 1 -../. , • tp, 4 , .-i 1 (.0 1,1_1 i / .-- • . / If '"--, . ( •• I . 1 .••■• i• / /,‘t r7 • I , • • t *. ll• . •••.. • - • - .. - .. . • , , •, : ..... I. It , .1 II Lilo . : • ., •% , f••••••) .-- 1 - . - i ....,■•• 1 ••• • . .!'' ••. • . , • '''.'.:•• 6. . ••• ''' , I • * • ' t1.• 1 '• • 6. ‘ - * .. . / • . 1 Jui .. 01 6.; .:.1...- ., ,.• i ' ) . ''' :1111•Iii 21 ,.! .',- . s' --• -1, 74 It' ,- 4 ! s i .......:..,... 4% ' t...;. „,,•.../ 4 : . ":‘ . .,...;,..tif .. 7 ....,:' :; . • ;4,.,,. ,.".4 : 6 ...• -..,:.... • .... ,.. ...,...:. i , ..., ... . ; , . ., , ..., . ..,, ..,. • •., ., . . 0 F-- -.••• _ -;-.• .•- r -,- t. ' lc / • ) e.:}1,, st II t,'. !•I .!•!•,:t 4, ,••!'-: i * , P N=I ' 1 ■2' . %, J',.:,, i • •,, ..12.. f. - ..;,.... -, ...• • ...1',11.. ...!..,..: 1 -; t••• -/ ,..•':-..-i-1.-,.. .; A.( k ' .' \ '•••" 4- 's i :. i . • I ' ' • ''' i 6 f .' -6 •••• • ;” ill ; - '•• • 6;62 .1 - .....1 it. ,, 6. .,.1,....,....., . 7 1,. 3t. ... 7..: I.S s ; ....iti, .. ; : ....r. ._ ...., ;4... z.. .- . ,.. 8 :_.....i.:.- ,.., 432 ... xlitli, c,3.40.... .. /.....,..y , Iv .. %...i.,0.. 1.9 J ,. .. i r I 1 , 1 - -1,...ti...,..-_ `.• 1 ‘••• ... 1 0 ,- ...; H..1 ' -4• u) , •■• ■••••• I 1 r . • • •:. i..-....... - ..; , ZI di ',...:' "7 •••,i....8 0 - 0 . , :: ,,, , , K r • ••i.■ ii 'I'll 1.'' ' ? •• • ‹.- -; - - i ;., ' • ......i,-- .--.." (;••::'••• ,....0 ..: -, • 1 '` ' ' ' ; • \ 1 % . l • -' • t 1 1 • • • CI , ••?, ',.-_ , - -. ,•••:, -. ;•F i..6:-'il: .f.,' ••• .,' ..•.• ..., i '.1.:••••:1,•••.' :o 1 .; /4:: MP • 1.1 Sg,. 4 3 . ,, *-7 - -• . ,.'',.' ,... • % ;7 ".' '.' ••• 1 , ';';) • *l• • • 27: i '..‘; • .2-V . i' i• . •- .' r , • % ' -.' . • . n';' r •••.-4:- '• A -. - • . fi .•• ‘. • 4 ..1..." , 1 •• '.. . • 2'. .... 'No. ,. . .. , ,,, .1 4. 141 'rilf. . , li 4 : .r. . >•••• f - ' .c. .. p . „„ - •t . .. , ,... - . ; 6•44,.,.,;.*, ..- • , , „. .,, _ ., . • • .•!• : • ,•--,--. - • , , c, ...• 1 • 'it. $ 1 i , ...i :,;;• • • on . ••• 0 .. ., • r t•:.1 •i" , •'''..ail •-•!.. '41 4:1 h 1 • •• il I.-4.r •,...„ ,• , .....k ••■■• .' . 1 • Cr '• .. ' • i j 1' . 4 11 1" • e . fr • i .• ... /.; - ..... • . • ,,,... .. it r• ,...•!,• .. ,:. . . „ i ., .1 . , ' 4.„.••■ 4, 1..••;- : - ..,-,. ..F-,••:1,.....•14........1- ,.t . • •,. , ...,...., N•.-,..,•..0.... .. .-• ••• t : • • J... _ . . .. • i . ,1 i, ..., , 1,!: ..... 4.2 , i . e o, r p . nit , '' pl ..t.• : - --- _ ••/: t , - l'i • ' 1. : ).-• , .0* • • • : • •• ., 41,..,,,:-,!..1`4 . ‘. ... . . , ' .c. .• 6 I .1 ; ' 1 • •,..- • re • -.! _.: t' • •- 6•6 6. 4 .6. - • • •• * ' •-.' • 1 1. • ' • 1, •••• '..47 , 1- i ... -•• % -'' I • • I I I 1 • • \ • • TAL • .11/4111 it * ;II. •'•••••:• ' 71 • - 1 --- - • • ' r , •• - 1/ -1 . 1: 1■1 17 ..... • ". -1 , - ::•.;7 - 1•`; : ? ):1 [11: 1 : 1 -'. 4- ..'e,; -.r :1 1 : :: .4 :.,: : :% .1 .,: :: •.j. " .i '. .:••• 1 : ; . ,;• ---. .: - ,1 - , ; : q ; •• . ....- 1 . .... 1 ,, 0:110 c.. j • . 1 , •-i ii-t O I' ll/ .1- . • :- 1. ,,; ; • : : 12:■_ . ..,_ ".. ...'1 ) t .t : ""$ ; r:, , •• :; •,' • : " . .. ••• •'. : .....L .* •L-4' - k4.- " • 1: ‘ ... • -- 1 T '• . .... ' 1. : 1 ) 6,0 . ' ,•• ....... ...!.,' s ...° . i ll '•• I: . ,....1:-.:, .1 /1 ... ri" - ' 1 1 , 4! . ,•li • 01.11. - • 4.. •,....,..., . tIr '`..,:` N '4....1 ii-3. i-. - 1 - z -, ...,. , -4-.7-21-,,4107- ''t • ' .7.6 '1 14. • '•••• - k - ---- "s•• .. • • i .):: , ,)-. / ' 1. '144 1 i' 1;11 : • • ` •• V ,.-* i '.! 4 } . ,.,-,._, 4,,f1 Ili? z ...:..e.A s . ........:.:4 1 ..i.T.I.i;i. ' .. - . .:.; ., : '1,. ; .• ,'' .. \ 1 . ..,%: r •- s -t:i•- • 1 , 13.1 t" , 11* 44 r• V • '',.. 7 2 • • . • m •: Ali ' :,•i• : 1. ; - 7 ' 2 ' '• • ';'•' II ' ,1 ' . ' 2 :' 1 -,- 1,....• ,,;•.1. I \‘'..,/ ? .p.,,:)•••4q)•-; - ,'t I ?... 4 s • •••■••, '1 7 1 .„ 1 A - ' 1' It0 1 1 .1• " , .`'" •/ • / •• ••••• *" . t 1 : 4 . I• • 0 l', • ' 1 • A - r ..- .- ...r. ' s..,tiz ) .- :,•!,:i . ' . .....t..\ t... ....‘A •.I I% • ... .! t . ;.. ', 1 ••:Z' • .. • • ••••••• : 1 .• I I : V 1 ": 1 ".- JT '-• • ..,•:. , ,, ..,_, - .,.. !„... „P • ; ,..-x-r,;4:-,:,.. -- 4, ii...e. .•• *2•• V I - r -4; 1 .. % I '... • • 4 ",•.' '; .... •-}.4...1... 0 i ..1.41r• ./.. I! / - • 01 ...... 4r. . - • -• ,.- 1, /41... i -•`',...i •:.:12.- - .. ..( ', 1 7/1« , ., • .. s.: • uj . '}\ '., Il .1 : I I :I ; i 1 ' ', %.,...' : ,...../ • r..' ;i:. ""a N A r 1 ,4. 4,.. ) - If4:-') , . • r,i)-41*.07: . -.lot Kh; :41r-: , 31,•:. ;:i':. - -ii , 1 _, 1 . .1 "1 - 1,4) '1, --, . • . • --;er -.44 ; li , ..-± • f ._ ,• • f- DI „, s 4: . : L; 9, r.... .-:, ,- . .- ,,. 1 1 '11. '.. rt., ft. .. • r1 r.... , . \ i $ *) ' $ • • t f, '"•••• * •••••• 1' / $' 41 • Ir • ' .. I I " I _ . v II . 4.......•/,....4....e(,...:t.,,t,..,1.12te.,...:1.4.".:.....i: krzt::.:_.7t....irciii....4-147i..• .,.:,.,",•••■•1:::),..,A•prY/41:6.y7/11,..";:"!2,i.,,,..,),4{. ... ''•,\. 4 7.1 4 : :' . : ........ 4 , ...:; 1 - ... 1 :- . ...,,. ‘:-",.; ....*„.... -' : • ,,,,L : ..... ::,: "" _' : vi. 1 : 1 .:1 • • . •-•°••• 6. • ' .' •.::.! ' ; 1 t .... if, * . t---y9 i. Iii,• ....,.:. - .,......., , \I ,. , ...: k i i ..., i ...‘: 1 i , 1 , ,: . ,., . . , .,.„, - •-•-•-• • .... • • .,........... „ 1 4 • • 1 , CI .. • .4',..., -L. , ,* l .,., • L -• •-ty 6..--,,,, $.i4.3- LL .:\ .. L, i s L. \ .. ,, .., 1 • \ !, - ! - 1 L, L, • " • , 4 ! ... I - -i. , o.....:-...\,....1.: r';'•• ' . . 1 ) 1 1' ' --,:t.......'•• : ..I ,:- „; ;'• ,, ,i . .' •-•)•*,..... I ' I .; I '. l 44) i ii I/ iiitW"IV .L )i •4 r . Rt:; 64 :< 4 9 C ■a v ,..; •- ' .. '0,.. vej i r t.i, f).. 1. 57 : s kt • . 71• ,,, . ! . 1 . .7 1 ••, '. . „, ) • , 6, , 1 't • , I I . *) I '1 •''. 'r ; ...1 * . .• • 1 . . ' 1 11.. •-• .i r• .; :4 ' - .'" ..' ••• .- .: :41 :,_ %.1_ • • • .' • i ' r . 1.• 1 ,1 1 ' 1 ' l'N' N'k .• \ ' * • '- '%- el • '-'• :ri • . .: ki • 7 ..., ,..... . .. i • • 4, ,•'.• ---• • . j.11-13 .:1 4 " 4 1y, . r ''''' .1. - -•■•••%!'""':;.• •-•^. ••••:• •••;: . s' - • .I' ill% I i • • ; ,.., , ". 'r filgiV _ 012 •-•. . -i! :',, _, r.. • . 4 z .. .• ;7:: ti r!t - ••-: • .?•-;.•”•,, . -; -, 1 I:, • :I, .. i •■ • .., --.• ... l• -. 41 , :.•'‘ 1 .: • 7 , r ./h •• •, ,,,‘ -.1 -- It - ,_•,,- 4- -- .k.,....--',- . , I.e••••....-..... , r ..,.. -.1, • f ••• *Qs • V.' (.4 • ' 'No • \I .• ' ' • • • 1 • : ' i i 1 .!--",:- ""-' ) • ' • , , --:" .00 - - - - I hi ..,_,,,-,,',/ - -.0..1; 4 o .,Ag .4. ......-; .:,• _.„,.....- 4 . 4 .tin ,J.., 4" •*/.4f.,....:• &,..'.4, ••• "- r / - , ! • s. •, • ■ . • I . i • airef ' ', . ''''''. " . ' c • If' ''' • --'• •.--. ••• ". - 4T;...\:-:"".,:! . . 2- .se '1, •; r - !',:tri•-•14-.. . •1 , • A: , .. v• . , . • . ..••••;• • i ,- •e' •-••• '... '. ) . f.• . i . :I , 1 . • i • ..i j. Ill ‘ ;• 4 . ./•?' r ,* ( •‘ ( - Tiril . .'• -•• • • .1.. i 6., • •:::::y7.'.86 ..1.17■11t . ,.. t ;,}....8. -r. 1,_,.. , 1 • 1 c , - 1 • I.. l• __,,,,, •• • • c .v,.i : ,1,•1••;:4-44 . :, 4 - A .e:;- li-z. ,,,•.[...... • • ,- -.4 : • ' j ', .: ••• .. ..". 1 1 ; '.. 1 2.11 •-i•7: - ,, j „--, a ,•;:, • ., 4... , , : i i ,:../ 1, .:-• .• 7 .7";7 - 87 - ," 41% , i : ..„ .: -:t.,-: _4._ .....L:._:_d:'..•.._,____ , , • 1 • 1 , - . • ;lir 4.7 q.•!--..- . •• .t , .. - eli.e... i - , t,--,.-‘t o .). , .,,,,•t•-••:pi: - - - A ,- ,Ii44. tx1 . -....: 0 .. \` .1 . •,, 1 .. ; "r " ,•,,----, 11-, *:*•* 4 .'"'" ', • ••• 4. ••:-zr • • .: . .. ...-• .. ..„),.,,,.._'_ , li .01 1 ••••;• ,., . i ; 1 I 1 •• 4 1 $ t.. • • 6. • I * • •••':`-''' ;), _ i• • ....A • • ' :•F' ::: 1 - 1* - -;.4,7••• ,,),' -;•.' ••• :: : •• ' • - • k f . ,. tj . 0 ..** . i '''' 7 r„7.- ek ■ "•••Z‘p s •-.:f , '1'. Pi ?Pi 7. ■•••/' 4 1 • ) ' . :I' ! •■ • - 'i • • I .... - ! '' 4 ; 'I . .., 1 I ,. 4 - 1 , - • • 1 1 1 • , • 11 "•--3 i ' . -' ••••, . 4 t; • .• .„. lir'. . t.11.....7.. -4 rr. * :•••,..v.., • .....--.)1t .....',....:. , ,. ki ; .).), • • .f., ; .. - :..., 1 ./ . , ; r ,i• l .47 ‘.., : - 4 ".• - 1 •,1,,- "I 4-710i gpfri. y....,..7-..-_e-....., -... ..r.. .t.....,..., ,.. .,". ) '. 1 ; .. •• 5 . •• I. 'i• i ••• • •'' -1 ; •• • 11 •• • / • . : • 1: • 11 u) •.* ..,,. .F.. 4. ' i';•=•.r:/•••21 acl ,ik•-•,•?-i-1 - • • . J;.. ..,,%, , 1,4,,:- ' , 1 , ' ; , , al, PI • . --- _. - 1 ,,L...-:•.;.\ 1.• •r . ' ,41,.. i./ ,.3 .; .:.....,,,,,..---'' 1 ' •••'• ' 'Li , r i• i%,4% ..,6 ! ,I..,, ! 1'2 . • •. • " . •1* • • . %...4 ) . * • -••1•1747';ic.:'16.: f.- ---. 1 r ,,..44,, . . . L. 1 I.h - -C'' • ' c •••••,. ..1 • n• •:•-.4- ‘‘..,;-""••••• t rIP- 6 r0 - • • ' - 0.0 : • • •-.0-. ...' -.• • . • • .. . 1 , :y4 ‘cir • ••••••,,,,I.-.;. ..0 -1,.• •• • :- • .• ... '•,..,•. !"- : 1, ; IF 1 .... '1 , ', i k n.! 1 i Lip V .c, . :.: '' ' •: '''''''' , 1, --, "-- • • •-• - -(-\* - . r -- Id-, • . • .i..t- , ; - •;••>'.. - 1.,rL.......-4 .',;• . •. 4 . - ••-. • ;1- *,..4 '. ,•:i.• '• •• •• ' P. '' ' : . -• • ' .... •-•'' ' - - 1 1'4'. • ,i I e . w AVVW•yl . i 4... ri.., .;. :••,0 ... ." ,; f.,p7..-.W.... - ilee....1 . •r• ....,,, i f.f.,11 • / 1 ; li• i•, 1 ' ' li - go [. ti k i r • 1 "':. - -1 • • • 1" a . . . ' ' - " . LI § A r ...V,,.11 Vri-2,•21; .4 • •••••:_••••• • - ' ' ''• : *••:', ',(;),•• !;.' 7 • • i * 1 6! 4 • • 7* ' - 4 1 1 • 1 - 4 ... s. : • $: '' 'IN` • '•■• 4 it' I" * 41 ' II - • 6 - • ',. •• • T.: • ■••• • ' - 144 WN '61 igl' " '0 ".1,1;;.6:-''• -•• ' * ' ( 1 • 4 7 ...-1'.`1* . :• ' '.••• 1 6' - t • : ' . • •1: L / I 1 i t "' - t .1 O..' .0,.•` i .' ';:.:•, ,7:I, ' - • . ' 1,..! 1:,•• g ::.: ••,.- -A, - •= ., :•-' ,- -, ,4 7 - .--•-tz'e-:• , --J-t-i.,,161'44.• --4-1. -.- , • . "•••••';••'i:: Al; 4 -- - ililuIr••• ' • • \,'' 1, • 1 ...cl• -, ? - ) .. 1.. • 1 ri• • im-11-1 "! • -' • 014 1 ' • , ,- 1 - .. . .1-1,;„.::,•'„* <• W il . .., , ; . `•.-•/• r `t-....t.-a• :,,:, -.• ...c.-,-,..4. •••*-7. '. ••,• " ••••' _'_..- , , -' 1 I •••L .. ', • . A • ■ . : . i .1! . .. /. • ' 1 . - - ''' / 1. . 4 ' • 9 ;.. ‘• . , 5 ; „-. ..-.,: ,.... -.,. 4. o-.,;,.. .i...7:•-: . .: J . • • • •,-- '.' I t• 't - l'•••• f - 0 1 ' I ' V i * II I - I' '17! "•1 ' ' t ' - ' 1C• 1 " : ' .. - 14. . ° " i 0 . 1,104,-,V.• cry...Z.:Nei 1/4 -1 A'- ‘1.3` :, ', • •-• 1 ;re tmli'Zi.;-1 ;le, •- . • 1' .,* 4 t ' r •••-••• • . •-• 41 1 - ilb • ) 2 t 1 1‘. ' • . 1. t • ,7;" ,.. 14 I ' .. '' a 2 . I --- • - -b„.‘.-- I.L.:,, - .... 7 6•71 2 •;?-,- •••••••-: • , ,‘••• ,,,,,,-., -.s „ ,•,•;•••••,--4.•••;.• - > .,,,_ ....„. •,,•11 • '< . ' • ' i i ....• / 1 1 - •• :LI .. • - 4 * - ' 1 i '•)=- :'' VI " • i , ,i• i $ ,.: 1 ck ° 1? • '''' . • shi'.. - . 6 .rt•`.1 • ".p`:.:.! f: • .' i ! it . ' ip [-„ ' , i : IIN ,,` : -:•-f.,• • ' F." I, . I 1 7 1 ' .1 „„i ...,,,,e. •......-- 6,..„..k ■••1:4 - .....+•..." , . , -$;,-1.: , - • ......'y's•M !. ,,,•,' .' 141- •** .• 'I-• ' r l ' • l'.. - • -4 ' - II I'''• • 'I 11P',.i. .,..:AN2--; , . --., .,,,„,_?.... •• ...„,--_--- - y - 1"...,c1; 0 ',.. ...,•.., ' . •, V ,.. ,... i , .....,,,..'" 'a• • • - , • • V'', :1 1 .1". 1.' i ., •• .. 4 ,••••••,••• . •• I . • . ,it,.,..f , , . . , • ••• I • , , $,.;%, . t ';';‘,; k ,IN.,• • • \ ,, 41, I ,;..-.•••,, -. ii.. ...ii.h,.. ; le... ' • • ,„„„.; - 11 - k; • ,.,-. • !Jil I :. :;•• - 4 • ! ,.. , -"`" ' •: § 1 i I r'''1,/ '• ---, ...-i - -, '31-‘..,,, " e•,1,4;:te . UP : . Ai.;-;,' V 1:•"' f• -..' .? --jt --• f • - 4 . 4 a i . . x ...., ••••mi•----- . . .i ...- 1.),...■ lf...• l•_ •,,•. : , Ili.. s • ' f•e' -;....,:-. ...•,../.:. ;6_ •,.,...7, ,... • •••• !1.44,,, •.r.:! ,: ; ,,1.1. i •• ;',...1 ..1.i., i i ., . i . •.' a Lf.4.4.1i. . , • . „ • • • it /4... P " • $ .' • •• ••• •2'11" ,;:•- .";:.= 1% s ii, J PV'-'• ;;....t ;1;' ;4," .' A' ,••• -1, I '1 , 14,L,•- :•;• •' -•,••••••: -'••••••••;°•-•'..: l'•:•!1' .• ,'•• I ? 1 2 ... l f• ta a i I v .. 3 -r !. 4 .1 -- ..; ',',..-"," -.;4.4,''... ... : ;,,- - 1,:,-1,,I,7-1-X.,/tf.„7*..' ,, .....tiz „,.., / • 'I.? • • - ••, . 1.,. ,. .., I Ls . .t1111, -,, ..' -- ••••••- !, ••,•-• • L N 1. -4-" I 11 ''.- .•':- r-r - -- , ?''''4:• , -' -- - , to. • ? •■ •• 57 . .. i i , ;'; ' 'Y'e.1,•:.:... I.4 1 [ On . -% • !'..;t7- k 4. ). p . •,,,-... • 'ph .. , .• 4 . J .Ir -I i II 3 I , .44. • - , , , ,, •- ■:,...4 . 1-0.,• ... , ,," , ,_,,, -1 .4',,,‘ , E . ,,Sr*! -. . , ‘.... , ,f_f,.. 4 •1., ,, t -• • 0:. 4 •, • ,' , •7. 1 .) - -/ - 2 .1 ..„ : 1!,K:N 3 ‘.. ...:6. 7.: . :1, ;• ' 1, , , A . . E --. 4 - ipV . el . ,, ! L: :74..2'.... )] , •t . ! !._ ...• • ' '''...L" I . - 1 : t. ' 1 •• •- • t i r :; ' 1 .1g . ,,T:i."'..( A " , 1 4 -!-• - •;?"-...., L -inivrtr-:• - •:-4±4.25:,V7,7-, - k:i. gik,'2 4-, • s!.. • .1 .4 IV 2 ..- i.,1 11 .;.. 411 - . \s'l , ..... 1 i,1 .! -,.,..,, I, .,.)T-% l'7 i 1 - •,4,:17;, 7 '‘,,-:^; -- =-4 . • • ) . • %,...„,.• • . : • . . ,-"f- . 1 . - . 7 OA • 4 4 , -I. ! • ,--- 11 1 ,. 1 •Y'•:::. ---r , - - e • • .' . :-,: • . - k ;t. I.' ' ' 1. 4-;;',' , • ...,''. . •••,,, :,•:.::::-- .., .1 • • , f,':.:7,. 4 L 4 I:. •, :11 ...;.-; , „-;;:. ' k i - _-..., , .. ;:::.;-.. ..:. . ,"•:'.i ,, .%.*!: -. ' ■I • ! i ll. .. '. ..... e • • ' 1' , \. . ,1 :. - . ) ' ' . • . ... : • ilr.•-iini, "aro ' - t 4 _ II, 'Is •••';1 ' ..-....:••••••• • - t71,, , ,,.c , I• -.-- ''..;.• -! :IA ',, .-.' . • , I • i;...-.. •-• • , 1.4. ,.., if .:,, i • 1 , , • „ , 0 1 , -Ce 140,, 1. 1 -,..-,....,;, :',1, -,,.,---:. ••■•• • -.•-•,•'; .! , • , '•••• • • •••••,- : lc' • • ji ,,;3: . ,., • ? .1 , : • ; , 1 II, • 1 in , .: ii ■1•. i- 1 ;. • ••, 1'; vtil -XIII 1 lel 1 s s 4::.z. • •‘--.:.!' ..: ' i :: c.c. . -: ••..... .i•.$1 A •„!,....•),..; Iligki41.,...... : ...'• • .6,.' li f 2 . .' ' V.,' 12 ‘ 1 , 2 •:•. • '1. 0 -II 1 Al laroali i 1 , ,, •;• , •- • •-.•••••,•,,... ,•• 1 •. _•.,..„...„,,-.- .. •-• • - • , • ,i i• • • ic • ' .) II; 1 - 4 I • if:z-• • -• ,2 -44 ° • t; 1 •-• " 1 .s.;.••:•• • • .. ., , - , .t.:.:• it. -t " ■••• ' .; • , • .. .* • , ./ • • .1.. 4 .4 ...'' • 311, 1 1 • I l'• . 11 • .. i A . ,t:••. 6 . , . ;,, _ .. . ..- , . • •••‘/,. 1, • •• ', • • • .. i .,, :.;• • ..,..,.,:• 7:1 ---.-: • .,- .-:-' ..:4• • 1 • .. ( • ' • • .1 I. j )1) ( •i '• 6 -t'' 1,1 a ' g 7 fi I • i if '111.11 4 , ,.... ; • 1 . „v• ., ., . :........ •......1.. ;.-..,.......,...... ‘1 ,•:, ,: .....,: .. 1 7 1• , ,......-,...' ;,... .- 4 . ......t yil s. 41 0 . ! - -.I., .111 e . , . g ir 1 1 , , 111:3 or 1 , . . - . . . P. ......,,, ., 1 I g ...1 4., .. , , .. „4 i.•,.r,..,..),,"„... 10.ii N ..1O1z..; •3 • . '•.; V•.. ''..: .' - t • . :. 1 ' . P ',1 4 ..• ;:;.'. s . ''''t.• ,. 1 - st iaw..: a . ,,,, , _ , , ...-•.....-.. ;., . •. 1 ; .. 1 4 , • i''',• • ". •;••••`••:-- • ,' •••• - '. . • .• • 1 1 .. : ,1 1 1 I , f ' • 1 - 37 141 1, - - .1 1 1 k ne I i it .:,:... ,.•••, . - • •••••.:,•',..,.•, i ..„• lic l'••• : ::•! .. .,...,• - ... " . • ......., ;; •;.,•1,, ,....• • .. ...i_ .. 1 • , , Y ; 1 • . .' . , .1„ i i " q Iii , p .t rn . 1 44 . 1. , . ,. ..t. iii r. vs i ; ii L. - '`• Z 1 . ,: -. - ,.,. . , --;.• f -. .. .. . • , ---1.-1 , : ".z._-_-: ....,,. • 9•_... .: ..„•,• . -- , l, --i i i . :It " va .P,L 1 ,. l .... ,.._ I! 4, i , III 1 . • 1 i . ■ t u .e." ...." ) T'..• ...• ..- -•:.-,-.-. ''\,\-..‘•,.../s. ' !•''. -,, 1 %. 1 • •••'...": ••• •...- ,1' .--. .:' i, '. '1 ' i 7 . 1 - • -- W''' 11 11 + ita r ik. , .".. .9. .1! .. . 1 1 1 ii ....1 : •, ...•...... . .. • • . • ... ... .1.•:.... , fIll t .,,...,, , • / i 4 :.- •f ,.......y ; ., , , tt . • : • ,...,.. .. • . . • . ... . .11 %„• ,. ..,• s ....,.!..., r; ..• 4.. ; • , • , . 44 ... , 1. . 0 +q 1 I 1 . I , • I . 1 1 .•• • • - .. - ... ": • I • , - •:•', • i. • .... • % • • ' ) .• ' ••••• .• . • .-..I .. , Ily ii -1..' '•• .i • i. 1 1,4 i .e 4 -•••• ' I 1 li r • ' .., o / u tli•. 1 I '' • •). .. s• ' ''.. . • ' ' ' '• • • 5 ' h • . ••••'‘ .. ' . :•. "7.7 •- ' ' ... '. ' • , 1 i 14 I 41 'I .. . . 11 1 i • . 1.‘' ..; ,1 0: L.' 7... .".:. ; ._ , -jr . •,.--- i -•:- = -- e r s i • •. t . :1 - • I 1 • . k %. • • \; • .;,..-...:-i• --,--. .---.: ...; .----.. ,-,-------',... • - .i.. I. ..9 • • f llli-ii 1(4 ' • I I v .v..... • . _J..; -...-1,-,--..,. •-• ...! i• , fl il . t••• Fir. •Il 1 11-1 ' ':' 1 T„ 1 2 , 1 2 J !. I :. : ..:j ..if II ,,, c I, ," it ....... . . I 'WO i•11,, I ,...... .... ii. : .L.,.) 5.:- 1 ‘ .- .- .....:•. .,,...,,,, -. -...., .... ,,-. :Li .*..... , rjr--'-"I •-.1 • , : '-'';,' 41 144! • , I - '0. rq l 'i III i . ir 0 ',,1 1 g it ,,. • : ;;;•••..... 4 •;‘ ‘s " )! 1,. ....-• ... . .1! '•:‘ I . :*. -:. ..;,....:47 e .. - 1. ........ • l ' 434 ifo .. *owl i if' \ k q, l 'id i' il l' ' . l ' , ./..:•••!' 11 P.... II ,. 1 1 111m - il,. ll k.,• j 4* 1 1;•- • 6 : • • • .-...•:,.. .6 ' 4 • r • • . . I' • . •• •-.. ! ''. '* • • •• --..•-••;!..'-:‘ .•••'•':.. , 6,. . $• & 5 S ; • VII' 4 • t 4 • sj t Ili 1 4 - • I'.. s.A '!. I 41 • '• 1 1 cc tu 0, 1 6 $ > 1 1 ' % : .....'•:''• ... t l ? .. . ‘• 1 •••• • . .. ..,...!.••••••••;:•,. .*: . 6 „• .• . ,. • ' 61 , s ' •- . ;. *! - •- .. " 1 . i •-1 2i.;: ' , 4 .:2.• ( 6.,N, • • ',/ / i •••,, .. 1 '331 1 4 . ' ,..•••• T. \..„: ,;.' 4 -i3/4•1'. i 1 . ..1., Affilbs • - 7 i -,..-1;' ./.'.....,,.- , ; , - .)...41 ..s. ...- ;•:,- -........• •• 1 • • .; / ) •••••-; .I‘ ' '' •*!. • le • , • ••••'41.• , '1 1. : , •' • Orr '' • ''i'l if ' ' k ' . ' 1 z *---4 -ii: , :,.... • .. ..:, • )., ....„....e. ...,. a • - • .. .T,.........:::. • , .... 1 , • : :„....,. ••; .••.•.. c. -...., ... • •••:•. . ,,, • • • - --. .-. .• •---, - •,••.: ••• i •• ,• • k. • • r .1.,,... 1 ! h • i.,.. • -, . . -... t • ; 1 •• ,'• ,) :•. , ' 1 ...-:•• ;I .:. i . • - • 7 . --- • - •71 --- i" • ` - 4 • .. .1,N , • , • . 7, --- 77' , ..- 4 1' , F . -7;;-i-...,....;:,...''• • • ' a ja. • ' .. ' 1' ' - '' °"0" ••:-. ,. . • L..... . , • , t 1,; i. • ,I.,...,,--. t , • . • , ,........,,, .,-..,.... A .• ,....,,,-, ,... _ .,..!..• I!: , ' . '.. i .,. I 4 .‘ ' . '.. ...` '..., r t .; i i,I....,,, , • .., 77 1 .. t . T.?•'• --••*---••7• • ' • 7•* - • ' 41 4 1 2 I *: ; sz ..•1%!'",:j ._._ . • ., .! • ' .. ••••• . • ' ' . . ' . •. - • . ' •••-.. " \ .. • .' • •-.., . •.: .,'.;.. •> 7 - i ;'' ? " . 1„7.‘ ' • ' • Pf • , 7. 11 1 • ...14 i'......_ °I - -- .7•/&. - -rm f ,1 -; • .-- •,••. • • .•• • - • \ • • i • 1 • •• % • • % • • ••••i 1 by• • ••• • ... • '• ' 1 •• • '1;••• ' • ''• •' '•'•• ' ••'• " ': ' 1 ''''''S' ' ' ' :....lk. l ' . . - "'' ' _ Ej*Ciii, = "' • I ; i''. 'f _ LI - , ..., .. ..... • . , . .,•• ,.... . , : • : .:, . ‘ „.:., .,„, • .:.... • i....? ,...---........ .....„..: Ie --, ,.c. •, • 6: ..1 L .P.V .. . .4I. 1 4.: .. r i-_-_,h. ,-,.• ji • .;. . . '" . '' • . • . 1*1 '• '..- '1 4 7 . ... A ....., ' . : • ••••,. . \ • s •i s !.. :1- ' ' , •': .! 1"-'. ...•.?..] ‘ •,".....s.L . .,-,..: • .;.:;n . :•'...: \ . . 1_ • • .) , _i a e 1,• •r1r4;4/11)::e.16.,), I .4,411 , 1•11F- , •• ',I, • - ..,• . . •I• • 1)..• -,•-• 1- , .• A - • • I , ` '• - . -- 1",• • -•••• ••••••,,•-•..-.-:',.. • .-, . • • r.•Ii' - ....'.p. •• / • . ii •.,: . r 41 •• 1 i7. '7•• II A. . .... '. s . t ,• I : ...P .'' •• I :. i,l; • •:1 . • • ; ' •• . I • - •1 .' • '• ...: ''.t.", • t ;•-.,**..,-.. -.22 ' I 'Il .. i ' • , "El . I,,., •- I,?ti Oirr7 . • i [ . , . .. ..I , .... • ...., „f ... • .... ... ., .•• , , ,.,. 1 p.,.,..... ,• 1 .,' I ••1 ,,'.. ',!., . •)• I . ' • 1 rig 1 A irr ., Y i.. • ,... • 47. ":.! . • -. 1... va , I '4 il, lic • e. 11 er.: if l ''':' la i' •••.:*', •, • 1)1, - . -• .;,.. .1 . . • -, , . ... - \ : el .-. ...., 1 . (.,...t, ,..,.., . f.,... • ..., .;<... , : •.• i• .: ... , ) -. • „ •• .-.• - i....,• ...• .. i •,..",..i • ..,...• 1, .,•.....;.- 1 t .. . ! • .. ..., .. •...- ....., ..r• ... ' ' - t • • I 1/4 j 1 1. 6. • 1 1* / • • • y. t• ,;•-• r• 1 , ,. • -: - , • - . , --' •T -':n "4- ti I , i • ,' 1 ., , ..•,.... . . , .. . • .7 - f••. I , ....'. f ...... . 1% • • j • •-4 .; • • ..' ',.• • / 4 ' • % •Vjg ) IT ••••,,,i --:. • rA I • ,, 1 • C . . i .. . 4 ;, ; . . • i •• / C 1 .' I • • ve : • . 1 r • - '.111 I , _ 11 f .• , 1 1- , , . . t_. , . • - - ".... • ..- . • .. ; • . .. ‘.... , 1 . • .. , , ,; . .. ,... t : ... .. .4,..... ,,, .. • .. , I: ......_ L ": : '•• .1 ' re 1 ...e . ", • k • • 'I . 1 il , I ,...: .:14 - . , • . •:•.. V• • 1 . P •• \*- .. • • •••••••••• i- 6- ••1-.;. !r• 46. .. Ls - • _ 1:is f. .,,4, ` -... 11 I e 1 ', • Z ..----7 7 .k. •••••••• 1 i c...... ..„ . 1i -• ;'.•:.'•,;‘,:.•-•••• •';:,...?- ' .. ;1'4' .),' .....,_. .-,. ....,• ...4,„ „ra,,'!*; 4 ' 71, 2 .' a ., ' '.1 •, 7 . ._ ,. ,,- e , r .--- • . 9,-6. - • / 1 ipti - 1 i . .r ti i• • * 4--..' I Wf 't'' l'.-73 font', . ' gid 4E( C.) 1 ,..: 1- t 9 / • ;3! • 4 / • • ....• - ••■■ .., . „,:, -e • ...,.. J.L. ' % '''' I. ili ! ii: 1,,,, . .....;:•• ... i es 1 /. 4 . 1.......;: . ieli. It 1 i 0 r-4: ,_., ' • • 140 4)..-1 c! ' e • ' li . I .1 1404,- -....- ' • 6t• t. '• ..... I bit ,i . .,,,,pif . AS• • ; 1, 1 • ; ezj : 31.' ..„,„ •,!, eiti •■ • ;":".".". ;(•.".r ...t1-3:".' ,„$•\•, ii- ' •' t m• ;,-", INNED .1 4 a . . I ,...,, •-.1 a * : • !"‘ .... i r Ca -. : 'Z 0 ' ii,,„ 7'' -. ..-.•.-.- ...,„ ; i -.A - 1 .:.;,;‘,., ,, / „,,‘ri.,-.1e;;',, 15.,..,L.,... ,......, %,1. A.,. , J.?... ..' . il 1 c:it l'... ,....••• r. l • . .---1 • - 14 l( C 4 1 '14 '. Si. rifir.• i. 0 V • . ••; lick: „ • ., v..., ..."4, 5.,... .....: .. , f 3: .,, .... if /Mt,. • 1 • , .1 Z It .„_14,c6a-•-' t' IV . •• :•411■1 1. .... - c, • _.../ . ' le...•"4. t q l , • k ' tilaAhl.; '/ ' • fl g 174; ..1 Cr 1 . .. . % •. . • I LD 1./,. '' ''• " IN ; .. = @.. 1 7: - i t .ti.$f !,,' :...),.p .‘ ., ,..,•.•• ,,‘ V,,‘ ‘ ,,/•• „,,-,, t! LLI 0 -• , ' ••f••••Y'"if' ' '-; -' ' M . - ', 111 :4e4ii 3....77.f t..(i 4 - ' ...„...:„.4.t.........:1.".i:4„. .\?. flt. --", . , ti , a:.( : ! , h , el '9.. 'e .4,..14, , , .. ,, ...•,,,„....; A '•■• ',., • . , , .. IA' " ,.._•..! •2. '2,1 % ;i :P4 4 ' 0•71' • •6 ', • ' /1 Ali 2;1 Pr./••• .... " .1 :14 IP 1.1.,..-v.'";,*iit ... 1 : - ...`, - 9 • • . ' / '•'■• ir,...• ' . ‘ : -.1.1"•11 r;tilliWir:. , . . .. '• ". ' I ' k - S.e... r ...t.,N,...-:-.••• -41' it. . . •.• 1,-,• 11.-.. I: .7 1•••• •, *, 4•7•.' , I. t /..41,1, • ... • , . !.. ' .. 4, • .• i . „ •• • . , . . . . ..._ ,. , . . .: , . ` , : :,,, „.• ./ 4 1 , ‘, •••2•••,..., . . • • • '•:f.t......; ,•• ,• :.L..7, •• • .• , • •' ''' •'' - S' •• ' • :, •••• • '1.,' ".P. • : • .i i i ‘ .. i fir . ' "r it 4 -' C•••■7■■ Q. • • .. . ..„ . . .. • • '' r 1 • 4.! ., - . 4..p,.... '...z V I•14. . . ,,,00,,,..isii,