Loading...
HomeMy WebLinkAboutSan Bernardino County Storm Drain Plan i REPORT ON THE SAN BERNARDINO COUNTY COMPREHENSIVE STORM DRAIN PLAN PROJECT NO.2 Cucamonga Creek Channel to Fontana Volume 1 Hydrologic and Hydraulic Design Criteria Prepared for SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT BY Moffatt a Nichol, Engineers 250 W. Wardlow Road Long Beach, California March 1969 E d ti CONTENTS Page General Analysis of Area 1 Design Rainfall 11 Rainfall Records 2 Meteorological Considerations 2 Time Distribution of Rainfall Intensity 4 Return Period 4 II Areal Distribution 5 Rainfall- Runoff Analysis II Methods Used 5 Adaptation of Summation Hydrograph Method 6 Loss Rates and Surface Detention 7 1 Rational Method 10 Design Procedure General 11 11 Peak Discharge by Hydrograph Method for Urban Areas 11 Peak Discharge by Rational Method for Urban Areas 12 Peak Discharge by Rational Method for Mountain Areas 13 I Loss Rates in Spreading Grounds 13 Storage in Infiltration Basins 13 Agricultural Lands 14 II Sample Calculation Drainage Area 15 Centroid & Curve No's. 16 II Rational Method 17 Hydrograph Method 18 Hydraulic Criteria General 19 Concrete Pipe Conduits 19 Trapezoidal Channels 20 Open Rectangular Concrete Channels and Short Lengths of R.C.B. 21 Transitions Between Trapezoidal and Rectangular Channels 22 Inlet Structures For Pipe 22 4 Inlet Structures For Channel 23 Multiple Box Culverts 24 Spillways For Diverting Excess Flow 24 I Acknowledgements 25 `1 (Continued) CONTENTS II Page Tables 1 Maximum Rainfall by Return Periods 3 II 2 Runoff - Rainfall Curve Number Index 10 Figures I 1 Study Area & Maximum 6 -hour Rainfall Amounts by Zone 2 Time Distribution of 6 -hour Rainfall 3 Areal Distribution of Rainfall I 4 Hydrologic Soil Groups 5 Land Use Zoning Plan 6 Synthetic Hydrographs for 100% Runoff 7 Lag Relationship I 8 Peak Runoff Rate vs Lag Time 9 Adjustment of SCS Curve Numbers 10 Loss Rate vs SCS Curve Numbers I 11 12 Intensity- Duration Curves - Zone I Intensity- Duration Curves - Zone II 13 Runoff Coefficients- Rational Method - Zone I, II 14 10 -Year Return Runoff Coefficients - Rational Method - Zone I, 25 -Year Return 15 Runoff Coefficients - Rational Method - Zone II, I 10 -Year Return 16 Runoff Coefficients - Rational Method - Zone II, 25 -Year Return I 17 Runoff Coefficients- Rational Method - Zone I, 10 -Year Multi- Family 18 Runoff Coefficients - Rational Method - Zone II, II 10 -Year Multi - Family Appendix A - Treatment of Rainfall Data 1 General A -1 Frequency- Intensity- Duration Relationships A -2 Determining Rainfall For An Area A -3 11 Ways of Expressing Rainfall Data A -4 Figures :] A -1 Intensity - Duration Curves Etiwanda Gauge A -2 Intensity- Duration Curves Mira Loma Gauge A -3 Intensity Duration Curves Fontana Gauge #17 A -4 Intensity- Duration Curves Fontana Gauge #18 J 4 4 . j II II GENERAL ANALYSIS OF AREA II The Study Area comprises approximately 110 square miles mostly of valley land between the San Gabriel Mountain foothills on the north and Jurupa Mountains on \the south and between Cucamonga Creek on the west and Sierra Avenue on the east (see Figure 1). The terrain II is primarily an alluvial fan which can be expected to have the hyd- rologic characteristics of a valley area. Typical of such a geologic formation, most of the surface soils in the upper parts of the fan I are relatively coarse and absorbent, whereas surface soils in the lower reaches of the fan and in established stream beds consist of finer materials of less permeability. 1 Isohyets of the March 1938.period storm and the 1959 -60 season total each indicate rainfall in the area ranging from about 14" near the foothills down to 8" near the Riverside County Boundary. The sign - ' ificance -_of this differential which appears to be repeated generally in isohyet.s for longer duration records is the apparent variation of rainfall intensity over the area for any rainfall event. This I variation must be taken into account in any storm drain plan for the area. Existing or planned flood channel intercepts just below the San Y LL I Gabriel Mountain foothills will divert the runoff from all but 200 acres of this mountainous area directly or through spreading grounds into main channels proposed to be constructed by the Corps of Engineers. II About 1400 acres in the Jurupa Mountains on the southeastern boundary of the Study Area, some of which are suitable for residential develop- ment, drain northward and thence westward along the base of these 1 mountains. Estimates of probable flow in storm drains of about the size required II for this area indicate that the time of concentration for a 14 -mile lined water course from the San Gabriel foothills to the lower end of the Study Area is not much over 1 hour. Hence, intensity -dur- ation studies must take into comsideration this limitation in developing II hydrologic criteria for the design of the system. On the other hand, the volume of antecedent rainfall significantly affects infiltration rates and must be considered along with the high intensity peaks that produce maximum runoff from wholly paved areas. II The only stream gauges in or near the area are on streams that carry the mountain runoff, and their records are not applicable to the 41! storm drain study. Even if they were available, hydrographs from local watersheds would not reflect the influence of future development and could not be used. It is therefore difficult to check the hydrology by means of local runoff hydrographs as would be desirable. The storm -drain plan must be designed on the basis of estimated runoff resulting from a design rainfall event which in turn is based on precipitation studies. The time - distribution of this runoff can best be estimated by utilization of measured hydrographs of similar basins. 1. . --� 11 I Much of the hydrologic analysis for the Project 1 area immediately west of the Study Area is applicable also to this analysis and is described in a report by Moffatt and Nichol, Engineers, dated April I 1966. Essential parts of the text of that report are repeated herein for the reader's convenience, but some of the detailed derivations and explanations are incorporated herein by reference only. 1 DESIGN RAINFALL 1 Rainfall Records The design rainfall event used in the hydrographic analysis of the I storm drain system must be derived from the records of recording rain gauges operating in and near the Study Area. Because non - recording gauges do not give the short duration peaks needed for this study, they cannot be used even though some of them have long periods of I record. Two recording gauges are well within the Project 2 study area, and four more are marginal to this area. Those within the area, Mira Loma and Etiwanda, were used as marginal gauges for the I Project 1 Study Area, but were brought up to date for this analysis. Five more years of record were available at Mira Loma and four more years of record were available at Etiwanda. The resultant adjustment II of intensity rates for these stations were in each case too small to justify similar up- dating of records from the Ontario and Upland gauges as reported,in the Project 1 Study, which are marginal to the west side of the Project 2 Study Area. The Fontana #17 and #18 I gauges, marginal to the east side of the Study Area, provided sufficient additional data and geographic coverage to complete the analysis. I For each gauge analyzed, rainfall- frequency curves were plotted from annual- series compilations for durations that ranged from 15 minutes to 24 hours. Several methods have been devised for plotting II such curves. The Gumbel Method was selected because it is used by the U.S. Weather Bureau and is more easily plotted. The records of the Etiwanda Gauge were kept by clock hours, and the curves were I adjusted for elapsed time by applying appropriate factors as determined from statistical studies. From a study of the various rainfall - frequency curves thus obtained, Table 1 was prepared to show, for each gauge for which a new analysis was made, the return period or ," frequency of peak rainfall intensity for various durations. Intensity - duration curves plotted for the various return periods used are '''Jli: presented in Appendix A. Meteorological Considerations The Southern California region is subjected to two types of rainfall events that produce widely differing results. The general cyclonic disturbances that result in widespread winter storms move in from r;:i-11 the North Pacific ocean with large saturated air masses that release their water content with varying intensity over a period of many -hours or several days. The more violent thermoconvective (thunder) storms are associated with solar heating of the land surface. They cause 2. cr _ - w al M to M CD N t0 N In Co In 0) N M CD V N to N ti - I _ _ - N N N O - - - N N O _ N N N - N N M Iv) Cr O Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 0 6 , f` M — — to O M CO CD In %:s- N V o V t0 — tC O 4}' Z 117 1. to EA N 117 O 1 (0 M O N In M CD d M P.D. O C) I (V nj M V In (0 in — N) M Ti in to N M V In (0 tC K) In to 1- CD 0) CC = N CO N ti - In in N (0 N tD O M M 0) CD 117 - N N M M - N N M N) d: N M M d: 117 (0 O Z O O O O O O O O O O O o o O O O O O = V - to 0 t0 - - Co - 03 M tD In CD 0 0) ti N- in N I N V - t0 M N- N P- — N N K) K) V N M M Ti V N M V 117 to ti tr d' N CO In 0 in CO In 0 (0 0 V. M - ti V 0 In it V N M O co Cr = N M M V to in - N M M V V N rr) M d to In M V In (O F- ti O Z O O O O O O O O o 0 O O O O O O O O O O O O O O to V M CD 0) CD 0 C) V t0 co ti N In 01 01 ti - In N N. Z V O N w C) N _ En ti - V (o M CO N (O 01 N co w 1� N to ' — _: N N N M — — — N N N - - N N N K) - N M K) d' d Ci N - CO t0 N ti CD C) 1� t0 M O CO M M t0 in V cr = M V o re) V V In (0 t in t0 ti CO V cA N- CO 01 o I M Z O O O O O O O O O O O O O O O O O — V M t17 — K ) to in CO M N N O (0 t0 t0 - 0 CO N Z (0 CO - N M 0) - M Cr t0 0) N V ti 01 0 O O O O O O N I ii ti --w M (c‘51) — CO ti � (0 N ti — — f In ` M V In cc = V I� - CD O V In to t` 0) 1 CD o) V) (o IT — m O — 2 ti ao O N D z d 6 6 6 6 - 6 d 6 6 6 6 6 6 6 6 - — 6 6 6 — —— I _ 1• - - M N - V CO r- C) 1- (0 N t- CD - - - CO In ti M ct Z V tG ti CO 0) O V In (o ti CD 01 In CO 1- 0). O - in ti CD O N 6 6 6 6 d — 0 0 0 0 6 6 6 0 0 o - - : — 6 6 6 — — I ci i O V O — to — (0 (0 0) to ti 0) 0) V in CD CD ti • w CO 0 N M In (o co 0) N M (0 CO O 0 N ■ Z O O — —: -- — O O O —— — O O O — — 1 dc 0 0 N O O CO in M M 0) r V 0 V N 1 - Cr C) V M Z ) V In t0 (0 N. M U") V If) (0 i.- I) V d: In In co '- O O O O O O O O O O O O p O O O O O T. O N V - N N CO - N a, 0) co M CD V _ Z T. O M to CD O CO N V to CO O. CD O N V t0 1-- F.- O — — — — N O — — — — N O O co V O to - N - In N ti N - N- - W O V • N N M V V in N M M d: a IA N N M M 4 V — 6 6 6 6 6 0 6 0 0 0 0 0 0 0 0 0 6 0 ii Z 0 Cr ri c d fi 1r ci ri Er li ci fi ci f: ci fi ci fi Ir ci — r r >^ >- >- r >- >- >- > - )- r r >- r >• r > - r > >- >` > - >- N In O M O O N M 0 2 O O N In 0 M O O N M 0 In O O "Z. w f- W _ N En O _ N I n p — N In O - N In p Q Z 3 � 2 c z 3 u- # c? 3 u_ # 0? 3 u_ • Z 1j N O J V V 11� N Q -U N M M Q 1n M O D Q 3 - - — _ _ aD Z v (o In '� Z c5 o to N cz t Q N M j Q • O M> I-- m O N I— m N 7. lin OW C9 I..-. 4 1` J (n Z ti J Z (n ° ti J Z vi P J W M W c v In - w Q M w 0 '.' M w rG LL. M 4 CHOL.IN.NIER3 RATT s MAXIMUM RAINFALL BY RETURN PERIODS TABLE 1 LONG MACH. CALIFONNIA 3 J 1 rainfall ranging from light showers to cloudburst -type downpours of short duration over relatively limited areas. On the desert side of the coastal mountain range they often produce flash floods ' of great damage potential. In the coastal valleys, while they are often more intense than cyclonic events for short periods of time, these thunder storms usually fall on relatively dry ground that ' absorbs a very large part of the total precipitation. Over larger areas of granular soil especially, these storms seldom produce large amounts of runoff. They must, however, be considered in the design of drainage systems for small areas. The Project 1 report presents additional data demonstrating the greater flood - producing effects of the general storms where relatively large areas are involved. Time Distribution of Rainfall Intensity The critical effect of antecedent moisture conditions requires a study of the time - distribution patterns of rainfall intensity within the general storms of the area. The greatest loss rate and least runoff for any given storm occurs when all the high- intensity pre- cipitation falls on highly absorbent ground in the early minutes of the storm before the surface soils become saturated. Then, as the Clayey fractions swell and soil porosity is reduced, and as the surface depressions are filled, a higher percentage of the rainfall is converted to runoff. However, the precipitation rate at that time may begin to diminish to give a more or less constant t low rate of runoff throughout the storm period. In mountainous regions this sometimes occurs, but in valley areas the trend is toward the reverse of this process, with the heaviest rainfall occurring during the middle or latter part of the storm when soil ' conditions are most conducive to rapid runoff. The U.S. Soil Conservation Service has made a comprehensive study of storm -rain- fall distribution patterns throughout the nation and has adopted standard patterns for a 6 -hour storm to be used as design rainfall events for each of three different geographical areas. The most conservative from a storm -drain design standpoint is the "C" curve of rainfall distribution prescribed for Southern California. The ' Project 1 Report presents additional reasons for adopting as a design criterion the SCS "C" Curve of rainfall distribution modified to give a most intense hour of .36 times the total rainfall amount. ' Figure 2 shows this modified "C" Curve applied to a rainfall event of 6 -hours duration. ' Return Period Authorities differ in their recommendations as to the proper return period for a rainfall event to be used for design purposes. It is generally agreed that a short period such as 5 to 10 years is sat- isfactory for small areas not exceeding a few square miles. The difference in runoff between a 10 -year and a 25 -year rainfall for 11 such an area can usually be handled by street and gutter drainage without appreciable damage to property. No specific studies have been made of potential damages that would be sustained by designing 4. 4 . N II small -tract drainage systems for return periods of less than 10 years, and the choice is usually left to policy established by City and County Governments. In this study a 10 -year return period is used for the design of intermediate storm drains, with rn streets and gutters to be designed to carry the difference between a 10 -year and a 25 -year runoff. Main storm drains are designed (with a few exceptions) for a 25 -year return period, with provision I for spilling any excess into north -south streets. Main channels in natural drainage courses are usually designed for a 100 -year event. Areal Distribution II f one rain gauge is, of course, valid only for the The record of any g g , immediate area in which it is located. When a peak intensity is recorded, the storm center has reached a point nearest the gauge, and one would expect to find less intense precipitation elsewhere in the surrounding area. Thus, the intensity- duration curves for I any one gauge are representative of only a small area, and reductions in intensity are allowable in estimating average rainfall over areas larger than a few square miles. Extensive studies have been made I of areal distribution in the eastern part of the United States, but authorities differ as to the allowable reductions for areal distribution on the West Coast. Figure 3 shows several curves that II have been suggested and a few area -depth curves for specific thunder- storms in the Los Angeles area developed by the Corps of Engineers. The latter are generally too liberal for design based mainly on the cyclonic winter rainfall. A more conservative curve is recom- mII ended as also shown in Figure 3. Another effect of areal distribution is the average variation in II maximum intensity of rainfall for each event as recorded from gauge to gauge throughout the area. The variations that occur in any single storm may not be indicative of a trend, but the averages of many storms and comparison of average annuals of total precipitation { II do show a definite pattern. By using this pattern as a guide, the 6 -hour rainfall isohyets for a 50 -year return period maximum storm, as presented in the Project 1 report, were extended through the Yr I Study Area These isohyets are shown in Figure 1. In order to simplify runoff calculations, the Study Area was divided into two zones in each of which the design rainfall is considered II equal throughout the area. Figure 1 also shows the assumed rainfall amounts for a 6 -hour event with 10, 25, 50 and 100 year return periods to be used for runoff calculations in each of the two zones. RAINFALL - RUNOFF ANALYSIS 1 Methods Used • II Several methods of determining runoff for small units of land are currently in use, the most common being the Rational Method or some modification thereof. This method is applicable only to small areas 1 5. (:) 1 11 (up to about one square mile without modification), as it assumes constant - intensity rainfall and uniform areal distribution. When applied to a large area, it tends to be overly conservative for the design of main channels or storm -drain trunk lines. The more I rigorous methods utilize either a flood- routing procedure for esti- mating the combined rationally- determined runoff of many small areas or a combination of inflow and outflow hydrographs. The latter I forms the basis for the method used in this study for determining peak runoff from areas larger than about 300 acres. ' The inflow hydrograph is essentially a plot of effective rainfall . intensity against duration time for any given rainfall event. If such a curve is integrated to show cumulative total rainfall instead of rainfall intensity for the ordinates, a summation curve results t which can be made dimensionless by using percentages of total rainfall for ordinates. As explained earlier, the modified "C" curve of the Soil Conservation Service is used to represent rainfall distri- II bution for the design 6 -hour rainfall events in this study. Adaptation of Summation Hydrograph Method II Outflow hydrographs are preferably derived from stream gauge records for the area being investigated, with the ultimate development of the watershed completed. Because no such records are available for II the Study Area, synthetic hydrographs have been derived by trans- position of summation hydrographs from similar areas outside the Study Area. The average of summation hydrographs for. Alhambra Wash I and the Broadway Drain in the nearby San Gabriel River Valley area (hereafter referred to as the Valley S- graph) prepared by the Corps of Engineers is used in this study for predicting future runoff in I the Study Area. The actual procedure for doing this is explained later under "Design Procedure ". Appendix B of the Project 1 report contains a full description of the method by which an S -Graph is it applied to develop synthetic outflow hydrographs for areas similar to that from which the S -graph was derived. By this process a hydrograph was developed for a modified "C" curve rainfall event of 1 inch amount for each of several different lag times. The II result is the family of hydrographs shown in Figure 6. Lag time is the elapsed time from the beginning of continuous unit I effective rainfall to the instant that the discharge rate at the collection point of the area in question reaches 50 percent of the ultimate discharge rate. Figure 7 may be used to estimate lag time for all parts of the Study Area. For a design event of more I or less than 1 -inch total rainfall amount, the ordinates of the proper lag -time hydrographs in this family need only be multiplied by the actual rainfall amount in inches and the watershed area in II acres to obtain a hydrograph of runoff at the collection point with ordinates in cubic feet per second. If only the peak rate of runoff is required for any given lag time, the curves in Figure 8 II may be used, in which only the peaks of the Figure 6 hydrographs are plotted against lag time. Either way, the predicted flow is for 100 percent runoff, assuming no losses. II ''? 6. i 4 11 II Loss Rates and Surface Detention Before attempting to convert design rainfall to net runoff by the I method outlined above, it is necessary to determine the effective rainfall by considering the various absorbing or retarding effects of the land itself and the land cover. Of the several modifying features normally considered in rainfall- runoff studies, some are I not present in the Study Area and need not be considered. The storm -drain system will normally remain dry except during storms, so that no base flow is present. The water table in the basin is I so far below the surface that effluent from that source is not a factor. The substrata of the alluvial fan apparently do not contain impervious layers that might cause artesian flow, and water once infiltrated below the surface will not re- appear as surface water I farther down the slope. Except in the recharge basins, no major depressions exist, and the antecedent rainfall at the beginning of the most intense hour of the design storm is assumed to have filled I all the minor surface depressions. The elevation of the adjacent land above the channels and storm sewers is so slight that return flow of soil water is not anticipated. Only surface detention, I evaporation and infiltration, together with the modifying effects of the hydrograph shape need be accounted for. In the summation - hydrograph method as adapted to use in this study, II the curves in Figures 6 and 8 account for surface detention and channel storage by relating them to lag time. Loss rates through infiltration are determined by delineation of pervious sub -areas I and calculation of loss rates in each sub -area. Evaporation and transpiration rates are usually minimal during the runoff period, and total losses vary almost directly with surface infiltration. II In the Rational Method, the surface detention and loss rates are accounted for by selection of a proper runoff coefficient. If this method is expanded to cover large areas, a flood- routing pro- , cedure also must be applied in order to account for channel storage and off -peak contributions of side channels. For this reason, the Rational Method is used directly in this study only to determine II the runoff from small sub - areas. The Soil Conservation Service has made extensive studies of infiltration I rates in various types of soils under various conditions of cover and cultivation. It has been found that the infiltration or loss rate for any given soil varies throughout the period of rainfall, I decreasing with some function of the cumulative rainfall amount. The loss rate for pervious soil usually exceeds the rainfall rate during the early part of the storm, and consequently no runoff from the pervious areas occurs at that time. When the rainfall rate I exceeds the loss rate, runoff occurs. Then, as the storm recedes, the rainfall intensity again drops below the loss rate, and the pervious areas cease to contribute runoff. II 7, itti_______ ;/ 1 1 If I represents the initial abstraction of rainfall by infiltration and surface storage prior to the beginning of runoff, and S represents the total fraction of precipitation that is "stored" through infiltra- tion and various surface retarding effects throughout the rainfall event, it is found that I is approximately one -fifth of S. This ratio holds true for both large and small watersheds in various t parts of the country. With this relationship, it can be shown mathematically that: _ (P -0. 2S) (J P +O.8S I I, I where Q = total runoff in inches, P = total precipitation in inches, I and S = total storage in inches. The Soil Conservation Service has plotted a family of curves ex- I pressing this relationship of runoff to precipitation for various values of S ranging from 0 to infinity. Each curve is designated by a curve number (CN), and the value of this number is determined by the formula: 1000 CN= I0 +S I CN 100 is the curve for S =0 inches (total runoff), CN 90 is the curve for S = 1.11 inches. CN 50 is the curve for S = 10 inches, etc. Different types of soils have different infiltration potentials II and have been classified accordingly into four hydrologic soil groups designated by the letters A,B,C and D in decreasing order of permeability. The permeability of each group, in turn, varies with the type of ground cover and cultivation as well as with the II general hydrologic watershed condition. Except for spreading grounds and natural mountain areas, ground cover in the Study Area is considered to be either 100% impervious (roofs of buildings and II paved areas) or lawns and gardens. A standard set of hydrologic watershed conditions numbered I, II and III are used to modify the curve number prescribed for a given soil II group in accordance with antecedent moisture conditions. In the Study Area, condition I is assumed to prevail when the 5 -day ante- cedent rainfall is less than 1.4 inches; condition II, when it is I between 1.4 and 2.1 inches; and condition III when it is over 2.1 inches. The longer a major storm lasts and the greater the total rainfall amount, the lower the infiltration rate is likely to be I at the time of most intense precipitation. Also, with rainfall events of long return period, the 5 -day antecedent rainfall tends to be greater because of the meteorological conditions that produce such events. It is estimated that events with return periods up I to about 10 years will be accompanied by antecedent moisture condition I; events with 10 to 100 -year return periods, condition•II; and events with over 100 -year return periods, condition III. Figure 9 was I prepared on the assumption that condition II in the Study Area applied on the average to a 50 -year event. It may be used for adjustment of curve numbers to conform to the return period selected for design II purposes. 8. liri ii I Figure 4 is a map showing the breakdown of the Study Area by hydro- logic soil groups. Anticipated ultimate cover conditions are shown on Figure 5, and a study of this map will show that the cover condition of much of the Study Area is forecast to be urban residential develop - ' ment. Because the sizes of future lots and other factors that will contribute to the creation of impervious areas are not known, it is assumed that 75% of the residential area will remain pervious for I loss -rate calculation purposes. Actually, the percentage will be I smaller than this, but most roofs drain into gardens or lawns, and many walks and driveways also spill over onto pervious areas. The remaining 25% is assumed to be impervious and hydraulically connected II to the drainage system. The industrial - commercial areas are assumed to remain only 10% pervious, while infiltration basins and spreading grounds are assumed to remain essentially 100% pervious. II During the central part of the storm, the pervious areas contribute to runoff by the difference between the 100% runoff hydrograph and I the loss rate. The loss rate gradually decreases throughout this period as the moisture front moves downward through the soil profile, but for practical . purposes in computing the net runoff, the loss rate is usually averaged out as a horizontal line on the hydrograph. I Figure 10 was prepared to indicate average loss rates applicable in the Study Area for various SCS curve numbers. The Soil Conservation II ' Service has prepared tables and charts that give runoff data for the various curve numbers. The loss rates that are applicable to the Study Area for various curve numbers were determined by adjusting I the position of the loss rate line on the Figure 6 hydrographs until the enclosed area equaled the total runoff for the curve number being evaluated, as determined from SCS tables or charts. The loss I rates or values of "f ", thus determined are those indicated in Figure 10. These loss rates were found to have minimal error for all lag times from 10 to 60 minutes. Attention is called to the fact that the loss rates obtained from Figure 10 are not necessarily I the infiltration rates that would result from sprinkler tests. The shape of a hydrograph influences the value of "f" but would not affect the infiltration rate for a specific test plot. I The Soil Conservation Service method of runoff calculation was developed primarily for agricultural areas and range lands. Conse- quently the loss -rate curve numbers recommended in the SCS publi- ' cations do not pertain to urbanized areas. Both Contra Costa and Santa Barbara Counties have adopted the SCS method of hydrologic soil classification. They have checked their loss rates in urban I areas with each class of soil and found curve numbers that give good agreement with actual runoff for various antecedent rainfall conditions. As a result of their findings, the following curve I numbers are recommended for the pervious portions of land in the Study Area. 1 9. II 01 . i A I IZ TABLE 2 Runoff- Rainfall Curve Number Index I (SCS Curve Number for Urban Area S- Factors) Hydrologic Soil Group Return Period A B C D (CN) 1 10 year 50 6167 73 25 year 56 67 73 77 50 year 61 71 77 81 II 100 year 65 75 80 84 Note: These tabulated Curve Numbers apply only to I uncovered portions of the drainage area. Those portions that are impervious and are hydraulically connected to the drainage system are considered to contribute 100 1 percent to runoff. Rational Method II As stated before, the runoff from all areas smaller than about a square mile may be determined directly by the rational method. First, the time of concentration at the collection point must be I determined. This is accomplished by assuming an initial ten - minute period of overland flow to the most remote gutter (usually a distance of one city block) and adding the estimated channelized -flow time I from there to the collection point. With this method, the rain is assumed to fall at a steady rate during the concentration period. Therefore, the next step is to determine the intensity from the intensity- duration curve, (Figures 11 of 12) for the return period I selected, the duration being the time of concentration. These intensity- duration curves were derived by smoothing the curves obtained from analysis of the various gauges as presented in Appendix A I and selecting average amounts for the rainfall zones shown in Figure 1. Finally, the discharge rate at the collection point is computed as some fraction of the precipitation rate by use of a I runoff factor "C" and the formula Q = CIA, where: I is rainfall intensity in inches per hour A is the tributary area.in acres ::1 Q is the discharge rate in cubic feet per second. The runoff factor is not a constant for a given soil type but is a I function of rainfall intensity and loss rates. The curves in Figures 13 thru 18 give values of C computed for use in this study by the formula: 1 C = K (i ( %Pervious) + K(% Impervious) where I is the rainfall intensity in inches per hour as obtained I from Figures 11 and 12 for durations equal to the time of concentration, f is the loss rate for pervious areas obtained from Figure 10, and K is a detention factor obtained from comparison of (I -f) values with 1 10. ''("71 . the results of runoff studies for various soils made by the Los Angeles County Flood Control District. The value of K has been selected as 0.85. It will be noted that the Land Use Zoning Plan, Figure 5, shows no areas to be 50 percent pervious, although Figures 17 and 18 present values of C for this percentage of open cover. The reason for this is that the zoning was deliberately restricted to the two percentages shown to simplify the calculations. Actually, it is anticipated that in some strips of marginal subareas between single - family- residential ' and industrial- commercial zones the growth will tend toward multi- family housing with an average cover of about 50 percent pervious and 50 percent hydraulically connected to the storm drain system. In determining the internal drainage systems for such subareas by the ' rational method, the C values given in Figures 17 and 18 may be used. Although pipe sizes for this internal system will differ from those computed under the Figure 5 Zoning Plan, the larger drains of the ' comprehensive plan into which they will flow will be adequately sized to receive the runoff. 1 DESIGN PROCEDURE General The entire Study Area is divided into drainage subareas of approxi- mately 80 acres each, as preliminary calculations indicate that most ' of the runoff from smaller areas can be handled by street drainage or small pipes or ditches. Certain additional design aids are on file at the office of the San Bernardino County Flood Control District. They include reproducible calculation sheets on which the discharge rates for each system were determined, and 22 drawings all File No. 1 995 - 2, comprising: three (3) drawings indicating the existing and proposed storm drain systems; two (2) drawings breaking down the ' Study Area by Hydrologic Soil Groups; two (2) sets of seven (7) drawings giving planning data for the comprehensive system and for the individual subareas, and a key map for these fourteen (14) t drawings. Prints of applicable drawings should be obtained from the County Flood Control District prior to the development of an internal drainage system for any particular drainage subarea. Prints of applicable calculation sheets may prove useful in understanding how 1 discharge rates were computed for any given reach of a particular drainage system. Peak Discharge by Hydrograph Method for Urban Areas 1. From examination of the map contours and aerial photographs, collection points for each area are designated and studies made ' to determine the best system of conduits and channels to carry water collected from all areas to infiltration basins or to one of the major storm drains. The tributary area above each collec- tion point is delineated and analyzed to determine the peak dis- charge rate as indicated in the succeeding steps and the sample calculation on pages 15 thru 18. Centroids of irregular shaped areas are calculated as indicated. 11. 1 2. The lag time of the tributary area is determined by use of II Figure 7. When the computed lag time is less than 10 minutes, the Hydrograph Method is not used. Peak discharge for smaller subareas is calculated by the Rational Method. II 3. The 100% peak runoff for each tributary area in inches per hour (approximately equals cfs per acre) is determined by use of Figure 8. This is the runoff that would occur with a completely I impervious area. The rainfall zones for the Study Area are shown on Figure 1. II 4. Each tributary area is then further subdivided by type of cover, i.e. urban residential, or commercial- industrial. Through use of the pervious- fraction factors assigned to each cover type shown on Figure 5, the total pervious area fraction of each tributary II area is determined. 5. By considering the approximate percentages of each hydrologic I soil group in each tributary area shown on Figure 4, a weighted- g average SCS curve number is assigned through use of Table 2, and the corresponding loss rate determined through use of Figure 10. ' II 6. The gross peak runoff rate for the pervious area is determined by subtracting the loss rate from the 100% peak runoff as deter- mined in Step 3. ' 7. The net peak runoff rate from the pervious area (considering the tri - butary area as a whole) is determined by multiplying the gross peak- ' runoff rate by the pervious -area fraction as determined in Step 4. 8. The impervious fraction of each tributary area is determined I by subtracting the pervious fraction from unity. Because this part of the tributary area is hydraulically connected to the drainage system, it has no losses and its contribution to peak runoff is determined by multiplying the 100% peak runoff rate All from Step 3 by the impervious fraction. 9. The total peak runoff rate is determined by adding to the net ' peak runoff rate from the pervious area, as determined in Step 7, the impervious contribution as determined in Step 8. 10. The peak discharge rate in cfs for each tributary area at its collec I tion point is determined by multiplying the runoff rate in inches per hour, as determined in Step 9, by the tributary area in acres. 1 Peak Discharge by Rational Method for Urban Areas 1. For drainage subareas with lag times of less than 10 minutes, the I time of concentration at the collection point is estimated as being the initial overland flow time of 10 minutes plus the time of flow in gutters and conduits from the most remote part of the subarea to the collection point. I i is determined for r do e 2. The peak rainfall intensity a duration n ual to q time of concentration by use of the proper intensity- duration II curve of Figures 11 or 12 for the selected return period. I 1 12. 4.414i 3. From Figures 13 thru 18, the proper runoff factor is determined considering the hydrologic soil type and the average of cover of the drainage subarea. II 4. The discharge rate at the collection point is determined by the formula Q = CIA. II Peak Discharge by Rational Method for Mountain Areas 1. For drainage subareas that are all or mainly in the mountain I foothills, the time of concentration at the collection point is estimated as being the initial overland flow to the nearest creek bed, assumed to be 5 minutes, plus the time of flow down II the creek bed as determined by the relationship T = L/V, where L is the length of the creek bed in feet and V is the average velocity in Ft. /Sec. as determined by Manning's formula: II V = 1.486 r 2/3 gl / n II If it is assumed that r==1 ft. (usually valid where L.(1 mile) and n =.030, the formula simplifies to V = 50S" where S = the average slope of the stream bed. II 2. The peak rainfall intensity is determined for a duration equal to time of concentration by use of the proper intensity - duration curve of Figure 11 or 12 for the selected return period. 1 3. The discharge rate at the collection point is determined by the .formula Q = CIA, where the value of C is 0.70 or that obtained I by use of Figures 13 or 14 (Residential) if the combination of soil type and return period results in a higher figure. Loss Rates in Spreading Grounds I The spreading grounds and infiltration basins in the north part of the Study Area are in coarse -grain soils and are maintained to assure I ponding and to prevent pore - clogging. Tests indicated an average infiltration rate of about 1 inch per hour while these grounds and basins are under head of a foot or more, regardless of antecedent I rainfall. In calculating peak runoff rate from any area which includes such grounds or basins, a weighted loss rate should be used, taking the loss rate for the effective spreading areas as 1 inch and the loss rate for the remainder of the area as determined by use of Figure 10. I The infiltration structures in the south half of the Study Area are all in less pervious soils and will have loss rates only slightly I greater than their tributary areas. Hence, no increase in loss rate is allowable in calculating the outflow from them. I Storage in Infiltration Basins Studies were made to determine whether the design discharge from • certain infiltration basins could be reduced through consideration II 13. Ami i -- --wad 4 ' of the storage capacities of these basins. Extrapolation of the 25 -year return period intensity- duration curve for Zone II shows that the two -day storm yields about 8 inches of rainfall and the 6 -hour storm yields about 2.4 inches. If the design 6 -hour event ' occurred in the final six lzours of a two -day event, the first 5.6 inches would overflow any basin under consideration. Thus, the outflow structure for any basin must be sized for the full runoff ' of the 6 -hour design event assuming a full basin at the beginning of that event. Agricultural Lands At the present time, considerable land in the southern part of the Study Area is devoted to agriculture and dairy pastures. Existing ' land -use zoning maps show much of this area as remaining agricultural under the ultimate development plan. However, the future growth pattern may force a change to residential or even industrial use ' in some parts of this area despite efforts to retain the present agricultural status. If the drainage system were for agricultural use with its inherently high loss rate and low - runoff ' characteristics, it would be grossly inadequate in the event of such a change. Therefore, the entire agricultural community is shown in Figure 5 as zoned for residential and industrial - commercial ' use. It should be understood that the zoning change in this report is merely a device to assure a storm -drain system of adequate capacity II for an ultimate development which may occur many years hence or possibly not at all. It is not intended to set a precedent for future planning or to suggest modification of existing zoning plans that are geared to the present and immediately forseeable future ' economy of the area. Until a change in land use occurs, it will probably be desirable to extend the drainage system from the north through the agricultural lands in open conduits. Implementation ' of the prescribed local drainage plan for these lands should be deferred until the change in land use actually occurs. * * * * * * ** 1 14. OFFATY t CLIENT S f L f L D JOB NO.' L - /2 .54 $ICMOL. ENGINEERS QO/7Ic/'e C / U /O 7 i2g Drainage Area PROJECT� / " / '/ CALCULATIONS FOR LONG BEACH, CALIFORNIA MADE BY OH./Y/. DATE /O i8 -66 CHECKED BY A, D. DATE //16-6e3 SHEET / OF 4 1 7 0`;\C‘ 1 0.25 1 Zone — - _ --. E - 7 % Pery ous .50 %A 40703 ----- Soil 7y o /0%C 1 %4- 804 - Acrecge Collect/co Poi27t ©� I c Surface EAT. 0...___ Area 0.25 A f I 17 17 S0 %A 5'0 %A Z .50%5 .�0 O L en th in Miles -_- r 0 50 A - 20,, C 9 , ° a 80A 1 1 C 1 0.25 C 9 B \c3 _ - - -- ,Branch /Dra /r7s I /OY, /,'cfurn Period 1 I7 /0 17-/0 17 /00 70A ,50 % A 50%4 80A ,50%,O , 50M o © BOA M 80A 1 o 0 0 0, NtA F E A # I 1 Difference tic/wee/7 tic/wee/7 /0 fl /25Yr Axis for-j-- k.: ,, Main I�ro�n A.. furn Perioo'fo be Picked U Ccn /roid ; 25) X Per fro/77 i/reef f /ow ,B Cafch 3a51/7.5. 1 of Arca 1 o y Cc /cU /ciix 1 III 15. 7 Vhi CLIENT II OFFATT t S. /3. C. F. C. % Z /254 i �IGNOL. � NEINEERf Soivp /e Ca /cv /ofior7 Cenfroio' No's. PROJECT CALCULATIONS FOR 1 LONG BEACH, CALIFORNIA 4�,,// R R J� J ;' I MADE BY ' OA '���' DATE /�/" 6 " CHECKED BY�'' n � DATE // /" + SHEET " OF 4 SUB So/Z. TYRES AREA x y A RE4 A B C D (ACRES) WILE) AX OW/LE) A y i 0 - 0 /20 96 24 - 240 0.625 /50 0.75 /80 ' x= /50/240= 0.625/m: y= /80/240= 0.7,5mi. LcA - 0625-0.50 = 0125/Tu. LCAy =075 - 0 =0,75m/ '' I/o /ves ofLca L CD Col/cc/ix ioirnf.0 LCA =LcAX tLCAy =0.. /257'4.75 =0.875m/. ' L =0.25 7'0.5 7'0.57'0.5 = /.75/77. - 25 Yr CN =C/20(56) /96(67)7'24 (73)7 -240 =62 1 /0Yr. CN=[/20(50)t96(6/)7 =56 0 - ® /20 96 24 - 240 /50 /80 1 0 - 0 80 80 __ - /60 0.375 60 0.50 80 200 /76 24 - 400 2/0 260 I R =2/0/400 = 0.505rm. 9 = 260 /100 = o,65mi. Lcg =0.525 - 0.25 = 0,2757n/: LcAy=065 0 =0.65/771. I Va/jcs LcA L C' / %fior7 Po/%7f E LC = LCA)( t L CAy = 0.275 7 0.9250/' L =025 7'05 7'0,.57'0.57'0.25 •2.0/77 /. 1 25 Yr CN -(200(56)7'176 (67)7 =400 =62 1 I 0 - 0 200 /76 24 - 400 2/0 260 © 80 80 0./25 /0 0.25 20 I 280 /76 24 - 980 220 280 x` =220/450 = 0,46on; y =280/980 = 0,35/77 . LCAx = 0.96 - 0 =046m/ LcAy = 0.58-0 = 0.58mi. Va /ve5 ofLca eLP Collect/a/7 Poi7ff LCA= LCAxtLcQy = 0.967'0,56= /,OQow: L =0.2510,57'0.57 =2.25/ni 25 YrCN [280(56)7/76(67) /24(73)»480 =6/ 1 i6. .' OFFATT t CLIENT S. /J. C/. C /✓. L -/254 JOB NO. SICNOL. E■GINEERS sCfP /C C4 /CU /OI /O 190 / /ona/ 4 e hod PROJECT CALCULATIONS FOR LONG BEACH. CALIFORNIA L p MADE BYDA•41 DATE/0.18-6e CHECKED BY A. D. DATE / /" /V C6B SHEET v 2 I OF 4 CI 0 H W •■ Q Q O o ,e � c" 7 to cc -0 frzA 0 Cj C! b o o S7, _ % 0 i\tv\I tn Z N. Cf- t• o i k j • ccj aj co a , 071 Q z b ' o W W 0 CJ d N ' o ' o 1 _o ` o oh t.N L tN1 IZS 1 H =LL o e C moo ,,e % w; ° a°, o� �� �� O ° CS o o 1 _ ° Z v h a0 ce j �t `n N • 1. . . . I , c� y� ,1 1. N Z w u Co a a �i1 0 O O ■ N �� QO O IY a � o I I I I I 1 I I �\ �� ��� � = a v T) 46 I ti 1 1 1 Q /-'--- O0 40 O m NI -‘00% 000 1 1 , . I�I�, � NI '•( d, d.�0ap 0 `'tCQ QvLI \ 3 . 1 N ab•°G�O°G° 000 00 b , P �- �C , ` Q �' a cr O ° O Co R Q •O'Q 1 ict 0 .44.. o j Z l N v a �: V L J fl ` Q k4 �. V, O 0 aaxF % N N O D `�' a N u `� C ap O v OI J 31S Z 'c e- a v Z cr W eK m W w . N &E a a N CI` d` d. N o ` y a Q -- -J O N. o =o • • vo % 6 d31S w Q ` Z O Q LL. N W F N = ` z) •` ` V o I O N a Z x. N M N 5 Ql 3 V 8 d71C - u W W W — w H – o u a. a_ N 0 -4 Q N a • = `V o0 W - LL v O u. � • 3 `` ' m L d31S PI D ,ti 8 Q ° o `n 9 d31S h O W ~ . Qr N W ix W W o Q co o a ,., 0 O ` N. O < J 2 V 5 c, a n v O S J31S LaJ Lt W Z W N j - `V `3 CO Z a 2 • . Z ` ^ ' ' J z to K O N O ` • LL b V CO 0 to -o o Qua CO O O cA 2 o LL Crl M O jM o n > v a o -0° h ,:: 1b d31S ti cr o M a 0.4. - �o� o o v H N a - o t . O O reiN W N N w w �•� O Q It) cr O a o 8 = 8 jj o � S d31S 1 0 o J�o aoo ° o Z d31S . � I 2 el >- a ' Y H a a '� N h `� �, h W m Cr w *�'* *. 4 * L to �' ti p O O p' O 0 ,h N a O a w �� h�hoti '0 1 d31S Q N a W N p" v0 O O fi t - J 1 W u. `V N �.�1 D I! v >a z o _ O t J W M J Q 0 � ' Q Z W ~ m 0 1. 0 N W W Q000 k W IL O ° - O ° \ O ° \ O J f' 3k. Q tQ Q tV L L Q HYDRAULIC CRITERIA ' General • The hydraulic criteria presented herein have been used in the comprehensive -plan design to the extent called for in the limited amount of detailing required for locating and sizing conduits and for cost - estimating purposes. Some of the criteria were not used because of scope limitations, ' but they are given here as a guide to be followed in final design. The primary objective of such detailing will be to minimize wave action and other disturbance patterns that might cause overtopping of channel walls and surging in ' pipes and box sections. In open conduits, such effects are most troublesome at near - critical flow where the Froude number (F =V /Vc) is close to unity. Unfortunately, ' because of the natural ground slopes of the Study Area, the design discharge rates, and most efficient sections for open channels, the Froude number is often found to lie within ' this unstable range. Accordingly, the criteria apply principally to changes in channel section, slope and direction of flow. They have been derived through application of hydraulic theory, model -study verifications and observation of prototype systems in action, and except for minor areas of disagreement, they represent a conensus of findings and recommendations by various educational institutions, the American Society of Civil Engineers, the U.S. Soil Conservation Service, the Los Angeles County Flood Control District and the U.S. Army Corps of Engineers. A basic procedure that is t recommended to facilitate checking hydraulic design, regardless of the conduit section used, is to plot both energy and hydraulic grade lines on all profiles and to show values of all hydraulic elements for each uniform reach (Dn, Dc, Q, ' n, Sf, F, etc.) At all confluences and transitions, it is advisable to check energy head and momentum to avoid unworkable design. For all sharp breaks in slope, vertical curves must ' be used. The following criteria are recommended for specific conditions: 11 Concrete Pipe Conduits: Design to flow full at peak Q ' Manning's n = .013 (precast only; .015 if cast -in- place) No debris - carrying channels draining into pipe conduits ' No inverted siphons Bends, grade changes and transition to larger or smaller ' pipe: Use LACFCD standards. ' 19. 1 1 II Confluence of two pipes: Check momentum plus pressure II in direction of flow: Use LACFCD standards of design. Manhole Spacing: II Pipe Diameter and maximum interval (approx) II 96" & up at grade breaks or as necessary for access 66 " -90" 1000' or at grade breaks as necessary for access II 54 " -60" 800' II II It II 48" -51" 600' tt " " tt 1 III 42t' -45►t 500 II II II It 3 6 " -39 350 It II It II II id Channels: Trapezoidal ha ls: e II All-concrete-lined: Manning's n= .015 ABM * - lined: Manning's n= .016 II Freeboard (SCS Standards): I When slope is less than 0.7 Sc: 0.20 He When slope is steeper than 1.3 Sc: 0.25 D II In near - critical range: wave height (Hw) (where Hw =0.5 Dc) II Side Slopes: Concrete 1.5 to 1 ABM 1 to 1 or 1.5 to 1 II Section or Velocity transition: Consult a good hydraulic text to achieve suitable design for specific conditions of transition II (eg. Chapter VIII "Engineering Hydraulics" by Hunter Rouse) I No level or adverse slopes of invert slab. Velocity transition, sub to supercritical: Straight II reaches only. Velocity transition, super to subcritical: Controlled hydraulic jump, impact basin, drop structure, or II discharge into reservoir. *Air -blown mortar II 20. II Curves with supercritical flow: Superelevate outside wall by twice the computed I rise of the water surface on the outside wall plus not less than half the normal freeboard. Inside wall may remain same height as in adjacent tangent. 1 .5 Free board Freeboard V cot a) ill N WS *—— S _ 9 r 2 II at r = Radius of curve at centerline II b Use spiral transitions at each end of each curve. II Min. Length of spiral = I.82V(b+2d cot a ) gd No velocity change in curve or spiral easements. I No section transitions or introduction of side drainage in amounts exceeding 6% of Q in main conduit. I Curves with subcritical flow: Superelevate outside wall by the computed rise of the water surface on the outside wall plus not less than half the normal freeboard. II Open Rectangular Concrete Channels and short lengths of R.C.B. Manning's n= .014 I Freeboard (SCS Standards): II When slope is less than 0.7 Sc: 0.1 He When slope is steeper than 1.3 Sc: 0.2 D II When slope is near critical range: Hw= 0.5 Dc Curves with subcritical flow: Same as for trapezoidal channel. I Curves with supercritical flow: Superelevate bottom to parallel computed slope of water surface Wall II height same above bottom on each side. 1 II II 21. } i II i Freeboard II 1---M--"----211L. S = 2 2 9 b II Use spiral transitions at 82Vb each end of each curve. Min. length of spiral = I. 9d Transitions: Same comments as for trapezoidal transitions. II Transitions between Trapezoidal and Rectangular Channels: I Such transitions take several forms depending upon the design velocity, available distance within which to make transition, etc. Rectangular -to- trapezoidal II transitions which involve hydraulic jumps and highly supercritical flow situations require special consideration that goes beyond the scope of this report. The simplest transition, but quite costly I because of the form of work involved, is one which smoothly warps the channel walls from sloping to vertical or vice versa. Wherever conditions permit, II the Corps of Engineers prefers the following: %S;Z::::;;"' - -- fr td II 1 b 1 TRAPEZOIDAL TRANSITION RECTANGULAR II Angle of convergence or divergence from channel axis at top of wall: or at edge of invert, whichever is greater: I not more than 3 (this will determine length). Keep area and velocity constant through transition. Vary b, d & y as necessary but keep water - surface II gradient uniform. Inlet Structures for pipe: 11 . Gutter Inlets: Restrict opening to permit entry to conduit of design Q increment only. For pipe conduits, use II LACFCD standards for catch basins and connector pipes. Shunt excess floodwater to downhill streets. II II 22. 1 1 Inlet Structures for Channel: Confluence of pipe with open channel: 36" to 57" at )45 I 60" to 72" at 30 (between channel and pipe axes) where Q in side channel is less than 3% of Q in main channel. Use Corps of Engineers standard inlet structure. 78" pipe and over: Transition pipe to rectangular section and use special junction structures. 1 Over -wall drops: All confluences where Q in side channel is between 3% and 10% of Q in main channel and flow is supercritical. (Transition both conduits to rectangular 1 section if not already rectangular at confluence). 1 O I .,...,......................_ i________ 1 < . L Om--- 1 , ...--0 L `1 i P L A N 1 1 1— WS ----.... t ....- 1 E :0 . _ .....___ : CI-Drain m -N.7. ' .....................: Mmcp:...g.,,,,I/gtJvwykISVIA212%CifllaXkZTW it 1 SECTION () SECTION C 1 ( Qs+Qm ) b1 b D = D, , L = 5 s , h = Not over 1.5' and constant. 1 23. Level Transverse Bottom Junctions: For all confluences where Q in side channel exceeds about 10% of Q in main channel. Check momentum plus pressure. Use model ' study for supercritical flow in main channel or conform to successful prototype design. ' Multiple Box Culverts: Provide streamlined extension of dividing walls upstream and downstream for thickness exceeding 1 foot. ' Provide debris diverters at upstream end of each dividing wall with 1 on 3 slope to invert. 1 Spillways for Diverting Excess Flow: II Where an intercepting open channel cuts across the natural slope, provide at each street crossing or natural watercourse, whichever is appropriate, a spillway adequate 1 to divert the excess between the estimated maximum tributary inflow and the design discharge rate. 1 1 1 24. 1 1 ACKNOWLEDGEMENTS 1 Assistance received from the following entities ' in the preparation of the Project 1 Report from which this report has been adapted is again grate- fully acknowledged: San Bernardino County Flood Control District 1 U. S. Army Corps of Engineers Los Angeles County Flood Control District Riverside Office Soil Conservation Service Santa Barbara County Flood Control District 1 1 1 1 1 1 1 1 11 25. '^ ", ' vs ILI ' ' a31a31aN i S . 0 Nang 3 , . , i 't anot+- $'XbPfM�F1S S -f ..31.D1 j { 1 ' yA .. { - r, T i ,.' ■ r - i dew _ t " T �, ° } , , . , :_.\\ .. - k = ! O W .. = 2 • ;54'-' .^') . . , , 4. • , : ' i : : ' - - ..i. . ,,, E • n . w_ O d5 2 �a Q , , • , . , d 32#a 11 of11S d O I W 17 r ' / . , '�� ' NI • 1 — pf { . ' Jl 2 _ ! p ,�" ii 3 M '- 1 ,.,A.e► it` .wren . r r - • „ ' { 1 . _ r NO I i 3 - � I t s =• •. �- r - ,. fit : , � r K "" ''' . ' : . . : - : ' I. . ''' i i } " ._• "^ , -dr ' 166-4 -*-..-*--'i----: ' j ... . , '• NI A6'£ - a 1l • ' ' � � ' ,. i ‘011.r. n • 4 , • . z got , t F /�,�j, ** C 4 r v a � w .rvr ` } p a : :,,,,,,,,,..i.,::: .r �1 , _ • ,y. >.» i 4 4 ' 4 ?. � 4 , ' .,T 'M. .p «w. v "R. `A�lb3d Np�K.i.•yi '; °i` ,v. �;' ae 4� i , Ra.`s.* , ;$' at P. ti .t6,- , , fig ;y'a-� (i j� y�= . g(y3j/ j ,. - ..e� � y� t 4 . !' #�, O O ''-401 Qi7 .'� .' r . ` �•t - } , . .. �' 9. -.� ` ' e ' er '"^ `'# x ; .. q J .. • XYVI 4O 5 3 tHOSJ `b 3iVP1IL$ d ., a, � : ,', r , ,; - st' ti ` ' Y p ' ; „ . ;-' • tx . 4 , "t ,, 0 3 4 : ' i 's • ":4 • a t v C., , .. - . A w .`fix w a t' . , :z ^ j c I - ' = • r f „. : 4„ , -. - , tic" , ''r :4.7 iit�- -:. ':� . ; .': :k ' :' ',.2 %, 4 . �,-..• 4 >,�, \':, , .. .Y' ' ' . � a n. z.q,. • ., � l w r� ,. .�'_' „1 � P , , r`*^t"� - ` )' <,� r /,v ^ , ; ;r te x"w ... _ ' . � 7 ° :." - < r x a - •M.pr • .:=', � ```" ` sr': ; , r . , ;?i f a..+s: Wit ' i,„" " "r" q ' Y i 4. ° •F , ' g "' . _ w •t � 1 , 4 ' x , e , , 4 - «e . ✓. '" � v - h :c`. '� .. _�,�°' n ' „.. p ia. - ' z , } ;'. a yp -, e .. y r .. *'?; :, , t%� .,,.. ! k. mo d+, , . a., 4^ r . -'-' . .� � } , , . ' i` , I e vi4 ` 100 I {} j .� + 1 , } -* -- .L7 1 -' -r-' I- ^ f - ∎ - -- ' - 1 - I- -- 4 1 ._..� - -� - - .- +-1- I .-..1- { : +-' -. L..- _ - 4-J ._.. F---- ,-- 4_ - --{-rl .. -. L - +--4 t . -._ .1 -L_- I / ,. H,._. , 7 - I -1 ' 1 1- t i f - � .. Hf F1 .{ -.y .�. -.1. -.fit., _ -1 it 90 } I 44 j.T_:. -._ L. _1,_ -1 r _i. - + +- .T._ r te ... I - -- -i:... -_ j* - 4 1 - -.t' - - -'-+-° . F • I i ' i y ; Ill ._ 1 t- h t , - } I F �_ - -{- --- 1-4- � + '-- , .. , -i- + - -, - -- f - -G- -I f r- I-- ._:_ 1- � . J .. - 4-__ � t _ + : -r- -f - - -_- -f-t + --- • ' i ! T 1 }r -1 - -r-1-4 t .. 1 i i I ( _ - _..- -,_1 _. -, _•_- '. ._ - 1 _ _ ,. _ .. 1...f. 1-+-1----1- _ :... *. 1 + --- - -r I . � � _r-..'� - .. ._ , t }1 r { { 1 '' t -1-1--if L + � j I _ _. -.,. • 1 .A- t-- '-- . ! - - -4- r - _ _, I -it - -- 4 4- I.- .. -+ - t - -4- i 1 1 4- 4- + 1' t __ . I. 4 L....1.44 f -F-t T I - - : _ h .. . r + - .+- ( - } �J , %11:i _ D �. .. �. (��j,(�) � = I .._ _ I - 1 - t . - } . i . ''_ l i __. ( 1 - _ f _ . , : , , : -, __ __ __ 4_r -+-{. .11 :. t._'_;. ._- t -. -- _ 1 - 1 -__ _._ i a I r • - + -4 - - - t } : -1 - { r ? I I. f F.; r ' I- _.1 -, : L._- 1 -4._' t ,_.. ! -,-.._ '+ - ' ^ - - _-.+ -i -'--; - t'1- -. __ {..4 . - +. .• 4 i._.t -1_. r ..4.. - t - •+; T - _ 1 .. r ... . _, _r .. +-2!"-f- +-2!"-f- '__�. 1_ i - a ' .4 t f-"'"-!-T-1- i + . � i 4 .... 1 _ ..A ���_ 1 _ -..! I"' .! `_t f _1_1.4 - +.,.'; -_ _.f +_ . t._ - _ ..t +- { 4--1--t- ___ 1 :- l �_1 i .. 4 ' ...l.. , }. _ .. F_.1 -- 1. ;- 1 - F i .. I ..4'f._� _ i_ � T . ._ ._ I �- �- i - + - 111 +- �-,- r t « t -.1 ., - . , .4. ..- -+- - t - - -- -; -- - - -- 4 ;...4 - -+ - - 4 - _ I . 1 F - { _ - 4- ... - - -- ` : Q L . i , ; � j : _ i _...1_ . . _ _ . i. ...} --t..- 1_ _t_ T . _ -- i. ' . 1- -4- j._ -!- '_-I • I -- f- . ' : ^ .i.. +...-+ -- • I- - , r t' ! t f r i _ t - - 1 y - -1 � ., . �_. , _ "__ t - - - -t . . __ _ 1. .�- �-r-� 1 t - i i - - -� t - - --' r 4 _ . 1 _ _.... ; . .I_. _ -i----;-- - - -- - 4 - - - - - --. , Z _ ; , � . , I_. . I . ' I _ .1. + 1 1 . ' t . { . ; ._ i - T: x . ' , . . . - . �-, h . - I t -`" - � , _ t J - � + C # I , '1 I � ' . t1� ±I t III I 50 � _ _ ` .. 1 1 , - i L 7 r I . I 1 ' i--1 - - 4-- « F 1 . _ ._ ,.. + - - --I .. _ : i-. i -. -t--1-- `t _.... , , 1 - + . _; . - •' -4 -- L. ._L 4-4-4 • , - - - -+-� - 1 -{--i -j -----4--- 1 _.�. _ 4.........._ _4 - - . . 4._ -4-41 r- - T __ - _ _ __ + - •_ = _ Y " . t . . �.. + -_ ._ .._.'. � _ _.t _l. '-_ I 1 { !t 4i I 4 1 {� a t I . ■ 1 - 4 . _. -4-1' .,... - ' '- - I _ r 4 + . , - !- 1- r -', - - r' - - 1 . _ -I . _ -- j - _ l _ i -1- " __`_j'! -- 4 --: - ' 4 -.!-- F 4, 4-- --1' 1 - ,- - .. _ . _ - L. f ' - i . f i 4 i- - - { ;. . 4 i { -; + + _ Y t J mot-, . H.- j. r -- 4 - - - ..± - 4-- �_._._. _ - 1 1 _-- i -, .._ . i _ . . .- ' 1 - . -- f - - ... - f ' - - --t- - - .t - a-4- .. ..- I 1-1----- ' . Z . _i } t • I ._._ _r 'i, _ :..+ r __ +- 1 - r' - L Ti--' • . ; -1 f t ? _-t-1 -T _.r._._.- . +_4- -, .. 4 ._ � _ I . _y.. -y._ +-+-44- --1 _ _- ,.._ }.. -1-.. _. -._ +. .1. may ._ i a _,. 1 1 7 V i { --1- + r +- -- t r • ; . Y 1 *-' 411.11 ' 4 - - � '-4 + - , _. .. I t - ' -- + '� _ t - -.- -• - - {. _r • - , 4. _ � - + +j}_ _ - - _� T -} , _ i ' 1 t t 1 r: _ I : `} i _ { 4 - : 1 + _ �4.- � 1 .I. - " � t T T - - 1 1 ' - r - -� -� - - t-�- t - -.1 -_ • � J. 1 - -! - - - -- - - -�-- � -- I 4 � i I ' 10 i I - + r i -4 4 -, , -{ ._j._ t : . _ -. , '--- i.. -4- r- - -L ! 1- - -4 - -4 -1 1 .. _ . 1 - i i ,'_1I 1,,. 14 4�i ,r t ; 1 1 { t I I I .•_ i _ .- -I...} -1_ , . _ - ' ..._Y._ . _ __ -- _� • 1. -4 _t. -_, ___ -1-4---; _ _,_. _ _ . __ 7.._ _ _ _ -{ _ j: . Ii ' w.1 I _ -., 1 r_�.;_+ , 4 1 -- + -+ - � _ _ . L -`-r o , i :. - ,-.. _ --�' --t- - f- j... 1 ___i I t i�± t , , - 1 - . -F - -i - 1 ■ --I- -- -1-1-1. . - --. T --F- # 1. -t -_ _ _ - I _..__ r . � . _ '' 0 1 2 3 4 5 6 7 DURATION IN HOURS i• i • RSATT1 1'gr1lcwoL. INiINIgRS TIME DISTRIBUTION OF 6 -HOUR RAINFALL FIGURE 2 LONE REACH, CALIFORNIA 1 1.00 1 • Z ummhz :VI th., _gm 1,4 ci . . _. _.....____ 1 Ili i li ' _ / ; C . . — — 1 — — —1714.411111 a ... 1 ____94 4______4_. • , . . f _ R 4 _ — — + Z 4 1 CC F— .80 ■, \ I } !/ • I } O I — CL i ._ . ,_ ± t M 1 t ' _J . imum ... ....._ . .._. . f .. ■• f_ f Z 70 } ss C i t W 60 i / r I 9 A li + .. - I -- . - - .. r. i- .. .. - ...- -- - - - -- — - t I -- / 2 0 .—,.— —f-- t . 4.. i_ . , _ ' .50 i t ( i I —...._ 0 25 50 75 100 1 SQUARE MILES 1 ,Il 1•t• FFATT t f y �1$CMOLENCINIu$ AREAL DISTRIBUTION OF RAINFALL FIGURE 3 ! LONG BEACH, CALIFORNIA 1' �'t day } } I • ; As f � �\ t Y f , °, e ye � c. ` (c I' n 4 /^ „ )+i f , £ f .}�� - r x x f " s , ' q . 1t ad _ . t� . t . . '; ♦ i s 4 : o p ! E � s _. .. ` ) y J •. ' .).: ri•i °P. l',i+';r,,.,J¢.In *1 ' . - - 4...ir•:?" ^ ";'.... ! + . ! .:, 3 .I , R , •a t: '''s -sMr t � _ : + v i"" I IX .. s '` � • �� i :,•n",,=.:N • _ f L. a•gUx r , • ,. vi _ +i ,\ , {. . lt i ' ' 1. --J ' ' I V 1 .7 V .. , ' "" ��� 7 .. r 4 l ::; ; ' q1 ' ('.$ � :1 l � 3 1 1 n ,3 + ' s _ y . 1L 1 6,4U .. st r ✓ -,..a 4. - ._,-4 • { . A . •._ • '^ .- . .. � ;{ �� "d r\ = % i , tt % . J `2 • _ _' °n"' _.x n' •' ` •: l y tt .I - ` SL , L 11 , ' —.,„. , c. • Jf� -�, - _ , :. � °' S �1 u ii Le "♦ ", Y, a. y \` f a i p r _ ' 7 — •n 41 t.. F : i: g • r . .i - _ . ems •;, <. I t -. . �. , f .. 4. 'rk �0 / 1 ,,,, -` -^ n 1 ` - . sc 7 ,I�,,-,tx.,�- r " - yL4R 4..„...,....: . ,.t� � ' ,.A _ •" } - +tr.°�_ , v o - di pv: . _ - ..., - <, ,..„.. ..r.„7,7( ♦ - , - • S • .�£` , _ - , Wes„ _ tp � E• - l y ,„, I•� ..++ ,` 1 ' La:, /' • r I - - , .slla, lala � • w, --7:-:- � �� (°, '''''41+•''f, - •' . .'3. k M \ N -' "` .. o\ _ /' l . '� CI / : T 2 o e y f ' .: a ----- ` f 3 j 1y�, � � r - ---•--- „ , -,-• .,• 110 It ,' , , 3., ,, :, -_ , , _... • ,-ii . , . ... .. K ,r _... , 11), , ,),„ . ,,,,,,, ,,,, a 116611r 0 '•'''. , _,',,,;._-,,,,, ,,t,„, • • .., i , , E F ...._ is d 1 ! "- r . - mi k "' / . 1 . - - _ a • r ,i S is s. L . J • aj Y .e 1 . } 1 8 2 I I:, : :'/,- ' \' - ole:scik- as .L ailiMb EL • r , kale , 4 4- T ✓ ,�, i t ! ,i ,cw ".. Y .I i I � .,$ I I; �Fi, _ i •, i.. .if �- R`r 'I �`�_. - I I ..w I ff •� 1 . 3.. - £ F' - ---- } ' I . I.. t •. a , k m ti - y. �" k'V_ d I F ,l ° E , �. P • fi 1N. 15.3 - - [- .NV W.0 1E ( y.. •, , ,� .;f� .•d '' "' 1. 1 : : itzi) w - - • L - n. .t - I, - i • IAA _ t i 8' -; a - r - �� -i L,r_ ___i_i ,.____, , 7. - _ - • jit. : • il jk i 4 - 1 1 ... , . r .., c ...„, , _ ..___ . ..,.;.., ., v..__,,. .. • . ..„, ,..,A. - - :r, • ! N P :: - _ *.. y... y „ • ice' ♦ - ice / � 1 , , r � E 11 ►, . , l A ..., 10 ii/f4 : IIII IVMIIIIO P "iii aliniiik- El rr , .-- MEM • / (.:T ; ('R .. ,.. x ....... 7 , :ti 0 . A v ' . - . MI kanatig Kitt ._ -- .1 - .. -glin!iiii: _ ikVi Bi Ali filler& J iliTill! ° _ i �V , r- lilt • m illi 1 �� , ,...„ it: - - „-- - . / �� 1 III I - las .c, f ...., ,...4.- — . . ..,,,, li :4 tle kW -.--------- ' .'„ it. , - ,. - , ;all III ■•■• ■••• , `• , , A - - .... - .....PC ' ' . - '-' /0 _—: :::: -.-----7 ff 11151% I 1 ".`.= 1,1 ii....,, • - ,;',... 1 0 _____,---,,, •.. - r.. ,VI r 11' /3' RV* , ... = . I -- - ' Ate'lrb , 1 , ,,,- ,•_, - i - -ierd_i_ ,),, ,,_ y% . * f, : "" -.---, . �� ' �'rt� r"' ' . 4 . — , y ' y ' ' _ '� `� ' I • r :, t T ' ° • ..,., "i‘,.„, ��� , �"' s ' \� '�� -1, ��, {' vv I ® ';'f� , �� �F r,U •�, , y ' r. 11 0 ;t , f, p � p �r L 1 • ` R� /1 .. n , 114 / • c 1 r ' - . ` � � Y ` 1 *'' " '1 " ` k y . J 7 `' I'`: � ?,'?i l' '� y„I • ' W , ,,,, ., . _ � :_ , r,, : � r'1 / 4 ,1 1 1 ,,E • . , r , �r — 4 t,•1 ' ihn e1 :. i : w-Ti .i , 1. • ' • * a � � \, --; • ,,,,. .,, � ��1u 1 f \ �� l � / d 1 1 �` {� � I� � ` 11 � t1 � . �' �" �' � -'F�� �y� ly,•c" r �Y4',.' � \�- '��, ( =�, I r{F. '`(` � �� 1 1 � !\ `5' " u .R x141 S _ \ }� 't•. /_• / sy� / , r "f - .. ° : ,/ 5 1 , , � � > ; ' (r ` -:, i }' rY , [ \ /� A i s' . 6 , l e , ' 'It. :.,_.• � yy I � fw R ., y i, , p,,, : • ' . •.•B s' �r Ff / �n ti,.' . q t �.r 1 - V , r lT J' . * �1 ( : ' J L ` y l l r f X \�'•• \e,-;2:1_, "a C ('t � r r ;` ` ;ant ai s ' i MJ ,N _ - ... : 4 ( ' ) - ;11, r (•' ✓ 1 i ,., , 1 1 f M fr - --'.,, v> _ y - • '' J, \ : -7)14 ' , - M1 ;I 'k 1V V N\ �} a • .. I , ' w ' -1� f��JJ r,"•,17'/ \ v.i l C �� Y. ',4.. : 1 , I ! 'nM� 77 �r C ,� : , j f`C, 1� t \. ■ •- � ,� .' "' '•., - JY�' \1 r , } 11 `�v' ;1 � 15 -.s.,..)(- 1 `� 1 (+ "I �, ^ } t1; '••'T :',4 c, 01 1 _ (*.kin,''', ▪ :.ne•i`' , „ .. , * • r'c” - ' i .' II Y s L b' \..' •$ t ' : �... f " `L •r ' 1,,..72.1L:--- l'-'' 'c�. ,r•w• Z, I�, /, �1t,...l,l /:�- %i.., f'. ,; .11 "�t,, ( f', 2�J \ , + �r�,l {y��,)�ti.t '‘'',,,,:',1.:', I '•'a a , .•S �� ' 1 ;'. . ""'� C IF'r "'i' I: ' ' 1.1 `=v, fs t ' i ''•-, '' �� `wg 1• k -� �= . J-t � . 1 ) : r�, f i s J t f 1 , r t'i , : i" 1 FI \., ' . � 1 l ,. r ,/ \ 1 1 - . ', ; _ • -• A •1 , •k. % � • ._ '� • ) � : - FL F' 1 + f .': , .. ' i , "1 j ,/ 0 ,C � t ' J t • �.,. � j_,._ ` \ - \ E U { e , ' l �l � 'I�, e q • ' , - • - - f In „ tailiomo. $3311dS N 3d9< - - 4 . _ ""1Q6OI Y 1 , - ' - - 1V11N3015 8 Nb9df1 %5L : { SVait1V `1V13e13W — Yl$O31VI %01 ' ` .. sv v, - S110IA 3d i6 :;. a � ; f.w ,,O.; , J .. _ - . = '' i - _` ,' i _ a ° /000I • • '_-_. s , tiwr- ... _ ' ? Z 0 A 4 r., ' '\ , #1 � F IV D y� , % 9 l Me 0 ,4f , r;, a Z ' 0 /0 00 #., - -. 4 , / J J / 0 /0 00 ` r ad Jld �.S �o 1.�w !1 f, A I ' ,. lini , 1 , . , . %SL , E % 41 %001 i I 4 y l 1 ' , , .„,„ , ,,,,,,, ' ' , _ ,- g 14. : ; ' A . . . .,„ _ . r . . . „ r1. ,. hi f r W M ,0 �. t: %001 .5 b32�d.e AO 11V411 • ' .. . 3 ..: /0001 . _ I • I . ■ ■ , ,i i i t , I ° /0 0 • a . , :% GL ' . I _ , i - „„te r... V - lir mil- %001 ,„/ //4 F % I. „4. . n \ 1 °AI • 01 - . . -, . - .... 1 \ ,„ 00 %00 t : . �Y0001 , 4 , { ,.y � r . . j' .. ,...„. .� 'a ,, . : .. „. .....t , ±. ,.,, tst,” t 4 e .t: l ... \ t "fffMMM M,.'.'"' V , �. • f a \ .94 't N y -'F ',St,' f •. Yt N W ,. �,p v a} T { ..r » � a,. 7. „r „,, 1 •: , r f •. x'`'' y , , a K ,•'"': ; 2 "; ,, _ .: ' .r ,.. , 5.. e{. K� . , y .' ''.,. o s' ter" [ r ¢ - - � ,+ ` .q 1 . 4, . {.�. 2'- , t Y @i . ,,:1£ , , ,a.� m. , + 'h f- �� }: },3'� m /t`, a ,Sa :v » " + m awn , 'f' "a, ,., r " .. s J_ $,;.'Y q . x s ,. ,, t ` �, . .f ,€ ,a ,L:is# , .. _ '/ mQ°°»J.;i'. mow-;. ":*, .v- r f ' - __ _ _ -, _. ., c .._ --- �,.r - . -_ -- :,... '-- .._� -z. . -- ..vn � °•ate- a *�.:..=+w- -..... ..- ? - .- - - - ■ ■ �. '_ ■ ■ ■ ■ ■■ ■ ■■ .0 C ' C iir R ...... 11 ... l i bi : 19 .,„,= . • •C , , p■ . CC 'ii ■ C ■■ 'C C • C C ■ ■ 1 111 W C C . - � C ►��. ° C C CC• sc.: :; 1,..111 .; Cs= MUM :17411111 • CCCCCC . Cs 411 O N .._ � ■ • • C q C iraarin -• r, .. _.�./■. i ..■■r 11 IT gir :C ■ C. EF1 CC '�i. ■■ C C C .�■C 11111 ■ HI ii ■1 h ■ 11111 ■■ ■ CCC■ r F CIi■ri 0 0 CL _ _ C • • • :•* C C C CC �� - C •C C= C•C .C�� D 1 • _ �1 C 11:1 ' :G�' .i ..���' ■ ■ C CC. C gm C C•D�" O 4 ir N r_ .� C C .ni C C�a ■ �' D C C C� . � i .- e O ■ ■■ ■ C \■■ I• ■s '' I /, : //I�: _ . -i_a. ' 0 4. W _ CC .0 C C -- ■C D, � /. !011014:s1 .. ■ �! 0 . .. • = C ..._ : °CCC - - ■■ C ■ • H ■■ n CCC CC1 C.C1■ CC • 1011 i■r 111 � - ' t ■ i--1 O 0 CC > C 1111111 ..CCC C�� :Ili 4. u' ■: -+ C �_ _ - 1 ■ C■ : C ■C ■C •C III C� r,C . - 0 , W ■ ■■■ ■ ■ ■ ► ► ► C C = v _ t -CC .. C C n ■C■ C i� ■ i r. I ■ �l a ■ C . 7_. - E i; ■ C ■ •• ■.C ■■ C • a y 0 H ± ■ .CC .CC CCC? C • ■ • i • CC .C■ ■ % ■ 1/ • C � ° g' F- C CCluit . II. .CC.■..■.._►,..■ :i C J .. o ■_._■ ■ Z 116111111111111°Iiii ■ IIIIIINIF:WiFilrilifiriPrai ■ - _ - -_i: 0 W o il _ r C _ C. .CSC C . C �.- :r m i ll i ■ .. = O = Cr 4 �i - _ . nC ■• CC C n■0: ■ ... 0■■ C►.■■ ■ 0 ° �■ CC ■CC. C:C . ■P. ■.■■ ��Olatio C n - o W O O M +11.111L1-111 /■� � ■ ■ ■ C CC _% • : i■ via a1r ■� C ■ ■■ . _ - - t - , _ . , M w' N W • • 1_ ••�■, ■ / . . . .. � 1.... ■ _ C -r -I- _ J._. ■ ■/ ■D : /����iTrC" /��/ �� �� • ■ �►/ C _I . - r._ CC. C •. _... .. . .. a C C C is:IIII ._ -- C ■ - ■ ■ C ■n ! %5—w ■a■\■i=i ■ ■1ts ■ ■ CC CC■ - 1-.: ■� , C ■ CC / ■!, ■....�_:..•..-i . C CC .# CC f i! = =i � ■ `■ ■ ■ 1 CCC• � � J • • lie Ci1 1■I " .t 1 _ 4_ 4 3 ; ,.- ■C _ .._. ■C .. - . C o II A -111. _ \ ' � C• Cn..\ ■■C$s .._ ■ ■ - - ° Cr _ ■ C ■ C C. N + �s�� =s��. - ��e�� • 111Z4141 _ - - _ • ' - t ._' - F_: _ - • CC • • N 4. . _ a .. bildllantalkau.114■41 C '"C• � C�i �i'` -� _ _ ■ • C z C di � 1C - i iik , :. - 1E- .10 - _ • w. ■ __E _ __t_ •.._ 4. 4. _l_. ____ I I_ i _ _ _ h. h. k . „. f ___ JE __._ . ...1-_ _ ... --_-1- -441- j .. ji l t . irt m i ll irirg iriik t . -. . L .___ -__1 kl . r 11-- -I -- - . ----- i --------1- r +.- ir ' i - I- Ibili : \‘- - 1 ' I - -- -1--r- Ft_ - -i 1-1-- - '1- w. co „.., .._..... 0 _ ,____ , ,. ......,_ ...„ • +.,_,__,_ i . l ..._ , ___ __ 1 --- 1 .11 r- .-__ i 10.-!..-----.-„TE: - - __•___,---_-_-:::: , ., - Z - T 4 + --- - -t- - -1 4-.. i• .:.-_- ..„ , i , ;_l ,___t........ ...,....._ Ii._ cn I__ 4 • 14 L. L I - -i- - -C --I- CC ■ C ■ -■ • ii. k ia�.4. ►ti _E ■ ! -: -- '_ +-. - r f _ Ayr. 1 -- l -- 1 -- *- ,-+- — -- - -1-i li t. - , --i- -F- -----1--- -10 1 _4 _ . :1 _ 4 __ ________ _ tie . 1 • __ -- 74_ ----- __I --- _ - _ . • '_.% 1 ,i.. , 1 - - __: - 1. - - _ - - - 11:1.3.: O - -1 I • ' - 1- CC - . C -- • C C C H - -4- ���L. �►r. ► {_ ...... _ _ M f4 , 0 1 � � I i i i - ' • - - - : - - - - -- - = tie, , m r = _; __E - ' '.- ±H___t_t_. _. __H--, 1. .. _ i _ T . I . E1.4.. _i ___ 1 , 1 1._ H ..1 i 1. _ _f_ - .... . 7. -. 7 74 'LI J., ._,_ c t-__4_ 1. l \ ‘ - ---t- ---t- --1-- -- ht - ' 4- F . I - L : t - - - -- - 1 : , " -- t• 1 1 i, ■ I t 1 O - I— + , ■ ■■ ■ - C -I -F - • , 44_ .--; -- • -{- 'i AIL Ci►i► -' o r ' --I-' i �_ I -- - --, -i - i 1 - _t_ , � -t-- - -1- \--t 7 r ' { -=t -t _ - _ - .1 - ._ .„ 4. - I - 7 - #. - ••._ T- • _ _- - - . • -1- 4 -17 , -r f - 7- --- -_-- i- - - -- -1 ._ , 71._- 1 - - --- - - - - 1 --F - -- - -- - - -1 •- + - i - - 1 -. ;7_17H_ .1..4. _i_______L_ .. 1_0 [ 4-I 14 4- ' ' 4 -All - 4- -- -I--r -LI- -- .- ---14.- r i-i-F- - -- -H- 1 4- t f k' - t ° a r) a ° 0 0 o d (3113V /SA3 _ '3V /' IH /'NI) M01.d �!i■■MINIM ■ 1 MI■ 0, ° linaliMilinkilliiihffirmental _ M :Wk 1 I L Milliag ni , , t 1 11 ii 1 fi � M 1■■ xi iN�+l ljfl milm ' �' � -- � 2 O H N :Ini; .J 1 EMI ! N - W NII �L1 -1j L- {- I - I - r - i _ 2 J }..._ ++ Z W 2 X 2 1111111 t 1 t 7 f Q Ca 11 ' �■ 111 ► �� ■� S 2 S a W 1 f. �. ": ! I j q � �u r.�\ T_ + _ m 1- 2 W '' U. S I ' � ! _I IIB NM t k i 11 ..t ° x w a ...1 f- ° ; I:' 'Ii , Wi ; .4 l Il IE U _ , Q (0 '0 ■ 4 d I A khin 1 n = om _ = �s a 1 " . 3' z = O a o ).- • N. I�.CCd:�y� .wS, =.�iTi J N Ii ■1'�'-N. uiiiG MI r O S W a 1 1 O a H .� a N IM N Q S a' _ 1 2 ,V I II -A � 11 N y F W Q a - Y! 1■ Ii ■ �^ IC i, V N 4 O cr Q HIp�1 N ■N ■ N ■ 1' :A -mires; 11.1 J � o S 1/111 1 111 a N■H 'f \q . Y �•I ,� V nln l,,,u,,,�,� I �I� �� a _ f �, � 1 . � ms s; _ O H F- H � _ m a , 011i1'Si1 :I II ip iii: ,i ���.. ai!�i x N (/) Z w 2 1 p ::::•� N = Ie z ° ar -RWM J W 2 u Imam i::: a . ' z Embroil iTi�i�i F= M a H 0 J F C7 O J mm. i itn ':• = iii 1 C m m. ; _ _ W M iii: ■■ i1 .n ui Y■■■ FL ■. ���� M co a' (� Q z O 11�1■1.1 N%: I.. .I NN � n ■ A .l�� N,N� Q W x T 2 w Hm 1 1 ■ ■ 11.N 1 HH ■ �q■ x ■ S ■ . ►■nl F W F- unm x Nn ■■r�■ ■ 1 /N NN■ NM , NNN. •■ N Q v 2 in unl! IINI ii■p ���l: 9 1 °■lid u■11rr'w �� � _ W x W W W W W i, i, uu l �a_a qqpp T 3 N O N IMI IU INI„ 11 U 1 2 H J m W I II u m MINI 11111 ■1 II /IIII ���� Y �[t ��• �I \� N O a a T 1 N Ill /�„1 u �� NII�% aH ■ ►1 ��� �� J\ S 2 ..; O y O a O IIII 1 HN�U g`JIIfl1 • T '' O W 2 N W 11111111 III,u 11■ ■�Nl H m. 2 " W , W INNINII■1■ IIY ■■i 1 hIn ■I II.0 ■■■IL' O a c� a T to u. 11 ■�I . i ■■ � i � i�■N�i■ ■�► _�■ ■■■ O --1-u; Z J a z 1 - a W IIIII a1:: �� 1 111 �11111sIIII ■ ■ = W 4 m w W a E z f 1 IIHIQ ``_ -�1 II ��qu■11 1 IS�►�NN■ ■ 1- x l W a 1- H o _ 31 IIIAIK It!4E: IuII 111�I1111hI1111 11ISIIII■I■ _ c� c z Z a N z a z Li 19 : ; "ffa� E g NI .e "x�a�m.si ae - - F : '13 "s�'e'E3:- l:Y� �aigs vn== W y O W = W T 0_1,- O I w r; _ ; ;a=i1 5: : P 11 :� 10- °_ = =3 r q J 2 J I`- a 1- 2 W S 2 N. x J° SS io i ..3:�SS�' � �i_i • :� � �. � = t ,z, 3 ::= :111:1•• ..... •1 =� I � i O ROW :1W ]■ N■ l_ N _ 1 I.,�1 I■ _ _ _ _ ■ 11111111:. R. 1■II■■ N■�■ 1111411-11 ■■ - t INN I . IH� _ � I. �y� . • h. ■ - O MOIL I� ' 'BOOB • i _' aaii1 i ���� a 1 ni pW � lpN g N f. ' 1.1'I � ■ N ■ Y .NI�1�■■1����■� ■.� *..1t 1 J iHT 1 : 1 O O O O 1[1 O I O� O 0 t0 a M N N LAG TIME IN MINUTES I 1'I•11sAFT t LAG RELATIONSHIP 1; I:CNOL. <N$INaae& FIGURE 7 LONG SRAM CALIFORNIA SOUTHERN CALIFORNIA COASTAL PLAINS 1 I 10 20 30 40 50 60 , I - - , : t -i j -t- } - : • { ;- -i -t " ~ --+-' - } r r- --4- - i -4- •• _. { , 1 - ■ 1 _ . r i j_ { i- t - I t + - - . i - -.:. i : , - t t_ i !--.1-.-1-11-1.+1,1, ., . _' . 4 -; ; " 1--t-} 1 1 - i t -t'- T - - , r I .. } t 1 ri t t 4 1 i i i 1 r i I 6 1 .50 _ + 1 I ■ ' j i-i fi t • ; t � ■ B • 1 . I 1 1.50 # }_1_ - T t-i 1 • — • t , tt- -1 : . + - 1 _ 1? i � + 34 ! F �1 r �.� i 1 ■ 1 [ �� � t — • 1.00 - - + su 1_,__.,_} t �•crltilR R; • • s, 1 41 i wL3:11;7 NE Y t ' • • • _ t 1 � i �■ MMus \ 1 • -i 1 - , -' t, H-- 1 i-1- { 1- --t- -; 1- _;... 1 i-_{ t a _.i. 4 - + -_i - • t L, , 1 . N 0.50 WI 0 I W - ' • + -* •-i- -• ; -- ' -- i y •'-' - 4 -= - t- --1 50 • i , t - -- -- 1 1t Z t . • . 1 4 - ; i ; r y 4 f- -#- : -t- + r ; - 4 -r-_! -t--4 -�': --4 - -1 ' I i t -- t « -. , . I..i_. _ --t-- 1 i �� + _ r ,; I I I 0 F t ., -y. -- ..t . -.. ...,- _ -t-' ,. - -- -t_ } _ . ,. i_ .... i- - -•--t- 4-L -. - -_ . «_y._ • U. z # : r Ifileae , . 1 - , • t -'- -- ; -- r - 1 -}- -+ _L 'y--t - - - i -- -f .t i t_- - - ' _.. i I � � i , s Q 1.50 _ ■ ■ 50 ; • 0. �. , .i >. + -.: - .._ I .�l " ; t._ {. ;- ..j-- ;._, }.. - -+ �- �- ! .. f , # 1 Iii i i 7" -i i - -T_± - • ; 4 .. i -•--i , , .- --- -Lt- -- 4-- ,_1 +.: + -} t "- { "- �-- • -' 1-t , 1 ■� ■■ o I O i- 1 ... - ....- .r i -- -- - t - ,--4 -1 1 t + -;- , r . - -i- -- ' -4-, ■ I I.00 _ , ��i th j� 1.00 _Li t r C , , ��■■H =q F 1 I - ; } } 0.50 0.50 j � t r -1 r 1 �I 4. - -• - , - --- a .. t .. . _: t _ . i . _-1- �_..__, - 4 ' .. -' .y -i- --- I ' - . -" i ■ ; ■ + 1 _ . 4 } . � . .i_._.. _ ,., , 1 -- * , -. T _ - .____ _ , _... . L1 i. • -.._ � -1 3 - -t - ' , , i r 1 ■ _ : }�_ :. 11 _ I F 4 1 10 20 30 40 50 60 i 1 { LAG TIME - MINUTES • i ∎1• FOATTt i;llcMOfr :tN61NRRRE PEAK RUNOFF RATE VS LAG TIME FIGURE e LONA SI*CN, CALIFORNIA 7 t 1 O? GD g el. 2 — O - F g lItinitilliliiffilikli ' , I I ,' ' ! HNi ii 11111111111 2 1 imitimisunummonimmimmillimmam 1 H IIIII1tniunI n III 1l1u oommIIIIN1 IIIIIIIImm u1IIitIr111111 I 1 ° oIIN'11NiNi Iliitt Mil iNIII � l i i i i i i N C N1. 1 I' I. 1 V i 1 , O IIIIlI Lil ' i iiI ' I' 1 n i II 1 I � i l l l O Q 1 I - ai timi III 1wnulIIII1ua'WI IIm' I mmummINIIIIIIII N 2 N111 IIIIIIIItillk1MI11111I1111111 IIIIrIN1N1N11111111 W Itill11 NnI 11111INS1111111'gru111111 1111111111 11 ;, o I 11111111131111111111111111111110111111111111111111111111111111111111 Q W Lai! o 111I�iLn IuI11►?urur W 1 !,,g - a " Hu i4Ii II� I1I1 iiiLII : ! I �1N� " I11�IiiIII' 111kI111NI11111II 1UI1I1111► 0 E 1 ° 11111 11■IINI111t11111111I1 1111 q11111N1I1111 W .1 a 1 o o 11Iiiillii iffilinialiiN r iI�UN in a oo 1 8 N NI�MEM1 LEII� , ' 1 1101 : I ; 111" z 1 11111B11111111111,1k ii I Lc ' vv i 1 1 - �IWII`IIILIII,lIIa1, '1u1flIUannullNp - X M1lIlIREiI 'mb111111NN1111L1N11UU1'llIUIWMI UMMII111 11 1 ILI,NM ►Nb11NhIIliUM111,'11MI INNIMMIIINN 1 - 11111111111111111 111111111111111 11111111111N►INIIIBNI , '1 1MIIEI Z Ill, ' : � 11gIN11IMNNi , : RI l' 1I 1IMi1HIL IN 1 o IIiIIlflilIi i 11111111111 iI'IIINlk11YNII111►OIIII'HUhI 111111111u►NINI 1 8 1I U1111rI1NI 1gY111I1 1I'11111111111►I11,1lIR►1NNI - 11111111113111111111111311111111kilEMNIEUM 1 O O O OQ N O O_ O t0 5 1 ADJUSTED SCS CURVE NUMBER 1 I FFATTt ADJUSTMENT OF SCS CURVE NUMBERS i; �cNO�. lNi1NIU$ FIGURE 9 LONG N[AMCALIROQNIA FOR ANTECEDENT MOISTURE CONDITIONS 1111 40° 0.5 1.0 ::: 45 } j i 50 I + , 50 55 w i 55 _ 0: w - I 60 + i j 60 • z r _ I w f m A - -_, V 65 65 1 u) {- - — — 0 ; _ . — . - E .._ I J 1 N LOSS RATE "f VS CURVE NUMBER 4 OBTAINED BY PLANIMETERING AREAS 7 — i s 0 I — i UNDER HYDROGRAPHS AND SETTING _ 70 1 "f" RATE SO SCS "Q" IS AGREED __ t _ i WITH, BASED ON 30 MIN. LAG TIME VALID FOR LAG TIME OF 10 TO 60 MIN. i i } 75 j I 75 I 80 4 i i 80 _ __ 95 1 I i I ( 1 0 0.5 1.0 1.5 85 LOSS RATE "f" (INCHES /HOUR) I I %it40L.IN.INIEI. LOSS RATE VS SCS CURVE NUMBERS FIGURE 10 LOOS •EACH, CALIFORNIA MU ■ IIIIIx11.HH O OI co ti ID 1() a' e) N - 01 CO N 10 In r' M N - .. -= 2121 - -- MIN" ---- _ _____ - co :.:1•.:■ NI . \...• ■�i1 =: ■• a . �� IIt1..1..■ .ttt t...• - t ■- w -�.t■ �- 111111■ m i ■ ' � '■ = * - - i i ii nmu•I •iig�.uli 131 ::..11 ...... . - >•• 1.1 1111111111 /1111/1/ ■/■ �1�11 /1111 IIIIII / /■ ■� ■■■ ■ ■ ■ ■ ■�� ■ / ■■ 11111111111 / ■1■ .111111 ■ 1 / ■ ■ ■■ / ■ ■ ■ ■ ■ ■�� Iy 4 ■111111111111111111111•. /■\■■IIIUlII111 /II /// ■■■ ■. ■ ■ ■� ■� ■ ■■IIUI I/111I1■/////■ 1 1111111111 /.I ■I / \ ■ ■.. ■ ■ ■ ■ ■ ■�� 0 11 �■ II111111111111111111H11� /1/1111111N111x a II��■111111 ■ ■ ■H 1■■IlilI l111UIU1IU I IIIIIIII U I 1 II ■0.11 ■ ■■ ■■■� 11 1111 11 ■ 11u 11u11Hnmu1111EH1� =1111.111111■ 1 I =I■■SI u n 11 11 uu uu 1 =Hn■■ ■ ■■al ■IxH/... Up1111 * ■_ -. 111 ■111111M1UH1II- 111/1111111! 1 ■111111 ■ ■ ■.■1 � � 111111111111 11.110111111111111/ IIUU1111N■ N■ 11�■■ 1•�:.■■IIIIINNIIM111uNU1111u1111 11111111111111111 ■11■mNO ■ ■ IIIIIIIIIIIIII IIIIIIIIIHIIIIII111111 ■IIII ■�a11■ ■1111111111111 IIN 1111'1111111111111111'== /■ ■■■.. ■IIIIII11111111111111 /III /NI ■111111111 111 1 ■1■■ ■u• 11■■ 11111111111111111 111111111111111111 1U■ ■U�� 1 ■ 11111111111111111111111111111111111N 11111111111 ■11■■■■■■ IIIII■■ 11111I111111IIIIIII11111I1111I1 11111111i■■■■■I■1 ■ ■ IIIII IIIII I11111111IINN NN0111111111111111111/ 111111110■■■1. 1111111111111111111111111111111111111 .1.111111111■ ■■■1101 ■11IIIIIIIIIIIIIIIIIIHI11111�I IMM111111111111111111111111111■ 11111f1111111111111111111111111111 ■� == ..:: ::::1: . :2121 - ====== _ = = = =� ... .. : ■:...._== = == _= ILL............ ..... ■■■r1..r =::1111 must. 1111--■,_--- - INIIIM ---- - --■u_ ••• ■oro. •uI' a ■-- --- O - 1•u I..1 ■..IU0001..u•O\. ■. ■ ■ ■- ..■■ ■ ■111uuu11111.. /1■vul uirIulI' ..I L...L ■ ■•■IHIB N .■ 11111111111111111111111 11111 1111111111111 IHIIl1111UI11 ■ ■■ ■.■1 UI■ ■111111111111 /111/1 11d114111 /■■■■NON ■■ 111111u1111m1111muUIuIl11IIIIIIIII =IIIIIUIIIIIM ■■■ O. M14i111■■ u11u111uu11n10 /1111iu1nu1a11//1111111NN■HH.MON MI uun11u11I111111u11HUIa11u11111 1111111 /U INI NNO■■■ ■11.IN.I■■11111uunHHlu11Au/ur,uuruu l n.11 1111r4■■■■.• ■ ■ IIIIIIIIIIIIIIIIIIIIIIOI11111I1111IIIIIII 1IUUI111■U■ ■ ■.m•11•■111111111111 /1111 //?111i111',1111 /,1111 ON A ■ ■1111 ■•• 1 .■ 11111111111111 11 / 11111 /U1111111 11NIIWIUIIIUI11■ 1111■■■■■. IHIllII■■ IIIIIIIIIIIIIIIIU111 11/,1111/1111/•uUIIU //1111 ■1111 ■•• ■■ 111111111111111111� nW11111 = ■■■ ■■■mII11111 m111H1111111''/ 1/ 4111 ;1111111111111111 /1111/1111■ ■�� ■ ■111111111111111111111111111 MIM111111111111/ ■11 ■ ■■■ ■ ■1• 11 ■■ 111111111111111171 /11/111W111111111111 ■MIMI ■ ■111111111111111111II111I 1111111 11/11 1111111111111111111■ 111■■■ ■ ■ ■■ 11110111111111111111 /i11'/1!IIIII�IIIIPAII IIII III/■■■■ ■01 1111 111111111111111111111111 - 111111111111111111111 ■111■■ ■ ■11■ ■ ► 111 111111111111111 /, IIIII :11111'11 //111■■ ■■■01� O ::::::..... ..... ..- �CO�. = = = . C� ...... �- .. - 21- _ ■ _H_ O � O �_ • ...SS. .- 21__21 ..... - C: =� :::: _ .. 2121 � ti an 21 21- -- �..� - ..... � ��= 0=. C:::::........ ...:: 21 21--- - -� ... ----------- ........,.. - 3...... _ - -�- . ..1:: ------- .■__.......r... ::•:. ::�.. 2121 - --- - ... 21 _ _ ••_ I ... • .. . . -2121-- i0 _21 21 -- - -.■_ 11 ....... • NMI MIS NMI -- 1 ■•. /, ■.1 2121-- 2121 •' , 1111 SM IIIIIIIIII IuIUII11IU• l.■■■ 11 11.01....... ■. -2121. \■ ■. :. 1.Ir 0 1 r,...1...\r/ 111 1.11u9.Up I.•...■.. = -.= -- k -- ...- 2121s....L 7 U. \. /• . ■�- 2121 -- an ...2121- �.•.r ^ ... ASV , ■ ----�� ._ -- .... . = = = ==:: ".___= ::x': :A= ... :_ - -- -NMI . - : : . .” ... .. ��... -_-- -- MI ON .__ ---- -- - ---- - - ----- --- -- == • - - -- -2121 -- • J._ r.... ...1. • .. .• ■ ■r. ■ ■ ■ = ■ 21 -_wtl■ 21.21 ^ . I• ..• I 1� .. � -- - -••-- -_ lltll ......... r. .1 ■ 1."1"5.."..11215.'7. V _ 111 1.•' •1111'.■■■■ ■.. H\ . -- t ■t- -•_ - l�1 ■ _r1 ■11.',1111 - _.-wl. 2121 O NIIIMMINNIIIII ...2121 -- • 1 .• 11, . 1, II.II'/ IN •■...... - - -- I -- I ^ 1111 •U.US•u■ ..- _- M.•'I•.•.r /u1Ir p..- ••..111 OU•• ■ ■ ■... 2121--- - IIIIIIIIIL..11 • .0.0. ■•• .11.11.--- I.`f. ■ 'L, I •• ■� -- 2121 - ■ 11111 11111."1 111 11..1.... ■... IIIIUI.I .. ... /. \ �1• . 1111 .-- �y , ■.. /,11111' r, ■I•\..\ \ ■.... ■■�--- 2111111111 111 /. "1I/.II/ IIII. .1...11/IIIII..II.x•l • \.11..11 ■ ■H-- I• ■r/■r 1 MI/ 11/ 1•/ II...///,■ IIIIIII/IIIIII ■I.■■■.... ■■•I• -W0 Q � - u11111111.II III. II••... O.. IUU/ OIIIIOI..■\.■.■■■■ a■ W` 7■.•■ . IIU11u111 ..•. O .'L111 u,u11 III..1.... .... ■ ■ ■ ■-s. N = ".11111 ■IUl ■ /1/ ■.11111111 /1011 ■ ■■■ - r- n.■,■ I/ Id1u1/, II .I /G. ■11111u ■O ■... ■ ■■■-�� i ■■IIIIIIIIIII IIIIIIIIIIIH111111111u111111I11111111 ■111111 ■ ■ ■ ■ ■■VV� /I /I ■111 i11111?IIIII ■II /■ 11111111111111 /1.111.11 ■11■■■ ■■1111_ ■ 111111111111. 1111111111111111111111111111HII111111 ■■11■■■■Hnril1 /■Ii11111/NIII V/11111111111111111/1I11I. ■1111■■■■■■.. t ■■nnummmum1n111 ummilmuumun11■11■■■G7 ■// 17■ 1101111 ' Man / , IIII11B1 1111 n 111 u 11111111 ■ 11 ■ ■ ■NE■ ■ 11IIIIIIIIN11111111111UI /p11N11111111O1ppp1111 1111■■■ ■MANWRINru1111/IMISM 1ln111nu11mm11111M■■11■■■mm p ■ ■IIIIIIIIIIIIIIIIIIIIIIM111 /111111111111111110 / 1111■ ■■1%[7d*.1 /'1%IMP111111111%1/ 11111111111111111 1111111 M111110mm ■ ■u11111M111111uN11N1111111uu111MM n11MONIQ'L+ W/114111 7nuuhM1111111111Inu111111111111 11.01111■■■ ■ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111111111111111■ 0 /i■ ►/1/■■11511 11nrd1111111 IIIII111n1NIIIIIIII■1■■■ ■•U �� IIIIIIMIINHII11111111111N11111111111111111111111III%/ 1/, ilrA M1111111115111111111111111111111111111111111111011� _ 4 t 21 _,a_ 2121•- 1111... - - - -- :: - 11 11 ----= =21-21 -- ---- .- •--- ■_,•,.. r, .11 21--- 2121-- -- -- �� _1111--- , ... / ••u •. 2121 - --- -- 1111,.'._,- w...11•.1I.1...1• ■ 2121-- 2121 0 _1111__■.-- ..•r.t■ NOM. NM 11. - - 2121-- -- ,n i .. Iniu/ullul ■ ■.. ....m. ■r.. . \.■ ... -- - -- .r.- '.m ....IIII•.r,1I . ■1111■._ - - - -- == ... 2121_---- - - ••WIIIIIU U I ■IIIIILUI0.0p r...\I-.1 ..•... 2121 2121-- - 0 it I .�=..�.�.. ::GS ma: '.GO =C�: ■5:::.A ... 1Si - __- -=-_ 2121 1: • o. 11ii i iv-11_.■._ ii : � �: % 1111. ::. • --- _ 21 _ 21IINNO . HUM= A 2121 - 721.1 : :: _- -- -- - - - -. u. - - -- - --- -- •_•- __2121,..__ • - - - - -- _ . iiiii�i- _ _.1 -._ MUM _ -, ......... ii -- 1=1•11111•111=11 •- I __ _. _.•.__,•_-- ■ ■ - -- - - -- 11 ■ ■I ._r.- ■.� . ■ -r •11.11 ••__ - -- -- .II.II.r/.._- r._. ■. 1111•■ 11 11 ■..__ - -- - ■ �_ ■,_. -,��.■ ■ N.�iuunu.nuuu.I=II .r,. .r-- -�■•I• .••11 ■■••••---- -- 1111111\.1111uI11 .11 rLlr - •I -� \R.. ... II 1111---- to OM HIIIIII1111111111x1111u/II/1 1111111■ IUUUUu /In, ■r11■rl ■■ ■ =1111111r1■■ Mil UMW 1111IIIIII I1U11 ■...■■■■■-- 0 W I =■111111111111111111111000■■. 1111111110 11111/•11/./ 1.MI■ MHHIMIGI 111111111x1 01 011111 1111111111111111 1O111111••••111 MMIMIMMI N = ■ 111111111111u11111111H /10■.111111u ■■.. ■ ■r1■=SM'Il ■■ �al nu111111 nnn111L11111111■lnu...■■ ■■■ 2121 .■IIIIIIIIIIIU11111111 11■ I■■■. IIIIIIIIIIIIIIII,•■%. 11/./ I ■ ■I� ■ =� ■I ■ ■111111111I111•II ■1■ ■11111111111 //II /l■■■...■■■■■__ .■IIIIIIIIU111111x111H/uU 111 .111111111111111'I1L■.■..■■t'H■=n■1■■ IIIIIIIIII IIU11111111IIIII IIIIMIIIU ■H�HI■ ■1■11111111111mxlxHUIUMIII MAIM ,IUMMIMPAIH /■■�MOHIMIIMIIM111UUMMIIIIIMI uI'SIMIW.■■■■■�■1 - ■■IIIIIIIIIII 111N1111111111111M1►i11 ■ % ■ ■■ 11/ 11■ 111111111111111111N111111111111111111111MU 11 ■ ■ ■■ m� IIIIIIIIIIIIINIINII�� pp IIIIN11111� 1111''►,11 /,111 /11►A /� ■ ■ ■/� ■■ 111111111111111111, 1111111111111111111111111 ■ ■ ■� ■■ a IIIIIIIIII1mom 1111111�I�IIGIinur //1■ 1111■■■ r/ X11■■ 1uu11ummun1uun1u1N1111111111 ■■■■ :■ IIIIIIIIIIIIIIIIIIIIN111 ►11 ►G11►,111 /111/11 ■ ■ / ■ 11■■ IIIIIIIIIIIIIIIIN1111111111111111111111111 1111■■■■■ IIIIIP� ■1// 1111// 1A11111111111111111111N111111111111111111111111110�� IIIII - 0 :5 - i :i,"";: = = -= .. = 2121_ L - -_ = == - :141195 @ 331EI11 ssce:o�co = =.o = = 1111.. .......... - . - s : . ...a. -- - - -• ..... •--- =2121 - 2121- 2121 01 __ ..................... = =::= 1111 ■5: = == ::��:.... .: 1111.... 2111.-- __ 1111- - 0. ==� I ..._ ===== 1111__■ - - - - - mem my _= .....1111AIn - --- EE -: :-- -- 1111 - = =__ mi =MO ::aaal :l::i = ==== Oaa:a == as .. = = = =_ ' NIIIM - - -- 2121-- 11 - - -- 2121-- _ 1 _ 2121 - -- 21 2121 - 2121-- 2121 a �_ 1111 -•■■.■ ----- -w•■_11 • O Ol H P 10 h qt .. 01 0 ti ID 1D to N INCHES PER HOUR ij i ° MAT t � IICHOL. twllNU11s INTENSITY- DURATION. CURVES - ZONE I FIGURE I I LOIN 11IACM. CALIFORNIA - - 1 ill' . . C Of O 1/D in M N - O1/ ■ 1/D h M N L - 1".:111111 1 • 1 a N . r1/Yt•..•1 ■ ■■ a. • ■ i•• ■ ■ M.... 11.1_.1/./.t- 1 1 11 \11 =111 = /1 / 11.11111 S .1'�i11 ■ ■ ■• x i \/ .i1 . iI1.�. /._N_•.■. "� j i 'n1111 ■ 1 I 1 � i11111 I 'ii 'iiiiiiii'IiirlilG■ I �'��`' ■ ��� =u/�iuiu.�■ y nn lMIIIMU u„■N 1111■■ a11d 1111■■■■■■ u ••uul/NNUNN■ •uuluoll , uuu•u.. ■N•��sman )0. II 1i11 111 11 1111 1 1 HII ii/i ��.. . 1 hIIu °1 � I■.■. . . � ��� �� 11 •111I1.1 I e 11u1•11111 ; 1iaua•auj �NN� N Q IIIIIU1111111111 ■IIgN / ■■0•■■■■■ � If ■ 11 11•//•11V0■ ■■ �■� C I IIIIIIIIIIIIIIIIHNINHIIU1011111 I 1 111 ��1 .1010 �� � ■ IIIHII /INN 11111111111 1 11111 ■ /I \ ■ ■ ■ ■� j ■■ 111111pIIIIIIIIIIIIN0N1 ■1111111 /11/111 IN1 wIIIiiiHiliiuiau IIIiIIIIH ■1•/1301 /■ ■ ■ ■ ■01� ■■ 1111111111111111111111111ons ■INI1111111/111111=ss=1s■ 01..01111•■11 1111111111s 111 ///w /1111111111■■ ■■ IIIIII11111111II1111111 ■1111■WIIIHIl l 1■ ■ ■11 ■mmo11■■IIIIIN■1■1111=I fl111111111111/1 =1/ ■■■■■u■1 ■IIIIIIIIlpl1 111111 /1011111111 i IN 00■■■■■ * 11118111111/1 lam 1 IIII ■ 11■ 11111111111111111111111111■NNIIII ■11 RI■■■■■ ' 111111111111111 ��■�IIIIIIINIIIIIIIII � III111111 � �� � %1111 / � ■ ■ ■ / ■ ■ ■ ■ ■■ NU111H11111NIN1111NNU11M 11111111111111111111111111111111111111H1111111111111111 41111/1/11 11111 ■ ■ ■■ ■ 111111111111111 ttr11.•.N 11111111NH1111111111111111n1111111II■■■. 1111111IIIIIII111111111111111111111111111e�1 M1111u■■■ _ 1 __ 1111.. ■ =� = _xN�■ ........ . ■.M I ■ 111 ■'•. ■I...__N�IJ•M. -N .■ ii • xxu ■.. • ■.�-�- MC u ■ • /■' ■t.wi.�..tr,ti-� �� S ■S ■N.\N1t1IN ■..11..”= =21.∎_11∎_ = ∎ ■. xI di 'ALA :VMS MN MI 11111M11111111111111111111 �/ ■1 ■�� ■■ /MI N SS.... ■ .. N ■111 ■• .■I t.��.� NN 111111111112111111111111111 NN NNNNNI■ ■__x.11 N. ■. NN M/I ■ r. ■ ■I,..I.N__I/N o I N _I I IIIIIIII III /111 ■1 / / 11 1�■ ■Iq uIu ■■ ■ ■ ■ ■ ■ ■��uu• iIII111111 / ■ ■ ■ ■ ■ 111 1 1 /11 1 111■■ ■'I \\ / I ■ ■ ■■ MI N ■■I 1 1111 /H MS ill ipii • 03■00011/ ■■0111C111111111 g111N1 u111 ■■ ■ ■■ 1111IIIIIH111111111B1111B011I1111 1111 110000■■■■■ II 1111 /// 1 /11311 ■ /: ■ ■S ■■ IIIIIMS11111IU1111H1/11001111111 1111 330000 ■ ■■ ■ ■••HI 1111111111111MIII S 1•11 II/�100%MISIM • ■ ■1111 1111111111111111111 H1111111111111111u1111M 1110 ■ ■ ■ ■ ■ ■ ■■ ■■ 0111 / 111111111111111111111111011111 !111 ►ISO /4000 ■111M NS ■ ■1111111111 111111 11111 1111111111011111111111111111111■ ■110 ■11■ ■1111 M111■ ■1111111111111/1111111 11111,111'411 /.1111'111111111■ ■ ■ //1111■■ • ■ 11111111111111111111111111111■ 111NIIIN11111111 ==■1■■■■■•ww111■11111111NI111 III 111!III'i1111111511Pd1 ■1111 N •11■ I ■■ 111111111111111111111111111111111NNIM II11111/ 111 ■■ ■ ■■ ■ ■SI 1 ■1111111111111111■ IIi111i111 /11Vi111 /, /IIIIMEMOMIl1 ■ ■111111111111111111111111111111∎ 1111111111111111111 ■11■■■ ■■ 0111■ 111I111111111111111111111/•1/111 /,/11/%1111111 ■■11 t ■ ■■ 11111111111111111111111111111111111111 11111111111111111111■■ ■ 1111111111111111111111111 /11NIIU,1111,1111%111111/I■= ■1111 o __ E - == =======E _E::: _ -• C S:: -::: :1==•°=_ ___°___=__- == = °_____- -- _ _'=______= I of _= •-- -- _ __ =' === = =E: -_ , :: ` :: -. ?--- ---- - -- - = == _. °Z.• =?.33 36 317::: ... - ..�. • . S y =i °r - C�3333 N ..- .S S t.�'••j'i1 .TS===22===:..... = •:S• • l C .... 1111. : L••:1 . ::3a3':OOT. =- ■mot -� fs -= ••: ii..�i % �.•n - •�. Vii;: � a a���� � == _11.__1_ =■...t. .. _ ... •y == ■ __.__w�1oN_wo. v,N. „ ; , •••• 2•••••• I ...- E�1I ...•.1.... • sr,.. w.....r, Nt.•■t-.- �A _N • 1■ ._::N�.:__I••5.1N Mt 11•0 11•111=1=1=0111111111111 ' NN /.� ��NN = ■ ■NNI / 11.11 ■III ■Nt1 ■IM/,■ •NNNNN N_ N N � ■ ■NNI \ \111 .N'�11 x•11 I. NNNrtN�. _N NN_NNN�1111N UxI \111111 ■111. ■ ■I, . N ■ ■II ■111 ■■ NNNNN NN ■..e___NNNN�1 N.Ix \■ \1111 ■'1YM' ■ ■/ I,I ■ 1/',/11 IV/ ..N NNNNN ' NI_ IIIIIIIIIIt1/ uupuIIlIeI■ Nag1u1UU■ N / 01■ ■...NNN__Nla1. /1r. 1, u a •' ni/ our 0 IN _111 NNNNNNI�■ NN 1 ► . 1/111'/ ■I'1■ 'wail rI ■ I NN __ ■1 NN._NN�■■N_x1111Y - ,I.II /fet N. .NNNNN =+ , == - __" = = = == = =S: =_ 1, : : : :. - ::ii:. - - - -- - - _____ == __ ;': . 4se': .. - _- _- •'......... NM moms 1 -- =o = == = ;: , • • ••• ...:e - -- - - - =1111 MIMI =- =---- 221:::: ...- - - -- NI_ '11 . ...N _.__t♦� ;•.;...tl..•11,,..11 :4: •1�.:.1•. ". ■I, _�N_�1_ -- - - - - -. . --- - - - j11 OO�i�:��ai:,., l N_.__�N. N - -mot -IIIIIIN t_ Z _ I N__NIN. N. . •1I.•.'I• ■• 1111•111..• ■I,I.x 'I■ ■■■ ■. _N__IM� _= 1 x = NM 9.41 r ■, "MINIM ••11111 ___1111111 _ _NNN_N� MP, I' /MOW 1111 ■.1.x ■ ____N� I N_ 1111111111111111111111111111111111111111 N11111YAN/II•I'I N•II I■ ■ 111 ■■ ■..N___NN 0 N_ /11111 /11/111(1 NNN_NIN•• ■1sb1/II/ N1'/.t11N\/ /111 ■ ■.. ∎NNNNN N_IIIIIIII /L.LI ■■Iona ■t.....NNN_NN� [, r 1/ 1111'IIU 111/1// MM • / ■.IU1/1P.1111�� ■N ■ ■1�...N_N_NN NI_ uu111111 IIi11Iuaiu••■ ■■E IIIIINII■••NI••■\....NNN__2� 7.IIi' III / I IU•IIINir 1/11 l■i•■I•■■ ■a ■ ■N__ M f MI _IIIII mil. .".II 11IlIlINI1 . 111111 ///11111 /i.i■1■ eassNNN_NINIwe M:II im. II'/ ■•I/.1\■ /IIINi /1 1111•..NNN ow NI a NI_ IIII IIIII /••V 111u 1N■■ ■ ■111..u.iu111i.N••• ••. \∎N1•■NNM� ■NIII /I11 1111 II ■ iii/ it.uul ',MI ■ ■11 ■■11•••MINIIN ■ ■N�� N ■ ■IIIIII1M.:: 111111 /11111MESON MUMS i1I /111••... ■_N ■N ■•11•111 , .7Y■1U1i', 11111/ /ID /,■iae .11,11111.1111/1••1 ■q■I11NNN.• • ■Ilullllu!iri IUIUN ■3/11101g111H11 1111111110 0 0 0■■■■■• mr -/Sg,g1 /,1u1I,N■In111gnn 111111000■■■ ■■111111• Cr ii1 11111 1 1 1111MM0 niIIMM ii ill iW IIIIE IIMIN 1111 111 IIIIIMi MIll••iii I ■ 01111111111111111111111111111/ 111101NNIIN111111111111■ ■0■ ■ ■ ■■■0U1EIVAI!11111,11IU 1111110► 1111111111111111111 ■11■1111■ ■■01■ ■■ 1111111111111111111111111111 /■IN 1111111111111111 ■■111■■■ ■■IIVC:N71MI!I!11111 /111111 /1111111111111111111111■■■■ ■1111■ 0 1111111111111111111111111111 1111111111111111111111111111N■11■ 0iaii1/ fi7/llii:;11;i1∎11111 ;0% 111111111111111111111111 ■ ■ ■11111■ ■ ■11111111111111111111111111■ 1111111111111111111111111111111 ■ ■ ■►111,1111111'4IIIN11111111 , 111111111111111111111 •1011111■ ■■ I ■■ 111111111111111111111111NIH11111111111111111111111 111111111WW 11// III�11111! 11111111�11111111111111111111111INI III ■■ - __1• _ . ■M _.v:r .r.■..I. __ ____I... � • _II_11lxNxa '.I MOM ___111111 �_ .....N____'_1•. . .xx . •...._____� N_ _N ■ ___NI_•■_. I, ■ \..1 .___NNN N_ N. N • _ 11_1,11 Nr / ■ NI am 191111 _ ___NN g . -_ . N___II_■_I ■ _II •.I ■..1111.•. •...._N__N•N N_ uu • ■.....NN N_IIIANr NN. 1 /11',x111! 1I•1 NI■■ 11. ■111 ■.. ■ .N NN NNN N_ NNN_ ///121//// ' ■ ■ r,. Mir NN NE INI 1 1 ......,...= �_IIIIIIIIIIIIIIIIINI / ■• ■ ■ ■ ■ ■■ 1i••N. ■ ■ ■.. \.�� �I�_II1 ■ ■' =N x :11 ..... - - _ _ 0 . S: iii �_ �i ..... 3333 . . :':::'331: ' ~ N_ .• . ::i = ■:: . .._ SC CC ..,Nm: : ,' ... ..4 C '. -- : . .1. NI.�i:���.i: N. 1111, ..'j ��::�_�_ ....1. I 1__ IIIIM x1 __ _• . I.�...■ 111,1 . -^ .. --�__ IIIIII /t 1 S _ II = 1111 .....N == _111111•x\ N1•NMNM■ _II_NOW =EN MM. i 1.11111111111111111111•411•1111 1.11111111111111111111•411•1111 .1.11111111111111111111•411•1111 1111 /1■ N /IN /N _N/N1111 NN ■M. .__111__111 __ .. 11 II.1_I� ■INN 1/ 111 ■ ■ 111.11 N__■ ■� NN 111 ■ NI/ I ■ ■•IINr, •.r�.I111 /1111 ..■.NN_NNNI N_ ■ ■■ A! Fri/AM I =CUMIN I M 11.____11 _ !III I IIg111I11 1i/1/1ii1■ •1 = = .unumn_N .o I .1 x l N= 'A =CUMIN 111 NI ___1111 nu IMM iii1111 N u1IMIH/NINI11N11 MINIM N 011/■/ 1 1p, �N/ 11 ■■ ilriiu/ iiui1 .101NWUUN1N111111......N■�• 0 W MS 11 NWE .•'iI� aaess / I N i" ' 011• IIIIIIIN11g111111I ■ilia/I••••IIIgII IUuII•I311 /111 //01 /11■ /i1�11••■ ■g/ 1111111 1111111 /aI1l1111111111i uiiu1i11111• ■ ■ mange In n c..1 •S IU III IU11 mI MI 11 WIIIIIIIINHI11NuI3 111 / �1 M 01 IIIIII1111 1 11% .i ..11 1 1 1 1 1 1 111I la nI I .. 1111 � u• ■■ i= Z q ■■IIIIIIIIIIINNIIN11� 111//1111111111011111 / NI1%�IIKII111111111111111 111 11111111111 1011■■■■■■■■■■ - , 1�IIIIIIIIIIIIIN 1�1111 11111 I/1 ■1' � 1011111111MUMNITIMIIIMIIIIIIIIIIIIIIIIIIIIII � 2 ■ 111111111111mi 1 111 t 1 1 i11uii11i1%Uriln i i /■ 1 % 1Iu11111111111111H11111111111/� liiniii•l 11 I ti ■!111111HI111111 1111 4 1/ 11111111111111 //11 /1 /PIIgtrilIl / 111111I111111111111I11111NIIIII11111111111UIIIII11 ■R■ o : :I : :ill!IIIf§* HISS ""1":"in:iErs rats=_ c_- =oocco - _t1 - - __° _c __1111. i :: .- 1:10:0 ss== - -c - -- __ -� - -=== 01 ' == ......... 1111 -E:IEF.HEREiriE-EF.EF.1 .. ..■.rti:::i - ....3 = = = = co ..1/t■ 1x11••1111; 333333333 ■1•N ■:. ■. - l_ 1/_.■ . : . • . .1.�_ 1• Ei3 s. -.1113 •::,.t• . _- ? 3.. _■ _ ... ■_. . . N_IM�� _ 111111111211" NN ■■■■■■■ ..NN_. _= :==1 = =1! 1ii1111i11 ■ppp ii___. ■ ∎ ■9_ MI 111111 11/11111x. ■1 . s.a. �I� Mir =1.f■ iiw i . :a" - MINIMMIIIIIIN ow - -__ MIIIIIIIIIIIIIIIIIIIIIIIIM ••• I 00111 f►1110•h 1111_ ■1•1• CO • . .:.0 m A ID h M N .. • • • 1 INCHES PER HOUR 11.1 • 'WATT 1 - ;1 INTENSITY- DURATION CURVES - ZONE II FIGURE 12 110110 112M11. ammonia ■ : ': ':: ':::: :':: :::::':: : ::': :g :::':: _ III ■ . . ■11 ■ ■■ ■■ ■■■ ■ ■■ ■■ Hill ■ ■■.__ :. ■. . 1111■ :1111 ■g 111 1111 : 1111■. ■. ■. :.. ■ :: ■■. 11■■ :. 11 ■. ■ ■g .g:■■ :: ■■: ■■■ :: ■ :: : : _ II :: ■ ■ : :■ ■ : : ■. : :: . ■. :1111■■ ■ :::1111 ■■■■ : :■■ :g ■■:■■ ■: ■■■ 90 ■■ ■■ ■ ■■ ■■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ _.90 ■■: ■ :: ■ ■ ■ ■ ■ :: ■■:■■ ■ :: ■ ■■:■ : ■■ :: ■ ■ ■ :: ■ ■: ■■ ■ ■■■ ': g ::g : : : : :: :: ' : :.: :gg: : : : II : 11: ■. ■■ .11 ■■. ■■1. ■■ ■• 1,1:11 ■.: __ !� i :: :: -. ■ :WM _ -- - IM!_ : 11■■■ ■g = ■■11 ■■■ - -- -- - _. •mums■■■■■ ■I / ■■■MMU ■1111■■■■ •� ■� ■.iii•..- I limmilmommilmmimm•.•••• .801■■\•-_._ 111_ ■■■■■� rg11■■ ■■ 1111■ l i- .130 1111■ //1111 ��i��•.�_ �_�.• . ■ ■ ■�■ ■ ■� ■ : ■�� / ■■ : : : :� : : :� ��� g S = = ■ � ■1/ 1111 ,11 !II ■ 1111. ■: ■■4: ■ :: 11 :x. 11 - : : : .. ■■ :■ :1111 :■■■ ■■■ : ■■■■■ ■■■ ' ■ ■ ■g g 41 ■A. ■■ ■■w ■■ ■■ ■■ ■■1111 ■ ■ ■ ■ I I:, i��c 11 11: 1111■ 1111■■ ■ :: 1111 c � 11 1111 11 11■: : : : : : :: : :: INEE :M : :: g : : : : : :: : :: -- I i .7o '��:': 'NI ' ° 1111: 1 ' ' 111::: : :: "111'1 70 ■s�-..li ■ .. ::gggg..■gg■ ■..g .■ggg ■11:g11■■gg Q �: 1111_ � :I■■ ��N! ■ ■: :■::::■■: �■ :'■ NI i 1111.. .?_ �'� _ ' ■' ■�' : : ■ ■ ■ ■ : ■ ■ ■ ■ : ■ ■ : ■ u I 11 ,- ..._r. s � u: ••g ■■N ���u ■ ■ ■ ■ ■11■ ■11 ■ ■ ■ :g: • 'g ■.- :1; \::...11. ■11.■■■ .60 ■ Ii. 1111 ■ �a. _ ■ mum ■■ ■■■■■■g- ■1111■■■■■ .60 FM „ .• ■ ■■■\:•■1111 I 1 ■11 � - : ■._ ■■ ■- ��■■11■■■■■■■■■■■ i■■■■■■■■■■11 ■ ■ _�_ : - : : '■�`■�-�■��_: : : 1111:■■ \ ■ ■■ e gg ' p-•. ■ ■. ■ IL. q_ _ • _ : :'•' : :■ : ' : :igrorm �z.._: o ■ ' ■ ■ : ■■ m \ ■a= .■ ■■\∎. ■ ■■■. ■ ■ ■ ■ ■ ■ ■ ■. I W ■ ■ 11 10111/1111111111111116 1 2911111111111 ■ R■ ■■■ ■1111■■ ■11■ ■■■■\►9 M■ ■■■ ■ :1 ■■■■■. ■■■■::.. ■i :' ■ ■ : 11 ''` " : ■g : " : : :: :: :.w ■ ■■ ■11 ■■ : :\ 1111■ ■ ■■■__1111■ ■ ■■ _ ' ■■ : :■ ■ ■► �� ■1111:■:■■ .40 ■■ :: : 1111■ :��� :::: ' ■ ■ ■ ■ ■ :: 40 1111 ■■■.i :: 1111 11■■ ■gg ■■■■ _ IN...i .uu■■: 11■ - ■■11 i11 11■■ 1111 ■■ ' gi ` m ■■ 11 ■11 ■■ ■ ■ ■11■ I Mil ": :: ■ ■� ■ ■ ■ ■: :: ■ :::'::::: Imam •g ■ ■ ■. ■ ggg l•u ■ : ggg 111 u ' uM: 1. :: : :: — :: :1111'11■- i: : �:' "'ME =O: : ::MIZ ME 30 ■■■■ u ■■ _ 11 ��� *���I�I�A 1111 1111:1111 30 : : - - 111 ;_{ : �l � �1!i7,11I 1111 1 111111 _ ■ a , 4=I 1111.1011 ' ■ _ r -- ■■!ii'L 13iit!' - 1111 •••••••� ..- -1 11 -._4'_-, 1.111 AM ■g■■■ : :■g■■Mi■ _ - ' _ U•m• "1 : — ' 1 ": , -F " :■ 1111■■ 11111 . : :: ' __ -}-- 11 -_.. ■... ■ : ■ :.■ . mil t , -.,._■ � ...�- 1114- N • 1 1121■ ■■ ■1111 ■ ■■ f . l t : ■ r _ t ._.. ' :1111 ••• ••I , r :_rr: � 9•To , : ' i -, .- _• -1111■ A TH , , 1111 ■., �- I ,! - 1 ' I 1 T i i I I mi LI It ' : -- . 1 1 , , 1 1 ".. „ I , 1 10 , 20 30 40 50 60 TIME OF CONCENTRATION Tc I•I • fsATrt RUNOFF COEFFICIENTS - RATIONAL METHOD ` , • 11CNO�. t NNN ell FIGURE 13 LAMS SIAM CALIFORNIA ZONE I - 10 YEAR RETURN PERIOD J II immilimmummiummissmommmommommimmmommimmummummilimm ■■/■■■■■■■■■■■■■■/■ ■■■ ■ME!■■■■■■E ■M ■MM ■MM■ ■M ■MM■■■ ■■■■■/■■/■■■■■/■/■■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ II 111111111111111111111111111111111111111111111111 _ 1.00 !■■■■■■■■■■■■■■■■■■■■ ■ ■■ ■E ■■ ■ ■ ■E■ ■ ■ ■ ■ ■E■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ I .00 1 11111111111111111111111111111111111111111111111111 ; s ■■M l■■■■ M■ MME■■■■■■■■ ■ ■ ■ ■ ■ ■ ■H ■ ■ ■ ■ ■ ■M ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■.90 90 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■E ■ ■ ■■ ■■ 1 II IIIIIIIIIIIIIIIIIIIIIIIOhII'IIII!HhIIIllhIII i■MEMMINI M ■1010■/■/ //MEMO / ■10 ■MMO /'IMM■ MAIM ■ /■ / /M ■■E ____ . . I•••■■ ■ ■■/IM■ //NM ■ ■■ ■ ■ //!/ ■■ _ .80 ■O M ••M■■ ■■■I/iE■ ■■EEO■Mm. ∎igg_ 80 ■/ N■=■ EEM■ mOl■MM■ r� ■MU■■M■E■M/E■■EM■■■■■.....:.: MMEMM■MMAG MMMULAIAMOSGGNGGGG ■EGGih MEH M EMEN 4 !EEMH•EMMH ■ ■ ■ ■ ■ ■10[ K'1 II 1: t'i /_I OEH ■l10G■EU■ ■MMM ■O O ■:!E■■ ■M■■ ■ ■EM■■MES i10 ■MMMM ■MOM ■E GH — V ! ■N ■gr!Ml■ HEM /E ■M■lka ■itlAU1 /� ■ ■ ■■■H■MMENMO N ■ iNEMH.:!■■■EOMMNM ■10 /MOM■/ ■EO■■MMEMHMMMGVEH n ■ ��M ■■■ ■.a!o ■E■■■E10■MEMM■ME/■MH!■■■ ■HMO ME EM■ Mm! EEMEME ':!!me ■!M■MM■EEM■E■M!■EM■ d i 10� I • U H OMN .r\EE■MM■.a■MMEG!/ ■ L. ■E■■ ■■M■lEM ■■■/O/ ■■■■■ EM r0 ■\ ! HM■!■: . ■■ : EM ■M■ ■/IiZ:!•M•■/■// ■/■/EE ••O ■El Z EH10 i� MME■■ WC !U■■■10IOlM . E■M■:!w ■10■ ■M■■E■M ■M10■ — NM10m. . ,\ 10■■■■lE M ■\z!110M10E■■■10ME10■ ■ ■�� !!■ ■m ■ ■ ■O moms MEEaa !■■ME ■10■■ ■EM■ai::aammum ■■■/ ■■ ■Maw. :!■ ►mMM ••10MMM E/Eba!10/MM MHO/ ■■ //\ liamm■mMMMM E■■■EMMEEM 0 E■o10NMEHM■■■emam ■■■■O■M■M ■NMM\■z_ ilimm ■ ■MM// u. 10l■■H =omz- A N NH10 ■ ■ ■■ ■ ■ ■u■MOM/E10 ■ ■MMruz:! o MMOOE■ cmEM■ M■■ M ■MEEEMH•• � ■.!■!■NMMMG ■M ! ■ ■ ■ ■ ■ ■ ■`�E ■ ■ ■ME■ ■ /■N ■ ■ ■ ■ ■ ■ ■ ■: =fit ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■.60 60 M■l■ ■MM■■ SOU .EE■!■■ ■M■■■ ■M!■■■■EEEi =!U■■■ /■■MOM ■■■ a �. 111._ I11 • > ■E■■ll■EMMMEMM■■...■ M■/...■ ■ ■■■10HE10■E■ ■10110■ ■ /ME ■ ■OE ■ M■■ E10M■ EMMU ■ =H ■101010.:/■■■■H■M■■■■M■l10! ■ ■■ .50 ■■. M ■■H■u......■■Z•■■N■■■■■■■/N■■ ■■ .5o ■EE10M■■H ■E ■I OEM ■■NMMH /H■ ■M M■UOMHEM■■ ■E■ ■MMl■■ E10EM■■■I ME ■MIII=UN ■MlE ■■MMM■■M10■E.:101�;:� MMII II MEE MOM ■111000■EMM10MEMlEEMMEMMMMME■MME10M ■ice 111111// ■E10■HMEMM ■10NHN10■ EMHMMMH■ MEMEMMEOMM Eg VA MMO ■EM M■EMEHOE■ EO10M ■HMEM EEM /10MHEE E••E10MMEMl EM■■ \MN ■ME ■......■...... H ■ ■M■ME.........M■.M.EEOEU ■ ■ ■EM■ ■1110 ■ ■■M ■N■HU 11:1!1.11;1 it1 1 ■1110 ••HIM■ ■ ■MM! ■MME ■■M■■■■EEM ■EH■■Mlu ■EE10 ■EH /EMEEM■ M■■■ ■MEMO■ ■MM ■MOON /A4k IM■■••ENEMMN■■ ■M■••■ .40 ■■■■■■■■■■■■■■■■■■■■ ■■■■■■ •■■■■HE■E H■■■■■■■■■■■ 40 ■EEMHME■■ ■ ■■O ■! 0!11■/ EM 10••10■ ■ ■■N ■_ ■■EE■M■EH ■ ■!1010■ ■■ ■■O■■NMGEN EG■mMME■ MI M ■OE■ ■■ ■l! ■ ■1011 / ■ ■ ■ ■ ■E■ ■EMHEHU ■MMUMMME■ l■EMMMEM ■M II ■ ■ ■ ■ ■ ■M ■ ■ ■.EEE■ ■MOH■ ■ ■H.EIEMG ■M M ■■MOM■ ■ ■HE■ MM ■MM ■MM■MOMEEO ■MME■MMH■ ■10MH H ■ ■E■ ■M■■EME /M ■ ■ ■ ■E ■ ■H ■E■0 ■O ■ ■ ■MM ■ ■E.M■■E■E■ E■ ■H■ ■M ■M■ ■H■ • ■ ■ ■ ■ ■H ■ ■ ■ ■ ■/!■ ■■OEM ■E■.MEU■10 HEOEEMEMEE■■■ ■M ■ ■MOM ■ ■OU ■l ■■EM ■ ■■■ ■ ■ ■ ■ ■.....W /. ■HOE ■ ■ ■■ ■■ MO■EMM■■■OME■■MMMM■OEEME10M■E /M M■■OE■EOH ■M■ . 30 ■ ■E ■ ■■■ ■ ■■ ■ ■ ■■EHM■■ ■ ■ ■ ■ ■ ■ ■■•• ■ ■M■ •••� ■EMM ■■iM■ H■■■EMH ■N ■M ••EH ■NH�� ■MEl ■O ■E M •30 M /M■■■EM ■ /MM ■■MMHm..■MEHMH ■ •• � �GG%GOGGG M H O ■ ■ HE ■ ■ ■•• ■Ml ■1110 ■101010 ■■ ■MEMO ■■M E■■ ■M EEEH ■0M■EMNEM NM■■ NGG ■ ■ /NM I G: �T•Sl3�M[�i ::1 ■1`1iR�`ir � :........ ■MME ■ ■!10!■■l■■lM■lu■■10u ■NM , . i ■EM■ ■l ■El■MEON••0EE , .111111•1111111•1111111_, NRIME11111 , - - - 1 10 20 30 40 50 60 i TIME OF CONCENTRATION Tc ? 1 ,', mm RUNOFF COEFFICIENTS — RATIONAL METHOD FIGURE 14 .. l'04 i IOL. ENGINEER. ' ._.._ __._.. ZONE I - 25 YEAR RETURN PERIOD J 4 11 CCC CCC'CCC u CCCC CCCC CC: C C: ■Elm 111111-61111111111111111111111111611111119 ■ C■■ ■■■ u..■■C■ ■ ■ .■■■■....■■ ..CC ■■ ■. ..■■■ ■■■■.■..■■■.■ ■....■■. ■C.■■■ ■. III. C .■■ . . ■C■. ■u ■ ■C■■ ■C■■■ ■C ■CC. C C ■■ ■ ■■ ■ ■.■■ ■.■.■■■■ ■C.■■■ ■■ ■. ■■ ■■■C.. 1111.11 .■ ■C. ■.■ C.■■■■.. C ..■.■■■ ■. ■..■ ■C■■■■C■. ■■.■■.■ .90 90 CCCICCCC' CCC= CCCCCCCCCCCCCCCCCCC =CCCCCCCCCCCCCCCCC 2 C CCC"C..IuN . u.. U CCCCCCCCCCCCU- ,, • ■...m_o■■■■ ■..■■■■ C ■■■. ■.■■■■.■■'/C..■■■.■ ■■C ■..■■ : vo. C ■/■■■■ •■■■ ■■ ■■■■■..■v■■■H..I■■■■■■■■■ . 80 mm�C ■■U■■■■..m. = = = = . ■ ■/■ /m■■■■■■..... III .■ /■/■ �W AIII.■■■ ■C■■.■■ ■ ■ ■ ■. : / ■ : :..... ■ ■I C.■ CSI■■.■■ � ■ ■��� ■. ■. ■ ■ ■ ■ ■ ■.... ■ ■i ■ ■ a aw4 C N , C ■.H■■■■■■.\■..�_!!�■ /.■■muua. ■■ ■■H T M FAMAII ( -CJ ■u■■ .■■.■■■■ ■■ ■..../■■..�.- :M•_W■ ■ ■.C■ ■■C:.. ■■ .■. C■. ■■ ■..■■.C■.■ ■C■..■..■■■.■■.■ C ILIM ■ ■.I ... C '. ■m.......11■.. ■. ■■. C■.■■ ■.. ■.■ ■CC■■ I /■■■■ 'I1; 4�N I� I �.■ ■.■■ ■■■ .. 70 C C■C " CCCC IM [��l'� WA: C ►51c�TAIMiiC 70 • - ..■C ■ ■CC a .CCC:''= CCC111EMOMMEMERMINUMMUNIMMEMOMMEMOM " CCCCCCCCC� CCCCCCCCCCCCC II .■■.=:.,.C�■ CCH�C■ .a.■.■■■C■.■.■■■■■■■_■■■ ■■C■ V ,•; mC ' u\ CCCE■CC CCCCCCCCCE: II ; . = .. C■■ CC ■ ■■ ■ ■ ■.■■ ■■■ ■C ■■_..■■■■. O s0` \■■■ ..■\T \t.. ■■■■■■ ■H■ ...■ ■■■ .■..■.. 60 ,"iampum""m mmmu 1 ? ■■ mp■=CN■.CH.\:!i m• H ■■■■■ ■■H■ ■ ■■■■ I 0 CC All • '6 mi ' C mom : ':: C CC ■: CCM .■■■ IIMMIIMMISAMMISM u ' ■■ ■■CiiRC • a' mo p ■ is O �N�I■■■, N■►` a .■CC■■�%■i:f■.CH■HN■■■N■■■■. N .50 N.0 CC CC'C: � ■� " CCCCD � C��CC C : C C'. :. C C CCC C . 50 W ■... . �..•..CC..■■ ■.■■ \.N ■ ■■■■■■■■ D ■► C ■C ■..0 ■.....■■.■C■...CH■\,• ■.;C. ■.■■ • a CCiaC�iCC■C� CCtiri==.1011.6.1211==.11.ftal-1110 .•...■. ■ . :111■■■ II CC ■ C :. C ' C :. ' ■':C. CC. C .40.■■ .■► \ .■.\:M■ 11111•11M•••=.40 p 11 ME 11111M CCCCC�•\: a.mu: ■CC: CCCC : :::. x1111 M M ■■ ■.■■ ■ \■ ■■■■■■■■■. ■H.■ ■.h' ■■■■ ■■■■ . I NC ■\ ■H■ ■H■■.■H■.■■H ■. \Mmo■■■■■ CCCC om C ► . C ' C ' ' 'CCCCCCliCC CCCCCCo: C I ■:C�CCN N ■ ■C ■G� ■ ■ ■ C.. ■■■� ■ ■■■ C' ■ ■. ■ ■H■ . 30 ' CC■CCUH CC CC " CC ■C.M\NCCCCC■HCC .NCC'CCCCC'CCCN 30 . C H.■ ■ ■ ■ N■ ■ ■H■.■ MOM CCI "■ C C ■ ■ E rni' ■ . ' CCCC ::CCCNCC I H■ N■ ■C■.■■.■■■■.■■■�\HC■ ■H.■■1.■■■.■ ■ ■■.■ ■;». yli ]:��!�drum.■■■.o.■■■m■■■ ■ mum um IMNMEMINEIIMIIMRMN ,� r U MMEM C CC ■ CM ` C, M ` ■ ■ MM.■■ ■■■.■■■■.. II . Elm CCC■■•■C. SIC■■._■ ■■■■ ■C■NI■�CCC. ■ :C.■.I.■ 20 MC"CAC' •" ' U ' : • CCC'CCC'■ • .. ■. . CC� ill C..■■ C ■■ ■ ■ ■ ■■■ I ■■ ■ ■ BC ' CC ■ C • t 1 1 1111 I 1! 5 1 ! VI ■ ■ ' 10 - 20 30 40 50 60 TIME OF CONCENTRATION T • sswn RUNOFF COEFFICIENTS — RATIONAL METHOD - ; i SCOWL ■NSINt1R§ FIGURE 15 LONE N�ACII,CALISONNIA ZONE II - I0 YEAR RETURN PERIOD .J II 1 " 111 ' III '111 " 11" 111 ' 1 ' .11111' 11 ■■ ■ ■'l • ■■//'i1■■ '11 IH / ■ ■ ■ ■ ■■■ ■ ■ ■■■.■ 1 '11g'�1 .1 .1 �1. _■ I EMI 1. 111h J ■ ■11U111■■■lR■■111■■1I■■11■I..■ H.■■■=■■■11 ■■■ ■■■■ ■■ ■ ■■ ■■■■■■.■ ■■■■■ ..■■ ■.■LG7 ■ ■■ ■ ■ ■■ limms i■1 ■i■i " ■1'11 ■1 ii " ii' /■ /liiirii i'i m I:: $C111�:■ ■ ■►.. ■ ■ ■ �1 - ------ - --- - ss--- eeeee,•• ■.■ El ft=:n.. ►. ■. ;= = - - - -- - -- = - - -= ... 60 ■■■EMMMU■■■ 10.10 ..., _!-. ■IN■■�■■MH■ ■ ■.. - --- -- s0 ■■ 011 ■ ■■: 7 . . ■■ = MN _. 1 �' 10 10 1010 1010 10 ■■ - - - _ 1 _ TIC' , _ : _ i I i i Ii !11 LiirjIh : H I r .: ■ 11� 1.H/ ■■ ■■ // ■l ■ n�i - ■ �l 1 • Iki H L t 'IPT ■ ■ 1 ■ lb : I. I■ 1 ■ ■ � It ■■■ ■■1 ■ 70 .70 ��■ \:h� = ■H 1010■/ 1010 I ■ ■H ' -:1 1..... . 1111 ■1 ■�'•1 ■ \. ■ � � 1010■ � - � a 'i■ � ■ ■ . .■ _� 1010 ■ ■ H ■ 1 IN ■� H ■■ 1010. . �� .■ ■. - _ -. . - ■ . /■ . -1 MA ■■ ■1.■. ■Hi.. O ■L , •■. ia_ • ■ ■H * / ■. ■■■ ■ ■■■U mum .60 - so me • ■■■ �� ■■ .:- "U■■■■■■H■■■. 10 . ■ 1010 ■- 1010 • /_■■■■. ■ 1010 ■iii.: + 1010 ■■■ ■/■■ ■::� o 11 i /1■ ■ ■ , 10■ � ■ 1. .....•i■■. 'UM . I11■■■ ■■■■ ■■■■/■■■\�5 ■■■■■■ t _ o 50 ■■■ . ■H `\■ ■H■■■■■■ ■■■■■ ■ ■ ■■■■■■■i =S ■■ .50 _ �� 1 ■ 10 ■ ■1 ■�� ■i 1 ■ ■ ■ ■ / ■ ■ ■ / ■ W 1010■ 1■ 1010■ �� ■ 10 CS ■' ■■ 11111 ■ ' ' C = "' ' ::C=P7■ ■11 1010■■ ■■1■■■■■■ J a■ Ma 011 ■■■ '� ■.■/ ■ ■■ ■H1 ■ ■ ■■. ■■H r I/ / H / ■� /■ l ■H■ ■■I■ ■■■H■ ■■■■■ ■ ■ ■iH ■■ ■■ .40 ■■ ■ ■H■ ■■ ■ ■■■ ■■■H ∎∎5/5.10■■■■ •H■■ ■■ 40 :111 1010 5. H ■H■■■ ■1010 \.N■ ■■1010 ■. ■H■■ ' / ■ ■ 1 ■ H■■ PJI III iiiI I uII I riiih!!!!!hiT! uI FNii H■■■ 1 'H■■ ■ 1.....■. .1010■ ■. ■ ■.•....10 1 ■H. ■ 11H■ ■ *U ■■■S1■■ ■ ■..■ ■10.,.10■ ■ ■ ■ ■ ■ ■■ 1111 'I�1 ■ ■■■/■■■■.• H' j� __ 1 ' n 1 1. 1010■■■■■ 3o i i. .R5*I ;••• ■■ 1 •■ .• / H■■H■ ■ ••••••••••• � 1 1 N ■ ••••••• 30 j H■ - _■ mill ■H1li1's..1111■ " ' ■:'.111 X- ■ ■ ■ ■■■■ ■H ■■■■10H.■ • -; H _ ■ +- ■: :1101 • '■ ■■ 111 =11111:.1 • I f I 1010 ■■U ■ /. MME ■ HI■ ■■H■ • ; { F ' 4 /'" C1 11 11 1. 111111 ■1111■: • I .20 ■ . 1 ' 10■ .1010 11 ■■■ 1111.20 millilii. _ • Al " ;! .J.. _.' • I Wilirn ': I - :0 3_ 41iik 41; MITI 1 *11:-1 , -, CCIL::. J,.. jii ,,,,,& a - ----i- -. , . • ,-, • . , , ' -- - . - 2 - 1 1 1 + . } + -f - _ - • Il T _ _1010■ ■H■ 1010 Ht 1 :H . --. • ' 1 10, 20 30 40 30 60 TIME OF CONCENTRATION TO • I i', • «A**i RUNOFF COEFFICIENTS - RATIONAL METHOD 1 ICM04. ■Ni1NUURf FIGURE 16 WNW IMAM CALIFORNIA ZONE II - 25 YEAR RETURN PERIOD 4 Il 11111111M111111111iiiiiiiiiiiiiiiiiiiiiiiiiiiIIIIIiiii 1111 : :� ■ ■ 1111 .■ :■.■■■■■■■ ■■■.■■■■■■ ■ ' :E EE •■11 • '::E::°■E'O:MEN•: E'EEMNNM::: I 1 ill1.1111 E•• M1:.ME:EE::E:1IIII ME::IEEN: '••"" ME ..H ■ ■ ■ ■N ■■ 1111..UNIVE PH ....■■■■.. M :' :NN: • :ENN:MO I N :■.. N : ::N ■ ::M N:::::NN:E EE : III ftii U hl *.h1. ' : S EM MM M_MMNE EE NN : : E I 80 ••••....E... •• EEEE1M11 RNMENEMNE :.■ : : : : : : :NNENNI111 . 80 .. _' :' : :: MM:::MN M.N NI ::M::: :: ::M. I =9 :::� N:INMEENNIENNENNNEMENNENN : ENEN ::NOON Mildill1110440 NRIAN : :::: : : : : : :MI :. ..M: :: .: I 70 gra lre■ . /sir.•/■■H■ ■ ■ ■ ■ ■ ■■.�� ■ ! ■.N.�.■■■ ■ TO 1 2NIM■■�:;•■■R■■N■■■■■■■■■■■E..m •MONO ■■ ■■■■ 4 .ni ' •' 1i 11 �iEE • iii 'N - 1� :EE :NEi■:i :iii: a.o ..� rmalimm ... ■/■.r!■:■■■■.■.■■■ ■ ■H 1 V _Wig. ■ NNE MEMOMNE!Mi ■ ■ ■M ■ /i:M!■ ■ ■..■ ■MN ■NN ,__�1 a- .■■Mi■■:LINa■N■ ■11■■■■/■:_!■/ ■ ■ . ■ .■ :I: IU ■■ ■.M .■•112....■■..1 :•••••••••••M ■...�.. •. �m ■■ . ■ _ r.._a. :•EEC ■. M:_.......... d II N. \►• • ME ...■..■..■ ■ :�.■. ■..■■.■... ■60 1 60 1111 ■a.�■■■■ .■ ■H 1111■■ ■.■. ■ ■u: :!�■.■ ■ ■ ■.. Z 0m ...►\. mino :.■.■ :.... ■...■ ■\a :_m■■ ■: — 11 .: _; :: . E::N:::'.E■: 1 ' :N: ' ■■�■:■E:■:N■:i: OM I • FM! . IBM O :i:ft: : ■MEMMNO . 0 :�• ■■ . ..■ ■ ..■ ■ N N ■ ■�. ■ ■...��. ■ ■. ■ ■H 11.11■ H. .N ■.■ N■■ .■ ■... ■ ■ :ir e/....■/.. /■ 50 • 50 • 1111.. . ■..N ■ ■ ■ ■. ■ ■ ■.. /. ■. ■ ■ ■.. ■ ■��!� ■ ■. ■. ■ ■■ to ■ ■. .H:• ■■■■■■N.■■■■ ■N■■■E■■■■H■■■.\�; mul I 4J • •:EE • EE:: N ■EN '•:EE :NE■E : :EEEE:EEEEE:EEE•N� 'NINE -J : H ■M N. ■■■■■■■■■■■■■■■■■■■■.■ ■ ■■ N. ■.■NN .■■■■■■■■..■■■■■.■■■ .■■■.■■■■ I .■.. ■ ■N■ lLl�1'CR1./.i,,iill'5.. ... ■:N■■.■ 40 ■ ■ ■ ■ 11..11 ■■imirnmmwwwsom■■■■ ■■ GiH■■.■.■ 4 ��. ■ � ■_ ■ ■ ■ •. ■N��[7.;i3;�:LL1� ■ ■ ■N 1111 I N E : N■�.E :E NN N• •M E •N :.:: :. ■...... ■ ■ ■ ■ Ism i E :: ■ ' '• : :11 .. m ".1.1.111111 ■■NN■■ ■ N■ ■ H N ■■■N:■ :E:EEEE: :IEEE::: :MMI MEMO : : : :: :MN.M :NOON::: I 30 ■.■■ . .. ■ ■ ■ . ■■.F ...■ ■N 30 N .■■ ■ ■NNE ■■.■ ■■ .G R$ ■■NM .....1111 ■■ ■■ .'N ■■ ■. ■.. .■..N■ .. ' M • ' �M '■E:N.. ■H■ N■.. ■.N■ I .:. N:■ ■■■■■. ■ O : : :N : :NOON..•..a : 'It ' :■ : : : : : : :� : ■ 1111■■ . ■ ■. ■... ■ ■..... ■ ■ ■. ■ = 1111 ■.N ■.H NOUN: :E.:::'.NEMN:EEEN:E::O.■• .N.:E:U:::: I :::••::N • . •"..a0 . t --t_ __:- p,•:::::: .■.EMM.■■ 1111 ' 1 i , . .■ 1111 N 1111 ■. ■ N■ g al n ari rrr �i iii � inu ■� I M. ■"UM 1 ■ II ■ N■ t .■ 1 . mom • . .■ ■ ■. :: it + .1111111111111111111111 : _ • 1 10 20 30 40 50 60 TIME OF CONCENTRATION Tc 1 •, • sswn RUNOFF COEFFICIENTS — RATIONAL METHOD ` , l' s 1CMOL. RHOMBUS FIGURE 17 LAM SEAM CALIFORNIA ZONE I — 10 YEAR RETURN PERIOD 1111: SS 'SS� SS " S '.SSSC ■■ ■ ■ ■ S S S ■.S ■ ■■ ■ S S■■ ■ ■N ■. ■ ' ■■ ' S S ■ /. ■ ■SS � ■ ■ ■. ■■ • ■ ■S. ■ ■■. ■■S„I'S .■ ■ '� ■S " ■S 'SSSSSSS 1 II; ■ S ■. . ■■■ ..S .. N. ..5.■■ H. ... m. SSS• SS. S ■ ■ ■.SS ■■■SS. ■S. ■. ■. .. ■. ■ ■ ■■ .. ■... ■. ■. ■ ■ ■ ■ ■. ■. ■ ■. .■ ■SS S SS ■ ■� ■S� ■ ■SS ■. ■S ■NSS ■�. ■S ■..■. i ■N 1■ ■■�.■■ 1.■■ ■■. ■■ ■ ■■■ ■■ ■ Imam ■ ■ ■�•• SS.S S� 'S. "S.: "'S S'SSSS•SS'S .. II: . .. ■. ■. ■. ■■. . .SS ■■ ' :. 5 . ■...... ■ ■■ ■ ■S ■■■. ■■. .. SSS SSSS■a..!ISSS'�SSSS ■■�..■ ■S ■. 80 S S■ ■ ■..■■NS■. 80 SS -rS : "' I"SSSMSS ' SS ' SS ' SSISSSSSS 1 _ 4_ _ Ill ■ ■ H /■ =BIM REM I -r - ■ �-' S * "SS. ■ ■�� : 5m.■�, ∎� _ t y • SNMI■■ . SN■ 70 :om 0 ■■ - m.■■■ ■_ �S.■ milliimmumm N 70 _ . :��■ IIR*. ■■■ ■ Q !r . ' _ t - •• "m �..r. IL. I ■5 1 ' H ■■ 0 60 ■/� ■■ ■.■■ ■ ■■ ■■..■■■ 60 SS■ 1 :�:MMSS■ MUM Z /■ Ulm MaialI /■ H ■■m.i!\\a*■■■ V ■ - IN _ ■■ �_ irdiarnii Hi' iT ' - `_ - ~`- - _ : kr um _ ■■ ■ ■. ':■■:G'::=' iSSSS • ■■ ' ■■ ■ S■■ ■SS■■S ■■■ ■.._ -.■■ 0 . ; ■E. ■ ■■ •• •••••••••11111•••••••••110m; 50 _ME ■ ■■ .►\■■.■ ■ ■ ■■■■ ■■■. h I ■■ ■ ■ ■■ ■■■ ■ ■ ■ 50 N ■ ■. ■ ■m. ■ ■S ■.. ■S ■ ■ ■..H ■....■ W �-� S .S. u! ■ SSS ■. ■ ■.S / ■ ■ ■.. ■■ ■■ ■►'r ■ H U■■.■ ■ ■ r ■■ ■■ ■■■■■■ - ' • Mill ■■■. , ..NS S IIONSSSSSSSMMUME I > .■ -- ■■ CC . ■ ■. ■■._ mamma SS viii SS's _t_.2 S SSSSSiS'a'S'i.G'.�'iimummomm•• SS .... mu . ■■ ■ ............. HS " SS S m SSS SS II r ±_� - ■.S ■N ■ S / ■H ■... m... ■....■ ■ H .... . .... ... ..S a ■.. ■. ■.■■ - .. ......r I,,Imu =.71!,l!II .. SSS "S'S...... Mom 3 0 'H.'SN ■ S l ini m at, 5��� SSn •USUS 30 • - - ■ a ■ .■ ■ ■S'SRU •■■H■■ _ ■. '_.. -. ■■. ■ N■ ■■ .■..■■■ J ' t _. -_• _ - ■ H■■.SSSS ■'SSS ■■■�■ ■■■ • I � 1 -- '' S ' ■■■■ UU ■■ ' ' ■■I ■ ■SSS ■H■ _ _ IMF ■S■■ ■■■.1 ■S� ■ ■.N■■ 1 1 KM ; _ ! _ ■ ■S ■■ ■ U■■S■N j -.._1111 ,..1.-i _ .J , 111 I_ ■ ONIW i, -- I- i_,_l_. all L__Mill _IIIMM IBM.= jLL iit '' ' •• ■ • I 10 20 30 40 50 60 TIME OF CONCENTRATION Tc I «A** 1 RUNOFF COEFFICIENTS — RATIONAL METHOD l' I SCHOL..NNN FIGURE 18 LOU BIA6N,CAL1►ORNIA ZONE II - 10 YEAR RETURN PERIOD APPENDIX A TREATMENT OF RAINFALL DATA ' The following discussion is extracted from "Hydrologic Design Methods" prepared for the 1965 Short Course in Hydrology, The Institute ' of Transportation and Traffic Engineering, University of California, by James H. Brown, Supervising Civil Engineer, Hydraulics Division, Los Angeles County Flood Control District. ' Asterisks indicate parts of the text deleted because of irrelevance to the current study. Portions included in parenthesis have been ' added by us to show how the methods outlined by Mr. Brown have been adapted to this study. One excerpt from another text has been included 1 to cover additional information essential to an understanding of the work done for this study. General ' Precipitation measured at a rainfall station is called point rainfall. Daily readings made at a particular time and storm total amounts are normally available from standard nonrecording rain gages. Storm total or possibly only seasonal total is available from storage gages located at remote sites where the ' gage must be left unattended for extended periods. Recording gages provide a continuous record of precipitation in the form of a trace on a clock - driven chart. Areal distribution of storm rainfall and seasonal rainfall may be determined from both nonrecording and recording gage data. Storm pattern and rainfall intensities during a storm are determined from recording gage data. ' Statistical studies of hydrologic data are necessary to determine return period or percentage of time that an event will be equaled or exceeded. In such studies, statistical ' inferences or deductions are made from a set or sample of observations about a larger set or population of potential observations. Frequency studies of hydrologic data, therefore, provide a means to predict future occurrences or events on 1 the basis of past experience. The relation between rainfall rate (intensity), the time for ' which an average rainfall rate prevails (duration), and recurrence interval of various combinations of intensity and duration (frequency) are important to the design of certain flood control structures. The recurrence interval is the average period 1 within which a gage event will be equaled or exceeded. 1 • i A -1 F E 1 Frequency- Intensity - Duration Relationships Frequency studies for determination of intensity- duration ' curves are usually based on a partial - duration series analysis which makes use of data above a selected minimum level or base. Basic data consist of a series of recorded observations ' of precipitation events. The base is usually selected such that three or four events per year are included in the study. Since each item in the study must be a separate and distinct meteorologic event, only one value per storm is selected. (The following text is extracted from page 545 of "Applied Hydrology" by Linsley, Kohler, Paulhus, 1949 Edition . . . . ' "If extreme floods are the primary concern, it is customary to use only the annual floods, i.e., the highest mean daily flow or the maximum flood peak during each year of record. ' Such a series ignores the second highest event in any year, which, in some cases, may exceed many of the annual maxima. This objection can be partly overcome by using monthly floods, i.e., the maximum flow in each month of record. Either of ' these methods produces a true duration series which is subject to rigorous analysis...The partial series is not a true distribution series, because the flood event is not ' defined in terms of its occurrence but in terms of its magnitude. The shape of the resulting distribution is affected by the arbitrary selection of the base. Hence, it has not 1 yet been demonstrated that the partial series can be analyzed by any rigorous technique. ") (Because only maximum floods are of interest in designing a ' storm -drain system, and because annual - series maxima were more readily available for the recording gauging stations in the area than were partial - duration events, the annual- series method of analysis was used in this study). The following procedure indicates steps undertaken to obtain an intensity- duration curve: ' 1. Maximum (annual) rainfall depths ** *for various durations are grouped in order of magnitude, with the highest 1 value listed first. 2. Plotting position is calculated. Various methods for ' determining plotting position have been developed, such as the California, Hazen, Gumbel, Beard, United States Geological Survey, and others. * ** (The Gumbel method was used in this study). 1 A -2 1 ` I 3. Each item is plotted in terms of percentage occurrence on some type of graph paper. Several types of paper are used for the various forenoted plotting methods; ' however, any paper upon which the return period relation tends toward a straight line or a smooth curve is satisfactory. * ** (Gumbel plotting paper was used in ' this study). 4. A curve is fitted to plotted points. Most distributions encountered in hydrology have a pronounced skew, and caution must be exercised when extrapolating from a curve based on a short period of record. Also, due to limited samples available, there is some controversy ' over the functions which best describe the actual frequency distribution. Various methods for fitting theoretical curves to hydrologic data have been developed ' by Foster, Hazen, Goodrich, Slade, Gumbel, Chow, and others. * ** (Gumbel plotting paper is so designed that the best fit for long periods of record is usually a straight line rather than a curve. Hence, a straight ' line intensity- frequency relationship was used for design purposes in this study, and for each of the stations its position for each duration period was ' determined by the method of least squares). (The U.S. Weather Bureau records for the Etiwanda ' gauge were based on clock - hours, and the intensity - frequency lines for that station were adjusted to a higher intensity by an increment of .143 duration in hours, the statistical average difference between clock -hour and elapsed -time records). 5. Values for desired recurrence intervals are determined ' from each frequency curve * ** (See Table 1, main text). 6. Rainfall depths or intensities are plotted against duration with return period as a parameter. * ** (See 1 figures A -1 thru A -4). Determining Rainfall for an Area ' Areal rainfall for a storm or a season is normally determined by either the Thiesson method or the isohyetal method. The ' Thiesson method is a geometrical procedure where the total amount recorded at a specific gage is weighted in proportion to the area closest to that gage with respect to other gages in the network. In the isohyetal method, points of equal ' rainfall are connected by smooth lines, points of even rainfall values being interpolated or extrapolated from rainfall depths recorded at available stations. If strictly mechanical methods 1 A -3 1 ' are followed, areal rainfall computed by the Thiesson and isohyetal methods will be essentially the same. In mountainous areas, there is usually a preponderance of stations at the lower elevations, higher elevations being more inaccessible and sparsely populated. In such regions, allowance can be 11 made for orographic effects through use of the isohyetal method by weighing rainfall in accordance with elevation ' relationships, taking into account windward slopes, ridges, and leeward slopes. Where forenoted factors are evaluated, the isohyetal method may result in a considerably different areal rainfall from that determined by the Thiesson method. * ** ' (Areal distribution of the 6 -hour maximum rainfall for a 50 -year return period as developed by the isohyetal methods ' is shown on Figure 1 of the main text. All isohyets have the values tabulated in Table 1 of the main text at the gauge locations except for the Etiwanda gauge. If the isohyetal pattern were warped to coincide with the exact value at that gauge it would appear to be distorted on the low - intensity side in that general area. It is possible that the statistical adjustment which was made in converting clock -hour records ' to elapsed -time values for that station may be inaccurate. Hence, the isohyetal pattern is drawn to show smooth curves that match the values of the nearby marginal stations but ' which are about two - tenths of an inch higher than the derived value at the Etiwanda gauge). Ways of Expressing Rainfall Data Rainfall data for design of projects in watersheds ranging from several acres to several square miles are often expressed ' in intensity- duration curve form for various recurrence intervals. Intensity - duration curves are useful as such only for computation of peak -flow rates, since the curves do not ' represent sequential rainfall events. * ** (The intensity - duration curves for each of the two zones used for storm- drain design purposes are presented in Figures 11 and 12 ' of the main text. Values shown in Figure 1 of the main text are those obtained from these curves. These are point - rainfall values applicable to areas up to about 5 square miles. For larger areas, intensities may be reduced in accordance 1 with the recommended curve shown in Figure 3 of the main text). In hydrologic studies where a hydrograph of runoff is required, ' rainfall data are expressed in mass curve form. A design storm rainfall may be developed in several ways depending on type of structure and design policy. Design storm rainfall is normally patterned after meteorological events that could ' reasonably be expected to occur in nature. In many cases, this involves the transposition of a storm from one area to 1 1 A -4 1 I another. In the transposition of storms, it is necessary to consider shape and orientation of isohyets, effect of topography, and other factors involved in meteorological homogeneity. :' I Thunderstorms are normally transposed over large distances, while special techniques must be employed to transpose cyclonic and orographic storms over relatively short distances. * ** (In the rational method, which is used in this study for small I areas, the thunderstorms of the past have been accounted for by the high - intensity, short- duration peaks indicated in the upper parts of the intensity - duration curves. No special I transfer technique is required in the application of this method of computing runoff). One procedure is to select a major storm which has occured 1 somewhere in the vicinity of the drainage area under study and to locate this storm in a critical position over the drainage area. The time distribution of rainfall is obtained from a I recording gage record of the subject storm and is adjusted on the basis of transposed isohyets. I A second procedure is to maximize areal and time distribution of rainfall associated with a major storm, considering factors such as available moisture, dew point, temperature, and wind velocities. The time distribution of rainfall is sometimes I altered to obtain the distribution most critical for the drainage area under study. I A third procedure is to select storm rainfall on a return period basis. Either the rainfall amount for a single duration may be determined with rainfall distributions for I other durations related on the basis of a typical storm pattern, or * ** (This third procedure is essentially the method used in this II study for the larger areas. A six -hour storm is used as a standard, with a rainfall - distribution pattern corresponding to the Soil Conservation Service's "C" curve modified to show t a maximum one -hour intensity of .36 times the six -hour amount). * * * * * * ** 1 1 II 1 A -5 II 1 t o 0 01 aD I- 1D In et M N - 01 m - 1D on et 1y - • Mini ... Mini- Mini - .... • .. - -- = -aale u) Mi 111t t11ili I . uu . I I. i■.■i C ai :. • .I.....II .. II . ... =i... - I:.IIIII IIIIIIII 11 :: :111 :111.. : :�� =ss�>s-- �..s�ll 1..11.1 :. : �iil�u..... Mini-- } - .$IIIIIIIIIIIIIIIIuI11/ 111181 111■ H!■:!!. I ! ■ _ ■i _ iia... . -- 1:21111 /!H■lll. U� . ■IIHIIIIII 4 1111/ .■..111 ...11..11 ■11111..1.1111.11 ■. 1 111111■11ln ....� o I I Illlillllllllll11H 1 1.11■■111.111lMI ..■■■■ ■ nail IIIIHIIII■IIN. i 111 11111111 �I■..■1� ■ ■ ■�� 11111111111111111111 1111..■ ■11111111 11 1111 ■ ■11■ 11111111111! ■. IIII I ■11.. N ■T uUI ux.H11a1sN / 10101)1111101 =�' IN__ a l =�i111119 m 11 1111 N111111iC � �141■ i1 u11llxx/ mun1n11�1 = = =� ilxnnuuluN/ = = = = = = nn n■■�/ Siu111nn IM x1;11111111 uai11/1111■■■■11nn■ t i • uiiiti1111011111MIIIIIMIiiii a i n=i11 I III M IIIII :�� i 1 u n 11 Neiaiiuiai=■11am ■ IIIIIIIIIIII �� I � �N111NUIlI1N111 1 �1 1 I � 1 11 1 11 1 1� 1 / 1������� ■ 1111111111111=1111111 ' II ■ IIIIIIIIIIIIIINIIIIIIII II■ IIIIINII I 1INIIIIIIIIIIII111 / I BE 11.11.111111: ■....N ...ii■... -• --- .- .■- .Z .. r,.��i /i::•. - - -••- �i� n q � j p N.iii--.Mi- .-..unit. ... ..0 ...w..ai., : :.,..n..---- .1- 0 ..IIIII II 1111 1 Hum I N 1111 1111 111 11 11011������ �I 1 1 1 1 «1 111 �N .4111 � 111 � % �%�11C�� N ■ ■111 1111111111111 /111 1111/1 // ■ ■11x111111111111111 ■■■■MINNE �1 /iI111111IIMIUN1 /11■ 1111 %IWAI i�/1 /. 1111■ /■■■IIIM■I■ ■ 11111111111111111111 1111// 111x1111111 111///■■■ �■ ��■■■■ �// ��IIIIIIIIn111N11/ 11■ Il1i /11'1�1111//.�/// ■ ■ ■ ■� //� ■ ■■ ■11111111111111111 11 101 11111111111111■■1 ■■■■■■IS11 ■■1111111111111111111 1111115P1111/IIV raral ■ ■■ 1 a ■ 81III I II II N I 11 1 1 111D N Iumn 1 IIII���� umull I11 I IN AI ■ 10 1111111111111111111 ■111111111111111 ■111 11,1111111■ ■N■ ■ ■�11■ ■111111111111 11111 /1Iri11 ffil 1 ■ ;NUM 0 == : ::= ______ : : ._ . _:'- -- _____ == = _ 'xm�_ -___ Mini .... ' ::: ..• :E n 1: = _ _ -==_ Co I Si . .. . ..n 1 11C :: i:::::i.. S - .....................m. E""==.1.===........•... _ ...... - .AS . 1 ... 7 Ci . II Mini - - -- MI Mi I :: -•I - - -� .-- ...•...........,....- .r / ...,. - Mini - Mini I/) .■::::: 1•---.- :■-- t.......11: : ::....•..I..I. I's` Mini--- - . �� ■ ■. 1:ii- - - -w1111-- .II ■..1MVI.11.I. ■ ■.1111.Ir,. -Mini- -� .I -Mi ../1111 ■. / --- ni-- ■ 1 -- tIII ■ - II � ■♦ n ■. ■I, ■. 1 ■I... NNW ■ . ■ ■. ■■ .11 II ION -Mini- Mini Mini 1. 1■.. .. • *1111■■-- - - - -�■ ^■ I.. II ■.■ I II / ■ ' . •11 - - - - -- C. �MMIIMIIII seu u■ 1111101■ 111• = = ■ _ ■■■■■■■..�■■. ... 1I.i. 1 , ' rin ... . . u. ■ ■ l i .. ... --�--- - 11 . ■11111 1111 .1111■ 1111111•11111111111111•1 1111111•11111111111111•1 Mini - 1.1.x•1 1111■ .. mum ni ._�� CO • Mi ni----- . ••••iiiiit•.1 -I ...rI...Ix■NP , .l ■ -M - -- a =. ii •. � ST .• = - Mini Mini • ?ii =• Mi _ : °:11- Mini---- =-•--:::' -.N•u•u .-� - IMMO 0 ' • :�::: • •:, - : • f -: .u1�_• Mini- Mini--- -x -:SM= i:: :u:• w■ ..N ■� ���C��::O:: ' : ° :: ::NM �� -.• ..- ■. -- �• .a..,. ■■o�mBa.i .. I - a.--Mi- - Z L n. .... --= 112..•.;x. N •.■ I ..J .I .... �1• ------- .. -W.. I NI'. 11M111/11111111 I \ -O Mi111.11 /11111111 Mis ---- -- m.. -Ix .11■.111.1. ■.'IN. ... •Mini --- Mini 1111TH. .� � ■�■ 11 11 --...M1 /11 ■� IN. ■/.1 ■ ■ ■ ■. ■ ■� ■. ... Mini•- -- -- .■1111 ■ ■ 11 •.-: ���.IN /Nr11..x11.. ■4■ ' ■NU 11..•11 1� � ms I IiO ■ ■ ■ 11111111111111111I1I1N 1 111111111■ IHIII/111■■n1111 ■..■■ 1111 ■d 1111111.1. ■111111•, 111111111■ 11111111111■■.. ■.I 111111111111111n1IMO111111■1111NIU111 111111111111 ■. ■..■ .■MI 111A..... UINI/11 ■l 1111 111111NIN.■1111■ ■..5.1111.11 1111111 //1/1111 ■1■ ■. ■11111/111111111111111 ■..■ ■ .1111 !•l111I1.1 1111111 /1111111111■11/1.11111.1111 ■■11 ■1111...■. . 111111IIH111111N111l011IIUU UIHIIIIIM 11111 11111■.■ ■■ ■.I:I 11111111 ■1111111111111/.1111111■■■■■■ ■■ ■ ' - _ ...N .. = ni- Mini .. Mi Mini- - - - -�• Mini lo I•N •- •Mini -- -oo --- _Mile.- 1 ■.IN ■I --Mi - -- 0 -- • Mini--- - ...N 11 -. -1.. Mini-- -- =IN -- ■ --Mini- nil ■■ - ■1111.11. ■ ■11111 ■..- Mini-- -Mini • - ••Mini - 111111111111111I1..I ■ ■■ 111111■111111111 /11.1 ■ ■ ■NI ■ ■. ■11.11. ■ ■ ■■11.1 ■ .....--Mi Mini- 0 :1111• u _C ::f ..-• Mini - - - -� -Mini - == -11_..IIs: _Mini- . •. - . Mi11-111 -•...- -.. ••._ -1---1-•..-- -- • Mini--- -�.• -- ..■. -- Mini Mini -�� 1111-. .... ■ ■. ■. -Mini - -- - - ---- -_■. -- 11.11•.. Mini-- -- -- - Mini-- 1 - ■. -. .. .111.1 ■.111■ ■ ■ ■ ■- � ■11 -- .N ■ -- 1 .■S. -Mi-ni-_ N.■ ■ -Mini--- yImuHHHllluuouu n■HH111uinn.u.■■■■U■...■ 111. 111nnn11N1■n1111u11nu01un■.■.■...IN. W N N ■ IIIII IIHI IIIII I /III Ilu1.1111 ■. NO1..11. ■. ■. ■. ■1111 ■111111111111II ■ 111 ■.1111111111111111■ 11■■ ■. ■■.■ ■ .�. 1- 111111111111111111111 !.■..■■ a ,m111iIneOa1111■...■11.■1/ 1111 /11.11.1/ 11111 ■1111.111110l1■O ■ ■ ■ ■ ■. ■...�. .■I IIIIIIHII111111THION111111 ■11HIINhI!UI. M• 11■..■111111111111111.!11111 ■.111111111111111.1..11... ■ ■ ■... =. ■■IIIIIIIIIIIIIIIIIHII INN. NII ■■ ■■ ...■.IIIIIII1111i.iNI■ ■11111111111. /1.111.1111. ■........ Z 1111 II uiiil ni I H h I I 1 I l 4 _ _ 11 ■=� i=i il nnii i ii i iCm n i ni ■ IIIIII1111 =1 1111,11.11■■ ■ II : ;I11 TTNIC IIIIIIIIII��llll1111 M �IIIIII11IIIIII II IIII � ; ' 1INIUIUIHIIIUIIINIIIuIIIIl$ IIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIII _ CI ■ ■ ■ ■ ■ o_ ■ Mini � _ SIM OM w u. Mini Mi - - - -�.. Mini ° O - : ..- = 1 : :: : !::::: :s • : : :: .HIll5558 _ •- s : s ... _ 11:11luUl•UUUBBI��pI•*UU5 .:: OOi:��� -- -- 1.1111..1...i...i...■. .Ii.•.Mi. _..Mini- - -�.. ..... -Mini -- L. . ..._.■.. . ..--- .... - - - 10 I) It Mf N - Cm - 50 IA a M N - INCHES PER HOUR 1 •I• MOT1 INTENSITY- DU RATION CURVES - I 'Ir IIC1+O1.. INSIN //111 ETIWANDA GAUGE (USWB) FIGURE A -I LOU ■IACN WOMB IA 25 YEAR RECORD J O o co I 40 K1 It M N - c2 11 N W III r, ':,: IO N - _- . 2121 - _.. ...... ... --- -a :sss CO 1- SIIQ iu. =i :: i i.: a.'....{ I IPi�'�'i'I�i 1 1�P'1 1 S - ■J'i•a__ .u.u . e � i �_t._ 1111 I 1 1 1111. IN ./.../ IH..I■N..1N.. / //■■ ■** . NUM ■...11 ■..11I HIuu 11111111111111111•111111111111111111111111111111110 El MI N Q IIIIIIIII I /II IIII: ICUUUUUR�l11� ■ • IIII IIIIiiu iu III IIIIIIIu aun....u • U• II IIIIIII NIIIUN� UUU 1Ui•1111 :1 111 I ■■IIII1111111111101111111 111111 11111111111111101 11 n1111i ■■■■� INM1 IIIIIIIIIIIIIIIIIIII1MINI1 /11111n11 ■ ■■ ■� 1•1 11 . 11111111111111 1 11 1 p 1 ll II 11�1 ullI�� MUMMI IIIIIIIIIIIIIIII 11111 H1111111111N 111011.11■ ■� 11 IIIIIIIIII111 ■0 ■ ■ 11111111111111111111111111 ■1111111111111110111■■ ■ ■ ■■ 1111 ■■ 111111111111111111111111111111111111111 1111101 ■ ■ ■■ ■ ■111 1111111111111111111111■ H1111111111111101111111I11■■■■ 11II1111111111111111111111111111111111111111 aium ■■ ■■ ■ _ -- .. . .. 2121_ ■ .Y'.t. __ -.t _______ .■ _. 1/.101 =C.1I ■■ : ■ ■... IS . ■ .... _____ -_H... ... I.. r1... - -..___�_ ....2121_... ■ ■....1H _ ■ I r1..I1.. _.I___ 0 0111 11111111111 1 111 1 1 1 % N 1 B 1 111 / 1 1 1 111 111CC� 11 11 1111��11���C11� • 1 11 /1 1 1 1/ 11 1 1'/ � i1/1 : I���I N 0111111111111111I111111111101.H1f 111111/11111/1NO0 ■1011!!■ ■•0101111 ■ ■111 11111 11 01101 1 //0 0 111111111111 %11 /110 /,011mm ■ ■• ■ ■1111111111111111111111■ 101101111111111111 11110110100111 ■ ■ ■0/■101010111111111111uN1110 ■ 11111111 / 11 ' 1111 / 100 '/ 1 M 4 ■ ■ ■� // ■ ■ 111111111111111111111001 100111111111111101111 /011100111111 ■01.111 ■0111111111111111111101111111 01 1011/ M11/11 ■■■1r/ ■ ■IIIIIIIIIIIIIIIurni 111111 11111111111111111111111■ 1■■ ��1111nmilmIlumulmorgi pu1r ■■ BIIIIIIIIIIIIII11111III111111111111IIIIII1111111111 ■■■■■■•11■■IOO11•111111111 •uu1►1u ►1 111'401 ►.■■■■■ I ' ■ ■1 11111111111111111111111111 11111111111111111111 11111II■■■■■ 11■ I111111111111111111111111611i11PJ11Vi11In1I ■■II /•■ 111111111N111n11111I1111111111111111111111111 ■IIII■■ 1111 11111111111111111111111 !11WIIGIIIUi11 / O _ c= .._:::: � - : ...: ' o ° ° ° ° •== I MI MI= 1=1■MIMINNIIIMMIN MIMI 411111111MOMMIMMINI MU MOM ••••• C O 2121.____.._...II.I.M • . = ..1 __ 1.21___ _______.._ 1 • I 2121____ .w MEN . . __.____..21.1..1 I ■.�...' ......1...21 21 21___ �•/ e -- ___ ■2121_..__ I......8 . . .... 1 . :. .II_____ .. __21 ■___.._211 .V.'d. M4 :: _ 21 __ _ _ ...------- ....1.11..1.....21 ■I ■...111.1..'.....' /.. .-- - - - - - -- -----•.--u11. .. v nn.u l. ' %--- - - - - -- 1/f _..____ ■�_.1.. /. ■. ■' / ■' / .... ,... ..■ .21_21__ -- Ch Cr 21..21___■ ..1U.. / ..... A.1. 11 .■......__.___ M • = IIIIIInn1111NN1. N./ 1.U.. ■IIUUN.■...NNU==..... p..Hal /N- . ■.IdNH1 O.l ',.O 1 •.......I:__I 0101■.. ..21- 211■■..HII ■11 I /111I 1 MIME ... _- 0 - ■I ._..__ ■•.. MM L r AMP ■..III/ U. 'I ..___C 411. T MI= 111111•1111M111111118Mom INN/■. _____..__I.... .. ••••I - - - - - M Z maw __1111.1 A _ 212121___..2121 r . _2121___ moo so -- 21 21 _____.._211II.■ " . I► .... '.1.H 'I.. MM 2121_ __21___..__10... li.I I . 1.'1......1. 212121___ I 2121 21___..__III. ♦./ ■.. ■.'I ....2121____ O _.IIIII111111II -- ..2121_■...IHIII. •..I'1 ■rINIM ...2121_ ...2121_ .21.21__ 1111 _.11111 n111tUH 1 ._..21__.■..IHIO.1'.I.I ■ ■N ► MI le 11 �� _- 111111IIIIIHH _..._2121 •■ - 1.0lI'I.r4 ■ ■ ■.1 ■ ■r . 1111 IIIIIIIIIIIIIN .■.. 111111.II. ■1.I I1■ .. ■.... ..I�- ...1 .. IIII t. ..'III III... IEEE, III 01.01./■■■...... -_- - 11IIIIIIIIHIIHII..NIN I I I....IHIUII1..IUI /..1.........11- ...11■ / 1111; ' l I V11%. I..'/../ 1I111IIII1 'I■..I. ■.... MIME ...��� MI 1111111n1111 /H1INI../NU.....IHHIN.. /II11.1. /.......1111. ■ ■.. /...r 111 . ■HUNI /',1..11.01.........1111 ∎..� N Q • 1111111111U11111I/11111NU MIN INIIINI/ 111111........ ■.11••x.0!! 1111 IV Alt I. /111. 121140111111.E II IlII.I /U.U....■ 1111111... 1..IIIIIIIIPHIMIUMINIIIIMIMMIIMUM11111111111011=111111111111111•11 / I/ Irl il// r N /U011HII UI/IIINI.UU 1 MM.IMI■••• CC I ■ IIIII IIIHIIHI H111N11111100 M11 11111111111 10011100!! ■11.0101 U 1 ■11 :,r11!O' 111 /1 1 /1 0 0 11111 111111111U1/1U010 ■111 ■ ■0101• ■■11111111111u11111.N111/ 11111111111111 /11u1111 USIM■■■CO1111.1!11GEIr 4011 / 111 r /11■unc1un11u111111111■■■■■101 ■ ■11111111111 1111 1111111111101111111111111 /1EN1110001■ ■111 ■111■ 1111 / i■ 0■111i11111111111N0100111 ■ ■ ■ ■111111 ■■ 111111111111111111111111111111111111111 /1111111110/11/1■ 111111 111 / 11 i 11 i 11111 %IIG 11/011M11111111111111101111■ ■101/ ■■ 1111111111111111111111 u11111111111111111111111 /111IIII■■ IMr. MIMP/ IIG111111N111111111111111111 /1I ■■ ■0101 I ■ 111111111111111111111u111111111111111N11111111111 ■ ■1■ ■■�nleA 7,IIII:� ∎ M111041111111111111111111111 1■ ■ ■ ■ ■ ■ -- 11111111111111111111111111H11111111111111111111111��1111� 11S 1 111111111d111115111111111111111111111111111011M� -- -- - - 1.0181.11VMMOVIV NV =VA 111111.1U - - -- - 1 21' 210. I.I.. ....'l • ..1H - - - - -- -- 111 ------ .... 11... .101 •- •• - --- -- -- ■ .._.__VIIIIIV. Vaal II.1 21■ __21___ 0 __ 212121_ __ ',..II __21___ 11 -11 MM ...._I /./■r1..1'dllI ■I.H .. = N 0210___ _. • --•.21�I11 ■._ ' ■WM I. ■ ■ _ - ....-__ -- H. I . .= -- - -.'- - .. ... • 2121____ . ul►1Hn ■1 x01.01 H ...�� ._ : .. • _ ,,I .����� 0 _-- •_•._21... ..21., .:: �= = 2121 � . _ ZULU ::: 1•i■i:::'.:II�C::O�:i =KIEF'B -. .■■. °:... --- • IIII 21 'I_ 21..__1..., 1111' : ... .���� -- .T1 Ti ■.. ..I. _. 21/._21...... • _ 2121___ __111111 lHt.H 0101■ _ /121'__.. ../._ . 0000.__ - 2121_ __IIIt11HH ■ .:- //212111. 0101.. 0101■■ ■......____ .21 �.I__'_.I.21_ I. . ....2121_____ •1 lwnlnHlH N.N■N.luuo u.Hx.NNNUU. .v.. .0 ter/.. 411 1 UlH 1 •II..■n■■1■....2121- _ 1111 .■■ ■ .I..Lr._/,_.■-- ■21 _..21__ __111mnuHIHN NI 1. r/.r...01.II_r1■..IIIII] 211. ._.21__ N • NIIIII11HHIIIIIIIII III /......I�� nunu/N. 0110 00U l ///11•ra�/. ■.IIII 11111111u u0 /U■ UIII,.IIII.1/.1/U.000UUl1111••• 0 I •11111111H11111HI/mumuseU 1110010 I I /IIN•U ■O/,U / /lrU11IIIIIIIIUI/U.!!11 ■I /1111 /1111IIUIMIMI MI' MU WI NI MINIM 10111111111111111= N • 1111UIIIIII IHIINIiN.1 .0000 uiIII1111NI.1U.000 O' HUTA! a11I/•IAaU ■.I IIIII IIIII1//1/ IUIUU 1/11/ 11111 /II.0 10.000U.U! 1111••• •11 1111111HIIHIIIIIII IIINN UR IIIMMI NINNUUUGU L11/ 4■ 11/ UM/ IU. NMU/ HIIU. INEIl .HU111111111iNN.i/.. ■ •I 111111UIIIIIHI 1111111 NII / IIIIUIIHNNI.I.0 riE /MI 1111111• UEUU!! 1' 111111I1i111. I NEE 111111111NNNN.000UU ■! ■11••• 01■ III1111111111H11H111NN0111111NIIHNNI00 /1 / Ml /111//01I41111UUl/1111 1111 / 1110101 •UIIIIIIIIINNI.N000UUU■! ■11••• Z ■ ■1111111111111 1 1 11111101■II1u1 ■1 11�0■1111111111111111111uN 111111111111111111001 ■11■0101 IM 111111111II01 11 MIIIIIII 1111�1 ■I I IIII I 1 IIINI� U IIIIMINNIIIIIIII ■ I IIIIIII IIII I I Iu unuu1H11 I N 1 III III U111iIIIUUImii 11 i .anin 11 111111111IIIIi IM11iiiiiiii 0 = i11111161111110�s.l::ss::xs 0 >z�- 2121 _ ■�= 0__ a / _�.......- == o�_ = ���-� 1C .:S � MMMMMM -ii 0�0 = = _ .2121 MM 011111011•111MMININ■••• 0121 ...==:= 0iIUIII.il:.. =.... ...... = = = = =�= -- :::_ .. 00.21 = = = == ■ ' _ 0000 000 ... - - - - - -- ..._......._.- - - - - -- 1 -- ••__. - -- : -- .. nu r"-::::::::==== 0000... MIME.: ______.._. .. ... • - - - - -- Y7 O 01 co P 0 h V M N - Cr! p ti 10 M M lV INCHES PER HOUR .. !/A,T4 INTENSITY-DURATION CURVES I �l lcMOL.1141sI N11U� MIRA LOMA GAUGE (SBCFCD) FIGURE A-2 .21..21 2100_.. _.•.....1. 23 YEAR RECORD . ____ 1 01 m cc Q co N " - 01 1. 1D IA 4: M N -7 -- • • Si:i :iiiPi • - - -- : 1C is -1... 1111. -1111. . - - - y - i.:.:i // 11 ■ 111..... ..■■•. -a 11- ■ 111 / i3 11/11111:I1i ■linil11i . �: . :i1 =11:I.Ii /1.���� :1111... . - - - - r - 81111111111111 :.111.11..11..■ 1111...... ■■■■ . 5 :........11.1. ■I■ .1.111/•1. .11.11. . 11.1:. -2 - ■■111111111••lf ■i IIIII/ III UUI O011 11. 6■■ m�MIL■■ Hmi IWUiui/ 1.•1111111111/ Q . • 10 1 I I uh IIII I lI I IIIIIN Ilu ° I u u _ el. .C: .1i 0 � II I III um , IIIII1��11r0� -- N 1 . �0111111111111 11111 1 1 := i �s X111 11.. CI I= 11 1111111111111/111111111 IIIIICIIui•1111R•a • •IIIII 1 • II • 111 • I 1 111 I I11 IaN1ft1I11111 1 111 1� � ■111 ■� ■ ■ ■■ ■ 1 III IIIIIIIIIIIII III / /��� ■ ■I� ■ ■■ ■■■ ■ ■ ■ ■■ 1/■ 1111111111111111 1 1111111111 1111• N$ ■■■ ■ ■ 11111111111111111 111111 1/ gIN11111u11111111i111111 ■ ■■II■ ■ ■11■■11111111111111 111111111111111111 111111■ ■1.1111■ I ■■IIIIIIINIINIIII�NI 1111111111HIINn111�1111111 ■■I■■■■����II■■ 1111111111111 111 11 111111111111111 - 1 -.......... ...1- H. ...■ epee. 11, .I • ----- N ■ ■ - -1 Use • ■•I.■*. ..-- -a1 - - S :..._..:U : ::� ■ ■ ■ ::ai1. . --- - - -N . . . 1 .■./I::.N :�i : : : : 1 11116 • 1111. - -- -- 1♦- "al: . . �. - - - - -- ■.- ,./ • '1 _ .. /I - - - -- N 0 •MI111i1111111111 I: II 1111111 I I II Il � IIIIIIIIII�� � II 11 1011 I IIIII■III IN / U/ I I f = 1111-■/ I ? /■■ ■ ■ ■a I �■ 111111111111111111 1111 1III MI 1111111 MUNI I1I I1■■ ■ ■■■ ■ ■���11 ■■1111111111111V.1P1■■il 1 11 ■■■ ■ ■1• ■ ■111111111111111111111101111■■ 1111111111111110■■■■■■ ■ ■ ■ ■ ■•�1/■ ■111111111111 VIII/ IP�IIIIIli1111 /IIIIMI0.1 /•■ ■ ■i •1 11 ■ ■1 111111 11111111111111111111 ■■■IIN 11111101110■■■■■■ ■ ■ ■ ■■111•11■/■ ■1111111/1011/10911 /. ■1110 11111 /.AIIIU■1I M■■■H ■ •1111 ■■ 111111: 1111111IIIII11 1111IIINmu11 1111M1 1111111■ ■ ■ ■ ■11/1111111111111151PiU 11PI1111111►111111111/1111111■ ■v ■ ■■ I ■11111111111111111111111 111/111PIN11 111111 111 / 1111111111111111■ ■1111111■ 111111111 IN5051 MUIP!111111i111111111.A■11IMIN ■■■ ■■ IIIIIINIIIIIIIIIIIIIII1111l /111/1■■■ ■ ■III ■ ■1111111119u 1N� mmitl/111■11■■■■■■■ ■■mmmiumuNIN11111 11111111IIIIN111 1111■ 1 /1 ■ ■■ ■■1 11 11■■ INIIIm1ri1U,1111rA11N1!111111 Ir111/111111 ■11■ ■ ■■ o : . = =s:::= _ ______ _ ____f __ :. :: E € _ _ °_ =_ °' I al I NM MO 1111.. : :: .. •_: .� = �a.:xC�:: xixi ° u ::5 :: ::1111..... ' : ■- - -. - - - ••• no ..■: :: _ _ -- 1111 .. 11..- - : ::' 1111 u - _- _-_�___ = = -- -.2."=======.:::A• -�- • • WSW , P .= WS : .'. . 1111 ------- -� . • - Ir ...r.- 1.......11 •:... .- - - a - - - - - -- - ■ - •11 NM I.. 4111.. -•' N.....'•..... Mar IN . - - - - -- �/. 1111 - ----- - ---•• .•••• ..... ..■ r I■.■ Mar All ••• - -- -I -- - ---- ■ ■ -. 1... III. MN ' l ■.r.... -• - - -- �- - - 1111 -. 1.1.. ■H 11 . --- - -- == - 1:1'11:: :: -- L-: I:- 1-- r ..,,.....xs..,r...n.■ - - - - -- ifs -- -- . - - -.• ft/ 1111 I. 1, . -.111■■ ■'111■ NN ���� .N - -- -- 111 ■ ■ 1111..--- - - -�•1 0 . 11111' 1.11.11111 11 /..1 ■ 1111..- - ---- M 1111 -- 1111 IIMIulml /uOO•• ru1./.11I011 : ■: ■•. ■•1111- IM�••..0 al l•11 /lI I'4I h. ■■■■1.111/•• O..■ ■MINI ....H. ••� e .u. . . - -- MINI ■rIJ. If H. II /111111111•11111 maw. . _- aa - 0 -- ■1 .1.1.--- ..•T -Hill 11111111 ■..11111• I ■ 1111 - - == ... x. :xxxx : ■saaaa: .: sx :11 - -- = =a = == __ 11:::11 . @° == ■:• :'e: :: • :::'. -■ ••• MI -- •-- - ■-�_. i.r �.:'.:..... 1111: - - -- MO MI - - - - -- 11."'1'1- •a.•..Il - .... � I = 4 111.. - - - - - . M MB -- NI ...------c. i. •■ - 1111..--- - -- Z -- . ■ - - - - -C ■11 11 IN..,/. 1'L.■■■■. IL .N. ■..••- - - - --- MI ====1=11EIRIDERIMI■ i -- ■111• ...-- -r1R11■ I. 11111 1111..... - - - -- -- 11... l : :: • : :N IN 1 ......--- 1►/••.•r11.1/ .I ■•S 1111...---- - •11111111111M111111•1=•••1111.4 •• H11r11 11•1•• .■ 1111...-.-- - ■■ uuuuHUn1.. 1 u.•• Hnnu ..u11u...S■NININI ■ ■.■■-r1.rl.nuH nn Nnu•1•auuu.u.N..MII■■-- ■ ■11111111.1 11111.. 111 / 1111./.... 111•••I.uIIIIIuU•a ■ ■ ■ ■■ ■.1.1.104/111' 1111'. 111....,•.■ ■/11111111.111111..... ■41.11 ■ ■■■ MI n■ ■■ I IIIIIIIHI/II11Un/1......••IH1 /I .11.. /..•••••..■■�L1/. 1 r.111111n1111...I' 1... 1111111111..1.... ■........ -m�s N 4 ■ ■ IIIII III:IIHi I /IUuU11U.■ IIIIIIII ■■ ■■ ■Flu lll.r■ Ilr 1110 II IIII.II • 11111 . 1 u u 4411.■ ■■■1111 cr IIIIIII111111111■ 111111U / ■IIIIIIIIII /w11■■■■■■■ 111''1 rmvlu■1111111'1111I/11r 111 /•IIIII1111110111 ■ ■ ■■■ ■■■�� x 01111111811111 111111■ 0 / /// /■ 11111111 11110111 / /■■■■■■■■i�I• ■■I/■piiir11011111 /111■ IIIIIIIII /1111 ■11111■■■■■■■iii I us of11111n1011In ,10■■1mn1111un110■■■■■■■ ■■■■■ ■■ 111111111111111111111110111■■ 111NI11110UMNI ■ ■ ■■ggq11P10 /IIL ■10u111SmuUI/ 111 ■■IINI111111111111 ■1■ ■ ■ ■ ■gU11iy111 p 15•111111111111111111111111111111111 1N•NNU1111IN1■ ■ ■11■■ 1111E W JL EASI 111:1 IIN I WI //11■ 11111111 N IU 1111111 ■■■ ■ 111111■■ ■ ■ ■111111111111111111MMII1/■IIINI 11111111 11■// 1/ 1■■■ 15► ril il11;I 11iti9NNUin111111NNIMIR111 /u111■1■■■■■■■■ r 1 IIIIIIINIIIIIIIIIIIIIIH11111111111111111111111111i1 ■ ■ ■ ■� / ■'ll ■�III 1111111 /1111111111111111111111111111 ■ ■ ■ ■■ _ 11111111111111111111111111NINI 1111111111111111111111____ /I//_,1 1111_1 VI 1IlIIIPd11111 1/HN11111111I11111111111IIII ■� OM 1111..- 1.... -,. ----- - - - - -- -- . 11.11 - - -- ■111. -1■ ■1■ = 1111 ....N 11.11... - - - - -- -- • -- - -e.e. / ..1..111 1 .... .. - - - --- -- . -- .■..-,.■ N. i ... .111.• .... =====11=1111110111 n(� -- . �.- 1111.. -1•■ . -l' 11.•..I.N --- --- 0 -- ---- 1... -..■ • -1 111111.111111 •..11 - - -- -- ••777 -- . ..-. ■•.••11 .1..- ..1...••••1 , ■1 111 . - - - -- __ ..............•........... ..-.•.......r . - - --- I - -- '_� ..11 :: ... .E --- - - - - -- 0 Es. 11/ 111111111II811.1.•NINI.!!.- 1!1!! ■.I •. � ..������ .Ti. -'�.- SSS .11: : ::11 c__........... . 11'-•11.•• -1111. u■ . ------- -- .. .. � ��11 -- .. ■ ■ ...- ..:'":C::......... . - . •• - - -- Q =OM ..- . =DI EOM .... ,••• . ... - •••• - - -- a- _- 1111. - - r - . - - -- 1rf I -�.. . - - ..1 • - - - -- MI MU ./ ■.111.: --11.1.1 -.� .... 1111.: .1111.. - - - - -- -- ■ ■■ 1111 -■■• - -- '.,.11111. ■r1 -.IN 'I 1111■. 1114.. - - - - -- -- 111111111 ...r�l. / I.II.•II. ■■ ■..111 ... 0=====1111111=11= - -- .- �I. -1.■ - 11.' ■OW../ ■ •1111.----- - - . 1111111411111111111 /.1uI.....MIH1111 .11111.8...1.■■■..... /I•/ - a•I■. .. .! =•1111 ■1111... - - ■ -- - p • . /Ilrl I. .r1. 11■• ■1111 • ■ 11. •14. - - - -- - 11•111111111111•11111111111111111••••• ■11 1111111111 .. .'. / I-r . •• • 11.11•. - ••-- y m■ nuHln18u1n/ 11U11111 /•1IIIII /IIUIUI.N■■■■■■I• 111,■► 1mG■1 I.■■ IIIIlnnuluN ■•H•nlnluulll.u■■■■■U■■mm 0 W �MIIIIIIIIIIIIIIIIIllU/1.1. //■ III•/ IIIUII. N.■■• ■■►II►/IUI/. ■'/.■■11111IIIIIIII 11111 ■ /IIIIIIIIlU1111111.■■■■ ■ ■■■ ■mm N i ■■ IIIIIII IIIIIIIIIUIII I� II1.■ MI1111IUIII.1. .11.11■r /I /■ III.. ■■'MIIIni 111. •• 1111111111111 .I.UM 111 N ■ ■ ■ ■■ ■mm �- • 1•111111111111111111 .1I.III11■.■■IIIpI 1001 11 11•■■■• ■I //W ■I /■ra�111 ■■ •11/ 1111/ 1.1.1111■• m11111111Un• uuu.. ■ ■ ■■ ■■ ■ =• m ■ 111111181111II11■111111 1•■IIINIIIII UII.IUI■■•• 0ri M N ■r 1111111111IIIIl 1.1•111111111111111111■■■ ■•■■■ ■■■mm �■ 11111111111111111111 _111�1g1■. ■■■ III' II I. IiIq/ It■ r/ �1/ 11■/ IIIIIIIIIlIll1111�11 ••IIIIIIIII IIIII.I /111 ■ ■ ■ ■ ■ ■ ■ ■�w _ . I li mns II11111 MI N i 11%� I IME T IMIIIIII111111IIIIN �11111111111111 �111��� f ■ 1 111/■■■■■■■■■■ �� 111111111111NI111N hhl . f RIM 111111111 111111111111■ / 1■■ 1111111111111111MI111111111111111 111111111111■■ ■11 ■ ■■ IIIafnuAM11111111 INI. 111111111011■ 1II■ 1t 0MMII IIII IIIIIIIIIIIIIIIIN11111111111111111111111IUIUIIIl• o - m MMMMMM _ -- - I -- _� -. aaaC :.0 1111._ - 1111. = - _____ -.�� O �= Caaa� ■�:��� 1111 - - - -- = ti -- �' ..21:1:11. :::--- � = -- a =8: : s= - ! : -:: : : :: ::...011:0 =oac= �_ .....::: ::�::: - - - - -- 11 ---- =_____ in I -- :::. . 11..■.■. = - - -- = : :��01 i 110 1111.= ----== = = - -p O 0/ a P. tD N M N - 01 CO � /D In M N INCHES PER HOUR ',MT I INTENSITY- DURATION CURVES ,11cN <NNN/s FONTANA GAUGE * 17 (SBCFCD) •FIGUR A-3 94 YEAR RECORD O 0 co p- w m 1r M N - Of co. t` 611 u. sl, ,n N -. -- n u ■ . ---- - - uN..... . .. - --- - 111111.111/.1si1.:i..i . .......z:zzzz.. s . -�:: ■ I MF 5-- --aa= N Z. 1. 1111Ii/ii11i ■/ Nl..�al ■ i111. .- - - - - - - >- - 1111111111111111. 1.1.. 1. .. ... I.NI....1 ... .1111.1.1... ..... ......� tN • 111111111111111 // 1111111 ■! 111 /111 ■ ■■�.� ■ ■���� ■ ■ ■■ 1 1 1 1111111 // 111 ■1..1111111111 iiiilI. ■ :.. ■ ■..•it• cg E .IIII IIIIIIIII.uU1u !!!■.111111111/1.1111■* ■■■■■mmam • os. .111111111/11111 1111111111.1.■1l..... ....•Mitt. Q 11111111111111111u1iueu NUM I111uu1I ■ ■I■...■. ■.. ■1111111111n1111I1 111111111111 I IIIII.. ■ ■ ■ ■•1 m 111I1 111HI11H11 H 1n11I•u. 1111111$ l /u MIMO UhI I II...... U �ma 11nnuu 111 H 0 IIMU 1111 u...uu�..•u� • ■111111IIIIIIIIIM1111NU11 111111 ■■ ** ■■ .••�■ ■IIIIIIIIIUIN ■I 1 1111/11111 1111111.. ..•� ■ 1111111 11 111111111111MUR•11111111111UMIn ■ ■mMIII ■U•M•1N■ 11111111111111 /1111111111111111�� oMMI.11■ ■ ■ ■1• ■ 1111111111111111111111n1n��1N11111111 ■������� ��11• 01111111111111111 1•1111111111 ii 11111111111111111111ii1iiii11 111111111111111 :1111111111iiiiiii _= ... :: : :: ------ - -•- -1 ...............-- - - -� -- --- - - -..- ...............,..,,- - - - - - -• 0 IIIIIIMIIIIIIIINIIIIIIIIIIIMINIIIIIIIIIIIIII ' No Mr N MN 11111111111111118M IIU1 UMiiM IOM IM! M 1111111. ■111 ..11!!11.■. ■...••A■1■.111111n1U0i 111. ■1111111 IN MIL/ I! /... %..NM=AM N - -■I In11I 11 . ...■.■.. a ■■11111111111UU1u1 1111 /III/I ran 111 / 4..Iv ■ ■ ..•I /u ■ ■ 1IIIIH IIIIIIIIII IIIIIIIIIII1.IIt11111111I 1111 ■■I•■■■■• /1 ■■ IIIIIIIIII ■�IIH111111 ■■ ■ ■1• ANI . ■IIIIIIIIIIIIIIIIIIIIIIII1I/ 11111111111111 /1111111111• ■ ■ ■ ■••11111 1111 1111111 /11111111111 ■tIt111M III4III/11. ■II 1111■ ■ ■11.•1 ■■ 1111111111111111 11111111■ 111• ■IIHIIIIn / ■1■■■r•11111111111111111111111111 1111111■11111111;1114111IIIII VIM= MIW /IINII ■■ 11111111111111111111111111111111111111n111III MMI MIIMII •IPMIIIIIM ■ ■1111111111111111111111 1111111111111111111■■■■■■■■■ E11■ ■11111111111111111111111i1I11111 ►,11111111 /i■q■■■■■NN I ■ ■1111111111111111111111111111■ 111111111111111111■ 1111 ■■11■•• •111■■ 11111111111111111111 !111 ► / ■ANN ■■ 111111111111111111111111111 1111111111111111111111111 ■1111■ ■11• 1111111111111111111111111 /4111i1111i11INIIIi1I1INMI •Its ■ ■ 1111111111111111111111111111 111111111111111111111111 ■111111.11.1111 ■11 111111111111111111 /,/111111 ► , 41111111/ ■■ ■111111 - ........... 11_11.. -- = ° =EE -- == 1111.... - _= ::: -......� - -- == E =_ _ _ - - = _- _ - _ - _ ” 11:11.. .: --- _:::`` ---- •__ - _ - __= __= __ 5:�:1s......: _: B _ 1111.... _::__1111... . e... .... - •---- 1111■ -U M=NMI•••• ... r, ,...a.111111 ',1111.■ : I,. 111111111111111111111111111111111111 MM - ° °-- _ 1111.■- 1111 ■.'I - - - - -- W - - -- __-- ..- - iii ii ii„N..'I r. .1111 I. ■ ■1,. NO M1111111111111411111111111 NM IN 1111... -- •- -- -... 1'1 .r111. s ...NN� .w Cr 1111.- - - -•_. ,..'I. .'.N "M•11:1111/4•111111 . - --- NM MI 1111. - - - -■ . .I.. . - - -- .7 se .1111111•11111111■ 1// 1/ 1. 1 ■■ INIIII1111.■ INIUM..■ ■.it.�!■..1111./1 :' 1 1.1,.. 11. I. II.I...... VN.. ■.1........ - I MI MI N-IIuIUNNNN __ 11.1'.:1' I • .1..141 S.■ ....� /� O •11=1111 ■1 ...---tea =•1 .........1 I..1 u/u/.- 11u.n1/nu.•. i: ■ o MI NE.r� wt _ ...... ____ ■� ::_ ::::•:,::: : :. ". •- Cam. -� -____- - 1111 MINN • ___ - -- --_--- • In MI . - - - - - -- 1111 - -..O. L.ru. i■■ru.. - - - - -- 1r1 ... •11 ----- - -•_ -- ..... ...,..r,•.. •11 ••• - - -- -- ---- - --• -- ', r Y-I, -- ..,.INN all 0181111N11111111111111111• .'Z - - - ---, -1111-• •r ..••• ,1111.'.- ■- r....li..r. 1111..---- --IYI- - 1111. - - -- 1111 . • ••I .1r , I.HN. .... .- 1111-- -- ....-- N•■.R::r h1..1IN 4 ■ ■..... 1111 O -- S.1 ....N-- I...I.'I.It' •.N.1•.111 /1.1.1... ■1 �.... - -N -- ,,,^ N.IIIIIIIIIIIIII...n. ....N- NI ■ ■.'.1r,11I N1',.1OJ..IIN.111 • 1111... 1111... -N -- Nit11111/1111111u.1..1i111 ■! ■. 111111.. i.0. ■ ■l.... ■...i•�!l.�g1141111 ...U) 1S. ■0........N- F. =M 11111111. 111 /11 /HU.ilu ■■ ■•=111 ■111=== =■. ■ ■ ■ ■...N-�■/. Anma I ,■1 ■■II%1 11n ■ /I.!■.......iu� N •.1111111111111 /11.11111..■!■. 111111/ 1./ 1. 111 1■■■ .........•til■ ■ ■■ I. 111111. ■11 , 1111111111/1... ■■■....■..•t.� Q •.IIII..I1/ 1111111/ 11111111III ..1111H.1111I1111I.......NN 1• I..I/II'411 5111///.1I, 1■1. .11111111111111 ■11■.1....■..•�ne • ■111111111111HIIU11111IIIII. MIII11I.IIII1111.I... ■■■■1111 =1•111';9 ■till /, 1111► 111/1111111 /11111111111111■ mom ..•IN1 CC 11111111111111111111111111II USIIH1111111 /111/ 11111 ■■1■ ■ ■•■••IIII! - fI 111/ aril 111 IIIIM 111 ■I 411111111111111■IIINIMM ■■■••• I ■■ 1111111111111111111111111111 ■ ■1111111N11111111•• 1. 11 ■ ■11■1■1■•• /1 111 1 11111111111111 //■ / 111 •••• 1111 M ■ ■1111111111111111111111111.11 ■I 11111111111 111111/■■ 11•■■■■■ 11113 1 i 1IIIIIIII/ , 11HM111111111111111 /1 ■ ■•M 0 ■ ■ 1111111111111111111111111111 111111111M 111111N1/ 1/1■■ ■ ■•11111• EIM1111na1V111111'41■ gglquu111111111 ■1111■■■••• •0 11111111111111111111111111111 / 111111 •■111111N11111■■■■■Wu :1.7A1 I!9 G1191111/ 1 1 ANIIg1111 11 1111111111111111■E■111 ■11111111111111111111111111 1111■ 1111111111111111 111111 ■1111.111cAr7iianiA11i1111111M1 11111111111111 111111UUNII■SIMI I ■■11111111111 111111111 11111111 11111111111 11111111 111111____N %%1%_IIi11115111111 111 11111111111111111111111111_ ■____ 1 -- 11 -- - - - - -, -, 11.1111 r.... 1 1.■ . 1111 - -- 1111-- 1111 1 -- 1111 - - -- -111. ---- ,1.1. 1 ■.■.rI 11 1111 - --- -- IN.- -- -- 11.11.. -- -INN 4 1111--- - -- 11 11---- ....II■..� .1.N 1111..• 1111. - - - -- -- ■ 11•11111•1111•1•10/111'4••• ..rl ■ . 1111 - -- O -- - ----- r- 1- .. .1.Np le ■...■ 1111- - -- In N. ......... --1111 ...I•N1, 11. ■..1.N1....- -1111- -- -- _- 1....11,1.1111.1', ■....I■■. 1111--- - 1111-- 11, 11 11 - °O I 1111.::: ........ 1111. ______ 1111- o Mow -1111111 .. 111, II .1.1■ /.N............Il JW ../..r,IuI 'I _ 111===•1111M111111 111===•1111M111111 - 1111 _ -_ --'' ..-- - :S 1111. a -a •- : 1111 - .■...ice:• ∎••••• 1111.; _ -� i...- ------ - _- u. o•- • ,. 1111 •••••••••• •I .. ....mi.- o 1111 • - r.... 1•1 := . . 1111 - 1111- -- 'AMMO 11••11 ,•• . 1111 ■■■ M - - WAS/ 11. - --I .11 - 1111 - - -- --m. : - - L- 1111. -..11111 'JN . -11-11 -- -- • - 1111 IAI.I- 11..II -- . ■. ..N... 11--11 -- -- ■ .Ii I. - II.AIM .1.....11 ■1.■ 11•- - -- - -1111 . .II ..1111- - Val .- ■... ■.- MUM ..... ----- NI. . . ..MU..N111 All ..III I ..■1111 . ...N -- -- . 1111.. / /N.N, .....11 1111 1111 -N-- NNHu • MAW - N/I. /u.. N■. MM 1111111111111111111111111.11111111.1 to •.1111111111111 1111111111// 1111 ■.111 111111 / 111111111..... /4 ■% /,..M /11■.■ 1A111111u ■■111 H 1. .1111111/111111111■1.....■...IIIIIN 0 •.I1111IHII111uH11uuuu. 11111HI IU/ uu1 I1.... n■%■ IIwa■■..I H11 HH 1111 111•.1111111111NU1uu....■.mm N W • ■ uuuuo m11 HHlum ■.u.111111.II 211111111111111111111M11 AV M11111111111h11111110 ■rdmu1111 u10 111.. Hla mu um luu....■...uu II. 11111111111111111H111N. UMW 1111uII UUN/l.. /./ ■u ■..uI.II.II IHH HIn n.0 lu..InH H1H Um 1u1I....■...u• ..1IUI1H1H11H uu11nII1u..I11uHIlu I■IIIUI. AV. ■//•4.1.11..11111111 /1 / nN 1 / /.I IIIII 11111 / •n11 uiuU.......•u • •■IInHHH1111nu.unNlu1. 11111- HUm1IUI►i.uM■■..IuMIun■ 111111111111111 MIN muumuu' HUM ... ■■ ■1111•• Z ■ ■111111111111111111 111.•1111 1111111111111111 11 111■■■■ • X1111111111111111111111 1gg11111uu11111N1■■■■■ ■�1•� ■■ 11111111111111111 ■ 111111 MIIIIIIIIIIIIIIIINMIII ■11■■ ■N •111111111111111111111 111111111111 ■ ■ ■ ■ ■ ■�1 •11 Z I ■ ■llg1111 1 1 N�11■■ IIIIIIIIII11111IN 11111N11 ■ ■ ■ ■t1■ u IIIIIIIIIII M al I1111IIII 1 II I ni:11111IHhIIiiiiiiU •iiiii 111111111111M11111iiiin 111:01111 1iiiiiii o ==........ t ...... nil Min ?:IBEI.. :m___ = == ---xx ° 1 s � s- - - °- = = =oc �Li: =L� == : : :......... 1111.. - : __ � === =OC:: == 11 11- ::.......... ■� =CC _ -_ ••• :. .0 11.1: . 1111181111111111111111•11 _= ........:::: ::: - -1111 -- ::a: :1111- -- - -- to -- - . 'y'111I11i: =1: =11x11. - -.----..__ ... ----- . Il 1111---- 1111... 1111.. 1111--- - -- 111111 / /l.Np .......1... ..... 1111...- 1111-- -- -- .a Y... 1111---- ...i.. 1111... - - -1111 o Of . ti t0 a st In a - 01 /117 t': W In a M. cV INCHES PER HOUR ∎1• 11,swnE I NTENSITY- DURATION CURVES `;1 SCHO1.. ■$SIWI1I� FONTANA GAUGE * 18 (SBCFCD) FIGURE A -4 ....... "III MISS MIA 22 YEAR RECORD